]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - drivers/gpu/drm/amd/amdgpu/amdgpu_ttm.c
drm/amdgpu: Prepare for hmm_range_register API change (v2)
[mirror_ubuntu-hirsute-kernel.git] / drivers / gpu / drm / amd / amdgpu / amdgpu_ttm.c
1 /*
2 * Copyright 2009 Jerome Glisse.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the
7 * "Software"), to deal in the Software without restriction, including
8 * without limitation the rights to use, copy, modify, merge, publish,
9 * distribute, sub license, and/or sell copies of the Software, and to
10 * permit persons to whom the Software is furnished to do so, subject to
11 * the following conditions:
12 *
13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
16 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
17 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
18 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
19 * USE OR OTHER DEALINGS IN THE SOFTWARE.
20 *
21 * The above copyright notice and this permission notice (including the
22 * next paragraph) shall be included in all copies or substantial portions
23 * of the Software.
24 *
25 */
26 /*
27 * Authors:
28 * Jerome Glisse <glisse@freedesktop.org>
29 * Thomas Hellstrom <thomas-at-tungstengraphics-dot-com>
30 * Dave Airlie
31 */
32
33 #include <linux/dma-mapping.h>
34 #include <linux/iommu.h>
35 #include <linux/hmm.h>
36 #include <linux/pagemap.h>
37 #include <linux/sched/task.h>
38 #include <linux/seq_file.h>
39 #include <linux/slab.h>
40 #include <linux/swap.h>
41 #include <linux/swiotlb.h>
42
43 #include <drm/ttm/ttm_bo_api.h>
44 #include <drm/ttm/ttm_bo_driver.h>
45 #include <drm/ttm/ttm_placement.h>
46 #include <drm/ttm/ttm_module.h>
47 #include <drm/ttm/ttm_page_alloc.h>
48
49 #include <drm/drm_debugfs.h>
50 #include <drm/amdgpu_drm.h>
51
52 #include "amdgpu.h"
53 #include "amdgpu_object.h"
54 #include "amdgpu_trace.h"
55 #include "amdgpu_amdkfd.h"
56 #include "amdgpu_sdma.h"
57 #include "bif/bif_4_1_d.h"
58
59 static int amdgpu_map_buffer(struct ttm_buffer_object *bo,
60 struct ttm_mem_reg *mem, unsigned num_pages,
61 uint64_t offset, unsigned window,
62 struct amdgpu_ring *ring,
63 uint64_t *addr);
64
65 static int amdgpu_ttm_debugfs_init(struct amdgpu_device *adev);
66 static void amdgpu_ttm_debugfs_fini(struct amdgpu_device *adev);
67
68 static int amdgpu_invalidate_caches(struct ttm_bo_device *bdev, uint32_t flags)
69 {
70 return 0;
71 }
72
73 /**
74 * amdgpu_init_mem_type - Initialize a memory manager for a specific type of
75 * memory request.
76 *
77 * @bdev: The TTM BO device object (contains a reference to amdgpu_device)
78 * @type: The type of memory requested
79 * @man: The memory type manager for each domain
80 *
81 * This is called by ttm_bo_init_mm() when a buffer object is being
82 * initialized.
83 */
84 static int amdgpu_init_mem_type(struct ttm_bo_device *bdev, uint32_t type,
85 struct ttm_mem_type_manager *man)
86 {
87 struct amdgpu_device *adev;
88
89 adev = amdgpu_ttm_adev(bdev);
90
91 switch (type) {
92 case TTM_PL_SYSTEM:
93 /* System memory */
94 man->flags = TTM_MEMTYPE_FLAG_MAPPABLE;
95 man->available_caching = TTM_PL_MASK_CACHING;
96 man->default_caching = TTM_PL_FLAG_CACHED;
97 break;
98 case TTM_PL_TT:
99 /* GTT memory */
100 man->func = &amdgpu_gtt_mgr_func;
101 man->gpu_offset = adev->gmc.gart_start;
102 man->available_caching = TTM_PL_MASK_CACHING;
103 man->default_caching = TTM_PL_FLAG_CACHED;
104 man->flags = TTM_MEMTYPE_FLAG_MAPPABLE | TTM_MEMTYPE_FLAG_CMA;
105 break;
106 case TTM_PL_VRAM:
107 /* "On-card" video ram */
108 man->func = &amdgpu_vram_mgr_func;
109 man->gpu_offset = adev->gmc.vram_start;
110 man->flags = TTM_MEMTYPE_FLAG_FIXED |
111 TTM_MEMTYPE_FLAG_MAPPABLE;
112 man->available_caching = TTM_PL_FLAG_UNCACHED | TTM_PL_FLAG_WC;
113 man->default_caching = TTM_PL_FLAG_WC;
114 break;
115 case AMDGPU_PL_GDS:
116 case AMDGPU_PL_GWS:
117 case AMDGPU_PL_OA:
118 /* On-chip GDS memory*/
119 man->func = &ttm_bo_manager_func;
120 man->gpu_offset = 0;
121 man->flags = TTM_MEMTYPE_FLAG_FIXED | TTM_MEMTYPE_FLAG_CMA;
122 man->available_caching = TTM_PL_FLAG_UNCACHED;
123 man->default_caching = TTM_PL_FLAG_UNCACHED;
124 break;
125 default:
126 DRM_ERROR("Unsupported memory type %u\n", (unsigned)type);
127 return -EINVAL;
128 }
129 return 0;
130 }
131
132 /**
133 * amdgpu_evict_flags - Compute placement flags
134 *
135 * @bo: The buffer object to evict
136 * @placement: Possible destination(s) for evicted BO
137 *
138 * Fill in placement data when ttm_bo_evict() is called
139 */
140 static void amdgpu_evict_flags(struct ttm_buffer_object *bo,
141 struct ttm_placement *placement)
142 {
143 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
144 struct amdgpu_bo *abo;
145 static const struct ttm_place placements = {
146 .fpfn = 0,
147 .lpfn = 0,
148 .flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_SYSTEM
149 };
150
151 /* Don't handle scatter gather BOs */
152 if (bo->type == ttm_bo_type_sg) {
153 placement->num_placement = 0;
154 placement->num_busy_placement = 0;
155 return;
156 }
157
158 /* Object isn't an AMDGPU object so ignore */
159 if (!amdgpu_bo_is_amdgpu_bo(bo)) {
160 placement->placement = &placements;
161 placement->busy_placement = &placements;
162 placement->num_placement = 1;
163 placement->num_busy_placement = 1;
164 return;
165 }
166
167 abo = ttm_to_amdgpu_bo(bo);
168 switch (bo->mem.mem_type) {
169 case AMDGPU_PL_GDS:
170 case AMDGPU_PL_GWS:
171 case AMDGPU_PL_OA:
172 placement->num_placement = 0;
173 placement->num_busy_placement = 0;
174 return;
175
176 case TTM_PL_VRAM:
177 if (!adev->mman.buffer_funcs_enabled) {
178 /* Move to system memory */
179 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
180 } else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) &&
181 !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) &&
182 amdgpu_bo_in_cpu_visible_vram(abo)) {
183
184 /* Try evicting to the CPU inaccessible part of VRAM
185 * first, but only set GTT as busy placement, so this
186 * BO will be evicted to GTT rather than causing other
187 * BOs to be evicted from VRAM
188 */
189 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM |
190 AMDGPU_GEM_DOMAIN_GTT);
191 abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT;
192 abo->placements[0].lpfn = 0;
193 abo->placement.busy_placement = &abo->placements[1];
194 abo->placement.num_busy_placement = 1;
195 } else {
196 /* Move to GTT memory */
197 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT);
198 }
199 break;
200 case TTM_PL_TT:
201 default:
202 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
203 break;
204 }
205 *placement = abo->placement;
206 }
207
208 /**
209 * amdgpu_verify_access - Verify access for a mmap call
210 *
211 * @bo: The buffer object to map
212 * @filp: The file pointer from the process performing the mmap
213 *
214 * This is called by ttm_bo_mmap() to verify whether a process
215 * has the right to mmap a BO to their process space.
216 */
217 static int amdgpu_verify_access(struct ttm_buffer_object *bo, struct file *filp)
218 {
219 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
220
221 /*
222 * Don't verify access for KFD BOs. They don't have a GEM
223 * object associated with them.
224 */
225 if (abo->kfd_bo)
226 return 0;
227
228 if (amdgpu_ttm_tt_get_usermm(bo->ttm))
229 return -EPERM;
230 return drm_vma_node_verify_access(&abo->gem_base.vma_node,
231 filp->private_data);
232 }
233
234 /**
235 * amdgpu_move_null - Register memory for a buffer object
236 *
237 * @bo: The bo to assign the memory to
238 * @new_mem: The memory to be assigned.
239 *
240 * Assign the memory from new_mem to the memory of the buffer object bo.
241 */
242 static void amdgpu_move_null(struct ttm_buffer_object *bo,
243 struct ttm_mem_reg *new_mem)
244 {
245 struct ttm_mem_reg *old_mem = &bo->mem;
246
247 BUG_ON(old_mem->mm_node != NULL);
248 *old_mem = *new_mem;
249 new_mem->mm_node = NULL;
250 }
251
252 /**
253 * amdgpu_mm_node_addr - Compute the GPU relative offset of a GTT buffer.
254 *
255 * @bo: The bo to assign the memory to.
256 * @mm_node: Memory manager node for drm allocator.
257 * @mem: The region where the bo resides.
258 *
259 */
260 static uint64_t amdgpu_mm_node_addr(struct ttm_buffer_object *bo,
261 struct drm_mm_node *mm_node,
262 struct ttm_mem_reg *mem)
263 {
264 uint64_t addr = 0;
265
266 if (mm_node->start != AMDGPU_BO_INVALID_OFFSET) {
267 addr = mm_node->start << PAGE_SHIFT;
268 addr += bo->bdev->man[mem->mem_type].gpu_offset;
269 }
270 return addr;
271 }
272
273 /**
274 * amdgpu_find_mm_node - Helper function finds the drm_mm_node corresponding to
275 * @offset. It also modifies the offset to be within the drm_mm_node returned
276 *
277 * @mem: The region where the bo resides.
278 * @offset: The offset that drm_mm_node is used for finding.
279 *
280 */
281 static struct drm_mm_node *amdgpu_find_mm_node(struct ttm_mem_reg *mem,
282 unsigned long *offset)
283 {
284 struct drm_mm_node *mm_node = mem->mm_node;
285
286 while (*offset >= (mm_node->size << PAGE_SHIFT)) {
287 *offset -= (mm_node->size << PAGE_SHIFT);
288 ++mm_node;
289 }
290 return mm_node;
291 }
292
293 /**
294 * amdgpu_copy_ttm_mem_to_mem - Helper function for copy
295 *
296 * The function copies @size bytes from {src->mem + src->offset} to
297 * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a
298 * move and different for a BO to BO copy.
