]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/gpu/drm/amd/amdgpu/amdgpu_vm.c
drm/amd/display: update plane functionalities
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / amd / amdgpu / amdgpu_vm.c
1 /*
2 * Copyright 2008 Advanced Micro Devices, Inc.
3 * Copyright 2008 Red Hat Inc.
4 * Copyright 2009 Jerome Glisse.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22 * OTHER DEALINGS IN THE SOFTWARE.
23 *
24 * Authors: Dave Airlie
25 * Alex Deucher
26 * Jerome Glisse
27 */
28 #include <linux/dma-fence-array.h>
29 #include <linux/interval_tree_generic.h>
30 #include <linux/idr.h>
31 #include <drm/drmP.h>
32 #include <drm/amdgpu_drm.h>
33 #include "amdgpu.h"
34 #include "amdgpu_trace.h"
35
36 /*
37 * PASID manager
38 *
39 * PASIDs are global address space identifiers that can be shared
40 * between the GPU, an IOMMU and the driver. VMs on different devices
41 * may use the same PASID if they share the same address
42 * space. Therefore PASIDs are allocated using a global IDA. VMs are
43 * looked up from the PASID per amdgpu_device.
44 */
45 static DEFINE_IDA(amdgpu_vm_pasid_ida);
46
47 /**
48 * amdgpu_vm_alloc_pasid - Allocate a PASID
49 * @bits: Maximum width of the PASID in bits, must be at least 1
50 *
51 * Allocates a PASID of the given width while keeping smaller PASIDs
52 * available if possible.
53 *
54 * Returns a positive integer on success. Returns %-EINVAL if bits==0.
55 * Returns %-ENOSPC if no PASID was available. Returns %-ENOMEM on
56 * memory allocation failure.
57 */
58 int amdgpu_vm_alloc_pasid(unsigned int bits)
59 {
60 int pasid = -EINVAL;
61
62 for (bits = min(bits, 31U); bits > 0; bits--) {
63 pasid = ida_simple_get(&amdgpu_vm_pasid_ida,
64 1U << (bits - 1), 1U << bits,
65 GFP_KERNEL);
66 if (pasid != -ENOSPC)
67 break;
68 }
69
70 return pasid;
71 }
72
73 /**
74 * amdgpu_vm_free_pasid - Free a PASID
75 * @pasid: PASID to free
76 */
77 void amdgpu_vm_free_pasid(unsigned int pasid)
78 {
79 ida_simple_remove(&amdgpu_vm_pasid_ida, pasid);
80 }
81
82 /*
83 * GPUVM
84 * GPUVM is similar to the legacy gart on older asics, however
85 * rather than there being a single global gart table
86 * for the entire GPU, there are multiple VM page tables active
87 * at any given time. The VM page tables can contain a mix
88 * vram pages and system memory pages and system memory pages
89 * can be mapped as snooped (cached system pages) or unsnooped
90 * (uncached system pages).
91 * Each VM has an ID associated with it and there is a page table
92 * associated with each VMID. When execting a command buffer,
93 * the kernel tells the the ring what VMID to use for that command
94 * buffer. VMIDs are allocated dynamically as commands are submitted.
95 * The userspace drivers maintain their own address space and the kernel
96 * sets up their pages tables accordingly when they submit their
97 * command buffers and a VMID is assigned.
98 * Cayman/Trinity support up to 8 active VMs at any given time;
99 * SI supports 16.
100 */
101
102 #define START(node) ((node)->start)
103 #define LAST(node) ((node)->last)
104
105 INTERVAL_TREE_DEFINE(struct amdgpu_bo_va_mapping, rb, uint64_t, __subtree_last,
106 START, LAST, static, amdgpu_vm_it)
107
108 #undef START
109 #undef LAST
110
111 /* Local structure. Encapsulate some VM table update parameters to reduce
112 * the number of function parameters
113 */
114 struct amdgpu_pte_update_params {
115 /* amdgpu device we do this update for */
116 struct amdgpu_device *adev;
117 /* optional amdgpu_vm we do this update for */
118 struct amdgpu_vm *vm;
119 /* address where to copy page table entries from */
120 uint64_t src;
121 /* indirect buffer to fill with commands */
122 struct amdgpu_ib *ib;
123 /* Function which actually does the update */
124 void (*func)(struct amdgpu_pte_update_params *params, uint64_t pe,
125 uint64_t addr, unsigned count, uint32_t incr,
126 uint64_t flags);
127 /* The next two are used during VM update by CPU
128 * DMA addresses to use for mapping
129 * Kernel pointer of PD/PT BO that needs to be updated
130 */
131 dma_addr_t *pages_addr;
132 void *kptr;
133 };
134
135 /* Helper to disable partial resident texture feature from a fence callback */
136 struct amdgpu_prt_cb {
137 struct amdgpu_device *adev;
138 struct dma_fence_cb cb;
139 };
140
141 /**
142 * amdgpu_vm_num_entries - return the number of entries in a PD/PT
143 *
144 * @adev: amdgpu_device pointer
145 *
146 * Calculate the number of entries in a page directory or page table.
147 */
148 static unsigned amdgpu_vm_num_entries(struct amdgpu_device *adev,
149 unsigned level)
150 {
151 if (level == 0)
152 /* For the root directory */
153 return adev->vm_manager.max_pfn >>
154 (adev->vm_manager.block_size *
155 adev->vm_manager.num_level);
156 else if (level == adev->vm_manager.num_level)
157 /* For the page tables on the leaves */
158 return AMDGPU_VM_PTE_COUNT(adev);
159 else
160 /* Everything in between */
161 return 1 << adev->vm_manager.block_size;
162 }
163
164 /**
165 * amdgpu_vm_bo_size - returns the size of the BOs in bytes
166 *
167 * @adev: amdgpu_device pointer
168 *
169 * Calculate the size of the BO for a page directory or page table in bytes.
170 */
171 static unsigned amdgpu_vm_bo_size(struct amdgpu_device *adev, unsigned level)
172 {
173 return AMDGPU_GPU_PAGE_ALIGN(amdgpu_vm_num_entries(adev, level) * 8);
174 }
175
176 /**
177 * amdgpu_vm_get_pd_bo - add the VM PD to a validation list
178 *
179 * @vm: vm providing the BOs
180 * @validated: head of validation list
181 * @entry: entry to add
182 *
183 * Add the page directory to the list of BOs to
184 * validate for command submission.
185 */
186 void amdgpu_vm_get_pd_bo(struct amdgpu_vm *vm,
187 struct list_head *validated,
188 struct amdgpu_bo_list_entry *entry)
189 {
190 entry->robj = vm->root.base.bo;
191 entry->priority = 0;
192 entry->tv.bo = &entry->robj->tbo;
193 entry->tv.shared = true;
194 entry->user_pages = NULL;
195 list_add(&entry->tv.head, validated);
196 }
197
198 /**
199 * amdgpu_vm_validate_pt_bos - validate the page table BOs
200 *
201 * @adev: amdgpu device pointer
202 * @vm: vm providing the BOs
203 * @validate: callback to do the validation
204 * @param: parameter for the validation callback
205 *
206 * Validate the page table BOs on command submission if neccessary.
207 */
208 int amdgpu_vm_validate_pt_bos(struct amdgpu_device *adev, struct amdgpu_vm *vm,
209 int (*validate)(void *p, struct amdgpu_bo *bo),
210 void *param)
211 {
212 struct ttm_bo_global *glob = adev->mman.bdev.glob;
213 int r;
214
215 spin_lock(&vm->status_lock);
216 while (!list_empty(&vm->evicted)) {
217 struct amdgpu_vm_bo_base *bo_base;
218 struct amdgpu_bo *bo;
219
220 bo_base = list_first_entry(&vm->evicted,
221 struct amdgpu_vm_bo_base,
222 vm_status);
223 spin_unlock(&vm->status_lock);
224
225 bo = bo_base->bo;
226 BUG_ON(!bo);
227 if (bo->parent) {
228 r = validate(param, bo);
229 if (r)
230 return r;
231
232 spin_lock(&glob->lru_lock);
233 ttm_bo_move_to_lru_tail(&bo->tbo);
234 if (bo->shadow)
235 ttm_bo_move_to_lru_tail(&bo->shadow->tbo);
236 spin_unlock(&glob->lru_lock);
237 }
238
239 if (bo->tbo.type == ttm_bo_type_kernel &&
240 vm->use_cpu_for_update) {
241 r = amdgpu_bo_kmap(bo, NULL);
242 if (r)
243 return r;
244 }
245
246 spin_lock(&vm->status_lock);
247 if (bo->tbo.type != ttm_bo_type_kernel)
248 list_move(&bo_base->vm_status, &vm->moved);
249 else
250 list_move(&bo_base->vm_status, &vm->relocated);
251 }
252 spin_unlock(&vm->status_lock);
253
254 return 0;
255 }
256
257 /**
258 * amdgpu_vm_ready - check VM is ready for updates
259 *
260 * @vm: VM to check
261 *
262 * Check if all VM PDs/PTs are ready for updates
263 */
264 bool amdgpu_vm_ready(struct amdgpu_vm *vm)
265 {
266 bool ready;
267
268 spin_lock(&vm->status_lock);
269 ready = list_empty(&vm->evicted);
270 spin_unlock(&vm->status_lock);
271
272 return ready;
273 }
274
275 /**
276 * amdgpu_vm_alloc_levels - allocate the PD/PT levels
277 *
278 * @adev: amdgpu_device pointer
279 * @vm: requested vm
280 * @saddr: start of the address range
281 * @eaddr: end of the address range
282 *
283 * Make sure the page directories and page tables are allocated
284 */
285 static int amdgpu_vm_alloc_levels(struct amdgpu_device *adev,
286 struct amdgpu_vm *vm,
287 struct amdgpu_vm_pt *parent,
288 uint64_t saddr, uint64_t eaddr,
289 unsigned level)
290 {
291 unsigned shift = (adev->vm_manager.num_level - level) *
292 adev->vm_manager.block_size;
293 unsigned pt_idx, from, to;
294 int r;
295 u64 flags;
296 uint64_t init_value = 0;
297
298 if (!parent->entries) {
299 unsigned num_entries = amdgpu_vm_num_entries(adev, level);
300
301 parent->entries = kvmalloc_array(num_entries,
302 sizeof(struct amdgpu_vm_pt),
303 GFP_KERNEL | __GFP_ZERO);
304 if (!parent->entries)
305 return -ENOMEM;
306 memset(parent->entries, 0 , sizeof(struct amdgpu_vm_pt));
307 }
308
309 from = saddr >> shift;
310 to = eaddr >> shift;
311 if (from >= amdgpu_vm_num_entries(adev, level) ||
312 to >= amdgpu_vm_num_entries(adev, level))
313 return -EINVAL;
314
315 if (to > parent->last_entry_used)
316 parent->last_entry_used = to;
317
318 ++level;
319 saddr = saddr & ((1 << shift) - 1);
320 eaddr = eaddr & ((1 << shift) - 1);
321
322 flags = AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS |
323 AMDGPU_GEM_CREATE_VRAM_CLEARED;
324 if (vm->use_cpu_for_update)
325 flags |= AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
326 else
327 flags |= (AMDGPU_GEM_CREATE_NO_CPU_ACCESS |
328 AMDGPU_GEM_CREATE_SHADOW);
329
330 if (vm->pte_support_ats) {
331 init_value = AMDGPU_PTE_SYSTEM;
332 if (level != adev->vm_manager.num_level - 1)
333 init_value |= AMDGPU_PDE_PTE;
334 }
335
336 /* walk over the address space and allocate the page tables */
337 for (pt_idx = from; pt_idx <= to; ++pt_idx) {
338 struct reservation_object *resv = vm->root.base.bo->tbo.resv;
339 struct amdgpu_vm_pt *entry = &parent->entries[pt_idx];
340 struct amdgpu_bo *pt;
341
342 if (!entry->base.bo) {
343 r = amdgpu_bo_create(adev,
344 amdgpu_vm_bo_size(adev, level),
345 AMDGPU_GPU_PAGE_SIZE, true,
346 AMDGPU_GEM_DOMAIN_VRAM,
347 flags,
348 NULL, resv, init_value, &pt);
349 if (r)
350 return r;
351
352 if (vm->use_cpu_for_update) {
353 r = amdgpu_bo_kmap(pt, NULL);
354 if (r) {
355 amdgpu_bo_unref(&pt);
356 return r;
357 }
358 }
359
360 /* Keep a reference to the root directory to avoid
361 * freeing them up in the wrong order.
362 */
363 pt->parent = amdgpu_bo_ref(parent->base.bo);
364
365 entry->base.vm = vm;
366 entry->base.bo = pt;
367 list_add_tail(&entry->base.bo_list, &pt->va);
368 spin_lock(&vm->status_lock);
369 list_add(&entry->base.vm_status, &vm->relocated);
370 spin_unlock(&vm->status_lock);
371 entry->addr = 0;
372 }
373
374 if (level < adev->vm_manager.num_level) {
375 uint64_t sub_saddr = (pt_idx == from) ? saddr : 0;
376 uint64_t sub_eaddr = (pt_idx == to) ? eaddr :
377 ((1 << shift) - 1);
378 r = amdgpu_vm_alloc_levels(adev, vm, entry, sub_saddr,
379 sub_eaddr, level);
380 if (r)
381 return r;
382 }
383 }
384
385 return 0;
386 }
387
388 /**
389 * amdgpu_vm_alloc_pts - Allocate page tables.
390 *
391 * @adev: amdgpu_device pointer
392 * @vm: VM to allocate page tables for
393 * @saddr: Start address which needs to be allocated
394 * @size: Size from start address we need.
395 *
396 * Make sure the page tables are allocated.
