]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/gpu/drm/amd/amdgpu/amdgpu_vm.c
lib/interval_tree: fast overlap detection
[mirror_ubuntu-jammy-kernel.git] / drivers / gpu / drm / amd / amdgpu / amdgpu_vm.c
1 /*
2 * Copyright 2008 Advanced Micro Devices, Inc.
3 * Copyright 2008 Red Hat Inc.
4 * Copyright 2009 Jerome Glisse.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22 * OTHER DEALINGS IN THE SOFTWARE.
23 *
24 * Authors: Dave Airlie
25 * Alex Deucher
26 * Jerome Glisse
27 */
28 #include <linux/dma-fence-array.h>
29 #include <linux/interval_tree_generic.h>
30 #include <drm/drmP.h>
31 #include <drm/amdgpu_drm.h>
32 #include "amdgpu.h"
33 #include "amdgpu_trace.h"
34
35 /*
36 * GPUVM
37 * GPUVM is similar to the legacy gart on older asics, however
38 * rather than there being a single global gart table
39 * for the entire GPU, there are multiple VM page tables active
40 * at any given time. The VM page tables can contain a mix
41 * vram pages and system memory pages and system memory pages
42 * can be mapped as snooped (cached system pages) or unsnooped
43 * (uncached system pages).
44 * Each VM has an ID associated with it and there is a page table
45 * associated with each VMID. When execting a command buffer,
46 * the kernel tells the the ring what VMID to use for that command
47 * buffer. VMIDs are allocated dynamically as commands are submitted.
48 * The userspace drivers maintain their own address space and the kernel
49 * sets up their pages tables accordingly when they submit their
50 * command buffers and a VMID is assigned.
51 * Cayman/Trinity support up to 8 active VMs at any given time;
52 * SI supports 16.
53 */
54
55 #define START(node) ((node)->start)
56 #define LAST(node) ((node)->last)
57
58 INTERVAL_TREE_DEFINE(struct amdgpu_bo_va_mapping, rb, uint64_t, __subtree_last,
59 START, LAST, static, amdgpu_vm_it)
60
61 #undef START
62 #undef LAST
63
64 /* Local structure. Encapsulate some VM table update parameters to reduce
65 * the number of function parameters
66 */
67 struct amdgpu_pte_update_params {
68 /* amdgpu device we do this update for */
69 struct amdgpu_device *adev;
70 /* optional amdgpu_vm we do this update for */
71 struct amdgpu_vm *vm;
72 /* address where to copy page table entries from */
73 uint64_t src;
74 /* indirect buffer to fill with commands */
75 struct amdgpu_ib *ib;
76 /* Function which actually does the update */
77 void (*func)(struct amdgpu_pte_update_params *params, uint64_t pe,
78 uint64_t addr, unsigned count, uint32_t incr,
79 uint64_t flags);
80 /* The next two are used during VM update by CPU
81 * DMA addresses to use for mapping
82 * Kernel pointer of PD/PT BO that needs to be updated
83 */
84 dma_addr_t *pages_addr;
85 void *kptr;
86 };
87
88 /* Helper to disable partial resident texture feature from a fence callback */
89 struct amdgpu_prt_cb {
90 struct amdgpu_device *adev;
91 struct dma_fence_cb cb;
92 };
93
94 /**
95 * amdgpu_vm_num_entries - return the number of entries in a PD/PT
96 *
97 * @adev: amdgpu_device pointer
98 *
99 * Calculate the number of entries in a page directory or page table.
100 */
101 static unsigned amdgpu_vm_num_entries(struct amdgpu_device *adev,
102 unsigned level)
103 {
104 if (level == 0)
105 /* For the root directory */
106 return adev->vm_manager.max_pfn >>
107 (adev->vm_manager.block_size *
108 adev->vm_manager.num_level);
109 else if (level == adev->vm_manager.num_level)
110 /* For the page tables on the leaves */
111 return AMDGPU_VM_PTE_COUNT(adev);
112 else
113 /* Everything in between */
114 return 1 << adev->vm_manager.block_size;
115 }
116
117 /**
118 * amdgpu_vm_bo_size - returns the size of the BOs in bytes
119 *
120 * @adev: amdgpu_device pointer
121 *
122 * Calculate the size of the BO for a page directory or page table in bytes.
