]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/gpu/drm/amd/amdgpu/amdgpu_vm.c
a33cb2f4d74442bdd2c7edc5db9bb3097b0ddede
[mirror_ubuntu-jammy-kernel.git] / drivers / gpu / drm / amd / amdgpu / amdgpu_vm.c
1 /*
2 * Copyright 2008 Advanced Micro Devices, Inc.
3 * Copyright 2008 Red Hat Inc.
4 * Copyright 2009 Jerome Glisse.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22 * OTHER DEALINGS IN THE SOFTWARE.
23 *
24 * Authors: Dave Airlie
25 * Alex Deucher
26 * Jerome Glisse
27 */
28
29 #include <linux/dma-fence-array.h>
30 #include <linux/interval_tree_generic.h>
31 #include <linux/idr.h>
32 #include <linux/dma-buf.h>
33
34 #include <drm/amdgpu_drm.h>
35 #include <drm/drm_drv.h>
36 #include "amdgpu.h"
37 #include "amdgpu_trace.h"
38 #include "amdgpu_amdkfd.h"
39 #include "amdgpu_gmc.h"
40 #include "amdgpu_xgmi.h"
41 #include "amdgpu_dma_buf.h"
42 #include "amdgpu_res_cursor.h"
43 #include "kfd_svm.h"
44
45 /**
46 * DOC: GPUVM
47 *
48 * GPUVM is similar to the legacy gart on older asics, however
49 * rather than there being a single global gart table
50 * for the entire GPU, there are multiple VM page tables active
51 * at any given time. The VM page tables can contain a mix
52 * vram pages and system memory pages and system memory pages
53 * can be mapped as snooped (cached system pages) or unsnooped
54 * (uncached system pages).
55 * Each VM has an ID associated with it and there is a page table
56 * associated with each VMID. When execting a command buffer,
57 * the kernel tells the the ring what VMID to use for that command
58 * buffer. VMIDs are allocated dynamically as commands are submitted.
59 * The userspace drivers maintain their own address space and the kernel
60 * sets up their pages tables accordingly when they submit their
61 * command buffers and a VMID is assigned.
62 * Cayman/Trinity support up to 8 active VMs at any given time;
63 * SI supports 16.
64 */
65
66 #define START(node) ((node)->start)
67 #define LAST(node) ((node)->last)
68
69 INTERVAL_TREE_DEFINE(struct amdgpu_bo_va_mapping, rb, uint64_t, __subtree_last,
70 START, LAST, static, amdgpu_vm_it)
71
72 #undef START
73 #undef LAST
74
75 /**
76 * struct amdgpu_prt_cb - Helper to disable partial resident texture feature from a fence callback
77 */
78 struct amdgpu_prt_cb {
79
80 /**
81 * @adev: amdgpu device
82 */
83 struct amdgpu_device *adev;
84
85 /**
86 * @cb: callback
87 */
88 struct dma_fence_cb cb;
89 };
90
91 /**
92 * amdgpu_vm_set_pasid - manage pasid and vm ptr mapping
93 *
94 * @adev: amdgpu_device pointer
95 * @vm: amdgpu_vm pointer
96 * @pasid: the pasid the VM is using on this GPU
97 *
98 * Set the pasid this VM is using on this GPU, can also be used to remove the
99 * pasid by passing in zero.
100 *
101 */
102 int amdgpu_vm_set_pasid(struct amdgpu_device *adev, struct amdgpu_vm *vm,
103 u32 pasid)
104 {
105 int r;
106
107 if (vm->pasid == pasid)
108 return 0;
109
110 if (vm->pasid) {
111 r = xa_err(xa_erase_irq(&adev->vm_manager.pasids, vm->pasid));
112 if (r < 0)
113 return r;
114
115 vm->pasid = 0;
116 }
117
118 if (pasid) {
119 r = xa_err(xa_store_irq(&adev->vm_manager.pasids, pasid, vm,
120 GFP_KERNEL));
121 if (r < 0)
122 return r;
123
124 vm->pasid = pasid;
125 }
126
127
128 return 0;
129 }
130
131 /*
132 * vm eviction_lock can be taken in MMU notifiers. Make sure no reclaim-FS
133 * happens while holding this lock anywhere to prevent deadlocks when
134 * an MMU notifier runs in reclaim-FS context.
135 */
136 static inline void amdgpu_vm_eviction_lock(struct amdgpu_vm *vm)
137 {
138 mutex_lock(&vm->eviction_lock);
139 vm->saved_flags = memalloc_noreclaim_save();
140 }
141
142 static inline int amdgpu_vm_eviction_trylock(struct amdgpu_vm *vm)
143 {
144 if (mutex_trylock(&vm->eviction_lock)) {
145 vm->saved_flags = memalloc_noreclaim_save();
146 return 1;
147 }
148 return 0;
149 }
150
151 static inline void amdgpu_vm_eviction_unlock(struct amdgpu_vm *vm)
152 {
153 memalloc_noreclaim_restore(vm->saved_flags);
154 mutex_unlock(&vm->eviction_lock);
155 }
156
157 /**
158 * amdgpu_vm_level_shift - return the addr shift for each level
159 *
160 * @adev: amdgpu_device pointer
161 * @level: VMPT level
162 *
163 * Returns:
164 * The number of bits the pfn needs to be right shifted for a level.
165 */
166 static unsigned amdgpu_vm_level_shift(struct amdgpu_device *adev,
167 unsigned level)
168 {
169 switch (level) {
170 case AMDGPU_VM_PDB2:
171 case AMDGPU_VM_PDB1:
172 case AMDGPU_VM_PDB0:
173 return 9 * (AMDGPU_VM_PDB0 - level) +
174 adev->vm_manager.block_size;
175 case AMDGPU_VM_PTB:
176 return 0;
177 default:
178 return ~0;
179 }
180 }
181
182 /**
183 * amdgpu_vm_num_entries - return the number of entries in a PD/PT
184 *
185 * @adev: amdgpu_device pointer
186 * @level: VMPT level
187 *
188 * Returns:
189 * The number of entries in a page directory or page table.
190 */
191 static unsigned amdgpu_vm_num_entries(struct amdgpu_device *adev,
192 unsigned level)
193 {
194 unsigned shift = amdgpu_vm_level_shift(adev,
195 adev->vm_manager.root_level);
196
197 if (level == adev->vm_manager.root_level)
198 /* For the root directory */
199 return round_up(adev->vm_manager.max_pfn, 1ULL << shift)
200 >> shift;
201 else if (level != AMDGPU_VM_PTB)
202 /* Everything in between */
203 return 512;
204 else
205 /* For the page tables on the leaves */
206 return AMDGPU_VM_PTE_COUNT(adev);
207 }
208
209 /**
210 * amdgpu_vm_num_ats_entries - return the number of ATS entries in the root PD
211 *
212 * @adev: amdgpu_device pointer
213 *
214 * Returns:
215 * The number of entries in the root page directory which needs the ATS setting.
216 */
217 static unsigned amdgpu_vm_num_ats_entries(struct amdgpu_device *adev)
218 {
219 unsigned shift;
220
221 shift = amdgpu_vm_level_shift(adev, adev->vm_manager.root_level);
222 return AMDGPU_GMC_HOLE_START >> (shift + AMDGPU_GPU_PAGE_SHIFT);
223 }
224
225 /**
226 * amdgpu_vm_entries_mask - the mask to get the entry number of a PD/PT
227 *
228 * @adev: amdgpu_device pointer
229 * @level: VMPT level
230 *
231 * Returns:
232 * The mask to extract the entry number of a PD/PT from an address.
233 */
234 static uint32_t amdgpu_vm_entries_mask(struct amdgpu_device *adev,
235 unsigned int level)
236 {
237 if (level <= adev->vm_manager.root_level)
238 return 0xffffffff;
239 else if (level != AMDGPU_VM_PTB)
240 return 0x1ff;
241 else
242 return AMDGPU_VM_PTE_COUNT(adev) - 1;
243 }
244
245 /**
246 * amdgpu_vm_bo_size - returns the size of the BOs in bytes
247 *
248 * @adev: amdgpu_device pointer
249 * @level: VMPT level
250 *
251 * Returns:
252 * The size of the BO for a page directory or page table in bytes.
253 */
254 static unsigned amdgpu_vm_bo_size(struct amdgpu_device *adev, unsigned level)
255 {
256 return AMDGPU_GPU_PAGE_ALIGN(amdgpu_vm_num_entries(adev, level) * 8);
257 }
258
259 /**
260 * amdgpu_vm_bo_evicted - vm_bo is evicted
261 *
262 * @vm_bo: vm_bo which is evicted
263 *
264 * State for PDs/PTs and per VM BOs which are not at the location they should
265 * be.
266 */
267 static void amdgpu_vm_bo_evicted(struct amdgpu_vm_bo_base *vm_bo)
268 {
269 struct amdgpu_vm *vm = vm_bo->vm;
270 struct amdgpu_bo *bo = vm_bo->bo;
271
272 vm_bo->moved = true;
273 if (bo->tbo.type == ttm_bo_type_kernel)
274 list_move(&vm_bo->vm_status, &vm->evicted);
275 else
276 list_move_tail(&vm_bo->vm_status, &vm->evicted);
277 }
278 /**
279 * amdgpu_vm_bo_moved - vm_bo is moved
280 *
281 * @vm_bo: vm_bo which is moved
282 *
283 * State for per VM BOs which are moved, but that change is not yet reflected
284 * in the page tables.
285 */
286 static void amdgpu_vm_bo_moved(struct amdgpu_vm_bo_base *vm_bo)
287 {
288 list_move(&vm_bo->vm_status, &vm_bo->vm->moved);
289 }
290
291 /**
292 * amdgpu_vm_bo_idle - vm_bo is idle
293 *
294 * @vm_bo: vm_bo which is now idle
295 *
296 * State for PDs/PTs and per VM BOs which have gone through the state machine
297 * and are now idle.
298 */
299 static void amdgpu_vm_bo_idle(struct amdgpu_vm_bo_base *vm_bo)
300 {
301 list_move(&vm_bo->vm_status, &vm_bo->vm->idle);
302 vm_bo->moved = false;
303 }
304
305 /**
306 * amdgpu_vm_bo_invalidated - vm_bo is invalidated
307 *
308 * @vm_bo: vm_bo which is now invalidated
309 *
310 * State for normal BOs which are invalidated and that change not yet reflected
311 * in the PTs.
312 */
313 static void amdgpu_vm_bo_invalidated(struct amdgpu_vm_bo_base *vm_bo)
314 {
315 spin_lock(&vm_bo->vm->invalidated_lock);
316 list_move(&vm_bo->vm_status, &vm_bo->vm->invalidated);
317 spin_unlock(&vm_bo->vm->invalidated_lock);
318 }
319
320 /**
321 * amdgpu_vm_bo_relocated - vm_bo is reloacted
322 *
323 * @vm_bo: vm_bo which is relocated
324 *
325 * State for PDs/PTs which needs to update their parent PD.
326 * For the root PD, just move to idle state.
327 */
328 static void amdgpu_vm_bo_relocated(struct amdgpu_vm_bo_base *vm_bo)
329 {
330 if (vm_bo->bo->parent)
331 list_move(&vm_bo->vm_status, &vm_bo->vm->relocated);
332 else
333 amdgpu_vm_bo_idle(vm_bo);
334 }
335
336 /**
337 * amdgpu_vm_bo_done - vm_bo is done
338 *
339 * @vm_bo: vm_bo which is now done
340 *
341 * State for normal BOs which are invalidated and that change has been updated
342 * in the PTs.
343 */
344 static void amdgpu_vm_bo_done(struct amdgpu_vm_bo_base *vm_bo)
345 {
346 spin_lock(&vm_bo->vm->invalidated_lock);
347 list_move(&vm_bo->vm_status, &vm_bo->vm->done);
348 spin_unlock(&vm_bo->vm->invalidated_lock);
349 }
350
351 /**
352 * amdgpu_vm_bo_base_init - Adds bo to the list of bos associated with the vm
353 *
354 * @base: base structure for tracking BO usage in a VM
355 * @vm: vm to which bo is to be added
356 * @bo: amdgpu buffer object
357 *
358 * Initialize a bo_va_base structure and add it to the appropriate lists
359 *
360 */
361 static void amdgpu_vm_bo_base_init(struct amdgpu_vm_bo_base *base,
362 struct amdgpu_vm *vm,
363 struct amdgpu_bo *bo)
364 {
365 base->vm = vm;
366 base->bo = bo;
367 base->next = NULL;
368 INIT_LIST_HEAD(&base->vm_status);
369
370 if (!bo)
371 return;
372 base->next = bo->vm_bo;
373 bo->vm_bo = base;
374
375 if (bo->tbo.base.resv != vm->root.bo->tbo.base.resv)
376 return;
377
378 vm->bulk_moveable = false;
379 if (bo->tbo.type == ttm_bo_type_kernel && bo->parent)
380 amdgpu_vm_bo_relocated(base);
381 else
382 amdgpu_vm_bo_idle(base);
383
384 if (bo->preferred_domains &
385 amdgpu_mem_type_to_domain(bo->tbo.resource->mem_type))
386 return;
387
388 /*
389 * we checked all the prerequisites, but it looks like this per vm bo
390 * is currently evicted. add the bo to the evicted list to make sure it
391 * is validated on next vm use to avoid fault.
392 * */
393 amdgpu_vm_bo_evicted(base);
394 }
395
396 /**
397 * amdgpu_vm_pt_parent - get the parent page directory
398 *
399 * @pt: child page table
400 *
401 * Helper to get the parent entry for the child page table. NULL if we are at
402 * the root page directory.
403 */
404 static struct amdgpu_vm_bo_base *amdgpu_vm_pt_parent(struct amdgpu_vm_bo_base *pt)
405 {
406 struct amdgpu_bo *parent = pt->bo->parent;
407
408 if (!parent)
409 return NULL;
410
411 return parent->vm_bo;
412 }
413
414 /*
415 * amdgpu_vm_pt_cursor - state for for_each_amdgpu_vm_pt
416 */
417 struct amdgpu_vm_pt_cursor {
418 uint64_t pfn;
419 struct amdgpu_vm_bo_base *parent;
420 struct amdgpu_vm_bo_base *entry;
421 unsigned level;
422 };
423
424 /**
425 * amdgpu_vm_pt_start - start PD/PT walk
426 *
427 * @adev: amdgpu_device pointer
428 * @vm: amdgpu_vm structure
429 * @start: start address of the walk
430 * @cursor: state to initialize
431 *
432 * Initialize a amdgpu_vm_pt_cursor to start a walk.
433 */
434 static void amdgpu_vm_pt_start(struct amdgpu_device *adev,
435 struct amdgpu_vm *vm, uint64_t start,
436 struct amdgpu_vm_pt_cursor *cursor)
437 {
438 cursor->pfn = start;
439 cursor->parent = NULL;
440 cursor->entry = &vm->root;
441 cursor->level = adev->vm_manager.root_level;
442 }
443
444 /**
445 * amdgpu_vm_pt_descendant - go to child node
446 *
447 * @adev: amdgpu_device pointer
448 * @cursor: current state
449 *
450 * Walk to the child node of the current node.
451 * Returns:
452 * True if the walk was possible, false otherwise.
453 */
454 static bool amdgpu_vm_pt_descendant(struct amdgpu_device *adev,
455 struct amdgpu_vm_pt_cursor *cursor)
456 {
457 unsigned mask, shift, idx;
458
459 if ((cursor->level == AMDGPU_VM_PTB) || !cursor->entry ||
460 !cursor->entry->bo)
461 return false;
462
463 mask = amdgpu_vm_entries_mask(adev, cursor->level);
464 shift = amdgpu_vm_level_shift(adev, cursor->level);
465
466 ++cursor->level;
467 idx = (cursor->pfn >> shift) & mask;
468 cursor->parent = cursor->entry;
469 cursor->entry = &to_amdgpu_bo_vm(cursor->entry->bo)->entries[idx];
470 return true;
471 }
472
473 /**
474 * amdgpu_vm_pt_sibling - go to sibling node
475 *
476 * @adev: amdgpu_device pointer
477 * @cursor: current state
478 *
479 * Walk to the sibling node of the current node.
480 * Returns:
481 * True if the walk was possible, false otherwise.