397 */
398 int amdgpu_vm_alloc_pts(struct amdgpu_device *adev,
399 struct amdgpu_vm *vm,
400 uint64_t saddr, uint64_t size)
401 {
402 uint64_t last_pfn;
403 uint64_t eaddr;
404
405 /* validate the parameters */
406 if (saddr & AMDGPU_GPU_PAGE_MASK || size & AMDGPU_GPU_PAGE_MASK)
407 return -EINVAL;
408
409 eaddr = saddr + size - 1;
410 last_pfn = eaddr / AMDGPU_GPU_PAGE_SIZE;
411 if (last_pfn >= adev->vm_manager.max_pfn) {
412 dev_err(adev->dev, "va above limit (0x%08llX >= 0x%08llX)\n",
413 last_pfn, adev->vm_manager.max_pfn);
414 return -EINVAL;
415 }
416
417 saddr /= AMDGPU_GPU_PAGE_SIZE;
418 eaddr /= AMDGPU_GPU_PAGE_SIZE;
419
420 return amdgpu_vm_alloc_levels(adev, vm, &vm->root, saddr, eaddr, 0);
421 }
422
423 /**
424 * amdgpu_vm_had_gpu_reset - check if reset occured since last use
425 *
426 * @adev: amdgpu_device pointer
427 * @id: VMID structure
428 *
429 * Check if GPU reset occured since last use of the VMID.
430 */
431 static bool amdgpu_vm_had_gpu_reset(struct amdgpu_device *adev,
432 struct amdgpu_vm_id *id)
433 {
434 return id->current_gpu_reset_count !=
435 atomic_read(&adev->gpu_reset_counter);
436 }
437
438 static bool amdgpu_vm_reserved_vmid_ready(struct amdgpu_vm *vm, unsigned vmhub)
439 {
440 return !!vm->reserved_vmid[vmhub];
441 }
442
443 /* idr_mgr->lock must be held */
444 static int amdgpu_vm_grab_reserved_vmid_locked(struct amdgpu_vm *vm,
445 struct amdgpu_ring *ring,
446 struct amdgpu_sync *sync,
447 struct dma_fence *fence,
448 struct amdgpu_job *job)
449 {
450 struct amdgpu_device *adev = ring->adev;
451 unsigned vmhub = ring->funcs->vmhub;
452 uint64_t fence_context = adev->fence_context + ring->idx;
453 struct amdgpu_vm_id *id = vm->reserved_vmid[vmhub];
454 struct amdgpu_vm_id_manager *id_mgr = &adev->vm_manager.id_mgr[vmhub];
455 struct dma_fence *updates = sync->last_vm_update;
456 int r = 0;
457 struct dma_fence *flushed, *tmp;
458 bool needs_flush = vm->use_cpu_for_update;
459
460 flushed = id->flushed_updates;
461 if ((amdgpu_vm_had_gpu_reset(adev, id)) ||
462 (atomic64_read(&id->owner) != vm->client_id) ||
463 (job->vm_pd_addr != id->pd_gpu_addr) ||
464 (updates && (!flushed || updates->context != flushed->context ||
465 dma_fence_is_later(updates, flushed))) ||
466 (!id->last_flush || (id->last_flush->context != fence_context &&
467 !dma_fence_is_signaled(id->last_flush)))) {
468 needs_flush = true;
469 /* to prevent one context starved by another context */
470 id->pd_gpu_addr = 0;
471 tmp = amdgpu_sync_peek_fence(&id->active, ring);
472 if (tmp) {
473 r = amdgpu_sync_fence(adev, sync, tmp);
474 return r;
475 }
476 }
477
478 /* Good we can use this VMID. Remember this submission as
479 * user of the VMID.
480 */
481 r = amdgpu_sync_fence(ring->adev, &id->active, fence);
482 if (r)
483 goto out;
484
485 if (updates && (!flushed || updates->context != flushed->context ||
486 dma_fence_is_later(updates, flushed))) {
487 dma_fence_put(id->flushed_updates);
488 id->flushed_updates = dma_fence_get(updates);
489 }
490 id->pd_gpu_addr = job->vm_pd_addr;
491 atomic64_set(&id->owner, vm->client_id);
492 job->vm_needs_flush = needs_flush;
493 if (needs_flush) {
494 dma_fence_put(id->last_flush);
495 id->last_flush = NULL;
496 }
497 job->vm_id = id - id_mgr->ids;
498 trace_amdgpu_vm_grab_id(vm, ring, job);
499 out:
500 return r;
501 }
502
503 /**
504 * amdgpu_vm_grab_id - allocate the next free VMID
505 *
506 * @vm: vm to allocate id for
507 * @ring: ring we want to submit job to
508 * @sync: sync object where we add dependencies
509 * @fence: fence protecting ID from reuse
510 *
511 * Allocate an id for the vm, adding fences to the sync obj as necessary.
512 */
513 int amdgpu_vm_grab_id(struct amdgpu_vm *vm, struct amdgpu_ring *ring,
514 struct amdgpu_sync *sync, struct dma_fence *fence,
515 struct amdgpu_job *job)
516 {
517 struct amdgpu_device *adev = ring->adev;
518 unsigned vmhub = ring->funcs->vmhub;
519 struct amdgpu_vm_id_manager *id_mgr = &adev->vm_manager.id_mgr[vmhub];
520 uint64_t fence_context = adev->fence_context + ring->idx;
521 struct dma_fence *updates = sync->last_vm_update;
522 struct amdgpu_vm_id *id, *idle;
523 struct dma_fence **fences;
524 unsigned i;
525 int r = 0;
526
527 mutex_lock(&id_mgr->lock);
528 if (amdgpu_vm_reserved_vmid_ready(vm, vmhub)) {
529 r = amdgpu_vm_grab_reserved_vmid_locked(vm, ring, sync, fence, job);
530 mutex_unlock(&id_mgr->lock);
531 return r;
532 }
533 fences = kmalloc_array(sizeof(void *), id_mgr->num_ids, GFP_KERNEL);
534 if (!fences) {
535 mutex_unlock(&id_mgr->lock);
536 return -ENOMEM;
537 }
538 /* Check if we have an idle VMID */
539 i = 0;
540 list_for_each_entry(idle, &id_mgr->ids_lru, list) {
541 fences[i] = amdgpu_sync_peek_fence(&idle->active, ring);
542 if (!fences[i])
543 break;
544 ++i;
545 }
546
547 /* If we can't find a idle VMID to use, wait till one becomes available */
548 if (&idle->list == &id_mgr->ids_lru) {
549 u64 fence_context = adev->vm_manager.fence_context + ring->idx;
550 unsigned seqno = ++adev->vm_manager.seqno[ring->idx];
551 struct dma_fence_array *array;
552 unsigned j;
553
554 for (j = 0; j < i; ++j)
555 dma_fence_get(fences[j]);
556
557 array = dma_fence_array_create(i, fences, fence_context,
558 seqno, true);
559 if (!array) {
560 for (j = 0; j < i; ++j)
561 dma_fence_put(fences[j]);
562 kfree(fences);
563 r = -ENOMEM;
564 goto error;
565 }
566
567
568 r = amdgpu_sync_fence(ring->adev, sync, &array->base);
569 dma_fence_put(&array->base);
570 if (r)
571 goto error;
572
573 mutex_unlock(&id_mgr->lock);
574 return 0;
575
576 }
577 kfree(fences);
578
579 job->vm_needs_flush = vm->use_cpu_for_update;
580 /* Check if we can use a VMID already assigned to this VM */
581 list_for_each_entry_reverse(id, &id_mgr->ids_lru, list) {
582 struct dma_fence *flushed;
583 bool needs_flush = vm->use_cpu_for_update;
584
585 /* Check all the prerequisites to using this VMID */
586 if (amdgpu_vm_had_gpu_reset(adev, id))
587 continue;
588
589 if (atomic64_read(&id->owner) != vm->client_id)
590 continue;
591
592 if (job->vm_pd_addr != id->pd_gpu_addr)
593 continue;
594
595 if (!id->last_flush ||
596 (id->last_flush->context != fence_context &&
597 !dma_fence_is_signaled(id->last_flush)))
598 needs_flush = true;
599
600 flushed = id->flushed_updates;
601 if (updates && (!flushed || dma_fence_is_later(updates, flushed)))
602 needs_flush = true;
603
604 /* Concurrent flushes are only possible starting with Vega10 */
605 if (adev->asic_type < CHIP_VEGA10 && needs_flush)
606 continue;
607
608 /* Good we can use this VMID. Remember this submission as
609 * user of the VMID.
610 */
611 r = amdgpu_sync_fence(ring->adev, &id->active, fence);
612 if (r)
613 goto error;
614
615 if (updates && (!flushed || dma_fence_is_later(updates, flushed))) {
616 dma_fence_put(id->flushed_updates);
617 id->flushed_updates = dma_fence_get(updates);
618 }
619
620 if (needs_flush)
621 goto needs_flush;
622 else
623 goto no_flush_needed;
624
625 };
626
627 /* Still no ID to use? Then use the idle one found earlier */
628 id = idle;
629
630 /* Remember this submission as user of the VMID */
631 r = amdgpu_sync_fence(ring->adev, &id->active, fence);
632 if (r)
633 goto error;
634
635 id->pd_gpu_addr = job->vm_pd_addr;
636 dma_fence_put(id->flushed_updates);
637 id->flushed_updates = dma_fence_get(updates);
638 atomic64_set(&id->owner, vm->client_id);
639
640 needs_flush:
641 job->vm_needs_flush = true;
642 dma_fence_put(id->last_flush);
643 id->last_flush = NULL;
644
645 no_flush_needed:
646 list_move_tail(&id->list, &id_mgr->ids_lru);
647
648 job->vm_id = id - id_mgr->ids;
649 trace_amdgpu_vm_grab_id(vm, ring, job);
650
651 error:
652 mutex_unlock(&id_mgr->lock);
653 return r;
654 }
655
656 static void amdgpu_vm_free_reserved_vmid(struct amdgpu_device *adev,
657 struct amdgpu_vm *vm,
658 unsigned vmhub)
659 {
660 struct amdgpu_vm_id_manager *id_mgr = &adev->vm_manager.id_mgr[vmhub];
661
662 mutex_lock(&id_mgr->lock);
663 if (vm->reserved_vmid[vmhub]) {
664 list_add(&vm->reserved_vmid[vmhub]->list,
665 &id_mgr->ids_lru);
666 vm->reserved_vmid[vmhub] = NULL;
667 atomic_dec(&id_mgr->reserved_vmid_num);
668 }
669 mutex_unlock(&id_mgr->lock);
670 }
671
672 static int amdgpu_vm_alloc_reserved_vmid(struct amdgpu_device *adev,
673 struct amdgpu_vm *vm,
674 unsigned vmhub)
675 {
676 struct amdgpu_vm_id_manager *id_mgr;
677 struct amdgpu_vm_id *idle;
678 int r = 0;
679
680 id_mgr = &adev->vm_manager.id_mgr[vmhub];
681 mutex_lock(&id_mgr->lock);
682 if (vm->reserved_vmid[vmhub])
683 goto unlock;
684 if (atomic_inc_return(&id_mgr->reserved_vmid_num) >
685 AMDGPU_VM_MAX_RESERVED_VMID) {
686 DRM_ERROR("Over limitation of reserved vmid\n");
687 atomic_dec(&id_mgr->reserved_vmid_num);
688 r = -EINVAL;
689 goto unlock;
690 }
691 /* Select the first entry VMID */
692 idle = list_first_entry(&id_mgr->ids_lru, struct amdgpu_vm_id, list);
693 list_del_init(&idle->list);
694 vm->reserved_vmid[vmhub] = idle;
695 mutex_unlock(&id_mgr->lock);
696
697 return 0;
698 unlock:
699 mutex_unlock(&id_mgr->lock);
700 return r;
701 }
702
703 /**
704 * amdgpu_vm_check_compute_bug - check whether asic has compute vm bug
705 *
706 * @adev: amdgpu_device pointer
707 */
708 void amdgpu_vm_check_compute_bug(struct amdgpu_device *adev)
709 {
710 const struct amdgpu_ip_block *ip_block;
711 bool has_compute_vm_bug;
712 struct amdgpu_ring *ring;
713 int i;
714
715 has_compute_vm_bug = false;
716
717 ip_block = amdgpu_get_ip_block(adev, AMD_IP_BLOCK_TYPE_GFX);
718 if (ip_block) {
719 /* Compute has a VM bug for GFX version < 7.
720 Compute has a VM bug for GFX 8 MEC firmware version < 673.*/
721 if (ip_block->version->major <= 7)
722 has_compute_vm_bug = true;
723 else if (ip_block->version->major == 8)
724 if (adev->gfx.mec_fw_version < 673)
725 has_compute_vm_bug = true;
726 }
727
728 for (i = 0; i < adev->num_rings; i++) {
729 ring = adev->rings[i];
730 if (ring->funcs->type == AMDGPU_RING_TYPE_COMPUTE)
731 /* only compute rings */
732 ring->has_compute_vm_bug = has_compute_vm_bug;
733 else
734 ring->has_compute_vm_bug = false;
735 }
736 }
737
738 bool amdgpu_vm_need_pipeline_sync(struct amdgpu_ring *ring,
739 struct amdgpu_job *job)
740 {
741 struct amdgpu_device *adev = ring->adev;
742 unsigned vmhub = ring->funcs->vmhub;
743 struct amdgpu_vm_id_manager *id_mgr = &adev->vm_manager.id_mgr[vmhub];
744 struct amdgpu_vm_id *id;
745 bool gds_switch_needed;
746 bool vm_flush_needed = job->vm_needs_flush || ring->has_compute_vm_bug;
747
748 if (job->vm_id == 0)
749 return false;
750 id = &id_mgr->ids[job->vm_id];
751 gds_switch_needed = ring->funcs->emit_gds_switch && (
752 id->gds_base != job->gds_base ||
753 id->gds_size != job->gds_size ||
754 id->gws_base != job->gws_base ||
755 id->gws_size != job->gws_size ||
756 id->oa_base != job->oa_base ||
757 id->oa_size != job->oa_size);
758
759 if (amdgpu_vm_had_gpu_reset(adev, id))
760 return true;
761
762 return vm_flush_needed || gds_switch_needed;
763 }
764
765 static bool amdgpu_vm_is_large_bar(struct amdgpu_device *adev)
766 {
767 return (adev->mc.real_vram_size == adev->mc.visible_vram_size);
768 }
769
770 /**
771 * amdgpu_vm_flush - hardware flush the vm
772 *
773 * @ring: ring to use for flush
774 * @vm_id: vmid number to use
775 * @pd_addr: address of the page directory
776 *
777 * Emit a VM flush when it is necessary.