123 */
124 static unsigned amdgpu_vm_bo_size(struct amdgpu_device *adev, unsigned level)
125 {
126 return AMDGPU_GPU_PAGE_ALIGN(amdgpu_vm_num_entries(adev, level) * 8);
127 }
128
129 /**
130 * amdgpu_vm_get_pd_bo - add the VM PD to a validation list
131 *
132 * @vm: vm providing the BOs
133 * @validated: head of validation list
134 * @entry: entry to add
135 *
136 * Add the page directory to the list of BOs to
137 * validate for command submission.
138 */
139 void amdgpu_vm_get_pd_bo(struct amdgpu_vm *vm,
140 struct list_head *validated,
141 struct amdgpu_bo_list_entry *entry)
142 {
143 entry->robj = vm->root.bo;
144 entry->priority = 0;
145 entry->tv.bo = &entry->robj->tbo;
146 entry->tv.shared = true;
147 entry->user_pages = NULL;
148 list_add(&entry->tv.head, validated);
149 }
150
151 /**
152 * amdgpu_vm_validate_layer - validate a single page table level
153 *
154 * @parent: parent page table level
155 * @validate: callback to do the validation
156 * @param: parameter for the validation callback
157 *
158 * Validate the page table BOs on command submission if neccessary.
159 */
160 static int amdgpu_vm_validate_level(struct amdgpu_vm_pt *parent,
161 int (*validate)(void *, struct amdgpu_bo *),
162 void *param, bool use_cpu_for_update,
163 struct ttm_bo_global *glob)
164 {
165 unsigned i;
166 int r;
167
168 if (parent->bo->shadow) {
169 struct amdgpu_bo *shadow = parent->bo->shadow;
170
171 r = amdgpu_ttm_bind(&shadow->tbo, &shadow->tbo.mem);
172 if (r)
173 return r;
174 }
175
176 if (use_cpu_for_update) {
177 r = amdgpu_bo_kmap(parent->bo, NULL);
178 if (r)
179 return r;
180 }
181
182 if (!parent->entries)
183 return 0;
184
185 for (i = 0; i <= parent->last_entry_used; ++i) {
186 struct amdgpu_vm_pt *entry = &parent->entries[i];
187
188 if (!entry->bo)
189 continue;
190
191 r = validate(param, entry->bo);
192 if (r)
193 return r;
194
195 spin_lock(&glob->lru_lock);
196 ttm_bo_move_to_lru_tail(&entry->bo->tbo);
197 if (entry->bo->shadow)
198 ttm_bo_move_to_lru_tail(&entry->bo->shadow->tbo);
199 spin_unlock(&glob->lru_lock);
200
201 /*
202 * Recurse into the sub directory. This is harmless because we
203 * have only a maximum of 5 layers.
204 */
205 r = amdgpu_vm_validate_level(entry, validate, param,
206 use_cpu_for_update, glob);
207 if (r)
208 return r;
209 }
210
211 return r;
212 }
213
214 /**
215 * amdgpu_vm_validate_pt_bos - validate the page table BOs
216 *
217 * @adev: amdgpu device pointer
218 * @vm: vm providing the BOs
219 * @validate: callback to do the validation
220 * @param: parameter for the validation callback
221 *
222 * Validate the page table BOs on command submission if neccessary.
223 */
224 int amdgpu_vm_validate_pt_bos(struct amdgpu_device *adev, struct amdgpu_vm *vm,
225 int (*validate)(void *p, struct amdgpu_bo *bo),
226 void *param)
227 {
228 uint64_t num_evictions;
229
230 /* We only need to validate the page tables
231 * if they aren't already valid.
