]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - drivers/gpu/drm/amd/amdgpu/amdgpu_ttm.c
Merge tag 'powerpc-5.4-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc...
[mirror_ubuntu-focal-kernel.git] / drivers / gpu / drm / amd / amdgpu / amdgpu_ttm.c
1 /*
2 * Copyright 2009 Jerome Glisse.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the
7 * "Software"), to deal in the Software without restriction, including
8 * without limitation the rights to use, copy, modify, merge, publish,
9 * distribute, sub license, and/or sell copies of the Software, and to
10 * permit persons to whom the Software is furnished to do so, subject to
11 * the following conditions:
12 *
13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
16 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
17 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
18 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
19 * USE OR OTHER DEALINGS IN THE SOFTWARE.
20 *
21 * The above copyright notice and this permission notice (including the
22 * next paragraph) shall be included in all copies or substantial portions
23 * of the Software.
24 *
25 */
26 /*
27 * Authors:
28 * Jerome Glisse <glisse@freedesktop.org>
29 * Thomas Hellstrom <thomas-at-tungstengraphics-dot-com>
30 * Dave Airlie
31 */
32
33 #include <linux/dma-mapping.h>
34 #include <linux/iommu.h>
35 #include <linux/hmm.h>
36 #include <linux/pagemap.h>
37 #include <linux/sched/task.h>
38 #include <linux/seq_file.h>
39 #include <linux/slab.h>
40 #include <linux/swap.h>
41 #include <linux/swiotlb.h>
42
43 #include <drm/ttm/ttm_bo_api.h>
44 #include <drm/ttm/ttm_bo_driver.h>
45 #include <drm/ttm/ttm_placement.h>
46 #include <drm/ttm/ttm_module.h>
47 #include <drm/ttm/ttm_page_alloc.h>
48
49 #include <drm/drm_debugfs.h>
50 #include <drm/amdgpu_drm.h>
51
52 #include "amdgpu.h"
53 #include "amdgpu_object.h"
54 #include "amdgpu_trace.h"
55 #include "amdgpu_amdkfd.h"
56 #include "amdgpu_sdma.h"
57 #include "bif/bif_4_1_d.h"
58
59 static int amdgpu_map_buffer(struct ttm_buffer_object *bo,
60 struct ttm_mem_reg *mem, unsigned num_pages,
61 uint64_t offset, unsigned window,
62 struct amdgpu_ring *ring,
63 uint64_t *addr);
64
65 static int amdgpu_ttm_debugfs_init(struct amdgpu_device *adev);
66 static void amdgpu_ttm_debugfs_fini(struct amdgpu_device *adev);
67
68 static int amdgpu_invalidate_caches(struct ttm_bo_device *bdev, uint32_t flags)
69 {
70 return 0;
71 }
72
73 /**
74 * amdgpu_init_mem_type - Initialize a memory manager for a specific type of
75 * memory request.
76 *
77 * @bdev: The TTM BO device object (contains a reference to amdgpu_device)
78 * @type: The type of memory requested
79 * @man: The memory type manager for each domain
80 *
81 * This is called by ttm_bo_init_mm() when a buffer object is being
82 * initialized.
83 */
84 static int amdgpu_init_mem_type(struct ttm_bo_device *bdev, uint32_t type,
85 struct ttm_mem_type_manager *man)
86 {
87 struct amdgpu_device *adev;
88
89 adev = amdgpu_ttm_adev(bdev);
90
91 switch (type) {
92 case TTM_PL_SYSTEM:
93 /* System memory */
94 man->flags = TTM_MEMTYPE_FLAG_MAPPABLE;
95 man->available_caching = TTM_PL_MASK_CACHING;
96 man->default_caching = TTM_PL_FLAG_CACHED;
97 break;
98 case TTM_PL_TT:
99 /* GTT memory */
100 man->func = &amdgpu_gtt_mgr_func;
101 man->gpu_offset = adev->gmc.gart_start;
102 man->available_caching = TTM_PL_MASK_CACHING;
103 man->default_caching = TTM_PL_FLAG_CACHED;
104 man->flags = TTM_MEMTYPE_FLAG_MAPPABLE | TTM_MEMTYPE_FLAG_CMA;
105 break;
106 case TTM_PL_VRAM:
107 /* "On-card" video ram */
108 man->func = &amdgpu_vram_mgr_func;
109 man->gpu_offset = adev->gmc.vram_start;
110 man->flags = TTM_MEMTYPE_FLAG_FIXED |
111 TTM_MEMTYPE_FLAG_MAPPABLE;
112 man->available_caching = TTM_PL_FLAG_UNCACHED | TTM_PL_FLAG_WC;
113 man->default_caching = TTM_PL_FLAG_WC;
114 break;
115 case AMDGPU_PL_GDS:
116 case AMDGPU_PL_GWS:
117 case AMDGPU_PL_OA:
118 /* On-chip GDS memory*/
119 man->func = &ttm_bo_manager_func;
120 man->gpu_offset = 0;
121 man->flags = TTM_MEMTYPE_FLAG_FIXED | TTM_MEMTYPE_FLAG_CMA;
122 man->available_caching = TTM_PL_FLAG_UNCACHED;
123 man->default_caching = TTM_PL_FLAG_UNCACHED;
124 break;
125 default:
126 DRM_ERROR("Unsupported memory type %u\n", (unsigned)type);
127 return -EINVAL;
128 }
129 return 0;
130 }
131
132 /**
133 * amdgpu_evict_flags - Compute placement flags
134 *
135 * @bo: The buffer object to evict
136 * @placement: Possible destination(s) for evicted BO
137 *
138 * Fill in placement data when ttm_bo_evict() is called
139 */
140 static void amdgpu_evict_flags(struct ttm_buffer_object *bo,
141 struct ttm_placement *placement)
142 {
143 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
144 struct amdgpu_bo *abo;
145 static const struct ttm_place placements = {
146 .fpfn = 0,
147 .lpfn = 0,
148 .flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_SYSTEM
149 };
150
151 /* Don't handle scatter gather BOs */
152 if (bo->type == ttm_bo_type_sg) {
153 placement->num_placement = 0;
154 placement->num_busy_placement = 0;
155 return;
156 }
157
158 /* Object isn't an AMDGPU object so ignore */
159 if (!amdgpu_bo_is_amdgpu_bo(bo)) {
160 placement->placement = &placements;
161 placement->busy_placement = &placements;
162 placement->num_placement = 1;
163 placement->num_busy_placement = 1;
164 return;
165 }
166
167 abo = ttm_to_amdgpu_bo(bo);
168 switch (bo->mem.mem_type) {
169 case AMDGPU_PL_GDS:
170 case AMDGPU_PL_GWS:
171 case AMDGPU_PL_OA:
172 placement->num_placement = 0;
173 placement->num_busy_placement = 0;
174 return;
175
176 case TTM_PL_VRAM:
177 if (!adev->mman.buffer_funcs_enabled) {
178 /* Move to system memory */
179 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
180 } else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) &&
181 !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) &&
182 amdgpu_bo_in_cpu_visible_vram(abo)) {
183
184 /* Try evicting to the CPU inaccessible part of VRAM
185 * first, but only set GTT as busy placement, so this
186 * BO will be evicted to GTT rather than causing other
187 * BOs to be evicted from VRAM
188 */
189 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM |
190 AMDGPU_GEM_DOMAIN_GTT);
191 abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT;
192 abo->placements[0].lpfn = 0;
193 abo->placement.busy_placement = &abo->placements[1];
194 abo->placement.num_busy_placement = 1;
195 } else {
196 /* Move to GTT memory */
197 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT);
198 }
199 break;
200 case TTM_PL_TT:
201 default:
202 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
203 break;
204 }
205 *placement = abo->placement;
206 }
207
208 /**
209 * amdgpu_verify_access - Verify access for a mmap call
210 *
211 * @bo: The buffer object to map
212 * @filp: The file pointer from the process performing the mmap
213 *
214 * This is called by ttm_bo_mmap() to verify whether a process
215 * has the right to mmap a BO to their process space.
216 */
217 static int amdgpu_verify_access(struct ttm_buffer_object *bo, struct file *filp)
218 {
219 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
220
221 /*
222 * Don't verify access for KFD BOs. They don't have a GEM
223 * object associated with them.
224 */
225 if (abo->kfd_bo)
226 return 0;
227
228 if (amdgpu_ttm_tt_get_usermm(bo->ttm))
229 return -EPERM;
230 return drm_vma_node_verify_access(&abo->tbo.base.vma_node,
231 filp->private_data);
232 }
233
234 /**
235 * amdgpu_move_null - Register memory for a buffer object
236 *
237 * @bo: The bo to assign the memory to
238 * @new_mem: The memory to be assigned.
239 *
240 * Assign the memory from new_mem to the memory of the buffer object bo.
241 */
242 static void amdgpu_move_null(struct ttm_buffer_object *bo,
243 struct ttm_mem_reg *new_mem)
244 {
245 struct ttm_mem_reg *old_mem = &bo->mem;
246
247 BUG_ON(old_mem->mm_node != NULL);
248 *old_mem = *new_mem;
249 new_mem->mm_node = NULL;
250 }
251
252 /**
253 * amdgpu_mm_node_addr - Compute the GPU relative offset of a GTT buffer.
254 *
255 * @bo: The bo to assign the memory to.
256 * @mm_node: Memory manager node for drm allocator.
257 * @mem: The region where the bo resides.
258 *
259 */
260 static uint64_t amdgpu_mm_node_addr(struct ttm_buffer_object *bo,
261 struct drm_mm_node *mm_node,
262 struct ttm_mem_reg *mem)
263 {
264 uint64_t addr = 0;
265
266 if (mm_node->start != AMDGPU_BO_INVALID_OFFSET) {
267 addr = mm_node->start << PAGE_SHIFT;
268 addr += bo->bdev->man[mem->mem_type].gpu_offset;
269 }
270 return addr;
271 }
272
273 /**
274 * amdgpu_find_mm_node - Helper function finds the drm_mm_node corresponding to
275 * @offset. It also modifies the offset to be within the drm_mm_node returned
276 *
277 * @mem: The region where the bo resides.
278 * @offset: The offset that drm_mm_node is used for finding.
279 *
280 */
281 static struct drm_mm_node *amdgpu_find_mm_node(struct ttm_mem_reg *mem,
282 unsigned long *offset)
283 {
284 struct drm_mm_node *mm_node = mem->mm_node;
285
286 while (*offset >= (mm_node->size << PAGE_SHIFT)) {
287 *offset -= (mm_node->size << PAGE_SHIFT);
288 ++mm_node;
289 }
290 return mm_node;
291 }
292
293 /**
294 * amdgpu_copy_ttm_mem_to_mem - Helper function for copy
295 *
296 * The function copies @size bytes from {src->mem + src->offset} to
297 * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a
298 * move and different for a BO to BO copy.
299 *
300 * @f: Returns the last fence if multiple jobs are submitted.