482 */
483 static bool amdgpu_vm_pt_sibling(struct amdgpu_device *adev,
484 struct amdgpu_vm_pt_cursor *cursor)
485 {
486 unsigned shift, num_entries;
487
488 /* Root doesn't have a sibling */
489 if (!cursor->parent)
490 return false;
491
492 /* Go to our parents and see if we got a sibling */
493 shift = amdgpu_vm_level_shift(adev, cursor->level - 1);
494 num_entries = amdgpu_vm_num_entries(adev, cursor->level - 1);
495
496 if (cursor->entry == &to_amdgpu_bo_vm(cursor->parent->bo)->entries[num_entries - 1])
497 return false;
498
499 cursor->pfn += 1ULL << shift;
500 cursor->pfn &= ~((1ULL << shift) - 1);
501 ++cursor->entry;
502 return true;
503 }
504
505 /**
506 * amdgpu_vm_pt_ancestor - go to parent node
507 *
508 * @cursor: current state
509 *
510 * Walk to the parent node of the current node.
511 * Returns:
512 * True if the walk was possible, false otherwise.
513 */
514 static bool amdgpu_vm_pt_ancestor(struct amdgpu_vm_pt_cursor *cursor)
515 {
516 if (!cursor->parent)
517 return false;
518
519 --cursor->level;
520 cursor->entry = cursor->parent;
521 cursor->parent = amdgpu_vm_pt_parent(cursor->parent);
522 return true;
523 }
524
525 /**
526 * amdgpu_vm_pt_next - get next PD/PT in hieratchy
527 *
528 * @adev: amdgpu_device pointer
529 * @cursor: current state
530 *
531 * Walk the PD/PT tree to the next node.
532 */
533 static void amdgpu_vm_pt_next(struct amdgpu_device *adev,
534 struct amdgpu_vm_pt_cursor *cursor)
535 {
536 /* First try a newborn child */
537 if (amdgpu_vm_pt_descendant(adev, cursor))
538 return;
539
540 /* If that didn't worked try to find a sibling */
541 while (!amdgpu_vm_pt_sibling(adev, cursor)) {
542 /* No sibling, go to our parents and grandparents */
543 if (!amdgpu_vm_pt_ancestor(cursor)) {
544 cursor->pfn = ~0ll;
545 return;
546 }
547 }
548 }
549
550 /**
551 * amdgpu_vm_pt_first_dfs - start a deep first search
552 *
553 * @adev: amdgpu_device structure
554 * @vm: amdgpu_vm structure
555 * @start: optional cursor to start with
556 * @cursor: state to initialize
557 *
558 * Starts a deep first traversal of the PD/PT tree.
559 */
560 static void amdgpu_vm_pt_first_dfs(struct amdgpu_device *adev,
561 struct amdgpu_vm *vm,
562 struct amdgpu_vm_pt_cursor *start,
563 struct amdgpu_vm_pt_cursor *cursor)
564 {
565 if (start)
566 *cursor = *start;
567 else
568 amdgpu_vm_pt_start(adev, vm, 0, cursor);
569 while (amdgpu_vm_pt_descendant(adev, cursor));
570 }
571
572 /**
573 * amdgpu_vm_pt_continue_dfs - check if the deep first search should continue
574 *
575 * @start: starting point for the search
576 * @entry: current entry
577 *
578 * Returns:
579 * True when the search should continue, false otherwise.
580 */
581 static bool amdgpu_vm_pt_continue_dfs(struct amdgpu_vm_pt_cursor *start,
582 struct amdgpu_vm_bo_base *entry)
583 {
584 return entry && (!start || entry != start->entry);
585 }
586
587 /**
588 * amdgpu_vm_pt_next_dfs - get the next node for a deep first search
589 *
590 * @adev: amdgpu_device structure
591 * @cursor: current state
592 *
593 * Move the cursor to the next node in a deep first search.
594 */
595 static void amdgpu_vm_pt_next_dfs(struct amdgpu_device *adev,
596 struct amdgpu_vm_pt_cursor *cursor)
597 {
598 if (!cursor->entry)
599 return;
600
601 if (!cursor->parent)
602 cursor->entry = NULL;
603 else if (amdgpu_vm_pt_sibling(adev, cursor))
604 while (amdgpu_vm_pt_descendant(adev, cursor));
605 else
606 amdgpu_vm_pt_ancestor(cursor);
607 }
608
609 /*
610 * for_each_amdgpu_vm_pt_dfs_safe - safe deep first search of all PDs/PTs
611 */
612 #define for_each_amdgpu_vm_pt_dfs_safe(adev, vm, start, cursor, entry) \
613 for (amdgpu_vm_pt_first_dfs((adev), (vm), (start), &(cursor)), \
614 (entry) = (cursor).entry, amdgpu_vm_pt_next_dfs((adev), &(cursor));\
615 amdgpu_vm_pt_continue_dfs((start), (entry)); \
616 (entry) = (cursor).entry, amdgpu_vm_pt_next_dfs((adev), &(cursor)))
617
618 /**
619 * amdgpu_vm_get_pd_bo - add the VM PD to a validation list
620 *
621 * @vm: vm providing the BOs
622 * @validated: head of validation list
623 * @entry: entry to add
624 *
625 * Add the page directory to the list of BOs to
626 * validate for command submission.
627 */
628 void amdgpu_vm_get_pd_bo(struct amdgpu_vm *vm,
629 struct list_head *validated,
630 struct amdgpu_bo_list_entry *entry)
631 {
632 entry->priority = 0;
633 entry->tv.bo = &vm->root.bo->tbo;
634 /* Two for VM updates, one for TTM and one for the CS job */
635 entry->tv.num_shared = 4;
636 entry->user_pages = NULL;
637 list_add(&entry->tv.head, validated);
638 }
639
640 /**
641 * amdgpu_vm_del_from_lru_notify - update bulk_moveable flag
642 *
643 * @bo: BO which was removed from the LRU
644 *
645 * Make sure the bulk_moveable flag is updated when a BO is removed from the
646 * LRU.
647 */
648 void amdgpu_vm_del_from_lru_notify(struct ttm_buffer_object *bo)
649 {
650 struct amdgpu_bo *abo;
651 struct amdgpu_vm_bo_base *bo_base;
652
653 if (!amdgpu_bo_is_amdgpu_bo(bo))
654 return;
655
656 if (bo->pin_count)
657 return;
658
659 abo = ttm_to_amdgpu_bo(bo);
660 if (!abo->parent)
661 return;
662 for (bo_base = abo->vm_bo; bo_base; bo_base = bo_base->next) {
663 struct amdgpu_vm *vm = bo_base->vm;
664
665 if (abo->tbo.base.resv == vm->root.bo->tbo.base.resv)
666 vm->bulk_moveable = false;
667 }
668
669 }
670 /**
671 * amdgpu_vm_move_to_lru_tail - move all BOs to the end of LRU
672 *
673 * @adev: amdgpu device pointer
674 * @vm: vm providing the BOs
675 *
676 * Move all BOs to the end of LRU and remember their positions to put them
677 * together.
678 */
679 void amdgpu_vm_move_to_lru_tail(struct amdgpu_device *adev,
680 struct amdgpu_vm *vm)
681 {
682 struct amdgpu_vm_bo_base *bo_base;
683
684 if (vm->bulk_moveable) {
685 spin_lock(&adev->mman.bdev.lru_lock);
686 ttm_bo_bulk_move_lru_tail(&vm->lru_bulk_move);
687 spin_unlock(&adev->mman.bdev.lru_lock);
688 return;
689 }
690
691 memset(&vm->lru_bulk_move, 0, sizeof(vm->lru_bulk_move));
692
693 spin_lock(&adev->mman.bdev.lru_lock);
694 list_for_each_entry(bo_base, &vm->idle, vm_status) {
695 struct amdgpu_bo *bo = bo_base->bo;
696 struct amdgpu_bo *shadow = amdgpu_bo_shadowed(bo);
697
698 if (!bo->parent)
699 continue;
700
701 ttm_bo_move_to_lru_tail(&bo->tbo, bo->tbo.resource,
702 &vm->lru_bulk_move);
703 if (shadow)
704 ttm_bo_move_to_lru_tail(&shadow->tbo,
705 shadow->tbo.resource,
706 &vm->lru_bulk_move);
707 }
708 spin_unlock(&adev->mman.bdev.lru_lock);
709
710 vm->bulk_moveable = true;
711 }
712
713 /**
714 * amdgpu_vm_validate_pt_bos - validate the page table BOs
715 *
716 * @adev: amdgpu device pointer
717 * @vm: vm providing the BOs
718 * @validate: callback to do the validation
719 * @param: parameter for the validation callback
720 *
721 * Validate the page table BOs on command submission if neccessary.
722 *
723 * Returns:
724 * Validation result.
725 */
726 int amdgpu_vm_validate_pt_bos(struct amdgpu_device *adev, struct amdgpu_vm *vm,
727 int (*validate)(void *p, struct amdgpu_bo *bo),
728 void *param)
729 {
730 struct amdgpu_vm_bo_base *bo_base, *tmp;
731 int r;
732
733 vm->bulk_moveable &= list_empty(&vm->evicted);
734
735 list_for_each_entry_safe(bo_base, tmp, &vm->evicted, vm_status) {
736 struct amdgpu_bo *bo = bo_base->bo;
737 struct amdgpu_bo *shadow = amdgpu_bo_shadowed(bo);
738
739 r = validate(param, bo);
740 if (r)
741 return r;
742 if (shadow) {
743 r = validate(param, shadow);
744 if (r)
745 return r;
746 }
747
748 if (bo->tbo.type != ttm_bo_type_kernel) {
749 amdgpu_vm_bo_moved(bo_base);
750 } else {
751 vm->update_funcs->map_table(to_amdgpu_bo_vm(bo));
752 amdgpu_vm_bo_relocated(bo_base);
753 }
754 }
755
756 amdgpu_vm_eviction_lock(vm);
757 vm->evicting = false;
758 amdgpu_vm_eviction_unlock(vm);
759
760 return 0;
761 }
762
763 /**
764 * amdgpu_vm_ready - check VM is ready for updates
765 *
766 * @vm: VM to check
767 *
768 * Check if all VM PDs/PTs are ready for updates
769 *
770 * Returns:
771 * True if VM is not evicting.
772 */
773 bool amdgpu_vm_ready(struct amdgpu_vm *vm)
774 {
775 bool ret;
776
777 amdgpu_vm_eviction_lock(vm);
778 ret = !vm->evicting;
779 amdgpu_vm_eviction_unlock(vm);
780 return ret;
781 }
782
783 /**
784 * amdgpu_vm_clear_bo - initially clear the PDs/PTs
785 *
786 * @adev: amdgpu_device pointer
787 * @vm: VM to clear BO from
788 * @vmbo: BO to clear
789 * @immediate: use an immediate update
790 *
791 * Root PD needs to be reserved when calling this.
792 *
793 * Returns:
794 * 0 on success, errno otherwise.
795 */
796 static int amdgpu_vm_clear_bo(struct amdgpu_device *adev,
797 struct amdgpu_vm *vm,
798 struct amdgpu_bo_vm *vmbo,
799 bool immediate)
800 {
801 struct ttm_operation_ctx ctx = { true, false };
802 unsigned level = adev->vm_manager.root_level;
803 struct amdgpu_vm_update_params params;
804 struct amdgpu_bo *ancestor = &vmbo->bo;
805 struct amdgpu_bo *bo = &vmbo->bo;
806 unsigned entries, ats_entries;
807 uint64_t addr;
808 int r;
809
810 /* Figure out our place in the hierarchy */
811 if (ancestor->parent) {
812 ++level;
813 while (ancestor->parent->parent) {
814 ++level;
815 ancestor = ancestor->parent;
816 }
817 }
818
819 entries = amdgpu_bo_size(bo) / 8;
820 if (!vm->pte_support_ats) {
821 ats_entries = 0;
822
823 } else if (!bo->parent) {
824 ats_entries = amdgpu_vm_num_ats_entries(adev);
825 ats_entries = min(ats_entries, entries);
826 entries -= ats_entries;
827
828 } else {
829 struct amdgpu_vm_bo_base *pt;
830
831 pt = ancestor->vm_bo;
832 ats_entries = amdgpu_vm_num_ats_entries(adev);
833 if ((pt - to_amdgpu_bo_vm(vm->root.bo)->entries) >= ats_entries) {
834 ats_entries = 0;
835 } else {
836 ats_entries = entries;
837 entries = 0;
838 }
839 }
840
841 r = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
842 if (r)
843 return r;
844
845 if (vmbo->shadow) {
846 struct amdgpu_bo *shadow = vmbo->shadow;
847
848 r = ttm_bo_validate(&shadow->tbo, &shadow->placement, &ctx);
849 if (r)
850 return r;
851 }
852
853 r = vm->update_funcs->map_table(vmbo);
854 if (r)
855 return r;
856
857 memset(&params, 0, sizeof(params));
858 params.adev = adev;
859 params.vm = vm;
860 params.immediate = immediate;
861
862 r = vm->update_funcs->prepare(&params, NULL, AMDGPU_SYNC_EXPLICIT);
863 if (r)
864 return r;
865
866 addr = 0;
867 if (ats_entries) {
868 uint64_t value = 0, flags;
869
870 flags = AMDGPU_PTE_DEFAULT_ATC;
871 if (level != AMDGPU_VM_PTB) {
872 /* Handle leaf PDEs as PTEs */
873 flags |= AMDGPU_PDE_PTE;
874 amdgpu_gmc_get_vm_pde(adev, level, &value, &flags);
875 }
876
877 r = vm->update_funcs->update(&params, vmbo, addr, 0, ats_entries,
878 value, flags);
879 if (r)
880 return r;
881
882 addr += ats_entries * 8;
883 }
884
885 if (entries) {
886 uint64_t value = 0, flags = 0;
887
888 if (adev->asic_type >= CHIP_VEGA10) {
889 if (level != AMDGPU_VM_PTB) {
890 /* Handle leaf PDEs as PTEs */
891 flags |= AMDGPU_PDE_PTE;
892 amdgpu_gmc_get_vm_pde(adev, level,
893 &value, &flags);
894 } else {
895 /* Workaround for fault priority problem on GMC9 */
896 flags = AMDGPU_PTE_EXECUTABLE;
897 }
898 }
899
900 r = vm->update_funcs->update(&params, vmbo, addr, 0, entries,
901 value, flags);
902 if (r)
903 return r;
904 }
905
906 return vm->update_funcs->commit(&params, NULL);
907 }
908
909 /**
910 * amdgpu_vm_pt_create - create bo for PD/PT
911 *
912 * @adev: amdgpu_device pointer
913 * @vm: requesting vm
914 * @level: the page table level
915 * @immediate: use a immediate update
916 * @vmbo: pointer to the buffer object pointer
917 */
918 static int amdgpu_vm_pt_create(struct amdgpu_device *adev,
919 struct amdgpu_vm *vm,
920 int level, bool immediate,
921 struct amdgpu_bo_vm **vmbo)
922 {
923 struct amdgpu_bo_param bp;
924 struct amdgpu_bo *bo;
925 struct dma_resv *resv;
926 unsigned int num_entries;
927 int r;
928
929 memset(&bp, 0, sizeof(bp));
930
931 bp.size = amdgpu_vm_bo_size(adev, level);
932 bp.byte_align = AMDGPU_GPU_PAGE_SIZE;
933 bp.domain = AMDGPU_GEM_DOMAIN_VRAM;
934 bp.domain = amdgpu_bo_get_preferred_domain(adev, bp.domain);
935 bp.flags = AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS |
936 AMDGPU_GEM_CREATE_CPU_GTT_USWC;
937
938 if (level < AMDGPU_VM_PTB)
939 num_entries = amdgpu_vm_num_entries(adev, level);
940 else
941 num_entries = 0;
942
943 bp.bo_ptr_size = struct_size((*vmbo), entries, num_entries);
944
945 if (vm->use_cpu_for_update)
946 bp.flags |= AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
947
948 bp.type = ttm_bo_type_kernel;
949 bp.no_wait_gpu = immediate;
950 if (vm->root.bo)
951 bp.resv = vm->root.bo->tbo.base.resv;
952
953 r = amdgpu_bo_create_vm(adev, &bp, vmbo);
954 if (r)
955 return r;
956
957 bo = &(*vmbo)->bo;
958 if (vm->is_compute_context || (adev->flags & AMD_IS_APU)) {
959 (*vmbo)->shadow = NULL;
960 return 0;
961 }
962
963 if (!bp.resv)
964 WARN_ON(dma_resv_lock(bo->tbo.base.resv,
965 NULL));
966 resv = bp.resv;
967 memset(&bp, 0, sizeof(bp));
968 bp.size = amdgpu_vm_bo_size(adev, level);
969 bp.domain = AMDGPU_GEM_DOMAIN_GTT;
970 bp.flags = AMDGPU_GEM_CREATE_CPU_GTT_USWC;
971 bp.type = ttm_bo_type_kernel;
972 bp.resv = bo->tbo.base.resv;
973 bp.bo_ptr_size = sizeof(struct amdgpu_bo);
974
975 r = amdgpu_bo_create(adev, &bp, &(*vmbo)->shadow);
976
977 if (!resv)
978 dma_resv_unlock(bo->tbo.base.resv);
979
980 if (r) {
981 amdgpu_bo_unref(&bo);
982 return r;
983 }
984
985 (*vmbo)->shadow->parent = amdgpu_bo_ref(bo);
986 amdgpu_bo_add_to_shadow_list(*vmbo);
987
988 return 0;
989 }
990
991 /**
992 * amdgpu_vm_alloc_pts - Allocate a specific page table
993 *
994 * @adev: amdgpu_device pointer
995 * @vm: VM to allocate page tables for
996 * @cursor: Which page table to allocate
997 * @immediate: use an immediate update
998 *
999 * Make sure a specific page table or directory is allocated.
