]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - drivers/gpu/drm/amd/amdgpu/amdgpu_vm.c
powerpc/cacheinfo: Remove double free
[mirror_ubuntu-hirsute-kernel.git] / drivers / gpu / drm / amd / amdgpu / amdgpu_vm.c
1 /*
2 * Copyright 2008 Advanced Micro Devices, Inc.
3 * Copyright 2008 Red Hat Inc.
4 * Copyright 2009 Jerome Glisse.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22 * OTHER DEALINGS IN THE SOFTWARE.
23 *
24 * Authors: Dave Airlie
25 * Alex Deucher
26 * Jerome Glisse
27 */
28 #include <linux/dma-fence-array.h>
29 #include <linux/interval_tree_generic.h>
30 #include <linux/idr.h>
31 #include <drm/drmP.h>
32 #include <drm/amdgpu_drm.h>
33 #include "amdgpu.h"
34 #include "amdgpu_trace.h"
35 #include "amdgpu_amdkfd.h"
36 #include "amdgpu_gmc.h"
37 #include "amdgpu_xgmi.h"
38
39 /**
40 * DOC: GPUVM
41 *
42 * GPUVM is similar to the legacy gart on older asics, however
43 * rather than there being a single global gart table
44 * for the entire GPU, there are multiple VM page tables active
45 * at any given time. The VM page tables can contain a mix
46 * vram pages and system memory pages and system memory pages
47 * can be mapped as snooped (cached system pages) or unsnooped
48 * (uncached system pages).
49 * Each VM has an ID associated with it and there is a page table
50 * associated with each VMID. When execting a command buffer,
51 * the kernel tells the the ring what VMID to use for that command
52 * buffer. VMIDs are allocated dynamically as commands are submitted.
53 * The userspace drivers maintain their own address space and the kernel
54 * sets up their pages tables accordingly when they submit their
55 * command buffers and a VMID is assigned.
56 * Cayman/Trinity support up to 8 active VMs at any given time;
57 * SI supports 16.
58 */
59
60 #define START(node) ((node)->start)
61 #define LAST(node) ((node)->last)
62
63 INTERVAL_TREE_DEFINE(struct amdgpu_bo_va_mapping, rb, uint64_t, __subtree_last,
64 START, LAST, static, amdgpu_vm_it)
65
66 #undef START
67 #undef LAST
68
69 /**
70 * struct amdgpu_prt_cb - Helper to disable partial resident texture feature from a fence callback
71 */
72 struct amdgpu_prt_cb {
73
74 /**
75 * @adev: amdgpu device
76 */
77 struct amdgpu_device *adev;
78
79 /**
80 * @cb: callback
81 */
82 struct dma_fence_cb cb;
83 };
84
85 /**
86 * amdgpu_vm_level_shift - return the addr shift for each level
87 *
88 * @adev: amdgpu_device pointer
89 * @level: VMPT level
90 *
91 * Returns:
92 * The number of bits the pfn needs to be right shifted for a level.
93 */
94 static unsigned amdgpu_vm_level_shift(struct amdgpu_device *adev,
95 unsigned level)
96 {
97 unsigned shift = 0xff;
98
99 switch (level) {
100 case AMDGPU_VM_PDB2:
101 case AMDGPU_VM_PDB1:
102 case AMDGPU_VM_PDB0:
103 shift = 9 * (AMDGPU_VM_PDB0 - level) +
104 adev->vm_manager.block_size;
105 break;
106 case AMDGPU_VM_PTB:
107 shift = 0;
108 break;
109 default:
110 dev_err(adev->dev, "the level%d isn't supported.\n", level);
111 }
112
113 return shift;
114 }
115
116 /**
117 * amdgpu_vm_num_entries - return the number of entries in a PD/PT
118 *
119 * @adev: amdgpu_device pointer
120 * @level: VMPT level
121 *
122 * Returns:
123 * The number of entries in a page directory or page table.
124 */
125 static unsigned amdgpu_vm_num_entries(struct amdgpu_device *adev,
126 unsigned level)
127 {
128 unsigned shift = amdgpu_vm_level_shift(adev,
129 adev->vm_manager.root_level);
130
131 if (level == adev->vm_manager.root_level)
132 /* For the root directory */
133 return round_up(adev->vm_manager.max_pfn, 1ULL << shift) >> shift;
134 else if (level != AMDGPU_VM_PTB)
135 /* Everything in between */
136 return 512;
137 else
138 /* For the page tables on the leaves */
139 return AMDGPU_VM_PTE_COUNT(adev);
140 }
141
142 /**
143 * amdgpu_vm_num_ats_entries - return the number of ATS entries in the root PD
144 *
145 * @adev: amdgpu_device pointer
146 *
147 * Returns:
148 * The number of entries in the root page directory which needs the ATS setting.
149 */
150 static unsigned amdgpu_vm_num_ats_entries(struct amdgpu_device *adev)
151 {
152 unsigned shift;
153
154 shift = amdgpu_vm_level_shift(adev, adev->vm_manager.root_level);
155 return AMDGPU_GMC_HOLE_START >> (shift + AMDGPU_GPU_PAGE_SHIFT);
156 }
157
158 /**
159 * amdgpu_vm_entries_mask - the mask to get the entry number of a PD/PT
160 *
161 * @adev: amdgpu_device pointer
162 * @level: VMPT level
163 *
164 * Returns:
165 * The mask to extract the entry number of a PD/PT from an address.
166 */
167 static uint32_t amdgpu_vm_entries_mask(struct amdgpu_device *adev,
168 unsigned int level)
169 {
170 if (level <= adev->vm_manager.root_level)
171 return 0xffffffff;
172 else if (level != AMDGPU_VM_PTB)
173 return 0x1ff;
174 else
175 return AMDGPU_VM_PTE_COUNT(adev) - 1;
176 }
177
178 /**
179 * amdgpu_vm_bo_size - returns the size of the BOs in bytes
180 *
181 * @adev: amdgpu_device pointer
182 * @level: VMPT level
183 *
184 * Returns:
185 * The size of the BO for a page directory or page table in bytes.
186 */
187 static unsigned amdgpu_vm_bo_size(struct amdgpu_device *adev, unsigned level)
188 {
189 return AMDGPU_GPU_PAGE_ALIGN(amdgpu_vm_num_entries(adev, level) * 8);
190 }
191
192 /**
193 * amdgpu_vm_bo_evicted - vm_bo is evicted
194 *
195 * @vm_bo: vm_bo which is evicted
196 *
197 * State for PDs/PTs and per VM BOs which are not at the location they should
198 * be.
199 */
200 static void amdgpu_vm_bo_evicted(struct amdgpu_vm_bo_base *vm_bo)
201 {
202 struct amdgpu_vm *vm = vm_bo->vm;
203 struct amdgpu_bo *bo = vm_bo->bo;
204
205 vm_bo->moved = true;
206 if (bo->tbo.type == ttm_bo_type_kernel)
207 list_move(&vm_bo->vm_status, &vm->evicted);
208 else
209 list_move_tail(&vm_bo->vm_status, &vm->evicted);
210 }
211
212 /**
213 * amdgpu_vm_bo_relocated - vm_bo is reloacted
214 *
215 * @vm_bo: vm_bo which is relocated
216 *
217 * State for PDs/PTs which needs to update their parent PD.
218 */
219 static void amdgpu_vm_bo_relocated(struct amdgpu_vm_bo_base *vm_bo)
220 {
221 list_move(&vm_bo->vm_status, &vm_bo->vm->relocated);
222 }
223
224 /**
225 * amdgpu_vm_bo_moved - vm_bo is moved
226 *
227 * @vm_bo: vm_bo which is moved
228 *
229 * State for per VM BOs which are moved, but that change is not yet reflected
230 * in the page tables.
231 */
232 static void amdgpu_vm_bo_moved(struct amdgpu_vm_bo_base *vm_bo)
233 {
234 list_move(&vm_bo->vm_status, &vm_bo->vm->moved);
235 }
236
237 /**
238 * amdgpu_vm_bo_idle - vm_bo is idle
239 *
240 * @vm_bo: vm_bo which is now idle
241 *
242 * State for PDs/PTs and per VM BOs which have gone through the state machine
243 * and are now idle.
244 */
245 static void amdgpu_vm_bo_idle(struct amdgpu_vm_bo_base *vm_bo)
246 {
247 list_move(&vm_bo->vm_status, &vm_bo->vm->idle);
248 vm_bo->moved = false;
249 }
250
251 /**
252 * amdgpu_vm_bo_invalidated - vm_bo is invalidated
253 *
254 * @vm_bo: vm_bo which is now invalidated
255 *
256 * State for normal BOs which are invalidated and that change not yet reflected
257 * in the PTs.
258 */
259 static void amdgpu_vm_bo_invalidated(struct amdgpu_vm_bo_base *vm_bo)
260 {
261 spin_lock(&vm_bo->vm->invalidated_lock);
262 list_move(&vm_bo->vm_status, &vm_bo->vm->invalidated);
263 spin_unlock(&vm_bo->vm->invalidated_lock);
264 }
265
266 /**
267 * amdgpu_vm_bo_done - vm_bo is done
268 *
269 * @vm_bo: vm_bo which is now done
270 *
271 * State for normal BOs which are invalidated and that change has been updated
272 * in the PTs.
273 */
274 static void amdgpu_vm_bo_done(struct amdgpu_vm_bo_base *vm_bo)
275 {
276 spin_lock(&vm_bo->vm->invalidated_lock);
277 list_del_init(&vm_bo->vm_status);
278 spin_unlock(&vm_bo->vm->invalidated_lock);
279 }
280
281 /**
282 * amdgpu_vm_bo_base_init - Adds bo to the list of bos associated with the vm
283 *
284 * @base: base structure for tracking BO usage in a VM
285 * @vm: vm to which bo is to be added
286 * @bo: amdgpu buffer object
287 *
288 * Initialize a bo_va_base structure and add it to the appropriate lists
289 *
290 */
291 static void amdgpu_vm_bo_base_init(struct amdgpu_vm_bo_base *base,
292 struct amdgpu_vm *vm,
293 struct amdgpu_bo *bo)
294 {
295 base->vm = vm;
296 base->bo = bo;
297 base->next = NULL;
298 INIT_LIST_HEAD(&base->vm_status);
299
300 if (!bo)
301 return;
302 base->next = bo->vm_bo;
303 bo->vm_bo = base;
304
305 if (bo->tbo.resv != vm->root.base.bo->tbo.resv)
306 return;
307
308 vm->bulk_moveable = false;
309 if (bo->tbo.type == ttm_bo_type_kernel && bo->parent)
310 amdgpu_vm_bo_relocated(base);
311 else
312 amdgpu_vm_bo_idle(base);
313
314 if (bo->preferred_domains &
315 amdgpu_mem_type_to_domain(bo->tbo.mem.mem_type))
316 return;
317
318 /*
319 * we checked all the prerequisites, but it looks like this per vm bo
320 * is currently evicted. add the bo to the evicted list to make sure it
321 * is validated on next vm use to avoid fault.
322 * */
323 amdgpu_vm_bo_evicted(base);
324 }
325
326 /**
327 * amdgpu_vm_pt_parent - get the parent page directory
328 *
329 * @pt: child page table
330 *
331 * Helper to get the parent entry for the child page table. NULL if we are at
332 * the root page directory.
333 */
334 static struct amdgpu_vm_pt *amdgpu_vm_pt_parent(struct amdgpu_vm_pt *pt)
335 {
336 struct amdgpu_bo *parent = pt->base.bo->parent;
337
338 if (!parent)
339 return NULL;
340
341 return container_of(parent->vm_bo, struct amdgpu_vm_pt, base);
342 }
343
344 /**
345 * amdgpu_vm_pt_cursor - state for for_each_amdgpu_vm_pt
346 */
347 struct amdgpu_vm_pt_cursor {
348 uint64_t pfn;
349 struct amdgpu_vm_pt *parent;
350 struct amdgpu_vm_pt *entry;
351 unsigned level;
352 };
353
354 /**
355 * amdgpu_vm_pt_start - start PD/PT walk
356 *
357 * @adev: amdgpu_device pointer
358 * @vm: amdgpu_vm structure
359 * @start: start address of the walk
360 * @cursor: state to initialize
361 *
362 * Initialize a amdgpu_vm_pt_cursor to start a walk.
363 */
364 static void amdgpu_vm_pt_start(struct amdgpu_device *adev,
365 struct amdgpu_vm *vm, uint64_t start,
366 struct amdgpu_vm_pt_cursor *cursor)
367 {
368 cursor->pfn = start;
369 cursor->parent = NULL;
370 cursor->entry = &vm->root;
371 cursor->level = adev->vm_manager.root_level;
372 }
373
374 /**
375 * amdgpu_vm_pt_descendant - go to child node
376 *
377 * @adev: amdgpu_device pointer
378 * @cursor: current state
379 *
380 * Walk to the child node of the current node.
381 * Returns:
382 * True if the walk was possible, false otherwise.
383 */
384 static bool amdgpu_vm_pt_descendant(struct amdgpu_device *adev,
385 struct amdgpu_vm_pt_cursor *cursor)
386 {
387 unsigned mask, shift, idx;
388
389 if (!cursor->entry->entries)
390 return false;
391
392 BUG_ON(!cursor->entry->base.bo);
393 mask = amdgpu_vm_entries_mask(adev, cursor->level);
394 shift = amdgpu_vm_level_shift(adev, cursor->level);
395
396 ++cursor->level;
397 idx = (cursor->pfn >> shift) & mask;
398 cursor->parent = cursor->entry;
399 cursor->entry = &cursor->entry->entries[idx];
400 return true;
401 }
402
403 /**
404 * amdgpu_vm_pt_sibling - go to sibling node
405 *
406 * @adev: amdgpu_device pointer
407 * @cursor: current state
408 *
409 * Walk to the sibling node of the current node.
410 * Returns:
411 * True if the walk was possible, false otherwise.
