]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/gpu/drm/amd/amdgpu/amdgpu_vm.c
drm/amdgpu: remove the GART copy hack
[mirror_ubuntu-jammy-kernel.git] / drivers / gpu / drm / amd / amdgpu / amdgpu_vm.c
1 /*
2 * Copyright 2008 Advanced Micro Devices, Inc.
3 * Copyright 2008 Red Hat Inc.
4 * Copyright 2009 Jerome Glisse.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22 * OTHER DEALINGS IN THE SOFTWARE.
23 *
24 * Authors: Dave Airlie
25 * Alex Deucher
26 * Jerome Glisse
27 */
28 #include <linux/dma-fence-array.h>
29 #include <linux/interval_tree_generic.h>
30 #include <drm/drmP.h>
31 #include <drm/amdgpu_drm.h>
32 #include "amdgpu.h"
33 #include "amdgpu_trace.h"
34
35 /*
36 * GPUVM
37 * GPUVM is similar to the legacy gart on older asics, however
38 * rather than there being a single global gart table
39 * for the entire GPU, there are multiple VM page tables active
40 * at any given time. The VM page tables can contain a mix
41 * vram pages and system memory pages and system memory pages
42 * can be mapped as snooped (cached system pages) or unsnooped
43 * (uncached system pages).
44 * Each VM has an ID associated with it and there is a page table
45 * associated with each VMID. When execting a command buffer,
46 * the kernel tells the the ring what VMID to use for that command
47 * buffer. VMIDs are allocated dynamically as commands are submitted.
48 * The userspace drivers maintain their own address space and the kernel
49 * sets up their pages tables accordingly when they submit their
50 * command buffers and a VMID is assigned.
51 * Cayman/Trinity support up to 8 active VMs at any given time;
52 * SI supports 16.
53 */
54
55 #define START(node) ((node)->start)
56 #define LAST(node) ((node)->last)
57
58 INTERVAL_TREE_DEFINE(struct amdgpu_bo_va_mapping, rb, uint64_t, __subtree_last,
59 START, LAST, static, amdgpu_vm_it)
60
61 #undef START
62 #undef LAST
63
64 /* Local structure. Encapsulate some VM table update parameters to reduce
65 * the number of function parameters
66 */
67 struct amdgpu_pte_update_params {
68 /* amdgpu device we do this update for */
69 struct amdgpu_device *adev;
70 /* optional amdgpu_vm we do this update for */
71 struct amdgpu_vm *vm;
72 /* address where to copy page table entries from */
73 uint64_t src;
74 /* indirect buffer to fill with commands */
75 struct amdgpu_ib *ib;
76 /* Function which actually does the update */
77 void (*func)(struct amdgpu_pte_update_params *params, uint64_t pe,
78 uint64_t addr, unsigned count, uint32_t incr,
79 uint64_t flags);
80 /* The next two are used during VM update by CPU
81 * DMA addresses to use for mapping
82 * Kernel pointer of PD/PT BO that needs to be updated
83 */
84 dma_addr_t *pages_addr;
85 void *kptr;
86 };
87
88 /* Helper to disable partial resident texture feature from a fence callback */
89 struct amdgpu_prt_cb {
90 struct amdgpu_device *adev;
91 struct dma_fence_cb cb;
92 };
93
94 /**
95 * amdgpu_vm_num_entries - return the number of entries in a PD/PT
96 *
97 * @adev: amdgpu_device pointer
98 *
99 * Calculate the number of entries in a page directory or page table.
100 */
101 static unsigned amdgpu_vm_num_entries(struct amdgpu_device *adev,
102 unsigned level)
103 {
104 if (level == 0)
105 /* For the root directory */
106 return adev->vm_manager.max_pfn >>
107 (adev->vm_manager.block_size *
108 adev->vm_manager.num_level);
109 else if (level == adev->vm_manager.num_level)
110 /* For the page tables on the leaves */
111 return AMDGPU_VM_PTE_COUNT(adev);
112 else
113 /* Everything in between */
114 return 1 << adev->vm_manager.block_size;
115 }
116
117 /**
118 * amdgpu_vm_bo_size - returns the size of the BOs in bytes
119 *
120 * @adev: amdgpu_device pointer
121 *
122 * Calculate the size of the BO for a page directory or page table in bytes.
123 */
124 static unsigned amdgpu_vm_bo_size(struct amdgpu_device *adev, unsigned level)
125 {
126 return AMDGPU_GPU_PAGE_ALIGN(amdgpu_vm_num_entries(adev, level) * 8);
127 }
128
129 /**
130 * amdgpu_vm_get_pd_bo - add the VM PD to a validation list
131 *
132 * @vm: vm providing the BOs
133 * @validated: head of validation list
134 * @entry: entry to add
135 *
136 * Add the page directory to the list of BOs to
137 * validate for command submission.
138 */
139 void amdgpu_vm_get_pd_bo(struct amdgpu_vm *vm,
140 struct list_head *validated,
141 struct amdgpu_bo_list_entry *entry)
142 {
143 entry->robj = vm->root.bo;
144 entry->priority = 0;
145 entry->tv.bo = &entry->robj->tbo;
146 entry->tv.shared = true;
147 entry->user_pages = NULL;
148 list_add(&entry->tv.head, validated);
149 }
150
151 /**
152 * amdgpu_vm_validate_layer - validate a single page table level
153 *
154 * @parent: parent page table level
155 * @validate: callback to do the validation
156 * @param: parameter for the validation callback
157 *
158 * Validate the page table BOs on command submission if neccessary.
159 */
160 static int amdgpu_vm_validate_level(struct amdgpu_vm_pt *parent,
161 int (*validate)(void *, struct amdgpu_bo *),
162 void *param, bool use_cpu_for_update,
163 struct ttm_bo_global *glob)
164 {
165 unsigned i;
166 int r;
167
168 if (use_cpu_for_update) {
169 r = amdgpu_bo_kmap(parent->bo, NULL);
170 if (r)
171 return r;
172 }
173
174 if (!parent->entries)
175 return 0;
176
177 for (i = 0; i <= parent->last_entry_used; ++i) {
178 struct amdgpu_vm_pt *entry = &parent->entries[i];
179
180 if (!entry->bo)
181 continue;
182
183 r = validate(param, entry->bo);
184 if (r)
185 return r;
186
187 spin_lock(&glob->lru_lock);
188 ttm_bo_move_to_lru_tail(&entry->bo->tbo);
189 if (entry->bo->shadow)
190 ttm_bo_move_to_lru_tail(&entry->bo->shadow->tbo);
191 spin_unlock(&glob->lru_lock);
192
193 /*
194 * Recurse into the sub directory. This is harmless because we
195 * have only a maximum of 5 layers.
196 */
197 r = amdgpu_vm_validate_level(entry, validate, param,
198 use_cpu_for_update, glob);
199 if (r)
200 return r;
201 }
202
203 return r;
204 }
205
206 /**
207 * amdgpu_vm_validate_pt_bos - validate the page table BOs
208 *
209 * @adev: amdgpu device pointer
210 * @vm: vm providing the BOs
211 * @validate: callback to do the validation
212 * @param: parameter for the validation callback
213 *
214 * Validate the page table BOs on command submission if neccessary.
215 */
216 int amdgpu_vm_validate_pt_bos(struct amdgpu_device *adev, struct amdgpu_vm *vm,
217 int (*validate)(void *p, struct amdgpu_bo *bo),
218 void *param)
219 {
220 uint64_t num_evictions;
221
222 /* We only need to validate the page tables
223 * if they aren't already valid.
224 */
225 num_evictions = atomic64_read(&adev->num_evictions);
226 if (num_evictions == vm->last_eviction_counter)
227 return 0;
228
229 return amdgpu_vm_validate_level(&vm->root, validate, param,
230 vm->use_cpu_for_update,
231 adev->mman.bdev.glob);
232 }
233
234 /**
235 * amdgpu_vm_alloc_levels - allocate the PD/PT levels
236 *
237 * @adev: amdgpu_device pointer
238 * @vm: requested vm
239 * @saddr: start of the address range
240 * @eaddr: end of the address range
241 *
242 * Make sure the page directories and page tables are allocated
243 */
244 static int amdgpu_vm_alloc_levels(struct amdgpu_device *adev,
245 struct amdgpu_vm *vm,
246 struct amdgpu_vm_pt *parent,
247 uint64_t saddr, uint64_t eaddr,
248 unsigned level)
249 {
250 unsigned shift = (adev->vm_manager.num_level - level) *
251 adev->vm_manager.block_size;
252 unsigned pt_idx, from, to;
253 int r;
254 u64 flags;
255 uint64_t init_value = 0;
256
257 if (!parent->entries) {
258 unsigned num_entries = amdgpu_vm_num_entries(adev, level);
259
260 parent->entries = kvmalloc_array(num_entries,
261 sizeof(struct amdgpu_vm_pt),
262 GFP_KERNEL | __GFP_ZERO);
263 if (!parent->entries)
264 return -ENOMEM;
265 memset(parent->entries, 0 , sizeof(struct amdgpu_vm_pt));
266 }
267
268 from = saddr >> shift;
269 to = eaddr >> shift;
270 if (from >= amdgpu_vm_num_entries(adev, level) ||
271 to >= amdgpu_vm_num_entries(adev, level))
272 return -EINVAL;
273
274 if (to > parent->last_entry_used)
275 parent->last_entry_used = to;
276
277 ++level;
278 saddr = saddr & ((1 << shift) - 1);
279 eaddr = eaddr & ((1 << shift) - 1);
280
281 flags = AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS |
282 AMDGPU_GEM_CREATE_VRAM_CLEARED;
283 if (vm->use_cpu_for_update)
284 flags |= AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
285 else
286 flags |= (AMDGPU_GEM_CREATE_NO_CPU_ACCESS |
287 AMDGPU_GEM_CREATE_SHADOW);
288
289 if (vm->pte_support_ats) {
290 init_value = AMDGPU_PTE_SYSTEM;
291 if (level != adev->vm_manager.num_level - 1)
292 init_value |= AMDGPU_PDE_PTE;
293 }
294
295 /* walk over the address space and allocate the page tables */
296 for (pt_idx = from; pt_idx <= to; ++pt_idx) {
297 struct reservation_object *resv = vm->root.bo->tbo.resv;
298 struct amdgpu_vm_pt *entry = &parent->entries[pt_idx];
299 struct amdgpu_bo *pt;
300
301 if (!entry->bo) {
302 r = amdgpu_bo_create(adev,
303 amdgpu_vm_bo_size(adev, level),
304 AMDGPU_GPU_PAGE_SIZE, true,
305 AMDGPU_GEM_DOMAIN_VRAM,
306 flags,
307 NULL, resv, init_value, &pt);
308 if (r)
309 return r;
310
311 if (vm->use_cpu_for_update) {
312 r = amdgpu_bo_kmap(pt, NULL);
313 if (r) {
314 amdgpu_bo_unref(&pt);
315 return r;
316 }
317 }
318
319 /* Keep a reference to the root directory to avoid
320 * freeing them up in the wrong order.
321 */
322 pt->parent = amdgpu_bo_ref(vm->root.bo);
323
324 entry->bo = pt;
325 entry->addr = 0;
326 }
327
328 if (level < adev->vm_manager.num_level) {
329 uint64_t sub_saddr = (pt_idx == from) ? saddr : 0;
330 uint64_t sub_eaddr = (pt_idx == to) ? eaddr :
331 ((1 << shift) - 1);
332 r = amdgpu_vm_alloc_levels(adev, vm, entry, sub_saddr,
333 sub_eaddr, level);
334 if (r)
335 return r;
336 }
337 }
338
339 return 0;
340 }
341
342 /**
343 * amdgpu_vm_alloc_pts - Allocate page tables.
344 *
345 * @adev: amdgpu_device pointer
346 * @vm: VM to allocate page tables for
347 * @saddr: Start address which needs to be allocated
348 * @size: Size from start address we need.
349 *
350 * Make sure the page tables are allocated.
351 */
352 int amdgpu_vm_alloc_pts(struct amdgpu_device *adev,
353 struct amdgpu_vm *vm,
354 uint64_t saddr, uint64_t size)
355 {
356 uint64_t last_pfn;
357 uint64_t eaddr;
358
359 /* validate the parameters */
360 if (saddr & AMDGPU_GPU_PAGE_MASK || size & AMDGPU_GPU_PAGE_MASK)
361 return -EINVAL;
362
363 eaddr = saddr + size - 1;
364 last_pfn = eaddr / AMDGPU_GPU_PAGE_SIZE;
365 if (last_pfn >= adev->vm_manager.max_pfn) {
366 dev_err(adev->dev, "va above limit (0x%08llX >= 0x%08llX)\n",
367 last_pfn, adev->vm_manager.max_pfn);
368 return -EINVAL;
369 }
370
371 saddr /= AMDGPU_GPU_PAGE_SIZE;
372 eaddr /= AMDGPU_GPU_PAGE_SIZE;
373
374 return amdgpu_vm_alloc_levels(adev, vm, &vm->root, saddr, eaddr, 0);
375 }
376
377 /**
378 * amdgpu_vm_had_gpu_reset - check if reset occured since last use
379 *
380 * @adev: amdgpu_device pointer
381 * @id: VMID structure
382 *
383 * Check if GPU reset occured since last use of the VMID.
