]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - drivers/gpu/drm/amd/amdgpu/amdgpu_ttm.c
Merge tag 'dma-mapping-5.8-2' of git://git.infradead.org/users/hch/dma-mapping
[mirror_ubuntu-kernels.git] / drivers / gpu / drm / amd / amdgpu / amdgpu_ttm.c
1 /*
2 * Copyright 2009 Jerome Glisse.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the
7 * "Software"), to deal in the Software without restriction, including
8 * without limitation the rights to use, copy, modify, merge, publish,
9 * distribute, sub license, and/or sell copies of the Software, and to
10 * permit persons to whom the Software is furnished to do so, subject to
11 * the following conditions:
12 *
13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
16 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
17 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
18 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
19 * USE OR OTHER DEALINGS IN THE SOFTWARE.
20 *
21 * The above copyright notice and this permission notice (including the
22 * next paragraph) shall be included in all copies or substantial portions
23 * of the Software.
24 *
25 */
26 /*
27 * Authors:
28 * Jerome Glisse <glisse@freedesktop.org>
29 * Thomas Hellstrom <thomas-at-tungstengraphics-dot-com>
30 * Dave Airlie
31 */
32
33 #include <linux/dma-mapping.h>
34 #include <linux/iommu.h>
35 #include <linux/hmm.h>
36 #include <linux/pagemap.h>
37 #include <linux/sched/task.h>
38 #include <linux/sched/mm.h>
39 #include <linux/seq_file.h>
40 #include <linux/slab.h>
41 #include <linux/swap.h>
42 #include <linux/swiotlb.h>
43 #include <linux/dma-buf.h>
44 #include <linux/sizes.h>
45
46 #include <drm/ttm/ttm_bo_api.h>
47 #include <drm/ttm/ttm_bo_driver.h>
48 #include <drm/ttm/ttm_placement.h>
49 #include <drm/ttm/ttm_module.h>
50 #include <drm/ttm/ttm_page_alloc.h>
51
52 #include <drm/drm_debugfs.h>
53 #include <drm/amdgpu_drm.h>
54
55 #include "amdgpu.h"
56 #include "amdgpu_object.h"
57 #include "amdgpu_trace.h"
58 #include "amdgpu_amdkfd.h"
59 #include "amdgpu_sdma.h"
60 #include "amdgpu_ras.h"
61 #include "bif/bif_4_1_d.h"
62
63 #define AMDGPU_TTM_VRAM_MAX_DW_READ (size_t)128
64
65
66 /**
67 * amdgpu_init_mem_type - Initialize a memory manager for a specific type of
68 * memory request.
69 *
70 * @bdev: The TTM BO device object (contains a reference to amdgpu_device)
71 * @type: The type of memory requested
72 * @man: The memory type manager for each domain
73 *
74 * This is called by ttm_bo_init_mm() when a buffer object is being
75 * initialized.
76 */
77 static int amdgpu_init_mem_type(struct ttm_bo_device *bdev, uint32_t type,
78 struct ttm_mem_type_manager *man)
79 {
80 struct amdgpu_device *adev;
81
82 adev = amdgpu_ttm_adev(bdev);
83
84 switch (type) {
85 case TTM_PL_SYSTEM:
86 /* System memory */
87 man->flags = TTM_MEMTYPE_FLAG_MAPPABLE;
88 man->available_caching = TTM_PL_MASK_CACHING;
89 man->default_caching = TTM_PL_FLAG_CACHED;
90 break;
91 case TTM_PL_TT:
92 /* GTT memory */
93 man->func = &amdgpu_gtt_mgr_func;
94 man->gpu_offset = adev->gmc.gart_start;
95 man->available_caching = TTM_PL_MASK_CACHING;
96 man->default_caching = TTM_PL_FLAG_CACHED;
97 man->flags = TTM_MEMTYPE_FLAG_MAPPABLE | TTM_MEMTYPE_FLAG_CMA;
98 break;
99 case TTM_PL_VRAM:
100 /* "On-card" video ram */
101 man->func = &amdgpu_vram_mgr_func;
102 man->gpu_offset = adev->gmc.vram_start;
103 man->flags = TTM_MEMTYPE_FLAG_FIXED |
104 TTM_MEMTYPE_FLAG_MAPPABLE;
105 man->available_caching = TTM_PL_FLAG_UNCACHED | TTM_PL_FLAG_WC;
106 man->default_caching = TTM_PL_FLAG_WC;
107 break;
108 case AMDGPU_PL_GDS:
109 case AMDGPU_PL_GWS:
110 case AMDGPU_PL_OA:
111 /* On-chip GDS memory*/
112 man->func = &ttm_bo_manager_func;
113 man->gpu_offset = 0;
114 man->flags = TTM_MEMTYPE_FLAG_FIXED | TTM_MEMTYPE_FLAG_CMA;
115 man->available_caching = TTM_PL_FLAG_UNCACHED;
116 man->default_caching = TTM_PL_FLAG_UNCACHED;
117 break;
118 default:
119 DRM_ERROR("Unsupported memory type %u\n", (unsigned)type);
120 return -EINVAL;
121 }
122 return 0;
123 }
124
125 /**
126 * amdgpu_evict_flags - Compute placement flags
127 *
128 * @bo: The buffer object to evict
129 * @placement: Possible destination(s) for evicted BO
130 *
131 * Fill in placement data when ttm_bo_evict() is called
132 */
133 static void amdgpu_evict_flags(struct ttm_buffer_object *bo,
134 struct ttm_placement *placement)
135 {
136 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
137 struct amdgpu_bo *abo;
138 static const struct ttm_place placements = {
139 .fpfn = 0,
140 .lpfn = 0,
141 .flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_SYSTEM
142 };
143
144 /* Don't handle scatter gather BOs */
145 if (bo->type == ttm_bo_type_sg) {
146 placement->num_placement = 0;
147 placement->num_busy_placement = 0;
148 return;
149 }
150
151 /* Object isn't an AMDGPU object so ignore */
152 if (!amdgpu_bo_is_amdgpu_bo(bo)) {
153 placement->placement = &placements;
154 placement->busy_placement = &placements;
155 placement->num_placement = 1;
156 placement->num_busy_placement = 1;
157 return;
158 }
159
160 abo = ttm_to_amdgpu_bo(bo);
161 switch (bo->mem.mem_type) {
162 case AMDGPU_PL_GDS:
163 case AMDGPU_PL_GWS:
164 case AMDGPU_PL_OA:
165 placement->num_placement = 0;
166 placement->num_busy_placement = 0;
167 return;
168
169 case TTM_PL_VRAM:
170 if (!adev->mman.buffer_funcs_enabled) {
171 /* Move to system memory */
172 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
173 } else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) &&
174 !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) &&
175 amdgpu_bo_in_cpu_visible_vram(abo)) {
176
177 /* Try evicting to the CPU inaccessible part of VRAM
178 * first, but only set GTT as busy placement, so this
179 * BO will be evicted to GTT rather than causing other
180 * BOs to be evicted from VRAM
181 */
182 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM |
183 AMDGPU_GEM_DOMAIN_GTT);
184 abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT;
185 abo->placements[0].lpfn = 0;
186 abo->placement.busy_placement = &abo->placements[1];
187 abo->placement.num_busy_placement = 1;
188 } else {
189 /* Move to GTT memory */
190 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT);
191 }
192 break;
193 case TTM_PL_TT:
194 default:
195 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
196 break;
197 }
198 *placement = abo->placement;
199 }
200
201 /**
202 * amdgpu_verify_access - Verify access for a mmap call
203 *
204 * @bo: The buffer object to map
205 * @filp: The file pointer from the process performing the mmap
206 *
207 * This is called by ttm_bo_mmap() to verify whether a process
208 * has the right to mmap a BO to their process space.
209 */
210 static int amdgpu_verify_access(struct ttm_buffer_object *bo, struct file *filp)
211 {
212 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
213
214 /*
215 * Don't verify access for KFD BOs. They don't have a GEM
216 * object associated with them.
217 */
218 if (abo->kfd_bo)
219 return 0;
220
221 if (amdgpu_ttm_tt_get_usermm(bo->ttm))
222 return -EPERM;
223 return drm_vma_node_verify_access(&abo->tbo.base.vma_node,
224 filp->private_data);
225 }
226
227 /**
228 * amdgpu_move_null - Register memory for a buffer object
229 *
230 * @bo: The bo to assign the memory to
231 * @new_mem: The memory to be assigned.
232 *
233 * Assign the memory from new_mem to the memory of the buffer object bo.
234 */
235 static void amdgpu_move_null(struct ttm_buffer_object *bo,
236 struct ttm_mem_reg *new_mem)
237 {
238 struct ttm_mem_reg *old_mem = &bo->mem;
239
240 BUG_ON(old_mem->mm_node != NULL);
241 *old_mem = *new_mem;
242 new_mem->mm_node = NULL;
243 }
244
245 /**
246 * amdgpu_mm_node_addr - Compute the GPU relative offset of a GTT buffer.
247 *
248 * @bo: The bo to assign the memory to.
249 * @mm_node: Memory manager node for drm allocator.
250 * @mem: The region where the bo resides.
251 *
252 */
253 static uint64_t amdgpu_mm_node_addr(struct ttm_buffer_object *bo,
254 struct drm_mm_node *mm_node,
255 struct ttm_mem_reg *mem)
256 {
257 uint64_t addr = 0;
258
259 if (mm_node->start != AMDGPU_BO_INVALID_OFFSET) {
260 addr = mm_node->start << PAGE_SHIFT;
261 addr += bo->bdev->man[mem->mem_type].gpu_offset;
262 }
263 return addr;
264 }
265
266 /**
267 * amdgpu_find_mm_node - Helper function finds the drm_mm_node corresponding to
268 * @offset. It also modifies the offset to be within the drm_mm_node returned
269 *
270 * @mem: The region where the bo resides.
271 * @offset: The offset that drm_mm_node is used for finding.
272 *
273 */
274 static struct drm_mm_node *amdgpu_find_mm_node(struct ttm_mem_reg *mem,
275 uint64_t *offset)
276 {
277 struct drm_mm_node *mm_node = mem->mm_node;
278
279 while (*offset >= (mm_node->size << PAGE_SHIFT)) {
280 *offset -= (mm_node->size << PAGE_SHIFT);
281 ++mm_node;
282 }
283 return mm_node;
284 }
285
286 /**
287 * amdgpu_ttm_map_buffer - Map memory into the GART windows
288 * @bo: buffer object to map
289 * @mem: memory object to map
290 * @mm_node: drm_mm node object to map
291 * @num_pages: number of pages to map
292 * @offset: offset into @mm_node where to start
293 * @window: which GART window to use
294 * @ring: DMA ring to use for the copy
295 * @tmz: if we should setup a TMZ enabled mapping
296 * @addr: resulting address inside the MC address space
297 *
298 * Setup one of the GART windows to access a specific piece of memory or return
299 * the physical address for local memory.