412 */
413 static bool amdgpu_vm_pt_sibling(struct amdgpu_device *adev,
414 struct amdgpu_vm_pt_cursor *cursor)
415 {
416 unsigned shift, num_entries;
417
418 /* Root doesn't have a sibling */
419 if (!cursor->parent)
420 return false;
421
422 /* Go to our parents and see if we got a sibling */
423 shift = amdgpu_vm_level_shift(adev, cursor->level - 1);
424 num_entries = amdgpu_vm_num_entries(adev, cursor->level - 1);
425
426 if (cursor->entry == &cursor->parent->entries[num_entries - 1])
427 return false;
428
429 cursor->pfn += 1ULL << shift;
430 cursor->pfn &= ~((1ULL << shift) - 1);
431 ++cursor->entry;
432 return true;
433 }
434
435 /**
436 * amdgpu_vm_pt_ancestor - go to parent node
437 *
438 * @cursor: current state
439 *
440 * Walk to the parent node of the current node.
441 * Returns:
442 * True if the walk was possible, false otherwise.
443 */
444 static bool amdgpu_vm_pt_ancestor(struct amdgpu_vm_pt_cursor *cursor)
445 {
446 if (!cursor->parent)
447 return false;
448
449 --cursor->level;
450 cursor->entry = cursor->parent;
451 cursor->parent = amdgpu_vm_pt_parent(cursor->parent);
452 return true;
453 }
454
455 /**
456 * amdgpu_vm_pt_next - get next PD/PT in hieratchy
457 *
458 * @adev: amdgpu_device pointer
459 * @cursor: current state
460 *
461 * Walk the PD/PT tree to the next node.
462 */
463 static void amdgpu_vm_pt_next(struct amdgpu_device *adev,
464 struct amdgpu_vm_pt_cursor *cursor)
465 {
466 /* First try a newborn child */
467 if (amdgpu_vm_pt_descendant(adev, cursor))
468 return;
469
470 /* If that didn't worked try to find a sibling */
471 while (!amdgpu_vm_pt_sibling(adev, cursor)) {
472 /* No sibling, go to our parents and grandparents */
473 if (!amdgpu_vm_pt_ancestor(cursor)) {
474 cursor->pfn = ~0ll;
475 return;
476 }
477 }
478 }
479
480 /**
481 * amdgpu_vm_pt_first_dfs - start a deep first search
482 *
483 * @adev: amdgpu_device structure
484 * @vm: amdgpu_vm structure
485 * @cursor: state to initialize
486 *
487 * Starts a deep first traversal of the PD/PT tree.
488 */
489 static void amdgpu_vm_pt_first_dfs(struct amdgpu_device *adev,
490 struct amdgpu_vm *vm,
491 struct amdgpu_vm_pt_cursor *start,
492 struct amdgpu_vm_pt_cursor *cursor)
493 {
494 if (start)
495 *cursor = *start;
496 else
497 amdgpu_vm_pt_start(adev, vm, 0, cursor);
498 while (amdgpu_vm_pt_descendant(adev, cursor));
499 }
500
501 /**
502 * amdgpu_vm_pt_continue_dfs - check if the deep first search should continue
503 *
504 * @start: starting point for the search
505 * @entry: current entry
506 *
507 * Returns:
508 * True when the search should continue, false otherwise.
509 */
510 static bool amdgpu_vm_pt_continue_dfs(struct amdgpu_vm_pt_cursor *start,
511 struct amdgpu_vm_pt *entry)
512 {
513 return entry && (!start || entry != start->entry);
514 }
515
516 /**
517 * amdgpu_vm_pt_next_dfs - get the next node for a deep first search
518 *
519 * @adev: amdgpu_device structure
520 * @cursor: current state
521 *
522 * Move the cursor to the next node in a deep first search.
523 */
524 static void amdgpu_vm_pt_next_dfs(struct amdgpu_device *adev,
525 struct amdgpu_vm_pt_cursor *cursor)
526 {
527 if (!cursor->entry)
528 return;
529
530 if (!cursor->parent)
531 cursor->entry = NULL;
532 else if (amdgpu_vm_pt_sibling(adev, cursor))
533 while (amdgpu_vm_pt_descendant(adev, cursor));
534 else
535 amdgpu_vm_pt_ancestor(cursor);
536 }
537
538 /**
539 * for_each_amdgpu_vm_pt_dfs_safe - safe deep first search of all PDs/PTs
540 */
541 #define for_each_amdgpu_vm_pt_dfs_safe(adev, vm, start, cursor, entry) \
542 for (amdgpu_vm_pt_first_dfs((adev), (vm), (start), &(cursor)), \
543 (entry) = (cursor).entry, amdgpu_vm_pt_next_dfs((adev), &(cursor));\
544 amdgpu_vm_pt_continue_dfs((start), (entry)); \
545 (entry) = (cursor).entry, amdgpu_vm_pt_next_dfs((adev), &(cursor)))
546
547 /**
548 * amdgpu_vm_get_pd_bo - add the VM PD to a validation list
549 *
550 * @vm: vm providing the BOs
551 * @validated: head of validation list
552 * @entry: entry to add
553 *
554 * Add the page directory to the list of BOs to
555 * validate for command submission.
556 */
557 void amdgpu_vm_get_pd_bo(struct amdgpu_vm *vm,
558 struct list_head *validated,
559 struct amdgpu_bo_list_entry *entry)
560 {
561 entry->priority = 0;
562 entry->tv.bo = &vm->root.base.bo->tbo;
563 /* One for the VM updates, one for TTM and one for the CS job */
564 entry->tv.num_shared = 3;
565 entry->user_pages = NULL;
566 list_add(&entry->tv.head, validated);
567 }
568
569 void amdgpu_vm_del_from_lru_notify(struct ttm_buffer_object *bo)
570 {
571 struct amdgpu_bo *abo;
572 struct amdgpu_vm_bo_base *bo_base;
573
574 if (!amdgpu_bo_is_amdgpu_bo(bo))
575 return;
576
577 if (bo->mem.placement & TTM_PL_FLAG_NO_EVICT)
578 return;
579
580 abo = ttm_to_amdgpu_bo(bo);
581 if (!abo->parent)
582 return;
583 for (bo_base = abo->vm_bo; bo_base; bo_base = bo_base->next) {
584 struct amdgpu_vm *vm = bo_base->vm;
585
586 if (abo->tbo.resv == vm->root.base.bo->tbo.resv)
587 vm->bulk_moveable = false;
588 }
589
590 }
591 /**
592 * amdgpu_vm_move_to_lru_tail - move all BOs to the end of LRU
593 *
594 * @adev: amdgpu device pointer
595 * @vm: vm providing the BOs
596 *
597 * Move all BOs to the end of LRU and remember their positions to put them
598 * together.
599 */
600 void amdgpu_vm_move_to_lru_tail(struct amdgpu_device *adev,
601 struct amdgpu_vm *vm)
602 {
603 struct ttm_bo_global *glob = adev->mman.bdev.glob;
604 struct amdgpu_vm_bo_base *bo_base;
605
606 #if 0
607 if (vm->bulk_moveable) {
608 spin_lock(&glob->lru_lock);
609 ttm_bo_bulk_move_lru_tail(&vm->lru_bulk_move);
610 spin_unlock(&glob->lru_lock);
611 return;
612 }
613 #endif
614
615 memset(&vm->lru_bulk_move, 0, sizeof(vm->lru_bulk_move));
616
617 spin_lock(&glob->lru_lock);
618 list_for_each_entry(bo_base, &vm->idle, vm_status) {
619 struct amdgpu_bo *bo = bo_base->bo;
620
621 if (!bo->parent)
622 continue;
623
624 ttm_bo_move_to_lru_tail(&bo->tbo, &vm->lru_bulk_move);
625 if (bo->shadow)
626 ttm_bo_move_to_lru_tail(&bo->shadow->tbo,
627 &vm->lru_bulk_move);
628 }
629 spin_unlock(&glob->lru_lock);
630
631 vm->bulk_moveable = true;
632 }
633
634 /**
635 * amdgpu_vm_validate_pt_bos - validate the page table BOs
636 *
637 * @adev: amdgpu device pointer
638 * @vm: vm providing the BOs
639 * @validate: callback to do the validation
640 * @param: parameter for the validation callback
641 *
642 * Validate the page table BOs on command submission if neccessary.
643 *
644 * Returns:
645 * Validation result.
646 */
647 int amdgpu_vm_validate_pt_bos(struct amdgpu_device *adev, struct amdgpu_vm *vm,
648 int (*validate)(void *p, struct amdgpu_bo *bo),
649 void *param)
650 {
651 struct amdgpu_vm_bo_base *bo_base, *tmp;
652 int r = 0;
653
654 vm->bulk_moveable &= list_empty(&vm->evicted);
655
656 list_for_each_entry_safe(bo_base, tmp, &vm->evicted, vm_status) {
657 struct amdgpu_bo *bo = bo_base->bo;
658
659 r = validate(param, bo);
660 if (r)
661 break;
662
663 if (bo->tbo.type != ttm_bo_type_kernel) {
664 amdgpu_vm_bo_moved(bo_base);
665 } else {
666 vm->update_funcs->map_table(bo);
667 if (bo->parent)
668 amdgpu_vm_bo_relocated(bo_base);
669 else
670 amdgpu_vm_bo_idle(bo_base);
671 }
672 }
673
674 return r;
675 }
676
677 /**
678 * amdgpu_vm_ready - check VM is ready for updates
679 *
680 * @vm: VM to check
681 *
682 * Check if all VM PDs/PTs are ready for updates
683 *
684 * Returns:
685 * True if eviction list is empty.
686 */
687 bool amdgpu_vm_ready(struct amdgpu_vm *vm)
688 {
689 return list_empty(&vm->evicted);
690 }
691
692 /**
693 * amdgpu_vm_clear_bo - initially clear the PDs/PTs
694 *
695 * @adev: amdgpu_device pointer
696 * @vm: VM to clear BO from
697 * @bo: BO to clear
698 *
699 * Root PD needs to be reserved when calling this.
700 *
701 * Returns:
702 * 0 on success, errno otherwise.
703 */
704 static int amdgpu_vm_clear_bo(struct amdgpu_device *adev,
705 struct amdgpu_vm *vm,
706 struct amdgpu_bo *bo)
707 {
708 struct ttm_operation_ctx ctx = { true, false };
709 unsigned level = adev->vm_manager.root_level;
710 struct amdgpu_vm_update_params params;
711 struct amdgpu_bo *ancestor = bo;
712 unsigned entries, ats_entries;
713 uint64_t addr;
714 int r;
715
716 /* Figure out our place in the hierarchy */
717 if (ancestor->parent) {
718 ++level;
719 while (ancestor->parent->parent) {
720 ++level;
721 ancestor = ancestor->parent;
722 }
723 }
724
725 entries = amdgpu_bo_size(bo) / 8;
726 if (!vm->pte_support_ats) {
727 ats_entries = 0;
728
729 } else if (!bo->parent) {
730 ats_entries = amdgpu_vm_num_ats_entries(adev);
731 ats_entries = min(ats_entries, entries);
732 entries -= ats_entries;
733
734 } else {
735 struct amdgpu_vm_pt *pt;
736
737 pt = container_of(ancestor->vm_bo, struct amdgpu_vm_pt, base);
738 ats_entries = amdgpu_vm_num_ats_entries(adev);
739 if ((pt - vm->root.entries) >= ats_entries) {
740 ats_entries = 0;
741 } else {
742 ats_entries = entries;
743 entries = 0;
744 }
745 }
746
747 r = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
748 if (r)
749 return r;
750
751 if (bo->shadow) {
752 r = ttm_bo_validate(&bo->shadow->tbo, &bo->shadow->placement,
753 &ctx);
754 if (r)
755 return r;
756 }
757
758 r = vm->update_funcs->map_table(bo);
759 if (r)
760 return r;
761
762 memset(&params, 0, sizeof(params));
763 params.adev = adev;
764 params.vm = vm;
765
766 r = vm->update_funcs->prepare(&params, AMDGPU_FENCE_OWNER_KFD, NULL);
767 if (r)
768 return r;
769
770 addr = 0;
771 if (ats_entries) {
772 uint64_t value = 0, flags;
773
774 flags = AMDGPU_PTE_DEFAULT_ATC;
775 if (level != AMDGPU_VM_PTB) {
776 /* Handle leaf PDEs as PTEs */
777 flags |= AMDGPU_PDE_PTE;
778 amdgpu_gmc_get_vm_pde(adev, level, &value, &flags);
779 }
780
781 r = vm->update_funcs->update(&params, bo, addr, 0, ats_entries,
782 value, flags);
783 if (r)
784 return r;
785
786 addr += ats_entries * 8;
787 }
788
789 if (entries) {
790 uint64_t value = 0, flags = 0;
791
792 if (adev->asic_type >= CHIP_VEGA10) {
793 if (level != AMDGPU_VM_PTB) {
794 /* Handle leaf PDEs as PTEs */
795 flags |= AMDGPU_PDE_PTE;
796 amdgpu_gmc_get_vm_pde(adev, level,
797 &value, &flags);
798 } else {
799 /* Workaround for fault priority problem on GMC9 */
800 flags = AMDGPU_PTE_EXECUTABLE;
801 }
802 }
803
804 r = vm->update_funcs->update(&params, bo, addr, 0, entries,
805 value, flags);
806 if (r)
807 return r;
808 }
809
810 return vm->update_funcs->commit(&params, NULL);
811 }
812
813 /**
814 * amdgpu_vm_bo_param - fill in parameters for PD/PT allocation
815 *
816 * @adev: amdgpu_device pointer
817 * @vm: requesting vm
818 * @bp: resulting BO allocation parameters
819 */
820 static void amdgpu_vm_bo_param(struct amdgpu_device *adev, struct amdgpu_vm *vm,
821 int level, struct amdgpu_bo_param *bp)
822 {
823 memset(bp, 0, sizeof(*bp));
824
825 bp->size = amdgpu_vm_bo_size(adev, level);
826 bp->byte_align = AMDGPU_GPU_PAGE_SIZE;
827 bp->domain = AMDGPU_GEM_DOMAIN_VRAM;
828 bp->domain = amdgpu_bo_get_preferred_pin_domain(adev, bp->domain);
829 bp->flags = AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS |
830 AMDGPU_GEM_CREATE_CPU_GTT_USWC;
831 if (vm->use_cpu_for_update)
832 bp->flags |= AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
833 else if (!vm->root.base.bo || vm->root.base.bo->shadow)
834 bp->flags |= AMDGPU_GEM_CREATE_SHADOW;
835 bp->type = ttm_bo_type_kernel;
836 if (vm->root.base.bo)
837 bp->resv = vm->root.base.bo->tbo.resv;
838 }
839
840 /**
841 * amdgpu_vm_alloc_pts - Allocate a specific page table
842 *
843 * @adev: amdgpu_device pointer
844 * @vm: VM to allocate page tables for
845 * @cursor: Which page table to allocate
846 *
847 * Make sure a specific page table or directory is allocated.