778 */
779 int amdgpu_vm_flush(struct amdgpu_ring *ring, struct amdgpu_job *job, bool need_pipe_sync)
780 {
781 struct amdgpu_device *adev = ring->adev;
782 unsigned vmhub = ring->funcs->vmhub;
783 struct amdgpu_vm_id_manager *id_mgr = &adev->vm_manager.id_mgr[vmhub];
784 struct amdgpu_vm_id *id = &id_mgr->ids[job->vm_id];
785 bool gds_switch_needed = ring->funcs->emit_gds_switch && (
786 id->gds_base != job->gds_base ||
787 id->gds_size != job->gds_size ||
788 id->gws_base != job->gws_base ||
789 id->gws_size != job->gws_size ||
790 id->oa_base != job->oa_base ||
791 id->oa_size != job->oa_size);
792 bool vm_flush_needed = job->vm_needs_flush;
793 unsigned patch_offset = 0;
794 int r;
795
796 if (amdgpu_vm_had_gpu_reset(adev, id)) {
797 gds_switch_needed = true;
798 vm_flush_needed = true;
799 }
800
801 if (!vm_flush_needed && !gds_switch_needed && !need_pipe_sync)
802 return 0;
803
804 if (ring->funcs->init_cond_exec)
805 patch_offset = amdgpu_ring_init_cond_exec(ring);
806
807 if (need_pipe_sync)
808 amdgpu_ring_emit_pipeline_sync(ring);
809
810 if (ring->funcs->emit_vm_flush && vm_flush_needed) {
811 struct dma_fence *fence;
812
813 trace_amdgpu_vm_flush(ring, job->vm_id, job->vm_pd_addr);
814 amdgpu_ring_emit_vm_flush(ring, job->vm_id, job->vm_pd_addr);
815
816 r = amdgpu_fence_emit(ring, &fence);
817 if (r)
818 return r;
819
820 mutex_lock(&id_mgr->lock);
821 dma_fence_put(id->last_flush);
822 id->last_flush = fence;
823 id->current_gpu_reset_count = atomic_read(&adev->gpu_reset_counter);
824 mutex_unlock(&id_mgr->lock);
825 }
826
827 if (ring->funcs->emit_gds_switch && gds_switch_needed) {
828 id->gds_base = job->gds_base;
829 id->gds_size = job->gds_size;
830 id->gws_base = job->gws_base;
831 id->gws_size = job->gws_size;
832 id->oa_base = job->oa_base;
833 id->oa_size = job->oa_size;
834 amdgpu_ring_emit_gds_switch(ring, job->vm_id, job->gds_base,
835 job->gds_size, job->gws_base,
836 job->gws_size, job->oa_base,
837 job->oa_size);
838 }
839
840 if (ring->funcs->patch_cond_exec)
841 amdgpu_ring_patch_cond_exec(ring, patch_offset);
842
843 /* the double SWITCH_BUFFER here *cannot* be skipped by COND_EXEC */
844 if (ring->funcs->emit_switch_buffer) {
845 amdgpu_ring_emit_switch_buffer(ring);
846 amdgpu_ring_emit_switch_buffer(ring);
847 }
848 return 0;
849 }
850
851 /**
852 * amdgpu_vm_reset_id - reset VMID to zero
853 *
854 * @adev: amdgpu device structure
855 * @vm_id: vmid number to use
856 *
857 * Reset saved GDW, GWS and OA to force switch on next flush.
858 */
859 void amdgpu_vm_reset_id(struct amdgpu_device *adev, unsigned vmhub,
860 unsigned vmid)
861 {
862 struct amdgpu_vm_id_manager *id_mgr = &adev->vm_manager.id_mgr[vmhub];
863 struct amdgpu_vm_id *id = &id_mgr->ids[vmid];
864
865 atomic64_set(&id->owner, 0);
866 id->gds_base = 0;
867 id->gds_size = 0;
868 id->gws_base = 0;
869 id->gws_size = 0;
870 id->oa_base = 0;
871 id->oa_size = 0;
872 }
873
874 /**
875 * amdgpu_vm_reset_all_id - reset VMID to zero
876 *
877 * @adev: amdgpu device structure
878 *
879 * Reset VMID to force flush on next use
880 */
881 void amdgpu_vm_reset_all_ids(struct amdgpu_device *adev)
882 {
883 unsigned i, j;
884
885 for (i = 0; i < AMDGPU_MAX_VMHUBS; ++i) {
886 struct amdgpu_vm_id_manager *id_mgr =
887 &adev->vm_manager.id_mgr[i];
888
889 for (j = 1; j < id_mgr->num_ids; ++j)
890 amdgpu_vm_reset_id(adev, i, j);
891 }
892 }
893
894 /**
895 * amdgpu_vm_bo_find - find the bo_va for a specific vm & bo
896 *
897 * @vm: requested vm
898 * @bo: requested buffer object
899 *
900 * Find @bo inside the requested vm.
901 * Search inside the @bos vm list for the requested vm
902 * Returns the found bo_va or NULL if none is found
903 *
904 * Object has to be reserved!
905 */
906 struct amdgpu_bo_va *amdgpu_vm_bo_find(struct amdgpu_vm *vm,
907 struct amdgpu_bo *bo)
908 {
909 struct amdgpu_bo_va *bo_va;
910
911 list_for_each_entry(bo_va, &bo->va, base.bo_list) {
912 if (bo_va->base.vm == vm) {
913 return bo_va;
914 }
915 }
916 return NULL;
917 }
918
919 /**
920 * amdgpu_vm_do_set_ptes - helper to call the right asic function
921 *
922 * @params: see amdgpu_pte_update_params definition
923 * @pe: addr of the page entry
924 * @addr: dst addr to write into pe
925 * @count: number of page entries to update
926 * @incr: increase next addr by incr bytes
927 * @flags: hw access flags
928 *
929 * Traces the parameters and calls the right asic functions
930 * to setup the page table using the DMA.
931 */
932 static void amdgpu_vm_do_set_ptes(struct amdgpu_pte_update_params *params,
933 uint64_t pe, uint64_t addr,
934 unsigned count, uint32_t incr,
935 uint64_t flags)
936 {
937 trace_amdgpu_vm_set_ptes(pe, addr, count, incr, flags);
938
939 if (count < 3) {
940 amdgpu_vm_write_pte(params->adev, params->ib, pe,
941 addr | flags, count, incr);
942
943 } else {
944 amdgpu_vm_set_pte_pde(params->adev, params->ib, pe, addr,
945 count, incr, flags);
946 }
947 }
948
949 /**
950 * amdgpu_vm_do_copy_ptes - copy the PTEs from the GART
951 *
952 * @params: see amdgpu_pte_update_params definition
953 * @pe: addr of the page entry
954 * @addr: dst addr to write into pe
955 * @count: number of page entries to update
956 * @incr: increase next addr by incr bytes
957 * @flags: hw access flags
958 *
959 * Traces the parameters and calls the DMA function to copy the PTEs.
960 */
961 static void amdgpu_vm_do_copy_ptes(struct amdgpu_pte_update_params *params,
962 uint64_t pe, uint64_t addr,
963 unsigned count, uint32_t incr,
964 uint64_t flags)
965 {
966 uint64_t src = (params->src + (addr >> 12) * 8);
967
968
969 trace_amdgpu_vm_copy_ptes(pe, src, count);
970
971 amdgpu_vm_copy_pte(params->adev, params->ib, pe, src, count);
972 }
973
974 /**
975 * amdgpu_vm_map_gart - Resolve gart mapping of addr
976 *
977 * @pages_addr: optional DMA address to use for lookup
978 * @addr: the unmapped addr
979 *
980 * Look up the physical address of the page that the pte resolves
981 * to and return the pointer for the page table entry.
982 */
983 static uint64_t amdgpu_vm_map_gart(const dma_addr_t *pages_addr, uint64_t addr)
984 {
985 uint64_t result;
986
987 /* page table offset */
988 result = pages_addr[addr >> PAGE_SHIFT];
989
990 /* in case cpu page size != gpu page size*/
991 result |= addr & (~PAGE_MASK);
992
993 result &= 0xFFFFFFFFFFFFF000ULL;
994
995 return result;
996 }
997
998 /**
999 * amdgpu_vm_cpu_set_ptes - helper to update page tables via CPU
1000 *
1001 * @params: see amdgpu_pte_update_params definition
1002 * @pe: kmap addr of the page entry
1003 * @addr: dst addr to write into pe
1004 * @count: number of page entries to update
1005 * @incr: increase next addr by incr bytes
1006 * @flags: hw access flags
1007 *
1008 * Write count number of PT/PD entries directly.
1009 */
1010 static void amdgpu_vm_cpu_set_ptes(struct amdgpu_pte_update_params *params,
1011 uint64_t pe, uint64_t addr,
1012 unsigned count, uint32_t incr,
1013 uint64_t flags)
1014 {
1015 unsigned int i;
1016 uint64_t value;
1017
1018 trace_amdgpu_vm_set_ptes(pe, addr, count, incr, flags);
1019
1020 for (i = 0; i < count; i++) {
1021 value = params->pages_addr ?
1022 amdgpu_vm_map_gart(params->pages_addr, addr) :
1023 addr;
1024 amdgpu_gart_set_pte_pde(params->adev, (void *)(uintptr_t)pe,
1025 i, value, flags);
1026 addr += incr;
1027 }
1028 }
1029
1030 static int amdgpu_vm_wait_pd(struct amdgpu_device *adev, struct amdgpu_vm *vm,
1031 void *owner)
1032 {
1033 struct amdgpu_sync sync;
1034 int r;
1035
1036 amdgpu_sync_create(&sync);
1037 amdgpu_sync_resv(adev, &sync, vm->root.base.bo->tbo.resv, owner);
1038 r = amdgpu_sync_wait(&sync, true);
1039 amdgpu_sync_free(&sync);
1040
1041 return r;
1042 }
1043
1044 /*
1045 * amdgpu_vm_update_level - update a single level in the hierarchy
1046 *
1047 * @adev: amdgpu_device pointer
1048 * @vm: requested vm
1049 * @parent: parent directory
1050 *
1051 * Makes sure all entries in @parent are up to date.
1052 * Returns 0 for success, error for failure.