299 *
300 * @f: Returns the last fence if multiple jobs are submitted.
301 */
302 int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev,
303 struct amdgpu_copy_mem *src,
304 struct amdgpu_copy_mem *dst,
305 uint64_t size,
306 struct reservation_object *resv,
307 struct dma_fence **f)
308 {
309 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
310 struct drm_mm_node *src_mm, *dst_mm;
311 uint64_t src_node_start, dst_node_start, src_node_size,
312 dst_node_size, src_page_offset, dst_page_offset;
313 struct dma_fence *fence = NULL;
314 int r = 0;
315 const uint64_t GTT_MAX_BYTES = (AMDGPU_GTT_MAX_TRANSFER_SIZE *
316 AMDGPU_GPU_PAGE_SIZE);
317
318 if (!adev->mman.buffer_funcs_enabled) {
319 DRM_ERROR("Trying to move memory with ring turned off.\n");
320 return -EINVAL;
321 }
322
323 src_mm = amdgpu_find_mm_node(src->mem, &src->offset);
324 src_node_start = amdgpu_mm_node_addr(src->bo, src_mm, src->mem) +
325 src->offset;
326 src_node_size = (src_mm->size << PAGE_SHIFT) - src->offset;
327 src_page_offset = src_node_start & (PAGE_SIZE - 1);
328
329 dst_mm = amdgpu_find_mm_node(dst->mem, &dst->offset);
330 dst_node_start = amdgpu_mm_node_addr(dst->bo, dst_mm, dst->mem) +
331 dst->offset;
332 dst_node_size = (dst_mm->size << PAGE_SHIFT) - dst->offset;
333 dst_page_offset = dst_node_start & (PAGE_SIZE - 1);
334
335 mutex_lock(&adev->mman.gtt_window_lock);
336
337 while (size) {
338 unsigned long cur_size;
339 uint64_t from = src_node_start, to = dst_node_start;
340 struct dma_fence *next;
341
342 /* Copy size cannot exceed GTT_MAX_BYTES. So if src or dst
343 * begins at an offset, then adjust the size accordingly
344 */
345 cur_size = min3(min(src_node_size, dst_node_size), size,
346 GTT_MAX_BYTES);
347 if (cur_size + src_page_offset > GTT_MAX_BYTES ||
348 cur_size + dst_page_offset > GTT_MAX_BYTES)
349 cur_size -= max(src_page_offset, dst_page_offset);
350
351 /* Map only what needs to be accessed. Map src to window 0 and
352 * dst to window 1
353 */
354 if (src->mem->start == AMDGPU_BO_INVALID_OFFSET) {
355 r = amdgpu_map_buffer(src->bo, src->mem,
356 PFN_UP(cur_size + src_page_offset),
357 src_node_start, 0, ring,
358 &from);
359 if (r)
360 goto error;
361 /* Adjust the offset because amdgpu_map_buffer returns
362 * start of mapped page
363 */
364 from += src_page_offset;
365 }
366
367 if (dst->mem->start == AMDGPU_BO_INVALID_OFFSET) {
368 r = amdgpu_map_buffer(dst->bo, dst->mem,
369 PFN_UP(cur_size + dst_page_offset),
370 dst_node_start, 1, ring,
371 &to);
372 if (r)
373 goto error;
374 to += dst_page_offset;
375 }
376
377 r = amdgpu_copy_buffer(ring, from, to, cur_size,
378 resv, &next, false, true);
379 if (r)
380 goto error;
381
382 dma_fence_put(fence);
383 fence = next;
384
385 size -= cur_size;
386 if (!size)
387 break;
388
389 src_node_size -= cur_size;
390 if (!src_node_size) {
391 src_node_start = amdgpu_mm_node_addr(src->bo, ++src_mm,
392 src->mem);
393 src_node_size = (src_mm->size << PAGE_SHIFT);
394 } else {
395 src_node_start += cur_size;
396 src_page_offset = src_node_start & (PAGE_SIZE - 1);
397 }
398 dst_node_size -= cur_size;
399 if (!dst_node_size) {
400 dst_node_start = amdgpu_mm_node_addr(dst->bo, ++dst_mm,
401 dst->mem);
402 dst_node_size = (dst_mm->size << PAGE_SHIFT);
403 } else {
404 dst_node_start += cur_size;
405 dst_page_offset = dst_node_start & (PAGE_SIZE - 1);
406 }
407 }
408 error:
409 mutex_unlock(&adev->mman.gtt_window_lock);
410 if (f)
411 *f = dma_fence_get(fence);
412 dma_fence_put(fence);
413 return r;
414 }
415
416 /**
417 * amdgpu_move_blit - Copy an entire buffer to another buffer
418 *
419 * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to
420 * help move buffers to and from VRAM.
421 */
422 static int amdgpu_move_blit(struct ttm_buffer_object *bo,
423 bool evict, bool no_wait_gpu,
424 struct ttm_mem_reg *new_mem,
425 struct ttm_mem_reg *old_mem)
426 {
427 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
428 struct amdgpu_copy_mem src, dst;
429 struct dma_fence *fence = NULL;
430 int r;
431
432 src.bo = bo;
433 dst.bo = bo;
434 src.mem = old_mem;
435 dst.mem = new_mem;
436 src.offset = 0;
437 dst.offset = 0;
438
439 r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst,
440 new_mem->num_pages << PAGE_SHIFT,
441 bo->resv, &fence);
442 if (r)
443 goto error;
444
445 /* Always block for VM page tables before committing the new location */
446 if (bo->type == ttm_bo_type_kernel)
447 r = ttm_bo_move_accel_cleanup(bo, fence, true, new_mem);
448 else
449 r = ttm_bo_pipeline_move(bo, fence, evict, new_mem);
450 dma_fence_put(fence);
451 return r;
452
453 error:
454 if (fence)
455 dma_fence_wait(fence, false);
456 dma_fence_put(fence);
457 return r;
458 }
459
460 /**
461 * amdgpu_move_vram_ram - Copy VRAM buffer to RAM buffer
462 *
463 * Called by amdgpu_bo_move().
464 */
465 static int amdgpu_move_vram_ram(struct ttm_buffer_object *bo, bool evict,
466 struct ttm_operation_ctx *ctx,
467 struct ttm_mem_reg *new_mem)
468 {
469 struct amdgpu_device *adev;
470 struct ttm_mem_reg *old_mem = &bo->mem;
471 struct ttm_mem_reg tmp_mem;
472 struct ttm_place placements;
473 struct ttm_placement placement;
474 int r;
475
476 adev = amdgpu_ttm_adev(bo->bdev);
477
478 /* create space/pages for new_mem in GTT space */
479 tmp_mem = *new_mem;
480 tmp_mem.mm_node = NULL;
481 placement.num_placement = 1;
482 placement.placement = &placements;
483 placement.num_busy_placement = 1;
484 placement.busy_placement = &placements;
485 placements.fpfn = 0;
486 placements.lpfn = 0;
487 placements.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_TT;
488 r = ttm_bo_mem_space(bo, &placement, &tmp_mem, ctx);
489 if (unlikely(r)) {
490 return r;
491 }
492
493 /* set caching flags */
494 r = ttm_tt_set_placement_caching(bo->ttm, tmp_mem.placement);
495 if (unlikely(r)) {
496 goto out_cleanup;
497 }
498
499 /* Bind the memory to the GTT space */
500 r = ttm_tt_bind(bo->ttm, &tmp_mem, ctx);
501 if (unlikely(r)) {
502 goto out_cleanup;
503 }
504
505 /* blit VRAM to GTT */
506 r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu, &tmp_mem, old_mem);
507 if (unlikely(r)) {
508 goto out_cleanup;
509 }
510
511 /* move BO (in tmp_mem) to new_mem */
512 r = ttm_bo_move_ttm(bo, ctx, new_mem);
513 out_cleanup:
514 ttm_bo_mem_put(bo, &tmp_mem);
515 return r;
516 }
517
518 /**
519 * amdgpu_move_ram_vram - Copy buffer from RAM to VRAM
520 *
521 * Called by amdgpu_bo_move().
522 */
523 static int amdgpu_move_ram_vram(struct ttm_buffer_object *bo, bool evict,
524 struct ttm_operation_ctx *ctx,
525 struct ttm_mem_reg *new_mem)
526 {
527 struct amdgpu_device *adev;
528 struct ttm_mem_reg *old_mem = &bo->mem;
529 struct ttm_mem_reg tmp_mem;
530 struct ttm_placement placement;
531 struct ttm_place placements;
532 int r;
533
534 adev = amdgpu_ttm_adev(bo->bdev);
535
536 /* make space in GTT for old_mem buffer */
537 tmp_mem = *new_mem;
538 tmp_mem.mm_node = NULL;
539 placement.num_placement = 1;
540 placement.placement = &placements;
541 placement.num_busy_placement = 1;
542 placement.busy_placement = &placements;
543 placements.fpfn = 0;
544 placements.lpfn = 0;
545 placements.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_TT;
546 r = ttm_bo_mem_space(bo, &placement, &tmp_mem, ctx);
547 if (unlikely(r)) {
548 return r;
549 }
550
551 /* move/bind old memory to GTT space */
552 r = ttm_bo_move_ttm(bo, ctx, &tmp_mem);
553 if (unlikely(r)) {
554 goto out_cleanup;
555 }
556
557 /* copy to VRAM */
558 r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu, new_mem, old_mem);
559 if (unlikely(r)) {
560 goto out_cleanup;
561 }
562 out_cleanup:
563 ttm_bo_mem_put(bo, &tmp_mem);
564 return r;
565 }
566
567 /**
568 * amdgpu_bo_move - Move a buffer object to a new memory location
569 *
570 * Called by ttm_bo_handle_move_mem()
571 */
572 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict,
573 struct ttm_operation_ctx *ctx,
574 struct ttm_mem_reg *new_mem)
575 {
576 struct amdgpu_device *adev;
577 struct amdgpu_bo *abo;
578 struct ttm_mem_reg *old_mem = &bo->mem;
579 int r;
580
581 /* Can't move a pinned BO */
582 abo = ttm_to_amdgpu_bo(bo);
583 if (WARN_ON_ONCE(abo->pin_count > 0))
584 return -EINVAL;
585
586 adev = amdgpu_ttm_adev(bo->bdev);
587
588 if (old_mem->mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) {
589 amdgpu_move_null(bo, new_mem);
590 return 0;
591 }
592 if ((old_mem->mem_type == TTM_PL_TT &&
593 new_mem->mem_type == TTM_PL_SYSTEM) ||
594 (old_mem->mem_type == TTM_PL_SYSTEM &&
595 new_mem->mem_type == TTM_PL_TT)) {
596 /* bind is enough */
597 amdgpu_move_null(bo, new_mem);
598 return 0;
599 }
600 if (old_mem->mem_type == AMDGPU_PL_GDS ||
601 old_mem->mem_type == AMDGPU_PL_GWS ||
602 old_mem->mem_type == AMDGPU_PL_OA ||
603 new_mem->mem_type == AMDGPU_PL_GDS ||
604 new_mem->mem_type == AMDGPU_PL_GWS ||
605 new_mem->mem_type == AMDGPU_PL_OA) {
606 /* Nothing to save here */
607 amdgpu_move_null(bo, new_mem);
608 return 0;
609 }
610
611 if (!adev->mman.buffer_funcs_enabled)
612 goto memcpy;
613
614 if (old_mem->mem_type == TTM_PL_VRAM &&
615 new_mem->mem_type == TTM_PL_SYSTEM) {
616 r = amdgpu_move_vram_ram(bo, evict, ctx, new_mem);
617 } else if (old_mem->mem_type == TTM_PL_SYSTEM &&
618 new_mem->mem_type == TTM_PL_VRAM) {
619 r = amdgpu_move_ram_vram(bo, evict, ctx, new_mem);
620 } else {
621 r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu,
622 new_mem, old_mem);
623 }
624
625 if (r) {
626 memcpy:
627 r = ttm_bo_move_memcpy(bo, ctx, new_mem);
628 if (r) {
629 return r;
630 }
631 }
632
633 if (bo->type == ttm_bo_type_device &&
634 new_mem->mem_type == TTM_PL_VRAM &&
635 old_mem->mem_type != TTM_PL_VRAM) {
636 /* amdgpu_bo_fault_reserve_notify will re-set this if the CPU
637 * accesses the BO after it's moved.