232 */
233 num_evictions = atomic64_read(&adev->num_evictions);
234 if (num_evictions == vm->last_eviction_counter)
235 return 0;
236
237 return amdgpu_vm_validate_level(&vm->root, validate, param,
238 vm->use_cpu_for_update,
239 adev->mman.bdev.glob);
240 }
241
242 /**
243 * amdgpu_vm_alloc_levels - allocate the PD/PT levels
244 *
245 * @adev: amdgpu_device pointer
246 * @vm: requested vm
247 * @saddr: start of the address range
248 * @eaddr: end of the address range
249 *
250 * Make sure the page directories and page tables are allocated
251 */
252 static int amdgpu_vm_alloc_levels(struct amdgpu_device *adev,
253 struct amdgpu_vm *vm,
254 struct amdgpu_vm_pt *parent,
255 uint64_t saddr, uint64_t eaddr,
256 unsigned level)
257 {
258 unsigned shift = (adev->vm_manager.num_level - level) *
259 adev->vm_manager.block_size;
260 unsigned pt_idx, from, to;
261 int r;
262 u64 flags;
263 uint64_t init_value = 0;
264
265 if (!parent->entries) {
266 unsigned num_entries = amdgpu_vm_num_entries(adev, level);
267
268 parent->entries = kvmalloc_array(num_entries,
269 sizeof(struct amdgpu_vm_pt),
270 GFP_KERNEL | __GFP_ZERO);
271 if (!parent->entries)
272 return -ENOMEM;
273 memset(parent->entries, 0 , sizeof(struct amdgpu_vm_pt));
274 }
275
276 from = saddr >> shift;
277 to = eaddr >> shift;
278 if (from >= amdgpu_vm_num_entries(adev, level) ||
279 to >= amdgpu_vm_num_entries(adev, level))
280 return -EINVAL;
281
282 if (to > parent->last_entry_used)
283 parent->last_entry_used = to;
284
285 ++level;
286 saddr = saddr & ((1 << shift) - 1);
287 eaddr = eaddr & ((1 << shift) - 1);
288
289 flags = AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS |
290 AMDGPU_GEM_CREATE_VRAM_CLEARED;
291 if (vm->use_cpu_for_update)
292 flags |= AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
293 else
294 flags |= (AMDGPU_GEM_CREATE_NO_CPU_ACCESS |
295 AMDGPU_GEM_CREATE_SHADOW);
296
297 if (vm->pte_support_ats) {
298 init_value = AMDGPU_PTE_SYSTEM;
299 if (level != adev->vm_manager.num_level - 1)
300 init_value |= AMDGPU_PDE_PTE;
301 }
302
303 /* walk over the address space and allocate the page tables */
304 for (pt_idx = from; pt_idx <= to; ++pt_idx) {
305 struct reservation_object *resv = vm->root.bo->tbo.resv;
306 struct amdgpu_vm_pt *entry = &parent->entries[pt_idx];
307 struct amdgpu_bo *pt;
308
309 if (!entry->bo) {
310 r = amdgpu_bo_create(adev,
311 amdgpu_vm_bo_size(adev, level),
312 AMDGPU_GPU_PAGE_SIZE, true,
313 AMDGPU_GEM_DOMAIN_VRAM,
314 flags,
315 NULL, resv, init_value, &pt);
316 if (r)
317 return r;
318
319 if (vm->use_cpu_for_update) {
320 r = amdgpu_bo_kmap(pt, NULL);
321 if (r) {
322 amdgpu_bo_unref(&pt);
323 return r;
324 }
325 }
326
327 /* Keep a reference to the root directory to avoid
328 * freeing them up in the wrong order.
329 */
330 pt->parent = amdgpu_bo_ref(vm->root.bo);
331
332 entry->bo = pt;
333 entry->addr = 0;
334 }
335
336 if (level < adev->vm_manager.num_level) {
337 uint64_t sub_saddr = (pt_idx == from) ? saddr : 0;
338 uint64_t sub_eaddr = (pt_idx == to) ? eaddr :
339 ((1 << shift) - 1);
340 r = amdgpu_vm_alloc_levels(adev, vm, entry, sub_saddr,
341 sub_eaddr, level);
342 if (r)
343 return r;
344 }
345 }
346
347 return 0;
348 }
349
350 /**
351 * amdgpu_vm_alloc_pts - Allocate page tables.