1053 */
1054 static int amdgpu_vm_update_level(struct amdgpu_device *adev,
1055 struct amdgpu_vm *vm,
1056 struct amdgpu_vm_pt *parent)
1057 {
1058 struct amdgpu_bo *shadow;
1059 struct amdgpu_ring *ring = NULL;
1060 uint64_t pd_addr, shadow_addr = 0;
1061 uint64_t last_pde = ~0, last_pt = ~0, last_shadow = ~0;
1062 unsigned count = 0, pt_idx, ndw = 0;
1063 struct amdgpu_job *job;
1064 struct amdgpu_pte_update_params params;
1065 struct dma_fence *fence = NULL;
1066 uint32_t incr;
1067
1068 int r;
1069
1070 if (!parent->entries)
1071 return 0;
1072
1073 memset(&params, 0, sizeof(params));
1074 params.adev = adev;
1075 shadow = parent->base.bo->shadow;
1076
1077 if (vm->use_cpu_for_update) {
1078 pd_addr = (unsigned long)amdgpu_bo_kptr(parent->base.bo);
1079 r = amdgpu_vm_wait_pd(adev, vm, AMDGPU_FENCE_OWNER_VM);
1080 if (unlikely(r))
1081 return r;
1082
1083 params.func = amdgpu_vm_cpu_set_ptes;
1084 } else {
1085 ring = container_of(vm->entity.sched, struct amdgpu_ring,
1086 sched);
1087
1088 /* padding, etc. */
1089 ndw = 64;
1090
1091 /* assume the worst case */
1092 ndw += parent->last_entry_used * 6;
1093
1094 pd_addr = amdgpu_bo_gpu_offset(parent->base.bo);
1095
1096 if (shadow) {
1097 shadow_addr = amdgpu_bo_gpu_offset(shadow);
1098 ndw *= 2;
1099 } else {
1100 shadow_addr = 0;
1101 }
1102
1103 r = amdgpu_job_alloc_with_ib(adev, ndw * 4, &job);
1104 if (r)
1105 return r;
1106
1107 params.ib = &job->ibs[0];
1108 params.func = amdgpu_vm_do_set_ptes;
1109 }
1110
1111
1112 /* walk over the address space and update the directory */
1113 for (pt_idx = 0; pt_idx <= parent->last_entry_used; ++pt_idx) {
1114 struct amdgpu_vm_pt *entry = &parent->entries[pt_idx];
1115 struct amdgpu_bo *bo = entry->base.bo;
1116 uint64_t pde, pt;
1117
1118 if (bo == NULL)
1119 continue;
1120
1121 spin_lock(&vm->status_lock);
1122 list_del_init(&entry->base.vm_status);
1123 spin_unlock(&vm->status_lock);
1124
1125 pt = amdgpu_bo_gpu_offset(bo);
1126 pt = amdgpu_gart_get_vm_pde(adev, pt);
1127 /* Don't update huge pages here */
1128 if ((parent->entries[pt_idx].addr & AMDGPU_PDE_PTE) ||
1129 parent->entries[pt_idx].addr == (pt | AMDGPU_PTE_VALID))
1130 continue;
1131
1132 parent->entries[pt_idx].addr = pt | AMDGPU_PTE_VALID;
1133
1134 pde = pd_addr + pt_idx * 8;
1135 incr = amdgpu_bo_size(bo);
1136 if (((last_pde + 8 * count) != pde) ||
1137 ((last_pt + incr * count) != pt) ||
1138 (count == AMDGPU_VM_MAX_UPDATE_SIZE)) {
1139
1140 if (count) {
1141 if (shadow)
1142 params.func(&params,
1143 last_shadow,
1144 last_pt, count,
1145 incr,
1146 AMDGPU_PTE_VALID);
1147
1148 params.func(&params, last_pde,
1149 last_pt, count, incr,
1150 AMDGPU_PTE_VALID);
1151 }
1152
1153 count = 1;
1154 last_pde = pde;
1155 last_shadow = shadow_addr + pt_idx * 8;
1156 last_pt = pt;
1157 } else {
1158 ++count;
1159 }
1160 }
1161
1162 if (count) {
1163 if (vm->root.base.bo->shadow)
1164 params.func(&params, last_shadow, last_pt,
1165 count, incr, AMDGPU_PTE_VALID);
1166
1167 params.func(&params, last_pde, last_pt,
1168 count, incr, AMDGPU_PTE_VALID);
1169 }
1170
1171 if (!vm->use_cpu_for_update) {
1172 if (params.ib->length_dw == 0) {
1173 amdgpu_job_free(job);
1174 } else {
1175 amdgpu_ring_pad_ib(ring, params.ib);
1176 amdgpu_sync_resv(adev, &job->sync,
1177 parent->base.bo->tbo.resv,
1178 AMDGPU_FENCE_OWNER_VM);
1179 if (shadow)
1180 amdgpu_sync_resv(adev, &job->sync,
1181 shadow->tbo.resv,
1182 AMDGPU_FENCE_OWNER_VM);
1183
1184 WARN_ON(params.ib->length_dw > ndw);
1185 r = amdgpu_job_submit(job, ring, &vm->entity,
1186 AMDGPU_FENCE_OWNER_VM, &fence);
1187 if (r)
1188 goto error_free;
1189
1190 amdgpu_bo_fence(parent->base.bo, fence, true);
1191 dma_fence_put(vm->last_update);
1192 vm->last_update = fence;
1193 }
1194 }
1195
1196 return 0;
1197
1198 error_free:
1199 amdgpu_job_free(job);
1200 return r;
1201 }
1202
1203 /*
1204 * amdgpu_vm_invalidate_level - mark all PD levels as invalid
1205 *
1206 * @parent: parent PD
1207 *
1208 * Mark all PD level as invalid after an error.
1209 */
1210 static void amdgpu_vm_invalidate_level(struct amdgpu_vm *vm,
1211 struct amdgpu_vm_pt *parent)
1212 {
1213 unsigned pt_idx;
1214
1215 /*
1216 * Recurse into the subdirectories. This recursion is harmless because
1217 * we only have a maximum of 5 layers.
1218 */
1219 for (pt_idx = 0; pt_idx <= parent->last_entry_used; ++pt_idx) {
1220 struct amdgpu_vm_pt *entry = &parent->entries[pt_idx];
1221
1222 if (!entry->base.bo)
1223 continue;
1224
1225 entry->addr = ~0ULL;
1226 spin_lock(&vm->status_lock);
1227 if (list_empty(&entry->base.vm_status))
1228 list_add(&entry->base.vm_status, &vm->relocated);
1229 spin_unlock(&vm->status_lock);
1230 amdgpu_vm_invalidate_level(vm, entry);
1231 }
1232 }
1233
1234 /*
1235 * amdgpu_vm_update_directories - make sure that all directories are valid
1236 *
1237 * @adev: amdgpu_device pointer
1238 * @vm: requested vm
1239 *
1240 * Makes sure all directories are up to date.
1241 * Returns 0 for success, error for failure.
1242 */
1243 int amdgpu_vm_update_directories(struct amdgpu_device *adev,
1244 struct amdgpu_vm *vm)
1245 {
1246 int r;
1247
1248 spin_lock(&vm->status_lock);
1249 while (!list_empty(&vm->relocated)) {
1250 struct amdgpu_vm_bo_base *bo_base;
1251 struct amdgpu_bo *bo;
1252
1253 bo_base = list_first_entry(&vm->relocated,
1254 struct amdgpu_vm_bo_base,
1255 vm_status);
1256 spin_unlock(&vm->status_lock);
1257
1258 bo = bo_base->bo->parent;
1259 if (bo) {
1260 struct amdgpu_vm_bo_base *parent;
1261 struct amdgpu_vm_pt *pt;
1262
1263 parent = list_first_entry(&bo->va,
1264 struct amdgpu_vm_bo_base,
1265 bo_list);
1266 pt = container_of(parent, struct amdgpu_vm_pt, base);
1267
1268 r = amdgpu_vm_update_level(adev, vm, pt);
1269 if (r) {
1270 amdgpu_vm_invalidate_level(vm, &vm->root);
1271 return r;
1272 }
1273 spin_lock(&vm->status_lock);
1274 } else {
1275 spin_lock(&vm->status_lock);
1276 list_del_init(&bo_base->vm_status);
1277 }
1278 }
1279 spin_unlock(&vm->status_lock);
1280
1281 if (vm->use_cpu_for_update) {
1282 /* Flush HDP */
1283 mb();
1284 amdgpu_gart_flush_gpu_tlb(adev, 0);
1285 }
1286
1287 return r;
1288 }
1289
1290 /**
1291 * amdgpu_vm_find_entry - find the entry for an address
1292 *
1293 * @p: see amdgpu_pte_update_params definition
1294 * @addr: virtual address in question
1295 * @entry: resulting entry or NULL
1296 * @parent: parent entry
1297 *
1298 * Find the vm_pt entry and it's parent for the given address.
1299 */
1300 void amdgpu_vm_get_entry(struct amdgpu_pte_update_params *p, uint64_t addr,
1301 struct amdgpu_vm_pt **entry,
1302 struct amdgpu_vm_pt **parent)
1303 {
1304 unsigned idx, level = p->adev->vm_manager.num_level;
1305
1306 *parent = NULL;
1307 *entry = &p->vm->root;
1308 while ((*entry)->entries) {
1309 idx = addr >> (p->adev->vm_manager.block_size * level--);
1310 idx %= amdgpu_bo_size((*entry)->base.bo) / 8;
1311 *parent = *entry;
1312 *entry = &(*entry)->entries[idx];
1313 }
1314
1315 if (level)
1316 *entry = NULL;
1317 }
1318
1319 /**
1320 * amdgpu_vm_handle_huge_pages - handle updating the PD with huge pages
1321 *
1322 * @p: see amdgpu_pte_update_params definition
1323 * @entry: vm_pt entry to check
1324 * @parent: parent entry
1325 * @nptes: number of PTEs updated with this operation
1326 * @dst: destination address where the PTEs should point to
1327 * @flags: access flags fro the PTEs
1328 *
1329 * Check if we can update the PD with a huge page.
1330 */
1331 static void amdgpu_vm_handle_huge_pages(struct amdgpu_pte_update_params *p,
1332 struct amdgpu_vm_pt *entry,
1333 struct amdgpu_vm_pt *parent,
1334 unsigned nptes, uint64_t dst,
1335 uint64_t flags)
1336 {
1337 bool use_cpu_update = (p->func == amdgpu_vm_cpu_set_ptes);
1338 uint64_t pd_addr, pde;
1339
1340 /* In the case of a mixed PT the PDE must point to it*/
1341 if (p->adev->asic_type < CHIP_VEGA10 ||
1342 nptes != AMDGPU_VM_PTE_COUNT(p->adev) ||
1343 p->src ||
1344 !(flags & AMDGPU_PTE_VALID)) {
1345
1346 dst = amdgpu_bo_gpu_offset(entry->base.bo);
1347 dst = amdgpu_gart_get_vm_pde(p->adev, dst);
1348 flags = AMDGPU_PTE_VALID;
1349 } else {
1350 /* Set the huge page flag to stop scanning at this PDE */
1351 flags |= AMDGPU_PDE_PTE;
1352 }
1353
1354 if (entry->addr == (dst | flags))
1355 return;
1356
1357 entry->addr = (dst | flags);
1358
1359 if (use_cpu_update) {
1360 /* In case a huge page is replaced with a system
1361 * memory mapping, p->pages_addr != NULL and
1362 * amdgpu_vm_cpu_set_ptes would try to translate dst
1363 * through amdgpu_vm_map_gart. But dst is already a
1364 * GPU address (of the page table). Disable
1365 * amdgpu_vm_map_gart temporarily.
1366 */
1367 dma_addr_t *tmp;
1368
1369 tmp = p->pages_addr;
1370 p->pages_addr = NULL;
1371
1372 pd_addr = (unsigned long)amdgpu_bo_kptr(parent->base.bo);
1373 pde = pd_addr + (entry - parent->entries) * 8;
1374 amdgpu_vm_cpu_set_ptes(p, pde, dst, 1, 0, flags);
1375
1376 p->pages_addr = tmp;
1377 } else {
1378 if (parent->base.bo->shadow) {
1379 pd_addr = amdgpu_bo_gpu_offset(parent->base.bo->shadow);
1380 pde = pd_addr + (entry - parent->entries) * 8;
1381 amdgpu_vm_do_set_ptes(p, pde, dst, 1, 0, flags);
1382 }
1383 pd_addr = amdgpu_bo_gpu_offset(parent->base.bo);
1384 pde = pd_addr + (entry - parent->entries) * 8;
1385 amdgpu_vm_do_set_ptes(p, pde, dst, 1, 0, flags);
1386 }
1387 }
1388
1389 /**
1390 * amdgpu_vm_update_ptes - make sure that page tables are valid
1391 *
1392 * @params: see amdgpu_pte_update_params definition
1393 * @vm: requested vm
1394 * @start: start of GPU address range
1395 * @end: end of GPU address range
1396 * @dst: destination address to map to, the next dst inside the function
1397 * @flags: mapping flags
1398 *
1399 * Update the page tables in the range @start - @end.
1400 * Returns 0 for success, -EINVAL for failure.
1401 */
1402 static int amdgpu_vm_update_ptes(struct amdgpu_pte_update_params *params,
1403 uint64_t start, uint64_t end,
1404 uint64_t dst, uint64_t flags)
1405 {
1406 struct amdgpu_device *adev = params->adev;
1407 const uint64_t mask = AMDGPU_VM_PTE_COUNT(adev) - 1;
1408
1409 uint64_t addr, pe_start;
1410 struct amdgpu_bo *pt;
1411 unsigned nptes;
1412 bool use_cpu_update = (params->func == amdgpu_vm_cpu_set_ptes);
1413
1414 /* walk over the address space and update the page tables */
1415 for (addr = start; addr < end; addr += nptes,
1416 dst += nptes * AMDGPU_GPU_PAGE_SIZE) {
1417 struct amdgpu_vm_pt *entry, *parent;
1418
1419 amdgpu_vm_get_entry(params, addr, &entry, &parent);
1420 if (!entry)
1421 return -ENOENT;
1422
1423 if ((addr & ~mask) == (end & ~mask))
1424 nptes = end - addr;
1425 else
1426 nptes = AMDGPU_VM_PTE_COUNT(adev) - (addr & mask);
1427
1428 amdgpu_vm_handle_huge_pages(params, entry, parent,
1429 nptes, dst, flags);
1430 /* We don't need to update PTEs for huge pages */
1431 if (entry->addr & AMDGPU_PDE_PTE)
1432 continue;
1433
1434 pt = entry->base.bo;
1435 if (use_cpu_update) {
1436 pe_start = (unsigned long)amdgpu_bo_kptr(pt);
1437 } else {
1438 if (pt->shadow) {
1439 pe_start = amdgpu_bo_gpu_offset(pt->shadow);
1440 pe_start += (addr & mask) * 8;
1441 params->func(params, pe_start, dst, nptes,
1442 AMDGPU_GPU_PAGE_SIZE, flags);
1443 }
1444 pe_start = amdgpu_bo_gpu_offset(pt);
1445 }
1446
1447 pe_start += (addr & mask) * 8;
1448 params->func(params, pe_start, dst, nptes,
1449 AMDGPU_GPU_PAGE_SIZE, flags);
1450 }
1451
1452 return 0;
1453 }
1454
1455 /*
1456 * amdgpu_vm_frag_ptes - add fragment information to PTEs
1457 *
1458 * @params: see amdgpu_pte_update_params definition
1459 * @vm: requested vm
1460 * @start: first PTE to handle
1461 * @end: last PTE to handle
1462 * @dst: addr those PTEs should point to
1463 * @flags: hw mapping flags
1464 * Returns 0 for success, -EINVAL for failure.
1465 */
1466 static int amdgpu_vm_frag_ptes(struct amdgpu_pte_update_params *params,
1467 uint64_t start, uint64_t end,
1468 uint64_t dst, uint64_t flags)
1469 {
1470 /**
1471 * The MC L1 TLB supports variable sized pages, based on a fragment
1472 * field in the PTE. When this field is set to a non-zero value, page
1473 * granularity is increased from 4KB to (1 << (12 + frag)). The PTE
1474 * flags are considered valid for all PTEs within the fragment range
1475 * and corresponding mappings are assumed to be physically contiguous.