300 */
301 static int amdgpu_ttm_map_buffer(struct ttm_buffer_object *bo,
302 struct ttm_mem_reg *mem,
303 struct drm_mm_node *mm_node,
304 unsigned num_pages, uint64_t offset,
305 unsigned window, struct amdgpu_ring *ring,
306 bool tmz, uint64_t *addr)
307 {
308 struct amdgpu_device *adev = ring->adev;
309 struct amdgpu_job *job;
310 unsigned num_dw, num_bytes;
311 struct dma_fence *fence;
312 uint64_t src_addr, dst_addr;
313 void *cpu_addr;
314 uint64_t flags;
315 unsigned int i;
316 int r;
317
318 BUG_ON(adev->mman.buffer_funcs->copy_max_bytes <
319 AMDGPU_GTT_MAX_TRANSFER_SIZE * 8);
320
321 /* Map only what can't be accessed directly */
322 if (!tmz && mem->start != AMDGPU_BO_INVALID_OFFSET) {
323 *addr = amdgpu_mm_node_addr(bo, mm_node, mem) + offset;
324 return 0;
325 }
326
327 *addr = adev->gmc.gart_start;
328 *addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE *
329 AMDGPU_GPU_PAGE_SIZE;
330 *addr += offset & ~PAGE_MASK;
331
332 num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
333 num_bytes = num_pages * 8;
334
335 r = amdgpu_job_alloc_with_ib(adev, num_dw * 4 + num_bytes,
336 AMDGPU_IB_POOL_DELAYED, &job);
337 if (r)
338 return r;
339
340 src_addr = num_dw * 4;
341 src_addr += job->ibs[0].gpu_addr;
342
343 dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo);
344 dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8;
345 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr,
346 dst_addr, num_bytes, false);
347
348 amdgpu_ring_pad_ib(ring, &job->ibs[0]);
349 WARN_ON(job->ibs[0].length_dw > num_dw);
350
351 flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, mem);
352 if (tmz)
353 flags |= AMDGPU_PTE_TMZ;
354
355 cpu_addr = &job->ibs[0].ptr[num_dw];
356
357 if (mem->mem_type == TTM_PL_TT) {
358 struct ttm_dma_tt *dma;
359 dma_addr_t *dma_address;
360
361 dma = container_of(bo->ttm, struct ttm_dma_tt, ttm);
362 dma_address = &dma->dma_address[offset >> PAGE_SHIFT];
363 r = amdgpu_gart_map(adev, 0, num_pages, dma_address, flags,
364 cpu_addr);
365 if (r)
366 goto error_free;
367 } else {
368 dma_addr_t dma_address;
369
370 dma_address = (mm_node->start << PAGE_SHIFT) + offset;
371 dma_address += adev->vm_manager.vram_base_offset;
372
373 for (i = 0; i < num_pages; ++i) {
374 r = amdgpu_gart_map(adev, i << PAGE_SHIFT, 1,
375 &dma_address, flags, cpu_addr);
376 if (r)
377 goto error_free;
378
379 dma_address += PAGE_SIZE;
380 }
381 }
382
383 r = amdgpu_job_submit(job, &adev->mman.entity,
384 AMDGPU_FENCE_OWNER_UNDEFINED, &fence);
385 if (r)
386 goto error_free;
387
388 dma_fence_put(fence);
389
390 return r;
391
392 error_free:
393 amdgpu_job_free(job);
394 return r;
395 }
396
397 /**
398 * amdgpu_copy_ttm_mem_to_mem - Helper function for copy
399 * @adev: amdgpu device
400 * @src: buffer/address where to read from
401 * @dst: buffer/address where to write to
402 * @size: number of bytes to copy
403 * @tmz: if a secure copy should be used
404 * @resv: resv object to sync to
405 * @f: Returns the last fence if multiple jobs are submitted.
406 *
407 * The function copies @size bytes from {src->mem + src->offset} to
408 * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a
409 * move and different for a BO to BO copy.
410 *
411 */
412 int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev,
413 const struct amdgpu_copy_mem *src,
414 const struct amdgpu_copy_mem *dst,
415 uint64_t size, bool tmz,
416 struct dma_resv *resv,
417 struct dma_fence **f)
418 {
419 const uint32_t GTT_MAX_BYTES = (AMDGPU_GTT_MAX_TRANSFER_SIZE *
420 AMDGPU_GPU_PAGE_SIZE);
421
422 uint64_t src_node_size, dst_node_size, src_offset, dst_offset;
423 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
424 struct drm_mm_node *src_mm, *dst_mm;
425 struct dma_fence *fence = NULL;
426 int r = 0;
427
428 if (!adev->mman.buffer_funcs_enabled) {
429 DRM_ERROR("Trying to move memory with ring turned off.\n");
430 return -EINVAL;
431 }
432
433 src_offset = src->offset;
434 src_mm = amdgpu_find_mm_node(src->mem, &src_offset);
435 src_node_size = (src_mm->size << PAGE_SHIFT) - src_offset;
436
437 dst_offset = dst->offset;
438 dst_mm = amdgpu_find_mm_node(dst->mem, &dst_offset);
439 dst_node_size = (dst_mm->size << PAGE_SHIFT) - dst_offset;
440
441 mutex_lock(&adev->mman.gtt_window_lock);
442
443 while (size) {
444 uint32_t src_page_offset = src_offset & ~PAGE_MASK;
445 uint32_t dst_page_offset = dst_offset & ~PAGE_MASK;
446 struct dma_fence *next;
447 uint32_t cur_size;
448 uint64_t from, to;
449
450 /* Copy size cannot exceed GTT_MAX_BYTES. So if src or dst
451 * begins at an offset, then adjust the size accordingly
452 */
453 cur_size = max(src_page_offset, dst_page_offset);
454 cur_size = min(min3(src_node_size, dst_node_size, size),
455 (uint64_t)(GTT_MAX_BYTES - cur_size));
456
457 /* Map src to window 0 and dst to window 1. */
458 r = amdgpu_ttm_map_buffer(src->bo, src->mem, src_mm,
459 PFN_UP(cur_size + src_page_offset),
460 src_offset, 0, ring, tmz, &from);
461 if (r)
462 goto error;
463
464 r = amdgpu_ttm_map_buffer(dst->bo, dst->mem, dst_mm,
465 PFN_UP(cur_size + dst_page_offset),
466 dst_offset, 1, ring, tmz, &to);
467 if (r)
468 goto error;
469
470 r = amdgpu_copy_buffer(ring, from, to, cur_size,
471 resv, &next, false, true, tmz);
472 if (r)
473 goto error;
474
475 dma_fence_put(fence);
476 fence = next;
477
478 size -= cur_size;
479 if (!size)
480 break;
481
482 src_node_size -= cur_size;
483 if (!src_node_size) {
484 ++src_mm;
485 src_node_size = src_mm->size << PAGE_SHIFT;
486 src_offset = 0;
487 } else {
488 src_offset += cur_size;
489 }
490
491 dst_node_size -= cur_size;
492 if (!dst_node_size) {
493 ++dst_mm;
494 dst_node_size = dst_mm->size << PAGE_SHIFT;
495 dst_offset = 0;
496 } else {
497 dst_offset += cur_size;
498 }
499 }
500 error:
501 mutex_unlock(&adev->mman.gtt_window_lock);
502 if (f)
503 *f = dma_fence_get(fence);
504 dma_fence_put(fence);
505 return r;
506 }
507
508 /**
509 * amdgpu_move_blit - Copy an entire buffer to another buffer
510 *
511 * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to
512 * help move buffers to and from VRAM.
513 */
514 static int amdgpu_move_blit(struct ttm_buffer_object *bo,
515 bool evict, bool no_wait_gpu,
516 struct ttm_mem_reg *new_mem,
517 struct ttm_mem_reg *old_mem)
518 {
519 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
520 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
521 struct amdgpu_copy_mem src, dst;
522 struct dma_fence *fence = NULL;
523 int r;
524
525 src.bo = bo;
526 dst.bo = bo;
527 src.mem = old_mem;
528 dst.mem = new_mem;
529 src.offset = 0;
530 dst.offset = 0;
531
532 r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst,
533 new_mem->num_pages << PAGE_SHIFT,
534 amdgpu_bo_encrypted(abo),
535 bo->base.resv, &fence);
536 if (r)
537 goto error;
538
539 /* clear the space being freed */
540 if (old_mem->mem_type == TTM_PL_VRAM &&
541 (abo->flags & AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) {
542 struct dma_fence *wipe_fence = NULL;
543
544 r = amdgpu_fill_buffer(ttm_to_amdgpu_bo(bo), AMDGPU_POISON,
545 NULL, &wipe_fence);
546 if (r) {
547 goto error;
548 } else if (wipe_fence) {
549 dma_fence_put(fence);
550 fence = wipe_fence;
551 }
552 }
553
554 /* Always block for VM page tables before committing the new location */
555 if (bo->type == ttm_bo_type_kernel)
556 r = ttm_bo_move_accel_cleanup(bo, fence, true, new_mem);
557 else
558 r = ttm_bo_pipeline_move(bo, fence, evict, new_mem);
559 dma_fence_put(fence);
560 return r;
561
562 error:
563 if (fence)
564 dma_fence_wait(fence, false);
565 dma_fence_put(fence);
566 return r;
567 }
568
569 /**
570 * amdgpu_move_vram_ram - Copy VRAM buffer to RAM buffer
571 *
572 * Called by amdgpu_bo_move().
573 */
574 static int amdgpu_move_vram_ram(struct ttm_buffer_object *bo, bool evict,
575 struct ttm_operation_ctx *ctx,
576 struct ttm_mem_reg *new_mem)
577 {
578 struct ttm_mem_reg *old_mem = &bo->mem;
579 struct ttm_mem_reg tmp_mem;
580 struct ttm_place placements;
581 struct ttm_placement placement;
582 int r;
583
584 /* create space/pages for new_mem in GTT space */
585 tmp_mem = *new_mem;
586 tmp_mem.mm_node = NULL;
587 placement.num_placement = 1;
588 placement.placement = &placements;
589 placement.num_busy_placement = 1;
590 placement.busy_placement = &placements;
591 placements.fpfn = 0;
592 placements.lpfn = 0;
593 placements.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_TT;
594 r = ttm_bo_mem_space(bo, &placement, &tmp_mem, ctx);
595 if (unlikely(r)) {
596 pr_err("Failed to find GTT space for blit from VRAM\n");
597 return r;
598 }
599
600 /* set caching flags */
601 r = ttm_tt_set_placement_caching(bo->ttm, tmp_mem.placement);
602 if (unlikely(r)) {
603 goto out_cleanup;
604 }
605
606 /* Bind the memory to the GTT space */
607 r = ttm_tt_bind(bo->ttm, &tmp_mem, ctx);
608 if (unlikely(r)) {
609 goto out_cleanup;
610 }
611
612 /* blit VRAM to GTT */
613 r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu, &tmp_mem, old_mem);
614 if (unlikely(r)) {
615 goto out_cleanup;
616 }
617
618 /* move BO (in tmp_mem) to new_mem */
619 r = ttm_bo_move_ttm(bo, ctx, new_mem);
620 out_cleanup:
621 ttm_bo_mem_put(bo, &tmp_mem);
622 return r;
623 }
624
625 /**
626 * amdgpu_move_ram_vram - Copy buffer from RAM to VRAM
627 *
628 * Called by amdgpu_bo_move().