352 *
353 * @adev: amdgpu_device pointer
354 * @vm: VM to allocate page tables for
355 * @saddr: Start address which needs to be allocated
356 * @size: Size from start address we need.
357 *
358 * Make sure the page tables are allocated.
359 */
360 int amdgpu_vm_alloc_pts(struct amdgpu_device *adev,
361 struct amdgpu_vm *vm,
362 uint64_t saddr, uint64_t size)
363 {
364 uint64_t last_pfn;
365 uint64_t eaddr;
366
367 /* validate the parameters */
368 if (saddr & AMDGPU_GPU_PAGE_MASK || size & AMDGPU_GPU_PAGE_MASK)
369 return -EINVAL;
370
371 eaddr = saddr + size - 1;
372 last_pfn = eaddr / AMDGPU_GPU_PAGE_SIZE;
373 if (last_pfn >= adev->vm_manager.max_pfn) {
374 dev_err(adev->dev, "va above limit (0x%08llX >= 0x%08llX)\n",
375 last_pfn, adev->vm_manager.max_pfn);
376 return -EINVAL;
377 }
378
379 saddr /= AMDGPU_GPU_PAGE_SIZE;
380 eaddr /= AMDGPU_GPU_PAGE_SIZE;
381
382 return amdgpu_vm_alloc_levels(adev, vm, &vm->root, saddr, eaddr, 0);
383 }
384
385 /**
386 * amdgpu_vm_had_gpu_reset - check if reset occured since last use
387 *
388 * @adev: amdgpu_device pointer
389 * @id: VMID structure
390 *
391 * Check if GPU reset occured since last use of the VMID.
392 */
393 static bool amdgpu_vm_had_gpu_reset(struct amdgpu_device *adev,
394 struct amdgpu_vm_id *id)
395 {
396 return id->current_gpu_reset_count !=
397 atomic_read(&adev->gpu_reset_counter);
398 }
399
400 static bool amdgpu_vm_reserved_vmid_ready(struct amdgpu_vm *vm, unsigned vmhub)
401 {
402 return !!vm->reserved_vmid[vmhub];
403 }
404
405 /* idr_mgr->lock must be held */
406 static int amdgpu_vm_grab_reserved_vmid_locked(struct amdgpu_vm *vm,
407 struct amdgpu_ring *ring,
408 struct amdgpu_sync *sync,
409 struct dma_fence *fence,
410 struct amdgpu_job *job)
411 {
412 struct amdgpu_device *adev = ring->adev;
413 unsigned vmhub = ring->funcs->vmhub;
414 uint64_t fence_context = adev->fence_context + ring->idx;
415 struct amdgpu_vm_id *id = vm->reserved_vmid[vmhub];
416 struct amdgpu_vm_id_manager *id_mgr = &adev->vm_manager.id_mgr[vmhub];
417 struct dma_fence *updates = sync->last_vm_update;
418 int r = 0;
419 struct dma_fence *flushed, *tmp;
420 bool needs_flush = vm->use_cpu_for_update;
421
422 flushed = id->flushed_updates;
423 if ((amdgpu_vm_had_gpu_reset(adev, id)) ||
424 (atomic64_read(&id->owner) != vm->client_id) ||
425 (job->vm_pd_addr != id->pd_gpu_addr) ||
426 (updates && (!flushed || updates->context != flushed->context ||
427 dma_fence_is_later(updates, flushed))) ||
428 (!id->last_flush || (id->last_flush->context != fence_context &&
429 !dma_fence_is_signaled(id->last_flush)))) {
430 needs_flush = true;
431 /* to prevent one context starved by another context */
432 id->pd_gpu_addr = 0;
433 tmp = amdgpu_sync_peek_fence(&id->active, ring);
434 if (tmp) {
435 r = amdgpu_sync_fence(adev, sync, tmp);
436 return r;
437 }
438 }
439
440 /* Good we can use this VMID. Remember this submission as
441 * user of the VMID.