301 */
302 int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev,
303 struct amdgpu_copy_mem *src,
304 struct amdgpu_copy_mem *dst,
305 uint64_t size,
306 struct dma_resv *resv,
307 struct dma_fence **f)
308 {
309 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
310 struct drm_mm_node *src_mm, *dst_mm;
311 uint64_t src_node_start, dst_node_start, src_node_size,
312 dst_node_size, src_page_offset, dst_page_offset;
313 struct dma_fence *fence = NULL;
314 int r = 0;
315 const uint64_t GTT_MAX_BYTES = (AMDGPU_GTT_MAX_TRANSFER_SIZE *
316 AMDGPU_GPU_PAGE_SIZE);
317
318 if (!adev->mman.buffer_funcs_enabled) {
319 DRM_ERROR("Trying to move memory with ring turned off.\n");
320 return -EINVAL;
321 }
322
323 src_mm = amdgpu_find_mm_node(src->mem, &src->offset);
324 src_node_start = amdgpu_mm_node_addr(src->bo, src_mm, src->mem) +
325 src->offset;
326 src_node_size = (src_mm->size << PAGE_SHIFT) - src->offset;
327 src_page_offset = src_node_start & (PAGE_SIZE - 1);
328
329 dst_mm = amdgpu_find_mm_node(dst->mem, &dst->offset);
330 dst_node_start = amdgpu_mm_node_addr(dst->bo, dst_mm, dst->mem) +
331 dst->offset;
332 dst_node_size = (dst_mm->size << PAGE_SHIFT) - dst->offset;
333 dst_page_offset = dst_node_start & (PAGE_SIZE - 1);
334
335 mutex_lock(&adev->mman.gtt_window_lock);
336
337 while (size) {
338 unsigned long cur_size;
339 uint64_t from = src_node_start, to = dst_node_start;
340 struct dma_fence *next;
341
342 /* Copy size cannot exceed GTT_MAX_BYTES. So if src or dst
343 * begins at an offset, then adjust the size accordingly
344 */
345 cur_size = min3(min(src_node_size, dst_node_size), size,
346 GTT_MAX_BYTES);
347 if (cur_size + src_page_offset > GTT_MAX_BYTES ||
348 cur_size + dst_page_offset > GTT_MAX_BYTES)
349 cur_size -= max(src_page_offset, dst_page_offset);
350
351 /* Map only what needs to be accessed. Map src to window 0 and
352 * dst to window 1
353 */
354 if (src->mem->start == AMDGPU_BO_INVALID_OFFSET) {
355 r = amdgpu_map_buffer(src->bo, src->mem,
356 PFN_UP(cur_size + src_page_offset),
357 src_node_start, 0, ring,
358 &from);
359 if (r)
360 goto error;
361 /* Adjust the offset because amdgpu_map_buffer returns
362 * start of mapped page
363 */
364 from += src_page_offset;
365 }
366
367 if (dst->mem->start == AMDGPU_BO_INVALID_OFFSET) {
368 r = amdgpu_map_buffer(dst->bo, dst->mem,
369 PFN_UP(cur_size + dst_page_offset),
370 dst_node_start, 1, ring,
371 &to);
372 if (r)
373 goto error;
374 to += dst_page_offset;
375 }
376
377 r = amdgpu_copy_buffer(ring, from, to, cur_size,
378 resv, &next, false, true);
379 if (r)
380 goto error;
381
382 dma_fence_put(fence);
383 fence = next;
384
385 size -= cur_size;
386 if (!size)
387 break;
388
389 src_node_size -= cur_size;
390 if (!src_node_size) {
391 src_node_start = amdgpu_mm_node_addr(src->bo, ++src_mm,
392 src->mem);
393 src_node_size = (src_mm->size << PAGE_SHIFT);
394 src_page_offset = 0;
395 } else {
396 src_node_start += cur_size;
397 src_page_offset = src_node_start & (PAGE_SIZE - 1);
398 }
399 dst_node_size -= cur_size;
400 if (!dst_node_size) {
401 dst_node_start = amdgpu_mm_node_addr(dst->bo, ++dst_mm,
402 dst->mem);
403 dst_node_size = (dst_mm->size << PAGE_SHIFT);
404 dst_page_offset = 0;
405 } else {
406 dst_node_start += cur_size;
407 dst_page_offset = dst_node_start & (PAGE_SIZE - 1);
408 }
409 }
410 error:
411 mutex_unlock(&adev->mman.gtt_window_lock);
412 if (f)
413 *f = dma_fence_get(fence);
414 dma_fence_put(fence);
415 return r;
416 }
417
418 /**
419 * amdgpu_move_blit - Copy an entire buffer to another buffer
420 *
421 * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to
422 * help move buffers to and from VRAM.
423 */
424 static int amdgpu_move_blit(struct ttm_buffer_object *bo,
425 bool evict, bool no_wait_gpu,
426 struct ttm_mem_reg *new_mem,
427 struct ttm_mem_reg *old_mem)
428 {
429 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
430 struct amdgpu_copy_mem src, dst;
431 struct dma_fence *fence = NULL;
432 int r;
433
434 src.bo = bo;
435 dst.bo = bo;
436 src.mem = old_mem;
437 dst.mem = new_mem;
438 src.offset = 0;
439 dst.offset = 0;
440
441 r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst,
442 new_mem->num_pages << PAGE_SHIFT,
443 bo->base.resv, &fence);
444 if (r)
445 goto error;
446
447 /* clear the space being freed */
448 if (old_mem->mem_type == TTM_PL_VRAM &&
449 (ttm_to_amdgpu_bo(bo)->flags &
450 AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) {
451 struct dma_fence *wipe_fence = NULL;
452
453 r = amdgpu_fill_buffer(ttm_to_amdgpu_bo(bo), AMDGPU_POISON,
454 NULL, &wipe_fence);
455 if (r) {
456 goto error;
457 } else if (wipe_fence) {
458 dma_fence_put(fence);
459 fence = wipe_fence;
460 }
461 }
462
463 /* Always block for VM page tables before committing the new location */
464 if (bo->type == ttm_bo_type_kernel)
465 r = ttm_bo_move_accel_cleanup(bo, fence, true, new_mem);
466 else
467 r = ttm_bo_pipeline_move(bo, fence, evict, new_mem);
468 dma_fence_put(fence);
469 return r;
470
471 error:
472 if (fence)
473 dma_fence_wait(fence, false);
474 dma_fence_put(fence);
475 return r;
476 }
477
478 /**
479 * amdgpu_move_vram_ram - Copy VRAM buffer to RAM buffer
480 *
481 * Called by amdgpu_bo_move().
482 */
483 static int amdgpu_move_vram_ram(struct ttm_buffer_object *bo, bool evict,
484 struct ttm_operation_ctx *ctx,
485 struct ttm_mem_reg *new_mem)
486 {
487 struct amdgpu_device *adev;
488 struct ttm_mem_reg *old_mem = &bo->mem;
489 struct ttm_mem_reg tmp_mem;
490 struct ttm_place placements;
491 struct ttm_placement placement;
492 int r;
493
494 adev = amdgpu_ttm_adev(bo->bdev);
495
496 /* create space/pages for new_mem in GTT space */
497 tmp_mem = *new_mem;
498 tmp_mem.mm_node = NULL;
499 placement.num_placement = 1;
500 placement.placement = &placements;
501 placement.num_busy_placement = 1;
502 placement.busy_placement = &placements;
503 placements.fpfn = 0;
504 placements.lpfn = 0;
505 placements.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_TT;
506 r = ttm_bo_mem_space(bo, &placement, &tmp_mem, ctx);
507 if (unlikely(r)) {
508 pr_err("Failed to find GTT space for blit from VRAM\n");
509 return r;
510 }
511
512 /* set caching flags */
513 r = ttm_tt_set_placement_caching(bo->ttm, tmp_mem.placement);
514 if (unlikely(r)) {
515 goto out_cleanup;
516 }
517
518 /* Bind the memory to the GTT space */
519 r = ttm_tt_bind(bo->ttm, &tmp_mem, ctx);
520 if (unlikely(r)) {
521 goto out_cleanup;
522 }
523
524 /* blit VRAM to GTT */
525 r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu, &tmp_mem, old_mem);
526 if (unlikely(r)) {
527 goto out_cleanup;
528 }
529
530 /* move BO (in tmp_mem) to new_mem */
531 r = ttm_bo_move_ttm(bo, ctx, new_mem);
532 out_cleanup:
533 ttm_bo_mem_put(bo, &tmp_mem);
534 return r;
535 }
536
537 /**
538 * amdgpu_move_ram_vram - Copy buffer from RAM to VRAM
539 *
540 * Called by amdgpu_bo_move().