1476 *
1477 * The L1 TLB can store a single PTE for the whole fragment,
1478 * significantly increasing the space available for translation
1479 * caching. This leads to large improvements in throughput when the
1480 * TLB is under pressure.
1481 *
1482 * The L2 TLB distributes small and large fragments into two
1483 * asymmetric partitions. The large fragment cache is significantly
1484 * larger. Thus, we try to use large fragments wherever possible.
1485 * Userspace can support this by aligning virtual base address and
1486 * allocation size to the fragment size.
1487 */
1488 unsigned max_frag = params->adev->vm_manager.fragment_size;
1489 int r;
1490
1491 /* system pages are non continuously */
1492 if (params->src || !(flags & AMDGPU_PTE_VALID))
1493 return amdgpu_vm_update_ptes(params, start, end, dst, flags);
1494
1495 while (start != end) {
1496 uint64_t frag_flags, frag_end;
1497 unsigned frag;
1498
1499 /* This intentionally wraps around if no bit is set */
1500 frag = min((unsigned)ffs(start) - 1,
1501 (unsigned)fls64(end - start) - 1);
1502 if (frag >= max_frag) {
1503 frag_flags = AMDGPU_PTE_FRAG(max_frag);
1504 frag_end = end & ~((1ULL << max_frag) - 1);
1505 } else {
1506 frag_flags = AMDGPU_PTE_FRAG(frag);
1507 frag_end = start + (1 << frag);
1508 }
1509
1510 r = amdgpu_vm_update_ptes(params, start, frag_end, dst,
1511 flags | frag_flags);
1512 if (r)
1513 return r;
1514
1515 dst += (frag_end - start) * AMDGPU_GPU_PAGE_SIZE;
1516 start = frag_end;
1517 }
1518
1519 return 0;
1520 }
1521
1522 /**
1523 * amdgpu_vm_bo_update_mapping - update a mapping in the vm page table
1524 *
1525 * @adev: amdgpu_device pointer
1526 * @exclusive: fence we need to sync to
1527 * @pages_addr: DMA addresses to use for mapping
1528 * @vm: requested vm
1529 * @start: start of mapped range
1530 * @last: last mapped entry
1531 * @flags: flags for the entries
1532 * @addr: addr to set the area to
1533 * @fence: optional resulting fence
1534 *
1535 * Fill in the page table entries between @start and @last.
1536 * Returns 0 for success, -EINVAL for failure.
1537 */
1538 static int amdgpu_vm_bo_update_mapping(struct amdgpu_device *adev,
1539 struct dma_fence *exclusive,
1540 dma_addr_t *pages_addr,
1541 struct amdgpu_vm *vm,
1542 uint64_t start, uint64_t last,
1543 uint64_t flags, uint64_t addr,
1544 struct dma_fence **fence)
1545 {
1546 struct amdgpu_ring *ring;
1547 void *owner = AMDGPU_FENCE_OWNER_VM;
1548 unsigned nptes, ncmds, ndw;
1549 struct amdgpu_job *job;
1550 struct amdgpu_pte_update_params params;
1551 struct dma_fence *f = NULL;
1552 int r;
1553
1554 memset(&params, 0, sizeof(params));
1555 params.adev = adev;
1556 params.vm = vm;
1557
1558 /* sync to everything on unmapping */
1559 if (!(flags & AMDGPU_PTE_VALID))
1560 owner = AMDGPU_FENCE_OWNER_UNDEFINED;
1561
1562 if (vm->use_cpu_for_update) {
1563 /* params.src is used as flag to indicate system Memory */
1564 if (pages_addr)
1565 params.src = ~0;
1566
1567 /* Wait for PT BOs to be free. PTs share the same resv. object
1568 * as the root PD BO
1569 */
1570 r = amdgpu_vm_wait_pd(adev, vm, owner);
1571 if (unlikely(r))
1572 return r;
1573
1574 params.func = amdgpu_vm_cpu_set_ptes;
1575 params.pages_addr = pages_addr;
1576 return amdgpu_vm_frag_ptes(&params, start, last + 1,
1577 addr, flags);
1578 }
1579
1580 ring = container_of(vm->entity.sched, struct amdgpu_ring, sched);
1581
1582 nptes = last - start + 1;
1583
1584 /*
1585 * reserve space for two commands every (1 << BLOCK_SIZE)
1586 * entries or 2k dwords (whatever is smaller)
1587 *
1588 * The second command is for the shadow pagetables.
1589 */
1590 ncmds = ((nptes >> min(adev->vm_manager.block_size, 11u)) + 1) * 2;
1591
1592 /* padding, etc. */
1593 ndw = 64;
1594
1595 /* one PDE write for each huge page */
1596 ndw += ((nptes >> adev->vm_manager.block_size) + 1) * 6;
1597
1598 if (pages_addr) {
1599 /* copy commands needed */
1600 ndw += ncmds * adev->vm_manager.vm_pte_funcs->copy_pte_num_dw;
1601
1602 /* and also PTEs */
1603 ndw += nptes * 2;
1604
1605 params.func = amdgpu_vm_do_copy_ptes;
1606
1607 } else {
1608 /* set page commands needed */
1609 ndw += ncmds * adev->vm_manager.vm_pte_funcs->set_pte_pde_num_dw;
1610
1611 /* extra commands for begin/end fragments */
1612 ndw += 2 * adev->vm_manager.vm_pte_funcs->set_pte_pde_num_dw
1613 * adev->vm_manager.fragment_size;
1614
1615 params.func = amdgpu_vm_do_set_ptes;
1616 }
1617
1618 r = amdgpu_job_alloc_with_ib(adev, ndw * 4, &job);
1619 if (r)
1620 return r;
1621
1622 params.ib = &job->ibs[0];
1623
1624 if (pages_addr) {
1625 uint64_t *pte;
1626 unsigned i;
1627
1628 /* Put the PTEs at the end of the IB. */
1629 i = ndw - nptes * 2;
1630 pte= (uint64_t *)&(job->ibs->ptr[i]);
1631 params.src = job->ibs->gpu_addr + i * 4;
1632
1633 for (i = 0; i < nptes; ++i) {
1634 pte[i] = amdgpu_vm_map_gart(pages_addr, addr + i *
1635 AMDGPU_GPU_PAGE_SIZE);
1636 pte[i] |= flags;
1637 }
1638 addr = 0;
1639 }
1640
1641 r = amdgpu_sync_fence(adev, &job->sync, exclusive);
1642 if (r)
1643 goto error_free;
1644
1645 r = amdgpu_sync_resv(adev, &job->sync, vm->root.base.bo->tbo.resv,
1646 owner);
1647 if (r)
1648 goto error_free;
1649
1650 r = reservation_object_reserve_shared(vm->root.base.bo->tbo.resv);
1651 if (r)
1652 goto error_free;
1653
1654 r = amdgpu_vm_frag_ptes(&params, start, last + 1, addr, flags);
1655 if (r)
1656 goto error_free;
1657
1658 amdgpu_ring_pad_ib(ring, params.ib);
1659 WARN_ON(params.ib->length_dw > ndw);
1660 r = amdgpu_job_submit(job, ring, &vm->entity,
1661 AMDGPU_FENCE_OWNER_VM, &f);
1662 if (r)
1663 goto error_free;
1664
1665 amdgpu_bo_fence(vm->root.base.bo, f, true);
1666 dma_fence_put(*fence);
1667 *fence = f;
1668 return 0;
1669
1670 error_free:
1671 amdgpu_job_free(job);
1672 amdgpu_vm_invalidate_level(vm, &vm->root);
1673 return r;
1674 }
1675
1676 /**
1677 * amdgpu_vm_bo_split_mapping - split a mapping into smaller chunks
1678 *
1679 * @adev: amdgpu_device pointer
1680 * @exclusive: fence we need to sync to
1681 * @pages_addr: DMA addresses to use for mapping
1682 * @vm: requested vm
1683 * @mapping: mapped range and flags to use for the update
1684 * @flags: HW flags for the mapping
1685 * @nodes: array of drm_mm_nodes with the MC addresses
1686 * @fence: optional resulting fence
1687 *
1688 * Split the mapping into smaller chunks so that each update fits
1689 * into a SDMA IB.
1690 * Returns 0 for success, -EINVAL for failure.
1691 */
1692 static int amdgpu_vm_bo_split_mapping(struct amdgpu_device *adev,
1693 struct dma_fence *exclusive,
1694 dma_addr_t *pages_addr,
1695 struct amdgpu_vm *vm,
1696 struct amdgpu_bo_va_mapping *mapping,
1697 uint64_t flags,
1698 struct drm_mm_node *nodes,
1699 struct dma_fence **fence)
1700 {
1701 uint64_t pfn, start = mapping->start;
1702 int r;
1703
1704 /* normally,bo_va->flags only contians READABLE and WIRTEABLE bit go here
1705 * but in case of something, we filter the flags in first place
1706 */
1707 if (!(mapping->flags & AMDGPU_PTE_READABLE))
1708 flags &= ~AMDGPU_PTE_READABLE;
1709 if (!(mapping->flags & AMDGPU_PTE_WRITEABLE))
1710 flags &= ~AMDGPU_PTE_WRITEABLE;
1711
1712 flags &= ~AMDGPU_PTE_EXECUTABLE;
1713 flags |= mapping->flags & AMDGPU_PTE_EXECUTABLE;
1714
1715 flags &= ~AMDGPU_PTE_MTYPE_MASK;
1716 flags |= (mapping->flags & AMDGPU_PTE_MTYPE_MASK);
1717
1718 if ((mapping->flags & AMDGPU_PTE_PRT) &&
1719 (adev->asic_type >= CHIP_VEGA10)) {
1720 flags |= AMDGPU_PTE_PRT;
1721 flags &= ~AMDGPU_PTE_VALID;
1722 }
1723
1724 trace_amdgpu_vm_bo_update(mapping);
1725
1726 pfn = mapping->offset >> PAGE_SHIFT;
1727 if (nodes) {
1728 while (pfn >= nodes->size) {
1729 pfn -= nodes->size;
1730 ++nodes;
1731 }
1732 }
1733
1734 do {
1735 uint64_t max_entries;
1736 uint64_t addr, last;
1737
1738 if (nodes) {
1739 addr = nodes->start << PAGE_SHIFT;
1740 max_entries = (nodes->size - pfn) *
1741 (PAGE_SIZE / AMDGPU_GPU_PAGE_SIZE);
1742 } else {
1743 addr = 0;
1744 max_entries = S64_MAX;
1745 }
1746
1747 if (pages_addr) {
1748 max_entries = min(max_entries, 16ull * 1024ull);
1749 addr = 0;
1750 } else if (flags & AMDGPU_PTE_VALID) {
1751 addr += adev->vm_manager.vram_base_offset;
1752 }
1753 addr += pfn << PAGE_SHIFT;
1754
1755 last = min((uint64_t)mapping->last, start + max_entries - 1);
1756 r = amdgpu_vm_bo_update_mapping(adev, exclusive, pages_addr, vm,
1757 start, last, flags, addr,
1758 fence);
1759 if (r)
1760 return r;
1761
1762 pfn += last - start + 1;
1763 if (nodes && nodes->size == pfn) {
1764 pfn = 0;
1765 ++nodes;
1766 }
1767 start = last + 1;
1768
1769 } while (unlikely(start != mapping->last + 1));
1770
1771 return 0;
1772 }
1773
1774 /**
1775 * amdgpu_vm_bo_update - update all BO mappings in the vm page table
1776 *
1777 * @adev: amdgpu_device pointer
1778 * @bo_va: requested BO and VM object
1779 * @clear: if true clear the entries
1780 *
1781 * Fill in the page table entries for @bo_va.
1782 * Returns 0 for success, -EINVAL for failure.