384 */
385 static bool amdgpu_vm_had_gpu_reset(struct amdgpu_device *adev,
386 struct amdgpu_vm_id *id)
387 {
388 return id->current_gpu_reset_count !=
389 atomic_read(&adev->gpu_reset_counter);
390 }
391
392 static bool amdgpu_vm_reserved_vmid_ready(struct amdgpu_vm *vm, unsigned vmhub)
393 {
394 return !!vm->reserved_vmid[vmhub];
395 }
396
397 /* idr_mgr->lock must be held */
398 static int amdgpu_vm_grab_reserved_vmid_locked(struct amdgpu_vm *vm,
399 struct amdgpu_ring *ring,
400 struct amdgpu_sync *sync,
401 struct dma_fence *fence,
402 struct amdgpu_job *job)
403 {
404 struct amdgpu_device *adev = ring->adev;
405 unsigned vmhub = ring->funcs->vmhub;
406 uint64_t fence_context = adev->fence_context + ring->idx;
407 struct amdgpu_vm_id *id = vm->reserved_vmid[vmhub];
408 struct amdgpu_vm_id_manager *id_mgr = &adev->vm_manager.id_mgr[vmhub];
409 struct dma_fence *updates = sync->last_vm_update;
410 int r = 0;
411 struct dma_fence *flushed, *tmp;
412 bool needs_flush = vm->use_cpu_for_update;
413
414 flushed = id->flushed_updates;
415 if ((amdgpu_vm_had_gpu_reset(adev, id)) ||
416 (atomic64_read(&id->owner) != vm->client_id) ||
417 (job->vm_pd_addr != id->pd_gpu_addr) ||
418 (updates && (!flushed || updates->context != flushed->context ||
419 dma_fence_is_later(updates, flushed))) ||
420 (!id->last_flush || (id->last_flush->context != fence_context &&
421 !dma_fence_is_signaled(id->last_flush)))) {
422 needs_flush = true;
423 /* to prevent one context starved by another context */
424 id->pd_gpu_addr = 0;
425 tmp = amdgpu_sync_peek_fence(&id->active, ring);
426 if (tmp) {
427 r = amdgpu_sync_fence(adev, sync, tmp);
428 return r;
429 }
430 }
431
432 /* Good we can use this VMID. Remember this submission as
433 * user of the VMID.
434 */
435 r = amdgpu_sync_fence(ring->adev, &id->active, fence);
436 if (r)
437 goto out;
438
439 if (updates && (!flushed || updates->context != flushed->context ||
440 dma_fence_is_later(updates, flushed))) {
441 dma_fence_put(id->flushed_updates);
442 id->flushed_updates = dma_fence_get(updates);
443 }
444 id->pd_gpu_addr = job->vm_pd_addr;
445 atomic64_set(&id->owner, vm->client_id);
446 job->vm_needs_flush = needs_flush;
447 if (needs_flush) {
448 dma_fence_put(id->last_flush);
449 id->last_flush = NULL;
450 }
451 job->vm_id = id - id_mgr->ids;
452 trace_amdgpu_vm_grab_id(vm, ring, job);
453 out:
454 return r;
455 }
456
457 /**
458 * amdgpu_vm_grab_id - allocate the next free VMID
459 *
460 * @vm: vm to allocate id for
461 * @ring: ring we want to submit job to
462 * @sync: sync object where we add dependencies
463 * @fence: fence protecting ID from reuse
464 *
465 * Allocate an id for the vm, adding fences to the sync obj as necessary.
466 */
467 int amdgpu_vm_grab_id(struct amdgpu_vm *vm, struct amdgpu_ring *ring,
468 struct amdgpu_sync *sync, struct dma_fence *fence,
469 struct amdgpu_job *job)
470 {
471 struct amdgpu_device *adev = ring->adev;
472 unsigned vmhub = ring->funcs->vmhub;
473 struct amdgpu_vm_id_manager *id_mgr = &adev->vm_manager.id_mgr[vmhub];
474 uint64_t fence_context = adev->fence_context + ring->idx;
475 struct dma_fence *updates = sync->last_vm_update;
476 struct amdgpu_vm_id *id, *idle;
477 struct dma_fence **fences;
478 unsigned i;
479 int r = 0;
480
481 mutex_lock(&id_mgr->lock);
482 if (amdgpu_vm_reserved_vmid_ready(vm, vmhub)) {
483 r = amdgpu_vm_grab_reserved_vmid_locked(vm, ring, sync, fence, job);
484 mutex_unlock(&id_mgr->lock);
485 return r;
486 }
487 fences = kmalloc_array(sizeof(void *), id_mgr->num_ids, GFP_KERNEL);
488 if (!fences) {
489 mutex_unlock(&id_mgr->lock);
490 return -ENOMEM;
491 }
492 /* Check if we have an idle VMID */
493 i = 0;
494 list_for_each_entry(idle, &id_mgr->ids_lru, list) {
495 fences[i] = amdgpu_sync_peek_fence(&idle->active, ring);
496 if (!fences[i])
497 break;
498 ++i;
499 }
500
501 /* If we can't find a idle VMID to use, wait till one becomes available */
502 if (&idle->list == &id_mgr->ids_lru) {
503 u64 fence_context = adev->vm_manager.fence_context + ring->idx;
504 unsigned seqno = ++adev->vm_manager.seqno[ring->idx];
505 struct dma_fence_array *array;
506 unsigned j;
507
508 for (j = 0; j < i; ++j)
509 dma_fence_get(fences[j]);
510
511 array = dma_fence_array_create(i, fences, fence_context,
512 seqno, true);
513 if (!array) {
514 for (j = 0; j < i; ++j)
515 dma_fence_put(fences[j]);
516 kfree(fences);
517 r = -ENOMEM;
518 goto error;
519 }
520
521
522 r = amdgpu_sync_fence(ring->adev, sync, &array->base);
523 dma_fence_put(&array->base);
524 if (r)
525 goto error;
526
527 mutex_unlock(&id_mgr->lock);
528 return 0;
529
530 }
531 kfree(fences);
532
533 job->vm_needs_flush = vm->use_cpu_for_update;
534 /* Check if we can use a VMID already assigned to this VM */
535 list_for_each_entry_reverse(id, &id_mgr->ids_lru, list) {
536 struct dma_fence *flushed;
537 bool needs_flush = vm->use_cpu_for_update;
538
539 /* Check all the prerequisites to using this VMID */
540 if (amdgpu_vm_had_gpu_reset(adev, id))
541 continue;
542
543 if (atomic64_read(&id->owner) != vm->client_id)
544 continue;
545
546 if (job->vm_pd_addr != id->pd_gpu_addr)
547 continue;
548
549 if (!id->last_flush ||
550 (id->last_flush->context != fence_context &&
551 !dma_fence_is_signaled(id->last_flush)))
552 needs_flush = true;
553
554 flushed = id->flushed_updates;
555 if (updates && (!flushed || dma_fence_is_later(updates, flushed)))
556 needs_flush = true;
557
558 /* Concurrent flushes are only possible starting with Vega10 */
559 if (adev->asic_type < CHIP_VEGA10 && needs_flush)
560 continue;
561
562 /* Good we can use this VMID. Remember this submission as
563 * user of the VMID.
564 */
565 r = amdgpu_sync_fence(ring->adev, &id->active, fence);
566 if (r)
567 goto error;
568
569 if (updates && (!flushed || dma_fence_is_later(updates, flushed))) {
570 dma_fence_put(id->flushed_updates);
571 id->flushed_updates = dma_fence_get(updates);
572 }
573
574 if (needs_flush)
575 goto needs_flush;
576 else
577 goto no_flush_needed;
578
579 };
580
581 /* Still no ID to use? Then use the idle one found earlier */
582 id = idle;
583
584 /* Remember this submission as user of the VMID */
585 r = amdgpu_sync_fence(ring->adev, &id->active, fence);
586 if (r)
587 goto error;
588
589 id->pd_gpu_addr = job->vm_pd_addr;
590 dma_fence_put(id->flushed_updates);
591 id->flushed_updates = dma_fence_get(updates);
592 atomic64_set(&id->owner, vm->client_id);
593
594 needs_flush:
595 job->vm_needs_flush = true;
596 dma_fence_put(id->last_flush);
597 id->last_flush = NULL;
598
599 no_flush_needed:
600 list_move_tail(&id->list, &id_mgr->ids_lru);
601
602 job->vm_id = id - id_mgr->ids;
603 trace_amdgpu_vm_grab_id(vm, ring, job);
604
605 error:
606 mutex_unlock(&id_mgr->lock);
607 return r;
608 }
609
610 static void amdgpu_vm_free_reserved_vmid(struct amdgpu_device *adev,
611 struct amdgpu_vm *vm,
612 unsigned vmhub)
613 {
614 struct amdgpu_vm_id_manager *id_mgr = &adev->vm_manager.id_mgr[vmhub];
615
616 mutex_lock(&id_mgr->lock);
617 if (vm->reserved_vmid[vmhub]) {
618 list_add(&vm->reserved_vmid[vmhub]->list,
619 &id_mgr->ids_lru);
620 vm->reserved_vmid[vmhub] = NULL;
621 atomic_dec(&id_mgr->reserved_vmid_num);
622 }
623 mutex_unlock(&id_mgr->lock);
624 }
625
626 static int amdgpu_vm_alloc_reserved_vmid(struct amdgpu_device *adev,
627 struct amdgpu_vm *vm,
628 unsigned vmhub)
629 {
630 struct amdgpu_vm_id_manager *id_mgr;
631 struct amdgpu_vm_id *idle;
632 int r = 0;
633
634 id_mgr = &adev->vm_manager.id_mgr[vmhub];
635 mutex_lock(&id_mgr->lock);
636 if (vm->reserved_vmid[vmhub])
637 goto unlock;
638 if (atomic_inc_return(&id_mgr->reserved_vmid_num) >
639 AMDGPU_VM_MAX_RESERVED_VMID) {
640 DRM_ERROR("Over limitation of reserved vmid\n");
641 atomic_dec(&id_mgr->reserved_vmid_num);
642 r = -EINVAL;
643 goto unlock;
644 }
645 /* Select the first entry VMID */
646 idle = list_first_entry(&id_mgr->ids_lru, struct amdgpu_vm_id, list);
647 list_del_init(&idle->list);
648 vm->reserved_vmid[vmhub] = idle;
649 mutex_unlock(&id_mgr->lock);
650
651 return 0;
652 unlock:
653 mutex_unlock(&id_mgr->lock);
654 return r;
655 }
656
657 /**
658 * amdgpu_vm_check_compute_bug - check whether asic has compute vm bug
659 *
660 * @adev: amdgpu_device pointer
661 */
662 void amdgpu_vm_check_compute_bug(struct amdgpu_device *adev)
663 {
664 const struct amdgpu_ip_block *ip_block;
665 bool has_compute_vm_bug;
666 struct amdgpu_ring *ring;
667 int i;
668
669 has_compute_vm_bug = false;
670
671 ip_block = amdgpu_get_ip_block(adev, AMD_IP_BLOCK_TYPE_GFX);
672 if (ip_block) {
673 /* Compute has a VM bug for GFX version < 7.
674 Compute has a VM bug for GFX 8 MEC firmware version < 673.*/
675 if (ip_block->version->major <= 7)
676 has_compute_vm_bug = true;
677 else if (ip_block->version->major == 8)
678 if (adev->gfx.mec_fw_version < 673)
679 has_compute_vm_bug = true;
680 }
681
682 for (i = 0; i < adev->num_rings; i++) {
683 ring = adev->rings[i];
684 if (ring->funcs->type == AMDGPU_RING_TYPE_COMPUTE)
685 /* only compute rings */
686 ring->has_compute_vm_bug = has_compute_vm_bug;
687 else
688 ring->has_compute_vm_bug = false;
689 }
690 }
691
692 bool amdgpu_vm_need_pipeline_sync(struct amdgpu_ring *ring,
693 struct amdgpu_job *job)
694 {
695 struct amdgpu_device *adev = ring->adev;
696 unsigned vmhub = ring->funcs->vmhub;
697 struct amdgpu_vm_id_manager *id_mgr = &adev->vm_manager.id_mgr[vmhub];
698 struct amdgpu_vm_id *id;
699 bool gds_switch_needed;
700 bool vm_flush_needed = job->vm_needs_flush || ring->has_compute_vm_bug;
701
702 if (job->vm_id == 0)
703 return false;
704 id = &id_mgr->ids[job->vm_id];
705 gds_switch_needed = ring->funcs->emit_gds_switch && (
706 id->gds_base != job->gds_base ||
707 id->gds_size != job->gds_size ||
708 id->gws_base != job->gws_base ||
709 id->gws_size != job->gws_size ||
710 id->oa_base != job->oa_base ||
711 id->oa_size != job->oa_size);
712
713 if (amdgpu_vm_had_gpu_reset(adev, id))
714 return true;
715
716 return vm_flush_needed || gds_switch_needed;
717 }
718
719 static bool amdgpu_vm_is_large_bar(struct amdgpu_device *adev)
720 {
721 return (adev->mc.real_vram_size == adev->mc.visible_vram_size);
722 }
723
724 /**
725 * amdgpu_vm_flush - hardware flush the vm
726 *
727 * @ring: ring to use for flush
728 * @vm_id: vmid number to use
729 * @pd_addr: address of the page directory
730 *
731 * Emit a VM flush when it is necessary.