541 */
542 static int amdgpu_move_ram_vram(struct ttm_buffer_object *bo, bool evict,
543 struct ttm_operation_ctx *ctx,
544 struct ttm_mem_reg *new_mem)
545 {
546 struct amdgpu_device *adev;
547 struct ttm_mem_reg *old_mem = &bo->mem;
548 struct ttm_mem_reg tmp_mem;
549 struct ttm_placement placement;
550 struct ttm_place placements;
551 int r;
552
553 adev = amdgpu_ttm_adev(bo->bdev);
554
555 /* make space in GTT for old_mem buffer */
556 tmp_mem = *new_mem;
557 tmp_mem.mm_node = NULL;
558 placement.num_placement = 1;
559 placement.placement = &placements;
560 placement.num_busy_placement = 1;
561 placement.busy_placement = &placements;
562 placements.fpfn = 0;
563 placements.lpfn = 0;
564 placements.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_TT;
565 r = ttm_bo_mem_space(bo, &placement, &tmp_mem, ctx);
566 if (unlikely(r)) {
567 pr_err("Failed to find GTT space for blit to VRAM\n");
568 return r;
569 }
570
571 /* move/bind old memory to GTT space */
572 r = ttm_bo_move_ttm(bo, ctx, &tmp_mem);
573 if (unlikely(r)) {
574 goto out_cleanup;
575 }
576
577 /* copy to VRAM */
578 r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu, new_mem, old_mem);
579 if (unlikely(r)) {
580 goto out_cleanup;
581 }
582 out_cleanup:
583 ttm_bo_mem_put(bo, &tmp_mem);
584 return r;
585 }
586
587 /**
588 * amdgpu_mem_visible - Check that memory can be accessed by ttm_bo_move_memcpy
589 *
590 * Called by amdgpu_bo_move()
591 */
592 static bool amdgpu_mem_visible(struct amdgpu_device *adev,
593 struct ttm_mem_reg *mem)
594 {
595 struct drm_mm_node *nodes = mem->mm_node;
596
597 if (mem->mem_type == TTM_PL_SYSTEM ||
598 mem->mem_type == TTM_PL_TT)
599 return true;
600 if (mem->mem_type != TTM_PL_VRAM)
601 return false;
602
603 /* ttm_mem_reg_ioremap only supports contiguous memory */
604 if (nodes->size != mem->num_pages)
605 return false;
606
607 return ((nodes->start + nodes->size) << PAGE_SHIFT)
608 <= adev->gmc.visible_vram_size;
609 }
610
611 /**
612 * amdgpu_bo_move - Move a buffer object to a new memory location
613 *
614 * Called by ttm_bo_handle_move_mem()
615 */
616 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict,
617 struct ttm_operation_ctx *ctx,
618 struct ttm_mem_reg *new_mem)
619 {
620 struct amdgpu_device *adev;
621 struct amdgpu_bo *abo;
622 struct ttm_mem_reg *old_mem = &bo->mem;
623 int r;
624
625 /* Can't move a pinned BO */
626 abo = ttm_to_amdgpu_bo(bo);
627 if (WARN_ON_ONCE(abo->pin_count > 0))
628 return -EINVAL;
629
630 adev = amdgpu_ttm_adev(bo->bdev);
631
632 if (old_mem->mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) {
633 amdgpu_move_null(bo, new_mem);
634 return 0;
635 }
636 if ((old_mem->mem_type == TTM_PL_TT &&
637 new_mem->mem_type == TTM_PL_SYSTEM) ||
638 (old_mem->mem_type == TTM_PL_SYSTEM &&
639 new_mem->mem_type == TTM_PL_TT)) {
640 /* bind is enough */
641 amdgpu_move_null(bo, new_mem);
642 return 0;
643 }
644 if (old_mem->mem_type == AMDGPU_PL_GDS ||
645 old_mem->mem_type == AMDGPU_PL_GWS ||
646 old_mem->mem_type == AMDGPU_PL_OA ||
647 new_mem->mem_type == AMDGPU_PL_GDS ||
648 new_mem->mem_type == AMDGPU_PL_GWS ||
649 new_mem->mem_type == AMDGPU_PL_OA) {
650 /* Nothing to save here */
651 amdgpu_move_null(bo, new_mem);
652 return 0;
653 }
654
655 if (!adev->mman.buffer_funcs_enabled) {
656 r = -ENODEV;
657 goto memcpy;
658 }
659
660 if (old_mem->mem_type == TTM_PL_VRAM &&
661 new_mem->mem_type == TTM_PL_SYSTEM) {
662 r = amdgpu_move_vram_ram(bo, evict, ctx, new_mem);
663 } else if (old_mem->mem_type == TTM_PL_SYSTEM &&
664 new_mem->mem_type == TTM_PL_VRAM) {
665 r = amdgpu_move_ram_vram(bo, evict, ctx, new_mem);
666 } else {
667 r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu,
668 new_mem, old_mem);
669 }
670
671 if (r) {
672 memcpy:
673 /* Check that all memory is CPU accessible */
674 if (!amdgpu_mem_visible(adev, old_mem) ||
675 !amdgpu_mem_visible(adev, new_mem)) {
676 pr_err("Move buffer fallback to memcpy unavailable\n");
677 return r;
678 }
679
680 r = ttm_bo_move_memcpy(bo, ctx, new_mem);
681 if (r)
682 return r;
683 }
684
685 if (bo->type == ttm_bo_type_device &&
686 new_mem->mem_type == TTM_PL_VRAM &&
687 old_mem->mem_type != TTM_PL_VRAM) {
688 /* amdgpu_bo_fault_reserve_notify will re-set this if the CPU
689 * accesses the BO after it's moved.
690 */
691 abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
692 }
693
694 /* update statistics */
695 atomic64_add((u64)bo->num_pages << PAGE_SHIFT, &adev->num_bytes_moved);
696 return 0;
697 }
698
699 /**
700 * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault
701 *
702 * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault()
703 */
704 static int amdgpu_ttm_io_mem_reserve(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
705 {
706 struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
707 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
708 struct drm_mm_node *mm_node = mem->mm_node;
709
710 mem->bus.addr = NULL;
711 mem->bus.offset = 0;
712 mem->bus.size = mem->num_pages << PAGE_SHIFT;
713 mem->bus.base = 0;
714 mem->bus.is_iomem = false;
715 if (!(man->flags & TTM_MEMTYPE_FLAG_MAPPABLE))
716 return -EINVAL;
717 switch (mem->mem_type) {
718 case TTM_PL_SYSTEM:
719 /* system memory */
720 return 0;
721 case TTM_PL_TT:
722 break;
723 case TTM_PL_VRAM:
724 mem->bus.offset = mem->start << PAGE_SHIFT;
725 /* check if it's visible */
726 if ((mem->bus.offset + mem->bus.size) > adev->gmc.visible_vram_size)
727 return -EINVAL;
728 /* Only physically contiguous buffers apply. In a contiguous
729 * buffer, size of the first mm_node would match the number of
730 * pages in ttm_mem_reg.
731 */
732 if (adev->mman.aper_base_kaddr &&
733 (mm_node->size == mem->num_pages))
734 mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr +
735 mem->bus.offset;
736
737 mem->bus.base = adev->gmc.aper_base;
738 mem->bus.is_iomem = true;
739 break;
740 default:
741 return -EINVAL;
742 }
743 return 0;
744 }
745
746 static void amdgpu_ttm_io_mem_free(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
747 {
748 }
749
750 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo,
751 unsigned long page_offset)
752 {
753 struct drm_mm_node *mm;
754 unsigned long offset = (page_offset << PAGE_SHIFT);
755
756 mm = amdgpu_find_mm_node(&bo->mem, &offset);
757 return (bo->mem.bus.base >> PAGE_SHIFT) + mm->start +
758 (offset >> PAGE_SHIFT);
759 }
760
761 /*
762 * TTM backend functions.
763 */
764 struct amdgpu_ttm_tt {
765 struct ttm_dma_tt ttm;
766 u64 offset;
767 uint64_t userptr;
768 struct task_struct *usertask;
769 uint32_t userflags;
770 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR)
771 struct hmm_range *range;
772 #endif
773 };
774
775 /**
776 * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user
777 * memory and start HMM tracking CPU page table update
778 *
779 * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only
780 * once afterwards to stop HMM tracking
781 */
782 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR)
783
784 #define MAX_RETRY_HMM_RANGE_FAULT 16
785
786 int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct page **pages)
787 {
788 struct hmm_mirror *mirror = bo->mn ? &bo->mn->mirror : NULL;
789 struct ttm_tt *ttm = bo->tbo.ttm;
790 struct amdgpu_ttm_tt *gtt = (void *)ttm;
791 struct mm_struct *mm = gtt->usertask->mm;
792 unsigned long start = gtt->userptr;
793 struct vm_area_struct *vma;
794 struct hmm_range *range;
795 unsigned long i;
796 uint64_t *pfns;
797 int retry = 0;
798 int r = 0;
799
800 if (!mm) /* Happens during process shutdown */
801 return -ESRCH;
802
803 if (unlikely(!mirror)) {
804 DRM_DEBUG_DRIVER("Failed to get hmm_mirror\n");
805 r = -EFAULT;
806 goto out;
807 }
808
809 vma = find_vma(mm, start);
810 if (unlikely(!vma || start < vma->vm_start)) {
811 r = -EFAULT;
812 goto out;
813 }
814 if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) &&
815 vma->vm_file)) {
816 r = -EPERM;
817 goto out;
818 }
819
820 range = kzalloc(sizeof(*range), GFP_KERNEL);
821 if (unlikely(!range)) {
822 r = -ENOMEM;
823 goto out;
824 }
825
826 pfns = kvmalloc_array(ttm->num_pages, sizeof(*pfns), GFP_KERNEL);
827 if (unlikely(!pfns)) {
828 r = -ENOMEM;
829 goto out_free_ranges;
830 }
831
832 amdgpu_hmm_init_range(range);
833 range->default_flags = range->flags[HMM_PFN_VALID];
834 range->default_flags |= amdgpu_ttm_tt_is_readonly(ttm) ?
835 0 : range->flags[HMM_PFN_WRITE];
836 range->pfn_flags_mask = 0;
837 range->pfns = pfns;
838 hmm_range_register(range, mirror, start,
839 start + ttm->num_pages * PAGE_SIZE, PAGE_SHIFT);
840
841 retry:
842 /*
843 * Just wait for range to be valid, safe to ignore return value as we
844 * will use the return value of hmm_range_fault() below under the
845 * mmap_sem to ascertain the validity of the range.
846 */
847 hmm_range_wait_until_valid(range, HMM_RANGE_DEFAULT_TIMEOUT);
848
849 down_read(&mm->mmap_sem);
850
851 r = hmm_range_fault(range, true);
852 if (unlikely(r < 0)) {
853 if (likely(r == -EAGAIN)) {
854 /*
855 * return -EAGAIN, mmap_sem is dropped
856 */
857 if (retry++ < MAX_RETRY_HMM_RANGE_FAULT)
858 goto retry;
859 else
860 pr_err("Retry hmm fault too many times\n");
861 }
862
863 goto out_up_read;
864 }
865
866 up_read(&mm->mmap_sem);
867
868 for (i = 0; i < ttm->num_pages; i++) {
869 pages[i] = hmm_device_entry_to_page(range, pfns[i]);
870 if (unlikely(!pages[i])) {
871 pr_err("Page fault failed for pfn[%lu] = 0x%llx\n",
872 i, pfns[i]);
873 r = -ENOMEM;
874
875 goto out_free_pfns;
876 }
877 }
878
879 gtt->range = range;
880
881 return 0;
882
883 out_up_read:
884 if (likely(r != -EAGAIN))
885 up_read(&mm->mmap_sem);
886 out_free_pfns:
887 hmm_range_unregister(range);
888 kvfree(pfns);
889 out_free_ranges:
890 kfree(range);
891 out:
892 return r;
893 }
894
895 /**
896 * amdgpu_ttm_tt_userptr_range_done - stop HMM track the CPU page table change
897 * Check if the pages backing this ttm range have been invalidated
898 *
899 * Returns: true if pages are still valid
900 */
901 bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm)
902 {
903 struct amdgpu_ttm_tt *gtt = (void *)ttm;
904 bool r = false;
905
906 if (!gtt || !gtt->userptr)
907 return false;
908
909 DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%lx\n",
910 gtt->userptr, ttm->num_pages);
911
912 WARN_ONCE(!gtt->range || !gtt->range->pfns,
913 "No user pages to check\n");
914
915 if (gtt->range) {
916 r = hmm_range_valid(gtt->range);
917 hmm_range_unregister(gtt->range);
918
919 kvfree(gtt->range->pfns);
920 kfree(gtt->range);
921 gtt->range = NULL;
922 }
923
924 return r;
925 }
926 #endif
927
928 /**
929 * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary.
930 *
931 * Called by amdgpu_cs_list_validate(). This creates the page list
932 * that backs user memory and will ultimately be mapped into the device
933 * address space.
934 */
935 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages)
936 {
937 unsigned long i;
938
939 for (i = 0; i < ttm->num_pages; ++i)
940 ttm->pages[i] = pages ? pages[i] : NULL;
941 }
942
943 /**
944 * amdgpu_ttm_tt_pin_userptr - prepare the sg table with the user pages
945 *
946 * Called by amdgpu_ttm_backend_bind()
947 **/
948 static int amdgpu_ttm_tt_pin_userptr(struct ttm_tt *ttm)
949 {
950 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
951 struct amdgpu_ttm_tt *gtt = (void *)ttm;
952 unsigned nents;
953 int r;
954
955 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
956 enum dma_data_direction direction = write ?