1783 */
1784 int amdgpu_vm_bo_update(struct amdgpu_device *adev,
1785 struct amdgpu_bo_va *bo_va,
1786 bool clear)
1787 {
1788 struct amdgpu_bo *bo = bo_va->base.bo;
1789 struct amdgpu_vm *vm = bo_va->base.vm;
1790 struct amdgpu_bo_va_mapping *mapping;
1791 dma_addr_t *pages_addr = NULL;
1792 struct ttm_mem_reg *mem;
1793 struct drm_mm_node *nodes;
1794 struct dma_fence *exclusive, **last_update;
1795 uint64_t flags;
1796 int r;
1797
1798 if (clear || !bo_va->base.bo) {
1799 mem = NULL;
1800 nodes = NULL;
1801 exclusive = NULL;
1802 } else {
1803 struct ttm_dma_tt *ttm;
1804
1805 mem = &bo_va->base.bo->tbo.mem;
1806 nodes = mem->mm_node;
1807 if (mem->mem_type == TTM_PL_TT) {
1808 ttm = container_of(bo_va->base.bo->tbo.ttm,
1809 struct ttm_dma_tt, ttm);
1810 pages_addr = ttm->dma_address;
1811 }
1812 exclusive = reservation_object_get_excl(bo->tbo.resv);
1813 }
1814
1815 if (bo)
1816 flags = amdgpu_ttm_tt_pte_flags(adev, bo->tbo.ttm, mem);
1817 else
1818 flags = 0x0;
1819
1820 if (clear || (bo && bo->tbo.resv == vm->root.base.bo->tbo.resv))
1821 last_update = &vm->last_update;
1822 else
1823 last_update = &bo_va->last_pt_update;
1824
1825 if (!clear && bo_va->base.moved) {
1826 bo_va->base.moved = false;
1827 list_splice_init(&bo_va->valids, &bo_va->invalids);
1828
1829 } else if (bo_va->cleared != clear) {
1830 list_splice_init(&bo_va->valids, &bo_va->invalids);
1831 }
1832
1833 list_for_each_entry(mapping, &bo_va->invalids, list) {
1834 r = amdgpu_vm_bo_split_mapping(adev, exclusive, pages_addr, vm,
1835 mapping, flags, nodes,
1836 last_update);
1837 if (r)
1838 return r;
1839 }
1840
1841 if (vm->use_cpu_for_update) {
1842 /* Flush HDP */
1843 mb();
1844 amdgpu_gart_flush_gpu_tlb(adev, 0);
1845 }
1846
1847 spin_lock(&vm->status_lock);
1848 list_del_init(&bo_va->base.vm_status);
1849 spin_unlock(&vm->status_lock);
1850
1851 list_splice_init(&bo_va->invalids, &bo_va->valids);
1852 bo_va->cleared = clear;
1853
1854 if (trace_amdgpu_vm_bo_mapping_enabled()) {
1855 list_for_each_entry(mapping, &bo_va->valids, list)
1856 trace_amdgpu_vm_bo_mapping(mapping);
1857 }
1858
1859 return 0;
1860 }
1861
1862 /**
1863 * amdgpu_vm_update_prt_state - update the global PRT state
1864 */
1865 static void amdgpu_vm_update_prt_state(struct amdgpu_device *adev)
1866 {
1867 unsigned long flags;
1868 bool enable;
1869
1870 spin_lock_irqsave(&adev->vm_manager.prt_lock, flags);
1871 enable = !!atomic_read(&adev->vm_manager.num_prt_users);
1872 adev->gart.gart_funcs->set_prt(adev, enable);
1873 spin_unlock_irqrestore(&adev->vm_manager.prt_lock, flags);
1874 }
1875
1876 /**
1877 * amdgpu_vm_prt_get - add a PRT user
1878 */
1879 static void amdgpu_vm_prt_get(struct amdgpu_device *adev)
1880 {
1881 if (!adev->gart.gart_funcs->set_prt)
1882 return;
1883
1884 if (atomic_inc_return(&adev->vm_manager.num_prt_users) == 1)
1885 amdgpu_vm_update_prt_state(adev);
1886 }
1887
1888 /**
1889 * amdgpu_vm_prt_put - drop a PRT user
1890 */
1891 static void amdgpu_vm_prt_put(struct amdgpu_device *adev)
1892 {
1893 if (atomic_dec_return(&adev->vm_manager.num_prt_users) == 0)
1894 amdgpu_vm_update_prt_state(adev);
1895 }
1896
1897 /**
1898 * amdgpu_vm_prt_cb - callback for updating the PRT status
1899 */
1900 static void amdgpu_vm_prt_cb(struct dma_fence *fence, struct dma_fence_cb *_cb)
1901 {
1902 struct amdgpu_prt_cb *cb = container_of(_cb, struct amdgpu_prt_cb, cb);
1903
1904 amdgpu_vm_prt_put(cb->adev);
1905 kfree(cb);
1906 }
1907
1908 /**
1909 * amdgpu_vm_add_prt_cb - add callback for updating the PRT status
1910 */
1911 static void amdgpu_vm_add_prt_cb(struct amdgpu_device *adev,
1912 struct dma_fence *fence)
1913 {
1914 struct amdgpu_prt_cb *cb;
1915
1916 if (!adev->gart.gart_funcs->set_prt)
1917 return;
1918
1919 cb = kmalloc(sizeof(struct amdgpu_prt_cb), GFP_KERNEL);
1920 if (!cb) {
1921 /* Last resort when we are OOM */
1922 if (fence)
1923 dma_fence_wait(fence, false);
1924
1925 amdgpu_vm_prt_put(adev);
1926 } else {
1927 cb->adev = adev;
1928 if (!fence || dma_fence_add_callback(fence, &cb->cb,
1929 amdgpu_vm_prt_cb))
1930 amdgpu_vm_prt_cb(fence, &cb->cb);
1931 }
1932 }
1933
1934 /**
1935 * amdgpu_vm_free_mapping - free a mapping
1936 *
1937 * @adev: amdgpu_device pointer
1938 * @vm: requested vm
1939 * @mapping: mapping to be freed
1940 * @fence: fence of the unmap operation
1941 *
1942 * Free a mapping and make sure we decrease the PRT usage count if applicable.
1943 */
1944 static void amdgpu_vm_free_mapping(struct amdgpu_device *adev,
1945 struct amdgpu_vm *vm,
1946 struct amdgpu_bo_va_mapping *mapping,
1947 struct dma_fence *fence)
1948 {
1949 if (mapping->flags & AMDGPU_PTE_PRT)
1950 amdgpu_vm_add_prt_cb(adev, fence);
1951 kfree(mapping);
1952 }
1953
1954 /**
1955 * amdgpu_vm_prt_fini - finish all prt mappings
1956 *
1957 * @adev: amdgpu_device pointer
1958 * @vm: requested vm
1959 *
1960 * Register a cleanup callback to disable PRT support after VM dies.
1961 */
1962 static void amdgpu_vm_prt_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm)
1963 {
1964 struct reservation_object *resv = vm->root.base.bo->tbo.resv;
1965 struct dma_fence *excl, **shared;
1966 unsigned i, shared_count;
1967 int r;
1968
1969 r = reservation_object_get_fences_rcu(resv, &excl,
1970 &shared_count, &shared);
1971 if (r) {
1972 /* Not enough memory to grab the fence list, as last resort
1973 * block for all the fences to complete.
1974 */
1975 reservation_object_wait_timeout_rcu(resv, true, false,
1976 MAX_SCHEDULE_TIMEOUT);
1977 return;
1978 }
1979
1980 /* Add a callback for each fence in the reservation object */
1981 amdgpu_vm_prt_get(adev);
1982 amdgpu_vm_add_prt_cb(adev, excl);
1983
1984 for (i = 0; i < shared_count; ++i) {
1985 amdgpu_vm_prt_get(adev);
1986 amdgpu_vm_add_prt_cb(adev, shared[i]);
1987 }
1988
1989 kfree(shared);
1990 }
1991
1992 /**
1993 * amdgpu_vm_clear_freed - clear freed BOs in the PT
1994 *
1995 * @adev: amdgpu_device pointer
1996 * @vm: requested vm
1997 * @fence: optional resulting fence (unchanged if no work needed to be done
1998 * or if an error occurred)
1999 *
2000 * Make sure all freed BOs are cleared in the PT.
2001 * Returns 0 for success.
2002 *
2003 * PTs have to be reserved and mutex must be locked!
2004 */
2005 int amdgpu_vm_clear_freed(struct amdgpu_device *adev,
2006 struct amdgpu_vm *vm,
2007 struct dma_fence **fence)
2008 {
2009 struct amdgpu_bo_va_mapping *mapping;
2010 struct dma_fence *f = NULL;
2011 int r;
2012 uint64_t init_pte_value = 0;
2013
2014 while (!list_empty(&vm->freed)) {
2015 mapping = list_first_entry(&vm->freed,
2016 struct amdgpu_bo_va_mapping, list);
2017 list_del(&mapping->list);
2018
2019 if (vm->pte_support_ats)
2020 init_pte_value = AMDGPU_PTE_SYSTEM;
2021
2022 r = amdgpu_vm_bo_update_mapping(adev, NULL, NULL, vm,
2023 mapping->start, mapping->last,
2024 init_pte_value, 0, &f);
2025 amdgpu_vm_free_mapping(adev, vm, mapping, f);
2026 if (r) {
2027 dma_fence_put(f);
2028 return r;
2029 }
2030 }
2031
2032 if (fence && f) {
2033 dma_fence_put(*fence);
2034 *fence = f;
2035 } else {
2036 dma_fence_put(f);
2037 }
2038
2039 return 0;
2040
2041 }
2042
2043 /**
2044 * amdgpu_vm_handle_moved - handle moved BOs in the PT
2045 *
2046 * @adev: amdgpu_device pointer
2047 * @vm: requested vm
2048 * @sync: sync object to add fences to
2049 *
2050 * Make sure all BOs which are moved are updated in the PTs.
2051 * Returns 0 for success.
2052 *
2053 * PTs have to be reserved!
2054 */
2055 int amdgpu_vm_handle_moved(struct amdgpu_device *adev,
2056 struct amdgpu_vm *vm)
2057 {
2058 bool clear;
2059 int r = 0;
2060
2061 spin_lock(&vm->status_lock);
2062 while (!list_empty(&vm->moved)) {
2063 struct amdgpu_bo_va *bo_va;
2064
2065 bo_va = list_first_entry(&vm->moved,
2066 struct amdgpu_bo_va, base.vm_status);
2067 spin_unlock(&vm->status_lock);
2068
2069 /* Per VM BOs never need to bo cleared in the page tables */
2070 clear = bo_va->base.bo->tbo.resv != vm->root.base.bo->tbo.resv;
2071
2072 r = amdgpu_vm_bo_update(adev, bo_va, clear);
2073 if (r)
2074 return r;
2075
2076 spin_lock(&vm->status_lock);
2077 }
2078 spin_unlock(&vm->status_lock);
2079
2080 return r;
2081 }
2082
2083 /**
2084 * amdgpu_vm_bo_add - add a bo to a specific vm
2085 *
2086 * @adev: amdgpu_device pointer
2087 * @vm: requested vm
2088 * @bo: amdgpu buffer object
2089 *
2090 * Add @bo into the requested vm.
2091 * Add @bo to the list of bos associated with the vm
2092 * Returns newly added bo_va or NULL for failure
2093 *
2094 * Object has to be reserved!
2095 */
2096 struct amdgpu_bo_va *amdgpu_vm_bo_add(struct amdgpu_device *adev,
2097 struct amdgpu_vm *vm,
2098 struct amdgpu_bo *bo)
2099 {
2100 struct amdgpu_bo_va *bo_va;
2101
2102 bo_va = kzalloc(sizeof(struct amdgpu_bo_va), GFP_KERNEL);
2103 if (bo_va == NULL) {
2104 return NULL;
2105 }
2106 bo_va->base.vm = vm;
2107 bo_va->base.bo = bo;
2108 INIT_LIST_HEAD(&bo_va->base.bo_list);
2109 INIT_LIST_HEAD(&bo_va->base.vm_status);
2110
2111 bo_va->ref_count = 1;
2112 INIT_LIST_HEAD(&bo_va->valids);
2113 INIT_LIST_HEAD(&bo_va->invalids);
2114
2115 if (bo)
2116 list_add_tail(&bo_va->base.bo_list, &bo->va);
2117
2118 return bo_va;
2119 }
2120
2121
2122 /**
2123 * amdgpu_vm_bo_insert_mapping - insert a new mapping
2124 *
2125 * @adev: amdgpu_device pointer
2126 * @bo_va: bo_va to store the address
2127 * @mapping: the mapping to insert
2128 *
2129 * Insert a new mapping into all structures.
2130 */
2131 static void amdgpu_vm_bo_insert_map(struct amdgpu_device *adev,
2132 struct amdgpu_bo_va *bo_va,
2133 struct amdgpu_bo_va_mapping *mapping)
2134 {
2135 struct amdgpu_vm *vm = bo_va->base.vm;
2136 struct amdgpu_bo *bo = bo_va->base.bo;
2137
2138 mapping->bo_va = bo_va;
2139 list_add(&mapping->list, &bo_va->invalids);
2140 amdgpu_vm_it_insert(mapping, &vm->va);
2141
2142 if (mapping->flags & AMDGPU_PTE_PRT)
2143 amdgpu_vm_prt_get(adev);
2144
2145 if (bo && bo->tbo.resv == vm->root.base.bo->tbo.resv) {
2146 spin_lock(&vm->status_lock);
2147 if (list_empty(&bo_va->base.vm_status))
2148 list_add(&bo_va->base.vm_status, &vm->moved);
2149 spin_unlock(&vm->status_lock);
2150 }
2151 trace_amdgpu_vm_bo_map(bo_va, mapping);
2152 }
2153
2154 /**
2155 * amdgpu_vm_bo_map - map bo inside a vm
2156 *
2157 * @adev: amdgpu_device pointer
2158 * @bo_va: bo_va to store the address
2159 * @saddr: where to map the BO
2160 * @offset: requested offset in the BO
2161 * @flags: attributes of pages (read/write/valid/etc.)
2162 *
2163 * Add a mapping of the BO at the specefied addr into the VM.
2164 * Returns 0 for success, error for failure.
2165 *
2166 * Object has to be reserved and unreserved outside!
2167 */
2168 int amdgpu_vm_bo_map(struct amdgpu_device *adev,
2169 struct amdgpu_bo_va *bo_va,
2170 uint64_t saddr, uint64_t offset,
2171 uint64_t size, uint64_t flags)
2172 {
2173 struct amdgpu_bo_va_mapping *mapping, *tmp;
2174 struct amdgpu_bo *bo = bo_va->base.bo;
2175 struct amdgpu_vm *vm = bo_va->base.vm;
2176 uint64_t eaddr;
2177
2178 /* validate the parameters */
2179 if (saddr & AMDGPU_GPU_PAGE_MASK || offset & AMDGPU_GPU_PAGE_MASK ||
2180 size == 0 || size & AMDGPU_GPU_PAGE_MASK)
2181 return -EINVAL;
2182
2183 /* make sure object fit at this offset */
2184 eaddr = saddr + size - 1;
2185 if (saddr >= eaddr ||
2186 (bo && offset + size > amdgpu_bo_size(bo)))
2187 return -EINVAL;
2188
2189 saddr /= AMDGPU_GPU_PAGE_SIZE;
2190 eaddr /= AMDGPU_GPU_PAGE_SIZE;
2191
2192 tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr);
2193 if (tmp) {
2194 /* bo and tmp overlap, invalid addr */
2195 dev_err(adev->dev, "bo %p va 0x%010Lx-0x%010Lx conflict with "
2196 "0x%010Lx-0x%010Lx\n", bo, saddr, eaddr,
2197 tmp->start, tmp->last + 1);
2198 return -EINVAL;
2199 }
2200
2201 mapping = kmalloc(sizeof(*mapping), GFP_KERNEL);
2202 if (!mapping)
2203 return -ENOMEM;
2204
2205 mapping->start = saddr;
2206 mapping->last = eaddr;
2207 mapping->offset = offset;
2208 mapping->flags = flags;
2209
2210 amdgpu_vm_bo_insert_map(adev, bo_va, mapping);
2211
2212 return 0;
2213 }
2214
2215 /**
2216 * amdgpu_vm_bo_replace_map - map bo inside a vm, replacing existing mappings
2217 *
2218 * @adev: amdgpu_device pointer
2219 * @bo_va: bo_va to store the address
2220 * @saddr: where to map the BO
2221 * @offset: requested offset in the BO
2222 * @flags: attributes of pages (read/write/valid/etc.)