638 */
639 abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
640 }
641
642 /* update statistics */
643 atomic64_add((u64)bo->num_pages << PAGE_SHIFT, &adev->num_bytes_moved);
644 return 0;
645 }
646
647 /**
648 * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault
649 *
650 * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault()
651 */
652 static int amdgpu_ttm_io_mem_reserve(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
653 {
654 struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
655 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
656 struct drm_mm_node *mm_node = mem->mm_node;
657
658 mem->bus.addr = NULL;
659 mem->bus.offset = 0;
660 mem->bus.size = mem->num_pages << PAGE_SHIFT;
661 mem->bus.base = 0;
662 mem->bus.is_iomem = false;
663 if (!(man->flags & TTM_MEMTYPE_FLAG_MAPPABLE))
664 return -EINVAL;
665 switch (mem->mem_type) {
666 case TTM_PL_SYSTEM:
667 /* system memory */
668 return 0;
669 case TTM_PL_TT:
670 break;
671 case TTM_PL_VRAM:
672 mem->bus.offset = mem->start << PAGE_SHIFT;
673 /* check if it's visible */
674 if ((mem->bus.offset + mem->bus.size) > adev->gmc.visible_vram_size)
675 return -EINVAL;
676 /* Only physically contiguous buffers apply. In a contiguous
677 * buffer, size of the first mm_node would match the number of
678 * pages in ttm_mem_reg.
679 */
680 if (adev->mman.aper_base_kaddr &&
681 (mm_node->size == mem->num_pages))
682 mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr +
683 mem->bus.offset;
684
685 mem->bus.base = adev->gmc.aper_base;
686 mem->bus.is_iomem = true;
687 break;
688 default:
689 return -EINVAL;
690 }
691 return 0;
692 }
693
694 static void amdgpu_ttm_io_mem_free(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
695 {
696 }
697
698 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo,
699 unsigned long page_offset)
700 {
701 struct drm_mm_node *mm;
702 unsigned long offset = (page_offset << PAGE_SHIFT);
703
704 mm = amdgpu_find_mm_node(&bo->mem, &offset);
705 return (bo->mem.bus.base >> PAGE_SHIFT) + mm->start +
706 (offset >> PAGE_SHIFT);
707 }
708
709 /*
710 * TTM backend functions.
711 */
712 struct amdgpu_ttm_tt {
713 struct ttm_dma_tt ttm;
714 u64 offset;
715 uint64_t userptr;
716 struct task_struct *usertask;
717 uint32_t userflags;
718 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR)
719 struct hmm_range *range;
720 #endif
721 };
722
723 /**
724 * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user
725 * memory and start HMM tracking CPU page table update
726 *
727 * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only
728 * once afterwards to stop HMM tracking
729 */
730 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR)
731
732 #define MAX_RETRY_HMM_RANGE_FAULT 16
733
734 int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct page **pages)
735 {
736 struct hmm_mirror *mirror = bo->mn ? &bo->mn->mirror : NULL;
737 struct ttm_tt *ttm = bo->tbo.ttm;
738 struct amdgpu_ttm_tt *gtt = (void *)ttm;
739 struct mm_struct *mm = gtt->usertask->mm;
740 unsigned long start = gtt->userptr;
741 struct vm_area_struct *vma;
742 struct hmm_range *range;
743 unsigned long i;
744 uint64_t *pfns;
745 int retry = 0;
746 int r = 0;
747
748 if (!mm) /* Happens during process shutdown */
749 return -ESRCH;
750
751 if (unlikely(!mirror)) {
752 DRM_DEBUG_DRIVER("Failed to get hmm_mirror\n");
753 r = -EFAULT;
754 goto out;
755 }
756
757 vma = find_vma(mm, start);
758 if (unlikely(!vma || start < vma->vm_start)) {
759 r = -EFAULT;
760 goto out;
761 }
762 if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) &&
763 vma->vm_file)) {
764 r = -EPERM;
765 goto out;
766 }
767
768 range = kzalloc(sizeof(*range), GFP_KERNEL);
769 if (unlikely(!range)) {
770 r = -ENOMEM;
771 goto out;
772 }
773
774 pfns = kvmalloc_array(ttm->num_pages, sizeof(*pfns), GFP_KERNEL);
775 if (unlikely(!pfns)) {
776 r = -ENOMEM;
777 goto out_free_ranges;
778 }
779
780 amdgpu_hmm_init_range(range);
781 range->default_flags = range->flags[HMM_PFN_VALID];
782 range->default_flags |= amdgpu_ttm_tt_is_readonly(ttm) ?
783 0 : range->flags[HMM_PFN_WRITE];
784 range->pfn_flags_mask = 0;
785 range->pfns = pfns;
786 hmm_range_register(range, mm, start,
787 start + ttm->num_pages * PAGE_SIZE, PAGE_SHIFT);
788
789 retry:
790 /*
791 * Just wait for range to be valid, safe to ignore return value as we
792 * will use the return value of hmm_range_fault() below under the
793 * mmap_sem to ascertain the validity of the range.
794 */
795 hmm_range_wait_until_valid(range, HMM_RANGE_DEFAULT_TIMEOUT);
796
797 down_read(&mm->mmap_sem);
798
799 r = hmm_range_fault(range, true);
800 if (unlikely(r < 0)) {
801 if (likely(r == -EAGAIN)) {
802 /*
803 * return -EAGAIN, mmap_sem is dropped
804 */
805 if (retry++ < MAX_RETRY_HMM_RANGE_FAULT)
806 goto retry;
807 else
808 pr_err("Retry hmm fault too many times\n");
809 }
810
811 goto out_up_read;
812 }
813
814 up_read(&mm->mmap_sem);
815
816 for (i = 0; i < ttm->num_pages; i++) {
817 pages[i] = hmm_device_entry_to_page(range, pfns[i]);
818 if (unlikely(!pages[i])) {
819 pr_err("Page fault failed for pfn[%lu] = 0x%llx\n",
820 i, pfns[i]);
821 r = -ENOMEM;
822
823 goto out_free_pfns;
824 }
825 }
826
827 gtt->range = range;
828
829 return 0;
830
831 out_up_read:
832 if (likely(r != -EAGAIN))
833 up_read(&mm->mmap_sem);
834 out_free_pfns:
835 hmm_range_unregister(range);
836 kvfree(pfns);
837 out_free_ranges:
838 kfree(range);
839 out:
840 return r;
841 }
842
843 /**
844 * amdgpu_ttm_tt_userptr_range_done - stop HMM track the CPU page table change
845 * Check if the pages backing this ttm range have been invalidated
846 *
847 * Returns: true if pages are still valid
848 */
849 bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm)
850 {
851 struct amdgpu_ttm_tt *gtt = (void *)ttm;
852 bool r = false;
853
854 if (!gtt || !gtt->userptr)
855 return false;
856
857 DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%lx\n",
858 gtt->userptr, ttm->num_pages);
859
860 WARN_ONCE(!gtt->range || !gtt->range->pfns,
861 "No user pages to check\n");
862
863 if (gtt->range) {
864 r = hmm_range_valid(gtt->range);
865 hmm_range_unregister(gtt->range);
866
867 kvfree(gtt->range->pfns);
868 kfree(gtt->range);
869 gtt->range = NULL;
870 }
871
872 return r;
873 }
874 #endif
875
876 /**
877 * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary.
878 *
879 * Called by amdgpu_cs_list_validate(). This creates the page list
880 * that backs user memory and will ultimately be mapped into the device
881 * address space.
882 */
883 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages)
884 {
885 unsigned long i;
886
887 for (i = 0; i < ttm->num_pages; ++i)
888 ttm->pages[i] = pages ? pages[i] : NULL;
889 }
890
891 /**
892 * amdgpu_ttm_tt_pin_userptr - prepare the sg table with the user pages
893 *
894 * Called by amdgpu_ttm_backend_bind()
895 **/
896 static int amdgpu_ttm_tt_pin_userptr(struct ttm_tt *ttm)
897 {
898 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
899 struct amdgpu_ttm_tt *gtt = (void *)ttm;
900 unsigned nents;
901 int r;
902
903 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
904 enum dma_data_direction direction = write ?
905 DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
906
907 /* Allocate an SG array and squash pages into it */
908 r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0,
909 ttm->num_pages << PAGE_SHIFT,
910 GFP_KERNEL);
911 if (r)
912 goto release_sg;
913
914 /* Map SG to device */
915 r = -ENOMEM;
916 nents = dma_map_sg(adev->dev, ttm->sg->sgl, ttm->sg->nents, direction);
917 if (nents != ttm->sg->nents)
918 goto release_sg;
919
920 /* convert SG to linear array of pages and dma addresses */
921 drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages,
922 gtt->ttm.dma_address, ttm->num_pages);
923
924 return 0;
925
926 release_sg:
927 kfree(ttm->sg);
928 return r;
929 }
930
931 /**
932 * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages
933 */
934 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_tt *ttm)
935 {
936 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
937 struct amdgpu_ttm_tt *gtt = (void *)ttm;
938
939 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
940 enum dma_data_direction direction = write ?