848 *
849 * Returns:
850 * 1 if page table needed to be allocated, 0 if page table was already
851 * allocated, negative errno if an error occurred.
852 */
853 static int amdgpu_vm_alloc_pts(struct amdgpu_device *adev,
854 struct amdgpu_vm *vm,
855 struct amdgpu_vm_pt_cursor *cursor)
856 {
857 struct amdgpu_vm_pt *entry = cursor->entry;
858 struct amdgpu_bo_param bp;
859 struct amdgpu_bo *pt;
860 int r;
861
862 if (cursor->level < AMDGPU_VM_PTB && !entry->entries) {
863 unsigned num_entries;
864
865 num_entries = amdgpu_vm_num_entries(adev, cursor->level);
866 entry->entries = kvmalloc_array(num_entries,
867 sizeof(*entry->entries),
868 GFP_KERNEL | __GFP_ZERO);
869 if (!entry->entries)
870 return -ENOMEM;
871 }
872
873 if (entry->base.bo)
874 return 0;
875
876 amdgpu_vm_bo_param(adev, vm, cursor->level, &bp);
877
878 r = amdgpu_bo_create(adev, &bp, &pt);
879 if (r)
880 return r;
881
882 /* Keep a reference to the root directory to avoid
883 * freeing them up in the wrong order.
884 */
885 pt->parent = amdgpu_bo_ref(cursor->parent->base.bo);
886 amdgpu_vm_bo_base_init(&entry->base, vm, pt);
887
888 r = amdgpu_vm_clear_bo(adev, vm, pt);
889 if (r)
890 goto error_free_pt;
891
892 return 0;
893
894 error_free_pt:
895 amdgpu_bo_unref(&pt->shadow);
896 amdgpu_bo_unref(&pt);
897 return r;
898 }
899
900 /**
901 * amdgpu_vm_free_table - fre one PD/PT
902 *
903 * @entry: PDE to free
904 */
905 static void amdgpu_vm_free_table(struct amdgpu_vm_pt *entry)
906 {
907 if (entry->base.bo) {
908 entry->base.bo->vm_bo = NULL;
909 list_del(&entry->base.vm_status);
910 amdgpu_bo_unref(&entry->base.bo->shadow);
911 amdgpu_bo_unref(&entry->base.bo);
912 }
913 kvfree(entry->entries);
914 entry->entries = NULL;
915 }
916
917 /**
918 * amdgpu_vm_free_pts - free PD/PT levels
919 *
920 * @adev: amdgpu device structure
921 * @vm: amdgpu vm structure
922 * @start: optional cursor where to start freeing PDs/PTs
923 *
924 * Free the page directory or page table level and all sub levels.
925 */
926 static void amdgpu_vm_free_pts(struct amdgpu_device *adev,
927 struct amdgpu_vm *vm,
928 struct amdgpu_vm_pt_cursor *start)
929 {
930 struct amdgpu_vm_pt_cursor cursor;
931 struct amdgpu_vm_pt *entry;
932
933 vm->bulk_moveable = false;
934
935 for_each_amdgpu_vm_pt_dfs_safe(adev, vm, start, cursor, entry)
936 amdgpu_vm_free_table(entry);
937
938 if (start)
939 amdgpu_vm_free_table(start->entry);
940 }
941
942 /**
943 * amdgpu_vm_check_compute_bug - check whether asic has compute vm bug
944 *
945 * @adev: amdgpu_device pointer
946 */
947 void amdgpu_vm_check_compute_bug(struct amdgpu_device *adev)
948 {
949 const struct amdgpu_ip_block *ip_block;
950 bool has_compute_vm_bug;
951 struct amdgpu_ring *ring;
952 int i;
953
954 has_compute_vm_bug = false;
955
956 ip_block = amdgpu_device_ip_get_ip_block(adev, AMD_IP_BLOCK_TYPE_GFX);
957 if (ip_block) {
958 /* Compute has a VM bug for GFX version < 7.
959 Compute has a VM bug for GFX 8 MEC firmware version < 673.*/
960 if (ip_block->version->major <= 7)
961 has_compute_vm_bug = true;
962 else if (ip_block->version->major == 8)
963 if (adev->gfx.mec_fw_version < 673)
964 has_compute_vm_bug = true;
965 }
966
967 for (i = 0; i < adev->num_rings; i++) {
968 ring = adev->rings[i];
969 if (ring->funcs->type == AMDGPU_RING_TYPE_COMPUTE)
970 /* only compute rings */
971 ring->has_compute_vm_bug = has_compute_vm_bug;
972 else
973 ring->has_compute_vm_bug = false;
974 }
975 }
976
977 /**
978 * amdgpu_vm_need_pipeline_sync - Check if pipe sync is needed for job.
979 *
980 * @ring: ring on which the job will be submitted
981 * @job: job to submit
982 *
983 * Returns:
984 * True if sync is needed.
985 */
986 bool amdgpu_vm_need_pipeline_sync(struct amdgpu_ring *ring,
987 struct amdgpu_job *job)
988 {
989 struct amdgpu_device *adev = ring->adev;
990 unsigned vmhub = ring->funcs->vmhub;
991 struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub];
992 struct amdgpu_vmid *id;
993 bool gds_switch_needed;
994 bool vm_flush_needed = job->vm_needs_flush || ring->has_compute_vm_bug;
995
996 if (job->vmid == 0)
997 return false;
998 id = &id_mgr->ids[job->vmid];
999 gds_switch_needed = ring->funcs->emit_gds_switch && (
1000 id->gds_base != job->gds_base ||
1001 id->gds_size != job->gds_size ||
1002 id->gws_base != job->gws_base ||
1003 id->gws_size != job->gws_size ||
1004 id->oa_base != job->oa_base ||
1005 id->oa_size != job->oa_size);
1006
1007 if (amdgpu_vmid_had_gpu_reset(adev, id))
1008 return true;
1009
1010 return vm_flush_needed || gds_switch_needed;
1011 }
1012
1013 /**
1014 * amdgpu_vm_flush - hardware flush the vm
1015 *
1016 * @ring: ring to use for flush
1017 * @job: related job
1018 * @need_pipe_sync: is pipe sync needed
1019 *
1020 * Emit a VM flush when it is necessary.
1021 *
1022 * Returns:
1023 * 0 on success, errno otherwise.
1024 */
1025 int amdgpu_vm_flush(struct amdgpu_ring *ring, struct amdgpu_job *job, bool need_pipe_sync)
1026 {
1027 struct amdgpu_device *adev = ring->adev;
1028 unsigned vmhub = ring->funcs->vmhub;
1029 struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub];
1030 struct amdgpu_vmid *id = &id_mgr->ids[job->vmid];
1031 bool gds_switch_needed = ring->funcs->emit_gds_switch && (
1032 id->gds_base != job->gds_base ||
1033 id->gds_size != job->gds_size ||
1034 id->gws_base != job->gws_base ||
1035 id->gws_size != job->gws_size ||
1036 id->oa_base != job->oa_base ||
1037 id->oa_size != job->oa_size);
1038 bool vm_flush_needed = job->vm_needs_flush;
1039 bool pasid_mapping_needed = id->pasid != job->pasid ||
1040 !id->pasid_mapping ||
1041 !dma_fence_is_signaled(id->pasid_mapping);
1042 struct dma_fence *fence = NULL;
1043 unsigned patch_offset = 0;
1044 int r;
1045
1046 if (amdgpu_vmid_had_gpu_reset(adev, id)) {
1047 gds_switch_needed = true;
1048 vm_flush_needed = true;
1049 pasid_mapping_needed = true;
1050 }
1051
1052 gds_switch_needed &= !!ring->funcs->emit_gds_switch;
1053 vm_flush_needed &= !!ring->funcs->emit_vm_flush &&
1054 job->vm_pd_addr != AMDGPU_BO_INVALID_OFFSET;
1055 pasid_mapping_needed &= adev->gmc.gmc_funcs->emit_pasid_mapping &&
1056 ring->funcs->emit_wreg;
1057
1058 if (!vm_flush_needed && !gds_switch_needed && !need_pipe_sync)
1059 return 0;
1060
1061 if (ring->funcs->init_cond_exec)
1062 patch_offset = amdgpu_ring_init_cond_exec(ring);
1063
1064 if (need_pipe_sync)
1065 amdgpu_ring_emit_pipeline_sync(ring);
1066
1067 if (vm_flush_needed) {
1068 trace_amdgpu_vm_flush(ring, job->vmid, job->vm_pd_addr);
1069 amdgpu_ring_emit_vm_flush(ring, job->vmid, job->vm_pd_addr);
1070 }
1071
1072 if (pasid_mapping_needed)
1073 amdgpu_gmc_emit_pasid_mapping(ring, job->vmid, job->pasid);
1074
1075 if (vm_flush_needed || pasid_mapping_needed) {
1076 r = amdgpu_fence_emit(ring, &fence, 0);
1077 if (r)
1078 return r;
1079 }
1080
1081 if (vm_flush_needed) {
1082 mutex_lock(&id_mgr->lock);
1083 dma_fence_put(id->last_flush);
1084 id->last_flush = dma_fence_get(fence);
1085 id->current_gpu_reset_count =
1086 atomic_read(&adev->gpu_reset_counter);
1087 mutex_unlock(&id_mgr->lock);
1088 }
1089
1090 if (pasid_mapping_needed) {
1091 id->pasid = job->pasid;
1092 dma_fence_put(id->pasid_mapping);
1093 id->pasid_mapping = dma_fence_get(fence);
1094 }
1095 dma_fence_put(fence);
1096
1097 if (ring->funcs->emit_gds_switch && gds_switch_needed) {
1098 id->gds_base = job->gds_base;
1099 id->gds_size = job->gds_size;
1100 id->gws_base = job->gws_base;
1101 id->gws_size = job->gws_size;
1102 id->oa_base = job->oa_base;
1103 id->oa_size = job->oa_size;
1104 amdgpu_ring_emit_gds_switch(ring, job->vmid, job->gds_base,
1105 job->gds_size, job->gws_base,
1106 job->gws_size, job->oa_base,
1107 job->oa_size);
1108 }
1109
1110 if (ring->funcs->patch_cond_exec)
1111 amdgpu_ring_patch_cond_exec(ring, patch_offset);
1112
1113 /* the double SWITCH_BUFFER here *cannot* be skipped by COND_EXEC */
1114 if (ring->funcs->emit_switch_buffer) {
1115 amdgpu_ring_emit_switch_buffer(ring);
1116 amdgpu_ring_emit_switch_buffer(ring);
1117 }
1118 return 0;
1119 }
1120
1121 /**
1122 * amdgpu_vm_bo_find - find the bo_va for a specific vm & bo
1123 *
1124 * @vm: requested vm
1125 * @bo: requested buffer object
1126 *
1127 * Find @bo inside the requested vm.
1128 * Search inside the @bos vm list for the requested vm
1129 * Returns the found bo_va or NULL if none is found
1130 *
1131 * Object has to be reserved!
1132 *
1133 * Returns:
1134 * Found bo_va or NULL.
1135 */
1136 struct amdgpu_bo_va *amdgpu_vm_bo_find(struct amdgpu_vm *vm,
1137 struct amdgpu_bo *bo)
1138 {
1139 struct amdgpu_vm_bo_base *base;
1140
1141 for (base = bo->vm_bo; base; base = base->next) {
1142 if (base->vm != vm)
1143 continue;
1144
1145 return container_of(base, struct amdgpu_bo_va, base);
1146 }
1147 return NULL;
1148 }
1149
1150 /**
1151 * amdgpu_vm_map_gart - Resolve gart mapping of addr
1152 *
1153 * @pages_addr: optional DMA address to use for lookup
1154 * @addr: the unmapped addr
1155 *
1156 * Look up the physical address of the page that the pte resolves
1157 * to.
1158 *
1159 * Returns:
1160 * The pointer for the page table entry.
1161 */
1162 uint64_t amdgpu_vm_map_gart(const dma_addr_t *pages_addr, uint64_t addr)
1163 {
1164 uint64_t result;
1165
1166 /* page table offset */
1167 result = pages_addr[addr >> PAGE_SHIFT];
1168
1169 /* in case cpu page size != gpu page size*/
1170 result |= addr & (~PAGE_MASK);
1171
1172 result &= 0xFFFFFFFFFFFFF000ULL;
1173
1174 return result;
1175 }
1176
1177 /*
1178 * amdgpu_vm_update_pde - update a single level in the hierarchy
1179 *
1180 * @param: parameters for the update
1181 * @vm: requested vm
1182 * @entry: entry to update
1183 *
1184 * Makes sure the requested entry in parent is up to date.
1185 */
1186 static int amdgpu_vm_update_pde(struct amdgpu_vm_update_params *params,
1187 struct amdgpu_vm *vm,
1188 struct amdgpu_vm_pt *entry)
1189 {
1190 struct amdgpu_vm_pt *parent = amdgpu_vm_pt_parent(entry);
1191 struct amdgpu_bo *bo = parent->base.bo, *pbo;
1192 uint64_t pde, pt, flags;
1193 unsigned level;
1194
1195 for (level = 0, pbo = bo->parent; pbo; ++level)
1196 pbo = pbo->parent;
1197
1198 level += params->adev->vm_manager.root_level;
1199 amdgpu_gmc_get_pde_for_bo(entry->base.bo, level, &pt, &flags);
1200 pde = (entry - parent->entries) * 8;
1201 return vm->update_funcs->update(params, bo, pde, pt, 1, 0, flags);
1202 }
1203
1204 /*
1205 * amdgpu_vm_invalidate_pds - mark all PDs as invalid
1206 *
1207 * @adev: amdgpu_device pointer
1208 * @vm: related vm
1209 *
1210 * Mark all PD level as invalid after an error.