1000 *
1001 * Returns:
1002 * 1 if page table needed to be allocated, 0 if page table was already
1003 * allocated, negative errno if an error occurred.
1004 */
1005 static int amdgpu_vm_alloc_pts(struct amdgpu_device *adev,
1006 struct amdgpu_vm *vm,
1007 struct amdgpu_vm_pt_cursor *cursor,
1008 bool immediate)
1009 {
1010 struct amdgpu_vm_bo_base *entry = cursor->entry;
1011 struct amdgpu_bo *pt_bo;
1012 struct amdgpu_bo_vm *pt;
1013 int r;
1014
1015 if (entry->bo)
1016 return 0;
1017
1018 r = amdgpu_vm_pt_create(adev, vm, cursor->level, immediate, &pt);
1019 if (r)
1020 return r;
1021
1022 /* Keep a reference to the root directory to avoid
1023 * freeing them up in the wrong order.
1024 */
1025 pt_bo = &pt->bo;
1026 pt_bo->parent = amdgpu_bo_ref(cursor->parent->bo);
1027 amdgpu_vm_bo_base_init(entry, vm, pt_bo);
1028 r = amdgpu_vm_clear_bo(adev, vm, pt, immediate);
1029 if (r)
1030 goto error_free_pt;
1031
1032 return 0;
1033
1034 error_free_pt:
1035 amdgpu_bo_unref(&pt->shadow);
1036 amdgpu_bo_unref(&pt_bo);
1037 return r;
1038 }
1039
1040 /**
1041 * amdgpu_vm_free_table - fre one PD/PT
1042 *
1043 * @entry: PDE to free
1044 */
1045 static void amdgpu_vm_free_table(struct amdgpu_vm_bo_base *entry)
1046 {
1047 struct amdgpu_bo *shadow;
1048
1049 if (!entry->bo)
1050 return;
1051 shadow = amdgpu_bo_shadowed(entry->bo);
1052 entry->bo->vm_bo = NULL;
1053 list_del(&entry->vm_status);
1054 amdgpu_bo_unref(&shadow);
1055 amdgpu_bo_unref(&entry->bo);
1056 }
1057
1058 /**
1059 * amdgpu_vm_free_pts - free PD/PT levels
1060 *
1061 * @adev: amdgpu device structure
1062 * @vm: amdgpu vm structure
1063 * @start: optional cursor where to start freeing PDs/PTs
1064 *
1065 * Free the page directory or page table level and all sub levels.
1066 */
1067 static void amdgpu_vm_free_pts(struct amdgpu_device *adev,
1068 struct amdgpu_vm *vm,
1069 struct amdgpu_vm_pt_cursor *start)
1070 {
1071 struct amdgpu_vm_pt_cursor cursor;
1072 struct amdgpu_vm_bo_base *entry;
1073
1074 vm->bulk_moveable = false;
1075
1076 for_each_amdgpu_vm_pt_dfs_safe(adev, vm, start, cursor, entry)
1077 amdgpu_vm_free_table(entry);
1078
1079 if (start)
1080 amdgpu_vm_free_table(start->entry);
1081 }
1082
1083 /**
1084 * amdgpu_vm_check_compute_bug - check whether asic has compute vm bug
1085 *
1086 * @adev: amdgpu_device pointer
1087 */
1088 void amdgpu_vm_check_compute_bug(struct amdgpu_device *adev)
1089 {
1090 const struct amdgpu_ip_block *ip_block;
1091 bool has_compute_vm_bug;
1092 struct amdgpu_ring *ring;
1093 int i;
1094
1095 has_compute_vm_bug = false;
1096
1097 ip_block = amdgpu_device_ip_get_ip_block(adev, AMD_IP_BLOCK_TYPE_GFX);
1098 if (ip_block) {
1099 /* Compute has a VM bug for GFX version < 7.
1100 Compute has a VM bug for GFX 8 MEC firmware version < 673.*/
1101 if (ip_block->version->major <= 7)
1102 has_compute_vm_bug = true;
1103 else if (ip_block->version->major == 8)
1104 if (adev->gfx.mec_fw_version < 673)
1105 has_compute_vm_bug = true;
1106 }
1107
1108 for (i = 0; i < adev->num_rings; i++) {
1109 ring = adev->rings[i];
1110 if (ring->funcs->type == AMDGPU_RING_TYPE_COMPUTE)
1111 /* only compute rings */
1112 ring->has_compute_vm_bug = has_compute_vm_bug;
1113 else
1114 ring->has_compute_vm_bug = false;
1115 }
1116 }
1117
1118 /**
1119 * amdgpu_vm_need_pipeline_sync - Check if pipe sync is needed for job.
1120 *
1121 * @ring: ring on which the job will be submitted
1122 * @job: job to submit
1123 *
1124 * Returns:
1125 * True if sync is needed.
1126 */
1127 bool amdgpu_vm_need_pipeline_sync(struct amdgpu_ring *ring,
1128 struct amdgpu_job *job)
1129 {
1130 struct amdgpu_device *adev = ring->adev;
1131 unsigned vmhub = ring->funcs->vmhub;
1132 struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub];
1133 struct amdgpu_vmid *id;
1134 bool gds_switch_needed;
1135 bool vm_flush_needed = job->vm_needs_flush || ring->has_compute_vm_bug;
1136
1137 if (job->vmid == 0)
1138 return false;
1139 id = &id_mgr->ids[job->vmid];
1140 gds_switch_needed = ring->funcs->emit_gds_switch && (
1141 id->gds_base != job->gds_base ||
1142 id->gds_size != job->gds_size ||
1143 id->gws_base != job->gws_base ||
1144 id->gws_size != job->gws_size ||
1145 id->oa_base != job->oa_base ||
1146 id->oa_size != job->oa_size);
1147
1148 if (amdgpu_vmid_had_gpu_reset(adev, id))
1149 return true;
1150
1151 return vm_flush_needed || gds_switch_needed;
1152 }
1153
1154 /**
1155 * amdgpu_vm_flush - hardware flush the vm
1156 *
1157 * @ring: ring to use for flush
1158 * @job: related job
1159 * @need_pipe_sync: is pipe sync needed
1160 *
1161 * Emit a VM flush when it is necessary.
1162 *
1163 * Returns:
1164 * 0 on success, errno otherwise.
1165 */
1166 int amdgpu_vm_flush(struct amdgpu_ring *ring, struct amdgpu_job *job,
1167 bool need_pipe_sync)
1168 {
1169 struct amdgpu_device *adev = ring->adev;
1170 unsigned vmhub = ring->funcs->vmhub;
1171 struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub];
1172 struct amdgpu_vmid *id = &id_mgr->ids[job->vmid];
1173 bool gds_switch_needed = ring->funcs->emit_gds_switch && (
1174 id->gds_base != job->gds_base ||
1175 id->gds_size != job->gds_size ||
1176 id->gws_base != job->gws_base ||
1177 id->gws_size != job->gws_size ||
1178 id->oa_base != job->oa_base ||
1179 id->oa_size != job->oa_size);
1180 bool vm_flush_needed = job->vm_needs_flush;
1181 struct dma_fence *fence = NULL;
1182 bool pasid_mapping_needed = false;
1183 unsigned patch_offset = 0;
1184 bool update_spm_vmid_needed = (job->vm && (job->vm->reserved_vmid[vmhub] != NULL));
1185 int r;
1186
1187 if (update_spm_vmid_needed && adev->gfx.rlc.funcs->update_spm_vmid)
1188 adev->gfx.rlc.funcs->update_spm_vmid(adev, job->vmid);
1189
1190 if (amdgpu_vmid_had_gpu_reset(adev, id)) {
1191 gds_switch_needed = true;
1192 vm_flush_needed = true;
1193 pasid_mapping_needed = true;
1194 }
1195
1196 mutex_lock(&id_mgr->lock);
1197 if (id->pasid != job->pasid || !id->pasid_mapping ||
1198 !dma_fence_is_signaled(id->pasid_mapping))
1199 pasid_mapping_needed = true;
1200 mutex_unlock(&id_mgr->lock);
1201
1202 gds_switch_needed &= !!ring->funcs->emit_gds_switch;
1203 vm_flush_needed &= !!ring->funcs->emit_vm_flush &&
1204 job->vm_pd_addr != AMDGPU_BO_INVALID_OFFSET;
1205 pasid_mapping_needed &= adev->gmc.gmc_funcs->emit_pasid_mapping &&
1206 ring->funcs->emit_wreg;
1207
1208 if (!vm_flush_needed && !gds_switch_needed && !need_pipe_sync)
1209 return 0;
1210
1211 if (ring->funcs->init_cond_exec)
1212 patch_offset = amdgpu_ring_init_cond_exec(ring);
1213
1214 if (need_pipe_sync)
1215 amdgpu_ring_emit_pipeline_sync(ring);
1216
1217 if (vm_flush_needed) {
1218 trace_amdgpu_vm_flush(ring, job->vmid, job->vm_pd_addr);
1219 amdgpu_ring_emit_vm_flush(ring, job->vmid, job->vm_pd_addr);
1220 }
1221
1222 if (pasid_mapping_needed)
1223 amdgpu_gmc_emit_pasid_mapping(ring, job->vmid, job->pasid);
1224
1225 if (vm_flush_needed || pasid_mapping_needed) {
1226 r = amdgpu_fence_emit(ring, &fence, NULL, 0);
1227 if (r)
1228 return r;
1229 }
1230
1231 if (vm_flush_needed) {
1232 mutex_lock(&id_mgr->lock);
1233 dma_fence_put(id->last_flush);
1234 id->last_flush = dma_fence_get(fence);
1235 id->current_gpu_reset_count =
1236 atomic_read(&adev->gpu_reset_counter);
1237 mutex_unlock(&id_mgr->lock);
1238 }
1239
1240 if (pasid_mapping_needed) {
1241 mutex_lock(&id_mgr->lock);
1242 id->pasid = job->pasid;
1243 dma_fence_put(id->pasid_mapping);
1244 id->pasid_mapping = dma_fence_get(fence);
1245 mutex_unlock(&id_mgr->lock);
1246 }
1247 dma_fence_put(fence);
1248
1249 if (ring->funcs->emit_gds_switch && gds_switch_needed) {
1250 id->gds_base = job->gds_base;
1251 id->gds_size = job->gds_size;
1252 id->gws_base = job->gws_base;
1253 id->gws_size = job->gws_size;
1254 id->oa_base = job->oa_base;
1255 id->oa_size = job->oa_size;
1256 amdgpu_ring_emit_gds_switch(ring, job->vmid, job->gds_base,
1257 job->gds_size, job->gws_base,
1258 job->gws_size, job->oa_base,
1259 job->oa_size);
1260 }
1261
1262 if (ring->funcs->patch_cond_exec)
1263 amdgpu_ring_patch_cond_exec(ring, patch_offset);
1264
1265 /* the double SWITCH_BUFFER here *cannot* be skipped by COND_EXEC */
1266 if (ring->funcs->emit_switch_buffer) {
1267 amdgpu_ring_emit_switch_buffer(ring);
1268 amdgpu_ring_emit_switch_buffer(ring);
1269 }
1270 return 0;
1271 }
1272
1273 /**
1274 * amdgpu_vm_bo_find - find the bo_va for a specific vm & bo
1275 *
1276 * @vm: requested vm
1277 * @bo: requested buffer object
1278 *
1279 * Find @bo inside the requested vm.
1280 * Search inside the @bos vm list for the requested vm
1281 * Returns the found bo_va or NULL if none is found
1282 *
1283 * Object has to be reserved!
1284 *
1285 * Returns:
1286 * Found bo_va or NULL.
1287 */
1288 struct amdgpu_bo_va *amdgpu_vm_bo_find(struct amdgpu_vm *vm,
1289 struct amdgpu_bo *bo)
1290 {
1291 struct amdgpu_vm_bo_base *base;
1292
1293 for (base = bo->vm_bo; base; base = base->next) {
1294 if (base->vm != vm)
1295 continue;
1296
1297 return container_of(base, struct amdgpu_bo_va, base);
1298 }
1299 return NULL;
1300 }
1301
1302 /**
1303 * amdgpu_vm_map_gart - Resolve gart mapping of addr
1304 *
1305 * @pages_addr: optional DMA address to use for lookup
1306 * @addr: the unmapped addr
1307 *
1308 * Look up the physical address of the page that the pte resolves
1309 * to.
1310 *
1311 * Returns:
1312 * The pointer for the page table entry.
1313 */
1314 uint64_t amdgpu_vm_map_gart(const dma_addr_t *pages_addr, uint64_t addr)
1315 {
1316 uint64_t result;
1317
1318 /* page table offset */
1319 result = pages_addr[addr >> PAGE_SHIFT];
1320
1321 /* in case cpu page size != gpu page size*/
1322 result |= addr & (~PAGE_MASK);
1323
1324 result &= 0xFFFFFFFFFFFFF000ULL;
1325
1326 return result;
1327 }
1328
1329 /**
1330 * amdgpu_vm_update_pde - update a single level in the hierarchy
1331 *
1332 * @params: parameters for the update
1333 * @vm: requested vm
1334 * @entry: entry to update
1335 *
1336 * Makes sure the requested entry in parent is up to date.
1337 */
1338 static int amdgpu_vm_update_pde(struct amdgpu_vm_update_params *params,
1339 struct amdgpu_vm *vm,
1340 struct amdgpu_vm_bo_base *entry)
1341 {
1342 struct amdgpu_vm_bo_base *parent = amdgpu_vm_pt_parent(entry);
1343 struct amdgpu_bo *bo = parent->bo, *pbo;
1344 uint64_t pde, pt, flags;
1345 unsigned level;
1346
1347 for (level = 0, pbo = bo->parent; pbo; ++level)
1348 pbo = pbo->parent;
1349
1350 level += params->adev->vm_manager.root_level;
1351 amdgpu_gmc_get_pde_for_bo(entry->bo, level, &pt, &flags);
1352 pde = (entry - to_amdgpu_bo_vm(parent->bo)->entries) * 8;
1353 return vm->update_funcs->update(params, to_amdgpu_bo_vm(bo), pde, pt,
1354 1, 0, flags);
1355 }
1356
1357 /**
1358 * amdgpu_vm_invalidate_pds - mark all PDs as invalid
1359 *
1360 * @adev: amdgpu_device pointer
1361 * @vm: related vm
1362 *
1363 * Mark all PD level as invalid after an error.
1364 */
1365 static void amdgpu_vm_invalidate_pds(struct amdgpu_device *adev,
1366 struct amdgpu_vm *vm)
1367 {
1368 struct amdgpu_vm_pt_cursor cursor;
1369 struct amdgpu_vm_bo_base *entry;
1370
1371 for_each_amdgpu_vm_pt_dfs_safe(adev, vm, NULL, cursor, entry)
1372 if (entry->bo && !entry->moved)
1373 amdgpu_vm_bo_relocated(entry);
1374 }
1375
1376 /**
1377 * amdgpu_vm_update_pdes - make sure that all directories are valid
1378 *
1379 * @adev: amdgpu_device pointer
1380 * @vm: requested vm
1381 * @immediate: submit immediately to the paging queue
1382 *
1383 * Makes sure all directories are up to date.
1384 *
1385 * Returns:
1386 * 0 for success, error for failure.
1387 */
1388 int amdgpu_vm_update_pdes(struct amdgpu_device *adev,
1389 struct amdgpu_vm *vm, bool immediate)
1390 {
1391 struct amdgpu_vm_update_params params;
1392 int r;
1393
1394 if (list_empty(&vm->relocated))
1395 return 0;
1396
1397 memset(&params, 0, sizeof(params));
1398 params.adev = adev;
1399 params.vm = vm;
1400 params.immediate = immediate;
1401
1402 r = vm->update_funcs->prepare(&params, NULL, AMDGPU_SYNC_EXPLICIT);
1403 if (r)
1404 return r;
1405
1406 while (!list_empty(&vm->relocated)) {
1407 struct amdgpu_vm_bo_base *entry;
1408
1409 entry = list_first_entry(&vm->relocated,
1410 struct amdgpu_vm_bo_base,
1411 vm_status);
1412 amdgpu_vm_bo_idle(entry);
1413
1414 r = amdgpu_vm_update_pde(&params, vm, entry);
1415 if (r)
1416 goto error;
1417 }
1418
1419 r = vm->update_funcs->commit(&params, &vm->last_update);
1420 if (r)
1421 goto error;
1422 return 0;
1423
1424 error:
1425 amdgpu_vm_invalidate_pds(adev, vm);
1426 return r;
1427 }
1428
1429 /*
1430 * amdgpu_vm_update_flags - figure out flags for PTE updates
1431 *
1432 * Make sure to set the right flags for the PTEs at the desired level.