957 DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
958
959 /* Allocate an SG array and squash pages into it */
960 r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0,
961 ttm->num_pages << PAGE_SHIFT,
962 GFP_KERNEL);
963 if (r)
964 goto release_sg;
965
966 /* Map SG to device */
967 r = -ENOMEM;
968 nents = dma_map_sg(adev->dev, ttm->sg->sgl, ttm->sg->nents, direction);
969 if (nents != ttm->sg->nents)
970 goto release_sg;
971
972 /* convert SG to linear array of pages and dma addresses */
973 drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages,
974 gtt->ttm.dma_address, ttm->num_pages);
975
976 return 0;
977
978 release_sg:
979 kfree(ttm->sg);
980 return r;
981 }
982
983 /**
984 * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages
985 */
986 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_tt *ttm)
987 {
988 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
989 struct amdgpu_ttm_tt *gtt = (void *)ttm;
990
991 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
992 enum dma_data_direction direction = write ?
993 DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
994
995 /* double check that we don't free the table twice */
996 if (!ttm->sg->sgl)
997 return;
998
999 /* unmap the pages mapped to the device */
1000 dma_unmap_sg(adev->dev, ttm->sg->sgl, ttm->sg->nents, direction);
1001
1002 sg_free_table(ttm->sg);
1003
1004 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR)
1005 if (gtt->range &&
1006 ttm->pages[0] == hmm_device_entry_to_page(gtt->range,
1007 gtt->range->pfns[0]))
1008 WARN_ONCE(1, "Missing get_user_page_done\n");
1009 #endif
1010 }
1011
1012 int amdgpu_ttm_gart_bind(struct amdgpu_device *adev,
1013 struct ttm_buffer_object *tbo,
1014 uint64_t flags)
1015 {
1016 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo);
1017 struct ttm_tt *ttm = tbo->ttm;
1018 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1019 int r;
1020
1021 if (abo->flags & AMDGPU_GEM_CREATE_MQD_GFX9) {
1022 uint64_t page_idx = 1;
1023
1024 r = amdgpu_gart_bind(adev, gtt->offset, page_idx,
1025 ttm->pages, gtt->ttm.dma_address, flags);
1026 if (r)
1027 goto gart_bind_fail;
1028
1029 /* Patch mtype of the second part BO */
1030 flags &= ~AMDGPU_PTE_MTYPE_VG10_MASK;
1031 flags |= AMDGPU_PTE_MTYPE_VG10(AMDGPU_MTYPE_NC);
1032
1033 r = amdgpu_gart_bind(adev,
1034 gtt->offset + (page_idx << PAGE_SHIFT),
1035 ttm->num_pages - page_idx,
1036 &ttm->pages[page_idx],
1037 &(gtt->ttm.dma_address[page_idx]), flags);
1038 } else {
1039 r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
1040 ttm->pages, gtt->ttm.dma_address, flags);
1041 }
1042
1043 gart_bind_fail:
1044 if (r)
1045 DRM_ERROR("failed to bind %lu pages at 0x%08llX\n",
1046 ttm->num_pages, gtt->offset);
1047
1048 return r;
1049 }
1050
1051 /**
1052 * amdgpu_ttm_backend_bind - Bind GTT memory
1053 *
1054 * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem().
1055 * This handles binding GTT memory to the device address space.
1056 */
1057 static int amdgpu_ttm_backend_bind(struct ttm_tt *ttm,
1058 struct ttm_mem_reg *bo_mem)
1059 {
1060 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1061 struct amdgpu_ttm_tt *gtt = (void*)ttm;
1062 uint64_t flags;
1063 int r = 0;
1064
1065 if (gtt->userptr) {
1066 r = amdgpu_ttm_tt_pin_userptr(ttm);
1067 if (r) {
1068 DRM_ERROR("failed to pin userptr\n");
1069 return r;
1070 }
1071 }
1072 if (!ttm->num_pages) {
1073 WARN(1, "nothing to bind %lu pages for mreg %p back %p!\n",
1074 ttm->num_pages, bo_mem, ttm);
1075 }
1076
1077 if (bo_mem->mem_type == AMDGPU_PL_GDS ||
1078 bo_mem->mem_type == AMDGPU_PL_GWS ||
1079 bo_mem->mem_type == AMDGPU_PL_OA)
1080 return -EINVAL;
1081
1082 if (!amdgpu_gtt_mgr_has_gart_addr(bo_mem)) {
1083 gtt->offset = AMDGPU_BO_INVALID_OFFSET;
1084 return 0;
1085 }
1086
1087 /* compute PTE flags relevant to this BO memory */
1088 flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem);
1089
1090 /* bind pages into GART page tables */
1091 gtt->offset = (u64)bo_mem->start << PAGE_SHIFT;
1092 r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
1093 ttm->pages, gtt->ttm.dma_address, flags);
1094
1095 if (r)
1096 DRM_ERROR("failed to bind %lu pages at 0x%08llX\n",
1097 ttm->num_pages, gtt->offset);
1098 return r;
1099 }
1100
1101 /**
1102 * amdgpu_ttm_alloc_gart - Allocate GART memory for buffer object
1103 */
1104 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo)
1105 {
1106 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
1107 struct ttm_operation_ctx ctx = { false, false };
1108 struct amdgpu_ttm_tt *gtt = (void*)bo->ttm;
1109 struct ttm_mem_reg tmp;
1110 struct ttm_placement placement;
1111 struct ttm_place placements;
1112 uint64_t addr, flags;
1113 int r;
1114
1115 if (bo->mem.start != AMDGPU_BO_INVALID_OFFSET)
1116 return 0;
1117
1118 addr = amdgpu_gmc_agp_addr(bo);
1119 if (addr != AMDGPU_BO_INVALID_OFFSET) {
1120 bo->mem.start = addr >> PAGE_SHIFT;
1121 } else {
1122
1123 /* allocate GART space */
1124 tmp = bo->mem;
1125 tmp.mm_node = NULL;
1126 placement.num_placement = 1;
1127 placement.placement = &placements;
1128 placement.num_busy_placement = 1;
1129 placement.busy_placement = &placements;
1130 placements.fpfn = 0;
1131 placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT;
1132 placements.flags = (bo->mem.placement & ~TTM_PL_MASK_MEM) |
1133 TTM_PL_FLAG_TT;
1134
1135 r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx);
1136 if (unlikely(r))
1137 return r;
1138
1139 /* compute PTE flags for this buffer object */
1140 flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, &tmp);
1141
1142 /* Bind pages */
1143 gtt->offset = (u64)tmp.start << PAGE_SHIFT;
1144 r = amdgpu_ttm_gart_bind(adev, bo, flags);
1145 if (unlikely(r)) {
1146 ttm_bo_mem_put(bo, &tmp);
1147 return r;
1148 }
1149
1150 ttm_bo_mem_put(bo, &bo->mem);
1151 bo->mem = tmp;
1152 }
1153
1154 bo->offset = (bo->mem.start << PAGE_SHIFT) +
1155 bo->bdev->man[bo->mem.mem_type].gpu_offset;
1156
1157 return 0;
1158 }
1159
1160 /**
1161 * amdgpu_ttm_recover_gart - Rebind GTT pages
1162 *
1163 * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to
1164 * rebind GTT pages during a GPU reset.
1165 */
1166 int amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo)
1167 {
1168 struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev);
1169 uint64_t flags;
1170 int r;
1171
1172 if (!tbo->ttm)
1173 return 0;
1174
1175 flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, &tbo->mem);
1176 r = amdgpu_ttm_gart_bind(adev, tbo, flags);
1177
1178 return r;
1179 }
1180
1181 /**
1182 * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages
1183 *
1184 * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and
1185 * ttm_tt_destroy().
1186 */
1187 static int amdgpu_ttm_backend_unbind(struct ttm_tt *ttm)
1188 {
1189 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1190 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1191 int r;
1192
1193 /* if the pages have userptr pinning then clear that first */
1194 if (gtt->userptr)
1195 amdgpu_ttm_tt_unpin_userptr(ttm);
1196
1197 if (gtt->offset == AMDGPU_BO_INVALID_OFFSET)
1198 return 0;
1199
1200 /* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */
1201 r = amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages);
1202 if (r)
1203 DRM_ERROR("failed to unbind %lu pages at 0x%08llX\n",
1204 gtt->ttm.ttm.num_pages, gtt->offset);
1205 return r;
1206 }
1207
1208 static void amdgpu_ttm_backend_destroy(struct ttm_tt *ttm)
1209 {
1210 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1211
1212 if (gtt->usertask)
1213 put_task_struct(gtt->usertask);
1214
1215 ttm_dma_tt_fini(&gtt->ttm);
1216 kfree(gtt);
1217 }
1218
1219 static struct ttm_backend_func amdgpu_backend_func = {
1220 .bind = &amdgpu_ttm_backend_bind,
1221 .unbind = &amdgpu_ttm_backend_unbind,
1222 .destroy = &amdgpu_ttm_backend_destroy,
1223 };
1224
1225 /**
1226 * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO
1227 *
1228 * @bo: The buffer object to create a GTT ttm_tt object around
1229 *
1230 * Called by ttm_tt_create().
1231 */
1232 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo,
1233 uint32_t page_flags)
1234 {
1235 struct amdgpu_device *adev;
1236 struct amdgpu_ttm_tt *gtt;
1237
1238 adev = amdgpu_ttm_adev(bo->bdev);
1239
1240 gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL);
1241 if (gtt == NULL) {
1242 return NULL;
1243 }
1244 gtt->ttm.ttm.func = &amdgpu_backend_func;
1245
1246 /* allocate space for the uninitialized page entries */
1247 if (ttm_sg_tt_init(&gtt->ttm, bo, page_flags)) {
1248 kfree(gtt);
1249 return NULL;
1250 }
1251 return &gtt->ttm.ttm;
1252 }
1253
1254 /**
1255 * amdgpu_ttm_tt_populate - Map GTT pages visible to the device
1256 *
1257 * Map the pages of a ttm_tt object to an address space visible
1258 * to the underlying device.
1259 */
1260 static int amdgpu_ttm_tt_populate(struct ttm_tt *ttm,
1261 struct ttm_operation_ctx *ctx)
1262 {
1263 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1264 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1265 bool slave = !!(ttm->page_flags & TTM_PAGE_FLAG_SG);
1266
1267 /* user pages are bound by amdgpu_ttm_tt_pin_userptr() */
1268 if (gtt && gtt->userptr) {
1269 ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL);
1270 if (!ttm->sg)
1271 return -ENOMEM;
1272
1273 ttm->page_flags |= TTM_PAGE_FLAG_SG;
1274 ttm->state = tt_unbound;
1275 return 0;
1276 }
1277
1278 if (slave && ttm->sg) {
1279 drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages,
1280 gtt->ttm.dma_address,
1281 ttm->num_pages);
1282 ttm->state = tt_unbound;
1283 return 0;
1284 }
1285
1286 #ifdef CONFIG_SWIOTLB
1287 if (adev->need_swiotlb && swiotlb_nr_tbl()) {
1288 return ttm_dma_populate(&gtt->ttm, adev->dev, ctx);
1289 }
1290 #endif
1291
1292 /* fall back to generic helper to populate the page array
1293 * and map them to the device */
1294 return ttm_populate_and_map_pages(adev->dev, &gtt->ttm, ctx);
1295 }
1296
1297 /**
1298 * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays
1299 *
1300 * Unmaps pages of a ttm_tt object from the device address space and
1301 * unpopulates the page array backing it.