1211 */
1212 static void amdgpu_vm_invalidate_pds(struct amdgpu_device *adev,
1213 struct amdgpu_vm *vm)
1214 {
1215 struct amdgpu_vm_pt_cursor cursor;
1216 struct amdgpu_vm_pt *entry;
1217
1218 for_each_amdgpu_vm_pt_dfs_safe(adev, vm, NULL, cursor, entry)
1219 if (entry->base.bo && !entry->base.moved)
1220 amdgpu_vm_bo_relocated(&entry->base);
1221 }
1222
1223 /*
1224 * amdgpu_vm_update_directories - make sure that all directories are valid
1225 *
1226 * @adev: amdgpu_device pointer
1227 * @vm: requested vm
1228 *
1229 * Makes sure all directories are up to date.
1230 *
1231 * Returns:
1232 * 0 for success, error for failure.
1233 */
1234 int amdgpu_vm_update_directories(struct amdgpu_device *adev,
1235 struct amdgpu_vm *vm)
1236 {
1237 struct amdgpu_vm_update_params params;
1238 int r;
1239
1240 if (list_empty(&vm->relocated))
1241 return 0;
1242
1243 memset(&params, 0, sizeof(params));
1244 params.adev = adev;
1245 params.vm = vm;
1246
1247 r = vm->update_funcs->prepare(&params, AMDGPU_FENCE_OWNER_VM, NULL);
1248 if (r)
1249 return r;
1250
1251 while (!list_empty(&vm->relocated)) {
1252 struct amdgpu_vm_pt *entry;
1253
1254 entry = list_first_entry(&vm->relocated, struct amdgpu_vm_pt,
1255 base.vm_status);
1256 amdgpu_vm_bo_idle(&entry->base);
1257
1258 r = amdgpu_vm_update_pde(&params, vm, entry);
1259 if (r)
1260 goto error;
1261 }
1262
1263 r = vm->update_funcs->commit(&params, &vm->last_update);
1264 if (r)
1265 goto error;
1266 return 0;
1267
1268 error:
1269 amdgpu_vm_invalidate_pds(adev, vm);
1270 return r;
1271 }
1272
1273 /**
1274 * amdgpu_vm_update_flags - figure out flags for PTE updates
1275 *
1276 * Make sure to set the right flags for the PTEs at the desired level.
1277 */
1278 static void amdgpu_vm_update_flags(struct amdgpu_vm_update_params *params,
1279 struct amdgpu_bo *bo, unsigned level,
1280 uint64_t pe, uint64_t addr,
1281 unsigned count, uint32_t incr,
1282 uint64_t flags)
1283
1284 {
1285 if (level != AMDGPU_VM_PTB) {
1286 flags |= AMDGPU_PDE_PTE;
1287 amdgpu_gmc_get_vm_pde(params->adev, level, &addr, &flags);
1288
1289 } else if (params->adev->asic_type >= CHIP_VEGA10 &&
1290 !(flags & AMDGPU_PTE_VALID) &&
1291 !(flags & AMDGPU_PTE_PRT)) {
1292
1293 /* Workaround for fault priority problem on GMC9 */
1294 flags |= AMDGPU_PTE_EXECUTABLE;
1295 }
1296
1297 params->vm->update_funcs->update(params, bo, pe, addr, count, incr,
1298 flags);
1299 }
1300
1301 /**
1302 * amdgpu_vm_fragment - get fragment for PTEs
1303 *
1304 * @params: see amdgpu_vm_update_params definition
1305 * @start: first PTE to handle
1306 * @end: last PTE to handle
1307 * @flags: hw mapping flags
1308 * @frag: resulting fragment size
1309 * @frag_end: end of this fragment
1310 *
1311 * Returns the first possible fragment for the start and end address.
1312 */
1313 static void amdgpu_vm_fragment(struct amdgpu_vm_update_params *params,
1314 uint64_t start, uint64_t end, uint64_t flags,
1315 unsigned int *frag, uint64_t *frag_end)
1316 {
1317 /**
1318 * The MC L1 TLB supports variable sized pages, based on a fragment
1319 * field in the PTE. When this field is set to a non-zero value, page
1320 * granularity is increased from 4KB to (1 << (12 + frag)). The PTE
1321 * flags are considered valid for all PTEs within the fragment range
1322 * and corresponding mappings are assumed to be physically contiguous.
1323 *
1324 * The L1 TLB can store a single PTE for the whole fragment,
1325 * significantly increasing the space available for translation
1326 * caching. This leads to large improvements in throughput when the
1327 * TLB is under pressure.
1328 *
1329 * The L2 TLB distributes small and large fragments into two
1330 * asymmetric partitions. The large fragment cache is significantly
1331 * larger. Thus, we try to use large fragments wherever possible.
1332 * Userspace can support this by aligning virtual base address and
1333 * allocation size to the fragment size.
1334 *
1335 * Starting with Vega10 the fragment size only controls the L1. The L2
1336 * is now directly feed with small/huge/giant pages from the walker.
1337 */
1338 unsigned max_frag;
1339
1340 if (params->adev->asic_type < CHIP_VEGA10)
1341 max_frag = params->adev->vm_manager.fragment_size;
1342 else
1343 max_frag = 31;
1344
1345 /* system pages are non continuously */
1346 if (params->pages_addr) {
1347 *frag = 0;
1348 *frag_end = end;
1349 return;
1350 }
1351
1352 /* This intentionally wraps around if no bit is set */
1353 *frag = min((unsigned)ffs(start) - 1, (unsigned)fls64(end - start) - 1);
1354 if (*frag >= max_frag) {
1355 *frag = max_frag;
1356 *frag_end = end & ~((1ULL << max_frag) - 1);
1357 } else {
1358 *frag_end = start + (1 << *frag);
1359 }
1360 }
1361
1362 /**
1363 * amdgpu_vm_update_ptes - make sure that page tables are valid
1364 *
1365 * @params: see amdgpu_vm_update_params definition
1366 * @start: start of GPU address range
1367 * @end: end of GPU address range
1368 * @dst: destination address to map to, the next dst inside the function
1369 * @flags: mapping flags
1370 *
1371 * Update the page tables in the range @start - @end.
1372 *
1373 * Returns:
1374 * 0 for success, -EINVAL for failure.
1375 */
1376 static int amdgpu_vm_update_ptes(struct amdgpu_vm_update_params *params,
1377 uint64_t start, uint64_t end,
1378 uint64_t dst, uint64_t flags)
1379 {
1380 struct amdgpu_device *adev = params->adev;
1381 struct amdgpu_vm_pt_cursor cursor;
1382 uint64_t frag_start = start, frag_end;
1383 unsigned int frag;
1384 int r;
1385
1386 /* figure out the initial fragment */
1387 amdgpu_vm_fragment(params, frag_start, end, flags, &frag, &frag_end);
1388
1389 /* walk over the address space and update the PTs */
1390 amdgpu_vm_pt_start(adev, params->vm, start, &cursor);
1391 while (cursor.pfn < end) {
1392 unsigned shift, parent_shift, mask;
1393 uint64_t incr, entry_end, pe_start;
1394 struct amdgpu_bo *pt;
1395
1396 r = amdgpu_vm_alloc_pts(params->adev, params->vm, &cursor);
1397 if (r)
1398 return r;
1399
1400 pt = cursor.entry->base.bo;
1401
1402 /* The root level can't be a huge page */
1403 if (cursor.level == adev->vm_manager.root_level) {
1404 if (!amdgpu_vm_pt_descendant(adev, &cursor))
1405 return -ENOENT;
1406 continue;
1407 }
1408
1409 shift = amdgpu_vm_level_shift(adev, cursor.level);
1410 parent_shift = amdgpu_vm_level_shift(adev, cursor.level - 1);
1411 if (adev->asic_type < CHIP_VEGA10 &&
1412 (flags & AMDGPU_PTE_VALID)) {
1413 /* No huge page support before GMC v9 */
1414 if (cursor.level != AMDGPU_VM_PTB) {
1415 if (!amdgpu_vm_pt_descendant(adev, &cursor))
1416 return -ENOENT;
1417 continue;
1418 }
1419 } else if (frag < shift) {
1420 /* We can't use this level when the fragment size is
1421 * smaller than the address shift. Go to the next
1422 * child entry and try again.
1423 */
1424 if (!amdgpu_vm_pt_descendant(adev, &cursor))
1425 return -ENOENT;
1426 continue;
1427 } else if (frag >= parent_shift &&
1428 cursor.level - 1 != adev->vm_manager.root_level) {
1429 /* If the fragment size is even larger than the parent
1430 * shift we should go up one level and check it again
1431 * unless one level up is the root level.
1432 */
1433 if (!amdgpu_vm_pt_ancestor(&cursor))
1434 return -ENOENT;
1435 continue;
1436 }
1437
1438 /* Looks good so far, calculate parameters for the update */
1439 incr = (uint64_t)AMDGPU_GPU_PAGE_SIZE << shift;
1440 mask = amdgpu_vm_entries_mask(adev, cursor.level);
1441 pe_start = ((cursor.pfn >> shift) & mask) * 8;
1442 entry_end = (uint64_t)(mask + 1) << shift;
1443 entry_end += cursor.pfn & ~(entry_end - 1);
1444 entry_end = min(entry_end, end);
1445
1446 do {
1447 uint64_t upd_end = min(entry_end, frag_end);
1448 unsigned nptes = (upd_end - frag_start) >> shift;
1449
1450 amdgpu_vm_update_flags(params, pt, cursor.level,
1451 pe_start, dst, nptes, incr,
1452 flags | AMDGPU_PTE_FRAG(frag));
1453
1454 pe_start += nptes * 8;
1455 dst += (uint64_t)nptes * AMDGPU_GPU_PAGE_SIZE << shift;
1456
1457 frag_start = upd_end;
1458 if (frag_start >= frag_end) {
1459 /* figure out the next fragment */
1460 amdgpu_vm_fragment(params, frag_start, end,
1461 flags, &frag, &frag_end);
1462 if (frag < shift)
1463 break;
1464 }
1465 } while (frag_start < entry_end);
1466
1467 if (amdgpu_vm_pt_descendant(adev, &cursor)) {
1468 /* Free all child entries */
1469 while (cursor.pfn < frag_start) {
1470 amdgpu_vm_free_pts(adev, params->vm, &cursor);
1471 amdgpu_vm_pt_next(adev, &cursor);
1472 }
1473
1474 } else if (frag >= shift) {
1475 /* or just move on to the next on the same level. */
1476 amdgpu_vm_pt_next(adev, &cursor);
1477 }
1478 }
1479
1480 return 0;
1481 }
1482
1483 /**
1484 * amdgpu_vm_bo_update_mapping - update a mapping in the vm page table
1485 *
1486 * @adev: amdgpu_device pointer
1487 * @exclusive: fence we need to sync to
1488 * @pages_addr: DMA addresses to use for mapping
1489 * @vm: requested vm
1490 * @start: start of mapped range
1491 * @last: last mapped entry
1492 * @flags: flags for the entries
1493 * @addr: addr to set the area to
1494 * @fence: optional resulting fence
1495 *
1496 * Fill in the page table entries between @start and @last.
1497 *
1498 * Returns:
1499 * 0 for success, -EINVAL for failure.
1500 */
1501 static int amdgpu_vm_bo_update_mapping(struct amdgpu_device *adev,
1502 struct dma_fence *exclusive,
1503 dma_addr_t *pages_addr,
1504 struct amdgpu_vm *vm,
1505 uint64_t start, uint64_t last,
1506 uint64_t flags, uint64_t addr,
1507 struct dma_fence **fence)
1508 {
1509 struct amdgpu_vm_update_params params;
1510 void *owner = AMDGPU_FENCE_OWNER_VM;
1511 int r;
1512
1513 memset(&params, 0, sizeof(params));
1514 params.adev = adev;
1515 params.vm = vm;
1516 params.pages_addr = pages_addr;
1517
1518 /* sync to everything except eviction fences on unmapping */
1519 if (!(flags & AMDGPU_PTE_VALID))
1520 owner = AMDGPU_FENCE_OWNER_KFD;
1521
1522 r = vm->update_funcs->prepare(&params, owner, exclusive);
1523 if (r)
1524 return r;
1525
1526 r = amdgpu_vm_update_ptes(&params, start, last + 1, addr, flags);
1527 if (r)
1528 return r;
1529
1530 return vm->update_funcs->commit(&params, fence);
1531 }
1532
1533 /**
1534 * amdgpu_vm_bo_split_mapping - split a mapping into smaller chunks
1535 *
1536 * @adev: amdgpu_device pointer
1537 * @exclusive: fence we need to sync to
1538 * @pages_addr: DMA addresses to use for mapping
1539 * @vm: requested vm
1540 * @mapping: mapped range and flags to use for the update
1541 * @flags: HW flags for the mapping
1542 * @bo_adev: amdgpu_device pointer that bo actually been allocated
1543 * @nodes: array of drm_mm_nodes with the MC addresses
1544 * @fence: optional resulting fence
1545 *
1546 * Split the mapping into smaller chunks so that each update fits
1547 * into a SDMA IB.
1548 *
1549 * Returns:
1550 * 0 for success, -EINVAL for failure.