2223 *
2224 * Add a mapping of the BO at the specefied addr into the VM. Replace existing
2225 * mappings as we do so.
2226 * Returns 0 for success, error for failure.
2227 *
2228 * Object has to be reserved and unreserved outside!
2229 */
2230 int amdgpu_vm_bo_replace_map(struct amdgpu_device *adev,
2231 struct amdgpu_bo_va *bo_va,
2232 uint64_t saddr, uint64_t offset,
2233 uint64_t size, uint64_t flags)
2234 {
2235 struct amdgpu_bo_va_mapping *mapping;
2236 struct amdgpu_bo *bo = bo_va->base.bo;
2237 uint64_t eaddr;
2238 int r;
2239
2240 /* validate the parameters */
2241 if (saddr & AMDGPU_GPU_PAGE_MASK || offset & AMDGPU_GPU_PAGE_MASK ||
2242 size == 0 || size & AMDGPU_GPU_PAGE_MASK)
2243 return -EINVAL;
2244
2245 /* make sure object fit at this offset */
2246 eaddr = saddr + size - 1;
2247 if (saddr >= eaddr ||
2248 (bo && offset + size > amdgpu_bo_size(bo)))
2249 return -EINVAL;
2250
2251 /* Allocate all the needed memory */
2252 mapping = kmalloc(sizeof(*mapping), GFP_KERNEL);
2253 if (!mapping)
2254 return -ENOMEM;
2255
2256 r = amdgpu_vm_bo_clear_mappings(adev, bo_va->base.vm, saddr, size);
2257 if (r) {
2258 kfree(mapping);
2259 return r;
2260 }
2261
2262 saddr /= AMDGPU_GPU_PAGE_SIZE;
2263 eaddr /= AMDGPU_GPU_PAGE_SIZE;
2264
2265 mapping->start = saddr;
2266 mapping->last = eaddr;
2267 mapping->offset = offset;
2268 mapping->flags = flags;
2269
2270 amdgpu_vm_bo_insert_map(adev, bo_va, mapping);
2271
2272 return 0;
2273 }
2274
2275 /**
2276 * amdgpu_vm_bo_unmap - remove bo mapping from vm
2277 *
2278 * @adev: amdgpu_device pointer
2279 * @bo_va: bo_va to remove the address from
2280 * @saddr: where to the BO is mapped
2281 *
2282 * Remove a mapping of the BO at the specefied addr from the VM.
2283 * Returns 0 for success, error for failure.
2284 *
2285 * Object has to be reserved and unreserved outside!
2286 */
2287 int amdgpu_vm_bo_unmap(struct amdgpu_device *adev,
2288 struct amdgpu_bo_va *bo_va,
2289 uint64_t saddr)
2290 {
2291 struct amdgpu_bo_va_mapping *mapping;
2292 struct amdgpu_vm *vm = bo_va->base.vm;
2293 bool valid = true;
2294
2295 saddr /= AMDGPU_GPU_PAGE_SIZE;
2296
2297 list_for_each_entry(mapping, &bo_va->valids, list) {
2298 if (mapping->start == saddr)
2299 break;
2300 }
2301
2302 if (&mapping->list == &bo_va->valids) {
2303 valid = false;
2304
2305 list_for_each_entry(mapping, &bo_va->invalids, list) {
2306 if (mapping->start == saddr)
2307 break;
2308 }
2309
2310 if (&mapping->list == &bo_va->invalids)
2311 return -ENOENT;
2312 }
2313
2314 list_del(&mapping->list);
2315 amdgpu_vm_it_remove(mapping, &vm->va);
2316 mapping->bo_va = NULL;
2317 trace_amdgpu_vm_bo_unmap(bo_va, mapping);
2318
2319 if (valid)
2320 list_add(&mapping->list, &vm->freed);
2321 else
2322 amdgpu_vm_free_mapping(adev, vm, mapping,
2323 bo_va->last_pt_update);
2324
2325 return 0;
2326 }
2327
2328 /**
2329 * amdgpu_vm_bo_clear_mappings - remove all mappings in a specific range
2330 *
2331 * @adev: amdgpu_device pointer
2332 * @vm: VM structure to use
2333 * @saddr: start of the range
2334 * @size: size of the range
2335 *
2336 * Remove all mappings in a range, split them as appropriate.
2337 * Returns 0 for success, error for failure.
2338 */
2339 int amdgpu_vm_bo_clear_mappings(struct amdgpu_device *adev,
2340 struct amdgpu_vm *vm,
2341 uint64_t saddr, uint64_t size)
2342 {
2343 struct amdgpu_bo_va_mapping *before, *after, *tmp, *next;
2344 LIST_HEAD(removed);
2345 uint64_t eaddr;
2346
2347 eaddr = saddr + size - 1;
2348 saddr /= AMDGPU_GPU_PAGE_SIZE;
2349 eaddr /= AMDGPU_GPU_PAGE_SIZE;
2350
2351 /* Allocate all the needed memory */
2352 before = kzalloc(sizeof(*before), GFP_KERNEL);
2353 if (!before)
2354 return -ENOMEM;
2355 INIT_LIST_HEAD(&before->list);
2356
2357 after = kzalloc(sizeof(*after), GFP_KERNEL);
2358 if (!after) {
2359 kfree(before);
2360 return -ENOMEM;
2361 }
2362 INIT_LIST_HEAD(&after->list);
2363
2364 /* Now gather all removed mappings */
2365 tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr);
2366 while (tmp) {
2367 /* Remember mapping split at the start */
2368 if (tmp->start < saddr) {
2369 before->start = tmp->start;
2370 before->last = saddr - 1;
2371 before->offset = tmp->offset;
2372 before->flags = tmp->flags;
2373 list_add(&before->list, &tmp->list);
2374 }
2375
2376 /* Remember mapping split at the end */
2377 if (tmp->last > eaddr) {
2378 after->start = eaddr + 1;
2379 after->last = tmp->last;
2380 after->offset = tmp->offset;
2381 after->offset += after->start - tmp->start;
2382 after->flags = tmp->flags;
2383 list_add(&after->list, &tmp->list);
2384 }
2385
2386 list_del(&tmp->list);
2387 list_add(&tmp->list, &removed);
2388
2389 tmp = amdgpu_vm_it_iter_next(tmp, saddr, eaddr);
2390 }
2391
2392 /* And free them up */
2393 list_for_each_entry_safe(tmp, next, &removed, list) {
2394 amdgpu_vm_it_remove(tmp, &vm->va);
2395 list_del(&tmp->list);
2396
2397 if (tmp->start < saddr)
2398 tmp->start = saddr;
2399 if (tmp->last > eaddr)
2400 tmp->last = eaddr;
2401
2402 tmp->bo_va = NULL;
2403 list_add(&tmp->list, &vm->freed);
2404 trace_amdgpu_vm_bo_unmap(NULL, tmp);
2405 }
2406
2407 /* Insert partial mapping before the range */
2408 if (!list_empty(&before->list)) {
2409 amdgpu_vm_it_insert(before, &vm->va);
2410 if (before->flags & AMDGPU_PTE_PRT)
2411 amdgpu_vm_prt_get(adev);
2412 } else {
2413 kfree(before);
2414 }
2415
2416 /* Insert partial mapping after the range */
2417 if (!list_empty(&after->list)) {
2418 amdgpu_vm_it_insert(after, &vm->va);
2419 if (after->flags & AMDGPU_PTE_PRT)
2420 amdgpu_vm_prt_get(adev);
2421 } else {
2422 kfree(after);
2423 }
2424
2425 return 0;
2426 }
2427
2428 /**
2429 * amdgpu_vm_bo_lookup_mapping - find mapping by address
2430 *
2431 * @vm: the requested VM
2432 *
2433 * Find a mapping by it's address.
2434 */
2435 struct amdgpu_bo_va_mapping *amdgpu_vm_bo_lookup_mapping(struct amdgpu_vm *vm,
2436 uint64_t addr)
2437 {
2438 return amdgpu_vm_it_iter_first(&vm->va, addr, addr);
2439 }
2440
2441 /**
2442 * amdgpu_vm_bo_rmv - remove a bo to a specific vm
2443 *
2444 * @adev: amdgpu_device pointer
2445 * @bo_va: requested bo_va
2446 *
2447 * Remove @bo_va->bo from the requested vm.
2448 *
2449 * Object have to be reserved!
2450 */
2451 void amdgpu_vm_bo_rmv(struct amdgpu_device *adev,
2452 struct amdgpu_bo_va *bo_va)
2453 {
2454 struct amdgpu_bo_va_mapping *mapping, *next;
2455 struct amdgpu_vm *vm = bo_va->base.vm;
2456
2457 list_del(&bo_va->base.bo_list);
2458
2459 spin_lock(&vm->status_lock);
2460 list_del(&bo_va->base.vm_status);
2461 spin_unlock(&vm->status_lock);
2462
2463 list_for_each_entry_safe(mapping, next, &bo_va->valids, list) {
2464 list_del(&mapping->list);
2465 amdgpu_vm_it_remove(mapping, &vm->va);
2466 mapping->bo_va = NULL;
2467 trace_amdgpu_vm_bo_unmap(bo_va, mapping);
2468 list_add(&mapping->list, &vm->freed);
2469 }
2470 list_for_each_entry_safe(mapping, next, &bo_va->invalids, list) {
2471 list_del(&mapping->list);
2472 amdgpu_vm_it_remove(mapping, &vm->va);
2473 amdgpu_vm_free_mapping(adev, vm, mapping,
2474 bo_va->last_pt_update);
2475 }
2476
2477 dma_fence_put(bo_va->last_pt_update);
2478 kfree(bo_va);
2479 }
2480
2481 /**
2482 * amdgpu_vm_bo_invalidate - mark the bo as invalid
2483 *
2484 * @adev: amdgpu_device pointer
2485 * @vm: requested vm
2486 * @bo: amdgpu buffer object
2487 *
2488 * Mark @bo as invalid.
2489 */
2490 void amdgpu_vm_bo_invalidate(struct amdgpu_device *adev,
2491 struct amdgpu_bo *bo, bool evicted)
2492 {
2493 struct amdgpu_vm_bo_base *bo_base;
2494
2495 list_for_each_entry(bo_base, &bo->va, bo_list) {
2496 struct amdgpu_vm *vm = bo_base->vm;
2497
2498 bo_base->moved = true;
2499 if (evicted && bo->tbo.resv == vm->root.base.bo->tbo.resv) {
2500 spin_lock(&bo_base->vm->status_lock);
2501 if (bo->tbo.type == ttm_bo_type_kernel)
2502 list_move(&bo_base->vm_status, &vm->evicted);
2503 else
2504 list_move_tail(&bo_base->vm_status,
2505 &vm->evicted);
2506 spin_unlock(&bo_base->vm->status_lock);
2507 continue;
2508 }
2509
2510 if (bo->tbo.type == ttm_bo_type_kernel) {
2511 spin_lock(&bo_base->vm->status_lock);
2512 if (list_empty(&bo_base->vm_status))
2513 list_add(&bo_base->vm_status, &vm->relocated);
2514 spin_unlock(&bo_base->vm->status_lock);
2515 continue;
2516 }
2517
2518 spin_lock(&bo_base->vm->status_lock);
2519 if (list_empty(&bo_base->vm_status))
2520 list_add(&bo_base->vm_status, &vm->moved);
2521 spin_unlock(&bo_base->vm->status_lock);
2522 }
2523 }
2524
2525 static uint32_t amdgpu_vm_get_block_size(uint64_t vm_size)
2526 {
2527 /* Total bits covered by PD + PTs */
2528 unsigned bits = ilog2(vm_size) + 18;
2529
2530 /* Make sure the PD is 4K in size up to 8GB address space.