732 */
733 int amdgpu_vm_flush(struct amdgpu_ring *ring, struct amdgpu_job *job, bool need_pipe_sync)
734 {
735 struct amdgpu_device *adev = ring->adev;
736 unsigned vmhub = ring->funcs->vmhub;
737 struct amdgpu_vm_id_manager *id_mgr = &adev->vm_manager.id_mgr[vmhub];
738 struct amdgpu_vm_id *id = &id_mgr->ids[job->vm_id];
739 bool gds_switch_needed = ring->funcs->emit_gds_switch && (
740 id->gds_base != job->gds_base ||
741 id->gds_size != job->gds_size ||
742 id->gws_base != job->gws_base ||
743 id->gws_size != job->gws_size ||
744 id->oa_base != job->oa_base ||
745 id->oa_size != job->oa_size);
746 bool vm_flush_needed = job->vm_needs_flush;
747 unsigned patch_offset = 0;
748 int r;
749
750 if (amdgpu_vm_had_gpu_reset(adev, id)) {
751 gds_switch_needed = true;
752 vm_flush_needed = true;
753 }
754
755 if (!vm_flush_needed && !gds_switch_needed && !need_pipe_sync)
756 return 0;
757
758 if (ring->funcs->init_cond_exec)
759 patch_offset = amdgpu_ring_init_cond_exec(ring);
760
761 if (need_pipe_sync)
762 amdgpu_ring_emit_pipeline_sync(ring);
763
764 if (ring->funcs->emit_vm_flush && vm_flush_needed) {
765 struct dma_fence *fence;
766
767 trace_amdgpu_vm_flush(ring, job->vm_id, job->vm_pd_addr);
768 amdgpu_ring_emit_vm_flush(ring, job->vm_id, job->vm_pd_addr);
769
770 r = amdgpu_fence_emit(ring, &fence);
771 if (r)
772 return r;
773
774 mutex_lock(&id_mgr->lock);
775 dma_fence_put(id->last_flush);
776 id->last_flush = fence;
777 id->current_gpu_reset_count = atomic_read(&adev->gpu_reset_counter);
778 mutex_unlock(&id_mgr->lock);
779 }
780
781 if (ring->funcs->emit_gds_switch && gds_switch_needed) {
782 id->gds_base = job->gds_base;
783 id->gds_size = job->gds_size;
784 id->gws_base = job->gws_base;
785 id->gws_size = job->gws_size;
786 id->oa_base = job->oa_base;
787 id->oa_size = job->oa_size;
788 amdgpu_ring_emit_gds_switch(ring, job->vm_id, job->gds_base,
789 job->gds_size, job->gws_base,
790 job->gws_size, job->oa_base,
791 job->oa_size);
792 }
793
794 if (ring->funcs->patch_cond_exec)
795 amdgpu_ring_patch_cond_exec(ring, patch_offset);
796
797 /* the double SWITCH_BUFFER here *cannot* be skipped by COND_EXEC */
798 if (ring->funcs->emit_switch_buffer) {
799 amdgpu_ring_emit_switch_buffer(ring);
800 amdgpu_ring_emit_switch_buffer(ring);
801 }
802 return 0;
803 }
804
805 /**
806 * amdgpu_vm_reset_id - reset VMID to zero
807 *
808 * @adev: amdgpu device structure
809 * @vm_id: vmid number to use
810 *
811 * Reset saved GDW, GWS and OA to force switch on next flush.
812 */
813 void amdgpu_vm_reset_id(struct amdgpu_device *adev, unsigned vmhub,
814 unsigned vmid)
815 {
816 struct amdgpu_vm_id_manager *id_mgr = &adev->vm_manager.id_mgr[vmhub];
817 struct amdgpu_vm_id *id = &id_mgr->ids[vmid];
818
819 atomic64_set(&id->owner, 0);
820 id->gds_base = 0;
821 id->gds_size = 0;
822 id->gws_base = 0;
823 id->gws_size = 0;
824 id->oa_base = 0;
825 id->oa_size = 0;
826 }
827
828 /**
829 * amdgpu_vm_reset_all_id - reset VMID to zero
830 *
831 * @adev: amdgpu device structure
832 *
833 * Reset VMID to force flush on next use
834 */
835 void amdgpu_vm_reset_all_ids(struct amdgpu_device *adev)
836 {
837 unsigned i, j;
838
839 for (i = 0; i < AMDGPU_MAX_VMHUBS; ++i) {
840 struct amdgpu_vm_id_manager *id_mgr =
841 &adev->vm_manager.id_mgr[i];
842
843 for (j = 1; j < id_mgr->num_ids; ++j)
844 amdgpu_vm_reset_id(adev, i, j);
845 }
846 }
847
848 /**
849 * amdgpu_vm_bo_find - find the bo_va for a specific vm & bo
850 *
851 * @vm: requested vm
852 * @bo: requested buffer object
853 *
854 * Find @bo inside the requested vm.
855 * Search inside the @bos vm list for the requested vm
856 * Returns the found bo_va or NULL if none is found
857 *
858 * Object has to be reserved!
859 */
860 struct amdgpu_bo_va *amdgpu_vm_bo_find(struct amdgpu_vm *vm,
861 struct amdgpu_bo *bo)
862 {
863 struct amdgpu_bo_va *bo_va;
864
865 list_for_each_entry(bo_va, &bo->va, base.bo_list) {
866 if (bo_va->base.vm == vm) {
867 return bo_va;
868 }
869 }
870 return NULL;
871 }
872
873 /**
874 * amdgpu_vm_do_set_ptes - helper to call the right asic function
875 *
876 * @params: see amdgpu_pte_update_params definition
877 * @pe: addr of the page entry
878 * @addr: dst addr to write into pe
879 * @count: number of page entries to update
880 * @incr: increase next addr by incr bytes
881 * @flags: hw access flags
882 *
883 * Traces the parameters and calls the right asic functions
884 * to setup the page table using the DMA.
885 */
886 static void amdgpu_vm_do_set_ptes(struct amdgpu_pte_update_params *params,
887 uint64_t pe, uint64_t addr,
888 unsigned count, uint32_t incr,
889 uint64_t flags)
890 {
891 trace_amdgpu_vm_set_ptes(pe, addr, count, incr, flags);
892
893 if (count < 3) {
894 amdgpu_vm_write_pte(params->adev, params->ib, pe,
895 addr | flags, count, incr);
896
897 } else {
898 amdgpu_vm_set_pte_pde(params->adev, params->ib, pe, addr,
899 count, incr, flags);
900 }
901 }
902
903 /**
904 * amdgpu_vm_do_copy_ptes - copy the PTEs from the GART
905 *
906 * @params: see amdgpu_pte_update_params definition
907 * @pe: addr of the page entry
908 * @addr: dst addr to write into pe
909 * @count: number of page entries to update
910 * @incr: increase next addr by incr bytes
911 * @flags: hw access flags
912 *
913 * Traces the parameters and calls the DMA function to copy the PTEs.
914 */
915 static void amdgpu_vm_do_copy_ptes(struct amdgpu_pte_update_params *params,
916 uint64_t pe, uint64_t addr,
917 unsigned count, uint32_t incr,
918 uint64_t flags)
919 {
920 uint64_t src = (params->src + (addr >> 12) * 8);
921
922
923 trace_amdgpu_vm_copy_ptes(pe, src, count);
924
925 amdgpu_vm_copy_pte(params->adev, params->ib, pe, src, count);
926 }
927
928 /**
929 * amdgpu_vm_map_gart - Resolve gart mapping of addr
930 *
931 * @pages_addr: optional DMA address to use for lookup
932 * @addr: the unmapped addr
933 *
934 * Look up the physical address of the page that the pte resolves
935 * to and return the pointer for the page table entry.
936 */
937 static uint64_t amdgpu_vm_map_gart(const dma_addr_t *pages_addr, uint64_t addr)
938 {
939 uint64_t result;
940
941 /* page table offset */
942 result = pages_addr[addr >> PAGE_SHIFT];
943
944 /* in case cpu page size != gpu page size*/
945 result |= addr & (~PAGE_MASK);
946
947 result &= 0xFFFFFFFFFFFFF000ULL;
948
949 return result;
950 }
951
952 /**
953 * amdgpu_vm_cpu_set_ptes - helper to update page tables via CPU
954 *
955 * @params: see amdgpu_pte_update_params definition
956 * @pe: kmap addr of the page entry
957 * @addr: dst addr to write into pe
958 * @count: number of page entries to update
959 * @incr: increase next addr by incr bytes
960 * @flags: hw access flags
961 *
962 * Write count number of PT/PD entries directly.
963 */
964 static void amdgpu_vm_cpu_set_ptes(struct amdgpu_pte_update_params *params,
965 uint64_t pe, uint64_t addr,
966 unsigned count, uint32_t incr,
967 uint64_t flags)
968 {
969 unsigned int i;
970 uint64_t value;
971
972 trace_amdgpu_vm_set_ptes(pe, addr, count, incr, flags);
973
974 for (i = 0; i < count; i++) {
975 value = params->pages_addr ?
976 amdgpu_vm_map_gart(params->pages_addr, addr) :
977 addr;
978 amdgpu_gart_set_pte_pde(params->adev, (void *)(uintptr_t)pe,
979 i, value, flags);
980 addr += incr;
981 }
982 }
983
984 static int amdgpu_vm_wait_pd(struct amdgpu_device *adev, struct amdgpu_vm *vm,
985 void *owner)
986 {
987 struct amdgpu_sync sync;
988 int r;
989
990 amdgpu_sync_create(&sync);
991 amdgpu_sync_resv(adev, &sync, vm->root.bo->tbo.resv, owner);
992 r = amdgpu_sync_wait(&sync, true);
993 amdgpu_sync_free(&sync);
994
995 return r;
996 }
997
998 /*
999 * amdgpu_vm_update_level - update a single level in the hierarchy
1000 *
1001 * @adev: amdgpu_device pointer
1002 * @vm: requested vm
1003 * @parent: parent directory
1004 *
1005 * Makes sure all entries in @parent are up to date.
1006 * Returns 0 for success, error for failure.