1551 */
1552 static int amdgpu_vm_bo_split_mapping(struct amdgpu_device *adev,
1553 struct dma_fence *exclusive,
1554 dma_addr_t *pages_addr,
1555 struct amdgpu_vm *vm,
1556 struct amdgpu_bo_va_mapping *mapping,
1557 uint64_t flags,
1558 struct amdgpu_device *bo_adev,
1559 struct drm_mm_node *nodes,
1560 struct dma_fence **fence)
1561 {
1562 unsigned min_linear_pages = 1 << adev->vm_manager.fragment_size;
1563 uint64_t pfn, start = mapping->start;
1564 int r;
1565
1566 /* normally,bo_va->flags only contians READABLE and WIRTEABLE bit go here
1567 * but in case of something, we filter the flags in first place
1568 */
1569 if (!(mapping->flags & AMDGPU_PTE_READABLE))
1570 flags &= ~AMDGPU_PTE_READABLE;
1571 if (!(mapping->flags & AMDGPU_PTE_WRITEABLE))
1572 flags &= ~AMDGPU_PTE_WRITEABLE;
1573
1574 flags &= ~AMDGPU_PTE_EXECUTABLE;
1575 flags |= mapping->flags & AMDGPU_PTE_EXECUTABLE;
1576
1577 flags &= ~AMDGPU_PTE_MTYPE_MASK;
1578 flags |= (mapping->flags & AMDGPU_PTE_MTYPE_MASK);
1579
1580 if ((mapping->flags & AMDGPU_PTE_PRT) &&
1581 (adev->asic_type >= CHIP_VEGA10)) {
1582 flags |= AMDGPU_PTE_PRT;
1583 flags &= ~AMDGPU_PTE_VALID;
1584 }
1585
1586 trace_amdgpu_vm_bo_update(mapping);
1587
1588 pfn = mapping->offset >> PAGE_SHIFT;
1589 if (nodes) {
1590 while (pfn >= nodes->size) {
1591 pfn -= nodes->size;
1592 ++nodes;
1593 }
1594 }
1595
1596 do {
1597 dma_addr_t *dma_addr = NULL;
1598 uint64_t max_entries;
1599 uint64_t addr, last;
1600
1601 if (nodes) {
1602 addr = nodes->start << PAGE_SHIFT;
1603 max_entries = (nodes->size - pfn) *
1604 AMDGPU_GPU_PAGES_IN_CPU_PAGE;
1605 } else {
1606 addr = 0;
1607 max_entries = S64_MAX;
1608 }
1609
1610 if (pages_addr) {
1611 uint64_t count;
1612
1613 for (count = 1;
1614 count < max_entries / AMDGPU_GPU_PAGES_IN_CPU_PAGE;
1615 ++count) {
1616 uint64_t idx = pfn + count;
1617
1618 if (pages_addr[idx] !=
1619 (pages_addr[idx - 1] + PAGE_SIZE))
1620 break;
1621 }
1622
1623 if (count < min_linear_pages) {
1624 addr = pfn << PAGE_SHIFT;
1625 dma_addr = pages_addr;
1626 } else {
1627 addr = pages_addr[pfn];
1628 max_entries = count * AMDGPU_GPU_PAGES_IN_CPU_PAGE;
1629 }
1630
1631 } else if (flags & AMDGPU_PTE_VALID) {
1632 addr += bo_adev->vm_manager.vram_base_offset;
1633 addr += pfn << PAGE_SHIFT;
1634 }
1635
1636 last = min((uint64_t)mapping->last, start + max_entries - 1);
1637 r = amdgpu_vm_bo_update_mapping(adev, exclusive, dma_addr, vm,
1638 start, last, flags, addr,
1639 fence);
1640 if (r)
1641 return r;
1642
1643 pfn += (last - start + 1) / AMDGPU_GPU_PAGES_IN_CPU_PAGE;
1644 if (nodes && nodes->size == pfn) {
1645 pfn = 0;
1646 ++nodes;
1647 }
1648 start = last + 1;
1649
1650 } while (unlikely(start != mapping->last + 1));
1651
1652 return 0;
1653 }
1654
1655 /**
1656 * amdgpu_vm_bo_update - update all BO mappings in the vm page table
1657 *
1658 * @adev: amdgpu_device pointer
1659 * @bo_va: requested BO and VM object
1660 * @clear: if true clear the entries
1661 *
1662 * Fill in the page table entries for @bo_va.
1663 *
1664 * Returns:
1665 * 0 for success, -EINVAL for failure.
1666 */
1667 int amdgpu_vm_bo_update(struct amdgpu_device *adev,
1668 struct amdgpu_bo_va *bo_va,
1669 bool clear)
1670 {
1671 struct amdgpu_bo *bo = bo_va->base.bo;
1672 struct amdgpu_vm *vm = bo_va->base.vm;
1673 struct amdgpu_bo_va_mapping *mapping;
1674 dma_addr_t *pages_addr = NULL;
1675 struct ttm_mem_reg *mem;
1676 struct drm_mm_node *nodes;
1677 struct dma_fence *exclusive, **last_update;
1678 uint64_t flags;
1679 struct amdgpu_device *bo_adev = adev;
1680 int r;
1681
1682 if (clear || !bo) {
1683 mem = NULL;
1684 nodes = NULL;
1685 exclusive = NULL;
1686 } else {
1687 struct ttm_dma_tt *ttm;
1688
1689 mem = &bo->tbo.mem;
1690 nodes = mem->mm_node;
1691 if (mem->mem_type == TTM_PL_TT) {
1692 ttm = container_of(bo->tbo.ttm, struct ttm_dma_tt, ttm);
1693 pages_addr = ttm->dma_address;
1694 }
1695 exclusive = reservation_object_get_excl(bo->tbo.resv);
1696 }
1697
1698 if (bo) {
1699 flags = amdgpu_ttm_tt_pte_flags(adev, bo->tbo.ttm, mem);
1700 bo_adev = amdgpu_ttm_adev(bo->tbo.bdev);
1701 } else {
1702 flags = 0x0;
1703 }
1704
1705 if (clear || (bo && bo->tbo.resv == vm->root.base.bo->tbo.resv))
1706 last_update = &vm->last_update;
1707 else
1708 last_update = &bo_va->last_pt_update;
1709
1710 if (!clear && bo_va->base.moved) {
1711 bo_va->base.moved = false;
1712 list_splice_init(&bo_va->valids, &bo_va->invalids);
1713
1714 } else if (bo_va->cleared != clear) {
1715 list_splice_init(&bo_va->valids, &bo_va->invalids);
1716 }
1717
1718 list_for_each_entry(mapping, &bo_va->invalids, list) {
1719 r = amdgpu_vm_bo_split_mapping(adev, exclusive, pages_addr, vm,
1720 mapping, flags, bo_adev, nodes,
1721 last_update);
1722 if (r)
1723 return r;
1724 }
1725
1726 if (vm->use_cpu_for_update) {
1727 /* Flush HDP */
1728 mb();
1729 amdgpu_asic_flush_hdp(adev, NULL);
1730 }
1731
1732 /* If the BO is not in its preferred location add it back to
1733 * the evicted list so that it gets validated again on the
1734 * next command submission.
1735 */
1736 if (bo && bo->tbo.resv == vm->root.base.bo->tbo.resv) {
1737 uint32_t mem_type = bo->tbo.mem.mem_type;
1738
1739 if (!(bo->preferred_domains & amdgpu_mem_type_to_domain(mem_type)))
1740 amdgpu_vm_bo_evicted(&bo_va->base);
1741 else
1742 amdgpu_vm_bo_idle(&bo_va->base);
1743 } else {
1744 amdgpu_vm_bo_done(&bo_va->base);
1745 }
1746
1747 list_splice_init(&bo_va->invalids, &bo_va->valids);
1748 bo_va->cleared = clear;
1749
1750 if (trace_amdgpu_vm_bo_mapping_enabled()) {
1751 list_for_each_entry(mapping, &bo_va->valids, list)
1752 trace_amdgpu_vm_bo_mapping(mapping);
1753 }
1754
1755 return 0;
1756 }
1757
1758 /**
1759 * amdgpu_vm_update_prt_state - update the global PRT state
1760 *
1761 * @adev: amdgpu_device pointer
1762 */
1763 static void amdgpu_vm_update_prt_state(struct amdgpu_device *adev)
1764 {
1765 unsigned long flags;
1766 bool enable;
1767
1768 spin_lock_irqsave(&adev->vm_manager.prt_lock, flags);
1769 enable = !!atomic_read(&adev->vm_manager.num_prt_users);
1770 adev->gmc.gmc_funcs->set_prt(adev, enable);
1771 spin_unlock_irqrestore(&adev->vm_manager.prt_lock, flags);
1772 }
1773
1774 /**
1775 * amdgpu_vm_prt_get - add a PRT user
1776 *
1777 * @adev: amdgpu_device pointer
1778 */
1779 static void amdgpu_vm_prt_get(struct amdgpu_device *adev)
1780 {
1781 if (!adev->gmc.gmc_funcs->set_prt)
1782 return;
1783
1784 if (atomic_inc_return(&adev->vm_manager.num_prt_users) == 1)
1785 amdgpu_vm_update_prt_state(adev);
1786 }
1787
1788 /**
1789 * amdgpu_vm_prt_put - drop a PRT user
1790 *
1791 * @adev: amdgpu_device pointer
1792 */
1793 static void amdgpu_vm_prt_put(struct amdgpu_device *adev)
1794 {
1795 if (atomic_dec_return(&adev->vm_manager.num_prt_users) == 0)
1796 amdgpu_vm_update_prt_state(adev);
1797 }
1798
1799 /**
1800 * amdgpu_vm_prt_cb - callback for updating the PRT status
1801 *
1802 * @fence: fence for the callback
1803 * @_cb: the callback function
1804 */
1805 static void amdgpu_vm_prt_cb(struct dma_fence *fence, struct dma_fence_cb *_cb)
1806 {
1807 struct amdgpu_prt_cb *cb = container_of(_cb, struct amdgpu_prt_cb, cb);
1808
1809 amdgpu_vm_prt_put(cb->adev);
1810 kfree(cb);
1811 }
1812
1813 /**
1814 * amdgpu_vm_add_prt_cb - add callback for updating the PRT status
1815 *
1816 * @adev: amdgpu_device pointer
1817 * @fence: fence for the callback
1818 */
1819 static void amdgpu_vm_add_prt_cb(struct amdgpu_device *adev,
1820 struct dma_fence *fence)
1821 {
1822 struct amdgpu_prt_cb *cb;
1823
1824 if (!adev->gmc.gmc_funcs->set_prt)
1825 return;
1826
1827 cb = kmalloc(sizeof(struct amdgpu_prt_cb), GFP_KERNEL);
1828 if (!cb) {
1829 /* Last resort when we are OOM */
1830 if (fence)
1831 dma_fence_wait(fence, false);
1832
1833 amdgpu_vm_prt_put(adev);
1834 } else {
1835 cb->adev = adev;
1836 if (!fence || dma_fence_add_callback(fence, &cb->cb,
1837 amdgpu_vm_prt_cb))
1838 amdgpu_vm_prt_cb(fence, &cb->cb);
1839 }
1840 }
1841
1842 /**
1843 * amdgpu_vm_free_mapping - free a mapping
1844 *
1845 * @adev: amdgpu_device pointer
1846 * @vm: requested vm
1847 * @mapping: mapping to be freed
1848 * @fence: fence of the unmap operation
1849 *
1850 * Free a mapping and make sure we decrease the PRT usage count if applicable.
1851 */
1852 static void amdgpu_vm_free_mapping(struct amdgpu_device *adev,
1853 struct amdgpu_vm *vm,
1854 struct amdgpu_bo_va_mapping *mapping,
1855 struct dma_fence *fence)
1856 {
1857 if (mapping->flags & AMDGPU_PTE_PRT)
1858 amdgpu_vm_add_prt_cb(adev, fence);
1859 kfree(mapping);
1860 }
1861
1862 /**
1863 * amdgpu_vm_prt_fini - finish all prt mappings
1864 *
1865 * @adev: amdgpu_device pointer
1866 * @vm: requested vm
1867 *
1868 * Register a cleanup callback to disable PRT support after VM dies.
1869 */
1870 static void amdgpu_vm_prt_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm)
1871 {
1872 struct reservation_object *resv = vm->root.base.bo->tbo.resv;
1873 struct dma_fence *excl, **shared;
1874 unsigned i, shared_count;
1875 int r;
1876
1877 r = reservation_object_get_fences_rcu(resv, &excl,
1878 &shared_count, &shared);
1879 if (r) {
1880 /* Not enough memory to grab the fence list, as last resort
1881 * block for all the fences to complete.
1882 */
1883 reservation_object_wait_timeout_rcu(resv, true, false,
1884 MAX_SCHEDULE_TIMEOUT);
1885 return;
1886 }
1887
1888 /* Add a callback for each fence in the reservation object */
1889 amdgpu_vm_prt_get(adev);
1890 amdgpu_vm_add_prt_cb(adev, excl);
1891
1892 for (i = 0; i < shared_count; ++i) {
1893 amdgpu_vm_prt_get(adev);
1894 amdgpu_vm_add_prt_cb(adev, shared[i]);
1895 }
1896
1897 kfree(shared);
1898 }
1899
1900 /**
1901 * amdgpu_vm_clear_freed - clear freed BOs in the PT
1902 *
1903 * @adev: amdgpu_device pointer
1904 * @vm: requested vm
1905 * @fence: optional resulting fence (unchanged if no work needed to be done
1906 * or if an error occurred)
1907 *
1908 * Make sure all freed BOs are cleared in the PT.
1909 * PTs have to be reserved and mutex must be locked!
1910 *
1911 * Returns:
1912 * 0 for success.
1913 *
1914 */
1915 int amdgpu_vm_clear_freed(struct amdgpu_device *adev,
1916 struct amdgpu_vm *vm,
1917 struct dma_fence **fence)
1918 {
1919 struct amdgpu_bo_va_mapping *mapping;
1920 uint64_t init_pte_value = 0;
1921 struct dma_fence *f = NULL;
1922 int r;
1923
1924 while (!list_empty(&vm->freed)) {
1925 mapping = list_first_entry(&vm->freed,
1926 struct amdgpu_bo_va_mapping, list);
1927 list_del(&mapping->list);
1928
1929 if (vm->pte_support_ats &&
1930 mapping->start < AMDGPU_GMC_HOLE_START)
1931 init_pte_value = AMDGPU_PTE_DEFAULT_ATC;
1932
1933 r = amdgpu_vm_bo_update_mapping(adev, NULL, NULL, vm,
1934 mapping->start, mapping->last,
1935 init_pte_value, 0, &f);
1936 amdgpu_vm_free_mapping(adev, vm, mapping, f);
1937 if (r) {
1938 dma_fence_put(f);
1939 return r;
1940 }
1941 }
1942
1943 if (fence && f) {
1944 dma_fence_put(*fence);
1945 *fence = f;
1946 } else {
1947 dma_fence_put(f);
1948 }
1949
1950 return 0;
1951
1952 }
1953
1954 /**
1955 * amdgpu_vm_handle_moved - handle moved BOs in the PT
1956 *
1957 * @adev: amdgpu_device pointer
1958 * @vm: requested vm
1959 *
1960 * Make sure all BOs which are moved are updated in the PTs.