941 DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
942
943 /* double check that we don't free the table twice */
944 if (!ttm->sg->sgl)
945 return;
946
947 /* unmap the pages mapped to the device */
948 dma_unmap_sg(adev->dev, ttm->sg->sgl, ttm->sg->nents, direction);
949
950 sg_free_table(ttm->sg);
951
952 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR)
953 if (gtt->range &&
954 ttm->pages[0] == hmm_device_entry_to_page(gtt->range,
955 gtt->range->pfns[0]))
956 WARN_ONCE(1, "Missing get_user_page_done\n");
957 #endif
958 }
959
960 int amdgpu_ttm_gart_bind(struct amdgpu_device *adev,
961 struct ttm_buffer_object *tbo,
962 uint64_t flags)
963 {
964 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo);
965 struct ttm_tt *ttm = tbo->ttm;
966 struct amdgpu_ttm_tt *gtt = (void *)ttm;
967 int r;
968
969 if (abo->flags & AMDGPU_GEM_CREATE_MQD_GFX9) {
970 uint64_t page_idx = 1;
971
972 r = amdgpu_gart_bind(adev, gtt->offset, page_idx,
973 ttm->pages, gtt->ttm.dma_address, flags);
974 if (r)
975 goto gart_bind_fail;
976
977 /* Patch mtype of the second part BO */
978 flags &= ~AMDGPU_PTE_MTYPE_VG10_MASK;
979 flags |= AMDGPU_PTE_MTYPE_VG10(AMDGPU_MTYPE_NC);
980
981 r = amdgpu_gart_bind(adev,
982 gtt->offset + (page_idx << PAGE_SHIFT),
983 ttm->num_pages - page_idx,
984 &ttm->pages[page_idx],
985 &(gtt->ttm.dma_address[page_idx]), flags);
986 } else {
987 r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
988 ttm->pages, gtt->ttm.dma_address, flags);
989 }
990
991 gart_bind_fail:
992 if (r)
993 DRM_ERROR("failed to bind %lu pages at 0x%08llX\n",
994 ttm->num_pages, gtt->offset);
995
996 return r;
997 }
998
999 /**
1000 * amdgpu_ttm_backend_bind - Bind GTT memory
1001 *
1002 * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem().
1003 * This handles binding GTT memory to the device address space.
1004 */
1005 static int amdgpu_ttm_backend_bind(struct ttm_tt *ttm,
1006 struct ttm_mem_reg *bo_mem)
1007 {
1008 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1009 struct amdgpu_ttm_tt *gtt = (void*)ttm;
1010 uint64_t flags;
1011 int r = 0;
1012
1013 if (gtt->userptr) {
1014 r = amdgpu_ttm_tt_pin_userptr(ttm);
1015 if (r) {
1016 DRM_ERROR("failed to pin userptr\n");
1017 return r;
1018 }
1019 }
1020 if (!ttm->num_pages) {
1021 WARN(1, "nothing to bind %lu pages for mreg %p back %p!\n",
1022 ttm->num_pages, bo_mem, ttm);
1023 }
1024
1025 if (bo_mem->mem_type == AMDGPU_PL_GDS ||
1026 bo_mem->mem_type == AMDGPU_PL_GWS ||
1027 bo_mem->mem_type == AMDGPU_PL_OA)
1028 return -EINVAL;
1029
1030 if (!amdgpu_gtt_mgr_has_gart_addr(bo_mem)) {
1031 gtt->offset = AMDGPU_BO_INVALID_OFFSET;
1032 return 0;
1033 }
1034
1035 /* compute PTE flags relevant to this BO memory */
1036 flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem);
1037
1038 /* bind pages into GART page tables */
1039 gtt->offset = (u64)bo_mem->start << PAGE_SHIFT;
1040 r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
1041 ttm->pages, gtt->ttm.dma_address, flags);
1042
1043 if (r)
1044 DRM_ERROR("failed to bind %lu pages at 0x%08llX\n",
1045 ttm->num_pages, gtt->offset);
1046 return r;
1047 }
1048
1049 /**
1050 * amdgpu_ttm_alloc_gart - Allocate GART memory for buffer object
1051 */
1052 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo)
1053 {
1054 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
1055 struct ttm_operation_ctx ctx = { false, false };
1056 struct amdgpu_ttm_tt *gtt = (void*)bo->ttm;
1057 struct ttm_mem_reg tmp;
1058 struct ttm_placement placement;
1059 struct ttm_place placements;
1060 uint64_t addr, flags;
1061 int r;
1062
1063 if (bo->mem.start != AMDGPU_BO_INVALID_OFFSET)
1064 return 0;
1065
1066 addr = amdgpu_gmc_agp_addr(bo);
1067 if (addr != AMDGPU_BO_INVALID_OFFSET) {
1068 bo->mem.start = addr >> PAGE_SHIFT;
1069 } else {
1070
1071 /* allocate GART space */
1072 tmp = bo->mem;
1073 tmp.mm_node = NULL;
1074 placement.num_placement = 1;
1075 placement.placement = &placements;
1076 placement.num_busy_placement = 1;
1077 placement.busy_placement = &placements;
1078 placements.fpfn = 0;
1079 placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT;
1080 placements.flags = (bo->mem.placement & ~TTM_PL_MASK_MEM) |
1081 TTM_PL_FLAG_TT;
1082
1083 r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx);
1084 if (unlikely(r))
1085 return r;
1086
1087 /* compute PTE flags for this buffer object */
1088 flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, &tmp);
1089
1090 /* Bind pages */
1091 gtt->offset = (u64)tmp.start << PAGE_SHIFT;
1092 r = amdgpu_ttm_gart_bind(adev, bo, flags);
1093 if (unlikely(r)) {
1094 ttm_bo_mem_put(bo, &tmp);
1095 return r;
1096 }
1097
1098 ttm_bo_mem_put(bo, &bo->mem);
1099 bo->mem = tmp;
1100 }
1101
1102 bo->offset = (bo->mem.start << PAGE_SHIFT) +
1103 bo->bdev->man[bo->mem.mem_type].gpu_offset;
1104
1105 return 0;
1106 }
1107
1108 /**
1109 * amdgpu_ttm_recover_gart - Rebind GTT pages
1110 *
1111 * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to
1112 * rebind GTT pages during a GPU reset.
1113 */
1114 int amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo)
1115 {
1116 struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev);
1117 uint64_t flags;
1118 int r;
1119
1120 if (!tbo->ttm)
1121 return 0;
1122
1123 flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, &tbo->mem);
1124 r = amdgpu_ttm_gart_bind(adev, tbo, flags);
1125
1126 return r;
1127 }
1128
1129 /**
1130 * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages
1131 *
1132 * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and
1133 * ttm_tt_destroy().
1134 */
1135 static int amdgpu_ttm_backend_unbind(struct ttm_tt *ttm)
1136 {
1137 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1138 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1139 int r;
1140
1141 /* if the pages have userptr pinning then clear that first */
1142 if (gtt->userptr)
1143 amdgpu_ttm_tt_unpin_userptr(ttm);
1144
1145 if (gtt->offset == AMDGPU_BO_INVALID_OFFSET)
1146 return 0;
1147
1148 /* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */
1149 r = amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages);
1150 if (r)
1151 DRM_ERROR("failed to unbind %lu pages at 0x%08llX\n",
1152 gtt->ttm.ttm.num_pages, gtt->offset);
1153 return r;
1154 }
1155
1156 static void amdgpu_ttm_backend_destroy(struct ttm_tt *ttm)
1157 {
1158 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1159
1160 if (gtt->usertask)
1161 put_task_struct(gtt->usertask);
1162
1163 ttm_dma_tt_fini(&gtt->ttm);
1164 kfree(gtt);
1165 }
1166
1167 static struct ttm_backend_func amdgpu_backend_func = {
1168 .bind = &amdgpu_ttm_backend_bind,
1169 .unbind = &amdgpu_ttm_backend_unbind,
1170 .destroy = &amdgpu_ttm_backend_destroy,
1171 };
1172
1173 /**
1174 * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO
1175 *
1176 * @bo: The buffer object to create a GTT ttm_tt object around
1177 *
1178 * Called by ttm_tt_create().
1179 */
1180 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo,
1181 uint32_t page_flags)
1182 {
1183 struct amdgpu_device *adev;
1184 struct amdgpu_ttm_tt *gtt;
1185
1186 adev = amdgpu_ttm_adev(bo->bdev);
1187
1188 gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL);
1189 if (gtt == NULL) {
1190 return NULL;
1191 }
1192 gtt->ttm.ttm.func = &amdgpu_backend_func;
1193
1194 /* allocate space for the uninitialized page entries */
1195 if (ttm_sg_tt_init(&gtt->ttm, bo, page_flags)) {
1196 kfree(gtt);
1197 return NULL;
1198 }
1199 return &gtt->ttm.ttm;
1200 }
1201
1202 /**
1203 * amdgpu_ttm_tt_populate - Map GTT pages visible to the device
1204 *
1205 * Map the pages of a ttm_tt object to an address space visible
1206 * to the underlying device.
1207 */
1208 static int amdgpu_ttm_tt_populate(struct ttm_tt *ttm,
1209 struct ttm_operation_ctx *ctx)
1210 {
1211 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1212 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1213 bool slave = !!(ttm->page_flags & TTM_PAGE_FLAG_SG);
1214
1215 /* user pages are bound by amdgpu_ttm_tt_pin_userptr() */
1216 if (gtt && gtt->userptr) {
1217 ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL);
1218 if (!ttm->sg)
1219 return -ENOMEM;
1220
1221 ttm->page_flags |= TTM_PAGE_FLAG_SG;
1222 ttm->state = tt_unbound;
1223 return 0;
1224 }
1225
1226 if (slave && ttm->sg) {
1227 drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages,
1228 gtt->ttm.dma_address,
1229 ttm->num_pages);
1230 ttm->state = tt_unbound;
1231 return 0;
1232 }
1233
1234 #ifdef CONFIG_SWIOTLB
1235 if (adev->need_swiotlb && swiotlb_nr_tbl()) {
1236 return ttm_dma_populate(&gtt->ttm, adev->dev, ctx);
1237 }
1238 #endif
1239
1240 /* fall back to generic helper to populate the page array
1241 * and map them to the device */
1242 return ttm_populate_and_map_pages(adev->dev, &gtt->ttm, ctx);
1243 }
1244
1245 /**
1246 * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays
1247 *
1248 * Unmaps pages of a ttm_tt object from the device address space and
1249 * unpopulates the page array backing it.