629 */
630 static int amdgpu_move_ram_vram(struct ttm_buffer_object *bo, bool evict,
631 struct ttm_operation_ctx *ctx,
632 struct ttm_mem_reg *new_mem)
633 {
634 struct ttm_mem_reg *old_mem = &bo->mem;
635 struct ttm_mem_reg tmp_mem;
636 struct ttm_placement placement;
637 struct ttm_place placements;
638 int r;
639
640 /* make space in GTT for old_mem buffer */
641 tmp_mem = *new_mem;
642 tmp_mem.mm_node = NULL;
643 placement.num_placement = 1;
644 placement.placement = &placements;
645 placement.num_busy_placement = 1;
646 placement.busy_placement = &placements;
647 placements.fpfn = 0;
648 placements.lpfn = 0;
649 placements.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_TT;
650 r = ttm_bo_mem_space(bo, &placement, &tmp_mem, ctx);
651 if (unlikely(r)) {
652 pr_err("Failed to find GTT space for blit to VRAM\n");
653 return r;
654 }
655
656 /* move/bind old memory to GTT space */
657 r = ttm_bo_move_ttm(bo, ctx, &tmp_mem);
658 if (unlikely(r)) {
659 goto out_cleanup;
660 }
661
662 /* copy to VRAM */
663 r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu, new_mem, old_mem);
664 if (unlikely(r)) {
665 goto out_cleanup;
666 }
667 out_cleanup:
668 ttm_bo_mem_put(bo, &tmp_mem);
669 return r;
670 }
671
672 /**
673 * amdgpu_mem_visible - Check that memory can be accessed by ttm_bo_move_memcpy
674 *
675 * Called by amdgpu_bo_move()
676 */
677 static bool amdgpu_mem_visible(struct amdgpu_device *adev,
678 struct ttm_mem_reg *mem)
679 {
680 struct drm_mm_node *nodes = mem->mm_node;
681
682 if (mem->mem_type == TTM_PL_SYSTEM ||
683 mem->mem_type == TTM_PL_TT)
684 return true;
685 if (mem->mem_type != TTM_PL_VRAM)
686 return false;
687
688 /* ttm_mem_reg_ioremap only supports contiguous memory */
689 if (nodes->size != mem->num_pages)
690 return false;
691
692 return ((nodes->start + nodes->size) << PAGE_SHIFT)
693 <= adev->gmc.visible_vram_size;
694 }
695
696 /**
697 * amdgpu_bo_move - Move a buffer object to a new memory location
698 *
699 * Called by ttm_bo_handle_move_mem()
700 */
701 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict,
702 struct ttm_operation_ctx *ctx,
703 struct ttm_mem_reg *new_mem)
704 {
705 struct amdgpu_device *adev;
706 struct amdgpu_bo *abo;
707 struct ttm_mem_reg *old_mem = &bo->mem;
708 int r;
709
710 /* Can't move a pinned BO */
711 abo = ttm_to_amdgpu_bo(bo);
712 if (WARN_ON_ONCE(abo->pin_count > 0))
713 return -EINVAL;
714
715 adev = amdgpu_ttm_adev(bo->bdev);
716
717 if (old_mem->mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) {
718 amdgpu_move_null(bo, new_mem);
719 return 0;
720 }
721 if ((old_mem->mem_type == TTM_PL_TT &&
722 new_mem->mem_type == TTM_PL_SYSTEM) ||
723 (old_mem->mem_type == TTM_PL_SYSTEM &&
724 new_mem->mem_type == TTM_PL_TT)) {
725 /* bind is enough */
726 amdgpu_move_null(bo, new_mem);
727 return 0;
728 }
729 if (old_mem->mem_type == AMDGPU_PL_GDS ||
730 old_mem->mem_type == AMDGPU_PL_GWS ||
731 old_mem->mem_type == AMDGPU_PL_OA ||
732 new_mem->mem_type == AMDGPU_PL_GDS ||
733 new_mem->mem_type == AMDGPU_PL_GWS ||
734 new_mem->mem_type == AMDGPU_PL_OA) {
735 /* Nothing to save here */
736 amdgpu_move_null(bo, new_mem);
737 return 0;
738 }
739
740 if (!adev->mman.buffer_funcs_enabled) {
741 r = -ENODEV;
742 goto memcpy;
743 }
744
745 if (old_mem->mem_type == TTM_PL_VRAM &&
746 new_mem->mem_type == TTM_PL_SYSTEM) {
747 r = amdgpu_move_vram_ram(bo, evict, ctx, new_mem);
748 } else if (old_mem->mem_type == TTM_PL_SYSTEM &&
749 new_mem->mem_type == TTM_PL_VRAM) {
750 r = amdgpu_move_ram_vram(bo, evict, ctx, new_mem);
751 } else {
752 r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu,
753 new_mem, old_mem);
754 }
755
756 if (r) {
757 memcpy:
758 /* Check that all memory is CPU accessible */
759 if (!amdgpu_mem_visible(adev, old_mem) ||
760 !amdgpu_mem_visible(adev, new_mem)) {
761 pr_err("Move buffer fallback to memcpy unavailable\n");
762 return r;
763 }
764
765 r = ttm_bo_move_memcpy(bo, ctx, new_mem);
766 if (r)
767 return r;
768 }
769
770 if (bo->type == ttm_bo_type_device &&
771 new_mem->mem_type == TTM_PL_VRAM &&
772 old_mem->mem_type != TTM_PL_VRAM) {
773 /* amdgpu_bo_fault_reserve_notify will re-set this if the CPU
774 * accesses the BO after it's moved.
775 */
776 abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
777 }
778
779 /* update statistics */
780 atomic64_add((u64)bo->num_pages << PAGE_SHIFT, &adev->num_bytes_moved);
781 return 0;
782 }
783
784 /**
785 * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault
786 *
787 * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault()
788 */
789 static int amdgpu_ttm_io_mem_reserve(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
790 {
791 struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
792 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
793 struct drm_mm_node *mm_node = mem->mm_node;
794
795 mem->bus.addr = NULL;
796 mem->bus.offset = 0;
797 mem->bus.size = mem->num_pages << PAGE_SHIFT;
798 mem->bus.base = 0;
799 mem->bus.is_iomem = false;
800 if (!(man->flags & TTM_MEMTYPE_FLAG_MAPPABLE))
801 return -EINVAL;
802 switch (mem->mem_type) {
803 case TTM_PL_SYSTEM:
804 /* system memory */
805 return 0;
806 case TTM_PL_TT:
807 break;
808 case TTM_PL_VRAM:
809 mem->bus.offset = mem->start << PAGE_SHIFT;
810 /* check if it's visible */
811 if ((mem->bus.offset + mem->bus.size) > adev->gmc.visible_vram_size)
812 return -EINVAL;
813 /* Only physically contiguous buffers apply. In a contiguous
814 * buffer, size of the first mm_node would match the number of
815 * pages in ttm_mem_reg.
816 */
817 if (adev->mman.aper_base_kaddr &&
818 (mm_node->size == mem->num_pages))
819 mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr +
820 mem->bus.offset;
821
822 mem->bus.base = adev->gmc.aper_base;
823 mem->bus.is_iomem = true;
824 break;
825 default:
826 return -EINVAL;
827 }
828 return 0;
829 }
830
831 static void amdgpu_ttm_io_mem_free(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
832 {
833 }
834
835 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo,
836 unsigned long page_offset)
837 {
838 uint64_t offset = (page_offset << PAGE_SHIFT);
839 struct drm_mm_node *mm;
840
841 mm = amdgpu_find_mm_node(&bo->mem, &offset);
842 return (bo->mem.bus.base >> PAGE_SHIFT) + mm->start +
843 (offset >> PAGE_SHIFT);
844 }
845
846 /*
847 * TTM backend functions.
848 */
849 struct amdgpu_ttm_tt {
850 struct ttm_dma_tt ttm;
851 struct drm_gem_object *gobj;
852 u64 offset;
853 uint64_t userptr;
854 struct task_struct *usertask;
855 uint32_t userflags;
856 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR)
857 struct hmm_range *range;
858 #endif
859 };
860
861 #ifdef CONFIG_DRM_AMDGPU_USERPTR
862 /**
863 * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user
864 * memory and start HMM tracking CPU page table update
865 *
866 * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only
867 * once afterwards to stop HMM tracking
868 */
869 int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct page **pages)
870 {
871 struct ttm_tt *ttm = bo->tbo.ttm;
872 struct amdgpu_ttm_tt *gtt = (void *)ttm;
873 unsigned long start = gtt->userptr;
874 struct vm_area_struct *vma;
875 struct hmm_range *range;
876 unsigned long timeout;
877 struct mm_struct *mm;
878 unsigned long i;
879 int r = 0;
880
881 mm = bo->notifier.mm;
882 if (unlikely(!mm)) {
883 DRM_DEBUG_DRIVER("BO is not registered?\n");
884 return -EFAULT;
885 }
886
887 /* Another get_user_pages is running at the same time?? */
888 if (WARN_ON(gtt->range))
889 return -EFAULT;
890
891 if (!mmget_not_zero(mm)) /* Happens during process shutdown */
892 return -ESRCH;
893
894 range = kzalloc(sizeof(*range), GFP_KERNEL);
895 if (unlikely(!range)) {
896 r = -ENOMEM;
897 goto out;
898 }
899 range->notifier = &bo->notifier;
900 range->start = bo->notifier.interval_tree.start;
901 range->end = bo->notifier.interval_tree.last + 1;
902 range->default_flags = HMM_PFN_REQ_FAULT;
903 if (!amdgpu_ttm_tt_is_readonly(ttm))
904 range->default_flags |= HMM_PFN_REQ_WRITE;
905
906 range->hmm_pfns = kvmalloc_array(ttm->num_pages,
907 sizeof(*range->hmm_pfns), GFP_KERNEL);
908 if (unlikely(!range->hmm_pfns)) {
909 r = -ENOMEM;
910 goto out_free_ranges;
911 }
912
913 down_read(&mm->mmap_sem);
914 vma = find_vma(mm, start);
915 if (unlikely(!vma || start < vma->vm_start)) {
916 r = -EFAULT;
917 goto out_unlock;
918 }
919 if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) &&
920 vma->vm_file)) {
921 r = -EPERM;
922 goto out_unlock;
923 }
924 up_read(&mm->mmap_sem);
925 timeout = jiffies + msecs_to_jiffies(HMM_RANGE_DEFAULT_TIMEOUT);
926
927 retry:
928 range->notifier_seq = mmu_interval_read_begin(&bo->notifier);
929
930 down_read(&mm->mmap_sem);
931 r = hmm_range_fault(range);
932 up_read(&mm->mmap_sem);
933 if (unlikely(r)) {
934 /*
935 * FIXME: This timeout should encompass the retry from
936 * mmu_interval_read_retry() as well.
937 */
938 if (r == -EBUSY && !time_after(jiffies, timeout))
939 goto retry;
940 goto out_free_pfns;
941 }
942
943 /*
944 * Due to default_flags, all pages are HMM_PFN_VALID or
945 * hmm_range_fault() fails. FIXME: The pages cannot be touched outside
946 * the notifier_lock, and mmu_interval_read_retry() must be done first.