1433 */
1434 static void amdgpu_vm_update_flags(struct amdgpu_vm_update_params *params,
1435 struct amdgpu_bo_vm *pt, unsigned int level,
1436 uint64_t pe, uint64_t addr,
1437 unsigned int count, uint32_t incr,
1438 uint64_t flags)
1439
1440 {
1441 if (level != AMDGPU_VM_PTB) {
1442 flags |= AMDGPU_PDE_PTE;
1443 amdgpu_gmc_get_vm_pde(params->adev, level, &addr, &flags);
1444
1445 } else if (params->adev->asic_type >= CHIP_VEGA10 &&
1446 !(flags & AMDGPU_PTE_VALID) &&
1447 !(flags & AMDGPU_PTE_PRT)) {
1448
1449 /* Workaround for fault priority problem on GMC9 */
1450 flags |= AMDGPU_PTE_EXECUTABLE;
1451 }
1452
1453 params->vm->update_funcs->update(params, pt, pe, addr, count, incr,
1454 flags);
1455 }
1456
1457 /**
1458 * amdgpu_vm_fragment - get fragment for PTEs
1459 *
1460 * @params: see amdgpu_vm_update_params definition
1461 * @start: first PTE to handle
1462 * @end: last PTE to handle
1463 * @flags: hw mapping flags
1464 * @frag: resulting fragment size
1465 * @frag_end: end of this fragment
1466 *
1467 * Returns the first possible fragment for the start and end address.
1468 */
1469 static void amdgpu_vm_fragment(struct amdgpu_vm_update_params *params,
1470 uint64_t start, uint64_t end, uint64_t flags,
1471 unsigned int *frag, uint64_t *frag_end)
1472 {
1473 /**
1474 * The MC L1 TLB supports variable sized pages, based on a fragment
1475 * field in the PTE. When this field is set to a non-zero value, page
1476 * granularity is increased from 4KB to (1 << (12 + frag)). The PTE
1477 * flags are considered valid for all PTEs within the fragment range
1478 * and corresponding mappings are assumed to be physically contiguous.
1479 *
1480 * The L1 TLB can store a single PTE for the whole fragment,
1481 * significantly increasing the space available for translation
1482 * caching. This leads to large improvements in throughput when the
1483 * TLB is under pressure.
1484 *
1485 * The L2 TLB distributes small and large fragments into two
1486 * asymmetric partitions. The large fragment cache is significantly
1487 * larger. Thus, we try to use large fragments wherever possible.
1488 * Userspace can support this by aligning virtual base address and
1489 * allocation size to the fragment size.
1490 *
1491 * Starting with Vega10 the fragment size only controls the L1. The L2
1492 * is now directly feed with small/huge/giant pages from the walker.
1493 */
1494 unsigned max_frag;
1495
1496 if (params->adev->asic_type < CHIP_VEGA10)
1497 max_frag = params->adev->vm_manager.fragment_size;
1498 else
1499 max_frag = 31;
1500
1501 /* system pages are non continuously */
1502 if (params->pages_addr) {
1503 *frag = 0;
1504 *frag_end = end;
1505 return;
1506 }
1507
1508 /* This intentionally wraps around if no bit is set */
1509 *frag = min((unsigned)ffs(start) - 1, (unsigned)fls64(end - start) - 1);
1510 if (*frag >= max_frag) {
1511 *frag = max_frag;
1512 *frag_end = end & ~((1ULL << max_frag) - 1);
1513 } else {
1514 *frag_end = start + (1 << *frag);
1515 }
1516 }
1517
1518 /**
1519 * amdgpu_vm_update_ptes - make sure that page tables are valid
1520 *
1521 * @params: see amdgpu_vm_update_params definition
1522 * @start: start of GPU address range
1523 * @end: end of GPU address range
1524 * @dst: destination address to map to, the next dst inside the function
1525 * @flags: mapping flags
1526 *
1527 * Update the page tables in the range @start - @end.
1528 *
1529 * Returns:
1530 * 0 for success, -EINVAL for failure.
1531 */
1532 static int amdgpu_vm_update_ptes(struct amdgpu_vm_update_params *params,
1533 uint64_t start, uint64_t end,
1534 uint64_t dst, uint64_t flags)
1535 {
1536 struct amdgpu_device *adev = params->adev;
1537 struct amdgpu_vm_pt_cursor cursor;
1538 uint64_t frag_start = start, frag_end;
1539 unsigned int frag;
1540 int r;
1541
1542 /* figure out the initial fragment */
1543 amdgpu_vm_fragment(params, frag_start, end, flags, &frag, &frag_end);
1544
1545 /* walk over the address space and update the PTs */
1546 amdgpu_vm_pt_start(adev, params->vm, start, &cursor);
1547 while (cursor.pfn < end) {
1548 unsigned shift, parent_shift, mask;
1549 uint64_t incr, entry_end, pe_start;
1550 struct amdgpu_bo *pt;
1551
1552 if (!params->unlocked) {
1553 /* make sure that the page tables covering the
1554 * address range are actually allocated
1555 */
1556 r = amdgpu_vm_alloc_pts(params->adev, params->vm,
1557 &cursor, params->immediate);
1558 if (r)
1559 return r;
1560 }
1561
1562 shift = amdgpu_vm_level_shift(adev, cursor.level);
1563 parent_shift = amdgpu_vm_level_shift(adev, cursor.level - 1);
1564 if (params->unlocked) {
1565 /* Unlocked updates are only allowed on the leaves */
1566 if (amdgpu_vm_pt_descendant(adev, &cursor))
1567 continue;
1568 } else if (adev->asic_type < CHIP_VEGA10 &&
1569 (flags & AMDGPU_PTE_VALID)) {
1570 /* No huge page support before GMC v9 */
1571 if (cursor.level != AMDGPU_VM_PTB) {
1572 if (!amdgpu_vm_pt_descendant(adev, &cursor))
1573 return -ENOENT;
1574 continue;
1575 }
1576 } else if (frag < shift) {
1577 /* We can't use this level when the fragment size is
1578 * smaller than the address shift. Go to the next
1579 * child entry and try again.
1580 */
1581 if (amdgpu_vm_pt_descendant(adev, &cursor))
1582 continue;
1583 } else if (frag >= parent_shift) {
1584 /* If the fragment size is even larger than the parent
1585 * shift we should go up one level and check it again.
1586 */
1587 if (!amdgpu_vm_pt_ancestor(&cursor))
1588 return -EINVAL;
1589 continue;
1590 }
1591
1592 pt = cursor.entry->bo;
1593 if (!pt) {
1594 /* We need all PDs and PTs for mapping something, */
1595 if (flags & AMDGPU_PTE_VALID)
1596 return -ENOENT;
1597
1598 /* but unmapping something can happen at a higher
1599 * level.
1600 */
1601 if (!amdgpu_vm_pt_ancestor(&cursor))
1602 return -EINVAL;
1603
1604 pt = cursor.entry->bo;
1605 shift = parent_shift;
1606 frag_end = max(frag_end, ALIGN(frag_start + 1,
1607 1ULL << shift));
1608 }
1609
1610 /* Looks good so far, calculate parameters for the update */
1611 incr = (uint64_t)AMDGPU_GPU_PAGE_SIZE << shift;
1612 mask = amdgpu_vm_entries_mask(adev, cursor.level);
1613 pe_start = ((cursor.pfn >> shift) & mask) * 8;
1614 entry_end = ((uint64_t)mask + 1) << shift;
1615 entry_end += cursor.pfn & ~(entry_end - 1);
1616 entry_end = min(entry_end, end);
1617
1618 do {
1619 struct amdgpu_vm *vm = params->vm;
1620 uint64_t upd_end = min(entry_end, frag_end);
1621 unsigned nptes = (upd_end - frag_start) >> shift;
1622 uint64_t upd_flags = flags | AMDGPU_PTE_FRAG(frag);
1623
1624 /* This can happen when we set higher level PDs to
1625 * silent to stop fault floods.
1626 */
1627 nptes = max(nptes, 1u);
1628
1629 trace_amdgpu_vm_update_ptes(params, frag_start, upd_end,
1630 nptes, dst, incr, upd_flags,
1631 vm->task_info.pid,
1632 vm->immediate.fence_context);
1633 amdgpu_vm_update_flags(params, to_amdgpu_bo_vm(pt),
1634 cursor.level, pe_start, dst,
1635 nptes, incr, upd_flags);
1636
1637 pe_start += nptes * 8;
1638 dst += nptes * incr;
1639
1640 frag_start = upd_end;
1641 if (frag_start >= frag_end) {
1642 /* figure out the next fragment */
1643 amdgpu_vm_fragment(params, frag_start, end,
1644 flags, &frag, &frag_end);
1645 if (frag < shift)
1646 break;
1647 }
1648 } while (frag_start < entry_end);
1649
1650 if (amdgpu_vm_pt_descendant(adev, &cursor)) {
1651 /* Free all child entries.
1652 * Update the tables with the flags and addresses and free up subsequent
1653 * tables in the case of huge pages or freed up areas.
1654 * This is the maximum you can free, because all other page tables are not
1655 * completely covered by the range and so potentially still in use.
1656 */
1657 while (cursor.pfn < frag_start) {
1658 /* Make sure previous mapping is freed */
1659 if (cursor.entry->bo) {
1660 params->table_freed = true;
1661 amdgpu_vm_free_pts(adev, params->vm, &cursor);
1662 }
1663 amdgpu_vm_pt_next(adev, &cursor);
1664 }
1665
1666 } else if (frag >= shift) {
1667 /* or just move on to the next on the same level. */
1668 amdgpu_vm_pt_next(adev, &cursor);
1669 }
1670 }
1671
1672 return 0;
1673 }
1674
1675 /**
1676 * amdgpu_vm_bo_update_mapping - update a mapping in the vm page table
1677 *
1678 * @adev: amdgpu_device pointer of the VM
1679 * @bo_adev: amdgpu_device pointer of the mapped BO
1680 * @vm: requested vm
1681 * @immediate: immediate submission in a page fault
1682 * @unlocked: unlocked invalidation during MM callback
1683 * @resv: fences we need to sync to
1684 * @start: start of mapped range
1685 * @last: last mapped entry
1686 * @flags: flags for the entries
1687 * @offset: offset into nodes and pages_addr
1688 * @res: ttm_resource to map
1689 * @pages_addr: DMA addresses to use for mapping
1690 * @fence: optional resulting fence
1691 * @table_freed: return true if page table is freed
1692 *
1693 * Fill in the page table entries between @start and @last.
1694 *
1695 * Returns:
1696 * 0 for success, -EINVAL for failure.
1697 */
1698 int amdgpu_vm_bo_update_mapping(struct amdgpu_device *adev,
1699 struct amdgpu_device *bo_adev,
1700 struct amdgpu_vm *vm, bool immediate,
1701 bool unlocked, struct dma_resv *resv,
1702 uint64_t start, uint64_t last,
1703 uint64_t flags, uint64_t offset,
1704 struct ttm_resource *res,
1705 dma_addr_t *pages_addr,
1706 struct dma_fence **fence,
1707 bool *table_freed)
1708 {
1709 struct amdgpu_vm_update_params params;
1710 struct amdgpu_res_cursor cursor;
1711 enum amdgpu_sync_mode sync_mode;
1712 int r, idx;
1713
1714 if (!drm_dev_enter(&adev->ddev, &idx))
1715 return -ENODEV;
1716
1717 memset(&params, 0, sizeof(params));
1718 params.adev = adev;
1719 params.vm = vm;
1720 params.immediate = immediate;
1721 params.pages_addr = pages_addr;
1722 params.unlocked = unlocked;
1723
1724 /* Implicitly sync to command submissions in the same VM before
1725 * unmapping. Sync to moving fences before mapping.
1726 */
1727 if (!(flags & AMDGPU_PTE_VALID))
1728 sync_mode = AMDGPU_SYNC_EQ_OWNER;
1729 else
1730 sync_mode = AMDGPU_SYNC_EXPLICIT;
1731
1732 amdgpu_vm_eviction_lock(vm);
1733 if (vm->evicting) {
1734 r = -EBUSY;
1735 goto error_unlock;
1736 }
1737
1738 if (!unlocked && !dma_fence_is_signaled(vm->last_unlocked)) {
1739 struct dma_fence *tmp = dma_fence_get_stub();
1740
1741 amdgpu_bo_fence(vm->root.bo, vm->last_unlocked, true);
1742 swap(vm->last_unlocked, tmp);
1743 dma_fence_put(tmp);
1744 }
1745
1746 r = vm->update_funcs->prepare(&params, resv, sync_mode);
1747 if (r)
1748 goto error_unlock;
1749
1750 amdgpu_res_first(pages_addr ? NULL : res, offset,
1751 (last - start + 1) * AMDGPU_GPU_PAGE_SIZE, &cursor);
1752 while (cursor.remaining) {
1753 uint64_t tmp, num_entries, addr;
1754
1755 num_entries = cursor.size >> AMDGPU_GPU_PAGE_SHIFT;
1756 if (pages_addr) {
1757 bool contiguous = true;
1758
1759 if (num_entries > AMDGPU_GPU_PAGES_IN_CPU_PAGE) {
1760 uint64_t pfn = cursor.start >> PAGE_SHIFT;
1761 uint64_t count;
1762
1763 contiguous = pages_addr[pfn + 1] ==
1764 pages_addr[pfn] + PAGE_SIZE;
1765
1766 tmp = num_entries /
1767 AMDGPU_GPU_PAGES_IN_CPU_PAGE;
1768 for (count = 2; count < tmp; ++count) {
1769 uint64_t idx = pfn + count;
1770
1771 if (contiguous != (pages_addr[idx] ==
1772 pages_addr[idx - 1] + PAGE_SIZE))
1773 break;
1774 }
1775 num_entries = count *
1776 AMDGPU_GPU_PAGES_IN_CPU_PAGE;
1777 }
1778
1779 if (!contiguous) {
1780 addr = cursor.start;
1781 params.pages_addr = pages_addr;
1782 } else {
1783 addr = pages_addr[cursor.start >> PAGE_SHIFT];
1784 params.pages_addr = NULL;
1785 }
1786
1787 } else if (flags & (AMDGPU_PTE_VALID | AMDGPU_PTE_PRT)) {
1788 addr = bo_adev->vm_manager.vram_base_offset +
1789 cursor.start;
1790 } else {
1791 addr = 0;
1792 }
1793
1794 tmp = start + num_entries;
1795 r = amdgpu_vm_update_ptes(&params, start, tmp, addr, flags);
1796 if (r)
1797 goto error_unlock;
1798
1799 amdgpu_res_next(&cursor, num_entries * AMDGPU_GPU_PAGE_SIZE);
1800 start = tmp;
1801 }
1802
1803 r = vm->update_funcs->commit(&params, fence);
1804
1805 if (table_freed)
1806 *table_freed = *table_freed || params.table_freed;
1807
1808 error_unlock:
1809 amdgpu_vm_eviction_unlock(vm);
1810 drm_dev_exit(idx);
1811 return r;
1812 }
1813
1814 void amdgpu_vm_get_memory(struct amdgpu_vm *vm, uint64_t *vram_mem,
1815 uint64_t *gtt_mem, uint64_t *cpu_mem)
1816 {
1817 struct amdgpu_bo_va *bo_va, *tmp;
1818
1819 list_for_each_entry_safe(bo_va, tmp, &vm->idle, base.vm_status) {
1820 if (!bo_va->base.bo)
1821 continue;
1822 amdgpu_bo_get_memory(bo_va->base.bo, vram_mem,
1823 gtt_mem, cpu_mem);
1824 }
1825 list_for_each_entry_safe(bo_va, tmp, &vm->evicted, base.vm_status) {
1826 if (!bo_va->base.bo)
1827 continue;
1828 amdgpu_bo_get_memory(bo_va->base.bo, vram_mem,
1829 gtt_mem, cpu_mem);
1830 }
1831 list_for_each_entry_safe(bo_va, tmp, &vm->relocated, base.vm_status) {
1832 if (!bo_va->base.bo)
1833 continue;
1834 amdgpu_bo_get_memory(bo_va->base.bo, vram_mem,
1835 gtt_mem, cpu_mem);
1836 }
1837 list_for_each_entry_safe(bo_va, tmp, &vm->moved, base.vm_status) {
1838 if (!bo_va->base.bo)
1839 continue;
1840 amdgpu_bo_get_memory(bo_va->base.bo, vram_mem,
1841 gtt_mem, cpu_mem);
1842 }
1843 spin_lock(&vm->invalidated_lock);
1844 list_for_each_entry_safe(bo_va, tmp, &vm->invalidated, base.vm_status) {
1845 if (!bo_va->base.bo)
1846 continue;
1847 amdgpu_bo_get_memory(bo_va->base.bo, vram_mem,
1848 gtt_mem, cpu_mem);
1849 }
1850 list_for_each_entry_safe(bo_va, tmp, &vm->done, base.vm_status) {
1851 if (!bo_va->base.bo)
1852 continue;
1853 amdgpu_bo_get_memory(bo_va->base.bo, vram_mem,
1854 gtt_mem, cpu_mem);
1855 }
1856 spin_unlock(&vm->invalidated_lock);
1857 }
1858 /**
1859 * amdgpu_vm_bo_update - update all BO mappings in the vm page table
1860 *
1861 * @adev: amdgpu_device pointer
1862 * @bo_va: requested BO and VM object
1863 * @clear: if true clear the entries
1864 * @table_freed: return true if page table is freed
1865 *
1866 * Fill in the page table entries for @bo_va.