1250 */
1251 static void amdgpu_ttm_tt_unpopulate(struct ttm_tt *ttm)
1252 {
1253 struct amdgpu_device *adev;
1254 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1255 bool slave = !!(ttm->page_flags & TTM_PAGE_FLAG_SG);
1256
1257 if (gtt && gtt->userptr) {
1258 amdgpu_ttm_tt_set_user_pages(ttm, NULL);
1259 kfree(ttm->sg);
1260 ttm->page_flags &= ~TTM_PAGE_FLAG_SG;
1261 return;
1262 }
1263
1264 if (slave)
1265 return;
1266
1267 adev = amdgpu_ttm_adev(ttm->bdev);
1268
1269 #ifdef CONFIG_SWIOTLB
1270 if (adev->need_swiotlb && swiotlb_nr_tbl()) {
1271 ttm_dma_unpopulate(&gtt->ttm, adev->dev);
1272 return;
1273 }
1274 #endif
1275
1276 /* fall back to generic helper to unmap and unpopulate array */
1277 ttm_unmap_and_unpopulate_pages(adev->dev, &gtt->ttm);
1278 }
1279
1280 /**
1281 * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current
1282 * task
1283 *
1284 * @ttm: The ttm_tt object to bind this userptr object to
1285 * @addr: The address in the current tasks VM space to use
1286 * @flags: Requirements of userptr object.
1287 *
1288 * Called by amdgpu_gem_userptr_ioctl() to bind userptr pages
1289 * to current task
1290 */
1291 int amdgpu_ttm_tt_set_userptr(struct ttm_tt *ttm, uint64_t addr,
1292 uint32_t flags)
1293 {
1294 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1295
1296 if (gtt == NULL)
1297 return -EINVAL;
1298
1299 gtt->userptr = addr;
1300 gtt->userflags = flags;
1301
1302 if (gtt->usertask)
1303 put_task_struct(gtt->usertask);
1304 gtt->usertask = current->group_leader;
1305 get_task_struct(gtt->usertask);
1306
1307 return 0;
1308 }
1309
1310 /**
1311 * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object
1312 */
1313 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm)
1314 {
1315 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1316
1317 if (gtt == NULL)
1318 return NULL;
1319
1320 if (gtt->usertask == NULL)
1321 return NULL;
1322
1323 return gtt->usertask->mm;
1324 }
1325
1326 /**
1327 * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an
1328 * address range for the current task.
1329 *
1330 */
1331 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start,
1332 unsigned long end)
1333 {
1334 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1335 unsigned long size;
1336
1337 if (gtt == NULL || !gtt->userptr)
1338 return false;
1339
1340 /* Return false if no part of the ttm_tt object lies within
1341 * the range
1342 */
1343 size = (unsigned long)gtt->ttm.ttm.num_pages * PAGE_SIZE;
1344 if (gtt->userptr > end || gtt->userptr + size <= start)
1345 return false;
1346
1347 return true;
1348 }
1349
1350 /**
1351 * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr?
1352 */
1353 bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm)
1354 {
1355 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1356
1357 if (gtt == NULL || !gtt->userptr)
1358 return false;
1359
1360 return true;
1361 }
1362
1363 /**
1364 * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only?
1365 */
1366 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm)
1367 {
1368 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1369
1370 if (gtt == NULL)
1371 return false;
1372
1373 return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1374 }
1375
1376 /**
1377 * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object
1378 *
1379 * @ttm: The ttm_tt object to compute the flags for
1380 * @mem: The memory registry backing this ttm_tt object
1381 *
1382 * Figure out the flags to use for a VM PDE (Page Directory Entry).
1383 */
1384 uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_mem_reg *mem)
1385 {
1386 uint64_t flags = 0;
1387
1388 if (mem && mem->mem_type != TTM_PL_SYSTEM)
1389 flags |= AMDGPU_PTE_VALID;
1390
1391 if (mem && mem->mem_type == TTM_PL_TT) {
1392 flags |= AMDGPU_PTE_SYSTEM;
1393
1394 if (ttm->caching_state == tt_cached)
1395 flags |= AMDGPU_PTE_SNOOPED;
1396 }
1397
1398 return flags;
1399 }
1400
1401 /**
1402 * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object
1403 *
1404 * @ttm: The ttm_tt object to compute the flags for
1405 * @mem: The memory registry backing this ttm_tt object
1406
1407 * Figure out the flags to use for a VM PTE (Page Table Entry).
1408 */
1409 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm,
1410 struct ttm_mem_reg *mem)
1411 {
1412 uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem);
1413
1414 flags |= adev->gart.gart_pte_flags;
1415 flags |= AMDGPU_PTE_READABLE;
1416
1417 if (!amdgpu_ttm_tt_is_readonly(ttm))
1418 flags |= AMDGPU_PTE_WRITEABLE;
1419
1420 return flags;
1421 }
1422
1423 /**
1424 * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer
1425 * object.
1426 *
1427 * Return true if eviction is sensible. Called by ttm_mem_evict_first() on
1428 * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until
1429 * it can find space for a new object and by ttm_bo_force_list_clean() which is
1430 * used to clean out a memory space.
1431 */
1432 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
1433 const struct ttm_place *place)
1434 {
1435 unsigned long num_pages = bo->mem.num_pages;
1436 struct drm_mm_node *node = bo->mem.mm_node;
1437 struct reservation_object_list *flist;
1438 struct dma_fence *f;
1439 int i;
1440
1441 /* Don't evict VM page tables while they are busy, otherwise we can't
1442 * cleanly handle page faults.
1443 */
1444 if (bo->type == ttm_bo_type_kernel &&
1445 !reservation_object_test_signaled_rcu(bo->resv, true))
1446 return false;
1447
1448 /* If bo is a KFD BO, check if the bo belongs to the current process.
1449 * If true, then return false as any KFD process needs all its BOs to
1450 * be resident to run successfully
1451 */
1452 flist = reservation_object_get_list(bo->resv);
1453 if (flist) {
1454 for (i = 0; i < flist->shared_count; ++i) {
1455 f = rcu_dereference_protected(flist->shared[i],
1456 reservation_object_held(bo->resv));
1457 if (amdkfd_fence_check_mm(f, current->mm))
1458 return false;
1459 }
1460 }
1461
1462 switch (bo->mem.mem_type) {
1463 case TTM_PL_TT:
1464 return true;
1465
1466 case TTM_PL_VRAM:
1467 /* Check each drm MM node individually */
1468 while (num_pages) {
1469 if (place->fpfn < (node->start + node->size) &&
1470 !(place->lpfn && place->lpfn <= node->start))
1471 return true;
1472
1473 num_pages -= node->size;
1474 ++node;
1475 }
1476 return false;
1477
1478 default:
1479 break;
1480 }
1481
1482 return ttm_bo_eviction_valuable(bo, place);
1483 }
1484
1485 /**
1486 * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object.
1487 *
1488 * @bo: The buffer object to read/write
1489 * @offset: Offset into buffer object
1490 * @buf: Secondary buffer to write/read from
1491 * @len: Length in bytes of access
1492 * @write: true if writing
1493 *
1494 * This is used to access VRAM that backs a buffer object via MMIO
1495 * access for debugging purposes.
1496 */
1497 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo,
1498 unsigned long offset,
1499 void *buf, int len, int write)
1500 {
1501 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1502 struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1503 struct drm_mm_node *nodes;
1504 uint32_t value = 0;
1505 int ret = 0;
1506 uint64_t pos;
1507 unsigned long flags;
1508
1509 if (bo->mem.mem_type != TTM_PL_VRAM)
1510 return -EIO;
1511
1512 nodes = amdgpu_find_mm_node(&abo->tbo.mem, &offset);
1513 pos = (nodes->start << PAGE_SHIFT) + offset;
1514
1515 while (len && pos < adev->gmc.mc_vram_size) {
1516 uint64_t aligned_pos = pos & ~(uint64_t)3;
1517 uint32_t bytes = 4 - (pos & 3);
1518 uint32_t shift = (pos & 3) * 8;
1519 uint32_t mask = 0xffffffff << shift;
1520
1521 if (len < bytes) {
1522 mask &= 0xffffffff >> (bytes - len) * 8;
1523 bytes = len;
1524 }
1525
1526 spin_lock_irqsave(&adev->mmio_idx_lock, flags);
1527 WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)aligned_pos) | 0x80000000);
1528 WREG32_NO_KIQ(mmMM_INDEX_HI, aligned_pos >> 31);
1529 if (!write || mask != 0xffffffff)
1530 value = RREG32_NO_KIQ(mmMM_DATA);
1531 if (write) {
1532 value &= ~mask;
1533 value |= (*(uint32_t *)buf << shift) & mask;
1534 WREG32_NO_KIQ(mmMM_DATA, value);
1535 }
1536 spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
1537 if (!write) {
1538 value = (value & mask) >> shift;
1539 memcpy(buf, &value, bytes);
1540 }
1541
1542 ret += bytes;
1543 buf = (uint8_t *)buf + bytes;
1544 pos += bytes;
1545 len -= bytes;
1546 if (pos >= (nodes->start + nodes->size) << PAGE_SHIFT) {
1547 ++nodes;
1548 pos = (nodes->start << PAGE_SHIFT);
1549 }
1550 }
1551
1552 return ret;
1553 }
1554
1555 static struct ttm_bo_driver amdgpu_bo_driver = {
1556 .ttm_tt_create = &amdgpu_ttm_tt_create,
1557 .ttm_tt_populate = &amdgpu_ttm_tt_populate,
1558 .ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate,
1559 .invalidate_caches = &amdgpu_invalidate_caches,
1560 .init_mem_type = &amdgpu_init_mem_type,
1561 .eviction_valuable = amdgpu_ttm_bo_eviction_valuable,
1562 .evict_flags = &amdgpu_evict_flags,
1563 .move = &amdgpu_bo_move,
1564 .verify_access = &amdgpu_verify_access,
1565 .move_notify = &amdgpu_bo_move_notify,
1566 .fault_reserve_notify = &amdgpu_bo_fault_reserve_notify,
1567 .io_mem_reserve = &amdgpu_ttm_io_mem_reserve,
1568 .io_mem_free = &amdgpu_ttm_io_mem_free,
1569 .io_mem_pfn = amdgpu_ttm_io_mem_pfn,
1570 .access_memory = &amdgpu_ttm_access_memory,
1571 .del_from_lru_notify = &amdgpu_vm_del_from_lru_notify
1572 };
1573
1574 /*
1575 * Firmware Reservation functions
1576 */
1577 /**
1578 * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram
1579 *
1580 * @adev: amdgpu_device pointer
1581 *
1582 * free fw reserved vram if it has been reserved.
1583 */
1584 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev)
1585 {
1586 amdgpu_bo_free_kernel(&adev->fw_vram_usage.reserved_bo,
1587 NULL, &adev->fw_vram_usage.va);
1588 }
1589
1590 /**
1591 * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw
1592 *
1593 * @adev: amdgpu_device pointer
1594 *
1595 * create bo vram reservation from fw.