947 */
948 for (i = 0; i < ttm->num_pages; i++)
949 pages[i] = hmm_pfn_to_page(range->hmm_pfns[i]);
950
951 gtt->range = range;
952 mmput(mm);
953
954 return 0;
955
956 out_unlock:
957 up_read(&mm->mmap_sem);
958 out_free_pfns:
959 kvfree(range->hmm_pfns);
960 out_free_ranges:
961 kfree(range);
962 out:
963 mmput(mm);
964 return r;
965 }
966
967 /**
968 * amdgpu_ttm_tt_userptr_range_done - stop HMM track the CPU page table change
969 * Check if the pages backing this ttm range have been invalidated
970 *
971 * Returns: true if pages are still valid
972 */
973 bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm)
974 {
975 struct amdgpu_ttm_tt *gtt = (void *)ttm;
976 bool r = false;
977
978 if (!gtt || !gtt->userptr)
979 return false;
980
981 DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%lx\n",
982 gtt->userptr, ttm->num_pages);
983
984 WARN_ONCE(!gtt->range || !gtt->range->hmm_pfns,
985 "No user pages to check\n");
986
987 if (gtt->range) {
988 /*
989 * FIXME: Must always hold notifier_lock for this, and must
990 * not ignore the return code.
991 */
992 r = mmu_interval_read_retry(gtt->range->notifier,
993 gtt->range->notifier_seq);
994 kvfree(gtt->range->hmm_pfns);
995 kfree(gtt->range);
996 gtt->range = NULL;
997 }
998
999 return !r;
1000 }
1001 #endif
1002
1003 /**
1004 * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary.
1005 *
1006 * Called by amdgpu_cs_list_validate(). This creates the page list
1007 * that backs user memory and will ultimately be mapped into the device
1008 * address space.
1009 */
1010 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages)
1011 {
1012 unsigned long i;
1013
1014 for (i = 0; i < ttm->num_pages; ++i)
1015 ttm->pages[i] = pages ? pages[i] : NULL;
1016 }
1017
1018 /**
1019 * amdgpu_ttm_tt_pin_userptr - prepare the sg table with the user pages
1020 *
1021 * Called by amdgpu_ttm_backend_bind()
1022 **/
1023 static int amdgpu_ttm_tt_pin_userptr(struct ttm_tt *ttm)
1024 {
1025 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1026 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1027 unsigned nents;
1028 int r;
1029
1030 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1031 enum dma_data_direction direction = write ?
1032 DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
1033
1034 /* Allocate an SG array and squash pages into it */
1035 r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0,
1036 ttm->num_pages << PAGE_SHIFT,
1037 GFP_KERNEL);
1038 if (r)
1039 goto release_sg;
1040
1041 /* Map SG to device */
1042 r = -ENOMEM;
1043 nents = dma_map_sg(adev->dev, ttm->sg->sgl, ttm->sg->nents, direction);
1044 if (nents == 0)
1045 goto release_sg;
1046
1047 /* convert SG to linear array of pages and dma addresses */
1048 drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages,
1049 gtt->ttm.dma_address, ttm->num_pages);
1050
1051 return 0;
1052
1053 release_sg:
1054 kfree(ttm->sg);
1055 return r;
1056 }
1057
1058 /**
1059 * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages
1060 */
1061 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_tt *ttm)
1062 {
1063 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1064 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1065
1066 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1067 enum dma_data_direction direction = write ?
1068 DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
1069
1070 /* double check that we don't free the table twice */
1071 if (!ttm->sg->sgl)
1072 return;
1073
1074 /* unmap the pages mapped to the device */
1075 dma_unmap_sg(adev->dev, ttm->sg->sgl, ttm->sg->nents, direction);
1076
1077 sg_free_table(ttm->sg);
1078
1079 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR)
1080 if (gtt->range) {
1081 unsigned long i;
1082
1083 for (i = 0; i < ttm->num_pages; i++) {
1084 if (ttm->pages[i] !=
1085 hmm_pfn_to_page(gtt->range->hmm_pfns[i]))
1086 break;
1087 }
1088
1089 WARN((i == ttm->num_pages), "Missing get_user_page_done\n");
1090 }
1091 #endif
1092 }
1093
1094 int amdgpu_ttm_gart_bind(struct amdgpu_device *adev,
1095 struct ttm_buffer_object *tbo,
1096 uint64_t flags)
1097 {
1098 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo);
1099 struct ttm_tt *ttm = tbo->ttm;
1100 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1101 int r;
1102
1103 if (amdgpu_bo_encrypted(abo))
1104 flags |= AMDGPU_PTE_TMZ;
1105
1106 if (abo->flags & AMDGPU_GEM_CREATE_CP_MQD_GFX9) {
1107 uint64_t page_idx = 1;
1108
1109 r = amdgpu_gart_bind(adev, gtt->offset, page_idx,
1110 ttm->pages, gtt->ttm.dma_address, flags);
1111 if (r)
1112 goto gart_bind_fail;
1113
1114 /* The memory type of the first page defaults to UC. Now
1115 * modify the memory type to NC from the second page of
1116 * the BO onward.
1117 */
1118 flags &= ~AMDGPU_PTE_MTYPE_VG10_MASK;
1119 flags |= AMDGPU_PTE_MTYPE_VG10(AMDGPU_MTYPE_NC);
1120
1121 r = amdgpu_gart_bind(adev,
1122 gtt->offset + (page_idx << PAGE_SHIFT),
1123 ttm->num_pages - page_idx,
1124 &ttm->pages[page_idx],
1125 &(gtt->ttm.dma_address[page_idx]), flags);
1126 } else {
1127 r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
1128 ttm->pages, gtt->ttm.dma_address, flags);
1129 }
1130
1131 gart_bind_fail:
1132 if (r)
1133 DRM_ERROR("failed to bind %lu pages at 0x%08llX\n",
1134 ttm->num_pages, gtt->offset);
1135
1136 return r;
1137 }
1138
1139 /**
1140 * amdgpu_ttm_backend_bind - Bind GTT memory
1141 *
1142 * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem().
1143 * This handles binding GTT memory to the device address space.
1144 */
1145 static int amdgpu_ttm_backend_bind(struct ttm_tt *ttm,
1146 struct ttm_mem_reg *bo_mem)
1147 {
1148 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1149 struct amdgpu_ttm_tt *gtt = (void*)ttm;
1150 uint64_t flags;
1151 int r = 0;
1152
1153 if (gtt->userptr) {
1154 r = amdgpu_ttm_tt_pin_userptr(ttm);
1155 if (r) {
1156 DRM_ERROR("failed to pin userptr\n");
1157 return r;
1158 }
1159 }
1160 if (!ttm->num_pages) {
1161 WARN(1, "nothing to bind %lu pages for mreg %p back %p!\n",
1162 ttm->num_pages, bo_mem, ttm);
1163 }
1164
1165 if (bo_mem->mem_type == AMDGPU_PL_GDS ||
1166 bo_mem->mem_type == AMDGPU_PL_GWS ||
1167 bo_mem->mem_type == AMDGPU_PL_OA)
1168 return -EINVAL;
1169
1170 if (!amdgpu_gtt_mgr_has_gart_addr(bo_mem)) {
1171 gtt->offset = AMDGPU_BO_INVALID_OFFSET;
1172 return 0;
1173 }
1174
1175 /* compute PTE flags relevant to this BO memory */
1176 flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem);
1177
1178 /* bind pages into GART page tables */
1179 gtt->offset = (u64)bo_mem->start << PAGE_SHIFT;
1180 r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
1181 ttm->pages, gtt->ttm.dma_address, flags);
1182
1183 if (r)
1184 DRM_ERROR("failed to bind %lu pages at 0x%08llX\n",
1185 ttm->num_pages, gtt->offset);
1186 return r;
1187 }
1188
1189 /**
1190 * amdgpu_ttm_alloc_gart - Allocate GART memory for buffer object
1191 */
1192 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo)
1193 {
1194 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
1195 struct ttm_operation_ctx ctx = { false, false };
1196 struct amdgpu_ttm_tt *gtt = (void*)bo->ttm;
1197 struct ttm_mem_reg tmp;
1198 struct ttm_placement placement;
1199 struct ttm_place placements;
1200 uint64_t addr, flags;
1201 int r;
1202
1203 if (bo->mem.start != AMDGPU_BO_INVALID_OFFSET)
1204 return 0;
1205
1206 addr = amdgpu_gmc_agp_addr(bo);
1207 if (addr != AMDGPU_BO_INVALID_OFFSET) {
1208 bo->mem.start = addr >> PAGE_SHIFT;
1209 } else {
1210
1211 /* allocate GART space */
1212 tmp = bo->mem;
1213 tmp.mm_node = NULL;
1214 placement.num_placement = 1;
1215 placement.placement = &placements;
1216 placement.num_busy_placement = 1;
1217 placement.busy_placement = &placements;
1218 placements.fpfn = 0;
1219 placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT;
1220 placements.flags = (bo->mem.placement & ~TTM_PL_MASK_MEM) |
1221 TTM_PL_FLAG_TT;
1222
1223 r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx);
1224 if (unlikely(r))
1225 return r;
1226
1227 /* compute PTE flags for this buffer object */
1228 flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, &tmp);
1229
1230 /* Bind pages */
1231 gtt->offset = (u64)tmp.start << PAGE_SHIFT;
1232 r = amdgpu_ttm_gart_bind(adev, bo, flags);
1233 if (unlikely(r)) {
1234 ttm_bo_mem_put(bo, &tmp);
1235 return r;
1236 }
1237
1238 ttm_bo_mem_put(bo, &bo->mem);
1239 bo->mem = tmp;
1240 }
1241
1242 bo->offset = (bo->mem.start << PAGE_SHIFT) +
1243 bo->bdev->man[bo->mem.mem_type].gpu_offset;
1244
1245 return 0;
1246 }
1247
1248 /**
1249 * amdgpu_ttm_recover_gart - Rebind GTT pages
1250 *
1251 * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to
1252 * rebind GTT pages during a GPU reset.
1253 */
1254 int amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo)
1255 {
1256 struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev);
1257 uint64_t flags;
1258 int r;
1259
1260 if (!tbo->ttm)
1261 return 0;
1262
1263 flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, &tbo->mem);
1264 r = amdgpu_ttm_gart_bind(adev, tbo, flags);
1265
1266 return r;
1267 }
1268
1269 /**
1270 * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages
1271 *
1272 * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and
1273 * ttm_tt_destroy().
1274 */
1275 static int amdgpu_ttm_backend_unbind(struct ttm_tt *ttm)
1276 {
1277 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1278 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1279 int r;
1280
1281 /* if the pages have userptr pinning then clear that first */
1282 if (gtt->userptr)
1283 amdgpu_ttm_tt_unpin_userptr(ttm);
1284
1285 if (gtt->offset == AMDGPU_BO_INVALID_OFFSET)
1286 return 0;
1287
1288 /* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */
1289 r = amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages);
1290 if (r)
1291 DRM_ERROR("failed to unbind %lu pages at 0x%08llX\n",
1292 gtt->ttm.ttm.num_pages, gtt->offset);
1293 return r;
1294 }
1295
1296 static void amdgpu_ttm_backend_destroy(struct ttm_tt *ttm)
1297 {
1298 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1299
1300 if (gtt->usertask)
1301 put_task_struct(gtt->usertask);
1302
1303 ttm_dma_tt_fini(&gtt->ttm);
1304 kfree(gtt);
1305 }
1306
1307 static struct ttm_backend_func amdgpu_backend_func = {
1308 .bind = &amdgpu_ttm_backend_bind,
1309 .unbind = &amdgpu_ttm_backend_unbind,
1310 .destroy = &amdgpu_ttm_backend_destroy,
1311 };
1312
1313 /**
1314 * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO
1315 *
1316 * @bo: The buffer object to create a GTT ttm_tt object around
1317 *
1318 * Called by ttm_tt_create().