1961 *
1962 * Returns:
1963 * 0 for success.
1964 *
1965 * PTs have to be reserved!
1966 */
1967 int amdgpu_vm_handle_moved(struct amdgpu_device *adev,
1968 struct amdgpu_vm *vm)
1969 {
1970 struct amdgpu_bo_va *bo_va, *tmp;
1971 struct reservation_object *resv;
1972 bool clear;
1973 int r;
1974
1975 list_for_each_entry_safe(bo_va, tmp, &vm->moved, base.vm_status) {
1976 /* Per VM BOs never need to bo cleared in the page tables */
1977 r = amdgpu_vm_bo_update(adev, bo_va, false);
1978 if (r)
1979 return r;
1980 }
1981
1982 spin_lock(&vm->invalidated_lock);
1983 while (!list_empty(&vm->invalidated)) {
1984 bo_va = list_first_entry(&vm->invalidated, struct amdgpu_bo_va,
1985 base.vm_status);
1986 resv = bo_va->base.bo->tbo.resv;
1987 spin_unlock(&vm->invalidated_lock);
1988
1989 /* Try to reserve the BO to avoid clearing its ptes */
1990 if (!amdgpu_vm_debug && reservation_object_trylock(resv))
1991 clear = false;
1992 /* Somebody else is using the BO right now */
1993 else
1994 clear = true;
1995
1996 r = amdgpu_vm_bo_update(adev, bo_va, clear);
1997 if (r)
1998 return r;
1999
2000 if (!clear)
2001 reservation_object_unlock(resv);
2002 spin_lock(&vm->invalidated_lock);
2003 }
2004 spin_unlock(&vm->invalidated_lock);
2005
2006 return 0;
2007 }
2008
2009 /**
2010 * amdgpu_vm_bo_add - add a bo to a specific vm
2011 *
2012 * @adev: amdgpu_device pointer
2013 * @vm: requested vm
2014 * @bo: amdgpu buffer object
2015 *
2016 * Add @bo into the requested vm.
2017 * Add @bo to the list of bos associated with the vm
2018 *
2019 * Returns:
2020 * Newly added bo_va or NULL for failure
2021 *
2022 * Object has to be reserved!
2023 */
2024 struct amdgpu_bo_va *amdgpu_vm_bo_add(struct amdgpu_device *adev,
2025 struct amdgpu_vm *vm,
2026 struct amdgpu_bo *bo)
2027 {
2028 struct amdgpu_bo_va *bo_va;
2029
2030 bo_va = kzalloc(sizeof(struct amdgpu_bo_va), GFP_KERNEL);
2031 if (bo_va == NULL) {
2032 return NULL;
2033 }
2034 amdgpu_vm_bo_base_init(&bo_va->base, vm, bo);
2035
2036 bo_va->ref_count = 1;
2037 INIT_LIST_HEAD(&bo_va->valids);
2038 INIT_LIST_HEAD(&bo_va->invalids);
2039
2040 if (bo && amdgpu_xgmi_same_hive(adev, amdgpu_ttm_adev(bo->tbo.bdev)) &&
2041 (bo->preferred_domains & AMDGPU_GEM_DOMAIN_VRAM)) {
2042 bo_va->is_xgmi = true;
2043 mutex_lock(&adev->vm_manager.lock_pstate);
2044 /* Power up XGMI if it can be potentially used */
2045 if (++adev->vm_manager.xgmi_map_counter == 1)
2046 amdgpu_xgmi_set_pstate(adev, 1);
2047 mutex_unlock(&adev->vm_manager.lock_pstate);
2048 }
2049
2050 return bo_va;
2051 }
2052
2053
2054 /**
2055 * amdgpu_vm_bo_insert_mapping - insert a new mapping
2056 *
2057 * @adev: amdgpu_device pointer
2058 * @bo_va: bo_va to store the address
2059 * @mapping: the mapping to insert
2060 *
2061 * Insert a new mapping into all structures.
2062 */
2063 static void amdgpu_vm_bo_insert_map(struct amdgpu_device *adev,
2064 struct amdgpu_bo_va *bo_va,
2065 struct amdgpu_bo_va_mapping *mapping)
2066 {
2067 struct amdgpu_vm *vm = bo_va->base.vm;
2068 struct amdgpu_bo *bo = bo_va->base.bo;
2069
2070 mapping->bo_va = bo_va;
2071 list_add(&mapping->list, &bo_va->invalids);
2072 amdgpu_vm_it_insert(mapping, &vm->va);
2073
2074 if (mapping->flags & AMDGPU_PTE_PRT)
2075 amdgpu_vm_prt_get(adev);
2076
2077 if (bo && bo->tbo.resv == vm->root.base.bo->tbo.resv &&
2078 !bo_va->base.moved) {
2079 list_move(&bo_va->base.vm_status, &vm->moved);
2080 }
2081 trace_amdgpu_vm_bo_map(bo_va, mapping);
2082 }
2083
2084 /**
2085 * amdgpu_vm_bo_map - map bo inside a vm
2086 *
2087 * @adev: amdgpu_device pointer
2088 * @bo_va: bo_va to store the address
2089 * @saddr: where to map the BO
2090 * @offset: requested offset in the BO
2091 * @size: BO size in bytes
2092 * @flags: attributes of pages (read/write/valid/etc.)
2093 *
2094 * Add a mapping of the BO at the specefied addr into the VM.
2095 *
2096 * Returns:
2097 * 0 for success, error for failure.
2098 *
2099 * Object has to be reserved and unreserved outside!
2100 */
2101 int amdgpu_vm_bo_map(struct amdgpu_device *adev,
2102 struct amdgpu_bo_va *bo_va,
2103 uint64_t saddr, uint64_t offset,
2104 uint64_t size, uint64_t flags)
2105 {
2106 struct amdgpu_bo_va_mapping *mapping, *tmp;
2107 struct amdgpu_bo *bo = bo_va->base.bo;
2108 struct amdgpu_vm *vm = bo_va->base.vm;
2109 uint64_t eaddr;
2110
2111 /* validate the parameters */
2112 if (saddr & AMDGPU_GPU_PAGE_MASK || offset & AMDGPU_GPU_PAGE_MASK ||
2113 size == 0 || size & AMDGPU_GPU_PAGE_MASK)
2114 return -EINVAL;
2115
2116 /* make sure object fit at this offset */
2117 eaddr = saddr + size - 1;
2118 if (saddr >= eaddr ||
2119 (bo && offset + size > amdgpu_bo_size(bo)))
2120 return -EINVAL;
2121
2122 saddr /= AMDGPU_GPU_PAGE_SIZE;
2123 eaddr /= AMDGPU_GPU_PAGE_SIZE;
2124
2125 tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr);
2126 if (tmp) {
2127 /* bo and tmp overlap, invalid addr */
2128 dev_err(adev->dev, "bo %p va 0x%010Lx-0x%010Lx conflict with "
2129 "0x%010Lx-0x%010Lx\n", bo, saddr, eaddr,
2130 tmp->start, tmp->last + 1);
2131 return -EINVAL;
2132 }
2133
2134 mapping = kmalloc(sizeof(*mapping), GFP_KERNEL);
2135 if (!mapping)
2136 return -ENOMEM;
2137
2138 mapping->start = saddr;
2139 mapping->last = eaddr;
2140 mapping->offset = offset;
2141 mapping->flags = flags;
2142
2143 amdgpu_vm_bo_insert_map(adev, bo_va, mapping);
2144
2145 return 0;
2146 }
2147
2148 /**
2149 * amdgpu_vm_bo_replace_map - map bo inside a vm, replacing existing mappings
2150 *
2151 * @adev: amdgpu_device pointer
2152 * @bo_va: bo_va to store the address
2153 * @saddr: where to map the BO
2154 * @offset: requested offset in the BO
2155 * @size: BO size in bytes
2156 * @flags: attributes of pages (read/write/valid/etc.)
2157 *
2158 * Add a mapping of the BO at the specefied addr into the VM. Replace existing
2159 * mappings as we do so.
2160 *
2161 * Returns:
2162 * 0 for success, error for failure.
2163 *
2164 * Object has to be reserved and unreserved outside!
2165 */
2166 int amdgpu_vm_bo_replace_map(struct amdgpu_device *adev,
2167 struct amdgpu_bo_va *bo_va,
2168 uint64_t saddr, uint64_t offset,
2169 uint64_t size, uint64_t flags)
2170 {
2171 struct amdgpu_bo_va_mapping *mapping;
2172 struct amdgpu_bo *bo = bo_va->base.bo;
2173 uint64_t eaddr;
2174 int r;
2175
2176 /* validate the parameters */
2177 if (saddr & AMDGPU_GPU_PAGE_MASK || offset & AMDGPU_GPU_PAGE_MASK ||
2178 size == 0 || size & AMDGPU_GPU_PAGE_MASK)
2179 return -EINVAL;
2180
2181 /* make sure object fit at this offset */
2182 eaddr = saddr + size - 1;
2183 if (saddr >= eaddr ||
2184 (bo && offset + size > amdgpu_bo_size(bo)))
2185 return -EINVAL;
2186
2187 /* Allocate all the needed memory */
2188 mapping = kmalloc(sizeof(*mapping), GFP_KERNEL);
2189 if (!mapping)
2190 return -ENOMEM;
2191
2192 r = amdgpu_vm_bo_clear_mappings(adev, bo_va->base.vm, saddr, size);
2193 if (r) {
2194 kfree(mapping);
2195 return r;
2196 }
2197
2198 saddr /= AMDGPU_GPU_PAGE_SIZE;
2199 eaddr /= AMDGPU_GPU_PAGE_SIZE;
2200
2201 mapping->start = saddr;
2202 mapping->last = eaddr;
2203 mapping->offset = offset;
2204 mapping->flags = flags;
2205
2206 amdgpu_vm_bo_insert_map(adev, bo_va, mapping);
2207
2208 return 0;
2209 }
2210
2211 /**
2212 * amdgpu_vm_bo_unmap - remove bo mapping from vm
2213 *
2214 * @adev: amdgpu_device pointer
2215 * @bo_va: bo_va to remove the address from
2216 * @saddr: where to the BO is mapped
2217 *
2218 * Remove a mapping of the BO at the specefied addr from the VM.
2219 *
2220 * Returns:
2221 * 0 for success, error for failure.
2222 *
2223 * Object has to be reserved and unreserved outside!
2224 */
2225 int amdgpu_vm_bo_unmap(struct amdgpu_device *adev,
2226 struct amdgpu_bo_va *bo_va,
2227 uint64_t saddr)
2228 {
2229 struct amdgpu_bo_va_mapping *mapping;
2230 struct amdgpu_vm *vm = bo_va->base.vm;
2231 bool valid = true;
2232
2233 saddr /= AMDGPU_GPU_PAGE_SIZE;
2234
2235 list_for_each_entry(mapping, &bo_va->valids, list) {
2236 if (mapping->start == saddr)
2237 break;
2238 }
2239
2240 if (&mapping->list == &bo_va->valids) {
2241 valid = false;
2242
2243 list_for_each_entry(mapping, &bo_va->invalids, list) {
2244 if (mapping->start == saddr)
2245 break;
2246 }
2247
2248 if (&mapping->list == &bo_va->invalids)
2249 return -ENOENT;
2250 }
2251
2252 list_del(&mapping->list);
2253 amdgpu_vm_it_remove(mapping, &vm->va);
2254 mapping->bo_va = NULL;
2255 trace_amdgpu_vm_bo_unmap(bo_va, mapping);
2256
2257 if (valid)
2258 list_add(&mapping->list, &vm->freed);
2259 else
2260 amdgpu_vm_free_mapping(adev, vm, mapping,
2261 bo_va->last_pt_update);
2262
2263 return 0;
2264 }
2265
2266 /**
2267 * amdgpu_vm_bo_clear_mappings - remove all mappings in a specific range
2268 *
2269 * @adev: amdgpu_device pointer
2270 * @vm: VM structure to use
2271 * @saddr: start of the range
2272 * @size: size of the range
2273 *
2274 * Remove all mappings in a range, split them as appropriate.
2275 *
2276 * Returns:
2277 * 0 for success, error for failure.
2278 */
2279 int amdgpu_vm_bo_clear_mappings(struct amdgpu_device *adev,
2280 struct amdgpu_vm *vm,
2281 uint64_t saddr, uint64_t size)
2282 {
2283 struct amdgpu_bo_va_mapping *before, *after, *tmp, *next;
2284 LIST_HEAD(removed);
2285 uint64_t eaddr;
2286
2287 eaddr = saddr + size - 1;
2288 saddr /= AMDGPU_GPU_PAGE_SIZE;
2289 eaddr /= AMDGPU_GPU_PAGE_SIZE;
2290
2291 /* Allocate all the needed memory */
2292 before = kzalloc(sizeof(*before), GFP_KERNEL);
2293 if (!before)
2294 return -ENOMEM;
2295 INIT_LIST_HEAD(&before->list);
2296
2297 after = kzalloc(sizeof(*after), GFP_KERNEL);
2298 if (!after) {
2299 kfree(before);
2300 return -ENOMEM;
2301 }
2302 INIT_LIST_HEAD(&after->list);
2303
2304 /* Now gather all removed mappings */
2305 tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr);
2306 while (tmp) {
2307 /* Remember mapping split at the start */
2308 if (tmp->start < saddr) {
2309 before->start = tmp->start;
2310 before->last = saddr - 1;
2311 before->offset = tmp->offset;
2312 before->flags = tmp->flags;
2313 before->bo_va = tmp->bo_va;
2314 list_add(&before->list, &tmp->bo_va->invalids);
2315 }
2316
2317 /* Remember mapping split at the end */
2318 if (tmp->last > eaddr) {
2319 after->start = eaddr + 1;
2320 after->last = tmp->last;
2321 after->offset = tmp->offset;
2322 after->offset += after->start - tmp->start;
2323 after->flags = tmp->flags;
2324 after->bo_va = tmp->bo_va;
2325 list_add(&after->list, &tmp->bo_va->invalids);
2326 }
2327
2328 list_del(&tmp->list);
2329 list_add(&tmp->list, &removed);
2330
2331 tmp = amdgpu_vm_it_iter_next(tmp, saddr, eaddr);
2332 }
2333
2334 /* And free them up */
2335 list_for_each_entry_safe(tmp, next, &removed, list) {
2336 amdgpu_vm_it_remove(tmp, &vm->va);
2337 list_del(&tmp->list);
2338
2339 if (tmp->start < saddr)
2340 tmp->start = saddr;
2341 if (tmp->last > eaddr)
2342 tmp->last = eaddr;
2343
2344 tmp->bo_va = NULL;
2345 list_add(&tmp->list, &vm->freed);
2346 trace_amdgpu_vm_bo_unmap(NULL, tmp);
2347 }
2348
2349 /* Insert partial mapping before the range */
2350 if (!list_empty(&before->list)) {
2351 amdgpu_vm_it_insert(before, &vm->va);
2352 if (before->flags & AMDGPU_PTE_PRT)
2353 amdgpu_vm_prt_get(adev);
2354 } else {
2355 kfree(before);
2356 }
2357
2358 /* Insert partial mapping after the range */
2359 if (!list_empty(&after->list)) {
2360 amdgpu_vm_it_insert(after, &vm->va);
2361 if (after->flags & AMDGPU_PTE_PRT)
2362 amdgpu_vm_prt_get(adev);
2363 } else {
2364 kfree(after);
2365 }
2366
2367 return 0;
2368 }
2369
2370 /**
2371 * amdgpu_vm_bo_lookup_mapping - find mapping by address
2372 *
2373 * @vm: the requested VM
2374 * @addr: the address
2375 *
2376 * Find a mapping by it's address.