1867 *
1868 * Returns:
1869 * 0 for success, -EINVAL for failure.
1870 */
1871 int amdgpu_vm_bo_update(struct amdgpu_device *adev, struct amdgpu_bo_va *bo_va,
1872 bool clear, bool *table_freed)
1873 {
1874 struct amdgpu_bo *bo = bo_va->base.bo;
1875 struct amdgpu_vm *vm = bo_va->base.vm;
1876 struct amdgpu_bo_va_mapping *mapping;
1877 dma_addr_t *pages_addr = NULL;
1878 struct ttm_resource *mem;
1879 struct dma_fence **last_update;
1880 struct dma_resv *resv;
1881 uint64_t flags;
1882 struct amdgpu_device *bo_adev = adev;
1883 int r;
1884
1885 if (clear || !bo) {
1886 mem = NULL;
1887 resv = vm->root.bo->tbo.base.resv;
1888 } else {
1889 struct drm_gem_object *obj = &bo->tbo.base;
1890
1891 resv = bo->tbo.base.resv;
1892 if (obj->import_attach && bo_va->is_xgmi) {
1893 struct dma_buf *dma_buf = obj->import_attach->dmabuf;
1894 struct drm_gem_object *gobj = dma_buf->priv;
1895 struct amdgpu_bo *abo = gem_to_amdgpu_bo(gobj);
1896
1897 if (abo->tbo.resource->mem_type == TTM_PL_VRAM)
1898 bo = gem_to_amdgpu_bo(gobj);
1899 }
1900 mem = bo->tbo.resource;
1901 if (mem->mem_type == TTM_PL_TT ||
1902 mem->mem_type == AMDGPU_PL_PREEMPT)
1903 pages_addr = bo->tbo.ttm->dma_address;
1904 }
1905
1906 if (bo) {
1907 flags = amdgpu_ttm_tt_pte_flags(adev, bo->tbo.ttm, mem);
1908
1909 if (amdgpu_bo_encrypted(bo))
1910 flags |= AMDGPU_PTE_TMZ;
1911
1912 bo_adev = amdgpu_ttm_adev(bo->tbo.bdev);
1913 } else {
1914 flags = 0x0;
1915 }
1916
1917 if (clear || (bo && bo->tbo.base.resv ==
1918 vm->root.bo->tbo.base.resv))
1919 last_update = &vm->last_update;
1920 else
1921 last_update = &bo_va->last_pt_update;
1922
1923 if (!clear && bo_va->base.moved) {
1924 bo_va->base.moved = false;
1925 list_splice_init(&bo_va->valids, &bo_va->invalids);
1926
1927 } else if (bo_va->cleared != clear) {
1928 list_splice_init(&bo_va->valids, &bo_va->invalids);
1929 }
1930
1931 list_for_each_entry(mapping, &bo_va->invalids, list) {
1932 uint64_t update_flags = flags;
1933
1934 /* normally,bo_va->flags only contians READABLE and WIRTEABLE bit go here
1935 * but in case of something, we filter the flags in first place
1936 */
1937 if (!(mapping->flags & AMDGPU_PTE_READABLE))
1938 update_flags &= ~AMDGPU_PTE_READABLE;
1939 if (!(mapping->flags & AMDGPU_PTE_WRITEABLE))
1940 update_flags &= ~AMDGPU_PTE_WRITEABLE;
1941
1942 /* Apply ASIC specific mapping flags */
1943 amdgpu_gmc_get_vm_pte(adev, mapping, &update_flags);
1944
1945 trace_amdgpu_vm_bo_update(mapping);
1946
1947 r = amdgpu_vm_bo_update_mapping(adev, bo_adev, vm, false, false,
1948 resv, mapping->start,
1949 mapping->last, update_flags,
1950 mapping->offset, mem,
1951 pages_addr, last_update, table_freed);
1952 if (r)
1953 return r;
1954 }
1955
1956 /* If the BO is not in its preferred location add it back to
1957 * the evicted list so that it gets validated again on the
1958 * next command submission.
1959 */
1960 if (bo && bo->tbo.base.resv == vm->root.bo->tbo.base.resv) {
1961 uint32_t mem_type = bo->tbo.resource->mem_type;
1962
1963 if (!(bo->preferred_domains &
1964 amdgpu_mem_type_to_domain(mem_type)))
1965 amdgpu_vm_bo_evicted(&bo_va->base);
1966 else
1967 amdgpu_vm_bo_idle(&bo_va->base);
1968 } else {
1969 amdgpu_vm_bo_done(&bo_va->base);
1970 }
1971
1972 list_splice_init(&bo_va->invalids, &bo_va->valids);
1973 bo_va->cleared = clear;
1974
1975 if (trace_amdgpu_vm_bo_mapping_enabled()) {
1976 list_for_each_entry(mapping, &bo_va->valids, list)
1977 trace_amdgpu_vm_bo_mapping(mapping);
1978 }
1979
1980 return 0;
1981 }
1982
1983 /**
1984 * amdgpu_vm_update_prt_state - update the global PRT state
1985 *
1986 * @adev: amdgpu_device pointer
1987 */
1988 static void amdgpu_vm_update_prt_state(struct amdgpu_device *adev)
1989 {
1990 unsigned long flags;
1991 bool enable;
1992
1993 spin_lock_irqsave(&adev->vm_manager.prt_lock, flags);
1994 enable = !!atomic_read(&adev->vm_manager.num_prt_users);
1995 adev->gmc.gmc_funcs->set_prt(adev, enable);
1996 spin_unlock_irqrestore(&adev->vm_manager.prt_lock, flags);
1997 }
1998
1999 /**
2000 * amdgpu_vm_prt_get - add a PRT user
2001 *
2002 * @adev: amdgpu_device pointer
2003 */
2004 static void amdgpu_vm_prt_get(struct amdgpu_device *adev)
2005 {
2006 if (!adev->gmc.gmc_funcs->set_prt)
2007 return;
2008
2009 if (atomic_inc_return(&adev->vm_manager.num_prt_users) == 1)
2010 amdgpu_vm_update_prt_state(adev);
2011 }
2012
2013 /**
2014 * amdgpu_vm_prt_put - drop a PRT user
2015 *
2016 * @adev: amdgpu_device pointer
2017 */
2018 static void amdgpu_vm_prt_put(struct amdgpu_device *adev)
2019 {
2020 if (atomic_dec_return(&adev->vm_manager.num_prt_users) == 0)
2021 amdgpu_vm_update_prt_state(adev);
2022 }
2023
2024 /**
2025 * amdgpu_vm_prt_cb - callback for updating the PRT status
2026 *
2027 * @fence: fence for the callback
2028 * @_cb: the callback function
2029 */
2030 static void amdgpu_vm_prt_cb(struct dma_fence *fence, struct dma_fence_cb *_cb)
2031 {
2032 struct amdgpu_prt_cb *cb = container_of(_cb, struct amdgpu_prt_cb, cb);
2033
2034 amdgpu_vm_prt_put(cb->adev);
2035 kfree(cb);
2036 }
2037
2038 /**
2039 * amdgpu_vm_add_prt_cb - add callback for updating the PRT status
2040 *
2041 * @adev: amdgpu_device pointer
2042 * @fence: fence for the callback
2043 */
2044 static void amdgpu_vm_add_prt_cb(struct amdgpu_device *adev,
2045 struct dma_fence *fence)
2046 {
2047 struct amdgpu_prt_cb *cb;
2048
2049 if (!adev->gmc.gmc_funcs->set_prt)
2050 return;
2051
2052 cb = kmalloc(sizeof(struct amdgpu_prt_cb), GFP_KERNEL);
2053 if (!cb) {
2054 /* Last resort when we are OOM */
2055 if (fence)
2056 dma_fence_wait(fence, false);
2057
2058 amdgpu_vm_prt_put(adev);
2059 } else {
2060 cb->adev = adev;
2061 if (!fence || dma_fence_add_callback(fence, &cb->cb,
2062 amdgpu_vm_prt_cb))
2063 amdgpu_vm_prt_cb(fence, &cb->cb);
2064 }
2065 }
2066
2067 /**
2068 * amdgpu_vm_free_mapping - free a mapping
2069 *
2070 * @adev: amdgpu_device pointer
2071 * @vm: requested vm
2072 * @mapping: mapping to be freed
2073 * @fence: fence of the unmap operation
2074 *
2075 * Free a mapping and make sure we decrease the PRT usage count if applicable.
2076 */
2077 static void amdgpu_vm_free_mapping(struct amdgpu_device *adev,
2078 struct amdgpu_vm *vm,
2079 struct amdgpu_bo_va_mapping *mapping,
2080 struct dma_fence *fence)
2081 {
2082 if (mapping->flags & AMDGPU_PTE_PRT)
2083 amdgpu_vm_add_prt_cb(adev, fence);
2084 kfree(mapping);
2085 }
2086
2087 /**
2088 * amdgpu_vm_prt_fini - finish all prt mappings
2089 *
2090 * @adev: amdgpu_device pointer
2091 * @vm: requested vm
2092 *
2093 * Register a cleanup callback to disable PRT support after VM dies.
2094 */
2095 static void amdgpu_vm_prt_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm)
2096 {
2097 struct dma_resv *resv = vm->root.bo->tbo.base.resv;
2098 struct dma_fence *excl, **shared;
2099 unsigned i, shared_count;
2100 int r;
2101
2102 r = dma_resv_get_fences(resv, &excl, &shared_count, &shared);
2103 if (r) {
2104 /* Not enough memory to grab the fence list, as last resort
2105 * block for all the fences to complete.
2106 */
2107 dma_resv_wait_timeout(resv, true, false,
2108 MAX_SCHEDULE_TIMEOUT);
2109 return;
2110 }
2111
2112 /* Add a callback for each fence in the reservation object */
2113 amdgpu_vm_prt_get(adev);
2114 amdgpu_vm_add_prt_cb(adev, excl);
2115
2116 for (i = 0; i < shared_count; ++i) {
2117 amdgpu_vm_prt_get(adev);
2118 amdgpu_vm_add_prt_cb(adev, shared[i]);
2119 }
2120
2121 kfree(shared);
2122 }
2123
2124 /**
2125 * amdgpu_vm_clear_freed - clear freed BOs in the PT
2126 *
2127 * @adev: amdgpu_device pointer
2128 * @vm: requested vm
2129 * @fence: optional resulting fence (unchanged if no work needed to be done
2130 * or if an error occurred)
2131 *
2132 * Make sure all freed BOs are cleared in the PT.
2133 * PTs have to be reserved and mutex must be locked!
2134 *
2135 * Returns:
2136 * 0 for success.
2137 *
2138 */
2139 int amdgpu_vm_clear_freed(struct amdgpu_device *adev,
2140 struct amdgpu_vm *vm,
2141 struct dma_fence **fence)
2142 {
2143 struct dma_resv *resv = vm->root.bo->tbo.base.resv;
2144 struct amdgpu_bo_va_mapping *mapping;
2145 uint64_t init_pte_value = 0;
2146 struct dma_fence *f = NULL;
2147 int r;
2148
2149 while (!list_empty(&vm->freed)) {
2150 mapping = list_first_entry(&vm->freed,
2151 struct amdgpu_bo_va_mapping, list);
2152 list_del(&mapping->list);
2153
2154 if (vm->pte_support_ats &&
2155 mapping->start < AMDGPU_GMC_HOLE_START)
2156 init_pte_value = AMDGPU_PTE_DEFAULT_ATC;
2157
2158 r = amdgpu_vm_bo_update_mapping(adev, adev, vm, false, false,
2159 resv, mapping->start,
2160 mapping->last, init_pte_value,
2161 0, NULL, NULL, &f, NULL);
2162 amdgpu_vm_free_mapping(adev, vm, mapping, f);
2163 if (r) {
2164 dma_fence_put(f);
2165 return r;
2166 }
2167 }
2168
2169 if (fence && f) {
2170 dma_fence_put(*fence);
2171 *fence = f;
2172 } else {
2173 dma_fence_put(f);
2174 }
2175
2176 return 0;
2177
2178 }
2179
2180 /**
2181 * amdgpu_vm_handle_moved - handle moved BOs in the PT
2182 *
2183 * @adev: amdgpu_device pointer
2184 * @vm: requested vm
2185 *
2186 * Make sure all BOs which are moved are updated in the PTs.
2187 *
2188 * Returns:
2189 * 0 for success.
2190 *
2191 * PTs have to be reserved!
2192 */
2193 int amdgpu_vm_handle_moved(struct amdgpu_device *adev,
2194 struct amdgpu_vm *vm)
2195 {
2196 struct amdgpu_bo_va *bo_va, *tmp;
2197 struct dma_resv *resv;
2198 bool clear;
2199 int r;
2200
2201 list_for_each_entry_safe(bo_va, tmp, &vm->moved, base.vm_status) {
2202 /* Per VM BOs never need to bo cleared in the page tables */
2203 r = amdgpu_vm_bo_update(adev, bo_va, false, NULL);
2204 if (r)
2205 return r;
2206 }
2207
2208 spin_lock(&vm->invalidated_lock);
2209 while (!list_empty(&vm->invalidated)) {
2210 bo_va = list_first_entry(&vm->invalidated, struct amdgpu_bo_va,
2211 base.vm_status);
2212 resv = bo_va->base.bo->tbo.base.resv;
2213 spin_unlock(&vm->invalidated_lock);
2214
2215 /* Try to reserve the BO to avoid clearing its ptes */
2216 if (!amdgpu_vm_debug && dma_resv_trylock(resv))
2217 clear = false;
2218 /* Somebody else is using the BO right now */
2219 else
2220 clear = true;
2221
2222 r = amdgpu_vm_bo_update(adev, bo_va, clear, NULL);
2223 if (r)
2224 return r;
2225
2226 if (!clear)
2227 dma_resv_unlock(resv);
2228 spin_lock(&vm->invalidated_lock);
2229 }
2230 spin_unlock(&vm->invalidated_lock);
2231
2232 return 0;
2233 }
2234
2235 /**
2236 * amdgpu_vm_bo_add - add a bo to a specific vm
2237 *
2238 * @adev: amdgpu_device pointer
2239 * @vm: requested vm
2240 * @bo: amdgpu buffer object
2241 *
2242 * Add @bo into the requested vm.
2243 * Add @bo to the list of bos associated with the vm
2244 *
2245 * Returns:
2246 * Newly added bo_va or NULL for failure
2247 *
2248 * Object has to be reserved!
2249 */
2250 struct amdgpu_bo_va *amdgpu_vm_bo_add(struct amdgpu_device *adev,
2251 struct amdgpu_vm *vm,
2252 struct amdgpu_bo *bo)
2253 {
2254 struct amdgpu_bo_va *bo_va;
2255
2256 bo_va = kzalloc(sizeof(struct amdgpu_bo_va), GFP_KERNEL);
2257 if (bo_va == NULL) {
2258 return NULL;
2259 }
2260 amdgpu_vm_bo_base_init(&bo_va->base, vm, bo);
2261
2262 bo_va->ref_count = 1;
2263 INIT_LIST_HEAD(&bo_va->valids);
2264 INIT_LIST_HEAD(&bo_va->invalids);
2265
2266 if (!bo)
2267 return bo_va;
2268
2269 if (amdgpu_dmabuf_is_xgmi_accessible(adev, bo)) {
2270 bo_va->is_xgmi = true;
2271 /* Power up XGMI if it can be potentially used */
2272 amdgpu_xgmi_set_pstate(adev, AMDGPU_XGMI_PSTATE_MAX_VEGA20);
2273 }
2274
2275 return bo_va;
2276 }
2277
2278
2279 /**
2280 * amdgpu_vm_bo_insert_map - insert a new mapping
2281 *
2282 * @adev: amdgpu_device pointer
2283 * @bo_va: bo_va to store the address
2284 * @mapping: the mapping to insert
2285 *
2286 * Insert a new mapping into all structures.