1302 */
1303 static void amdgpu_ttm_tt_unpopulate(struct ttm_tt *ttm)
1304 {
1305 struct amdgpu_device *adev;
1306 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1307 bool slave = !!(ttm->page_flags & TTM_PAGE_FLAG_SG);
1308
1309 if (gtt && gtt->userptr) {
1310 amdgpu_ttm_tt_set_user_pages(ttm, NULL);
1311 kfree(ttm->sg);
1312 ttm->page_flags &= ~TTM_PAGE_FLAG_SG;
1313 return;
1314 }
1315
1316 if (slave)
1317 return;
1318
1319 adev = amdgpu_ttm_adev(ttm->bdev);
1320
1321 #ifdef CONFIG_SWIOTLB
1322 if (adev->need_swiotlb && swiotlb_nr_tbl()) {
1323 ttm_dma_unpopulate(&gtt->ttm, adev->dev);
1324 return;
1325 }
1326 #endif
1327
1328 /* fall back to generic helper to unmap and unpopulate array */
1329 ttm_unmap_and_unpopulate_pages(adev->dev, &gtt->ttm);
1330 }
1331
1332 /**
1333 * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current
1334 * task
1335 *
1336 * @ttm: The ttm_tt object to bind this userptr object to
1337 * @addr: The address in the current tasks VM space to use
1338 * @flags: Requirements of userptr object.
1339 *
1340 * Called by amdgpu_gem_userptr_ioctl() to bind userptr pages
1341 * to current task
1342 */
1343 int amdgpu_ttm_tt_set_userptr(struct ttm_tt *ttm, uint64_t addr,
1344 uint32_t flags)
1345 {
1346 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1347
1348 if (gtt == NULL)
1349 return -EINVAL;
1350
1351 gtt->userptr = addr;
1352 gtt->userflags = flags;
1353
1354 if (gtt->usertask)
1355 put_task_struct(gtt->usertask);
1356 gtt->usertask = current->group_leader;
1357 get_task_struct(gtt->usertask);
1358
1359 return 0;
1360 }
1361
1362 /**
1363 * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object
1364 */
1365 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm)
1366 {
1367 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1368
1369 if (gtt == NULL)
1370 return NULL;
1371
1372 if (gtt->usertask == NULL)
1373 return NULL;
1374
1375 return gtt->usertask->mm;
1376 }
1377
1378 /**
1379 * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an
1380 * address range for the current task.
1381 *
1382 */
1383 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start,
1384 unsigned long end)
1385 {
1386 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1387 unsigned long size;
1388
1389 if (gtt == NULL || !gtt->userptr)
1390 return false;
1391
1392 /* Return false if no part of the ttm_tt object lies within
1393 * the range
1394 */
1395 size = (unsigned long)gtt->ttm.ttm.num_pages * PAGE_SIZE;
1396 if (gtt->userptr > end || gtt->userptr + size <= start)
1397 return false;
1398
1399 return true;
1400 }
1401
1402 /**
1403 * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr?
1404 */
1405 bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm)
1406 {
1407 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1408
1409 if (gtt == NULL || !gtt->userptr)
1410 return false;
1411
1412 return true;
1413 }
1414
1415 /**
1416 * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only?
1417 */
1418 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm)
1419 {
1420 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1421
1422 if (gtt == NULL)
1423 return false;
1424
1425 return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1426 }
1427
1428 /**
1429 * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object
1430 *
1431 * @ttm: The ttm_tt object to compute the flags for
1432 * @mem: The memory registry backing this ttm_tt object
1433 *
1434 * Figure out the flags to use for a VM PDE (Page Directory Entry).
1435 */
1436 uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_mem_reg *mem)
1437 {
1438 uint64_t flags = 0;
1439
1440 if (mem && mem->mem_type != TTM_PL_SYSTEM)
1441 flags |= AMDGPU_PTE_VALID;
1442
1443 if (mem && mem->mem_type == TTM_PL_TT) {
1444 flags |= AMDGPU_PTE_SYSTEM;
1445
1446 if (ttm->caching_state == tt_cached)
1447 flags |= AMDGPU_PTE_SNOOPED;
1448 }
1449
1450 return flags;
1451 }
1452
1453 /**
1454 * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object
1455 *
1456 * @ttm: The ttm_tt object to compute the flags for
1457 * @mem: The memory registry backing this ttm_tt object
1458
1459 * Figure out the flags to use for a VM PTE (Page Table Entry).
1460 */
1461 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm,
1462 struct ttm_mem_reg *mem)
1463 {
1464 uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem);
1465
1466 flags |= adev->gart.gart_pte_flags;
1467 flags |= AMDGPU_PTE_READABLE;
1468
1469 if (!amdgpu_ttm_tt_is_readonly(ttm))
1470 flags |= AMDGPU_PTE_WRITEABLE;
1471
1472 return flags;
1473 }
1474
1475 /**
1476 * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer
1477 * object.
1478 *
1479 * Return true if eviction is sensible. Called by ttm_mem_evict_first() on
1480 * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until
1481 * it can find space for a new object and by ttm_bo_force_list_clean() which is
1482 * used to clean out a memory space.
1483 */
1484 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
1485 const struct ttm_place *place)
1486 {
1487 unsigned long num_pages = bo->mem.num_pages;
1488 struct drm_mm_node *node = bo->mem.mm_node;
1489 struct dma_resv_list *flist;
1490 struct dma_fence *f;
1491 int i;
1492
1493 /* Don't evict VM page tables while they are busy, otherwise we can't
1494 * cleanly handle page faults.
1495 */
1496 if (bo->type == ttm_bo_type_kernel &&
1497 !dma_resv_test_signaled_rcu(bo->base.resv, true))
1498 return false;
1499
1500 /* If bo is a KFD BO, check if the bo belongs to the current process.
1501 * If true, then return false as any KFD process needs all its BOs to
1502 * be resident to run successfully
1503 */
1504 flist = dma_resv_get_list(bo->base.resv);
1505 if (flist) {
1506 for (i = 0; i < flist->shared_count; ++i) {
1507 f = rcu_dereference_protected(flist->shared[i],
1508 dma_resv_held(bo->base.resv));
1509 if (amdkfd_fence_check_mm(f, current->mm))
1510 return false;
1511 }
1512 }
1513
1514 switch (bo->mem.mem_type) {
1515 case TTM_PL_TT:
1516 return true;
1517
1518 case TTM_PL_VRAM:
1519 /* Check each drm MM node individually */
1520 while (num_pages) {
1521 if (place->fpfn < (node->start + node->size) &&
1522 !(place->lpfn && place->lpfn <= node->start))
1523 return true;
1524
1525 num_pages -= node->size;
1526 ++node;
1527 }
1528 return false;
1529
1530 default:
1531 break;
1532 }
1533
1534 return ttm_bo_eviction_valuable(bo, place);
1535 }
1536
1537 /**
1538 * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object.
1539 *
1540 * @bo: The buffer object to read/write
1541 * @offset: Offset into buffer object
1542 * @buf: Secondary buffer to write/read from
1543 * @len: Length in bytes of access
1544 * @write: true if writing
1545 *
1546 * This is used to access VRAM that backs a buffer object via MMIO
1547 * access for debugging purposes.
1548 */
1549 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo,
1550 unsigned long offset,
1551 void *buf, int len, int write)
1552 {
1553 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1554 struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1555 struct drm_mm_node *nodes;
1556 uint32_t value = 0;
1557 int ret = 0;
1558 uint64_t pos;
1559 unsigned long flags;
1560
1561 if (bo->mem.mem_type != TTM_PL_VRAM)
1562 return -EIO;
1563
1564 nodes = amdgpu_find_mm_node(&abo->tbo.mem, &offset);
1565 pos = (nodes->start << PAGE_SHIFT) + offset;
1566
1567 while (len && pos < adev->gmc.mc_vram_size) {
1568 uint64_t aligned_pos = pos & ~(uint64_t)3;
1569 uint32_t bytes = 4 - (pos & 3);
1570 uint32_t shift = (pos & 3) * 8;
1571 uint32_t mask = 0xffffffff << shift;
1572
1573 if (len < bytes) {
1574 mask &= 0xffffffff >> (bytes - len) * 8;
1575 bytes = len;
1576 }
1577
1578 spin_lock_irqsave(&adev->mmio_idx_lock, flags);
1579 WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)aligned_pos) | 0x80000000);
1580 WREG32_NO_KIQ(mmMM_INDEX_HI, aligned_pos >> 31);
1581 if (!write || mask != 0xffffffff)
1582 value = RREG32_NO_KIQ(mmMM_DATA);
1583 if (write) {
1584 value &= ~mask;
1585 value |= (*(uint32_t *)buf << shift) & mask;
1586 WREG32_NO_KIQ(mmMM_DATA, value);
1587 }
1588 spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
1589 if (!write) {
1590 value = (value & mask) >> shift;
1591 memcpy(buf, &value, bytes);
1592 }
1593
1594 ret += bytes;
1595 buf = (uint8_t *)buf + bytes;
1596 pos += bytes;
1597 len -= bytes;
1598 if (pos >= (nodes->start + nodes->size) << PAGE_SHIFT) {
1599 ++nodes;
1600 pos = (nodes->start << PAGE_SHIFT);
1601 }
1602 }
1603
1604 return ret;
1605 }
1606
1607 static struct ttm_bo_driver amdgpu_bo_driver = {
1608 .ttm_tt_create = &amdgpu_ttm_tt_create,
1609 .ttm_tt_populate = &amdgpu_ttm_tt_populate,
1610 .ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate,
1611 .invalidate_caches = &amdgpu_invalidate_caches,
1612 .init_mem_type = &amdgpu_init_mem_type,
1613 .eviction_valuable = amdgpu_ttm_bo_eviction_valuable,
1614 .evict_flags = &amdgpu_evict_flags,
1615 .move = &amdgpu_bo_move,
1616 .verify_access = &amdgpu_verify_access,
1617 .move_notify = &amdgpu_bo_move_notify,
1618 .release_notify = &amdgpu_bo_release_notify,
1619 .fault_reserve_notify = &amdgpu_bo_fault_reserve_notify,
1620 .io_mem_reserve = &amdgpu_ttm_io_mem_reserve,
1621 .io_mem_free = &amdgpu_ttm_io_mem_free,
1622 .io_mem_pfn = amdgpu_ttm_io_mem_pfn,
1623 .access_memory = &amdgpu_ttm_access_memory,
1624 .del_from_lru_notify = &amdgpu_vm_del_from_lru_notify
1625 };
1626
1627 /*
1628 * Firmware Reservation functions
1629 */
1630 /**
1631 * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram
1632 *
1633 * @adev: amdgpu_device pointer
1634 *
1635 * free fw reserved vram if it has been reserved.