442 */
443 r = amdgpu_sync_fence(ring->adev, &id->active, fence);
444 if (r)
445 goto out;
446
447 if (updates && (!flushed || updates->context != flushed->context ||
448 dma_fence_is_later(updates, flushed))) {
449 dma_fence_put(id->flushed_updates);
450 id->flushed_updates = dma_fence_get(updates);
451 }
452 id->pd_gpu_addr = job->vm_pd_addr;
453 atomic64_set(&id->owner, vm->client_id);
454 job->vm_needs_flush = needs_flush;
455 if (needs_flush) {
456 dma_fence_put(id->last_flush);
457 id->last_flush = NULL;
458 }
459 job->vm_id = id - id_mgr->ids;
460 trace_amdgpu_vm_grab_id(vm, ring, job);
461 out:
462 return r;
463 }
464
465 /**
466 * amdgpu_vm_grab_id - allocate the next free VMID
467 *
468 * @vm: vm to allocate id for
469 * @ring: ring we want to submit job to
470 * @sync: sync object where we add dependencies
471 * @fence: fence protecting ID from reuse
472 *
473 * Allocate an id for the vm, adding fences to the sync obj as necessary.
474 */
475 int amdgpu_vm_grab_id(struct amdgpu_vm *vm, struct amdgpu_ring *ring,
476 struct amdgpu_sync *sync, struct dma_fence *fence,
477 struct amdgpu_job *job)
478 {
479 struct amdgpu_device *adev = ring->adev;
480 unsigned vmhub = ring->funcs->vmhub;
481 struct amdgpu_vm_id_manager *id_mgr = &adev->vm_manager.id_mgr[vmhub];
482 uint64_t fence_context = adev->fence_context + ring->idx;
483 struct dma_fence *updates = sync->last_vm_update;
484 struct amdgpu_vm_id *id, *idle;
485 struct dma_fence **fences;
486 unsigned i;
487 int r = 0;
488
489 mutex_lock(&id_mgr->lock);
490 if (amdgpu_vm_reserved_vmid_ready(vm, vmhub)) {
491 r = amdgpu_vm_grab_reserved_vmid_locked(vm, ring, sync, fence, job);
492 mutex_unlock(&id_mgr->lock);
493 return r;
494 }
495 fences = kmalloc_array(sizeof(void *), id_mgr->num_ids, GFP_KERNEL);
496 if (!fences) {
497 mutex_unlock(&id_mgr->lock);
498 return -ENOMEM;
499 }
500 /* Check if we have an idle VMID */
501 i = 0;
502 list_for_each_entry(idle, &id_mgr->ids_lru, list) {
503 fences[i] = amdgpu_sync_peek_fence(&idle->active, ring);
504 if (!fences[i])
505 break;
506 ++i;
507 }
508
509 /* If we can't find a idle VMID to use, wait till one becomes available */
510 if (&idle->list == &id_mgr->ids_lru) {
511 u64 fence_context = adev->vm_manager.fence_context + ring->idx;
512 unsigned seqno = ++adev->vm_manager.seqno[ring->idx];
513 struct dma_fence_array *array;
514 unsigned j;
515
516 for (j = 0; j < i; ++j)
517 dma_fence_get(fences[j]);
518
519 array = dma_fence_array_create(i, fences, fence_context,
520 seqno, true);
521 if (!array) {
522 for (j = 0; j < i; ++j)
523 dma_fence_put(fences[j]);
524 kfree(fences);
525 r = -ENOMEM;
526 goto error;
527 }
528
529
530 r = amdgpu_sync_fence(ring->adev, sync, &array->base);
531 dma_fence_put(&array->base);
532 if (r)
533 goto error;
534
535 mutex_unlock(&id_mgr->lock);
536 return 0;
537
538 }
539 kfree(fences);
540
541 job->vm_needs_flush = vm->use_cpu_for_update;
542 /* Check if we can use a VMID already assigned to this VM */
543 list_for_each_entry_reverse(id, &id_mgr->ids_lru, list) {
544 struct dma_fence *flushed;
545 bool needs_flush = vm->use_cpu_for_update;
546
547 /* Check all the prerequisites to using this VMID */
548 if (amdgpu_vm_had_gpu_reset(adev, id))
549 continue;
550
551 if (atomic64_read(&id->owner) != vm->client_id)
552 continue;
553
554 if (job->vm_pd_addr != id->pd_gpu_addr)
555 continue;
556
557 if (!id->last_flush ||
558 (id->last_flush->context != fence_context &&
559 !dma_fence_is_signaled(id->last_flush)))
560 needs_flush = true;
561
562 flushed = id->flushed_updates;
563 if (updates && (!flushed || dma_fence_is_later(updates, flushed)))
564 needs_flush = true;
565
566 /* Concurrent flushes are only possible starting with Vega10 */
567 if (adev->asic_type < CHIP_VEGA10 && needs_flush)
568 continue;
569
570 /* Good we can use this VMID. Remember this submission as
571 * user of the VMID.