2287 */
2288 static void amdgpu_vm_bo_insert_map(struct amdgpu_device *adev,
2289 struct amdgpu_bo_va *bo_va,
2290 struct amdgpu_bo_va_mapping *mapping)
2291 {
2292 struct amdgpu_vm *vm = bo_va->base.vm;
2293 struct amdgpu_bo *bo = bo_va->base.bo;
2294
2295 mapping->bo_va = bo_va;
2296 list_add(&mapping->list, &bo_va->invalids);
2297 amdgpu_vm_it_insert(mapping, &vm->va);
2298
2299 if (mapping->flags & AMDGPU_PTE_PRT)
2300 amdgpu_vm_prt_get(adev);
2301
2302 if (bo && bo->tbo.base.resv == vm->root.bo->tbo.base.resv &&
2303 !bo_va->base.moved) {
2304 list_move(&bo_va->base.vm_status, &vm->moved);
2305 }
2306 trace_amdgpu_vm_bo_map(bo_va, mapping);
2307 }
2308
2309 /**
2310 * amdgpu_vm_bo_map - map bo inside a vm
2311 *
2312 * @adev: amdgpu_device pointer
2313 * @bo_va: bo_va to store the address
2314 * @saddr: where to map the BO
2315 * @offset: requested offset in the BO
2316 * @size: BO size in bytes
2317 * @flags: attributes of pages (read/write/valid/etc.)
2318 *
2319 * Add a mapping of the BO at the specefied addr into the VM.
2320 *
2321 * Returns:
2322 * 0 for success, error for failure.
2323 *
2324 * Object has to be reserved and unreserved outside!
2325 */
2326 int amdgpu_vm_bo_map(struct amdgpu_device *adev,
2327 struct amdgpu_bo_va *bo_va,
2328 uint64_t saddr, uint64_t offset,
2329 uint64_t size, uint64_t flags)
2330 {
2331 struct amdgpu_bo_va_mapping *mapping, *tmp;
2332 struct amdgpu_bo *bo = bo_va->base.bo;
2333 struct amdgpu_vm *vm = bo_va->base.vm;
2334 uint64_t eaddr;
2335
2336 /* validate the parameters */
2337 if (saddr & ~PAGE_MASK || offset & ~PAGE_MASK ||
2338 size == 0 || size & ~PAGE_MASK)
2339 return -EINVAL;
2340
2341 /* make sure object fit at this offset */
2342 eaddr = saddr + size - 1;
2343 if (saddr >= eaddr ||
2344 (bo && offset + size > amdgpu_bo_size(bo)) ||
2345 (eaddr >= adev->vm_manager.max_pfn << AMDGPU_GPU_PAGE_SHIFT))
2346 return -EINVAL;
2347
2348 saddr /= AMDGPU_GPU_PAGE_SIZE;
2349 eaddr /= AMDGPU_GPU_PAGE_SIZE;
2350
2351 tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr);
2352 if (tmp) {
2353 /* bo and tmp overlap, invalid addr */
2354 dev_err(adev->dev, "bo %p va 0x%010Lx-0x%010Lx conflict with "
2355 "0x%010Lx-0x%010Lx\n", bo, saddr, eaddr,
2356 tmp->start, tmp->last + 1);
2357 return -EINVAL;
2358 }
2359
2360 mapping = kmalloc(sizeof(*mapping), GFP_KERNEL);
2361 if (!mapping)
2362 return -ENOMEM;
2363
2364 mapping->start = saddr;
2365 mapping->last = eaddr;
2366 mapping->offset = offset;
2367 mapping->flags = flags;
2368
2369 amdgpu_vm_bo_insert_map(adev, bo_va, mapping);
2370
2371 return 0;
2372 }
2373
2374 /**
2375 * amdgpu_vm_bo_replace_map - map bo inside a vm, replacing existing mappings
2376 *
2377 * @adev: amdgpu_device pointer
2378 * @bo_va: bo_va to store the address
2379 * @saddr: where to map the BO
2380 * @offset: requested offset in the BO
2381 * @size: BO size in bytes
2382 * @flags: attributes of pages (read/write/valid/etc.)
2383 *
2384 * Add a mapping of the BO at the specefied addr into the VM. Replace existing
2385 * mappings as we do so.
2386 *
2387 * Returns:
2388 * 0 for success, error for failure.
2389 *
2390 * Object has to be reserved and unreserved outside!
2391 */
2392 int amdgpu_vm_bo_replace_map(struct amdgpu_device *adev,
2393 struct amdgpu_bo_va *bo_va,
2394 uint64_t saddr, uint64_t offset,
2395 uint64_t size, uint64_t flags)
2396 {
2397 struct amdgpu_bo_va_mapping *mapping;
2398 struct amdgpu_bo *bo = bo_va->base.bo;
2399 uint64_t eaddr;
2400 int r;
2401
2402 /* validate the parameters */
2403 if (saddr & ~PAGE_MASK || offset & ~PAGE_MASK ||
2404 size == 0 || size & ~PAGE_MASK)
2405 return -EINVAL;
2406
2407 /* make sure object fit at this offset */
2408 eaddr = saddr + size - 1;
2409 if (saddr >= eaddr ||
2410 (bo && offset + size > amdgpu_bo_size(bo)) ||
2411 (eaddr >= adev->vm_manager.max_pfn << AMDGPU_GPU_PAGE_SHIFT))
2412 return -EINVAL;
2413
2414 /* Allocate all the needed memory */
2415 mapping = kmalloc(sizeof(*mapping), GFP_KERNEL);
2416 if (!mapping)
2417 return -ENOMEM;
2418
2419 r = amdgpu_vm_bo_clear_mappings(adev, bo_va->base.vm, saddr, size);
2420 if (r) {
2421 kfree(mapping);
2422 return r;
2423 }
2424
2425 saddr /= AMDGPU_GPU_PAGE_SIZE;
2426 eaddr /= AMDGPU_GPU_PAGE_SIZE;
2427
2428 mapping->start = saddr;
2429 mapping->last = eaddr;
2430 mapping->offset = offset;
2431 mapping->flags = flags;
2432
2433 amdgpu_vm_bo_insert_map(adev, bo_va, mapping);
2434
2435 return 0;
2436 }
2437
2438 /**
2439 * amdgpu_vm_bo_unmap - remove bo mapping from vm
2440 *
2441 * @adev: amdgpu_device pointer
2442 * @bo_va: bo_va to remove the address from
2443 * @saddr: where to the BO is mapped
2444 *
2445 * Remove a mapping of the BO at the specefied addr from the VM.
2446 *
2447 * Returns:
2448 * 0 for success, error for failure.
2449 *
2450 * Object has to be reserved and unreserved outside!
2451 */
2452 int amdgpu_vm_bo_unmap(struct amdgpu_device *adev,
2453 struct amdgpu_bo_va *bo_va,
2454 uint64_t saddr)
2455 {
2456 struct amdgpu_bo_va_mapping *mapping;
2457 struct amdgpu_vm *vm = bo_va->base.vm;
2458 bool valid = true;
2459
2460 saddr /= AMDGPU_GPU_PAGE_SIZE;
2461
2462 list_for_each_entry(mapping, &bo_va->valids, list) {
2463 if (mapping->start == saddr)
2464 break;
2465 }
2466
2467 if (&mapping->list == &bo_va->valids) {
2468 valid = false;
2469
2470 list_for_each_entry(mapping, &bo_va->invalids, list) {
2471 if (mapping->start == saddr)
2472 break;
2473 }
2474
2475 if (&mapping->list == &bo_va->invalids)
2476 return -ENOENT;
2477 }
2478
2479 list_del(&mapping->list);
2480 amdgpu_vm_it_remove(mapping, &vm->va);
2481 mapping->bo_va = NULL;
2482 trace_amdgpu_vm_bo_unmap(bo_va, mapping);
2483
2484 if (valid)
2485 list_add(&mapping->list, &vm->freed);
2486 else
2487 amdgpu_vm_free_mapping(adev, vm, mapping,
2488 bo_va->last_pt_update);
2489
2490 return 0;
2491 }
2492
2493 /**
2494 * amdgpu_vm_bo_clear_mappings - remove all mappings in a specific range
2495 *
2496 * @adev: amdgpu_device pointer
2497 * @vm: VM structure to use
2498 * @saddr: start of the range
2499 * @size: size of the range
2500 *
2501 * Remove all mappings in a range, split them as appropriate.
2502 *
2503 * Returns:
2504 * 0 for success, error for failure.
2505 */
2506 int amdgpu_vm_bo_clear_mappings(struct amdgpu_device *adev,
2507 struct amdgpu_vm *vm,
2508 uint64_t saddr, uint64_t size)
2509 {
2510 struct amdgpu_bo_va_mapping *before, *after, *tmp, *next;
2511 LIST_HEAD(removed);
2512 uint64_t eaddr;
2513
2514 eaddr = saddr + size - 1;
2515 saddr /= AMDGPU_GPU_PAGE_SIZE;
2516 eaddr /= AMDGPU_GPU_PAGE_SIZE;
2517
2518 /* Allocate all the needed memory */
2519 before = kzalloc(sizeof(*before), GFP_KERNEL);
2520 if (!before)
2521 return -ENOMEM;
2522 INIT_LIST_HEAD(&before->list);
2523
2524 after = kzalloc(sizeof(*after), GFP_KERNEL);
2525 if (!after) {
2526 kfree(before);
2527 return -ENOMEM;
2528 }
2529 INIT_LIST_HEAD(&after->list);
2530
2531 /* Now gather all removed mappings */
2532 tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr);
2533 while (tmp) {
2534 /* Remember mapping split at the start */
2535 if (tmp->start < saddr) {
2536 before->start = tmp->start;
2537 before->last = saddr - 1;
2538 before->offset = tmp->offset;
2539 before->flags = tmp->flags;
2540 before->bo_va = tmp->bo_va;
2541 list_add(&before->list, &tmp->bo_va->invalids);
2542 }
2543
2544 /* Remember mapping split at the end */
2545 if (tmp->last > eaddr) {
2546 after->start = eaddr + 1;
2547 after->last = tmp->last;
2548 after->offset = tmp->offset;
2549 after->offset += (after->start - tmp->start) << PAGE_SHIFT;
2550 after->flags = tmp->flags;
2551 after->bo_va = tmp->bo_va;
2552 list_add(&after->list, &tmp->bo_va->invalids);
2553 }
2554
2555 list_del(&tmp->list);
2556 list_add(&tmp->list, &removed);
2557
2558 tmp = amdgpu_vm_it_iter_next(tmp, saddr, eaddr);
2559 }
2560
2561 /* And free them up */
2562 list_for_each_entry_safe(tmp, next, &removed, list) {
2563 amdgpu_vm_it_remove(tmp, &vm->va);
2564 list_del(&tmp->list);
2565
2566 if (tmp->start < saddr)
2567 tmp->start = saddr;
2568 if (tmp->last > eaddr)
2569 tmp->last = eaddr;
2570
2571 tmp->bo_va = NULL;
2572 list_add(&tmp->list, &vm->freed);
2573 trace_amdgpu_vm_bo_unmap(NULL, tmp);
2574 }
2575
2576 /* Insert partial mapping before the range */
2577 if (!list_empty(&before->list)) {
2578 amdgpu_vm_it_insert(before, &vm->va);
2579 if (before->flags & AMDGPU_PTE_PRT)
2580 amdgpu_vm_prt_get(adev);
2581 } else {
2582 kfree(before);
2583 }
2584
2585 /* Insert partial mapping after the range */
2586 if (!list_empty(&after->list)) {
2587 amdgpu_vm_it_insert(after, &vm->va);
2588 if (after->flags & AMDGPU_PTE_PRT)
2589 amdgpu_vm_prt_get(adev);
2590 } else {
2591 kfree(after);
2592 }
2593
2594 return 0;
2595 }
2596
2597 /**
2598 * amdgpu_vm_bo_lookup_mapping - find mapping by address
2599 *
2600 * @vm: the requested VM
2601 * @addr: the address
2602 *
2603 * Find a mapping by it's address.
2604 *
2605 * Returns:
2606 * The amdgpu_bo_va_mapping matching for addr or NULL
2607 *
2608 */
2609 struct amdgpu_bo_va_mapping *amdgpu_vm_bo_lookup_mapping(struct amdgpu_vm *vm,
2610 uint64_t addr)
2611 {
2612 return amdgpu_vm_it_iter_first(&vm->va, addr, addr);
2613 }
2614
2615 /**
2616 * amdgpu_vm_bo_trace_cs - trace all reserved mappings
2617 *
2618 * @vm: the requested vm
2619 * @ticket: CS ticket
2620 *
2621 * Trace all mappings of BOs reserved during a command submission.
2622 */
2623 void amdgpu_vm_bo_trace_cs(struct amdgpu_vm *vm, struct ww_acquire_ctx *ticket)
2624 {
2625 struct amdgpu_bo_va_mapping *mapping;
2626
2627 if (!trace_amdgpu_vm_bo_cs_enabled())
2628 return;
2629
2630 for (mapping = amdgpu_vm_it_iter_first(&vm->va, 0, U64_MAX); mapping;
2631 mapping = amdgpu_vm_it_iter_next(mapping, 0, U64_MAX)) {
2632 if (mapping->bo_va && mapping->bo_va->base.bo) {
2633 struct amdgpu_bo *bo;
2634
2635 bo = mapping->bo_va->base.bo;
2636 if (dma_resv_locking_ctx(bo->tbo.base.resv) !=
2637 ticket)
2638 continue;
2639 }
2640
2641 trace_amdgpu_vm_bo_cs(mapping);
2642 }
2643 }
2644
2645 /**
2646 * amdgpu_vm_bo_rmv - remove a bo to a specific vm
2647 *
2648 * @adev: amdgpu_device pointer
2649 * @bo_va: requested bo_va
2650 *
2651 * Remove @bo_va->bo from the requested vm.
2652 *
2653 * Object have to be reserved!
2654 */
2655 void amdgpu_vm_bo_rmv(struct amdgpu_device *adev,
2656 struct amdgpu_bo_va *bo_va)
2657 {
2658 struct amdgpu_bo_va_mapping *mapping, *next;
2659 struct amdgpu_bo *bo = bo_va->base.bo;
2660 struct amdgpu_vm *vm = bo_va->base.vm;
2661 struct amdgpu_vm_bo_base **base;
2662
2663 if (bo) {
2664 if (bo->tbo.base.resv == vm->root.bo->tbo.base.resv)
2665 vm->bulk_moveable = false;
2666
2667 for (base = &bo_va->base.bo->vm_bo; *base;
2668 base = &(*base)->next) {
2669 if (*base != &bo_va->base)
2670 continue;
2671
2672 *base = bo_va->base.next;
2673 break;
2674 }
2675 }
2676
2677 spin_lock(&vm->invalidated_lock);
2678 list_del(&bo_va->base.vm_status);
2679 spin_unlock(&vm->invalidated_lock);
2680
2681 list_for_each_entry_safe(mapping, next, &bo_va->valids, list) {
2682 list_del(&mapping->list);
2683 amdgpu_vm_it_remove(mapping, &vm->va);
2684 mapping->bo_va = NULL;
2685 trace_amdgpu_vm_bo_unmap(bo_va, mapping);
2686 list_add(&mapping->list, &vm->freed);
2687 }
2688 list_for_each_entry_safe(mapping, next, &bo_va->invalids, list) {
2689 list_del(&mapping->list);
2690 amdgpu_vm_it_remove(mapping, &vm->va);
2691 amdgpu_vm_free_mapping(adev, vm, mapping,
2692 bo_va->last_pt_update);
2693 }
2694
2695 dma_fence_put(bo_va->last_pt_update);
2696
2697 if (bo && bo_va->is_xgmi)
2698 amdgpu_xgmi_set_pstate(adev, AMDGPU_XGMI_PSTATE_MIN);
2699
2700 kfree(bo_va);
2701 }
2702
2703 /**
2704 * amdgpu_vm_evictable - check if we can evict a VM
2705 *
2706 * @bo: A page table of the VM.
2707 *
2708 * Check if it is possible to evict a VM.