1636 */
1637 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev)
1638 {
1639 amdgpu_bo_free_kernel(&adev->fw_vram_usage.reserved_bo,
1640 NULL, &adev->fw_vram_usage.va);
1641 }
1642
1643 /**
1644 * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw
1645 *
1646 * @adev: amdgpu_device pointer
1647 *
1648 * create bo vram reservation from fw.
1649 */
1650 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev)
1651 {
1652 struct ttm_operation_ctx ctx = { false, false };
1653 struct amdgpu_bo_param bp;
1654 int r = 0;
1655 int i;
1656 u64 vram_size = adev->gmc.visible_vram_size;
1657 u64 offset = adev->fw_vram_usage.start_offset;
1658 u64 size = adev->fw_vram_usage.size;
1659 struct amdgpu_bo *bo;
1660
1661 memset(&bp, 0, sizeof(bp));
1662 bp.size = adev->fw_vram_usage.size;
1663 bp.byte_align = PAGE_SIZE;
1664 bp.domain = AMDGPU_GEM_DOMAIN_VRAM;
1665 bp.flags = AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED |
1666 AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS;
1667 bp.type = ttm_bo_type_kernel;
1668 bp.resv = NULL;
1669 adev->fw_vram_usage.va = NULL;
1670 adev->fw_vram_usage.reserved_bo = NULL;
1671
1672 if (adev->fw_vram_usage.size > 0 &&
1673 adev->fw_vram_usage.size <= vram_size) {
1674
1675 r = amdgpu_bo_create(adev, &bp,
1676 &adev->fw_vram_usage.reserved_bo);
1677 if (r)
1678 goto error_create;
1679
1680 r = amdgpu_bo_reserve(adev->fw_vram_usage.reserved_bo, false);
1681 if (r)
1682 goto error_reserve;
1683
1684 /* remove the original mem node and create a new one at the
1685 * request position
1686 */
1687 bo = adev->fw_vram_usage.reserved_bo;
1688 offset = ALIGN(offset, PAGE_SIZE);
1689 for (i = 0; i < bo->placement.num_placement; ++i) {
1690 bo->placements[i].fpfn = offset >> PAGE_SHIFT;
1691 bo->placements[i].lpfn = (offset + size) >> PAGE_SHIFT;
1692 }
1693
1694 ttm_bo_mem_put(&bo->tbo, &bo->tbo.mem);
1695 r = ttm_bo_mem_space(&bo->tbo, &bo->placement,
1696 &bo->tbo.mem, &ctx);
1697 if (r)
1698 goto error_pin;
1699
1700 r = amdgpu_bo_pin_restricted(adev->fw_vram_usage.reserved_bo,
1701 AMDGPU_GEM_DOMAIN_VRAM,
1702 adev->fw_vram_usage.start_offset,
1703 (adev->fw_vram_usage.start_offset +
1704 adev->fw_vram_usage.size));
1705 if (r)
1706 goto error_pin;
1707 r = amdgpu_bo_kmap(adev->fw_vram_usage.reserved_bo,
1708 &adev->fw_vram_usage.va);
1709 if (r)
1710 goto error_kmap;
1711
1712 amdgpu_bo_unreserve(adev->fw_vram_usage.reserved_bo);
1713 }
1714 return r;
1715
1716 error_kmap:
1717 amdgpu_bo_unpin(adev->fw_vram_usage.reserved_bo);
1718 error_pin:
1719 amdgpu_bo_unreserve(adev->fw_vram_usage.reserved_bo);
1720 error_reserve:
1721 amdgpu_bo_unref(&adev->fw_vram_usage.reserved_bo);
1722 error_create:
1723 adev->fw_vram_usage.va = NULL;
1724 adev->fw_vram_usage.reserved_bo = NULL;
1725 return r;
1726 }
1727 /**
1728 * amdgpu_ttm_init - Init the memory management (ttm) as well as various
1729 * gtt/vram related fields.
1730 *
1731 * This initializes all of the memory space pools that the TTM layer
1732 * will need such as the GTT space (system memory mapped to the device),
1733 * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which
1734 * can be mapped per VMID.
1735 */
1736 int amdgpu_ttm_init(struct amdgpu_device *adev)
1737 {
1738 uint64_t gtt_size;
1739 int r;
1740 u64 vis_vram_limit;
1741 void *stolen_vga_buf;
1742
1743 mutex_init(&adev->mman.gtt_window_lock);
1744
1745 /* No others user of address space so set it to 0 */
1746 r = ttm_bo_device_init(&adev->mman.bdev,
1747 &amdgpu_bo_driver,
1748 adev->ddev->anon_inode->i_mapping,
1749 dma_addressing_limited(adev->dev));
1750 if (r) {
1751 DRM_ERROR("failed initializing buffer object driver(%d).\n", r);
1752 return r;
1753 }
1754 adev->mman.initialized = true;
1755
1756 /* We opt to avoid OOM on system pages allocations */
1757 adev->mman.bdev.no_retry = true;
1758
1759 /* Initialize VRAM pool with all of VRAM divided into pages */
1760 r = ttm_bo_init_mm(&adev->mman.bdev, TTM_PL_VRAM,
1761 adev->gmc.real_vram_size >> PAGE_SHIFT);
1762 if (r) {
1763 DRM_ERROR("Failed initializing VRAM heap.\n");
1764 return r;
1765 }
1766
1767 /* Reduce size of CPU-visible VRAM if requested */
1768 vis_vram_limit = (u64)amdgpu_vis_vram_limit * 1024 * 1024;
1769 if (amdgpu_vis_vram_limit > 0 &&
1770 vis_vram_limit <= adev->gmc.visible_vram_size)
1771 adev->gmc.visible_vram_size = vis_vram_limit;
1772
1773 /* Change the size here instead of the init above so only lpfn is affected */
1774 amdgpu_ttm_set_buffer_funcs_status(adev, false);
1775 #ifdef CONFIG_64BIT
1776 adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base,
1777 adev->gmc.visible_vram_size);
1778 #endif
1779
1780 /*
1781 *The reserved vram for firmware must be pinned to the specified
1782 *place on the VRAM, so reserve it early.
1783 */
1784 r = amdgpu_ttm_fw_reserve_vram_init(adev);
1785 if (r) {
1786 return r;
1787 }
1788
1789 /* allocate memory as required for VGA
1790 * This is used for VGA emulation and pre-OS scanout buffers to
1791 * avoid display artifacts while transitioning between pre-OS
1792 * and driver. */
1793 r = amdgpu_bo_create_kernel(adev, adev->gmc.stolen_size, PAGE_SIZE,
1794 AMDGPU_GEM_DOMAIN_VRAM,
1795 &adev->stolen_vga_memory,
1796 NULL, &stolen_vga_buf);
1797 if (r)
1798 return r;
1799 DRM_INFO("amdgpu: %uM of VRAM memory ready\n",
1800 (unsigned) (adev->gmc.real_vram_size / (1024 * 1024)));
1801
1802 /* Compute GTT size, either bsaed on 3/4th the size of RAM size
1803 * or whatever the user passed on module init */
1804 if (amdgpu_gtt_size == -1) {
1805 struct sysinfo si;
1806
1807 si_meminfo(&si);
1808 gtt_size = min(max((AMDGPU_DEFAULT_GTT_SIZE_MB << 20),
1809 adev->gmc.mc_vram_size),
1810 ((uint64_t)si.totalram * si.mem_unit * 3/4));
1811 }
1812 else
1813 gtt_size = (uint64_t)amdgpu_gtt_size << 20;
1814
1815 /* Initialize GTT memory pool */
1816 r = ttm_bo_init_mm(&adev->mman.bdev, TTM_PL_TT, gtt_size >> PAGE_SHIFT);
1817 if (r) {
1818 DRM_ERROR("Failed initializing GTT heap.\n");
1819 return r;
1820 }
1821 DRM_INFO("amdgpu: %uM of GTT memory ready.\n",
1822 (unsigned)(gtt_size / (1024 * 1024)));
1823
1824 /* Initialize various on-chip memory pools */
1825 r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_GDS,
1826 adev->gds.gds_size);
1827 if (r) {
1828 DRM_ERROR("Failed initializing GDS heap.\n");
1829 return r;
1830 }
1831
1832 r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_GWS,
1833 adev->gds.gws_size);
1834 if (r) {
1835 DRM_ERROR("Failed initializing gws heap.\n");
1836 return r;
1837 }
1838
1839 r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_OA,
1840 adev->gds.oa_size);
1841 if (r) {
1842 DRM_ERROR("Failed initializing oa heap.\n");
1843 return r;
1844 }
1845
1846 /* Register debugfs entries for amdgpu_ttm */
1847 r = amdgpu_ttm_debugfs_init(adev);
1848 if (r) {
1849 DRM_ERROR("Failed to init debugfs\n");
1850 return r;
1851 }
1852 return 0;
1853 }
1854
1855 /**
1856 * amdgpu_ttm_late_init - Handle any late initialization for amdgpu_ttm
1857 */
1858 void amdgpu_ttm_late_init(struct amdgpu_device *adev)
1859 {
1860 void *stolen_vga_buf;
1861 /* return the VGA stolen memory (if any) back to VRAM */
1862 amdgpu_bo_free_kernel(&adev->stolen_vga_memory, NULL, &stolen_vga_buf);
1863 }
1864
1865 /**
1866 * amdgpu_ttm_fini - De-initialize the TTM memory pools
1867 */
1868 void amdgpu_ttm_fini(struct amdgpu_device *adev)
1869 {
1870 if (!adev->mman.initialized)
1871 return;
1872
1873 amdgpu_ttm_debugfs_fini(adev);
1874 amdgpu_ttm_fw_reserve_vram_fini(adev);
1875 if (adev->mman.aper_base_kaddr)
1876 iounmap(adev->mman.aper_base_kaddr);
1877 adev->mman.aper_base_kaddr = NULL;
1878
1879 ttm_bo_clean_mm(&adev->mman.bdev, TTM_PL_VRAM);
1880 ttm_bo_clean_mm(&adev->mman.bdev, TTM_PL_TT);
1881 ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_GDS);
1882 ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_GWS);
1883 ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_OA);
1884 ttm_bo_device_release(&adev->mman.bdev);
1885 adev->mman.initialized = false;
1886 DRM_INFO("amdgpu: ttm finalized\n");
1887 }
1888
1889 /**
1890 * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions
1891 *
1892 * @adev: amdgpu_device pointer
1893 * @enable: true when we can use buffer functions.
1894 *
1895 * Enable/disable use of buffer functions during suspend/resume. This should
1896 * only be called at bootup or when userspace isn't running.