2377 *
2378 * Returns:
2379 * The amdgpu_bo_va_mapping matching for addr or NULL
2380 *
2381 */
2382 struct amdgpu_bo_va_mapping *amdgpu_vm_bo_lookup_mapping(struct amdgpu_vm *vm,
2383 uint64_t addr)
2384 {
2385 return amdgpu_vm_it_iter_first(&vm->va, addr, addr);
2386 }
2387
2388 /**
2389 * amdgpu_vm_bo_trace_cs - trace all reserved mappings
2390 *
2391 * @vm: the requested vm
2392 * @ticket: CS ticket
2393 *
2394 * Trace all mappings of BOs reserved during a command submission.
2395 */
2396 void amdgpu_vm_bo_trace_cs(struct amdgpu_vm *vm, struct ww_acquire_ctx *ticket)
2397 {
2398 struct amdgpu_bo_va_mapping *mapping;
2399
2400 if (!trace_amdgpu_vm_bo_cs_enabled())
2401 return;
2402
2403 for (mapping = amdgpu_vm_it_iter_first(&vm->va, 0, U64_MAX); mapping;
2404 mapping = amdgpu_vm_it_iter_next(mapping, 0, U64_MAX)) {
2405 if (mapping->bo_va && mapping->bo_va->base.bo) {
2406 struct amdgpu_bo *bo;
2407
2408 bo = mapping->bo_va->base.bo;
2409 if (READ_ONCE(bo->tbo.resv->lock.ctx) != ticket)
2410 continue;
2411 }
2412
2413 trace_amdgpu_vm_bo_cs(mapping);
2414 }
2415 }
2416
2417 /**
2418 * amdgpu_vm_bo_rmv - remove a bo to a specific vm
2419 *
2420 * @adev: amdgpu_device pointer
2421 * @bo_va: requested bo_va
2422 *
2423 * Remove @bo_va->bo from the requested vm.
2424 *
2425 * Object have to be reserved!
2426 */
2427 void amdgpu_vm_bo_rmv(struct amdgpu_device *adev,
2428 struct amdgpu_bo_va *bo_va)
2429 {
2430 struct amdgpu_bo_va_mapping *mapping, *next;
2431 struct amdgpu_bo *bo = bo_va->base.bo;
2432 struct amdgpu_vm *vm = bo_va->base.vm;
2433 struct amdgpu_vm_bo_base **base;
2434
2435 if (bo) {
2436 if (bo->tbo.resv == vm->root.base.bo->tbo.resv)
2437 vm->bulk_moveable = false;
2438
2439 for (base = &bo_va->base.bo->vm_bo; *base;
2440 base = &(*base)->next) {
2441 if (*base != &bo_va->base)
2442 continue;
2443
2444 *base = bo_va->base.next;
2445 break;
2446 }
2447 }
2448
2449 spin_lock(&vm->invalidated_lock);
2450 list_del(&bo_va->base.vm_status);
2451 spin_unlock(&vm->invalidated_lock);
2452
2453 list_for_each_entry_safe(mapping, next, &bo_va->valids, list) {
2454 list_del(&mapping->list);
2455 amdgpu_vm_it_remove(mapping, &vm->va);
2456 mapping->bo_va = NULL;
2457 trace_amdgpu_vm_bo_unmap(bo_va, mapping);
2458 list_add(&mapping->list, &vm->freed);
2459 }
2460 list_for_each_entry_safe(mapping, next, &bo_va->invalids, list) {
2461 list_del(&mapping->list);
2462 amdgpu_vm_it_remove(mapping, &vm->va);
2463 amdgpu_vm_free_mapping(adev, vm, mapping,
2464 bo_va->last_pt_update);
2465 }
2466
2467 dma_fence_put(bo_va->last_pt_update);
2468
2469 if (bo && bo_va->is_xgmi) {
2470 mutex_lock(&adev->vm_manager.lock_pstate);
2471 if (--adev->vm_manager.xgmi_map_counter == 0)
2472 amdgpu_xgmi_set_pstate(adev, 0);
2473 mutex_unlock(&adev->vm_manager.lock_pstate);
2474 }
2475
2476 kfree(bo_va);
2477 }
2478
2479 /**
2480 * amdgpu_vm_bo_invalidate - mark the bo as invalid
2481 *
2482 * @adev: amdgpu_device pointer
2483 * @bo: amdgpu buffer object
2484 * @evicted: is the BO evicted
2485 *
2486 * Mark @bo as invalid.
2487 */
2488 void amdgpu_vm_bo_invalidate(struct amdgpu_device *adev,
2489 struct amdgpu_bo *bo, bool evicted)
2490 {
2491 struct amdgpu_vm_bo_base *bo_base;
2492
2493 /* shadow bo doesn't have bo base, its validation needs its parent */
2494 if (bo->parent && bo->parent->shadow == bo)
2495 bo = bo->parent;
2496
2497 for (bo_base = bo->vm_bo; bo_base; bo_base = bo_base->next) {
2498 struct amdgpu_vm *vm = bo_base->vm;
2499
2500 if (evicted && bo->tbo.resv == vm->root.base.bo->tbo.resv) {
2501 amdgpu_vm_bo_evicted(bo_base);
2502 continue;
2503 }
2504
2505 if (bo_base->moved)
2506 continue;
2507 bo_base->moved = true;
2508
2509 if (bo->tbo.type == ttm_bo_type_kernel)
2510 amdgpu_vm_bo_relocated(bo_base);
2511 else if (bo->tbo.resv == vm->root.base.bo->tbo.resv)
2512 amdgpu_vm_bo_moved(bo_base);
2513 else
2514 amdgpu_vm_bo_invalidated(bo_base);
2515 }
2516 }
2517
2518 /**
2519 * amdgpu_vm_get_block_size - calculate VM page table size as power of two
2520 *
2521 * @vm_size: VM size
2522 *
2523 * Returns:
2524 * VM page table as power of two
2525 */
2526 static uint32_t amdgpu_vm_get_block_size(uint64_t vm_size)
2527 {
2528 /* Total bits covered by PD + PTs */
2529 unsigned bits = ilog2(vm_size) + 18;
2530
2531 /* Make sure the PD is 4K in size up to 8GB address space.
2532 Above that split equal between PD and PTs */
2533 if (vm_size <= 8)
2534 return (bits - 9);
2535 else
2536 return ((bits + 3) / 2);
2537 }
2538
2539 /**
2540 * amdgpu_vm_adjust_size - adjust vm size, block size and fragment size
2541 *
2542 * @adev: amdgpu_device pointer
2543 * @min_vm_size: the minimum vm size in GB if it's set auto
2544 * @fragment_size_default: Default PTE fragment size
2545 * @max_level: max VMPT level
2546 * @max_bits: max address space size in bits
2547 *
2548 */
2549 void amdgpu_vm_adjust_size(struct amdgpu_device *adev, uint32_t min_vm_size,
2550 uint32_t fragment_size_default, unsigned max_level,
2551 unsigned max_bits)
2552 {
2553 unsigned int max_size = 1 << (max_bits - 30);
2554 unsigned int vm_size;
2555 uint64_t tmp;
2556
2557 /* adjust vm size first */
2558 if (amdgpu_vm_size != -1) {
2559 vm_size = amdgpu_vm_size;
2560 if (vm_size > max_size) {
2561 dev_warn(adev->dev, "VM size (%d) too large, max is %u GB\n",
2562 amdgpu_vm_size, max_size);
2563 vm_size = max_size;
2564 }
2565 } else {
2566 struct sysinfo si;
2567 unsigned int phys_ram_gb;
2568
2569 /* Optimal VM size depends on the amount of physical
2570 * RAM available. Underlying requirements and
2571 * assumptions:
2572 *
2573 * - Need to map system memory and VRAM from all GPUs
2574 * - VRAM from other GPUs not known here
2575 * - Assume VRAM <= system memory
2576 * - On GFX8 and older, VM space can be segmented for
2577 * different MTYPEs
2578 * - Need to allow room for fragmentation, guard pages etc.
2579 *
2580 * This adds up to a rough guess of system memory x3.
2581 * Round up to power of two to maximize the available
2582 * VM size with the given page table size.
2583 */
2584 si_meminfo(&si);
2585 phys_ram_gb = ((uint64_t)si.totalram * si.mem_unit +
2586 (1 << 30) - 1) >> 30;
2587 vm_size = roundup_pow_of_two(
2588 min(max(phys_ram_gb * 3, min_vm_size), max_size));
2589 }
2590
2591 adev->vm_manager.max_pfn = (uint64_t)vm_size << 18;
2592
2593 tmp = roundup_pow_of_two(adev->vm_manager.max_pfn);
2594 if (amdgpu_vm_block_size != -1)
2595 tmp >>= amdgpu_vm_block_size - 9;
2596 tmp = DIV_ROUND_UP(fls64(tmp) - 1, 9) - 1;
2597 adev->vm_manager.num_level = min(max_level, (unsigned)tmp);
2598 switch (adev->vm_manager.num_level) {
2599 case 3:
2600 adev->vm_manager.root_level = AMDGPU_VM_PDB2;
2601 break;
2602 case 2:
2603 adev->vm_manager.root_level = AMDGPU_VM_PDB1;
2604 break;
2605 case 1:
2606 adev->vm_manager.root_level = AMDGPU_VM_PDB0;
2607 break;
2608 default:
2609 dev_err(adev->dev, "VMPT only supports 2~4+1 levels\n");
2610 }
2611 /* block size depends on vm size and hw setup*/
2612 if (amdgpu_vm_block_size != -1)
2613 adev->vm_manager.block_size =
2614 min((unsigned)amdgpu_vm_block_size, max_bits
2615 - AMDGPU_GPU_PAGE_SHIFT
2616 - 9 * adev->vm_manager.num_level);
2617 else if (adev->vm_manager.num_level > 1)
2618 adev->vm_manager.block_size = 9;
2619 else
2620 adev->vm_manager.block_size = amdgpu_vm_get_block_size(tmp);
2621
2622 if (amdgpu_vm_fragment_size == -1)
2623 adev->vm_manager.fragment_size = fragment_size_default;
2624 else
2625 adev->vm_manager.fragment_size = amdgpu_vm_fragment_size;
2626
2627 DRM_INFO("vm size is %u GB, %u levels, block size is %u-bit, fragment size is %u-bit\n",
2628 vm_size, adev->vm_manager.num_level + 1,
2629 adev->vm_manager.block_size,
2630 adev->vm_manager.fragment_size);
2631 }
2632
2633 /**
2634 * amdgpu_vm_wait_idle - wait for the VM to become idle
2635 *
2636 * @vm: VM object to wait for
2637 * @timeout: timeout to wait for VM to become idle
2638 */
2639 long amdgpu_vm_wait_idle(struct amdgpu_vm *vm, long timeout)
2640 {
2641 return reservation_object_wait_timeout_rcu(vm->root.base.bo->tbo.resv,
2642 true, true, timeout);
2643 }
2644
2645 /**
2646 * amdgpu_vm_init - initialize a vm instance
2647 *
2648 * @adev: amdgpu_device pointer
2649 * @vm: requested vm
2650 * @vm_context: Indicates if it GFX or Compute context
2651 * @pasid: Process address space identifier
2652 *
2653 * Init @vm fields.
2654 *
2655 * Returns:
2656 * 0 for success, error for failure.