1007 */
1008 static int amdgpu_vm_update_level(struct amdgpu_device *adev,
1009 struct amdgpu_vm *vm,
1010 struct amdgpu_vm_pt *parent,
1011 unsigned level)
1012 {
1013 struct amdgpu_bo *shadow;
1014 struct amdgpu_ring *ring = NULL;
1015 uint64_t pd_addr, shadow_addr = 0;
1016 uint32_t incr = amdgpu_vm_bo_size(adev, level + 1);
1017 uint64_t last_pde = ~0, last_pt = ~0, last_shadow = ~0;
1018 unsigned count = 0, pt_idx, ndw = 0;
1019 struct amdgpu_job *job;
1020 struct amdgpu_pte_update_params params;
1021 struct dma_fence *fence = NULL;
1022
1023 int r;
1024
1025 if (!parent->entries)
1026 return 0;
1027
1028 memset(&params, 0, sizeof(params));
1029 params.adev = adev;
1030 shadow = parent->bo->shadow;
1031
1032 if (vm->use_cpu_for_update) {
1033 pd_addr = (unsigned long)amdgpu_bo_kptr(parent->bo);
1034 r = amdgpu_vm_wait_pd(adev, vm, AMDGPU_FENCE_OWNER_VM);
1035 if (unlikely(r))
1036 return r;
1037
1038 params.func = amdgpu_vm_cpu_set_ptes;
1039 } else {
1040 ring = container_of(vm->entity.sched, struct amdgpu_ring,
1041 sched);
1042
1043 /* padding, etc. */
1044 ndw = 64;
1045
1046 /* assume the worst case */
1047 ndw += parent->last_entry_used * 6;
1048
1049 pd_addr = amdgpu_bo_gpu_offset(parent->bo);
1050
1051 if (shadow) {
1052 shadow_addr = amdgpu_bo_gpu_offset(shadow);
1053 ndw *= 2;
1054 } else {
1055 shadow_addr = 0;
1056 }
1057
1058 r = amdgpu_job_alloc_with_ib(adev, ndw * 4, &job);
1059 if (r)
1060 return r;
1061
1062 params.ib = &job->ibs[0];
1063 params.func = amdgpu_vm_do_set_ptes;
1064 }
1065
1066
1067 /* walk over the address space and update the directory */
1068 for (pt_idx = 0; pt_idx <= parent->last_entry_used; ++pt_idx) {
1069 struct amdgpu_bo *bo = parent->entries[pt_idx].bo;
1070 uint64_t pde, pt;
1071
1072 if (bo == NULL)
1073 continue;
1074
1075 pt = amdgpu_bo_gpu_offset(bo);
1076 pt = amdgpu_gart_get_vm_pde(adev, pt);
1077 /* Don't update huge pages here */
1078 if ((parent->entries[pt_idx].addr & AMDGPU_PDE_PTE) ||
1079 parent->entries[pt_idx].addr == (pt | AMDGPU_PTE_VALID))
1080 continue;
1081
1082 parent->entries[pt_idx].addr = pt | AMDGPU_PTE_VALID;
1083
1084 pde = pd_addr + pt_idx * 8;
1085 if (((last_pde + 8 * count) != pde) ||
1086 ((last_pt + incr * count) != pt) ||
1087 (count == AMDGPU_VM_MAX_UPDATE_SIZE)) {
1088
1089 if (count) {
1090 if (shadow)
1091 params.func(&params,
1092 last_shadow,
1093 last_pt, count,
1094 incr,
1095 AMDGPU_PTE_VALID);
1096
1097 params.func(&params, last_pde,
1098 last_pt, count, incr,
1099 AMDGPU_PTE_VALID);
1100 }
1101
1102 count = 1;
1103 last_pde = pde;
1104 last_shadow = shadow_addr + pt_idx * 8;
1105 last_pt = pt;
1106 } else {
1107 ++count;
1108 }
1109 }
1110
1111 if (count) {
1112 if (vm->root.bo->shadow)
1113 params.func(&params, last_shadow, last_pt,
1114 count, incr, AMDGPU_PTE_VALID);
1115
1116 params.func(&params, last_pde, last_pt,
1117 count, incr, AMDGPU_PTE_VALID);
1118 }
1119
1120 if (!vm->use_cpu_for_update) {
1121 if (params.ib->length_dw == 0) {
1122 amdgpu_job_free(job);
1123 } else {
1124 amdgpu_ring_pad_ib(ring, params.ib);
1125 amdgpu_sync_resv(adev, &job->sync, parent->bo->tbo.resv,
1126 AMDGPU_FENCE_OWNER_VM);
1127 if (shadow)
1128 amdgpu_sync_resv(adev, &job->sync,
1129 shadow->tbo.resv,
1130 AMDGPU_FENCE_OWNER_VM);
1131
1132 WARN_ON(params.ib->length_dw > ndw);
1133 r = amdgpu_job_submit(job, ring, &vm->entity,
1134 AMDGPU_FENCE_OWNER_VM, &fence);
1135 if (r)
1136 goto error_free;
1137
1138 amdgpu_bo_fence(parent->bo, fence, true);
1139 dma_fence_put(vm->last_dir_update);
1140 vm->last_dir_update = dma_fence_get(fence);
1141 dma_fence_put(fence);
1142 }
1143 }
1144 /*
1145 * Recurse into the subdirectories. This recursion is harmless because
1146 * we only have a maximum of 5 layers.
1147 */
1148 for (pt_idx = 0; pt_idx <= parent->last_entry_used; ++pt_idx) {
1149 struct amdgpu_vm_pt *entry = &parent->entries[pt_idx];
1150
1151 if (!entry->bo)
1152 continue;
1153
1154 r = amdgpu_vm_update_level(adev, vm, entry, level + 1);
1155 if (r)
1156 return r;
1157 }
1158
1159 return 0;
1160
1161 error_free:
1162 amdgpu_job_free(job);
1163 return r;
1164 }
1165
1166 /*
1167 * amdgpu_vm_invalidate_level - mark all PD levels as invalid
1168 *
1169 * @parent: parent PD
1170 *
1171 * Mark all PD level as invalid after an error.
1172 */
1173 static void amdgpu_vm_invalidate_level(struct amdgpu_vm_pt *parent)
1174 {
1175 unsigned pt_idx;
1176
1177 /*
1178 * Recurse into the subdirectories. This recursion is harmless because
1179 * we only have a maximum of 5 layers.
1180 */
1181 for (pt_idx = 0; pt_idx <= parent->last_entry_used; ++pt_idx) {
1182 struct amdgpu_vm_pt *entry = &parent->entries[pt_idx];
1183
1184 if (!entry->bo)
1185 continue;
1186
1187 entry->addr = ~0ULL;
1188 amdgpu_vm_invalidate_level(entry);
1189 }
1190 }
1191
1192 /*
1193 * amdgpu_vm_update_directories - make sure that all directories are valid
1194 *
1195 * @adev: amdgpu_device pointer
1196 * @vm: requested vm
1197 *
1198 * Makes sure all directories are up to date.
1199 * Returns 0 for success, error for failure.
1200 */
1201 int amdgpu_vm_update_directories(struct amdgpu_device *adev,
1202 struct amdgpu_vm *vm)
1203 {
1204 int r;
1205
1206 r = amdgpu_vm_update_level(adev, vm, &vm->root, 0);
1207 if (r)
1208 amdgpu_vm_invalidate_level(&vm->root);
1209
1210 if (vm->use_cpu_for_update) {
1211 /* Flush HDP */
1212 mb();
1213 amdgpu_gart_flush_gpu_tlb(adev, 0);
1214 }
1215
1216 return r;
1217 }
1218
1219 /**
1220 * amdgpu_vm_find_entry - find the entry for an address
1221 *
1222 * @p: see amdgpu_pte_update_params definition
1223 * @addr: virtual address in question
1224 * @entry: resulting entry or NULL
1225 * @parent: parent entry
1226 *
1227 * Find the vm_pt entry and it's parent for the given address.
1228 */
1229 void amdgpu_vm_get_entry(struct amdgpu_pte_update_params *p, uint64_t addr,
1230 struct amdgpu_vm_pt **entry,
1231 struct amdgpu_vm_pt **parent)
1232 {
1233 unsigned idx, level = p->adev->vm_manager.num_level;
1234
1235 *parent = NULL;
1236 *entry = &p->vm->root;
1237 while ((*entry)->entries) {
1238 idx = addr >> (p->adev->vm_manager.block_size * level--);
1239 idx %= amdgpu_bo_size((*entry)->bo) / 8;
1240 *parent = *entry;
1241 *entry = &(*entry)->entries[idx];
1242 }
1243
1244 if (level)
1245 *entry = NULL;
1246 }
1247
1248 /**
1249 * amdgpu_vm_handle_huge_pages - handle updating the PD with huge pages
1250 *
1251 * @p: see amdgpu_pte_update_params definition
1252 * @entry: vm_pt entry to check
1253 * @parent: parent entry
1254 * @nptes: number of PTEs updated with this operation
1255 * @dst: destination address where the PTEs should point to
1256 * @flags: access flags fro the PTEs
1257 *
1258 * Check if we can update the PD with a huge page.
1259 */
1260 static void amdgpu_vm_handle_huge_pages(struct amdgpu_pte_update_params *p,
1261 struct amdgpu_vm_pt *entry,
1262 struct amdgpu_vm_pt *parent,
1263 unsigned nptes, uint64_t dst,
1264 uint64_t flags)
1265 {
1266 bool use_cpu_update = (p->func == amdgpu_vm_cpu_set_ptes);
1267 uint64_t pd_addr, pde;
1268
1269 /* In the case of a mixed PT the PDE must point to it*/
1270 if (p->adev->asic_type < CHIP_VEGA10 ||
1271 nptes != AMDGPU_VM_PTE_COUNT(p->adev) ||
1272 p->src ||
1273 !(flags & AMDGPU_PTE_VALID)) {
1274
1275 dst = amdgpu_bo_gpu_offset(entry->bo);
1276 dst = amdgpu_gart_get_vm_pde(p->adev, dst);
1277 flags = AMDGPU_PTE_VALID;
1278 } else {
1279 /* Set the huge page flag to stop scanning at this PDE */
1280 flags |= AMDGPU_PDE_PTE;
1281 }
1282
1283 if (entry->addr == (dst | flags))
1284 return;
1285
1286 entry->addr = (dst | flags);
1287
1288 if (use_cpu_update) {
1289 /* In case a huge page is replaced with a system
1290 * memory mapping, p->pages_addr != NULL and
1291 * amdgpu_vm_cpu_set_ptes would try to translate dst
1292 * through amdgpu_vm_map_gart. But dst is already a
1293 * GPU address (of the page table). Disable
1294 * amdgpu_vm_map_gart temporarily.
1295 */
1296 dma_addr_t *tmp;
1297
1298 tmp = p->pages_addr;
1299 p->pages_addr = NULL;
1300
1301 pd_addr = (unsigned long)amdgpu_bo_kptr(parent->bo);
1302 pde = pd_addr + (entry - parent->entries) * 8;
1303 amdgpu_vm_cpu_set_ptes(p, pde, dst, 1, 0, flags);
1304
1305 p->pages_addr = tmp;
1306 } else {
1307 if (parent->bo->shadow) {
1308 pd_addr = amdgpu_bo_gpu_offset(parent->bo->shadow);
1309 pde = pd_addr + (entry - parent->entries) * 8;
1310 amdgpu_vm_do_set_ptes(p, pde, dst, 1, 0, flags);
1311 }
1312 pd_addr = amdgpu_bo_gpu_offset(parent->bo);
1313 pde = pd_addr + (entry - parent->entries) * 8;
1314 amdgpu_vm_do_set_ptes(p, pde, dst, 1, 0, flags);
1315 }
1316 }
1317
1318 /**
1319 * amdgpu_vm_update_ptes - make sure that page tables are valid
1320 *
1321 * @params: see amdgpu_pte_update_params definition
1322 * @vm: requested vm
1323 * @start: start of GPU address range
1324 * @end: end of GPU address range
1325 * @dst: destination address to map to, the next dst inside the function
1326 * @flags: mapping flags
1327 *
1328 * Update the page tables in the range @start - @end.
1329 * Returns 0 for success, -EINVAL for failure.
1330 */
1331 static int amdgpu_vm_update_ptes(struct amdgpu_pte_update_params *params,
1332 uint64_t start, uint64_t end,
1333 uint64_t dst, uint64_t flags)
1334 {
1335 struct amdgpu_device *adev = params->adev;
1336 const uint64_t mask = AMDGPU_VM_PTE_COUNT(adev) - 1;
1337
1338 uint64_t addr, pe_start;
1339 struct amdgpu_bo *pt;
1340 unsigned nptes;
1341 bool use_cpu_update = (params->func == amdgpu_vm_cpu_set_ptes);
1342
1343 /* walk over the address space and update the page tables */
1344 for (addr = start; addr < end; addr += nptes,
1345 dst += nptes * AMDGPU_GPU_PAGE_SIZE) {
1346 struct amdgpu_vm_pt *entry, *parent;
1347
1348 amdgpu_vm_get_entry(params, addr, &entry, &parent);
1349 if (!entry)
1350 return -ENOENT;
1351
1352 if ((addr & ~mask) == (end & ~mask))
1353 nptes = end - addr;
1354 else
1355 nptes = AMDGPU_VM_PTE_COUNT(adev) - (addr & mask);
1356
1357 amdgpu_vm_handle_huge_pages(params, entry, parent,
1358 nptes, dst, flags);
1359 /* We don't need to update PTEs for huge pages */
1360 if (entry->addr & AMDGPU_PDE_PTE)
1361 continue;
1362
1363 pt = entry->bo;
1364 if (use_cpu_update) {
1365 pe_start = (unsigned long)amdgpu_bo_kptr(pt);
1366 } else {
1367 if (pt->shadow) {
1368 pe_start = amdgpu_bo_gpu_offset(pt->shadow);
1369 pe_start += (addr & mask) * 8;
1370 params->func(params, pe_start, dst, nptes,
1371 AMDGPU_GPU_PAGE_SIZE, flags);
1372 }
1373 pe_start = amdgpu_bo_gpu_offset(pt);
1374 }
1375
1376 pe_start += (addr & mask) * 8;
1377 params->func(params, pe_start, dst, nptes,
1378 AMDGPU_GPU_PAGE_SIZE, flags);
1379 }
1380
1381 return 0;
1382 }
1383
1384 /*
1385 * amdgpu_vm_frag_ptes - add fragment information to PTEs
1386 *
1387 * @params: see amdgpu_pte_update_params definition
1388 * @vm: requested vm
1389 * @start: first PTE to handle
1390 * @end: last PTE to handle
1391 * @dst: addr those PTEs should point to
1392 * @flags: hw mapping flags
1393 * Returns 0 for success, -EINVAL for failure.