1319 */
1320 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo,
1321 uint32_t page_flags)
1322 {
1323 struct amdgpu_ttm_tt *gtt;
1324
1325 gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL);
1326 if (gtt == NULL) {
1327 return NULL;
1328 }
1329 gtt->ttm.ttm.func = &amdgpu_backend_func;
1330 gtt->gobj = &bo->base;
1331
1332 /* allocate space for the uninitialized page entries */
1333 if (ttm_sg_tt_init(&gtt->ttm, bo, page_flags)) {
1334 kfree(gtt);
1335 return NULL;
1336 }
1337 return &gtt->ttm.ttm;
1338 }
1339
1340 /**
1341 * amdgpu_ttm_tt_populate - Map GTT pages visible to the device
1342 *
1343 * Map the pages of a ttm_tt object to an address space visible
1344 * to the underlying device.
1345 */
1346 static int amdgpu_ttm_tt_populate(struct ttm_tt *ttm,
1347 struct ttm_operation_ctx *ctx)
1348 {
1349 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1350 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1351
1352 /* user pages are bound by amdgpu_ttm_tt_pin_userptr() */
1353 if (gtt && gtt->userptr) {
1354 ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL);
1355 if (!ttm->sg)
1356 return -ENOMEM;
1357
1358 ttm->page_flags |= TTM_PAGE_FLAG_SG;
1359 ttm->state = tt_unbound;
1360 return 0;
1361 }
1362
1363 if (ttm->page_flags & TTM_PAGE_FLAG_SG) {
1364 if (!ttm->sg) {
1365 struct dma_buf_attachment *attach;
1366 struct sg_table *sgt;
1367
1368 attach = gtt->gobj->import_attach;
1369 sgt = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL);
1370 if (IS_ERR(sgt))
1371 return PTR_ERR(sgt);
1372
1373 ttm->sg = sgt;
1374 }
1375
1376 drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages,
1377 gtt->ttm.dma_address,
1378 ttm->num_pages);
1379 ttm->state = tt_unbound;
1380 return 0;
1381 }
1382
1383 #ifdef CONFIG_SWIOTLB
1384 if (adev->need_swiotlb && swiotlb_nr_tbl()) {
1385 return ttm_dma_populate(&gtt->ttm, adev->dev, ctx);
1386 }
1387 #endif
1388
1389 /* fall back to generic helper to populate the page array
1390 * and map them to the device */
1391 return ttm_populate_and_map_pages(adev->dev, &gtt->ttm, ctx);
1392 }
1393
1394 /**
1395 * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays
1396 *
1397 * Unmaps pages of a ttm_tt object from the device address space and
1398 * unpopulates the page array backing it.
1399 */
1400 static void amdgpu_ttm_tt_unpopulate(struct ttm_tt *ttm)
1401 {
1402 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1403 struct amdgpu_device *adev;
1404
1405 if (gtt && gtt->userptr) {
1406 amdgpu_ttm_tt_set_user_pages(ttm, NULL);
1407 kfree(ttm->sg);
1408 ttm->page_flags &= ~TTM_PAGE_FLAG_SG;
1409 return;
1410 }
1411
1412 if (ttm->sg && gtt->gobj->import_attach) {
1413 struct dma_buf_attachment *attach;
1414
1415 attach = gtt->gobj->import_attach;
1416 dma_buf_unmap_attachment(attach, ttm->sg, DMA_BIDIRECTIONAL);
1417 ttm->sg = NULL;
1418 return;
1419 }
1420
1421 if (ttm->page_flags & TTM_PAGE_FLAG_SG)
1422 return;
1423
1424 adev = amdgpu_ttm_adev(ttm->bdev);
1425
1426 #ifdef CONFIG_SWIOTLB
1427 if (adev->need_swiotlb && swiotlb_nr_tbl()) {
1428 ttm_dma_unpopulate(&gtt->ttm, adev->dev);
1429 return;
1430 }
1431 #endif
1432
1433 /* fall back to generic helper to unmap and unpopulate array */
1434 ttm_unmap_and_unpopulate_pages(adev->dev, &gtt->ttm);
1435 }
1436
1437 /**
1438 * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current
1439 * task
1440 *
1441 * @ttm: The ttm_tt object to bind this userptr object to
1442 * @addr: The address in the current tasks VM space to use
1443 * @flags: Requirements of userptr object.
1444 *
1445 * Called by amdgpu_gem_userptr_ioctl() to bind userptr pages
1446 * to current task
1447 */
1448 int amdgpu_ttm_tt_set_userptr(struct ttm_tt *ttm, uint64_t addr,
1449 uint32_t flags)
1450 {
1451 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1452
1453 if (gtt == NULL)
1454 return -EINVAL;
1455
1456 gtt->userptr = addr;
1457 gtt->userflags = flags;
1458
1459 if (gtt->usertask)
1460 put_task_struct(gtt->usertask);
1461 gtt->usertask = current->group_leader;
1462 get_task_struct(gtt->usertask);
1463
1464 return 0;
1465 }
1466
1467 /**
1468 * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object
1469 */
1470 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm)
1471 {
1472 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1473
1474 if (gtt == NULL)
1475 return NULL;
1476
1477 if (gtt->usertask == NULL)
1478 return NULL;
1479
1480 return gtt->usertask->mm;
1481 }
1482
1483 /**
1484 * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an
1485 * address range for the current task.
1486 *
1487 */
1488 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start,
1489 unsigned long end)
1490 {
1491 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1492 unsigned long size;
1493
1494 if (gtt == NULL || !gtt->userptr)
1495 return false;
1496
1497 /* Return false if no part of the ttm_tt object lies within
1498 * the range
1499 */
1500 size = (unsigned long)gtt->ttm.ttm.num_pages * PAGE_SIZE;
1501 if (gtt->userptr > end || gtt->userptr + size <= start)
1502 return false;
1503
1504 return true;
1505 }
1506
1507 /**
1508 * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr?
1509 */
1510 bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm)
1511 {
1512 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1513
1514 if (gtt == NULL || !gtt->userptr)
1515 return false;
1516
1517 return true;
1518 }
1519
1520 /**
1521 * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only?
1522 */
1523 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm)
1524 {
1525 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1526
1527 if (gtt == NULL)
1528 return false;
1529
1530 return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1531 }
1532
1533 /**
1534 * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object
1535 *
1536 * @ttm: The ttm_tt object to compute the flags for
1537 * @mem: The memory registry backing this ttm_tt object
1538 *
1539 * Figure out the flags to use for a VM PDE (Page Directory Entry).
1540 */
1541 uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_mem_reg *mem)
1542 {
1543 uint64_t flags = 0;
1544
1545 if (mem && mem->mem_type != TTM_PL_SYSTEM)
1546 flags |= AMDGPU_PTE_VALID;
1547
1548 if (mem && mem->mem_type == TTM_PL_TT) {
1549 flags |= AMDGPU_PTE_SYSTEM;
1550
1551 if (ttm->caching_state == tt_cached)
1552 flags |= AMDGPU_PTE_SNOOPED;
1553 }
1554
1555 return flags;
1556 }
1557
1558 /**
1559 * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object
1560 *
1561 * @ttm: The ttm_tt object to compute the flags for
1562 * @mem: The memory registry backing this ttm_tt object
1563
1564 * Figure out the flags to use for a VM PTE (Page Table Entry).
1565 */
1566 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm,
1567 struct ttm_mem_reg *mem)
1568 {
1569 uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem);
1570
1571 flags |= adev->gart.gart_pte_flags;
1572 flags |= AMDGPU_PTE_READABLE;
1573
1574 if (!amdgpu_ttm_tt_is_readonly(ttm))
1575 flags |= AMDGPU_PTE_WRITEABLE;
1576
1577 return flags;
1578 }
1579
1580 /**
1581 * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer
1582 * object.
1583 *
1584 * Return true if eviction is sensible. Called by ttm_mem_evict_first() on
1585 * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until
1586 * it can find space for a new object and by ttm_bo_force_list_clean() which is
1587 * used to clean out a memory space.
1588 */
1589 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
1590 const struct ttm_place *place)
1591 {
1592 unsigned long num_pages = bo->mem.num_pages;
1593 struct drm_mm_node *node = bo->mem.mm_node;
1594 struct dma_resv_list *flist;
1595 struct dma_fence *f;
1596 int i;
1597
1598 if (bo->type == ttm_bo_type_kernel &&
1599 !amdgpu_vm_evictable(ttm_to_amdgpu_bo(bo)))
1600 return false;
1601
1602 /* If bo is a KFD BO, check if the bo belongs to the current process.
1603 * If true, then return false as any KFD process needs all its BOs to
1604 * be resident to run successfully
1605 */
1606 flist = dma_resv_get_list(bo->base.resv);
1607 if (flist) {
1608 for (i = 0; i < flist->shared_count; ++i) {
1609 f = rcu_dereference_protected(flist->shared[i],
1610 dma_resv_held(bo->base.resv));
1611 if (amdkfd_fence_check_mm(f, current->mm))
1612 return false;
1613 }
1614 }
1615
1616 switch (bo->mem.mem_type) {
1617 case TTM_PL_TT:
1618 if (amdgpu_bo_is_amdgpu_bo(bo) &&
1619 amdgpu_bo_encrypted(ttm_to_amdgpu_bo(bo)))
1620 return false;
1621 return true;
1622
1623 case TTM_PL_VRAM:
1624 /* Check each drm MM node individually */
1625 while (num_pages) {
1626 if (place->fpfn < (node->start + node->size) &&
1627 !(place->lpfn && place->lpfn <= node->start))
1628 return true;
1629
1630 num_pages -= node->size;
1631 ++node;
1632 }
1633 return false;
1634
1635 default:
1636 break;
1637 }
1638
1639 return ttm_bo_eviction_valuable(bo, place);
1640 }
1641
1642 /**
1643 * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object.
1644 *
1645 * @bo: The buffer object to read/write
1646 * @offset: Offset into buffer object
1647 * @buf: Secondary buffer to write/read from
1648 * @len: Length in bytes of access
1649 * @write: true if writing
1650 *
1651 * This is used to access VRAM that backs a buffer object via MMIO
1652 * access for debugging purposes.