2657 */
2658 int amdgpu_vm_init(struct amdgpu_device *adev, struct amdgpu_vm *vm,
2659 int vm_context, unsigned int pasid)
2660 {
2661 struct amdgpu_bo_param bp;
2662 struct amdgpu_bo *root;
2663 int r, i;
2664
2665 vm->va = RB_ROOT_CACHED;
2666 for (i = 0; i < AMDGPU_MAX_VMHUBS; i++)
2667 vm->reserved_vmid[i] = NULL;
2668 INIT_LIST_HEAD(&vm->evicted);
2669 INIT_LIST_HEAD(&vm->relocated);
2670 INIT_LIST_HEAD(&vm->moved);
2671 INIT_LIST_HEAD(&vm->idle);
2672 INIT_LIST_HEAD(&vm->invalidated);
2673 spin_lock_init(&vm->invalidated_lock);
2674 INIT_LIST_HEAD(&vm->freed);
2675
2676 /* create scheduler entity for page table updates */
2677 r = drm_sched_entity_init(&vm->entity, adev->vm_manager.vm_pte_rqs,
2678 adev->vm_manager.vm_pte_num_rqs, NULL);
2679 if (r)
2680 return r;
2681
2682 vm->pte_support_ats = false;
2683
2684 if (vm_context == AMDGPU_VM_CONTEXT_COMPUTE) {
2685 vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode &
2686 AMDGPU_VM_USE_CPU_FOR_COMPUTE);
2687
2688 if (adev->asic_type == CHIP_RAVEN)
2689 vm->pte_support_ats = true;
2690 } else {
2691 vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode &
2692 AMDGPU_VM_USE_CPU_FOR_GFX);
2693 }
2694 DRM_DEBUG_DRIVER("VM update mode is %s\n",
2695 vm->use_cpu_for_update ? "CPU" : "SDMA");
2696 WARN_ONCE((vm->use_cpu_for_update && !amdgpu_gmc_vram_full_visible(&adev->gmc)),
2697 "CPU update of VM recommended only for large BAR system\n");
2698
2699 if (vm->use_cpu_for_update)
2700 vm->update_funcs = &amdgpu_vm_cpu_funcs;
2701 else
2702 vm->update_funcs = &amdgpu_vm_sdma_funcs;
2703 vm->last_update = NULL;
2704
2705 amdgpu_vm_bo_param(adev, vm, adev->vm_manager.root_level, &bp);
2706 if (vm_context == AMDGPU_VM_CONTEXT_COMPUTE)
2707 bp.flags &= ~AMDGPU_GEM_CREATE_SHADOW;
2708 r = amdgpu_bo_create(adev, &bp, &root);
2709 if (r)
2710 goto error_free_sched_entity;
2711
2712 r = amdgpu_bo_reserve(root, true);
2713 if (r)
2714 goto error_free_root;
2715
2716 r = reservation_object_reserve_shared(root->tbo.resv, 1);
2717 if (r)
2718 goto error_unreserve;
2719
2720 amdgpu_vm_bo_base_init(&vm->root.base, vm, root);
2721
2722 r = amdgpu_vm_clear_bo(adev, vm, root);
2723 if (r)
2724 goto error_unreserve;
2725
2726 amdgpu_bo_unreserve(vm->root.base.bo);
2727
2728 if (pasid) {
2729 unsigned long flags;
2730
2731 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
2732 r = idr_alloc(&adev->vm_manager.pasid_idr, vm, pasid, pasid + 1,
2733 GFP_ATOMIC);
2734 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
2735 if (r < 0)
2736 goto error_free_root;
2737
2738 vm->pasid = pasid;
2739 }
2740
2741 INIT_KFIFO(vm->faults);
2742
2743 return 0;
2744
2745 error_unreserve:
2746 amdgpu_bo_unreserve(vm->root.base.bo);
2747
2748 error_free_root:
2749 amdgpu_bo_unref(&vm->root.base.bo->shadow);
2750 amdgpu_bo_unref(&vm->root.base.bo);
2751 vm->root.base.bo = NULL;
2752
2753 error_free_sched_entity:
2754 drm_sched_entity_destroy(&vm->entity);
2755
2756 return r;
2757 }
2758
2759 /**
2760 * amdgpu_vm_make_compute - Turn a GFX VM into a compute VM
2761 *
2762 * @adev: amdgpu_device pointer
2763 * @vm: requested vm
2764 *
2765 * This only works on GFX VMs that don't have any BOs added and no
2766 * page tables allocated yet.
2767 *
2768 * Changes the following VM parameters:
2769 * - use_cpu_for_update
2770 * - pte_supports_ats
2771 * - pasid (old PASID is released, because compute manages its own PASIDs)
2772 *
2773 * Reinitializes the page directory to reflect the changed ATS
2774 * setting.
2775 *
2776 * Returns:
2777 * 0 for success, -errno for errors.
2778 */
2779 int amdgpu_vm_make_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm, unsigned int pasid)
2780 {
2781 bool pte_support_ats = (adev->asic_type == CHIP_RAVEN);
2782 int r;
2783
2784 r = amdgpu_bo_reserve(vm->root.base.bo, true);
2785 if (r)
2786 return r;
2787
2788 /* Sanity checks */
2789 if (!RB_EMPTY_ROOT(&vm->va.rb_root) || vm->root.entries) {
2790 r = -EINVAL;
2791 goto unreserve_bo;
2792 }
2793
2794 if (pasid) {
2795 unsigned long flags;
2796
2797 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
2798 r = idr_alloc(&adev->vm_manager.pasid_idr, vm, pasid, pasid + 1,
2799 GFP_ATOMIC);
2800 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
2801
2802 if (r == -ENOSPC)
2803 goto unreserve_bo;
2804 r = 0;
2805 }
2806
2807 /* Check if PD needs to be reinitialized and do it before
2808 * changing any other state, in case it fails.
2809 */
2810 if (pte_support_ats != vm->pte_support_ats) {
2811 vm->pte_support_ats = pte_support_ats;
2812 r = amdgpu_vm_clear_bo(adev, vm, vm->root.base.bo);
2813 if (r)
2814 goto free_idr;
2815 }
2816
2817 /* Update VM state */
2818 vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode &
2819 AMDGPU_VM_USE_CPU_FOR_COMPUTE);
2820 DRM_DEBUG_DRIVER("VM update mode is %s\n",
2821 vm->use_cpu_for_update ? "CPU" : "SDMA");
2822 WARN_ONCE((vm->use_cpu_for_update && !amdgpu_gmc_vram_full_visible(&adev->gmc)),
2823 "CPU update of VM recommended only for large BAR system\n");
2824
2825 if (vm->pasid) {
2826 unsigned long flags;
2827
2828 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
2829 idr_remove(&adev->vm_manager.pasid_idr, vm->pasid);
2830 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
2831
2832 /* Free the original amdgpu allocated pasid
2833 * Will be replaced with kfd allocated pasid
2834 */
2835 amdgpu_pasid_free(vm->pasid);
2836 vm->pasid = 0;
2837 }
2838
2839 /* Free the shadow bo for compute VM */
2840 amdgpu_bo_unref(&vm->root.base.bo->shadow);
2841
2842 if (pasid)
2843 vm->pasid = pasid;
2844
2845 goto unreserve_bo;
2846
2847 free_idr:
2848 if (pasid) {
2849 unsigned long flags;
2850
2851 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
2852 idr_remove(&adev->vm_manager.pasid_idr, pasid);
2853 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
2854 }
2855 unreserve_bo:
2856 amdgpu_bo_unreserve(vm->root.base.bo);
2857 return r;
2858 }
2859
2860 /**
2861 * amdgpu_vm_release_compute - release a compute vm
2862 * @adev: amdgpu_device pointer
2863 * @vm: a vm turned into compute vm by calling amdgpu_vm_make_compute
2864 *
2865 * This is a correspondant of amdgpu_vm_make_compute. It decouples compute
2866 * pasid from vm. Compute should stop use of vm after this call.
2867 */
2868 void amdgpu_vm_release_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm)
2869 {
2870 if (vm->pasid) {
2871 unsigned long flags;
2872
2873 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
2874 idr_remove(&adev->vm_manager.pasid_idr, vm->pasid);
2875 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
2876 }
2877 vm->pasid = 0;
2878 }
2879
2880 /**
2881 * amdgpu_vm_fini - tear down a vm instance
2882 *
2883 * @adev: amdgpu_device pointer
2884 * @vm: requested vm
2885 *
2886 * Tear down @vm.
2887 * Unbind the VM and remove all bos from the vm bo list
2888 */
2889 void amdgpu_vm_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm)
2890 {
2891 struct amdgpu_bo_va_mapping *mapping, *tmp;
2892 bool prt_fini_needed = !!adev->gmc.gmc_funcs->set_prt;
2893 struct amdgpu_bo *root;
2894 int i, r;
2895
2896 amdgpu_amdkfd_gpuvm_destroy_cb(adev, vm);
2897
2898 if (vm->pasid) {
2899 unsigned long flags;
2900
2901 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
2902 idr_remove(&adev->vm_manager.pasid_idr, vm->pasid);
2903 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
2904 }
2905
2906 drm_sched_entity_destroy(&vm->entity);
2907
2908 if (!RB_EMPTY_ROOT(&vm->va.rb_root)) {
2909 dev_err(adev->dev, "still active bo inside vm\n");
2910 }
2911 rbtree_postorder_for_each_entry_safe(mapping, tmp,
2912 &vm->va.rb_root, rb) {
2913 /* Don't remove the mapping here, we don't want to trigger a
2914 * rebalance and the tree is about to be destroyed anyway.
2915 */
2916 list_del(&mapping->list);
2917 kfree(mapping);
2918 }
2919 list_for_each_entry_safe(mapping, tmp, &vm->freed, list) {
2920 if (mapping->flags & AMDGPU_PTE_PRT && prt_fini_needed) {
2921 amdgpu_vm_prt_fini(adev, vm);
2922 prt_fini_needed = false;
2923 }
2924
2925 list_del(&mapping->list);
2926 amdgpu_vm_free_mapping(adev, vm, mapping, NULL);
2927 }
2928
2929 root = amdgpu_bo_ref(vm->root.base.bo);
2930 r = amdgpu_bo_reserve(root, true);
2931 if (r) {
2932 dev_err(adev->dev, "Leaking page tables because BO reservation failed\n");
2933 } else {
2934 amdgpu_vm_free_pts(adev, vm, NULL);
2935 amdgpu_bo_unreserve(root);
2936 }
2937 amdgpu_bo_unref(&root);
2938 WARN_ON(vm->root.base.bo);
2939 dma_fence_put(vm->last_update);
2940 for (i = 0; i < AMDGPU_MAX_VMHUBS; i++)
2941 amdgpu_vmid_free_reserved(adev, vm, i);
2942 }
2943
2944 /**
2945 * amdgpu_vm_manager_init - init the VM manager
2946 *
2947 * @adev: amdgpu_device pointer
2948 *
2949 * Initialize the VM manager structures
2950 */
2951 void amdgpu_vm_manager_init(struct amdgpu_device *adev)
2952 {
2953 unsigned i;
2954
2955 amdgpu_vmid_mgr_init(adev);
2956
2957 adev->vm_manager.fence_context =
2958 dma_fence_context_alloc(AMDGPU_MAX_RINGS);
2959 for (i = 0; i < AMDGPU_MAX_RINGS; ++i)
2960 adev->vm_manager.seqno[i] = 0;
2961
2962 spin_lock_init(&adev->vm_manager.prt_lock);
2963 atomic_set(&adev->vm_manager.num_prt_users, 0);
2964
2965 /* If not overridden by the user, by default, only in large BAR systems
2966 * Compute VM tables will be updated by CPU
2967 */
2968 #ifdef CONFIG_X86_64
2969 if (amdgpu_vm_update_mode == -1) {
2970 if (amdgpu_gmc_vram_full_visible(&adev->gmc))
2971 adev->vm_manager.vm_update_mode =
2972 AMDGPU_VM_USE_CPU_FOR_COMPUTE;
2973 else
2974 adev->vm_manager.vm_update_mode = 0;
2975 } else
2976 adev->vm_manager.vm_update_mode = amdgpu_vm_update_mode;
2977 #else
2978 adev->vm_manager.vm_update_mode = 0;
2979 #endif
2980
2981 idr_init(&adev->vm_manager.pasid_idr);
2982 spin_lock_init(&adev->vm_manager.pasid_lock);
2983
2984 adev->vm_manager.xgmi_map_counter = 0;
2985 mutex_init(&adev->vm_manager.lock_pstate);
2986 }
2987
2988 /**
2989 * amdgpu_vm_manager_fini - cleanup VM manager
2990 *
2991 * @adev: amdgpu_device pointer
2992 *
2993 * Cleanup the VM manager and free resources.
2994 */
2995 void amdgpu_vm_manager_fini(struct amdgpu_device *adev)
2996 {
2997 WARN_ON(!idr_is_empty(&adev->vm_manager.pasid_idr));
2998 idr_destroy(&adev->vm_manager.pasid_idr);
2999
3000 amdgpu_vmid_mgr_fini(adev);
3001 }
3002
3003 /**
3004 * amdgpu_vm_ioctl - Manages VMID reservation for vm hubs.
3005 *
3006 * @dev: drm device pointer
3007 * @data: drm_amdgpu_vm
3008 * @filp: drm file pointer
3009 *
3010 * Returns:
3011 * 0 for success, -errno for errors.
3012 */
3013 int amdgpu_vm_ioctl(struct drm_device *dev, void *data, struct drm_file *filp)
3014 {
3015 union drm_amdgpu_vm *args = data;
3016 struct amdgpu_device *adev = dev->dev_private;
3017 struct amdgpu_fpriv *fpriv = filp->driver_priv;
3018 int r;
3019
3020 switch (args->in.op) {
3021 case AMDGPU_VM_OP_RESERVE_VMID:
3022 /* current, we only have requirement to reserve vmid from gfxhub */
3023 r = amdgpu_vmid_alloc_reserved(adev, &fpriv->vm, AMDGPU_GFXHUB);
3024 if (r)
3025 return r;
3026 break;
3027 case AMDGPU_VM_OP_UNRESERVE_VMID:
3028 amdgpu_vmid_free_reserved(adev, &fpriv->vm, AMDGPU_GFXHUB);
3029 break;
3030 default:
3031 return -EINVAL;
3032 }
3033
3034 return 0;
3035 }
3036
3037 /**
3038 * amdgpu_vm_get_task_info - Extracts task info for a PASID.
3039 *
3040 * @adev: drm device pointer
3041 * @pasid: PASID identifier for VM
3042 * @task_info: task_info to fill.
3043 */
3044 void amdgpu_vm_get_task_info(struct amdgpu_device *adev, unsigned int pasid,
3045 struct amdgpu_task_info *task_info)
3046 {
3047 struct amdgpu_vm *vm;
3048 unsigned long flags;
3049
3050 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
3051
3052 vm = idr_find(&adev->vm_manager.pasid_idr, pasid);
3053 if (vm)
3054 *task_info = vm->task_info;
3055
3056 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
3057 }
3058
3059 /**
3060 * amdgpu_vm_set_task_info - Sets VMs task info.
3061 *
3062 * @vm: vm for which to set the info
3063 */
3064 void amdgpu_vm_set_task_info(struct amdgpu_vm *vm)
3065 {
3066 if (!vm->task_info.pid) {
3067 vm->task_info.pid = current->pid;
3068 get_task_comm(vm->task_info.task_name, current);
3069
3070 if (current->group_leader->mm == current->mm) {
3071 vm->task_info.tgid = current->group_leader->pid;
3072 get_task_comm(vm->task_info.process_name, current->group_leader);
3073 }
3074 }
3075 }