1394 */
1395 static int amdgpu_vm_frag_ptes(struct amdgpu_pte_update_params *params,
1396 uint64_t start, uint64_t end,
1397 uint64_t dst, uint64_t flags)
1398 {
1399 int r;
1400
1401 /**
1402 * The MC L1 TLB supports variable sized pages, based on a fragment
1403 * field in the PTE. When this field is set to a non-zero value, page
1404 * granularity is increased from 4KB to (1 << (12 + frag)). The PTE
1405 * flags are considered valid for all PTEs within the fragment range
1406 * and corresponding mappings are assumed to be physically contiguous.
1407 *
1408 * The L1 TLB can store a single PTE for the whole fragment,
1409 * significantly increasing the space available for translation
1410 * caching. This leads to large improvements in throughput when the
1411 * TLB is under pressure.
1412 *
1413 * The L2 TLB distributes small and large fragments into two
1414 * asymmetric partitions. The large fragment cache is significantly
1415 * larger. Thus, we try to use large fragments wherever possible.
1416 * Userspace can support this by aligning virtual base address and
1417 * allocation size to the fragment size.
1418 */
1419 unsigned pages_per_frag = params->adev->vm_manager.fragment_size;
1420 uint64_t frag_flags = AMDGPU_PTE_FRAG(pages_per_frag);
1421 uint64_t frag_align = 1 << pages_per_frag;
1422
1423 uint64_t frag_start = ALIGN(start, frag_align);
1424 uint64_t frag_end = end & ~(frag_align - 1);
1425
1426 /* system pages are non continuously */
1427 if (params->src || !(flags & AMDGPU_PTE_VALID) ||
1428 (frag_start >= frag_end))
1429 return amdgpu_vm_update_ptes(params, start, end, dst, flags);
1430
1431 /* handle the 4K area at the beginning */
1432 if (start != frag_start) {
1433 r = amdgpu_vm_update_ptes(params, start, frag_start,
1434 dst, flags);
1435 if (r)
1436 return r;
1437 dst += (frag_start - start) * AMDGPU_GPU_PAGE_SIZE;
1438 }
1439
1440 /* handle the area in the middle */
1441 r = amdgpu_vm_update_ptes(params, frag_start, frag_end, dst,
1442 flags | frag_flags);
1443 if (r)
1444 return r;
1445
1446 /* handle the 4K area at the end */
1447 if (frag_end != end) {
1448 dst += (frag_end - frag_start) * AMDGPU_GPU_PAGE_SIZE;
1449 r = amdgpu_vm_update_ptes(params, frag_end, end, dst, flags);
1450 }
1451 return r;
1452 }
1453
1454 /**
1455 * amdgpu_vm_bo_update_mapping - update a mapping in the vm page table
1456 *
1457 * @adev: amdgpu_device pointer
1458 * @exclusive: fence we need to sync to
1459 * @src: address where to copy page table entries from
1460 * @pages_addr: DMA addresses to use for mapping
1461 * @vm: requested vm
1462 * @start: start of mapped range
1463 * @last: last mapped entry
1464 * @flags: flags for the entries
1465 * @addr: addr to set the area to
1466 * @fence: optional resulting fence
1467 *
1468 * Fill in the page table entries between @start and @last.
1469 * Returns 0 for success, -EINVAL for failure.
1470 */
1471 static int amdgpu_vm_bo_update_mapping(struct amdgpu_device *adev,
1472 struct dma_fence *exclusive,
1473 uint64_t src,
1474 dma_addr_t *pages_addr,
1475 struct amdgpu_vm *vm,
1476 uint64_t start, uint64_t last,
1477 uint64_t flags, uint64_t addr,
1478 struct dma_fence **fence)
1479 {
1480 struct amdgpu_ring *ring;
1481 void *owner = AMDGPU_FENCE_OWNER_VM;
1482 unsigned nptes, ncmds, ndw;
1483 struct amdgpu_job *job;
1484 struct amdgpu_pte_update_params params;
1485 struct dma_fence *f = NULL;
1486 int r;
1487
1488 memset(&params, 0, sizeof(params));
1489 params.adev = adev;
1490 params.vm = vm;
1491 params.src = src;
1492
1493 /* sync to everything on unmapping */
1494 if (!(flags & AMDGPU_PTE_VALID))
1495 owner = AMDGPU_FENCE_OWNER_UNDEFINED;
1496
1497 if (vm->use_cpu_for_update) {
1498 /* params.src is used as flag to indicate system Memory */
1499 if (pages_addr)
1500 params.src = ~0;
1501
1502 /* Wait for PT BOs to be free. PTs share the same resv. object
1503 * as the root PD BO
1504 */
1505 r = amdgpu_vm_wait_pd(adev, vm, owner);
1506 if (unlikely(r))
1507 return r;
1508
1509 params.func = amdgpu_vm_cpu_set_ptes;
1510 params.pages_addr = pages_addr;
1511 return amdgpu_vm_frag_ptes(&params, start, last + 1,
1512 addr, flags);
1513 }
1514
1515 ring = container_of(vm->entity.sched, struct amdgpu_ring, sched);
1516
1517 nptes = last - start + 1;
1518
1519 /*
1520 * reserve space for one command every (1 << BLOCK_SIZE)
1521 * entries or 2k dwords (whatever is smaller)
1522 */
1523 ncmds = (nptes >> min(adev->vm_manager.block_size, 11u)) + 1;
1524
1525 /* padding, etc. */
1526 ndw = 64;
1527
1528 /* one PDE write for each huge page */
1529 ndw += ((nptes >> adev->vm_manager.block_size) + 1) * 6;
1530
1531 if (src) {
1532 /* only copy commands needed */
1533 ndw += ncmds * 7;
1534
1535 params.func = amdgpu_vm_do_copy_ptes;
1536
1537 } else if (pages_addr) {
1538 /* copy commands needed */
1539 ndw += ncmds * 7;
1540
1541 /* and also PTEs */
1542 ndw += nptes * 2;
1543
1544 params.func = amdgpu_vm_do_copy_ptes;
1545
1546 } else {
1547 /* set page commands needed */
1548 ndw += ncmds * 10;
1549
1550 /* two extra commands for begin/end of fragment */
1551 ndw += 2 * 10;
1552
1553 params.func = amdgpu_vm_do_set_ptes;
1554 }
1555
1556 r = amdgpu_job_alloc_with_ib(adev, ndw * 4, &job);
1557 if (r)
1558 return r;
1559
1560 params.ib = &job->ibs[0];
1561
1562 if (!src && pages_addr) {
1563 uint64_t *pte;
1564 unsigned i;
1565
1566 /* Put the PTEs at the end of the IB. */
1567 i = ndw - nptes * 2;
1568 pte= (uint64_t *)&(job->ibs->ptr[i]);
1569 params.src = job->ibs->gpu_addr + i * 4;
1570
1571 for (i = 0; i < nptes; ++i) {
1572 pte[i] = amdgpu_vm_map_gart(pages_addr, addr + i *
1573 AMDGPU_GPU_PAGE_SIZE);
1574 pte[i] |= flags;
1575 }
1576 addr = 0;
1577 }
1578
1579 r = amdgpu_sync_fence(adev, &job->sync, exclusive);
1580 if (r)
1581 goto error_free;
1582
1583 r = amdgpu_sync_resv(adev, &job->sync, vm->root.bo->tbo.resv,
1584 owner);
1585 if (r)
1586 goto error_free;
1587
1588 r = reservation_object_reserve_shared(vm->root.bo->tbo.resv);
1589 if (r)
1590 goto error_free;
1591
1592 r = amdgpu_vm_frag_ptes(&params, start, last + 1, addr, flags);
1593 if (r)
1594 goto error_free;
1595
1596 amdgpu_ring_pad_ib(ring, params.ib);
1597 WARN_ON(params.ib->length_dw > ndw);
1598 r = amdgpu_job_submit(job, ring, &vm->entity,
1599 AMDGPU_FENCE_OWNER_VM, &f);
1600 if (r)
1601 goto error_free;
1602
1603 amdgpu_bo_fence(vm->root.bo, f, true);
1604 dma_fence_put(*fence);
1605 *fence = f;
1606 return 0;
1607
1608 error_free:
1609 amdgpu_job_free(job);
1610 amdgpu_vm_invalidate_level(&vm->root);
1611 return r;
1612 }
1613
1614 /**
1615 * amdgpu_vm_bo_split_mapping - split a mapping into smaller chunks
1616 *
1617 * @adev: amdgpu_device pointer
1618 * @exclusive: fence we need to sync to
1619 * @pages_addr: DMA addresses to use for mapping
1620 * @vm: requested vm
1621 * @mapping: mapped range and flags to use for the update
1622 * @flags: HW flags for the mapping
1623 * @nodes: array of drm_mm_nodes with the MC addresses
1624 * @fence: optional resulting fence
1625 *
1626 * Split the mapping into smaller chunks so that each update fits
1627 * into a SDMA IB.
1628 * Returns 0 for success, -EINVAL for failure.
1629 */
1630 static int amdgpu_vm_bo_split_mapping(struct amdgpu_device *adev,
1631 struct dma_fence *exclusive,
1632 dma_addr_t *pages_addr,
1633 struct amdgpu_vm *vm,
1634 struct amdgpu_bo_va_mapping *mapping,
1635 uint64_t flags,
1636 struct drm_mm_node *nodes,
1637 struct dma_fence **fence)
1638 {
1639 uint64_t pfn, src = 0, start = mapping->start;
1640 int r;
1641
1642 /* normally,bo_va->flags only contians READABLE and WIRTEABLE bit go here
1643 * but in case of something, we filter the flags in first place
1644 */
1645 if (!(mapping->flags & AMDGPU_PTE_READABLE))
1646 flags &= ~AMDGPU_PTE_READABLE;
1647 if (!(mapping->flags & AMDGPU_PTE_WRITEABLE))
1648 flags &= ~AMDGPU_PTE_WRITEABLE;
1649
1650 flags &= ~AMDGPU_PTE_EXECUTABLE;
1651 flags |= mapping->flags & AMDGPU_PTE_EXECUTABLE;
1652
1653 flags &= ~AMDGPU_PTE_MTYPE_MASK;
1654 flags |= (mapping->flags & AMDGPU_PTE_MTYPE_MASK);
1655
1656 if ((mapping->flags & AMDGPU_PTE_PRT) &&
1657 (adev->asic_type >= CHIP_VEGA10)) {
1658 flags |= AMDGPU_PTE_PRT;
1659 flags &= ~AMDGPU_PTE_VALID;
1660 }
1661
1662 trace_amdgpu_vm_bo_update(mapping);
1663
1664 pfn = mapping->offset >> PAGE_SHIFT;
1665 if (nodes) {
1666 while (pfn >= nodes->size) {
1667 pfn -= nodes->size;
1668 ++nodes;
1669 }
1670 }
1671
1672 do {
1673 uint64_t max_entries;
1674 uint64_t addr, last;
1675
1676 if (nodes) {
1677 addr = nodes->start << PAGE_SHIFT;
1678 max_entries = (nodes->size - pfn) *
1679 (PAGE_SIZE / AMDGPU_GPU_PAGE_SIZE);
1680 } else {
1681 addr = 0;
1682 max_entries = S64_MAX;
1683 }
1684
1685 if (pages_addr) {
1686 max_entries = min(max_entries, 16ull * 1024ull);
1687 addr = 0;
1688 } else if (flags & AMDGPU_PTE_VALID) {
1689 addr += adev->vm_manager.vram_base_offset;
1690 }
1691 addr += pfn << PAGE_SHIFT;
1692
1693 last = min((uint64_t)mapping->last, start + max_entries - 1);
1694 r = amdgpu_vm_bo_update_mapping(adev, exclusive,
1695 src, pages_addr, vm,
1696 start, last, flags, addr,
1697 fence);
1698 if (r)
1699 return r;
1700
1701 pfn += last - start + 1;
1702 if (nodes && nodes->size == pfn) {
1703 pfn = 0;
1704 ++nodes;
1705 }
1706 start = last + 1;
1707
1708 } while (unlikely(start != mapping->last + 1));
1709
1710 return 0;
1711 }
1712
1713 /**
1714 * amdgpu_vm_bo_update - update all BO mappings in the vm page table
1715 *
1716 * @adev: amdgpu_device pointer
1717 * @bo_va: requested BO and VM object
1718 * @clear: if true clear the entries
1719 *
1720 * Fill in the page table entries for @bo_va.
1721 * Returns 0 for success, -EINVAL for failure.