1897 */
1898 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable)
1899 {
1900 struct ttm_mem_type_manager *man = &adev->mman.bdev.man[TTM_PL_VRAM];
1901 uint64_t size;
1902 int r;
1903
1904 if (!adev->mman.initialized || adev->in_gpu_reset ||
1905 adev->mman.buffer_funcs_enabled == enable)
1906 return;
1907
1908 if (enable) {
1909 struct amdgpu_ring *ring;
1910 struct drm_sched_rq *rq;
1911
1912 ring = adev->mman.buffer_funcs_ring;
1913 rq = &ring->sched.sched_rq[DRM_SCHED_PRIORITY_KERNEL];
1914 r = drm_sched_entity_init(&adev->mman.entity, &rq, 1, NULL);
1915 if (r) {
1916 DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
1917 r);
1918 return;
1919 }
1920 } else {
1921 drm_sched_entity_destroy(&adev->mman.entity);
1922 dma_fence_put(man->move);
1923 man->move = NULL;
1924 }
1925
1926 /* this just adjusts TTM size idea, which sets lpfn to the correct value */
1927 if (enable)
1928 size = adev->gmc.real_vram_size;
1929 else
1930 size = adev->gmc.visible_vram_size;
1931 man->size = size >> PAGE_SHIFT;
1932 adev->mman.buffer_funcs_enabled = enable;
1933 }
1934
1935 int amdgpu_mmap(struct file *filp, struct vm_area_struct *vma)
1936 {
1937 struct drm_file *file_priv = filp->private_data;
1938 struct amdgpu_device *adev = file_priv->minor->dev->dev_private;
1939
1940 if (adev == NULL)
1941 return -EINVAL;
1942
1943 return ttm_bo_mmap(filp, vma, &adev->mman.bdev);
1944 }
1945
1946 static int amdgpu_map_buffer(struct ttm_buffer_object *bo,
1947 struct ttm_mem_reg *mem, unsigned num_pages,
1948 uint64_t offset, unsigned window,
1949 struct amdgpu_ring *ring,
1950 uint64_t *addr)
1951 {
1952 struct amdgpu_ttm_tt *gtt = (void *)bo->ttm;
1953 struct amdgpu_device *adev = ring->adev;
1954 struct ttm_tt *ttm = bo->ttm;
1955 struct amdgpu_job *job;
1956 unsigned num_dw, num_bytes;
1957 dma_addr_t *dma_address;
1958 struct dma_fence *fence;
1959 uint64_t src_addr, dst_addr;
1960 uint64_t flags;
1961 int r;
1962
1963 BUG_ON(adev->mman.buffer_funcs->copy_max_bytes <
1964 AMDGPU_GTT_MAX_TRANSFER_SIZE * 8);
1965
1966 *addr = adev->gmc.gart_start;
1967 *addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE *
1968 AMDGPU_GPU_PAGE_SIZE;
1969
1970 num_dw = adev->mman.buffer_funcs->copy_num_dw;
1971 while (num_dw & 0x7)
1972 num_dw++;
1973
1974 num_bytes = num_pages * 8;
1975
1976 r = amdgpu_job_alloc_with_ib(adev, num_dw * 4 + num_bytes, &job);
1977 if (r)
1978 return r;
1979
1980 src_addr = num_dw * 4;
1981 src_addr += job->ibs[0].gpu_addr;
1982
1983 dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo);
1984 dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8;
1985 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr,
1986 dst_addr, num_bytes);
1987
1988 amdgpu_ring_pad_ib(ring, &job->ibs[0]);
1989 WARN_ON(job->ibs[0].length_dw > num_dw);
1990
1991 dma_address = &gtt->ttm.dma_address[offset >> PAGE_SHIFT];
1992 flags = amdgpu_ttm_tt_pte_flags(adev, ttm, mem);
1993 r = amdgpu_gart_map(adev, 0, num_pages, dma_address, flags,
1994 &job->ibs[0].ptr[num_dw]);
1995 if (r)
1996 goto error_free;
1997
1998 r = amdgpu_job_submit(job, &adev->mman.entity,
1999 AMDGPU_FENCE_OWNER_UNDEFINED, &fence);
2000 if (r)
2001 goto error_free;
2002
2003 dma_fence_put(fence);
2004
2005 return r;
2006
2007 error_free:
2008 amdgpu_job_free(job);
2009 return r;
2010 }
2011
2012 int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset,
2013 uint64_t dst_offset, uint32_t byte_count,
2014 struct dma_resv *resv,
2015 struct dma_fence **fence, bool direct_submit,
2016 bool vm_needs_flush)
2017 {
2018 struct amdgpu_device *adev = ring->adev;
2019 struct amdgpu_job *job;
2020
2021 uint32_t max_bytes;
2022 unsigned num_loops, num_dw;
2023 unsigned i;
2024 int r;
2025
2026 if (direct_submit && !ring->sched.ready) {
2027 DRM_ERROR("Trying to move memory with ring turned off.\n");
2028 return -EINVAL;
2029 }
2030
2031 max_bytes = adev->mman.buffer_funcs->copy_max_bytes;
2032 num_loops = DIV_ROUND_UP(byte_count, max_bytes);
2033 num_dw = num_loops * adev->mman.buffer_funcs->copy_num_dw;
2034
2035 /* for IB padding */
2036 while (num_dw & 0x7)
2037 num_dw++;
2038
2039 r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, &job);
2040 if (r)
2041 return r;
2042
2043 if (vm_needs_flush) {
2044 job->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gart.bo);
2045 job->vm_needs_flush = true;
2046 }
2047 if (resv) {
2048 r = amdgpu_sync_resv(adev, &job->sync, resv,
2049 AMDGPU_FENCE_OWNER_UNDEFINED,
2050 false);
2051 if (r) {
2052 DRM_ERROR("sync failed (%d).\n", r);
2053 goto error_free;
2054 }
2055 }
2056
2057 for (i = 0; i < num_loops; i++) {
2058 uint32_t cur_size_in_bytes = min(byte_count, max_bytes);
2059
2060 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset,
2061 dst_offset, cur_size_in_bytes);
2062
2063 src_offset += cur_size_in_bytes;
2064 dst_offset += cur_size_in_bytes;
2065 byte_count -= cur_size_in_bytes;
2066 }
2067
2068 amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2069 WARN_ON(job->ibs[0].length_dw > num_dw);
2070 if (direct_submit)
2071 r = amdgpu_job_submit_direct(job, ring, fence);
2072 else
2073 r = amdgpu_job_submit(job, &adev->mman.entity,
2074 AMDGPU_FENCE_OWNER_UNDEFINED, fence);
2075 if (r)
2076 goto error_free;
2077
2078 return r;
2079
2080 error_free:
2081 amdgpu_job_free(job);
2082 DRM_ERROR("Error scheduling IBs (%d)\n", r);
2083 return r;
2084 }
2085
2086 int amdgpu_fill_buffer(struct amdgpu_bo *bo,
2087 uint32_t src_data,
2088 struct dma_resv *resv,
2089 struct dma_fence **fence)
2090 {
2091 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
2092 uint32_t max_bytes = adev->mman.buffer_funcs->fill_max_bytes;
2093 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
2094
2095 struct drm_mm_node *mm_node;
2096 unsigned long num_pages;
2097 unsigned int num_loops, num_dw;
2098
2099 struct amdgpu_job *job;
2100 int r;
2101
2102 if (!adev->mman.buffer_funcs_enabled) {
2103 DRM_ERROR("Trying to clear memory with ring turned off.\n");
2104 return -EINVAL;
2105 }
2106
2107 if (bo->tbo.mem.mem_type == TTM_PL_TT) {
2108 r = amdgpu_ttm_alloc_gart(&bo->tbo);
2109 if (r)
2110 return r;
2111 }
2112
2113 num_pages = bo->tbo.num_pages;
2114 mm_node = bo->tbo.mem.mm_node;
2115 num_loops = 0;
2116 while (num_pages) {
2117 uint64_t byte_count = mm_node->size << PAGE_SHIFT;
2118
2119 num_loops += DIV_ROUND_UP_ULL(byte_count, max_bytes);
2120 num_pages -= mm_node->size;
2121 ++mm_node;
2122 }
2123 num_dw = num_loops * adev->mman.buffer_funcs->fill_num_dw;
2124
2125 /* for IB padding */
2126 num_dw += 64;
2127
2128 r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, &job);
2129 if (r)
2130 return r;
2131
2132 if (resv) {
2133 r = amdgpu_sync_resv(adev, &job->sync, resv,
2134 AMDGPU_FENCE_OWNER_UNDEFINED, false);
2135 if (r) {
2136 DRM_ERROR("sync failed (%d).\n", r);
2137 goto error_free;
2138 }
2139 }
2140
2141 num_pages = bo->tbo.num_pages;
2142 mm_node = bo->tbo.mem.mm_node;
2143
2144 while (num_pages) {
2145 uint64_t byte_count = mm_node->size << PAGE_SHIFT;
2146 uint64_t dst_addr;
2147
2148 dst_addr = amdgpu_mm_node_addr(&bo->tbo, mm_node, &bo->tbo.mem);
2149 while (byte_count) {
2150 uint32_t cur_size_in_bytes = min_t(uint64_t, byte_count,
2151 max_bytes);
2152
2153 amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data,
2154 dst_addr, cur_size_in_bytes);
2155
2156 dst_addr += cur_size_in_bytes;
2157 byte_count -= cur_size_in_bytes;
2158 }
2159
2160 num_pages -= mm_node->size;
2161 ++mm_node;
2162 }
2163
2164 amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2165 WARN_ON(job->ibs[0].length_dw > num_dw);
2166 r = amdgpu_job_submit(job, &adev->mman.entity,
2167 AMDGPU_FENCE_OWNER_UNDEFINED, fence);
2168 if (r)
2169 goto error_free;
2170
2171 return 0;
2172
2173 error_free:
2174 amdgpu_job_free(job);
2175 return r;
2176 }
2177
2178 #if defined(CONFIG_DEBUG_FS)
2179
2180 static int amdgpu_mm_dump_table(struct seq_file *m, void *data)
2181 {
2182 struct drm_info_node *node = (struct drm_info_node *)m->private;
2183 unsigned ttm_pl = (uintptr_t)node->info_ent->data;
2184 struct drm_device *dev = node->minor->dev;
2185 struct amdgpu_device *adev = dev->dev_private;
2186 struct ttm_mem_type_manager *man = &adev->mman.bdev.man[ttm_pl];
2187 struct drm_printer p = drm_seq_file_printer(m);
2188
2189 man->func->debug(man, &p);
2190 return 0;
2191 }
2192
2193 static const struct drm_info_list amdgpu_ttm_debugfs_list[] = {
2194 {"amdgpu_vram_mm", amdgpu_mm_dump_table, 0, (void *)TTM_PL_VRAM},
2195 {"amdgpu_gtt_mm", amdgpu_mm_dump_table, 0, (void *)TTM_PL_TT},
2196 {"amdgpu_gds_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_GDS},
2197 {"amdgpu_gws_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_GWS},
2198 {"amdgpu_oa_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_OA},
2199 {"ttm_page_pool", ttm_page_alloc_debugfs, 0, NULL},
2200 #ifdef CONFIG_SWIOTLB
2201 {"ttm_dma_page_pool", ttm_dma_page_alloc_debugfs, 0, NULL}
2202 #endif
2203 };
2204
2205 /**
2206 * amdgpu_ttm_vram_read - Linear read access to VRAM
2207 *
2208 * Accesses VRAM via MMIO for debugging purposes.