2709 */
2710 bool amdgpu_vm_evictable(struct amdgpu_bo *bo)
2711 {
2712 struct amdgpu_vm_bo_base *bo_base = bo->vm_bo;
2713
2714 /* Page tables of a destroyed VM can go away immediately */
2715 if (!bo_base || !bo_base->vm)
2716 return true;
2717
2718 /* Don't evict VM page tables while they are busy */
2719 if (!dma_resv_test_signaled(bo->tbo.base.resv, true))
2720 return false;
2721
2722 /* Try to block ongoing updates */
2723 if (!amdgpu_vm_eviction_trylock(bo_base->vm))
2724 return false;
2725
2726 /* Don't evict VM page tables while they are updated */
2727 if (!dma_fence_is_signaled(bo_base->vm->last_unlocked)) {
2728 amdgpu_vm_eviction_unlock(bo_base->vm);
2729 return false;
2730 }
2731
2732 bo_base->vm->evicting = true;
2733 amdgpu_vm_eviction_unlock(bo_base->vm);
2734 return true;
2735 }
2736
2737 /**
2738 * amdgpu_vm_bo_invalidate - mark the bo as invalid
2739 *
2740 * @adev: amdgpu_device pointer
2741 * @bo: amdgpu buffer object
2742 * @evicted: is the BO evicted
2743 *
2744 * Mark @bo as invalid.
2745 */
2746 void amdgpu_vm_bo_invalidate(struct amdgpu_device *adev,
2747 struct amdgpu_bo *bo, bool evicted)
2748 {
2749 struct amdgpu_vm_bo_base *bo_base;
2750
2751 /* shadow bo doesn't have bo base, its validation needs its parent */
2752 if (bo->parent && (amdgpu_bo_shadowed(bo->parent) == bo))
2753 bo = bo->parent;
2754
2755 for (bo_base = bo->vm_bo; bo_base; bo_base = bo_base->next) {
2756 struct amdgpu_vm *vm = bo_base->vm;
2757
2758 if (evicted && bo->tbo.base.resv == vm->root.bo->tbo.base.resv) {
2759 amdgpu_vm_bo_evicted(bo_base);
2760 continue;
2761 }
2762
2763 if (bo_base->moved)
2764 continue;
2765 bo_base->moved = true;
2766
2767 if (bo->tbo.type == ttm_bo_type_kernel)
2768 amdgpu_vm_bo_relocated(bo_base);
2769 else if (bo->tbo.base.resv == vm->root.bo->tbo.base.resv)
2770 amdgpu_vm_bo_moved(bo_base);
2771 else
2772 amdgpu_vm_bo_invalidated(bo_base);
2773 }
2774 }
2775
2776 /**
2777 * amdgpu_vm_get_block_size - calculate VM page table size as power of two
2778 *
2779 * @vm_size: VM size
2780 *
2781 * Returns:
2782 * VM page table as power of two
2783 */
2784 static uint32_t amdgpu_vm_get_block_size(uint64_t vm_size)
2785 {
2786 /* Total bits covered by PD + PTs */
2787 unsigned bits = ilog2(vm_size) + 18;
2788
2789 /* Make sure the PD is 4K in size up to 8GB address space.
2790 Above that split equal between PD and PTs */
2791 if (vm_size <= 8)
2792 return (bits - 9);
2793 else
2794 return ((bits + 3) / 2);
2795 }
2796
2797 /**
2798 * amdgpu_vm_adjust_size - adjust vm size, block size and fragment size
2799 *
2800 * @adev: amdgpu_device pointer
2801 * @min_vm_size: the minimum vm size in GB if it's set auto
2802 * @fragment_size_default: Default PTE fragment size
2803 * @max_level: max VMPT level
2804 * @max_bits: max address space size in bits
2805 *
2806 */
2807 void amdgpu_vm_adjust_size(struct amdgpu_device *adev, uint32_t min_vm_size,
2808 uint32_t fragment_size_default, unsigned max_level,
2809 unsigned max_bits)
2810 {
2811 unsigned int max_size = 1 << (max_bits - 30);
2812 unsigned int vm_size;
2813 uint64_t tmp;
2814
2815 /* adjust vm size first */
2816 if (amdgpu_vm_size != -1) {
2817 vm_size = amdgpu_vm_size;
2818 if (vm_size > max_size) {
2819 dev_warn(adev->dev, "VM size (%d) too large, max is %u GB\n",
2820 amdgpu_vm_size, max_size);
2821 vm_size = max_size;
2822 }
2823 } else {
2824 struct sysinfo si;
2825 unsigned int phys_ram_gb;
2826
2827 /* Optimal VM size depends on the amount of physical
2828 * RAM available. Underlying requirements and
2829 * assumptions:
2830 *
2831 * - Need to map system memory and VRAM from all GPUs
2832 * - VRAM from other GPUs not known here
2833 * - Assume VRAM <= system memory
2834 * - On GFX8 and older, VM space can be segmented for
2835 * different MTYPEs
2836 * - Need to allow room for fragmentation, guard pages etc.
2837 *
2838 * This adds up to a rough guess of system memory x3.
2839 * Round up to power of two to maximize the available
2840 * VM size with the given page table size.
2841 */
2842 si_meminfo(&si);
2843 phys_ram_gb = ((uint64_t)si.totalram * si.mem_unit +
2844 (1 << 30) - 1) >> 30;
2845 vm_size = roundup_pow_of_two(
2846 min(max(phys_ram_gb * 3, min_vm_size), max_size));
2847 }
2848
2849 adev->vm_manager.max_pfn = (uint64_t)vm_size << 18;
2850
2851 tmp = roundup_pow_of_two(adev->vm_manager.max_pfn);
2852 if (amdgpu_vm_block_size != -1)
2853 tmp >>= amdgpu_vm_block_size - 9;
2854 tmp = DIV_ROUND_UP(fls64(tmp) - 1, 9) - 1;
2855 adev->vm_manager.num_level = min(max_level, (unsigned)tmp);
2856 switch (adev->vm_manager.num_level) {
2857 case 3:
2858 adev->vm_manager.root_level = AMDGPU_VM_PDB2;
2859 break;
2860 case 2:
2861 adev->vm_manager.root_level = AMDGPU_VM_PDB1;
2862 break;
2863 case 1:
2864 adev->vm_manager.root_level = AMDGPU_VM_PDB0;
2865 break;
2866 default:
2867 dev_err(adev->dev, "VMPT only supports 2~4+1 levels\n");
2868 }
2869 /* block size depends on vm size and hw setup*/
2870 if (amdgpu_vm_block_size != -1)
2871 adev->vm_manager.block_size =
2872 min((unsigned)amdgpu_vm_block_size, max_bits
2873 - AMDGPU_GPU_PAGE_SHIFT
2874 - 9 * adev->vm_manager.num_level);
2875 else if (adev->vm_manager.num_level > 1)
2876 adev->vm_manager.block_size = 9;
2877 else
2878 adev->vm_manager.block_size = amdgpu_vm_get_block_size(tmp);
2879
2880 if (amdgpu_vm_fragment_size == -1)
2881 adev->vm_manager.fragment_size = fragment_size_default;
2882 else
2883 adev->vm_manager.fragment_size = amdgpu_vm_fragment_size;
2884
2885 DRM_INFO("vm size is %u GB, %u levels, block size is %u-bit, fragment size is %u-bit\n",
2886 vm_size, adev->vm_manager.num_level + 1,
2887 adev->vm_manager.block_size,
2888 adev->vm_manager.fragment_size);
2889 }
2890
2891 /**
2892 * amdgpu_vm_wait_idle - wait for the VM to become idle
2893 *
2894 * @vm: VM object to wait for
2895 * @timeout: timeout to wait for VM to become idle
2896 */
2897 long amdgpu_vm_wait_idle(struct amdgpu_vm *vm, long timeout)
2898 {
2899 timeout = dma_resv_wait_timeout(vm->root.bo->tbo.base.resv, true,
2900 true, timeout);
2901 if (timeout <= 0)
2902 return timeout;
2903
2904 return dma_fence_wait_timeout(vm->last_unlocked, true, timeout);
2905 }
2906
2907 /**
2908 * amdgpu_vm_init - initialize a vm instance
2909 *
2910 * @adev: amdgpu_device pointer
2911 * @vm: requested vm
2912 *
2913 * Init @vm fields.
2914 *
2915 * Returns:
2916 * 0 for success, error for failure.
2917 */
2918 int amdgpu_vm_init(struct amdgpu_device *adev, struct amdgpu_vm *vm)
2919 {
2920 struct amdgpu_bo *root_bo;
2921 struct amdgpu_bo_vm *root;
2922 int r, i;
2923
2924 vm->va = RB_ROOT_CACHED;
2925 for (i = 0; i < AMDGPU_MAX_VMHUBS; i++)
2926 vm->reserved_vmid[i] = NULL;
2927 INIT_LIST_HEAD(&vm->evicted);
2928 INIT_LIST_HEAD(&vm->relocated);
2929 INIT_LIST_HEAD(&vm->moved);
2930 INIT_LIST_HEAD(&vm->idle);
2931 INIT_LIST_HEAD(&vm->invalidated);
2932 spin_lock_init(&vm->invalidated_lock);
2933 INIT_LIST_HEAD(&vm->freed);
2934 INIT_LIST_HEAD(&vm->done);
2935
2936 /* create scheduler entities for page table updates */
2937 r = drm_sched_entity_init(&vm->immediate, DRM_SCHED_PRIORITY_NORMAL,
2938 adev->vm_manager.vm_pte_scheds,
2939 adev->vm_manager.vm_pte_num_scheds, NULL);
2940 if (r)
2941 return r;
2942
2943 r = drm_sched_entity_init(&vm->delayed, DRM_SCHED_PRIORITY_NORMAL,
2944 adev->vm_manager.vm_pte_scheds,
2945 adev->vm_manager.vm_pte_num_scheds, NULL);
2946 if (r)
2947 goto error_free_immediate;
2948
2949 vm->pte_support_ats = false;
2950 vm->is_compute_context = false;
2951
2952 vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode &
2953 AMDGPU_VM_USE_CPU_FOR_GFX);
2954
2955 DRM_DEBUG_DRIVER("VM update mode is %s\n",
2956 vm->use_cpu_for_update ? "CPU" : "SDMA");
2957 WARN_ONCE((vm->use_cpu_for_update &&
2958 !amdgpu_gmc_vram_full_visible(&adev->gmc)),
2959 "CPU update of VM recommended only for large BAR system\n");
2960
2961 if (vm->use_cpu_for_update)
2962 vm->update_funcs = &amdgpu_vm_cpu_funcs;
2963 else
2964 vm->update_funcs = &amdgpu_vm_sdma_funcs;
2965 vm->last_update = NULL;
2966 vm->last_unlocked = dma_fence_get_stub();
2967
2968 mutex_init(&vm->eviction_lock);
2969 vm->evicting = false;
2970
2971 r = amdgpu_vm_pt_create(adev, vm, adev->vm_manager.root_level,
2972 false, &root);
2973 if (r)
2974 goto error_free_delayed;
2975 root_bo = &root->bo;
2976 r = amdgpu_bo_reserve(root_bo, true);
2977 if (r)
2978 goto error_free_root;
2979
2980 r = dma_resv_reserve_shared(root_bo->tbo.base.resv, 1);
2981 if (r)
2982 goto error_unreserve;
2983
2984 amdgpu_vm_bo_base_init(&vm->root, vm, root_bo);
2985
2986 r = amdgpu_vm_clear_bo(adev, vm, root, false);
2987 if (r)
2988 goto error_unreserve;
2989
2990 amdgpu_bo_unreserve(vm->root.bo);
2991
2992 INIT_KFIFO(vm->faults);
2993
2994 return 0;
2995
2996 error_unreserve:
2997 amdgpu_bo_unreserve(vm->root.bo);
2998
2999 error_free_root:
3000 amdgpu_bo_unref(&root->shadow);
3001 amdgpu_bo_unref(&root_bo);
3002 vm->root.bo = NULL;
3003
3004 error_free_delayed:
3005 dma_fence_put(vm->last_unlocked);
3006 drm_sched_entity_destroy(&vm->delayed);
3007
3008 error_free_immediate:
3009 drm_sched_entity_destroy(&vm->immediate);
3010
3011 return r;
3012 }
3013
3014 /**
3015 * amdgpu_vm_check_clean_reserved - check if a VM is clean
3016 *
3017 * @adev: amdgpu_device pointer
3018 * @vm: the VM to check
3019 *
3020 * check all entries of the root PD, if any subsequent PDs are allocated,
3021 * it means there are page table creating and filling, and is no a clean
3022 * VM
3023 *
3024 * Returns:
3025 * 0 if this VM is clean
3026 */
3027 static int amdgpu_vm_check_clean_reserved(struct amdgpu_device *adev,
3028 struct amdgpu_vm *vm)
3029 {
3030 enum amdgpu_vm_level root = adev->vm_manager.root_level;
3031 unsigned int entries = amdgpu_vm_num_entries(adev, root);
3032 unsigned int i = 0;
3033
3034 for (i = 0; i < entries; i++) {
3035 if (to_amdgpu_bo_vm(vm->root.bo)->entries[i].bo)
3036 return -EINVAL;
3037 }
3038
3039 return 0;
3040 }
3041
3042 /**
3043 * amdgpu_vm_make_compute - Turn a GFX VM into a compute VM
3044 *
3045 * @adev: amdgpu_device pointer
3046 * @vm: requested vm
3047 *
3048 * This only works on GFX VMs that don't have any BOs added and no
3049 * page tables allocated yet.
3050 *
3051 * Changes the following VM parameters:
3052 * - use_cpu_for_update
3053 * - pte_supports_ats
3054 *
3055 * Reinitializes the page directory to reflect the changed ATS
3056 * setting.
3057 *
3058 * Returns:
3059 * 0 for success, -errno for errors.
3060 */
3061 int amdgpu_vm_make_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm)
3062 {
3063 bool pte_support_ats = (adev->asic_type == CHIP_RAVEN);
3064 int r;
3065
3066 r = amdgpu_bo_reserve(vm->root.bo, true);
3067 if (r)
3068 return r;
3069
3070 /* Sanity checks */
3071 r = amdgpu_vm_check_clean_reserved(adev, vm);
3072 if (r)
3073 goto unreserve_bo;
3074
3075 /* Check if PD needs to be reinitialized and do it before
3076 * changing any other state, in case it fails.
3077 */
3078 if (pte_support_ats != vm->pte_support_ats) {
3079 vm->pte_support_ats = pte_support_ats;
3080 r = amdgpu_vm_clear_bo(adev, vm,
3081 to_amdgpu_bo_vm(vm->root.bo),
3082 false);
3083 if (r)
3084 goto unreserve_bo;
3085 }
3086
3087 /* Update VM state */
3088 vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode &
3089 AMDGPU_VM_USE_CPU_FOR_COMPUTE);
3090 DRM_DEBUG_DRIVER("VM update mode is %s\n",
3091 vm->use_cpu_for_update ? "CPU" : "SDMA");
3092 WARN_ONCE((vm->use_cpu_for_update &&
3093 !amdgpu_gmc_vram_full_visible(&adev->gmc)),
3094 "CPU update of VM recommended only for large BAR system\n");
3095
3096 if (vm->use_cpu_for_update) {
3097 /* Sync with last SDMA update/clear before switching to CPU */
3098 r = amdgpu_bo_sync_wait(vm->root.bo,
3099 AMDGPU_FENCE_OWNER_UNDEFINED, true);
3100 if (r)
3101 goto unreserve_bo;
3102
3103 vm->update_funcs = &amdgpu_vm_cpu_funcs;
3104 } else {
3105 vm->update_funcs = &amdgpu_vm_sdma_funcs;
3106 }
3107 dma_fence_put(vm->last_update);
3108 vm->last_update = NULL;
3109 vm->is_compute_context = true;
3110
3111 /* Free the shadow bo for compute VM */
3112 amdgpu_bo_unref(&to_amdgpu_bo_vm(vm->root.bo)->shadow);
3113
3114 goto unreserve_bo;
3115
3116 unreserve_bo:
3117 amdgpu_bo_unreserve(vm->root.bo);
3118 return r;
3119 }
3120
3121 /**
3122 * amdgpu_vm_release_compute - release a compute vm
3123 * @adev: amdgpu_device pointer
3124 * @vm: a vm turned into compute vm by calling amdgpu_vm_make_compute
3125 *
3126 * This is a correspondant of amdgpu_vm_make_compute. It decouples compute
3127 * pasid from vm. Compute should stop use of vm after this call.