1722 */
1723 int amdgpu_vm_bo_update(struct amdgpu_device *adev,
1724 struct amdgpu_bo_va *bo_va,
1725 bool clear)
1726 {
1727 struct amdgpu_bo *bo = bo_va->base.bo;
1728 struct amdgpu_vm *vm = bo_va->base.vm;
1729 struct amdgpu_bo_va_mapping *mapping;
1730 dma_addr_t *pages_addr = NULL;
1731 struct ttm_mem_reg *mem;
1732 struct drm_mm_node *nodes;
1733 struct dma_fence *exclusive;
1734 uint64_t flags;
1735 int r;
1736
1737 if (clear || !bo_va->base.bo) {
1738 mem = NULL;
1739 nodes = NULL;
1740 exclusive = NULL;
1741 } else {
1742 struct ttm_dma_tt *ttm;
1743
1744 mem = &bo_va->base.bo->tbo.mem;
1745 nodes = mem->mm_node;
1746 if (mem->mem_type == TTM_PL_TT) {
1747 ttm = container_of(bo_va->base.bo->tbo.ttm,
1748 struct ttm_dma_tt, ttm);
1749 pages_addr = ttm->dma_address;
1750 }
1751 exclusive = reservation_object_get_excl(bo->tbo.resv);
1752 }
1753
1754 if (bo)
1755 flags = amdgpu_ttm_tt_pte_flags(adev, bo->tbo.ttm, mem);
1756 else
1757 flags = 0x0;
1758
1759 spin_lock(&vm->status_lock);
1760 if (!list_empty(&bo_va->base.vm_status))
1761 list_splice_init(&bo_va->valids, &bo_va->invalids);
1762 spin_unlock(&vm->status_lock);
1763
1764 list_for_each_entry(mapping, &bo_va->invalids, list) {
1765 r = amdgpu_vm_bo_split_mapping(adev, exclusive, pages_addr, vm,
1766 mapping, flags, nodes,
1767 &bo_va->last_pt_update);
1768 if (r)
1769 return r;
1770 }
1771
1772 if (trace_amdgpu_vm_bo_mapping_enabled()) {
1773 list_for_each_entry(mapping, &bo_va->valids, list)
1774 trace_amdgpu_vm_bo_mapping(mapping);
1775
1776 list_for_each_entry(mapping, &bo_va->invalids, list)
1777 trace_amdgpu_vm_bo_mapping(mapping);
1778 }
1779
1780 spin_lock(&vm->status_lock);
1781 list_splice_init(&bo_va->invalids, &bo_va->valids);
1782 list_del_init(&bo_va->base.vm_status);
1783 if (clear)
1784 list_add(&bo_va->base.vm_status, &vm->cleared);
1785 spin_unlock(&vm->status_lock);
1786
1787 if (vm->use_cpu_for_update) {
1788 /* Flush HDP */
1789 mb();
1790 amdgpu_gart_flush_gpu_tlb(adev, 0);
1791 }
1792
1793 return 0;
1794 }
1795
1796 /**
1797 * amdgpu_vm_update_prt_state - update the global PRT state
1798 */
1799 static void amdgpu_vm_update_prt_state(struct amdgpu_device *adev)
1800 {
1801 unsigned long flags;
1802 bool enable;
1803
1804 spin_lock_irqsave(&adev->vm_manager.prt_lock, flags);
1805 enable = !!atomic_read(&adev->vm_manager.num_prt_users);
1806 adev->gart.gart_funcs->set_prt(adev, enable);
1807 spin_unlock_irqrestore(&adev->vm_manager.prt_lock, flags);
1808 }
1809
1810 /**
1811 * amdgpu_vm_prt_get - add a PRT user
1812 */
1813 static void amdgpu_vm_prt_get(struct amdgpu_device *adev)
1814 {
1815 if (!adev->gart.gart_funcs->set_prt)
1816 return;
1817
1818 if (atomic_inc_return(&adev->vm_manager.num_prt_users) == 1)
1819 amdgpu_vm_update_prt_state(adev);
1820 }
1821
1822 /**
1823 * amdgpu_vm_prt_put - drop a PRT user
1824 */
1825 static void amdgpu_vm_prt_put(struct amdgpu_device *adev)
1826 {
1827 if (atomic_dec_return(&adev->vm_manager.num_prt_users) == 0)
1828 amdgpu_vm_update_prt_state(adev);
1829 }
1830
1831 /**
1832 * amdgpu_vm_prt_cb - callback for updating the PRT status
1833 */
1834 static void amdgpu_vm_prt_cb(struct dma_fence *fence, struct dma_fence_cb *_cb)
1835 {
1836 struct amdgpu_prt_cb *cb = container_of(_cb, struct amdgpu_prt_cb, cb);
1837
1838 amdgpu_vm_prt_put(cb->adev);
1839 kfree(cb);
1840 }
1841
1842 /**
1843 * amdgpu_vm_add_prt_cb - add callback for updating the PRT status
1844 */
1845 static void amdgpu_vm_add_prt_cb(struct amdgpu_device *adev,
1846 struct dma_fence *fence)
1847 {
1848 struct amdgpu_prt_cb *cb;
1849
1850 if (!adev->gart.gart_funcs->set_prt)
1851 return;
1852
1853 cb = kmalloc(sizeof(struct amdgpu_prt_cb), GFP_KERNEL);
1854 if (!cb) {
1855 /* Last resort when we are OOM */
1856 if (fence)
1857 dma_fence_wait(fence, false);
1858
1859 amdgpu_vm_prt_put(adev);
1860 } else {
1861 cb->adev = adev;
1862 if (!fence || dma_fence_add_callback(fence, &cb->cb,
1863 amdgpu_vm_prt_cb))
1864 amdgpu_vm_prt_cb(fence, &cb->cb);
1865 }
1866 }
1867
1868 /**
1869 * amdgpu_vm_free_mapping - free a mapping
1870 *
1871 * @adev: amdgpu_device pointer
1872 * @vm: requested vm
1873 * @mapping: mapping to be freed
1874 * @fence: fence of the unmap operation
1875 *
1876 * Free a mapping and make sure we decrease the PRT usage count if applicable.
1877 */
1878 static void amdgpu_vm_free_mapping(struct amdgpu_device *adev,
1879 struct amdgpu_vm *vm,
1880 struct amdgpu_bo_va_mapping *mapping,
1881 struct dma_fence *fence)
1882 {
1883 if (mapping->flags & AMDGPU_PTE_PRT)
1884 amdgpu_vm_add_prt_cb(adev, fence);
1885 kfree(mapping);
1886 }
1887
1888 /**
1889 * amdgpu_vm_prt_fini - finish all prt mappings
1890 *
1891 * @adev: amdgpu_device pointer
1892 * @vm: requested vm
1893 *
1894 * Register a cleanup callback to disable PRT support after VM dies.
1895 */
1896 static void amdgpu_vm_prt_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm)
1897 {
1898 struct reservation_object *resv = vm->root.bo->tbo.resv;
1899 struct dma_fence *excl, **shared;
1900 unsigned i, shared_count;
1901 int r;
1902
1903 r = reservation_object_get_fences_rcu(resv, &excl,
1904 &shared_count, &shared);
1905 if (r) {
1906 /* Not enough memory to grab the fence list, as last resort
1907 * block for all the fences to complete.
1908 */
1909 reservation_object_wait_timeout_rcu(resv, true, false,
1910 MAX_SCHEDULE_TIMEOUT);
1911 return;
1912 }
1913
1914 /* Add a callback for each fence in the reservation object */
1915 amdgpu_vm_prt_get(adev);
1916 amdgpu_vm_add_prt_cb(adev, excl);
1917
1918 for (i = 0; i < shared_count; ++i) {
1919 amdgpu_vm_prt_get(adev);
1920 amdgpu_vm_add_prt_cb(adev, shared[i]);
1921 }
1922
1923 kfree(shared);
1924 }
1925
1926 /**
1927 * amdgpu_vm_clear_freed - clear freed BOs in the PT
1928 *
1929 * @adev: amdgpu_device pointer
1930 * @vm: requested vm
1931 * @fence: optional resulting fence (unchanged if no work needed to be done
1932 * or if an error occurred)
1933 *
1934 * Make sure all freed BOs are cleared in the PT.
1935 * Returns 0 for success.
1936 *
1937 * PTs have to be reserved and mutex must be locked!
1938 */
1939 int amdgpu_vm_clear_freed(struct amdgpu_device *adev,
1940 struct amdgpu_vm *vm,
1941 struct dma_fence **fence)
1942 {
1943 struct amdgpu_bo_va_mapping *mapping;
1944 struct dma_fence *f = NULL;
1945 int r;
1946 uint64_t init_pte_value = 0;
1947
1948 while (!list_empty(&vm->freed)) {
1949 mapping = list_first_entry(&vm->freed,
1950 struct amdgpu_bo_va_mapping, list);
1951 list_del(&mapping->list);
1952
1953 if (vm->pte_support_ats)
1954 init_pte_value = AMDGPU_PTE_SYSTEM;
1955
1956 r = amdgpu_vm_bo_update_mapping(adev, NULL, 0, NULL, vm,
1957 mapping->start, mapping->last,
1958 init_pte_value, 0, &f);
1959 amdgpu_vm_free_mapping(adev, vm, mapping, f);
1960 if (r) {
1961 dma_fence_put(f);
1962 return r;
1963 }
1964 }
1965
1966 if (fence && f) {
1967 dma_fence_put(*fence);
1968 *fence = f;
1969 } else {
1970 dma_fence_put(f);
1971 }
1972
1973 return 0;
1974
1975 }
1976
1977 /**
1978 * amdgpu_vm_clear_moved - clear moved BOs in the PT
1979 *
1980 * @adev: amdgpu_device pointer
1981 * @vm: requested vm
1982 *
1983 * Make sure all moved BOs are cleared in the PT.
1984 * Returns 0 for success.
1985 *
1986 * PTs have to be reserved and mutex must be locked!
1987 */
1988 int amdgpu_vm_clear_moved(struct amdgpu_device *adev, struct amdgpu_vm *vm,
1989 struct amdgpu_sync *sync)
1990 {
1991 struct amdgpu_bo_va *bo_va = NULL;
1992 int r = 0;
1993
1994 spin_lock(&vm->status_lock);
1995 while (!list_empty(&vm->moved)) {
1996 bo_va = list_first_entry(&vm->moved,
1997 struct amdgpu_bo_va, base.vm_status);
1998 spin_unlock(&vm->status_lock);
1999
2000 r = amdgpu_vm_bo_update(adev, bo_va, true);
2001 if (r)
2002 return r;
2003
2004 spin_lock(&vm->status_lock);
2005 }
2006 spin_unlock(&vm->status_lock);
2007
2008 if (bo_va)
2009 r = amdgpu_sync_fence(adev, sync, bo_va->last_pt_update);
2010
2011 return r;
2012 }
2013
2014 /**
2015 * amdgpu_vm_bo_add - add a bo to a specific vm
2016 *
2017 * @adev: amdgpu_device pointer
2018 * @vm: requested vm
2019 * @bo: amdgpu buffer object
2020 *
2021 * Add @bo into the requested vm.
2022 * Add @bo to the list of bos associated with the vm
2023 * Returns newly added bo_va or NULL for failure
2024 *
2025 * Object has to be reserved!
2026 */
2027 struct amdgpu_bo_va *amdgpu_vm_bo_add(struct amdgpu_device *adev,
2028 struct amdgpu_vm *vm,
2029 struct amdgpu_bo *bo)
2030 {
2031 struct amdgpu_bo_va *bo_va;
2032
2033 bo_va = kzalloc(sizeof(struct amdgpu_bo_va), GFP_KERNEL);
2034 if (bo_va == NULL) {
2035 return NULL;
2036 }
2037 bo_va->base.vm = vm;
2038 bo_va->base.bo = bo;
2039 INIT_LIST_HEAD(&bo_va->base.bo_list);
2040 INIT_LIST_HEAD(&bo_va->base.vm_status);
2041
2042 bo_va->ref_count = 1;
2043 INIT_LIST_HEAD(&bo_va->valids);
2044 INIT_LIST_HEAD(&bo_va->invalids);
2045
2046 if (bo)
2047 list_add_tail(&bo_va->base.bo_list, &bo->va);
2048
2049 return bo_va;
2050 }
2051
2052 /**
2053 * amdgpu_vm_bo_map - map bo inside a vm
2054 *
2055 * @adev: amdgpu_device pointer
2056 * @bo_va: bo_va to store the address
2057 * @saddr: where to map the BO
2058 * @offset: requested offset in the BO
2059 * @flags: attributes of pages (read/write/valid/etc.)
2060 *
2061 * Add a mapping of the BO at the specefied addr into the VM.
2062 * Returns 0 for success, error for failure.
2063 *
2064 * Object has to be reserved and unreserved outside!