1653 */
1654 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo,
1655 unsigned long offset,
1656 void *buf, int len, int write)
1657 {
1658 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1659 struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1660 struct drm_mm_node *nodes;
1661 uint32_t value = 0;
1662 int ret = 0;
1663 uint64_t pos;
1664 unsigned long flags;
1665
1666 if (bo->mem.mem_type != TTM_PL_VRAM)
1667 return -EIO;
1668
1669 pos = offset;
1670 nodes = amdgpu_find_mm_node(&abo->tbo.mem, &pos);
1671 pos += (nodes->start << PAGE_SHIFT);
1672
1673 while (len && pos < adev->gmc.mc_vram_size) {
1674 uint64_t aligned_pos = pos & ~(uint64_t)3;
1675 uint64_t bytes = 4 - (pos & 3);
1676 uint32_t shift = (pos & 3) * 8;
1677 uint32_t mask = 0xffffffff << shift;
1678
1679 if (len < bytes) {
1680 mask &= 0xffffffff >> (bytes - len) * 8;
1681 bytes = len;
1682 }
1683
1684 if (mask != 0xffffffff) {
1685 spin_lock_irqsave(&adev->mmio_idx_lock, flags);
1686 WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)aligned_pos) | 0x80000000);
1687 WREG32_NO_KIQ(mmMM_INDEX_HI, aligned_pos >> 31);
1688 if (!write || mask != 0xffffffff)
1689 value = RREG32_NO_KIQ(mmMM_DATA);
1690 if (write) {
1691 value &= ~mask;
1692 value |= (*(uint32_t *)buf << shift) & mask;
1693 WREG32_NO_KIQ(mmMM_DATA, value);
1694 }
1695 spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
1696 if (!write) {
1697 value = (value & mask) >> shift;
1698 memcpy(buf, &value, bytes);
1699 }
1700 } else {
1701 bytes = (nodes->start + nodes->size) << PAGE_SHIFT;
1702 bytes = min(bytes - pos, (uint64_t)len & ~0x3ull);
1703
1704 amdgpu_device_vram_access(adev, pos, (uint32_t *)buf,
1705 bytes, write);
1706 }
1707
1708 ret += bytes;
1709 buf = (uint8_t *)buf + bytes;
1710 pos += bytes;
1711 len -= bytes;
1712 if (pos >= (nodes->start + nodes->size) << PAGE_SHIFT) {
1713 ++nodes;
1714 pos = (nodes->start << PAGE_SHIFT);
1715 }
1716 }
1717
1718 return ret;
1719 }
1720
1721 static struct ttm_bo_driver amdgpu_bo_driver = {
1722 .ttm_tt_create = &amdgpu_ttm_tt_create,
1723 .ttm_tt_populate = &amdgpu_ttm_tt_populate,
1724 .ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate,
1725 .init_mem_type = &amdgpu_init_mem_type,
1726 .eviction_valuable = amdgpu_ttm_bo_eviction_valuable,
1727 .evict_flags = &amdgpu_evict_flags,
1728 .move = &amdgpu_bo_move,
1729 .verify_access = &amdgpu_verify_access,
1730 .move_notify = &amdgpu_bo_move_notify,
1731 .release_notify = &amdgpu_bo_release_notify,
1732 .fault_reserve_notify = &amdgpu_bo_fault_reserve_notify,
1733 .io_mem_reserve = &amdgpu_ttm_io_mem_reserve,
1734 .io_mem_free = &amdgpu_ttm_io_mem_free,
1735 .io_mem_pfn = amdgpu_ttm_io_mem_pfn,
1736 .access_memory = &amdgpu_ttm_access_memory,
1737 .del_from_lru_notify = &amdgpu_vm_del_from_lru_notify
1738 };
1739
1740 /*
1741 * Firmware Reservation functions
1742 */
1743 /**
1744 * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram
1745 *
1746 * @adev: amdgpu_device pointer
1747 *
1748 * free fw reserved vram if it has been reserved.
1749 */
1750 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev)
1751 {
1752 amdgpu_bo_free_kernel(&adev->fw_vram_usage.reserved_bo,
1753 NULL, &adev->fw_vram_usage.va);
1754 }
1755
1756 /**
1757 * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw
1758 *
1759 * @adev: amdgpu_device pointer
1760 *
1761 * create bo vram reservation from fw.
1762 */
1763 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev)
1764 {
1765 uint64_t vram_size = adev->gmc.visible_vram_size;
1766
1767 adev->fw_vram_usage.va = NULL;
1768 adev->fw_vram_usage.reserved_bo = NULL;
1769
1770 if (adev->fw_vram_usage.size == 0 ||
1771 adev->fw_vram_usage.size > vram_size)
1772 return 0;
1773
1774 return amdgpu_bo_create_kernel_at(adev,
1775 adev->fw_vram_usage.start_offset,
1776 adev->fw_vram_usage.size,
1777 AMDGPU_GEM_DOMAIN_VRAM,
1778 &adev->fw_vram_usage.reserved_bo,
1779 &adev->fw_vram_usage.va);
1780 }
1781
1782 /*
1783 * Memoy training reservation functions
1784 */
1785
1786 /**
1787 * amdgpu_ttm_training_reserve_vram_fini - free memory training reserved vram
1788 *
1789 * @adev: amdgpu_device pointer
1790 *
1791 * free memory training reserved vram if it has been reserved.
1792 */
1793 static int amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device *adev)
1794 {
1795 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1796
1797 ctx->init = PSP_MEM_TRAIN_NOT_SUPPORT;
1798 amdgpu_bo_free_kernel(&ctx->c2p_bo, NULL, NULL);
1799 ctx->c2p_bo = NULL;
1800
1801 return 0;
1802 }
1803
1804 static u64 amdgpu_ttm_training_get_c2p_offset(u64 vram_size)
1805 {
1806 if ((vram_size & (SZ_1M - 1)) < (SZ_4K + 1) )
1807 vram_size -= SZ_1M;
1808
1809 return ALIGN(vram_size, SZ_1M);
1810 }
1811
1812 /**
1813 * amdgpu_ttm_training_reserve_vram_init - create bo vram reservation from memory training
1814 *
1815 * @adev: amdgpu_device pointer
1816 *
1817 * create bo vram reservation from memory training.
1818 */
1819 static int amdgpu_ttm_training_reserve_vram_init(struct amdgpu_device *adev)
1820 {
1821 int ret;
1822 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1823
1824 memset(ctx, 0, sizeof(*ctx));
1825 if (!adev->fw_vram_usage.mem_train_support) {
1826 DRM_DEBUG("memory training does not support!\n");
1827 return 0;
1828 }
1829
1830 ctx->c2p_train_data_offset = amdgpu_ttm_training_get_c2p_offset(adev->gmc.mc_vram_size);
1831 ctx->p2c_train_data_offset = (adev->gmc.mc_vram_size - GDDR6_MEM_TRAINING_OFFSET);
1832 ctx->train_data_size = GDDR6_MEM_TRAINING_DATA_SIZE_IN_BYTES;
1833
1834 DRM_DEBUG("train_data_size:%llx,p2c_train_data_offset:%llx,c2p_train_data_offset:%llx.\n",
1835 ctx->train_data_size,
1836 ctx->p2c_train_data_offset,
1837 ctx->c2p_train_data_offset);
1838
1839 ret = amdgpu_bo_create_kernel_at(adev,
1840 ctx->c2p_train_data_offset,
1841 ctx->train_data_size,
1842 AMDGPU_GEM_DOMAIN_VRAM,
1843 &ctx->c2p_bo,
1844 NULL);
1845 if (ret) {
1846 DRM_ERROR("alloc c2p_bo failed(%d)!\n", ret);
1847 amdgpu_ttm_training_reserve_vram_fini(adev);
1848 return ret;
1849 }
1850
1851 ctx->init = PSP_MEM_TRAIN_RESERVE_SUCCESS;
1852 return 0;
1853 }
1854
1855 /**
1856 * amdgpu_ttm_init - Init the memory management (ttm) as well as various
1857 * gtt/vram related fields.
1858 *
1859 * This initializes all of the memory space pools that the TTM layer
1860 * will need such as the GTT space (system memory mapped to the device),
1861 * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which
1862 * can be mapped per VMID.
1863 */
1864 int amdgpu_ttm_init(struct amdgpu_device *adev)
1865 {
1866 uint64_t gtt_size;
1867 int r;
1868 u64 vis_vram_limit;
1869 void *stolen_vga_buf;
1870
1871 mutex_init(&adev->mman.gtt_window_lock);
1872
1873 /* No others user of address space so set it to 0 */
1874 r = ttm_bo_device_init(&adev->mman.bdev,
1875 &amdgpu_bo_driver,
1876 adev->ddev->anon_inode->i_mapping,
1877 adev->ddev->vma_offset_manager,
1878 dma_addressing_limited(adev->dev));
1879 if (r) {
1880 DRM_ERROR("failed initializing buffer object driver(%d).\n", r);
1881 return r;
1882 }
1883 adev->mman.initialized = true;
1884
1885 /* We opt to avoid OOM on system pages allocations */
1886 adev->mman.bdev.no_retry = true;
1887
1888 /* Initialize VRAM pool with all of VRAM divided into pages */
1889 r = ttm_bo_init_mm(&adev->mman.bdev, TTM_PL_VRAM,
1890 adev->gmc.real_vram_size >> PAGE_SHIFT);
1891 if (r) {
1892 DRM_ERROR("Failed initializing VRAM heap.\n");
1893 return r;
1894 }
1895
1896 /* Reduce size of CPU-visible VRAM if requested */
1897 vis_vram_limit = (u64)amdgpu_vis_vram_limit * 1024 * 1024;
1898 if (amdgpu_vis_vram_limit > 0 &&
1899 vis_vram_limit <= adev->gmc.visible_vram_size)
1900 adev->gmc.visible_vram_size = vis_vram_limit;
1901
1902 /* Change the size here instead of the init above so only lpfn is affected */
1903 amdgpu_ttm_set_buffer_funcs_status(adev, false);
1904 #ifdef CONFIG_64BIT
1905 adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base,
1906 adev->gmc.visible_vram_size);
1907 #endif
1908
1909 /*
1910 *The reserved vram for firmware must be pinned to the specified
1911 *place on the VRAM, so reserve it early.
1912 */
1913 r = amdgpu_ttm_fw_reserve_vram_init(adev);
1914 if (r) {
1915 return r;
1916 }
1917
1918 /*
1919 *The reserved vram for memory training must be pinned to the specified
1920 *place on the VRAM, so reserve it early.
1921 */
1922 if (!amdgpu_sriov_vf(adev)) {
1923 r = amdgpu_ttm_training_reserve_vram_init(adev);
1924 if (r)
1925 return r;
1926 }
1927
1928 /* allocate memory as required for VGA
1929 * This is used for VGA emulation and pre-OS scanout buffers to
1930 * avoid display artifacts while transitioning between pre-OS
1931 * and driver. */
1932 r = amdgpu_bo_create_kernel(adev, adev->gmc.stolen_size, PAGE_SIZE,
1933 AMDGPU_GEM_DOMAIN_VRAM,
1934 &adev->stolen_vga_memory,
1935 NULL, &stolen_vga_buf);
1936 if (r)
1937 return r;
1938
1939 /*
1940 * reserve TMR memory at the top of VRAM which holds
1941 * IP Discovery data and is protected by PSP.