3128 */
3129 void amdgpu_vm_release_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm)
3130 {
3131 amdgpu_vm_set_pasid(adev, vm, 0);
3132 vm->is_compute_context = false;
3133 }
3134
3135 /**
3136 * amdgpu_vm_fini - tear down a vm instance
3137 *
3138 * @adev: amdgpu_device pointer
3139 * @vm: requested vm
3140 *
3141 * Tear down @vm.
3142 * Unbind the VM and remove all bos from the vm bo list
3143 */
3144 void amdgpu_vm_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm)
3145 {
3146 struct amdgpu_bo_va_mapping *mapping, *tmp;
3147 bool prt_fini_needed = !!adev->gmc.gmc_funcs->set_prt;
3148 struct amdgpu_bo *root;
3149 int i;
3150
3151 amdgpu_amdkfd_gpuvm_destroy_cb(adev, vm);
3152
3153 root = amdgpu_bo_ref(vm->root.bo);
3154 amdgpu_bo_reserve(root, true);
3155 amdgpu_vm_set_pasid(adev, vm, 0);
3156 dma_fence_wait(vm->last_unlocked, false);
3157 dma_fence_put(vm->last_unlocked);
3158
3159 list_for_each_entry_safe(mapping, tmp, &vm->freed, list) {
3160 if (mapping->flags & AMDGPU_PTE_PRT && prt_fini_needed) {
3161 amdgpu_vm_prt_fini(adev, vm);
3162 prt_fini_needed = false;
3163 }
3164
3165 list_del(&mapping->list);
3166 amdgpu_vm_free_mapping(adev, vm, mapping, NULL);
3167 }
3168
3169 amdgpu_vm_free_pts(adev, vm, NULL);
3170 amdgpu_bo_unreserve(root);
3171 amdgpu_bo_unref(&root);
3172 WARN_ON(vm->root.bo);
3173
3174 drm_sched_entity_destroy(&vm->immediate);
3175 drm_sched_entity_destroy(&vm->delayed);
3176
3177 if (!RB_EMPTY_ROOT(&vm->va.rb_root)) {
3178 dev_err(adev->dev, "still active bo inside vm\n");
3179 }
3180 rbtree_postorder_for_each_entry_safe(mapping, tmp,
3181 &vm->va.rb_root, rb) {
3182 /* Don't remove the mapping here, we don't want to trigger a
3183 * rebalance and the tree is about to be destroyed anyway.
3184 */
3185 list_del(&mapping->list);
3186 kfree(mapping);
3187 }
3188
3189 dma_fence_put(vm->last_update);
3190 for (i = 0; i < AMDGPU_MAX_VMHUBS; i++)
3191 amdgpu_vmid_free_reserved(adev, vm, i);
3192 }
3193
3194 /**
3195 * amdgpu_vm_manager_init - init the VM manager
3196 *
3197 * @adev: amdgpu_device pointer
3198 *
3199 * Initialize the VM manager structures
3200 */
3201 void amdgpu_vm_manager_init(struct amdgpu_device *adev)
3202 {
3203 unsigned i;
3204
3205 /* Concurrent flushes are only possible starting with Vega10 and
3206 * are broken on Navi10 and Navi14.
3207 */
3208 adev->vm_manager.concurrent_flush = !(adev->asic_type < CHIP_VEGA10 ||
3209 adev->asic_type == CHIP_NAVI10 ||
3210 adev->asic_type == CHIP_NAVI14);
3211 amdgpu_vmid_mgr_init(adev);
3212
3213 adev->vm_manager.fence_context =
3214 dma_fence_context_alloc(AMDGPU_MAX_RINGS);
3215 for (i = 0; i < AMDGPU_MAX_RINGS; ++i)
3216 adev->vm_manager.seqno[i] = 0;
3217
3218 spin_lock_init(&adev->vm_manager.prt_lock);
3219 atomic_set(&adev->vm_manager.num_prt_users, 0);
3220
3221 /* If not overridden by the user, by default, only in large BAR systems
3222 * Compute VM tables will be updated by CPU
3223 */
3224 #ifdef CONFIG_X86_64
3225 if (amdgpu_vm_update_mode == -1) {
3226 if (amdgpu_gmc_vram_full_visible(&adev->gmc))
3227 adev->vm_manager.vm_update_mode =
3228 AMDGPU_VM_USE_CPU_FOR_COMPUTE;
3229 else
3230 adev->vm_manager.vm_update_mode = 0;
3231 } else
3232 adev->vm_manager.vm_update_mode = amdgpu_vm_update_mode;
3233 #else
3234 adev->vm_manager.vm_update_mode = 0;
3235 #endif
3236
3237 xa_init_flags(&adev->vm_manager.pasids, XA_FLAGS_LOCK_IRQ);
3238 }
3239
3240 /**
3241 * amdgpu_vm_manager_fini - cleanup VM manager
3242 *
3243 * @adev: amdgpu_device pointer
3244 *
3245 * Cleanup the VM manager and free resources.
3246 */
3247 void amdgpu_vm_manager_fini(struct amdgpu_device *adev)
3248 {
3249 WARN_ON(!xa_empty(&adev->vm_manager.pasids));
3250 xa_destroy(&adev->vm_manager.pasids);
3251
3252 amdgpu_vmid_mgr_fini(adev);
3253 }
3254
3255 /**
3256 * amdgpu_vm_ioctl - Manages VMID reservation for vm hubs.
3257 *
3258 * @dev: drm device pointer
3259 * @data: drm_amdgpu_vm
3260 * @filp: drm file pointer
3261 *
3262 * Returns:
3263 * 0 for success, -errno for errors.
3264 */
3265 int amdgpu_vm_ioctl(struct drm_device *dev, void *data, struct drm_file *filp)
3266 {
3267 union drm_amdgpu_vm *args = data;
3268 struct amdgpu_device *adev = drm_to_adev(dev);
3269 struct amdgpu_fpriv *fpriv = filp->driver_priv;
3270 long timeout = msecs_to_jiffies(2000);
3271 int r;
3272
3273 switch (args->in.op) {
3274 case AMDGPU_VM_OP_RESERVE_VMID:
3275 /* We only have requirement to reserve vmid from gfxhub */
3276 r = amdgpu_vmid_alloc_reserved(adev, &fpriv->vm,
3277 AMDGPU_GFXHUB_0);
3278 if (r)
3279 return r;
3280 break;
3281 case AMDGPU_VM_OP_UNRESERVE_VMID:
3282 if (amdgpu_sriov_runtime(adev))
3283 timeout = 8 * timeout;
3284
3285 /* Wait vm idle to make sure the vmid set in SPM_VMID is
3286 * not referenced anymore.
3287 */
3288 r = amdgpu_bo_reserve(fpriv->vm.root.bo, true);
3289 if (r)
3290 return r;
3291
3292 r = amdgpu_vm_wait_idle(&fpriv->vm, timeout);
3293 if (r < 0)
3294 return r;
3295
3296 amdgpu_bo_unreserve(fpriv->vm.root.bo);
3297 amdgpu_vmid_free_reserved(adev, &fpriv->vm, AMDGPU_GFXHUB_0);
3298 break;
3299 default:
3300 return -EINVAL;
3301 }
3302
3303 return 0;
3304 }
3305
3306 /**
3307 * amdgpu_vm_get_task_info - Extracts task info for a PASID.
3308 *
3309 * @adev: drm device pointer
3310 * @pasid: PASID identifier for VM
3311 * @task_info: task_info to fill.
3312 */
3313 void amdgpu_vm_get_task_info(struct amdgpu_device *adev, u32 pasid,
3314 struct amdgpu_task_info *task_info)
3315 {
3316 struct amdgpu_vm *vm;
3317 unsigned long flags;
3318
3319 xa_lock_irqsave(&adev->vm_manager.pasids, flags);
3320
3321 vm = xa_load(&adev->vm_manager.pasids, pasid);
3322 if (vm)
3323 *task_info = vm->task_info;
3324
3325 xa_unlock_irqrestore(&adev->vm_manager.pasids, flags);
3326 }
3327
3328 /**
3329 * amdgpu_vm_set_task_info - Sets VMs task info.
3330 *
3331 * @vm: vm for which to set the info
3332 */
3333 void amdgpu_vm_set_task_info(struct amdgpu_vm *vm)
3334 {
3335 if (vm->task_info.pid)
3336 return;
3337
3338 vm->task_info.pid = current->pid;
3339 get_task_comm(vm->task_info.task_name, current);
3340
3341 if (current->group_leader->mm != current->mm)
3342 return;
3343
3344 vm->task_info.tgid = current->group_leader->pid;
3345 get_task_comm(vm->task_info.process_name, current->group_leader);
3346 }
3347
3348 /**
3349 * amdgpu_vm_handle_fault - graceful handling of VM faults.
3350 * @adev: amdgpu device pointer
3351 * @pasid: PASID of the VM
3352 * @addr: Address of the fault
3353 * @write_fault: true is write fault, false is read fault
3354 *
3355 * Try to gracefully handle a VM fault. Return true if the fault was handled and
3356 * shouldn't be reported any more.
3357 */
3358 bool amdgpu_vm_handle_fault(struct amdgpu_device *adev, u32 pasid,
3359 uint64_t addr, bool write_fault)
3360 {
3361 bool is_compute_context = false;
3362 struct amdgpu_bo *root;
3363 unsigned long irqflags;
3364 uint64_t value, flags;
3365 struct amdgpu_vm *vm;
3366 int r;
3367
3368 xa_lock_irqsave(&adev->vm_manager.pasids, irqflags);
3369 vm = xa_load(&adev->vm_manager.pasids, pasid);
3370 if (vm) {
3371 root = amdgpu_bo_ref(vm->root.bo);
3372 is_compute_context = vm->is_compute_context;
3373 } else {
3374 root = NULL;
3375 }
3376 xa_unlock_irqrestore(&adev->vm_manager.pasids, irqflags);
3377
3378 if (!root)
3379 return false;
3380
3381 addr /= AMDGPU_GPU_PAGE_SIZE;
3382
3383 if (is_compute_context &&
3384 !svm_range_restore_pages(adev, pasid, addr, write_fault)) {
3385 amdgpu_bo_unref(&root);
3386 return true;
3387 }
3388
3389 r = amdgpu_bo_reserve(root, true);
3390 if (r)
3391 goto error_unref;
3392
3393 /* Double check that the VM still exists */
3394 xa_lock_irqsave(&adev->vm_manager.pasids, irqflags);
3395 vm = xa_load(&adev->vm_manager.pasids, pasid);
3396 if (vm && vm->root.bo != root)
3397 vm = NULL;
3398 xa_unlock_irqrestore(&adev->vm_manager.pasids, irqflags);
3399 if (!vm)
3400 goto error_unlock;
3401
3402 flags = AMDGPU_PTE_VALID | AMDGPU_PTE_SNOOPED |
3403 AMDGPU_PTE_SYSTEM;
3404
3405 if (is_compute_context) {
3406 /* Intentionally setting invalid PTE flag
3407 * combination to force a no-retry-fault
3408 */
3409 flags = AMDGPU_PTE_EXECUTABLE | AMDGPU_PDE_PTE |
3410 AMDGPU_PTE_TF;
3411 value = 0;
3412 } else if (amdgpu_vm_fault_stop == AMDGPU_VM_FAULT_STOP_NEVER) {
3413 /* Redirect the access to the dummy page */
3414 value = adev->dummy_page_addr;
3415 flags |= AMDGPU_PTE_EXECUTABLE | AMDGPU_PTE_READABLE |
3416 AMDGPU_PTE_WRITEABLE;
3417
3418 } else {
3419 /* Let the hw retry silently on the PTE */
3420 value = 0;
3421 }
3422
3423 r = dma_resv_reserve_shared(root->tbo.base.resv, 1);
3424 if (r) {
3425 pr_debug("failed %d to reserve fence slot\n", r);
3426 goto error_unlock;
3427 }
3428
3429 r = amdgpu_vm_bo_update_mapping(adev, adev, vm, true, false, NULL, addr,
3430 addr, flags, value, NULL, NULL, NULL,
3431 NULL);
3432 if (r)
3433 goto error_unlock;
3434
3435 r = amdgpu_vm_update_pdes(adev, vm, true);
3436
3437 error_unlock:
3438 amdgpu_bo_unreserve(root);
3439 if (r < 0)
3440 DRM_ERROR("Can't handle page fault (%d)\n", r);
3441
3442 error_unref:
3443 amdgpu_bo_unref(&root);
3444
3445 return false;
3446 }
3447
3448 #if defined(CONFIG_DEBUG_FS)
3449 /**
3450 * amdgpu_debugfs_vm_bo_info - print BO info for the VM
3451 *
3452 * @vm: Requested VM for printing BO info
3453 * @m: debugfs file
3454 *
3455 * Print BO information in debugfs file for the VM
3456 */
3457 void amdgpu_debugfs_vm_bo_info(struct amdgpu_vm *vm, struct seq_file *m)
3458 {
3459 struct amdgpu_bo_va *bo_va, *tmp;
3460 u64 total_idle = 0;
3461 u64 total_evicted = 0;
3462 u64 total_relocated = 0;
3463 u64 total_moved = 0;
3464 u64 total_invalidated = 0;
3465 u64 total_done = 0;
3466 unsigned int total_idle_objs = 0;
3467 unsigned int total_evicted_objs = 0;
3468 unsigned int total_relocated_objs = 0;
3469 unsigned int total_moved_objs = 0;
3470 unsigned int total_invalidated_objs = 0;
3471 unsigned int total_done_objs = 0;
3472 unsigned int id = 0;
3473
3474 seq_puts(m, "\tIdle BOs:\n");
3475 list_for_each_entry_safe(bo_va, tmp, &vm->idle, base.vm_status) {
3476 if (!bo_va->base.bo)
3477 continue;
3478 total_idle += amdgpu_bo_print_info(id++, bo_va->base.bo, m);
3479 }
3480 total_idle_objs = id;
3481 id = 0;
3482
3483 seq_puts(m, "\tEvicted BOs:\n");
3484 list_for_each_entry_safe(bo_va, tmp, &vm->evicted, base.vm_status) {
3485 if (!bo_va->base.bo)
3486 continue;
3487 total_evicted += amdgpu_bo_print_info(id++, bo_va->base.bo, m);
3488 }
3489 total_evicted_objs = id;
3490 id = 0;
3491
3492 seq_puts(m, "\tRelocated BOs:\n");
3493 list_for_each_entry_safe(bo_va, tmp, &vm->relocated, base.vm_status) {
3494 if (!bo_va->base.bo)
3495 continue;
3496 total_relocated += amdgpu_bo_print_info(id++, bo_va->base.bo, m);
3497 }
3498 total_relocated_objs = id;
3499 id = 0;
3500
3501 seq_puts(m, "\tMoved BOs:\n");
3502 list_for_each_entry_safe(bo_va, tmp, &vm->moved, base.vm_status) {
3503 if (!bo_va->base.bo)
3504 continue;
3505 total_moved += amdgpu_bo_print_info(id++, bo_va->base.bo, m);
3506 }
3507 total_moved_objs = id;
3508 id = 0;
3509
3510 seq_puts(m, "\tInvalidated BOs:\n");
3511 spin_lock(&vm->invalidated_lock);
3512 list_for_each_entry_safe(bo_va, tmp, &vm->invalidated, base.vm_status) {
3513 if (!bo_va->base.bo)
3514 continue;
3515 total_invalidated += amdgpu_bo_print_info(id++, bo_va->base.bo, m);
3516 }
3517 total_invalidated_objs = id;
3518 id = 0;
3519
3520 seq_puts(m, "\tDone BOs:\n");
3521 list_for_each_entry_safe(bo_va, tmp, &vm->done, base.vm_status) {
3522 if (!bo_va->base.bo)
3523 continue;
3524 total_done += amdgpu_bo_print_info(id++, bo_va->base.bo, m);
3525 }
3526 spin_unlock(&vm->invalidated_lock);
3527 total_done_objs = id;
3528
3529 seq_printf(m, "\tTotal idle size: %12lld\tobjs:\t%d\n", total_idle,
3530 total_idle_objs);
3531 seq_printf(m, "\tTotal evicted size: %12lld\tobjs:\t%d\n", total_evicted,
3532 total_evicted_objs);
3533 seq_printf(m, "\tTotal relocated size: %12lld\tobjs:\t%d\n", total_relocated,
3534 total_relocated_objs);
3535 seq_printf(m, "\tTotal moved size: %12lld\tobjs:\t%d\n", total_moved,
3536 total_moved_objs);
3537 seq_printf(m, "\tTotal invalidated size: %12lld\tobjs:\t%d\n", total_invalidated,
3538 total_invalidated_objs);
3539 seq_printf(m, "\tTotal done size: %12lld\tobjs:\t%d\n", total_done,
3540 total_done_objs);
3541 }
3542 #endif