2065 */
2066 int amdgpu_vm_bo_map(struct amdgpu_device *adev,
2067 struct amdgpu_bo_va *bo_va,
2068 uint64_t saddr, uint64_t offset,
2069 uint64_t size, uint64_t flags)
2070 {
2071 struct amdgpu_bo_va_mapping *mapping, *tmp;
2072 struct amdgpu_bo *bo = bo_va->base.bo;
2073 struct amdgpu_vm *vm = bo_va->base.vm;
2074 uint64_t eaddr;
2075
2076 /* validate the parameters */
2077 if (saddr & AMDGPU_GPU_PAGE_MASK || offset & AMDGPU_GPU_PAGE_MASK ||
2078 size == 0 || size & AMDGPU_GPU_PAGE_MASK)
2079 return -EINVAL;
2080
2081 /* make sure object fit at this offset */
2082 eaddr = saddr + size - 1;
2083 if (saddr >= eaddr ||
2084 (bo && offset + size > amdgpu_bo_size(bo)))
2085 return -EINVAL;
2086
2087 saddr /= AMDGPU_GPU_PAGE_SIZE;
2088 eaddr /= AMDGPU_GPU_PAGE_SIZE;
2089
2090 tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr);
2091 if (tmp) {
2092 /* bo and tmp overlap, invalid addr */
2093 dev_err(adev->dev, "bo %p va 0x%010Lx-0x%010Lx conflict with "
2094 "0x%010Lx-0x%010Lx\n", bo, saddr, eaddr,
2095 tmp->start, tmp->last + 1);
2096 return -EINVAL;
2097 }
2098
2099 mapping = kmalloc(sizeof(*mapping), GFP_KERNEL);
2100 if (!mapping)
2101 return -ENOMEM;
2102
2103 INIT_LIST_HEAD(&mapping->list);
2104 mapping->start = saddr;
2105 mapping->last = eaddr;
2106 mapping->offset = offset;
2107 mapping->flags = flags;
2108
2109 list_add(&mapping->list, &bo_va->invalids);
2110 amdgpu_vm_it_insert(mapping, &vm->va);
2111
2112 if (flags & AMDGPU_PTE_PRT)
2113 amdgpu_vm_prt_get(adev);
2114
2115 return 0;
2116 }
2117
2118 /**
2119 * amdgpu_vm_bo_replace_map - map bo inside a vm, replacing existing mappings
2120 *
2121 * @adev: amdgpu_device pointer
2122 * @bo_va: bo_va to store the address
2123 * @saddr: where to map the BO
2124 * @offset: requested offset in the BO
2125 * @flags: attributes of pages (read/write/valid/etc.)
2126 *
2127 * Add a mapping of the BO at the specefied addr into the VM. Replace existing
2128 * mappings as we do so.
2129 * Returns 0 for success, error for failure.
2130 *
2131 * Object has to be reserved and unreserved outside!
2132 */
2133 int amdgpu_vm_bo_replace_map(struct amdgpu_device *adev,
2134 struct amdgpu_bo_va *bo_va,
2135 uint64_t saddr, uint64_t offset,
2136 uint64_t size, uint64_t flags)
2137 {
2138 struct amdgpu_bo_va_mapping *mapping;
2139 struct amdgpu_bo *bo = bo_va->base.bo;
2140 struct amdgpu_vm *vm = bo_va->base.vm;
2141 uint64_t eaddr;
2142 int r;
2143
2144 /* validate the parameters */
2145 if (saddr & AMDGPU_GPU_PAGE_MASK || offset & AMDGPU_GPU_PAGE_MASK ||
2146 size == 0 || size & AMDGPU_GPU_PAGE_MASK)
2147 return -EINVAL;
2148
2149 /* make sure object fit at this offset */
2150 eaddr = saddr + size - 1;
2151 if (saddr >= eaddr ||
2152 (bo && offset + size > amdgpu_bo_size(bo)))
2153 return -EINVAL;
2154
2155 /* Allocate all the needed memory */
2156 mapping = kmalloc(sizeof(*mapping), GFP_KERNEL);
2157 if (!mapping)
2158 return -ENOMEM;
2159
2160 r = amdgpu_vm_bo_clear_mappings(adev, bo_va->base.vm, saddr, size);
2161 if (r) {
2162 kfree(mapping);
2163 return r;
2164 }
2165
2166 saddr /= AMDGPU_GPU_PAGE_SIZE;
2167 eaddr /= AMDGPU_GPU_PAGE_SIZE;
2168
2169 mapping->start = saddr;
2170 mapping->last = eaddr;
2171 mapping->offset = offset;
2172 mapping->flags = flags;
2173
2174 list_add(&mapping->list, &bo_va->invalids);
2175 amdgpu_vm_it_insert(mapping, &vm->va);
2176
2177 if (flags & AMDGPU_PTE_PRT)
2178 amdgpu_vm_prt_get(adev);
2179
2180 return 0;
2181 }
2182
2183 /**
2184 * amdgpu_vm_bo_unmap - remove bo mapping from vm
2185 *
2186 * @adev: amdgpu_device pointer
2187 * @bo_va: bo_va to remove the address from
2188 * @saddr: where to the BO is mapped
2189 *
2190 * Remove a mapping of the BO at the specefied addr from the VM.
2191 * Returns 0 for success, error for failure.
2192 *
2193 * Object has to be reserved and unreserved outside!
2194 */
2195 int amdgpu_vm_bo_unmap(struct amdgpu_device *adev,
2196 struct amdgpu_bo_va *bo_va,
2197 uint64_t saddr)
2198 {
2199 struct amdgpu_bo_va_mapping *mapping;
2200 struct amdgpu_vm *vm = bo_va->base.vm;
2201 bool valid = true;
2202
2203 saddr /= AMDGPU_GPU_PAGE_SIZE;
2204
2205 list_for_each_entry(mapping, &bo_va->valids, list) {
2206 if (mapping->start == saddr)
2207 break;
2208 }
2209
2210 if (&mapping->list == &bo_va->valids) {
2211 valid = false;
2212
2213 list_for_each_entry(mapping, &bo_va->invalids, list) {
2214 if (mapping->start == saddr)
2215 break;
2216 }
2217
2218 if (&mapping->list == &bo_va->invalids)
2219 return -ENOENT;
2220 }
2221
2222 list_del(&mapping->list);
2223 amdgpu_vm_it_remove(mapping, &vm->va);
2224 trace_amdgpu_vm_bo_unmap(bo_va, mapping);
2225
2226 if (valid)
2227 list_add(&mapping->list, &vm->freed);
2228 else
2229 amdgpu_vm_free_mapping(adev, vm, mapping,
2230 bo_va->last_pt_update);
2231
2232 return 0;
2233 }
2234
2235 /**
2236 * amdgpu_vm_bo_clear_mappings - remove all mappings in a specific range
2237 *
2238 * @adev: amdgpu_device pointer
2239 * @vm: VM structure to use
2240 * @saddr: start of the range
2241 * @size: size of the range
2242 *
2243 * Remove all mappings in a range, split them as appropriate.
2244 * Returns 0 for success, error for failure.
2245 */
2246 int amdgpu_vm_bo_clear_mappings(struct amdgpu_device *adev,
2247 struct amdgpu_vm *vm,
2248 uint64_t saddr, uint64_t size)
2249 {
2250 struct amdgpu_bo_va_mapping *before, *after, *tmp, *next;
2251 LIST_HEAD(removed);
2252 uint64_t eaddr;
2253
2254 eaddr = saddr + size - 1;
2255 saddr /= AMDGPU_GPU_PAGE_SIZE;
2256 eaddr /= AMDGPU_GPU_PAGE_SIZE;
2257
2258 /* Allocate all the needed memory */
2259 before = kzalloc(sizeof(*before), GFP_KERNEL);
2260 if (!before)
2261 return -ENOMEM;
2262 INIT_LIST_HEAD(&before->list);
2263
2264 after = kzalloc(sizeof(*after), GFP_KERNEL);
2265 if (!after) {
2266 kfree(before);
2267 return -ENOMEM;
2268 }
2269 INIT_LIST_HEAD(&after->list);
2270
2271 /* Now gather all removed mappings */
2272 tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr);
2273 while (tmp) {
2274 /* Remember mapping split at the start */
2275 if (tmp->start < saddr) {
2276 before->start = tmp->start;
2277 before->last = saddr - 1;
2278 before->offset = tmp->offset;
2279 before->flags = tmp->flags;
2280 list_add(&before->list, &tmp->list);
2281 }
2282
2283 /* Remember mapping split at the end */
2284 if (tmp->last > eaddr) {
2285 after->start = eaddr + 1;
2286 after->last = tmp->last;
2287 after->offset = tmp->offset;
2288 after->offset += after->start - tmp->start;
2289 after->flags = tmp->flags;
2290 list_add(&after->list, &tmp->list);
2291 }
2292
2293 list_del(&tmp->list);
2294 list_add(&tmp->list, &removed);
2295
2296 tmp = amdgpu_vm_it_iter_next(tmp, saddr, eaddr);
2297 }
2298
2299 /* And free them up */
2300 list_for_each_entry_safe(tmp, next, &removed, list) {
2301 amdgpu_vm_it_remove(tmp, &vm->va);
2302 list_del(&tmp->list);
2303
2304 if (tmp->start < saddr)
2305 tmp->start = saddr;
2306 if (tmp->last > eaddr)
2307 tmp->last = eaddr;
2308
2309 list_add(&tmp->list, &vm->freed);
2310 trace_amdgpu_vm_bo_unmap(NULL, tmp);
2311 }
2312
2313 /* Insert partial mapping before the range */
2314 if (!list_empty(&before->list)) {
2315 amdgpu_vm_it_insert(before, &vm->va);
2316 if (before->flags & AMDGPU_PTE_PRT)
2317 amdgpu_vm_prt_get(adev);
2318 } else {
2319 kfree(before);
2320 }
2321
2322 /* Insert partial mapping after the range */
2323 if (!list_empty(&after->list)) {
2324 amdgpu_vm_it_insert(after, &vm->va);
2325 if (after->flags & AMDGPU_PTE_PRT)
2326 amdgpu_vm_prt_get(adev);
2327 } else {
2328 kfree(after);
2329 }
2330
2331 return 0;
2332 }
2333
2334 /**
2335 * amdgpu_vm_bo_rmv - remove a bo to a specific vm
2336 *
2337 * @adev: amdgpu_device pointer
2338 * @bo_va: requested bo_va
2339 *
2340 * Remove @bo_va->bo from the requested vm.
2341 *
2342 * Object have to be reserved!
2343 */
2344 void amdgpu_vm_bo_rmv(struct amdgpu_device *adev,
2345 struct amdgpu_bo_va *bo_va)
2346 {
2347 struct amdgpu_bo_va_mapping *mapping, *next;
2348 struct amdgpu_vm *vm = bo_va->base.vm;
2349
2350 list_del(&bo_va->base.bo_list);
2351
2352 spin_lock(&vm->status_lock);
2353 list_del(&bo_va->base.vm_status);
2354 spin_unlock(&vm->status_lock);
2355
2356 list_for_each_entry_safe(mapping, next, &bo_va->valids, list) {
2357 list_del(&mapping->list);
2358 amdgpu_vm_it_remove(mapping, &vm->va);
2359 trace_amdgpu_vm_bo_unmap(bo_va, mapping);
2360 list_add(&mapping->list, &vm->freed);
2361 }
2362 list_for_each_entry_safe(mapping, next, &bo_va->invalids, list) {
2363 list_del(&mapping->list);
2364 amdgpu_vm_it_remove(mapping, &vm->va);
2365 amdgpu_vm_free_mapping(adev, vm, mapping,
2366 bo_va->last_pt_update);
2367 }
2368
2369 dma_fence_put(bo_va->last_pt_update);
2370 kfree(bo_va);
2371 }
2372
2373 /**
2374 * amdgpu_vm_bo_invalidate - mark the bo as invalid
2375 *
2376 * @adev: amdgpu_device pointer
2377 * @vm: requested vm
2378 * @bo: amdgpu buffer object
2379 *
2380 * Mark @bo as invalid.
2381 */
2382 void amdgpu_vm_bo_invalidate(struct amdgpu_device *adev,
2383 struct amdgpu_bo *bo)
2384 {
2385 struct amdgpu_vm_bo_base *bo_base;
2386
2387 list_for_each_entry(bo_base, &bo->va, bo_list) {
2388 spin_lock(&bo_base->vm->status_lock);
2389 if (list_empty(&bo_base->vm_status))
2390 list_add(&bo_base->vm_status,
2391 &bo_base->vm->moved);
2392 spin_unlock(&bo_base->vm->status_lock);
2393 }
2394 }
2395
2396 static uint32_t amdgpu_vm_get_block_size(uint64_t vm_size)
2397 {
2398 /* Total bits covered by PD + PTs */
2399 unsigned bits = ilog2(vm_size) + 18;
2400
2401 /* Make sure the PD is 4K in size up to 8GB address space.