1942 */
1943 if (adev->discovery_tmr_size > 0) {
1944 r = amdgpu_bo_create_kernel_at(adev,
1945 adev->gmc.real_vram_size - adev->discovery_tmr_size,
1946 adev->discovery_tmr_size,
1947 AMDGPU_GEM_DOMAIN_VRAM,
1948 &adev->discovery_memory,
1949 NULL);
1950 if (r)
1951 return r;
1952 }
1953
1954 DRM_INFO("amdgpu: %uM of VRAM memory ready\n",
1955 (unsigned) (adev->gmc.real_vram_size / (1024 * 1024)));
1956
1957 /* Compute GTT size, either bsaed on 3/4th the size of RAM size
1958 * or whatever the user passed on module init */
1959 if (amdgpu_gtt_size == -1) {
1960 struct sysinfo si;
1961
1962 si_meminfo(&si);
1963 gtt_size = min(max((AMDGPU_DEFAULT_GTT_SIZE_MB << 20),
1964 adev->gmc.mc_vram_size),
1965 ((uint64_t)si.totalram * si.mem_unit * 3/4));
1966 }
1967 else
1968 gtt_size = (uint64_t)amdgpu_gtt_size << 20;
1969
1970 /* Initialize GTT memory pool */
1971 r = ttm_bo_init_mm(&adev->mman.bdev, TTM_PL_TT, gtt_size >> PAGE_SHIFT);
1972 if (r) {
1973 DRM_ERROR("Failed initializing GTT heap.\n");
1974 return r;
1975 }
1976 DRM_INFO("amdgpu: %uM of GTT memory ready.\n",
1977 (unsigned)(gtt_size / (1024 * 1024)));
1978
1979 /* Initialize various on-chip memory pools */
1980 r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_GDS,
1981 adev->gds.gds_size);
1982 if (r) {
1983 DRM_ERROR("Failed initializing GDS heap.\n");
1984 return r;
1985 }
1986
1987 r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_GWS,
1988 adev->gds.gws_size);
1989 if (r) {
1990 DRM_ERROR("Failed initializing gws heap.\n");
1991 return r;
1992 }
1993
1994 r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_OA,
1995 adev->gds.oa_size);
1996 if (r) {
1997 DRM_ERROR("Failed initializing oa heap.\n");
1998 return r;
1999 }
2000
2001 return 0;
2002 }
2003
2004 /**
2005 * amdgpu_ttm_late_init - Handle any late initialization for amdgpu_ttm
2006 */
2007 void amdgpu_ttm_late_init(struct amdgpu_device *adev)
2008 {
2009 void *stolen_vga_buf;
2010 /* return the VGA stolen memory (if any) back to VRAM */
2011 amdgpu_bo_free_kernel(&adev->stolen_vga_memory, NULL, &stolen_vga_buf);
2012 }
2013
2014 /**
2015 * amdgpu_ttm_fini - De-initialize the TTM memory pools
2016 */
2017 void amdgpu_ttm_fini(struct amdgpu_device *adev)
2018 {
2019 if (!adev->mman.initialized)
2020 return;
2021
2022 amdgpu_ttm_training_reserve_vram_fini(adev);
2023 /* return the IP Discovery TMR memory back to VRAM */
2024 amdgpu_bo_free_kernel(&adev->discovery_memory, NULL, NULL);
2025 amdgpu_ttm_fw_reserve_vram_fini(adev);
2026
2027 if (adev->mman.aper_base_kaddr)
2028 iounmap(adev->mman.aper_base_kaddr);
2029 adev->mman.aper_base_kaddr = NULL;
2030
2031 ttm_bo_clean_mm(&adev->mman.bdev, TTM_PL_VRAM);
2032 ttm_bo_clean_mm(&adev->mman.bdev, TTM_PL_TT);
2033 ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_GDS);
2034 ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_GWS);
2035 ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_OA);
2036 ttm_bo_device_release(&adev->mman.bdev);
2037 adev->mman.initialized = false;
2038 DRM_INFO("amdgpu: ttm finalized\n");
2039 }
2040
2041 /**
2042 * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions
2043 *
2044 * @adev: amdgpu_device pointer
2045 * @enable: true when we can use buffer functions.
2046 *
2047 * Enable/disable use of buffer functions during suspend/resume. This should
2048 * only be called at bootup or when userspace isn't running.
2049 */
2050 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable)
2051 {
2052 struct ttm_mem_type_manager *man = &adev->mman.bdev.man[TTM_PL_VRAM];
2053 uint64_t size;
2054 int r;
2055
2056 if (!adev->mman.initialized || adev->in_gpu_reset ||
2057 adev->mman.buffer_funcs_enabled == enable)
2058 return;
2059
2060 if (enable) {
2061 struct amdgpu_ring *ring;
2062 struct drm_gpu_scheduler *sched;
2063
2064 ring = adev->mman.buffer_funcs_ring;
2065 sched = &ring->sched;
2066 r = drm_sched_entity_init(&adev->mman.entity,
2067 DRM_SCHED_PRIORITY_KERNEL, &sched,
2068 1, NULL);
2069 if (r) {
2070 DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
2071 r);
2072 return;
2073 }
2074 } else {
2075 drm_sched_entity_destroy(&adev->mman.entity);
2076 dma_fence_put(man->move);
2077 man->move = NULL;
2078 }
2079
2080 /* this just adjusts TTM size idea, which sets lpfn to the correct value */
2081 if (enable)
2082 size = adev->gmc.real_vram_size;
2083 else
2084 size = adev->gmc.visible_vram_size;
2085 man->size = size >> PAGE_SHIFT;
2086 adev->mman.buffer_funcs_enabled = enable;
2087 }
2088
2089 int amdgpu_mmap(struct file *filp, struct vm_area_struct *vma)
2090 {
2091 struct drm_file *file_priv = filp->private_data;
2092 struct amdgpu_device *adev = file_priv->minor->dev->dev_private;
2093
2094 if (adev == NULL)
2095 return -EINVAL;
2096
2097 return ttm_bo_mmap(filp, vma, &adev->mman.bdev);
2098 }
2099
2100 int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset,
2101 uint64_t dst_offset, uint32_t byte_count,
2102 struct dma_resv *resv,
2103 struct dma_fence **fence, bool direct_submit,
2104 bool vm_needs_flush, bool tmz)
2105 {
2106 enum amdgpu_ib_pool_type pool = direct_submit ? AMDGPU_IB_POOL_DIRECT :
2107 AMDGPU_IB_POOL_DELAYED;
2108 struct amdgpu_device *adev = ring->adev;
2109 struct amdgpu_job *job;
2110
2111 uint32_t max_bytes;
2112 unsigned num_loops, num_dw;
2113 unsigned i;
2114 int r;
2115
2116 if (direct_submit && !ring->sched.ready) {
2117 DRM_ERROR("Trying to move memory with ring turned off.\n");
2118 return -EINVAL;
2119 }
2120
2121 max_bytes = adev->mman.buffer_funcs->copy_max_bytes;
2122 num_loops = DIV_ROUND_UP(byte_count, max_bytes);
2123 num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->copy_num_dw, 8);
2124
2125 r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, pool, &job);
2126 if (r)
2127 return r;
2128
2129 if (vm_needs_flush) {
2130 job->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gart.bo);
2131 job->vm_needs_flush = true;
2132 }
2133 if (resv) {
2134 r = amdgpu_sync_resv(adev, &job->sync, resv,
2135 AMDGPU_SYNC_ALWAYS,
2136 AMDGPU_FENCE_OWNER_UNDEFINED);
2137 if (r) {
2138 DRM_ERROR("sync failed (%d).\n", r);
2139 goto error_free;
2140 }
2141 }
2142
2143 for (i = 0; i < num_loops; i++) {
2144 uint32_t cur_size_in_bytes = min(byte_count, max_bytes);
2145
2146 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset,
2147 dst_offset, cur_size_in_bytes, tmz);
2148
2149 src_offset += cur_size_in_bytes;
2150 dst_offset += cur_size_in_bytes;
2151 byte_count -= cur_size_in_bytes;
2152 }
2153
2154 amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2155 WARN_ON(job->ibs[0].length_dw > num_dw);
2156 if (direct_submit)
2157 r = amdgpu_job_submit_direct(job, ring, fence);
2158 else
2159 r = amdgpu_job_submit(job, &adev->mman.entity,
2160 AMDGPU_FENCE_OWNER_UNDEFINED, fence);
2161 if (r)
2162 goto error_free;
2163
2164 return r;
2165
2166 error_free:
2167 amdgpu_job_free(job);
2168 DRM_ERROR("Error scheduling IBs (%d)\n", r);
2169 return r;
2170 }
2171
2172 int amdgpu_fill_buffer(struct amdgpu_bo *bo,
2173 uint32_t src_data,
2174 struct dma_resv *resv,
2175 struct dma_fence **fence)
2176 {
2177 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
2178 uint32_t max_bytes = adev->mman.buffer_funcs->fill_max_bytes;
2179 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
2180
2181 struct drm_mm_node *mm_node;
2182 unsigned long num_pages;
2183 unsigned int num_loops, num_dw;
2184
2185 struct amdgpu_job *job;
2186 int r;
2187
2188 if (!adev->mman.buffer_funcs_enabled) {
2189 DRM_ERROR("Trying to clear memory with ring turned off.\n");
2190 return -EINVAL;
2191 }
2192
2193 if (bo->tbo.mem.mem_type == TTM_PL_TT) {
2194 r = amdgpu_ttm_alloc_gart(&bo->tbo);
2195 if (r)
2196 return r;
2197 }
2198
2199 num_pages = bo->tbo.num_pages;
2200 mm_node = bo->tbo.mem.mm_node;
2201 num_loops = 0;
2202 while (num_pages) {
2203 uint64_t byte_count = mm_node->size << PAGE_SHIFT;
2204
2205 num_loops += DIV_ROUND_UP_ULL(byte_count, max_bytes);
2206 num_pages -= mm_node->size;
2207 ++mm_node;
2208 }
2209 num_dw = num_loops * adev->mman.buffer_funcs->fill_num_dw;
2210
2211 /* for IB padding */
2212 num_dw += 64;
2213
2214 r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, AMDGPU_IB_POOL_DELAYED,
2215 &job);
2216 if (r)
2217 return r;
2218
2219 if (resv) {
2220 r = amdgpu_sync_resv(adev, &job->sync, resv,
2221 AMDGPU_SYNC_ALWAYS,
2222 AMDGPU_FENCE_OWNER_UNDEFINED);
2223 if (r) {
2224 DRM_ERROR("sync failed (%d).\n", r);
2225 goto error_free;
2226 }
2227 }
2228
2229 num_pages = bo->tbo.num_pages;
2230 mm_node = bo->tbo.mem.mm_node;
2231
2232 while (num_pages) {
2233 uint64_t byte_count = mm_node->size << PAGE_SHIFT;
2234 uint64_t dst_addr;
2235
2236 dst_addr = amdgpu_mm_node_addr(&bo->tbo, mm_node, &bo->tbo.mem);
2237 while (byte_count) {
2238 uint32_t cur_size_in_bytes = min_t(uint64_t, byte_count,
2239 max_bytes);
2240
2241 amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data,
2242 dst_addr, cur_size_in_bytes);
2243
2244 dst_addr += cur_size_in_bytes;
2245 byte_count -= cur_size_in_bytes;
2246 }
2247
2248 num_pages -= mm_node->size;
2249 ++mm_node;
2250 }
2251
2252 amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2253 WARN_ON(job->ibs[0].length_dw > num_dw);
2254 r = amdgpu_job_submit(job, &adev->mman.entity,
2255 AMDGPU_FENCE_OWNER_UNDEFINED, fence);
2256 if (r)
2257 goto error_free;
2258
2259 return 0;
2260
2261 error_free:
2262 amdgpu_job_free(job);
2263 return r;
2264 }
2265
2266 #if defined(CONFIG_DEBUG_FS)
2267
2268 static int amdgpu_mm_dump_table(struct seq_file *m, void *data)
2269 {
2270 struct drm_info_node *node = (struct drm_info_node *)m->private;
2271 unsigned ttm_pl = (uintptr_t)node->info_ent->data;
2272 struct drm_device *dev = node->minor->dev;
2273 struct amdgpu_device *adev = dev->dev_private;
2274 struct ttm_mem_type_manager *man = &adev->mman.bdev.man[ttm_pl];
2275 struct drm_printer p = drm_seq_file_printer(m);
2276
2277 man->func->debug(man, &p);
2278 return 0;
2279 }
2280
2281 static const struct drm_info_list amdgpu_ttm_debugfs_list[] = {
2282 {"amdgpu_vram_mm", amdgpu_mm_dump_table, 0, (void *)TTM_PL_VRAM},
2283 {"amdgpu_gtt_mm", amdgpu_mm_dump_table, 0, (void *)TTM_PL_TT},
2284 {"amdgpu_gds_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_GDS},
2285 {"amdgpu_gws_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_GWS},
2286 {"amdgpu_oa_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_OA},
2287 {"ttm_page_pool", ttm_page_alloc_debugfs, 0, NULL},
2288 #ifdef CONFIG_SWIOTLB
2289 {"ttm_dma_page_pool", ttm_dma_page_alloc_debugfs, 0, NULL}
2290 #endif
2291 };
2292
2293 /**
2294 * amdgpu_ttm_vram_read - Linear read access to VRAM
2295 *
2296 * Accesses VRAM via MMIO for debugging purposes.