1596 */
1597 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev)
1598 {
1599 struct ttm_operation_ctx ctx = { false, false };
1600 struct amdgpu_bo_param bp;
1601 int r = 0;
1602 int i;
1603 u64 vram_size = adev->gmc.visible_vram_size;
1604 u64 offset = adev->fw_vram_usage.start_offset;
1605 u64 size = adev->fw_vram_usage.size;
1606 struct amdgpu_bo *bo;
1607
1608 memset(&bp, 0, sizeof(bp));
1609 bp.size = adev->fw_vram_usage.size;
1610 bp.byte_align = PAGE_SIZE;
1611 bp.domain = AMDGPU_GEM_DOMAIN_VRAM;
1612 bp.flags = AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED |
1613 AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS;
1614 bp.type = ttm_bo_type_kernel;
1615 bp.resv = NULL;
1616 adev->fw_vram_usage.va = NULL;
1617 adev->fw_vram_usage.reserved_bo = NULL;
1618
1619 if (adev->fw_vram_usage.size > 0 &&
1620 adev->fw_vram_usage.size <= vram_size) {
1621
1622 r = amdgpu_bo_create(adev, &bp,
1623 &adev->fw_vram_usage.reserved_bo);
1624 if (r)
1625 goto error_create;
1626
1627 r = amdgpu_bo_reserve(adev->fw_vram_usage.reserved_bo, false);
1628 if (r)
1629 goto error_reserve;
1630
1631 /* remove the original mem node and create a new one at the
1632 * request position
1633 */
1634 bo = adev->fw_vram_usage.reserved_bo;
1635 offset = ALIGN(offset, PAGE_SIZE);
1636 for (i = 0; i < bo->placement.num_placement; ++i) {
1637 bo->placements[i].fpfn = offset >> PAGE_SHIFT;
1638 bo->placements[i].lpfn = (offset + size) >> PAGE_SHIFT;
1639 }
1640
1641 ttm_bo_mem_put(&bo->tbo, &bo->tbo.mem);
1642 r = ttm_bo_mem_space(&bo->tbo, &bo->placement,
1643 &bo->tbo.mem, &ctx);
1644 if (r)
1645 goto error_pin;
1646
1647 r = amdgpu_bo_pin_restricted(adev->fw_vram_usage.reserved_bo,
1648 AMDGPU_GEM_DOMAIN_VRAM,
1649 adev->fw_vram_usage.start_offset,
1650 (adev->fw_vram_usage.start_offset +
1651 adev->fw_vram_usage.size));
1652 if (r)
1653 goto error_pin;
1654 r = amdgpu_bo_kmap(adev->fw_vram_usage.reserved_bo,
1655 &adev->fw_vram_usage.va);
1656 if (r)
1657 goto error_kmap;
1658
1659 amdgpu_bo_unreserve(adev->fw_vram_usage.reserved_bo);
1660 }
1661 return r;
1662
1663 error_kmap:
1664 amdgpu_bo_unpin(adev->fw_vram_usage.reserved_bo);
1665 error_pin:
1666 amdgpu_bo_unreserve(adev->fw_vram_usage.reserved_bo);
1667 error_reserve:
1668 amdgpu_bo_unref(&adev->fw_vram_usage.reserved_bo);
1669 error_create:
1670 adev->fw_vram_usage.va = NULL;
1671 adev->fw_vram_usage.reserved_bo = NULL;
1672 return r;
1673 }
1674 /**
1675 * amdgpu_ttm_init - Init the memory management (ttm) as well as various
1676 * gtt/vram related fields.
1677 *
1678 * This initializes all of the memory space pools that the TTM layer
1679 * will need such as the GTT space (system memory mapped to the device),
1680 * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which
1681 * can be mapped per VMID.
1682 */
1683 int amdgpu_ttm_init(struct amdgpu_device *adev)
1684 {
1685 uint64_t gtt_size;
1686 int r;
1687 u64 vis_vram_limit;
1688
1689 mutex_init(&adev->mman.gtt_window_lock);
1690
1691 /* No others user of address space so set it to 0 */
1692 r = ttm_bo_device_init(&adev->mman.bdev,
1693 &amdgpu_bo_driver,
1694 adev->ddev->anon_inode->i_mapping,
1695 adev->need_dma32);
1696 if (r) {
1697 DRM_ERROR("failed initializing buffer object driver(%d).\n", r);
1698 return r;
1699 }
1700 adev->mman.initialized = true;
1701
1702 /* We opt to avoid OOM on system pages allocations */
1703 adev->mman.bdev.no_retry = true;
1704
1705 /* Initialize VRAM pool with all of VRAM divided into pages */
1706 r = ttm_bo_init_mm(&adev->mman.bdev, TTM_PL_VRAM,
1707 adev->gmc.real_vram_size >> PAGE_SHIFT);
1708 if (r) {
1709 DRM_ERROR("Failed initializing VRAM heap.\n");
1710 return r;
1711 }
1712
1713 /* Reduce size of CPU-visible VRAM if requested */
1714 vis_vram_limit = (u64)amdgpu_vis_vram_limit * 1024 * 1024;
1715 if (amdgpu_vis_vram_limit > 0 &&
1716 vis_vram_limit <= adev->gmc.visible_vram_size)
1717 adev->gmc.visible_vram_size = vis_vram_limit;
1718
1719 /* Change the size here instead of the init above so only lpfn is affected */
1720 amdgpu_ttm_set_buffer_funcs_status(adev, false);
1721 #ifdef CONFIG_64BIT
1722 adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base,
1723 adev->gmc.visible_vram_size);
1724 #endif
1725
1726 /*
1727 *The reserved vram for firmware must be pinned to the specified
1728 *place on the VRAM, so reserve it early.
1729 */
1730 r = amdgpu_ttm_fw_reserve_vram_init(adev);
1731 if (r) {
1732 return r;
1733 }
1734
1735 /* allocate memory as required for VGA
1736 * This is used for VGA emulation and pre-OS scanout buffers to
1737 * avoid display artifacts while transitioning between pre-OS
1738 * and driver. */
1739 r = amdgpu_bo_create_kernel(adev, adev->gmc.stolen_size, PAGE_SIZE,
1740 AMDGPU_GEM_DOMAIN_VRAM,
1741 &adev->stolen_vga_memory,
1742 NULL, NULL);
1743 if (r)
1744 return r;
1745 DRM_INFO("amdgpu: %uM of VRAM memory ready\n",
1746 (unsigned) (adev->gmc.real_vram_size / (1024 * 1024)));
1747
1748 /* Compute GTT size, either bsaed on 3/4th the size of RAM size
1749 * or whatever the user passed on module init */
1750 if (amdgpu_gtt_size == -1) {
1751 struct sysinfo si;
1752
1753 si_meminfo(&si);
1754 gtt_size = min(max((AMDGPU_DEFAULT_GTT_SIZE_MB << 20),
1755 adev->gmc.mc_vram_size),
1756 ((uint64_t)si.totalram * si.mem_unit * 3/4));
1757 }
1758 else
1759 gtt_size = (uint64_t)amdgpu_gtt_size << 20;
1760
1761 /* Initialize GTT memory pool */
1762 r = ttm_bo_init_mm(&adev->mman.bdev, TTM_PL_TT, gtt_size >> PAGE_SHIFT);
1763 if (r) {
1764 DRM_ERROR("Failed initializing GTT heap.\n");
1765 return r;
1766 }
1767 DRM_INFO("amdgpu: %uM of GTT memory ready.\n",
1768 (unsigned)(gtt_size / (1024 * 1024)));
1769
1770 /* Initialize various on-chip memory pools */
1771 r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_GDS,
1772 adev->gds.gds_size);
1773 if (r) {
1774 DRM_ERROR("Failed initializing GDS heap.\n");
1775 return r;
1776 }
1777
1778 r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_GWS,
1779 adev->gds.gws_size);
1780 if (r) {
1781 DRM_ERROR("Failed initializing gws heap.\n");
1782 return r;
1783 }
1784
1785 r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_OA,
1786 adev->gds.oa_size);
1787 if (r) {
1788 DRM_ERROR("Failed initializing oa heap.\n");
1789 return r;
1790 }
1791
1792 /* Register debugfs entries for amdgpu_ttm */
1793 r = amdgpu_ttm_debugfs_init(adev);
1794 if (r) {
1795 DRM_ERROR("Failed to init debugfs\n");
1796 return r;
1797 }
1798 return 0;
1799 }
1800
1801 /**
1802 * amdgpu_ttm_late_init - Handle any late initialization for amdgpu_ttm
1803 */
1804 void amdgpu_ttm_late_init(struct amdgpu_device *adev)
1805 {
1806 /* return the VGA stolen memory (if any) back to VRAM */
1807 amdgpu_bo_free_kernel(&adev->stolen_vga_memory, NULL, NULL);
1808 }
1809
1810 /**
1811 * amdgpu_ttm_fini - De-initialize the TTM memory pools
1812 */
1813 void amdgpu_ttm_fini(struct amdgpu_device *adev)
1814 {
1815 if (!adev->mman.initialized)
1816 return;
1817
1818 amdgpu_ttm_debugfs_fini(adev);
1819 amdgpu_ttm_fw_reserve_vram_fini(adev);
1820 if (adev->mman.aper_base_kaddr)
1821 iounmap(adev->mman.aper_base_kaddr);
1822 adev->mman.aper_base_kaddr = NULL;
1823
1824 ttm_bo_clean_mm(&adev->mman.bdev, TTM_PL_VRAM);
1825 ttm_bo_clean_mm(&adev->mman.bdev, TTM_PL_TT);
1826 ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_GDS);
1827 ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_GWS);
1828 ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_OA);
1829 ttm_bo_device_release(&adev->mman.bdev);
1830 adev->mman.initialized = false;
1831 DRM_INFO("amdgpu: ttm finalized\n");
1832 }
1833
1834 /**
1835 * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions
1836 *
1837 * @adev: amdgpu_device pointer
1838 * @enable: true when we can use buffer functions.
1839 *
1840 * Enable/disable use of buffer functions during suspend/resume. This should
1841 * only be called at bootup or when userspace isn't running.