2402 Above that split equal between PD and PTs */
2403 if (vm_size <= 8)
2404 return (bits - 9);
2405 else
2406 return ((bits + 3) / 2);
2407 }
2408
2409 /**
2410 * amdgpu_vm_set_fragment_size - adjust fragment size in PTE
2411 *
2412 * @adev: amdgpu_device pointer
2413 * @fragment_size_default: the default fragment size if it's set auto
2414 */
2415 void amdgpu_vm_set_fragment_size(struct amdgpu_device *adev, uint32_t fragment_size_default)
2416 {
2417 if (amdgpu_vm_fragment_size == -1)
2418 adev->vm_manager.fragment_size = fragment_size_default;
2419 else
2420 adev->vm_manager.fragment_size = amdgpu_vm_fragment_size;
2421 }
2422
2423 /**
2424 * amdgpu_vm_adjust_size - adjust vm size, block size and fragment size
2425 *
2426 * @adev: amdgpu_device pointer
2427 * @vm_size: the default vm size if it's set auto
2428 */
2429 void amdgpu_vm_adjust_size(struct amdgpu_device *adev, uint64_t vm_size, uint32_t fragment_size_default)
2430 {
2431 /* adjust vm size firstly */
2432 if (amdgpu_vm_size == -1)
2433 adev->vm_manager.vm_size = vm_size;
2434 else
2435 adev->vm_manager.vm_size = amdgpu_vm_size;
2436
2437 /* block size depends on vm size */
2438 if (amdgpu_vm_block_size == -1)
2439 adev->vm_manager.block_size =
2440 amdgpu_vm_get_block_size(adev->vm_manager.vm_size);
2441 else
2442 adev->vm_manager.block_size = amdgpu_vm_block_size;
2443
2444 amdgpu_vm_set_fragment_size(adev, fragment_size_default);
2445
2446 DRM_INFO("vm size is %llu GB, block size is %u-bit, fragment size is %u-bit\n",
2447 adev->vm_manager.vm_size, adev->vm_manager.block_size,
2448 adev->vm_manager.fragment_size);
2449 }
2450
2451 /**
2452 * amdgpu_vm_init - initialize a vm instance
2453 *
2454 * @adev: amdgpu_device pointer
2455 * @vm: requested vm
2456 * @vm_context: Indicates if it GFX or Compute context
2457 *
2458 * Init @vm fields.
2459 */
2460 int amdgpu_vm_init(struct amdgpu_device *adev, struct amdgpu_vm *vm,
2461 int vm_context)
2462 {
2463 const unsigned align = min(AMDGPU_VM_PTB_ALIGN_SIZE,
2464 AMDGPU_VM_PTE_COUNT(adev) * 8);
2465 unsigned ring_instance;
2466 struct amdgpu_ring *ring;
2467 struct amd_sched_rq *rq;
2468 int r, i;
2469 u64 flags;
2470 uint64_t init_pde_value = 0;
2471
2472 vm->va = RB_ROOT;
2473 vm->client_id = atomic64_inc_return(&adev->vm_manager.client_counter);
2474 for (i = 0; i < AMDGPU_MAX_VMHUBS; i++)
2475 vm->reserved_vmid[i] = NULL;
2476 spin_lock_init(&vm->status_lock);
2477 INIT_LIST_HEAD(&vm->moved);
2478 INIT_LIST_HEAD(&vm->cleared);
2479 INIT_LIST_HEAD(&vm->freed);
2480
2481 /* create scheduler entity for page table updates */
2482
2483 ring_instance = atomic_inc_return(&adev->vm_manager.vm_pte_next_ring);
2484 ring_instance %= adev->vm_manager.vm_pte_num_rings;
2485 ring = adev->vm_manager.vm_pte_rings[ring_instance];
2486 rq = &ring->sched.sched_rq[AMD_SCHED_PRIORITY_KERNEL];
2487 r = amd_sched_entity_init(&ring->sched, &vm->entity,
2488 rq, amdgpu_sched_jobs);
2489 if (r)
2490 return r;
2491
2492 vm->pte_support_ats = false;
2493
2494 if (vm_context == AMDGPU_VM_CONTEXT_COMPUTE) {
2495 vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode &
2496 AMDGPU_VM_USE_CPU_FOR_COMPUTE);
2497
2498 if (adev->asic_type == CHIP_RAVEN) {
2499 vm->pte_support_ats = true;
2500 init_pde_value = AMDGPU_PTE_SYSTEM | AMDGPU_PDE_PTE;
2501 }
2502 } else
2503 vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode &
2504 AMDGPU_VM_USE_CPU_FOR_GFX);
2505 DRM_DEBUG_DRIVER("VM update mode is %s\n",
2506 vm->use_cpu_for_update ? "CPU" : "SDMA");
2507 WARN_ONCE((vm->use_cpu_for_update & !amdgpu_vm_is_large_bar(adev)),
2508 "CPU update of VM recommended only for large BAR system\n");
2509 vm->last_dir_update = NULL;
2510
2511 flags = AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS |
2512 AMDGPU_GEM_CREATE_VRAM_CLEARED;
2513 if (vm->use_cpu_for_update)
2514 flags |= AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
2515 else
2516 flags |= (AMDGPU_GEM_CREATE_NO_CPU_ACCESS |
2517 AMDGPU_GEM_CREATE_SHADOW);
2518
2519 r = amdgpu_bo_create(adev, amdgpu_vm_bo_size(adev, 0), align, true,
2520 AMDGPU_GEM_DOMAIN_VRAM,
2521 flags,
2522 NULL, NULL, init_pde_value, &vm->root.bo);
2523 if (r)
2524 goto error_free_sched_entity;
2525
2526 r = amdgpu_bo_reserve(vm->root.bo, false);
2527 if (r)
2528 goto error_free_root;
2529
2530 vm->last_eviction_counter = atomic64_read(&adev->num_evictions);
2531
2532 if (vm->use_cpu_for_update) {
2533 r = amdgpu_bo_kmap(vm->root.bo, NULL);
2534 if (r)
2535 goto error_free_root;
2536 }
2537
2538 amdgpu_bo_unreserve(vm->root.bo);
2539
2540 return 0;
2541
2542 error_free_root:
2543 amdgpu_bo_unref(&vm->root.bo->shadow);
2544 amdgpu_bo_unref(&vm->root.bo);
2545 vm->root.bo = NULL;
2546
2547 error_free_sched_entity:
2548 amd_sched_entity_fini(&ring->sched, &vm->entity);
2549
2550 return r;
2551 }
2552
2553 /**
2554 * amdgpu_vm_free_levels - free PD/PT levels
2555 *
2556 * @level: PD/PT starting level to free
2557 *
2558 * Free the page directory or page table level and all sub levels.
2559 */
2560 static void amdgpu_vm_free_levels(struct amdgpu_vm_pt *level)
2561 {
2562 unsigned i;
2563
2564 if (level->bo) {
2565 amdgpu_bo_unref(&level->bo->shadow);
2566 amdgpu_bo_unref(&level->bo);
2567 }
2568
2569 if (level->entries)
2570 for (i = 0; i <= level->last_entry_used; i++)
2571 amdgpu_vm_free_levels(&level->entries[i]);
2572
2573 kvfree(level->entries);
2574 }
2575
2576 /**
2577 * amdgpu_vm_fini - tear down a vm instance
2578 *
2579 * @adev: amdgpu_device pointer
2580 * @vm: requested vm
2581 *
2582 * Tear down @vm.
2583 * Unbind the VM and remove all bos from the vm bo list
2584 */
2585 void amdgpu_vm_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm)
2586 {
2587 struct amdgpu_bo_va_mapping *mapping, *tmp;
2588 bool prt_fini_needed = !!adev->gart.gart_funcs->set_prt;
2589 int i;
2590
2591 amd_sched_entity_fini(vm->entity.sched, &vm->entity);
2592
2593 if (!RB_EMPTY_ROOT(&vm->va)) {
2594 dev_err(adev->dev, "still active bo inside vm\n");
2595 }
2596 rbtree_postorder_for_each_entry_safe(mapping, tmp, &vm->va, rb) {
2597 list_del(&mapping->list);
2598 amdgpu_vm_it_remove(mapping, &vm->va);
2599 kfree(mapping);
2600 }
2601 list_for_each_entry_safe(mapping, tmp, &vm->freed, list) {
2602 if (mapping->flags & AMDGPU_PTE_PRT && prt_fini_needed) {
2603 amdgpu_vm_prt_fini(adev, vm);
2604 prt_fini_needed = false;
2605 }
2606
2607 list_del(&mapping->list);
2608 amdgpu_vm_free_mapping(adev, vm, mapping, NULL);
2609 }
2610
2611 amdgpu_vm_free_levels(&vm->root);
2612 dma_fence_put(vm->last_dir_update);
2613 for (i = 0; i < AMDGPU_MAX_VMHUBS; i++)
2614 amdgpu_vm_free_reserved_vmid(adev, vm, i);
2615 }
2616
2617 /**
2618 * amdgpu_vm_manager_init - init the VM manager
2619 *
2620 * @adev: amdgpu_device pointer
2621 *
2622 * Initialize the VM manager structures
2623 */
2624 void amdgpu_vm_manager_init(struct amdgpu_device *adev)
2625 {
2626 unsigned i, j;
2627
2628 for (i = 0; i < AMDGPU_MAX_VMHUBS; ++i) {
2629 struct amdgpu_vm_id_manager *id_mgr =
2630 &adev->vm_manager.id_mgr[i];
2631
2632 mutex_init(&id_mgr->lock);
2633 INIT_LIST_HEAD(&id_mgr->ids_lru);
2634 atomic_set(&id_mgr->reserved_vmid_num, 0);
2635
2636 /* skip over VMID 0, since it is the system VM */
2637 for (j = 1; j < id_mgr->num_ids; ++j) {
2638 amdgpu_vm_reset_id(adev, i, j);
2639 amdgpu_sync_create(&id_mgr->ids[i].active);
2640 list_add_tail(&id_mgr->ids[j].list, &id_mgr->ids_lru);
2641 }
2642 }
2643
2644 adev->vm_manager.fence_context =
2645 dma_fence_context_alloc(AMDGPU_MAX_RINGS);
2646 for (i = 0; i < AMDGPU_MAX_RINGS; ++i)
2647 adev->vm_manager.seqno[i] = 0;
2648
2649 atomic_set(&adev->vm_manager.vm_pte_next_ring, 0);
2650 atomic64_set(&adev->vm_manager.client_counter, 0);
2651 spin_lock_init(&adev->vm_manager.prt_lock);
2652 atomic_set(&adev->vm_manager.num_prt_users, 0);
2653
2654 /* If not overridden by the user, by default, only in large BAR systems
2655 * Compute VM tables will be updated by CPU
2656 */
2657 #ifdef CONFIG_X86_64
2658 if (amdgpu_vm_update_mode == -1) {
2659 if (amdgpu_vm_is_large_bar(adev))
2660 adev->vm_manager.vm_update_mode =
2661 AMDGPU_VM_USE_CPU_FOR_COMPUTE;
2662 else
2663 adev->vm_manager.vm_update_mode = 0;
2664 } else
2665 adev->vm_manager.vm_update_mode = amdgpu_vm_update_mode;
2666 #else
2667 adev->vm_manager.vm_update_mode = 0;
2668 #endif
2669
2670 }
2671
2672 /**
2673 * amdgpu_vm_manager_fini - cleanup VM manager
2674 *
2675 * @adev: amdgpu_device pointer
2676 *
2677 * Cleanup the VM manager and free resources.
2678 */
2679 void amdgpu_vm_manager_fini(struct amdgpu_device *adev)
2680 {
2681 unsigned i, j;
2682
2683 for (i = 0; i < AMDGPU_MAX_VMHUBS; ++i) {
2684 struct amdgpu_vm_id_manager *id_mgr =
2685 &adev->vm_manager.id_mgr[i];
2686
2687 mutex_destroy(&id_mgr->lock);
2688 for (j = 0; j < AMDGPU_NUM_VM; ++j) {
2689 struct amdgpu_vm_id *id = &id_mgr->ids[j];
2690
2691 amdgpu_sync_free(&id->active);
2692 dma_fence_put(id->flushed_updates);
2693 dma_fence_put(id->last_flush);
2694 }
2695 }
2696 }
2697
2698 int amdgpu_vm_ioctl(struct drm_device *dev, void *data, struct drm_file *filp)
2699 {
2700 union drm_amdgpu_vm *args = data;
2701 struct amdgpu_device *adev = dev->dev_private;
2702 struct amdgpu_fpriv *fpriv = filp->driver_priv;
2703 int r;
2704
2705 switch (args->in.op) {
2706 case AMDGPU_VM_OP_RESERVE_VMID:
2707 /* current, we only have requirement to reserve vmid from gfxhub */
2708 r = amdgpu_vm_alloc_reserved_vmid(adev, &fpriv->vm,
2709 AMDGPU_GFXHUB);
2710 if (r)
2711 return r;
2712 break;
2713 case AMDGPU_VM_OP_UNRESERVE_VMID:
2714 amdgpu_vm_free_reserved_vmid(adev, &fpriv->vm, AMDGPU_GFXHUB);
2715 break;
2716 default:
2717 return -EINVAL;
2718 }
2719
2720 return 0;
2721 }