2209 */
2210 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf,
2211 size_t size, loff_t *pos)
2212 {
2213 struct amdgpu_device *adev = file_inode(f)->i_private;
2214 ssize_t result = 0;
2215 int r;
2216
2217 if (size & 0x3 || *pos & 0x3)
2218 return -EINVAL;
2219
2220 if (*pos >= adev->gmc.mc_vram_size)
2221 return -ENXIO;
2222
2223 while (size) {
2224 unsigned long flags;
2225 uint32_t value;
2226
2227 if (*pos >= adev->gmc.mc_vram_size)
2228 return result;
2229
2230 spin_lock_irqsave(&adev->mmio_idx_lock, flags);
2231 WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)*pos) | 0x80000000);
2232 WREG32_NO_KIQ(mmMM_INDEX_HI, *pos >> 31);
2233 value = RREG32_NO_KIQ(mmMM_DATA);
2234 spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
2235
2236 r = put_user(value, (uint32_t *)buf);
2237 if (r)
2238 return r;
2239
2240 result += 4;
2241 buf += 4;
2242 *pos += 4;
2243 size -= 4;
2244 }
2245
2246 return result;
2247 }
2248
2249 /**
2250 * amdgpu_ttm_vram_write - Linear write access to VRAM
2251 *
2252 * Accesses VRAM via MMIO for debugging purposes.
2253 */
2254 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf,
2255 size_t size, loff_t *pos)
2256 {
2257 struct amdgpu_device *adev = file_inode(f)->i_private;
2258 ssize_t result = 0;
2259 int r;
2260
2261 if (size & 0x3 || *pos & 0x3)
2262 return -EINVAL;
2263
2264 if (*pos >= adev->gmc.mc_vram_size)
2265 return -ENXIO;
2266
2267 while (size) {
2268 unsigned long flags;
2269 uint32_t value;
2270
2271 if (*pos >= adev->gmc.mc_vram_size)
2272 return result;
2273
2274 r = get_user(value, (uint32_t *)buf);
2275 if (r)
2276 return r;
2277
2278 spin_lock_irqsave(&adev->mmio_idx_lock, flags);
2279 WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)*pos) | 0x80000000);
2280 WREG32_NO_KIQ(mmMM_INDEX_HI, *pos >> 31);
2281 WREG32_NO_KIQ(mmMM_DATA, value);
2282 spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
2283
2284 result += 4;
2285 buf += 4;
2286 *pos += 4;
2287 size -= 4;
2288 }
2289
2290 return result;
2291 }
2292
2293 static const struct file_operations amdgpu_ttm_vram_fops = {
2294 .owner = THIS_MODULE,
2295 .read = amdgpu_ttm_vram_read,
2296 .write = amdgpu_ttm_vram_write,
2297 .llseek = default_llseek,
2298 };
2299
2300 #ifdef CONFIG_DRM_AMDGPU_GART_DEBUGFS
2301
2302 /**
2303 * amdgpu_ttm_gtt_read - Linear read access to GTT memory
2304 */
2305 static ssize_t amdgpu_ttm_gtt_read(struct file *f, char __user *buf,
2306 size_t size, loff_t *pos)
2307 {
2308 struct amdgpu_device *adev = file_inode(f)->i_private;
2309 ssize_t result = 0;
2310 int r;
2311
2312 while (size) {
2313 loff_t p = *pos / PAGE_SIZE;
2314 unsigned off = *pos & ~PAGE_MASK;
2315 size_t cur_size = min_t(size_t, size, PAGE_SIZE - off);
2316 struct page *page;
2317 void *ptr;
2318
2319 if (p >= adev->gart.num_cpu_pages)
2320 return result;
2321
2322 page = adev->gart.pages[p];
2323 if (page) {
2324 ptr = kmap(page);
2325 ptr += off;
2326
2327 r = copy_to_user(buf, ptr, cur_size);
2328 kunmap(adev->gart.pages[p]);
2329 } else
2330 r = clear_user(buf, cur_size);
2331
2332 if (r)
2333 return -EFAULT;
2334
2335 result += cur_size;
2336 buf += cur_size;
2337 *pos += cur_size;
2338 size -= cur_size;
2339 }
2340
2341 return result;
2342 }
2343
2344 static const struct file_operations amdgpu_ttm_gtt_fops = {
2345 .owner = THIS_MODULE,
2346 .read = amdgpu_ttm_gtt_read,
2347 .llseek = default_llseek
2348 };
2349
2350 #endif
2351
2352 /**
2353 * amdgpu_iomem_read - Virtual read access to GPU mapped memory
2354 *
2355 * This function is used to read memory that has been mapped to the
2356 * GPU and the known addresses are not physical addresses but instead
2357 * bus addresses (e.g., what you'd put in an IB or ring buffer).
2358 */
2359 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf,
2360 size_t size, loff_t *pos)
2361 {
2362 struct amdgpu_device *adev = file_inode(f)->i_private;
2363 struct iommu_domain *dom;
2364 ssize_t result = 0;
2365 int r;
2366
2367 /* retrieve the IOMMU domain if any for this device */
2368 dom = iommu_get_domain_for_dev(adev->dev);
2369
2370 while (size) {
2371 phys_addr_t addr = *pos & PAGE_MASK;
2372 loff_t off = *pos & ~PAGE_MASK;
2373 size_t bytes = PAGE_SIZE - off;
2374 unsigned long pfn;
2375 struct page *p;
2376 void *ptr;
2377
2378 bytes = bytes < size ? bytes : size;
2379
2380 /* Translate the bus address to a physical address. If
2381 * the domain is NULL it means there is no IOMMU active
2382 * and the address translation is the identity
2383 */
2384 addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2385
2386 pfn = addr >> PAGE_SHIFT;
2387 if (!pfn_valid(pfn))
2388 return -EPERM;
2389
2390 p = pfn_to_page(pfn);
2391 if (p->mapping != adev->mman.bdev.dev_mapping)
2392 return -EPERM;
2393
2394 ptr = kmap(p);
2395 r = copy_to_user(buf, ptr + off, bytes);
2396 kunmap(p);
2397 if (r)
2398 return -EFAULT;
2399
2400 size -= bytes;
2401 *pos += bytes;
2402 result += bytes;
2403 }
2404
2405 return result;
2406 }
2407
2408 /**
2409 * amdgpu_iomem_write - Virtual write access to GPU mapped memory
2410 *
2411 * This function is used to write memory that has been mapped to the
2412 * GPU and the known addresses are not physical addresses but instead
2413 * bus addresses (e.g., what you'd put in an IB or ring buffer).
2414 */
2415 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf,
2416 size_t size, loff_t *pos)
2417 {
2418 struct amdgpu_device *adev = file_inode(f)->i_private;
2419 struct iommu_domain *dom;
2420 ssize_t result = 0;
2421 int r;
2422
2423 dom = iommu_get_domain_for_dev(adev->dev);
2424
2425 while (size) {
2426 phys_addr_t addr = *pos & PAGE_MASK;
2427 loff_t off = *pos & ~PAGE_MASK;
2428 size_t bytes = PAGE_SIZE - off;
2429 unsigned long pfn;
2430 struct page *p;
2431 void *ptr;
2432
2433 bytes = bytes < size ? bytes : size;
2434
2435 addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2436
2437 pfn = addr >> PAGE_SHIFT;
2438 if (!pfn_valid(pfn))
2439 return -EPERM;
2440
2441 p = pfn_to_page(pfn);
2442 if (p->mapping != adev->mman.bdev.dev_mapping)
2443 return -EPERM;
2444
2445 ptr = kmap(p);
2446 r = copy_from_user(ptr + off, buf, bytes);
2447 kunmap(p);
2448 if (r)
2449 return -EFAULT;
2450
2451 size -= bytes;
2452 *pos += bytes;
2453 result += bytes;
2454 }
2455
2456 return result;
2457 }
2458
2459 static const struct file_operations amdgpu_ttm_iomem_fops = {
2460 .owner = THIS_MODULE,
2461 .read = amdgpu_iomem_read,
2462 .write = amdgpu_iomem_write,
2463 .llseek = default_llseek
2464 };
2465
2466 static const struct {
2467 char *name;
2468 const struct file_operations *fops;
2469 int domain;
2470 } ttm_debugfs_entries[] = {
2471 { "amdgpu_vram", &amdgpu_ttm_vram_fops, TTM_PL_VRAM },
2472 #ifdef CONFIG_DRM_AMDGPU_GART_DEBUGFS
2473 { "amdgpu_gtt", &amdgpu_ttm_gtt_fops, TTM_PL_TT },
2474 #endif
2475 { "amdgpu_iomem", &amdgpu_ttm_iomem_fops, TTM_PL_SYSTEM },
2476 };
2477
2478 #endif
2479
2480 static int amdgpu_ttm_debugfs_init(struct amdgpu_device *adev)
2481 {
2482 #if defined(CONFIG_DEBUG_FS)
2483 unsigned count;
2484
2485 struct drm_minor *minor = adev->ddev->primary;
2486 struct dentry *ent, *root = minor->debugfs_root;
2487
2488 for (count = 0; count < ARRAY_SIZE(ttm_debugfs_entries); count++) {
2489 ent = debugfs_create_file(
2490 ttm_debugfs_entries[count].name,
2491 S_IFREG | S_IRUGO, root,
2492 adev,
2493 ttm_debugfs_entries[count].fops);
2494 if (IS_ERR(ent))
2495 return PTR_ERR(ent);
2496 if (ttm_debugfs_entries[count].domain == TTM_PL_VRAM)
2497 i_size_write(ent->d_inode, adev->gmc.mc_vram_size);
2498 else if (ttm_debugfs_entries[count].domain == TTM_PL_TT)
2499 i_size_write(ent->d_inode, adev->gmc.gart_size);
2500 adev->mman.debugfs_entries[count] = ent;
2501 }
2502
2503 count = ARRAY_SIZE(amdgpu_ttm_debugfs_list);
2504
2505 #ifdef CONFIG_SWIOTLB
2506 if (!(adev->need_swiotlb && swiotlb_nr_tbl()))
2507 --count;
2508 #endif
2509
2510 return amdgpu_debugfs_add_files(adev, amdgpu_ttm_debugfs_list, count);
2511 #else
2512 return 0;
2513 #endif
2514 }
2515
2516 static void amdgpu_ttm_debugfs_fini(struct amdgpu_device *adev)
2517 {
2518 #if defined(CONFIG_DEBUG_FS)
2519 unsigned i;
2520
2521 for (i = 0; i < ARRAY_SIZE(ttm_debugfs_entries); i++)
2522 debugfs_remove(adev->mman.debugfs_entries[i]);
2523 #endif
2524 }