1842 */
1843 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable)
1844 {
1845 struct ttm_mem_type_manager *man = &adev->mman.bdev.man[TTM_PL_VRAM];
1846 uint64_t size;
1847 int r;
1848
1849 if (!adev->mman.initialized || adev->in_gpu_reset ||
1850 adev->mman.buffer_funcs_enabled == enable)
1851 return;
1852
1853 if (enable) {
1854 struct amdgpu_ring *ring;
1855 struct drm_sched_rq *rq;
1856
1857 ring = adev->mman.buffer_funcs_ring;
1858 rq = &ring->sched.sched_rq[DRM_SCHED_PRIORITY_KERNEL];
1859 r = drm_sched_entity_init(&adev->mman.entity, &rq, 1, NULL);
1860 if (r) {
1861 DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
1862 r);
1863 return;
1864 }
1865 } else {
1866 drm_sched_entity_destroy(&adev->mman.entity);
1867 dma_fence_put(man->move);
1868 man->move = NULL;
1869 }
1870
1871 /* this just adjusts TTM size idea, which sets lpfn to the correct value */
1872 if (enable)
1873 size = adev->gmc.real_vram_size;
1874 else
1875 size = adev->gmc.visible_vram_size;
1876 man->size = size >> PAGE_SHIFT;
1877 adev->mman.buffer_funcs_enabled = enable;
1878 }
1879
1880 int amdgpu_mmap(struct file *filp, struct vm_area_struct *vma)
1881 {
1882 struct drm_file *file_priv = filp->private_data;
1883 struct amdgpu_device *adev = file_priv->minor->dev->dev_private;
1884
1885 if (adev == NULL)
1886 return -EINVAL;
1887
1888 return ttm_bo_mmap(filp, vma, &adev->mman.bdev);
1889 }
1890
1891 static int amdgpu_map_buffer(struct ttm_buffer_object *bo,
1892 struct ttm_mem_reg *mem, unsigned num_pages,
1893 uint64_t offset, unsigned window,
1894 struct amdgpu_ring *ring,
1895 uint64_t *addr)
1896 {
1897 struct amdgpu_ttm_tt *gtt = (void *)bo->ttm;
1898 struct amdgpu_device *adev = ring->adev;
1899 struct ttm_tt *ttm = bo->ttm;
1900 struct amdgpu_job *job;
1901 unsigned num_dw, num_bytes;
1902 dma_addr_t *dma_address;
1903 struct dma_fence *fence;
1904 uint64_t src_addr, dst_addr;
1905 uint64_t flags;
1906 int r;
1907
1908 BUG_ON(adev->mman.buffer_funcs->copy_max_bytes <
1909 AMDGPU_GTT_MAX_TRANSFER_SIZE * 8);
1910
1911 *addr = adev->gmc.gart_start;
1912 *addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE *
1913 AMDGPU_GPU_PAGE_SIZE;
1914
1915 num_dw = adev->mman.buffer_funcs->copy_num_dw;
1916 while (num_dw & 0x7)
1917 num_dw++;
1918
1919 num_bytes = num_pages * 8;
1920
1921 r = amdgpu_job_alloc_with_ib(adev, num_dw * 4 + num_bytes, &job);
1922 if (r)
1923 return r;
1924
1925 src_addr = num_dw * 4;
1926 src_addr += job->ibs[0].gpu_addr;
1927
1928 dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo);
1929 dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8;
1930 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr,
1931 dst_addr, num_bytes);
1932
1933 amdgpu_ring_pad_ib(ring, &job->ibs[0]);
1934 WARN_ON(job->ibs[0].length_dw > num_dw);
1935
1936 dma_address = &gtt->ttm.dma_address[offset >> PAGE_SHIFT];
1937 flags = amdgpu_ttm_tt_pte_flags(adev, ttm, mem);
1938 r = amdgpu_gart_map(adev, 0, num_pages, dma_address, flags,
1939 &job->ibs[0].ptr[num_dw]);
1940 if (r)
1941 goto error_free;
1942
1943 r = amdgpu_job_submit(job, &adev->mman.entity,
1944 AMDGPU_FENCE_OWNER_UNDEFINED, &fence);
1945 if (r)
1946 goto error_free;
1947
1948 dma_fence_put(fence);
1949
1950 return r;
1951
1952 error_free:
1953 amdgpu_job_free(job);
1954 return r;
1955 }
1956
1957 int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset,
1958 uint64_t dst_offset, uint32_t byte_count,
1959 struct reservation_object *resv,
1960 struct dma_fence **fence, bool direct_submit,
1961 bool vm_needs_flush)
1962 {
1963 struct amdgpu_device *adev = ring->adev;
1964 struct amdgpu_job *job;
1965
1966 uint32_t max_bytes;
1967 unsigned num_loops, num_dw;
1968 unsigned i;
1969 int r;
1970
1971 if (direct_submit && !ring->sched.ready) {
1972 DRM_ERROR("Trying to move memory with ring turned off.\n");
1973 return -EINVAL;
1974 }
1975
1976 max_bytes = adev->mman.buffer_funcs->copy_max_bytes;
1977 num_loops = DIV_ROUND_UP(byte_count, max_bytes);
1978 num_dw = num_loops * adev->mman.buffer_funcs->copy_num_dw;
1979
1980 /* for IB padding */
1981 while (num_dw & 0x7)
1982 num_dw++;
1983
1984 r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, &job);
1985 if (r)
1986 return r;
1987
1988 if (vm_needs_flush) {
1989 job->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gart.bo);
1990 job->vm_needs_flush = true;
1991 }
1992 if (resv) {
1993 r = amdgpu_sync_resv(adev, &job->sync, resv,
1994 AMDGPU_FENCE_OWNER_UNDEFINED,
1995 false);
1996 if (r) {
1997 DRM_ERROR("sync failed (%d).\n", r);
1998 goto error_free;
1999 }
2000 }
2001
2002 for (i = 0; i < num_loops; i++) {
2003 uint32_t cur_size_in_bytes = min(byte_count, max_bytes);
2004
2005 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset,
2006 dst_offset, cur_size_in_bytes);
2007
2008 src_offset += cur_size_in_bytes;
2009 dst_offset += cur_size_in_bytes;
2010 byte_count -= cur_size_in_bytes;
2011 }
2012
2013 amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2014 WARN_ON(job->ibs[0].length_dw > num_dw);
2015 if (direct_submit)
2016 r = amdgpu_job_submit_direct(job, ring, fence);
2017 else
2018 r = amdgpu_job_submit(job, &adev->mman.entity,
2019 AMDGPU_FENCE_OWNER_UNDEFINED, fence);
2020 if (r)
2021 goto error_free;
2022
2023 return r;
2024
2025 error_free:
2026 amdgpu_job_free(job);
2027 DRM_ERROR("Error scheduling IBs (%d)\n", r);
2028 return r;
2029 }
2030
2031 int amdgpu_fill_buffer(struct amdgpu_bo *bo,
2032 uint32_t src_data,
2033 struct reservation_object *resv,
2034 struct dma_fence **fence)
2035 {
2036 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
2037 uint32_t max_bytes = adev->mman.buffer_funcs->fill_max_bytes;
2038 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
2039
2040 struct drm_mm_node *mm_node;
2041 unsigned long num_pages;
2042 unsigned int num_loops, num_dw;
2043
2044 struct amdgpu_job *job;
2045 int r;
2046
2047 if (!adev->mman.buffer_funcs_enabled) {
2048 DRM_ERROR("Trying to clear memory with ring turned off.\n");
2049 return -EINVAL;
2050 }
2051
2052 if (bo->tbo.mem.mem_type == TTM_PL_TT) {
2053 r = amdgpu_ttm_alloc_gart(&bo->tbo);
2054 if (r)
2055 return r;
2056 }
2057
2058 num_pages = bo->tbo.num_pages;
2059 mm_node = bo->tbo.mem.mm_node;
2060 num_loops = 0;
2061 while (num_pages) {
2062 uint32_t byte_count = mm_node->size << PAGE_SHIFT;
2063
2064 num_loops += DIV_ROUND_UP(byte_count, max_bytes);
2065 num_pages -= mm_node->size;
2066 ++mm_node;
2067 }
2068 num_dw = num_loops * adev->mman.buffer_funcs->fill_num_dw;
2069
2070 /* for IB padding */
2071 num_dw += 64;
2072
2073 r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, &job);
2074 if (r)
2075 return r;
2076
2077 if (resv) {
2078 r = amdgpu_sync_resv(adev, &job->sync, resv,
2079 AMDGPU_FENCE_OWNER_UNDEFINED, false);
2080 if (r) {
2081 DRM_ERROR("sync failed (%d).\n", r);
2082 goto error_free;
2083 }
2084 }
2085
2086 num_pages = bo->tbo.num_pages;
2087 mm_node = bo->tbo.mem.mm_node;
2088
2089 while (num_pages) {
2090 uint32_t byte_count = mm_node->size << PAGE_SHIFT;
2091 uint64_t dst_addr;
2092
2093 dst_addr = amdgpu_mm_node_addr(&bo->tbo, mm_node, &bo->tbo.mem);
2094 while (byte_count) {
2095 uint32_t cur_size_in_bytes = min(byte_count, max_bytes);
2096
2097 amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data,
2098 dst_addr, cur_size_in_bytes);
2099
2100 dst_addr += cur_size_in_bytes;
2101 byte_count -= cur_size_in_bytes;
2102 }
2103
2104 num_pages -= mm_node->size;
2105 ++mm_node;
2106 }
2107
2108 amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2109 WARN_ON(job->ibs[0].length_dw > num_dw);
2110 r = amdgpu_job_submit(job, &adev->mman.entity,
2111 AMDGPU_FENCE_OWNER_UNDEFINED, fence);
2112 if (r)
2113 goto error_free;
2114
2115 return 0;
2116
2117 error_free:
2118 amdgpu_job_free(job);
2119 return r;
2120 }
2121
2122 #if defined(CONFIG_DEBUG_FS)
2123
2124 static int amdgpu_mm_dump_table(struct seq_file *m, void *data)
2125 {
2126 struct drm_info_node *node = (struct drm_info_node *)m->private;
2127 unsigned ttm_pl = (uintptr_t)node->info_ent->data;
2128 struct drm_device *dev = node->minor->dev;
2129 struct amdgpu_device *adev = dev->dev_private;
2130 struct ttm_mem_type_manager *man = &adev->mman.bdev.man[ttm_pl];
2131 struct drm_printer p = drm_seq_file_printer(m);
2132
2133 man->func->debug(man, &p);
2134 return 0;
2135 }
2136
2137 static const struct drm_info_list amdgpu_ttm_debugfs_list[] = {
2138 {"amdgpu_vram_mm", amdgpu_mm_dump_table, 0, (void *)TTM_PL_VRAM},
2139 {"amdgpu_gtt_mm", amdgpu_mm_dump_table, 0, (void *)TTM_PL_TT},
2140 {"amdgpu_gds_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_GDS},
2141 {"amdgpu_gws_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_GWS},
2142 {"amdgpu_oa_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_OA},
2143 {"ttm_page_pool", ttm_page_alloc_debugfs, 0, NULL},
2144 #ifdef CONFIG_SWIOTLB
2145 {"ttm_dma_page_pool", ttm_dma_page_alloc_debugfs, 0, NULL}
2146 #endif
2147 };
2148
2149 /**
2150 * amdgpu_ttm_vram_read - Linear read access to VRAM
2151 *
2152 * Accesses VRAM via MMIO for debugging purposes.