2297 */
2298 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf,
2299 size_t size, loff_t *pos)
2300 {
2301 struct amdgpu_device *adev = file_inode(f)->i_private;
2302 ssize_t result = 0;
2303
2304 if (size & 0x3 || *pos & 0x3)
2305 return -EINVAL;
2306
2307 if (*pos >= adev->gmc.mc_vram_size)
2308 return -ENXIO;
2309
2310 size = min(size, (size_t)(adev->gmc.mc_vram_size - *pos));
2311 while (size) {
2312 size_t bytes = min(size, AMDGPU_TTM_VRAM_MAX_DW_READ * 4);
2313 uint32_t value[AMDGPU_TTM_VRAM_MAX_DW_READ];
2314
2315 amdgpu_device_vram_access(adev, *pos, value, bytes, false);
2316 if (copy_to_user(buf, value, bytes))
2317 return -EFAULT;
2318
2319 result += bytes;
2320 buf += bytes;
2321 *pos += bytes;
2322 size -= bytes;
2323 }
2324
2325 return result;
2326 }
2327
2328 /**
2329 * amdgpu_ttm_vram_write - Linear write access to VRAM
2330 *
2331 * Accesses VRAM via MMIO for debugging purposes.
2332 */
2333 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf,
2334 size_t size, loff_t *pos)
2335 {
2336 struct amdgpu_device *adev = file_inode(f)->i_private;
2337 ssize_t result = 0;
2338 int r;
2339
2340 if (size & 0x3 || *pos & 0x3)
2341 return -EINVAL;
2342
2343 if (*pos >= adev->gmc.mc_vram_size)
2344 return -ENXIO;
2345
2346 while (size) {
2347 unsigned long flags;
2348 uint32_t value;
2349
2350 if (*pos >= adev->gmc.mc_vram_size)
2351 return result;
2352
2353 r = get_user(value, (uint32_t *)buf);
2354 if (r)
2355 return r;
2356
2357 spin_lock_irqsave(&adev->mmio_idx_lock, flags);
2358 WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)*pos) | 0x80000000);
2359 WREG32_NO_KIQ(mmMM_INDEX_HI, *pos >> 31);
2360 WREG32_NO_KIQ(mmMM_DATA, value);
2361 spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
2362
2363 result += 4;
2364 buf += 4;
2365 *pos += 4;
2366 size -= 4;
2367 }
2368
2369 return result;
2370 }
2371
2372 static const struct file_operations amdgpu_ttm_vram_fops = {
2373 .owner = THIS_MODULE,
2374 .read = amdgpu_ttm_vram_read,
2375 .write = amdgpu_ttm_vram_write,
2376 .llseek = default_llseek,
2377 };
2378
2379 #ifdef CONFIG_DRM_AMDGPU_GART_DEBUGFS
2380
2381 /**
2382 * amdgpu_ttm_gtt_read - Linear read access to GTT memory
2383 */
2384 static ssize_t amdgpu_ttm_gtt_read(struct file *f, char __user *buf,
2385 size_t size, loff_t *pos)
2386 {
2387 struct amdgpu_device *adev = file_inode(f)->i_private;
2388 ssize_t result = 0;
2389 int r;
2390
2391 while (size) {
2392 loff_t p = *pos / PAGE_SIZE;
2393 unsigned off = *pos & ~PAGE_MASK;
2394 size_t cur_size = min_t(size_t, size, PAGE_SIZE - off);
2395 struct page *page;
2396 void *ptr;
2397
2398 if (p >= adev->gart.num_cpu_pages)
2399 return result;
2400
2401 page = adev->gart.pages[p];
2402 if (page) {
2403 ptr = kmap(page);
2404 ptr += off;
2405
2406 r = copy_to_user(buf, ptr, cur_size);
2407 kunmap(adev->gart.pages[p]);
2408 } else
2409 r = clear_user(buf, cur_size);
2410
2411 if (r)
2412 return -EFAULT;
2413
2414 result += cur_size;
2415 buf += cur_size;
2416 *pos += cur_size;
2417 size -= cur_size;
2418 }
2419
2420 return result;
2421 }
2422
2423 static const struct file_operations amdgpu_ttm_gtt_fops = {
2424 .owner = THIS_MODULE,
2425 .read = amdgpu_ttm_gtt_read,
2426 .llseek = default_llseek
2427 };
2428
2429 #endif
2430
2431 /**
2432 * amdgpu_iomem_read - Virtual read access to GPU mapped memory
2433 *
2434 * This function is used to read memory that has been mapped to the
2435 * GPU and the known addresses are not physical addresses but instead
2436 * bus addresses (e.g., what you'd put in an IB or ring buffer).
2437 */
2438 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf,
2439 size_t size, loff_t *pos)
2440 {
2441 struct amdgpu_device *adev = file_inode(f)->i_private;
2442 struct iommu_domain *dom;
2443 ssize_t result = 0;
2444 int r;
2445
2446 /* retrieve the IOMMU domain if any for this device */
2447 dom = iommu_get_domain_for_dev(adev->dev);
2448
2449 while (size) {
2450 phys_addr_t addr = *pos & PAGE_MASK;
2451 loff_t off = *pos & ~PAGE_MASK;
2452 size_t bytes = PAGE_SIZE - off;
2453 unsigned long pfn;
2454 struct page *p;
2455 void *ptr;
2456
2457 bytes = bytes < size ? bytes : size;
2458
2459 /* Translate the bus address to a physical address. If
2460 * the domain is NULL it means there is no IOMMU active
2461 * and the address translation is the identity
2462 */
2463 addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2464
2465 pfn = addr >> PAGE_SHIFT;
2466 if (!pfn_valid(pfn))
2467 return -EPERM;
2468
2469 p = pfn_to_page(pfn);
2470 if (p->mapping != adev->mman.bdev.dev_mapping)
2471 return -EPERM;
2472
2473 ptr = kmap(p);
2474 r = copy_to_user(buf, ptr + off, bytes);
2475 kunmap(p);
2476 if (r)
2477 return -EFAULT;
2478
2479 size -= bytes;
2480 *pos += bytes;
2481 result += bytes;
2482 }
2483
2484 return result;
2485 }
2486
2487 /**
2488 * amdgpu_iomem_write - Virtual write access to GPU mapped memory
2489 *
2490 * This function is used to write memory that has been mapped to the
2491 * GPU and the known addresses are not physical addresses but instead
2492 * bus addresses (e.g., what you'd put in an IB or ring buffer).
2493 */
2494 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf,
2495 size_t size, loff_t *pos)
2496 {
2497 struct amdgpu_device *adev = file_inode(f)->i_private;
2498 struct iommu_domain *dom;
2499 ssize_t result = 0;
2500 int r;
2501
2502 dom = iommu_get_domain_for_dev(adev->dev);
2503
2504 while (size) {
2505 phys_addr_t addr = *pos & PAGE_MASK;
2506 loff_t off = *pos & ~PAGE_MASK;
2507 size_t bytes = PAGE_SIZE - off;
2508 unsigned long pfn;
2509 struct page *p;
2510 void *ptr;
2511
2512 bytes = bytes < size ? bytes : size;
2513
2514 addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2515
2516 pfn = addr >> PAGE_SHIFT;
2517 if (!pfn_valid(pfn))
2518 return -EPERM;
2519
2520 p = pfn_to_page(pfn);
2521 if (p->mapping != adev->mman.bdev.dev_mapping)
2522 return -EPERM;
2523
2524 ptr = kmap(p);
2525 r = copy_from_user(ptr + off, buf, bytes);
2526 kunmap(p);
2527 if (r)
2528 return -EFAULT;
2529
2530 size -= bytes;
2531 *pos += bytes;
2532 result += bytes;
2533 }
2534
2535 return result;
2536 }
2537
2538 static const struct file_operations amdgpu_ttm_iomem_fops = {
2539 .owner = THIS_MODULE,
2540 .read = amdgpu_iomem_read,
2541 .write = amdgpu_iomem_write,
2542 .llseek = default_llseek
2543 };
2544
2545 static const struct {
2546 char *name;
2547 const struct file_operations *fops;
2548 int domain;
2549 } ttm_debugfs_entries[] = {
2550 { "amdgpu_vram", &amdgpu_ttm_vram_fops, TTM_PL_VRAM },
2551 #ifdef CONFIG_DRM_AMDGPU_GART_DEBUGFS
2552 { "amdgpu_gtt", &amdgpu_ttm_gtt_fops, TTM_PL_TT },
2553 #endif
2554 { "amdgpu_iomem", &amdgpu_ttm_iomem_fops, TTM_PL_SYSTEM },
2555 };
2556
2557 #endif
2558
2559 int amdgpu_ttm_debugfs_init(struct amdgpu_device *adev)
2560 {
2561 #if defined(CONFIG_DEBUG_FS)
2562 unsigned count;
2563
2564 struct drm_minor *minor = adev->ddev->primary;
2565 struct dentry *ent, *root = minor->debugfs_root;
2566
2567 for (count = 0; count < ARRAY_SIZE(ttm_debugfs_entries); count++) {
2568 ent = debugfs_create_file(
2569 ttm_debugfs_entries[count].name,
2570 S_IFREG | S_IRUGO, root,
2571 adev,
2572 ttm_debugfs_entries[count].fops);
2573 if (IS_ERR(ent))
2574 return PTR_ERR(ent);
2575 if (ttm_debugfs_entries[count].domain == TTM_PL_VRAM)
2576 i_size_write(ent->d_inode, adev->gmc.mc_vram_size);
2577 else if (ttm_debugfs_entries[count].domain == TTM_PL_TT)
2578 i_size_write(ent->d_inode, adev->gmc.gart_size);
2579 adev->mman.debugfs_entries[count] = ent;
2580 }
2581
2582 count = ARRAY_SIZE(amdgpu_ttm_debugfs_list);
2583
2584 #ifdef CONFIG_SWIOTLB
2585 if (!(adev->need_swiotlb && swiotlb_nr_tbl()))
2586 --count;
2587 #endif
2588
2589 return amdgpu_debugfs_add_files(adev, amdgpu_ttm_debugfs_list, count);
2590 #else
2591 return 0;
2592 #endif
2593 }