2531 Above that split equal between PD and PTs */
2532 if (vm_size <= 8)
2533 return (bits - 9);
2534 else
2535 return ((bits + 3) / 2);
2536 }
2537
2538 /**
2539 * amdgpu_vm_set_fragment_size - adjust fragment size in PTE
2540 *
2541 * @adev: amdgpu_device pointer
2542 * @fragment_size_default: the default fragment size if it's set auto
2543 */
2544 void amdgpu_vm_set_fragment_size(struct amdgpu_device *adev, uint32_t fragment_size_default)
2545 {
2546 if (amdgpu_vm_fragment_size == -1)
2547 adev->vm_manager.fragment_size = fragment_size_default;
2548 else
2549 adev->vm_manager.fragment_size = amdgpu_vm_fragment_size;
2550 }
2551
2552 /**
2553 * amdgpu_vm_adjust_size - adjust vm size, block size and fragment size
2554 *
2555 * @adev: amdgpu_device pointer
2556 * @vm_size: the default vm size if it's set auto
2557 */
2558 void amdgpu_vm_adjust_size(struct amdgpu_device *adev, uint64_t vm_size, uint32_t fragment_size_default)
2559 {
2560 /* adjust vm size firstly */
2561 if (amdgpu_vm_size == -1)
2562 adev->vm_manager.vm_size = vm_size;
2563 else
2564 adev->vm_manager.vm_size = amdgpu_vm_size;
2565
2566 /* block size depends on vm size */
2567 if (amdgpu_vm_block_size == -1)
2568 adev->vm_manager.block_size =
2569 amdgpu_vm_get_block_size(adev->vm_manager.vm_size);
2570 else
2571 adev->vm_manager.block_size = amdgpu_vm_block_size;
2572
2573 amdgpu_vm_set_fragment_size(adev, fragment_size_default);
2574
2575 DRM_INFO("vm size is %llu GB, block size is %u-bit, fragment size is %u-bit\n",
2576 adev->vm_manager.vm_size, adev->vm_manager.block_size,
2577 adev->vm_manager.fragment_size);
2578 }
2579
2580 /**
2581 * amdgpu_vm_init - initialize a vm instance
2582 *
2583 * @adev: amdgpu_device pointer
2584 * @vm: requested vm
2585 * @vm_context: Indicates if it GFX or Compute context
2586 *
2587 * Init @vm fields.
2588 */
2589 int amdgpu_vm_init(struct amdgpu_device *adev, struct amdgpu_vm *vm,
2590 int vm_context, unsigned int pasid)
2591 {
2592 const unsigned align = min(AMDGPU_VM_PTB_ALIGN_SIZE,
2593 AMDGPU_VM_PTE_COUNT(adev) * 8);
2594 unsigned ring_instance;
2595 struct amdgpu_ring *ring;
2596 struct amd_sched_rq *rq;
2597 int r, i;
2598 u64 flags;
2599 uint64_t init_pde_value = 0;
2600
2601 vm->va = RB_ROOT;
2602 vm->client_id = atomic64_inc_return(&adev->vm_manager.client_counter);
2603 for (i = 0; i < AMDGPU_MAX_VMHUBS; i++)
2604 vm->reserved_vmid[i] = NULL;
2605 spin_lock_init(&vm->status_lock);
2606 INIT_LIST_HEAD(&vm->evicted);
2607 INIT_LIST_HEAD(&vm->relocated);
2608 INIT_LIST_HEAD(&vm->moved);
2609 INIT_LIST_HEAD(&vm->freed);
2610
2611 /* create scheduler entity for page table updates */
2612
2613 ring_instance = atomic_inc_return(&adev->vm_manager.vm_pte_next_ring);
2614 ring_instance %= adev->vm_manager.vm_pte_num_rings;
2615 ring = adev->vm_manager.vm_pte_rings[ring_instance];
2616 rq = &ring->sched.sched_rq[AMD_SCHED_PRIORITY_KERNEL];
2617 r = amd_sched_entity_init(&ring->sched, &vm->entity,
2618 rq, amdgpu_sched_jobs);
2619 if (r)
2620 return r;
2621
2622 vm->pte_support_ats = false;
2623
2624 if (vm_context == AMDGPU_VM_CONTEXT_COMPUTE) {
2625 vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode &
2626 AMDGPU_VM_USE_CPU_FOR_COMPUTE);
2627
2628 if (adev->asic_type == CHIP_RAVEN) {
2629 vm->pte_support_ats = true;
2630 init_pde_value = AMDGPU_PTE_SYSTEM | AMDGPU_PDE_PTE;
2631 }
2632 } else
2633 vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode &
2634 AMDGPU_VM_USE_CPU_FOR_GFX);
2635 DRM_DEBUG_DRIVER("VM update mode is %s\n",
2636 vm->use_cpu_for_update ? "CPU" : "SDMA");
2637 WARN_ONCE((vm->use_cpu_for_update & !amdgpu_vm_is_large_bar(adev)),
2638 "CPU update of VM recommended only for large BAR system\n");
2639 vm->last_update = NULL;
2640
2641 flags = AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS |
2642 AMDGPU_GEM_CREATE_VRAM_CLEARED;
2643 if (vm->use_cpu_for_update)
2644 flags |= AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
2645 else
2646 flags |= (AMDGPU_GEM_CREATE_NO_CPU_ACCESS |
2647 AMDGPU_GEM_CREATE_SHADOW);
2648
2649 r = amdgpu_bo_create(adev, amdgpu_vm_bo_size(adev, 0), align, true,
2650 AMDGPU_GEM_DOMAIN_VRAM,
2651 flags,
2652 NULL, NULL, init_pde_value, &vm->root.base.bo);
2653 if (r)
2654 goto error_free_sched_entity;
2655
2656 vm->root.base.vm = vm;
2657 list_add_tail(&vm->root.base.bo_list, &vm->root.base.bo->va);
2658 INIT_LIST_HEAD(&vm->root.base.vm_status);
2659
2660 if (vm->use_cpu_for_update) {
2661 r = amdgpu_bo_reserve(vm->root.base.bo, false);
2662 if (r)
2663 goto error_free_root;
2664
2665 r = amdgpu_bo_kmap(vm->root.base.bo, NULL);
2666 amdgpu_bo_unreserve(vm->root.base.bo);
2667 if (r)
2668 goto error_free_root;
2669 }
2670
2671 if (pasid) {
2672 unsigned long flags;
2673
2674 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
2675 r = idr_alloc(&adev->vm_manager.pasid_idr, vm, pasid, pasid + 1,
2676 GFP_ATOMIC);
2677 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
2678 if (r < 0)
2679 goto error_free_root;
2680
2681 vm->pasid = pasid;
2682 }
2683
2684 INIT_KFIFO(vm->faults);
2685
2686 return 0;
2687
2688 error_free_root:
2689 amdgpu_bo_unref(&vm->root.base.bo->shadow);
2690 amdgpu_bo_unref(&vm->root.base.bo);
2691 vm->root.base.bo = NULL;
2692
2693 error_free_sched_entity:
2694 amd_sched_entity_fini(&ring->sched, &vm->entity);
2695
2696 return r;
2697 }
2698
2699 /**
2700 * amdgpu_vm_free_levels - free PD/PT levels
2701 *
2702 * @level: PD/PT starting level to free
2703 *
2704 * Free the page directory or page table level and all sub levels.
2705 */
2706 static void amdgpu_vm_free_levels(struct amdgpu_vm_pt *level)
2707 {
2708 unsigned i;
2709
2710 if (level->base.bo) {
2711 list_del(&level->base.bo_list);
2712 list_del(&level->base.vm_status);
2713 amdgpu_bo_unref(&level->base.bo->shadow);
2714 amdgpu_bo_unref(&level->base.bo);
2715 }
2716
2717 if (level->entries)
2718 for (i = 0; i <= level->last_entry_used; i++)
2719 amdgpu_vm_free_levels(&level->entries[i]);
2720
2721 kvfree(level->entries);
2722 }
2723
2724 /**
2725 * amdgpu_vm_fini - tear down a vm instance
2726 *
2727 * @adev: amdgpu_device pointer
2728 * @vm: requested vm
2729 *
2730 * Tear down @vm.
2731 * Unbind the VM and remove all bos from the vm bo list
2732 */
2733 void amdgpu_vm_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm)
2734 {
2735 struct amdgpu_bo_va_mapping *mapping, *tmp;
2736 bool prt_fini_needed = !!adev->gart.gart_funcs->set_prt;
2737 u64 fault;
2738 int i;
2739
2740 /* Clear pending page faults from IH when the VM is destroyed */
2741 while (kfifo_get(&vm->faults, &fault))
2742 amdgpu_ih_clear_fault(adev, fault);
2743
2744 if (vm->pasid) {
2745 unsigned long flags;
2746
2747 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
2748 idr_remove(&adev->vm_manager.pasid_idr, vm->pasid);
2749 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
2750 }
2751
2752 amd_sched_entity_fini(vm->entity.sched, &vm->entity);
2753
2754 if (!RB_EMPTY_ROOT(&vm->va)) {
2755 dev_err(adev->dev, "still active bo inside vm\n");
2756 }
2757 rbtree_postorder_for_each_entry_safe(mapping, tmp, &vm->va, rb) {
2758 list_del(&mapping->list);
2759 amdgpu_vm_it_remove(mapping, &vm->va);
2760 kfree(mapping);
2761 }
2762 list_for_each_entry_safe(mapping, tmp, &vm->freed, list) {
2763 if (mapping->flags & AMDGPU_PTE_PRT && prt_fini_needed) {
2764 amdgpu_vm_prt_fini(adev, vm);
2765 prt_fini_needed = false;
2766 }
2767
2768 list_del(&mapping->list);
2769 amdgpu_vm_free_mapping(adev, vm, mapping, NULL);
2770 }
2771
2772 amdgpu_vm_free_levels(&vm->root);
2773 dma_fence_put(vm->last_update);
2774 for (i = 0; i < AMDGPU_MAX_VMHUBS; i++)
2775 amdgpu_vm_free_reserved_vmid(adev, vm, i);
2776 }
2777
2778 /**
2779 * amdgpu_vm_manager_init - init the VM manager
2780 *
2781 * @adev: amdgpu_device pointer
2782 *
2783 * Initialize the VM manager structures
2784 */
2785 void amdgpu_vm_manager_init(struct amdgpu_device *adev)
2786 {
2787 unsigned i, j;
2788
2789 for (i = 0; i < AMDGPU_MAX_VMHUBS; ++i) {
2790 struct amdgpu_vm_id_manager *id_mgr =
2791 &adev->vm_manager.id_mgr[i];
2792
2793 mutex_init(&id_mgr->lock);
2794 INIT_LIST_HEAD(&id_mgr->ids_lru);
2795 atomic_set(&id_mgr->reserved_vmid_num, 0);
2796
2797 /* skip over VMID 0, since it is the system VM */
2798 for (j = 1; j < id_mgr->num_ids; ++j) {
2799 amdgpu_vm_reset_id(adev, i, j);
2800 amdgpu_sync_create(&id_mgr->ids[i].active);
2801 list_add_tail(&id_mgr->ids[j].list, &id_mgr->ids_lru);
2802 }
2803 }
2804
2805 adev->vm_manager.fence_context =
2806 dma_fence_context_alloc(AMDGPU_MAX_RINGS);
2807 for (i = 0; i < AMDGPU_MAX_RINGS; ++i)
2808 adev->vm_manager.seqno[i] = 0;
2809
2810 atomic_set(&adev->vm_manager.vm_pte_next_ring, 0);
2811 atomic64_set(&adev->vm_manager.client_counter, 0);
2812 spin_lock_init(&adev->vm_manager.prt_lock);
2813 atomic_set(&adev->vm_manager.num_prt_users, 0);
2814
2815 /* If not overridden by the user, by default, only in large BAR systems
2816 * Compute VM tables will be updated by CPU
2817 */
2818 #ifdef CONFIG_X86_64
2819 if (amdgpu_vm_update_mode == -1) {
2820 if (amdgpu_vm_is_large_bar(adev))
2821 adev->vm_manager.vm_update_mode =
2822 AMDGPU_VM_USE_CPU_FOR_COMPUTE;
2823 else
2824 adev->vm_manager.vm_update_mode = 0;
2825 } else
2826 adev->vm_manager.vm_update_mode = amdgpu_vm_update_mode;
2827 #else
2828 adev->vm_manager.vm_update_mode = 0;
2829 #endif
2830
2831 idr_init(&adev->vm_manager.pasid_idr);
2832 spin_lock_init(&adev->vm_manager.pasid_lock);
2833 }
2834
2835 /**
2836 * amdgpu_vm_manager_fini - cleanup VM manager
2837 *
2838 * @adev: amdgpu_device pointer
2839 *
2840 * Cleanup the VM manager and free resources.
2841 */
2842 void amdgpu_vm_manager_fini(struct amdgpu_device *adev)
2843 {
2844 unsigned i, j;
2845
2846 WARN_ON(!idr_is_empty(&adev->vm_manager.pasid_idr));
2847 idr_destroy(&adev->vm_manager.pasid_idr);
2848
2849 for (i = 0; i < AMDGPU_MAX_VMHUBS; ++i) {
2850 struct amdgpu_vm_id_manager *id_mgr =
2851 &adev->vm_manager.id_mgr[i];
2852
2853 mutex_destroy(&id_mgr->lock);
2854 for (j = 0; j < AMDGPU_NUM_VM; ++j) {
2855 struct amdgpu_vm_id *id = &id_mgr->ids[j];
2856
2857 amdgpu_sync_free(&id->active);
2858 dma_fence_put(id->flushed_updates);
2859 dma_fence_put(id->last_flush);
2860 }
2861 }
2862 }
2863
2864 int amdgpu_vm_ioctl(struct drm_device *dev, void *data, struct drm_file *filp)
2865 {
2866 union drm_amdgpu_vm *args = data;
2867 struct amdgpu_device *adev = dev->dev_private;
2868 struct amdgpu_fpriv *fpriv = filp->driver_priv;
2869 int r;
2870
2871 switch (args->in.op) {
2872 case AMDGPU_VM_OP_RESERVE_VMID:
2873 /* current, we only have requirement to reserve vmid from gfxhub */
2874 r = amdgpu_vm_alloc_reserved_vmid(adev, &fpriv->vm,
2875 AMDGPU_GFXHUB);
2876 if (r)
2877 return r;
2878 break;
2879 case AMDGPU_VM_OP_UNRESERVE_VMID:
2880 amdgpu_vm_free_reserved_vmid(adev, &fpriv->vm, AMDGPU_GFXHUB);
2881 break;
2882 default:
2883 return -EINVAL;
2884 }
2885
2886 return 0;
2887 }