2153 */
2154 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf,
2155 size_t size, loff_t *pos)
2156 {
2157 struct amdgpu_device *adev = file_inode(f)->i_private;
2158 ssize_t result = 0;
2159 int r;
2160
2161 if (size & 0x3 || *pos & 0x3)
2162 return -EINVAL;
2163
2164 if (*pos >= adev->gmc.mc_vram_size)
2165 return -ENXIO;
2166
2167 while (size) {
2168 unsigned long flags;
2169 uint32_t value;
2170
2171 if (*pos >= adev->gmc.mc_vram_size)
2172 return result;
2173
2174 spin_lock_irqsave(&adev->mmio_idx_lock, flags);
2175 WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)*pos) | 0x80000000);
2176 WREG32_NO_KIQ(mmMM_INDEX_HI, *pos >> 31);
2177 value = RREG32_NO_KIQ(mmMM_DATA);
2178 spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
2179
2180 r = put_user(value, (uint32_t *)buf);
2181 if (r)
2182 return r;
2183
2184 result += 4;
2185 buf += 4;
2186 *pos += 4;
2187 size -= 4;
2188 }
2189
2190 return result;
2191 }
2192
2193 /**
2194 * amdgpu_ttm_vram_write - Linear write access to VRAM
2195 *
2196 * Accesses VRAM via MMIO for debugging purposes.
2197 */
2198 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf,
2199 size_t size, loff_t *pos)
2200 {
2201 struct amdgpu_device *adev = file_inode(f)->i_private;
2202 ssize_t result = 0;
2203 int r;
2204
2205 if (size & 0x3 || *pos & 0x3)
2206 return -EINVAL;
2207
2208 if (*pos >= adev->gmc.mc_vram_size)
2209 return -ENXIO;
2210
2211 while (size) {
2212 unsigned long flags;
2213 uint32_t value;
2214
2215 if (*pos >= adev->gmc.mc_vram_size)
2216 return result;
2217
2218 r = get_user(value, (uint32_t *)buf);
2219 if (r)
2220 return r;
2221
2222 spin_lock_irqsave(&adev->mmio_idx_lock, flags);
2223 WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)*pos) | 0x80000000);
2224 WREG32_NO_KIQ(mmMM_INDEX_HI, *pos >> 31);
2225 WREG32_NO_KIQ(mmMM_DATA, value);
2226 spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
2227
2228 result += 4;
2229 buf += 4;
2230 *pos += 4;
2231 size -= 4;
2232 }
2233
2234 return result;
2235 }
2236
2237 static const struct file_operations amdgpu_ttm_vram_fops = {
2238 .owner = THIS_MODULE,
2239 .read = amdgpu_ttm_vram_read,
2240 .write = amdgpu_ttm_vram_write,
2241 .llseek = default_llseek,
2242 };
2243
2244 #ifdef CONFIG_DRM_AMDGPU_GART_DEBUGFS
2245
2246 /**
2247 * amdgpu_ttm_gtt_read - Linear read access to GTT memory
2248 */
2249 static ssize_t amdgpu_ttm_gtt_read(struct file *f, char __user *buf,
2250 size_t size, loff_t *pos)
2251 {
2252 struct amdgpu_device *adev = file_inode(f)->i_private;
2253 ssize_t result = 0;
2254 int r;
2255
2256 while (size) {
2257 loff_t p = *pos / PAGE_SIZE;
2258 unsigned off = *pos & ~PAGE_MASK;
2259 size_t cur_size = min_t(size_t, size, PAGE_SIZE - off);
2260 struct page *page;
2261 void *ptr;
2262
2263 if (p >= adev->gart.num_cpu_pages)
2264 return result;
2265
2266 page = adev->gart.pages[p];
2267 if (page) {
2268 ptr = kmap(page);
2269 ptr += off;
2270
2271 r = copy_to_user(buf, ptr, cur_size);
2272 kunmap(adev->gart.pages[p]);
2273 } else
2274 r = clear_user(buf, cur_size);
2275
2276 if (r)
2277 return -EFAULT;
2278
2279 result += cur_size;
2280 buf += cur_size;
2281 *pos += cur_size;
2282 size -= cur_size;
2283 }
2284
2285 return result;
2286 }
2287
2288 static const struct file_operations amdgpu_ttm_gtt_fops = {
2289 .owner = THIS_MODULE,
2290 .read = amdgpu_ttm_gtt_read,
2291 .llseek = default_llseek
2292 };
2293
2294 #endif
2295
2296 /**
2297 * amdgpu_iomem_read - Virtual read access to GPU mapped memory
2298 *
2299 * This function is used to read memory that has been mapped to the
2300 * GPU and the known addresses are not physical addresses but instead
2301 * bus addresses (e.g., what you'd put in an IB or ring buffer).
2302 */
2303 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf,
2304 size_t size, loff_t *pos)
2305 {
2306 struct amdgpu_device *adev = file_inode(f)->i_private;
2307 struct iommu_domain *dom;
2308 ssize_t result = 0;
2309 int r;
2310
2311 /* retrieve the IOMMU domain if any for this device */
2312 dom = iommu_get_domain_for_dev(adev->dev);
2313
2314 while (size) {
2315 phys_addr_t addr = *pos & PAGE_MASK;
2316 loff_t off = *pos & ~PAGE_MASK;
2317 size_t bytes = PAGE_SIZE - off;
2318 unsigned long pfn;
2319 struct page *p;
2320 void *ptr;
2321
2322 bytes = bytes < size ? bytes : size;
2323
2324 /* Translate the bus address to a physical address. If
2325 * the domain is NULL it means there is no IOMMU active
2326 * and the address translation is the identity
2327 */
2328 addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2329
2330 pfn = addr >> PAGE_SHIFT;
2331 if (!pfn_valid(pfn))
2332 return -EPERM;
2333
2334 p = pfn_to_page(pfn);
2335 if (p->mapping != adev->mman.bdev.dev_mapping)
2336 return -EPERM;
2337
2338 ptr = kmap(p);
2339 r = copy_to_user(buf, ptr + off, bytes);
2340 kunmap(p);
2341 if (r)
2342 return -EFAULT;
2343
2344 size -= bytes;
2345 *pos += bytes;
2346 result += bytes;
2347 }
2348
2349 return result;
2350 }
2351
2352 /**
2353 * amdgpu_iomem_write - Virtual write access to GPU mapped memory
2354 *
2355 * This function is used to write memory that has been mapped to the
2356 * GPU and the known addresses are not physical addresses but instead
2357 * bus addresses (e.g., what you'd put in an IB or ring buffer).
2358 */
2359 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf,
2360 size_t size, loff_t *pos)
2361 {
2362 struct amdgpu_device *adev = file_inode(f)->i_private;
2363 struct iommu_domain *dom;
2364 ssize_t result = 0;
2365 int r;
2366
2367 dom = iommu_get_domain_for_dev(adev->dev);
2368
2369 while (size) {
2370 phys_addr_t addr = *pos & PAGE_MASK;
2371 loff_t off = *pos & ~PAGE_MASK;
2372 size_t bytes = PAGE_SIZE - off;
2373 unsigned long pfn;
2374 struct page *p;
2375 void *ptr;
2376
2377 bytes = bytes < size ? bytes : size;
2378
2379 addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2380
2381 pfn = addr >> PAGE_SHIFT;
2382 if (!pfn_valid(pfn))
2383 return -EPERM;
2384
2385 p = pfn_to_page(pfn);
2386 if (p->mapping != adev->mman.bdev.dev_mapping)
2387 return -EPERM;
2388
2389 ptr = kmap(p);
2390 r = copy_from_user(ptr + off, buf, bytes);
2391 kunmap(p);
2392 if (r)
2393 return -EFAULT;
2394
2395 size -= bytes;
2396 *pos += bytes;
2397 result += bytes;
2398 }
2399
2400 return result;
2401 }
2402
2403 static const struct file_operations amdgpu_ttm_iomem_fops = {
2404 .owner = THIS_MODULE,
2405 .read = amdgpu_iomem_read,
2406 .write = amdgpu_iomem_write,
2407 .llseek = default_llseek
2408 };
2409
2410 static const struct {
2411 char *name;
2412 const struct file_operations *fops;
2413 int domain;
2414 } ttm_debugfs_entries[] = {
2415 { "amdgpu_vram", &amdgpu_ttm_vram_fops, TTM_PL_VRAM },
2416 #ifdef CONFIG_DRM_AMDGPU_GART_DEBUGFS
2417 { "amdgpu_gtt", &amdgpu_ttm_gtt_fops, TTM_PL_TT },
2418 #endif
2419 { "amdgpu_iomem", &amdgpu_ttm_iomem_fops, TTM_PL_SYSTEM },
2420 };
2421
2422 #endif
2423
2424 static int amdgpu_ttm_debugfs_init(struct amdgpu_device *adev)
2425 {
2426 #if defined(CONFIG_DEBUG_FS)
2427 unsigned count;
2428
2429 struct drm_minor *minor = adev->ddev->primary;
2430 struct dentry *ent, *root = minor->debugfs_root;
2431
2432 for (count = 0; count < ARRAY_SIZE(ttm_debugfs_entries); count++) {
2433 ent = debugfs_create_file(
2434 ttm_debugfs_entries[count].name,
2435 S_IFREG | S_IRUGO, root,
2436 adev,
2437 ttm_debugfs_entries[count].fops);
2438 if (IS_ERR(ent))
2439 return PTR_ERR(ent);
2440 if (ttm_debugfs_entries[count].domain == TTM_PL_VRAM)
2441 i_size_write(ent->d_inode, adev->gmc.mc_vram_size);
2442 else if (ttm_debugfs_entries[count].domain == TTM_PL_TT)
2443 i_size_write(ent->d_inode, adev->gmc.gart_size);
2444 adev->mman.debugfs_entries[count] = ent;
2445 }
2446
2447 count = ARRAY_SIZE(amdgpu_ttm_debugfs_list);
2448
2449 #ifdef CONFIG_SWIOTLB
2450 if (!(adev->need_swiotlb && swiotlb_nr_tbl()))
2451 --count;
2452 #endif
2453
2454 return amdgpu_debugfs_add_files(adev, amdgpu_ttm_debugfs_list, count);
2455 #else
2456 return 0;
2457 #endif
2458 }
2459
2460 static void amdgpu_ttm_debugfs_fini(struct amdgpu_device *adev)
2461 {
2462 #if defined(CONFIG_DEBUG_FS)
2463 unsigned i;
2464
2465 for (i = 0; i < ARRAY_SIZE(ttm_debugfs_entries); i++)
2466 debugfs_remove(adev->mman.debugfs_entries[i]);
2467 #endif
2468 }