572 */
573 r = amdgpu_sync_fence(ring->adev, &id->active, fence);
574 if (r)
575 goto error;
576
577 if (updates && (!flushed || dma_fence_is_later(updates, flushed))) {
578 dma_fence_put(id->flushed_updates);
579 id->flushed_updates = dma_fence_get(updates);
580 }
581
582 if (needs_flush)
583 goto needs_flush;
584 else
585 goto no_flush_needed;
586
587 };
588
589 /* Still no ID to use? Then use the idle one found earlier */
590 id = idle;
591
592 /* Remember this submission as user of the VMID */
593 r = amdgpu_sync_fence(ring->adev, &id->active, fence);
594 if (r)
595 goto error;
596
597 id->pd_gpu_addr = job->vm_pd_addr;
598 dma_fence_put(id->flushed_updates);
599 id->flushed_updates = dma_fence_get(updates);
600 atomic64_set(&id->owner, vm->client_id);
601
602 needs_flush:
603 job->vm_needs_flush = true;
604 dma_fence_put(id->last_flush);
605 id->last_flush = NULL;
606
607 no_flush_needed:
608 list_move_tail(&id->list, &id_mgr->ids_lru);
609
610 job->vm_id = id - id_mgr->ids;
611 trace_amdgpu_vm_grab_id(vm, ring, job);
612
613 error:
614 mutex_unlock(&id_mgr->lock);
615 return r;
616 }
617
618 static void amdgpu_vm_free_reserved_vmid(struct amdgpu_device *adev,
619 struct amdgpu_vm *vm,
620 unsigned vmhub)
621 {
622 struct amdgpu_vm_id_manager *id_mgr = &adev->vm_manager.id_mgr[vmhub];
623
624 mutex_lock(&id_mgr->lock);
625 if (vm->reserved_vmid[vmhub]) {
626 list_add(&vm->reserved_vmid[vmhub]->list,
627 &id_mgr->ids_lru);
628 vm->reserved_vmid[vmhub] = NULL;
629 atomic_dec(&id_mgr->reserved_vmid_num);
630 }
631 mutex_unlock(&id_mgr->lock);
632 }
633
634 static int amdgpu_vm_alloc_reserved_vmid(struct amdgpu_device *adev,
635 struct amdgpu_vm *vm,
636 unsigned vmhub)
637 {
638 struct amdgpu_vm_id_manager *id_mgr;
639 struct amdgpu_vm_id *idle;
640 int r = 0;
641
642 id_mgr = &adev->vm_manager.id_mgr[vmhub];
643 mutex_lock(&id_mgr->lock);
644 if (vm->reserved_vmid[vmhub])
645 goto unlock;
646 if (atomic_inc_return(&id_mgr->reserved_vmid_num) >
647 AMDGPU_VM_MAX_RESERVED_VMID) {
648 DRM_ERROR("Over limitation of reserved vmid\n");
649 atomic_dec(&id_mgr->reserved_vmid_num);
650 r = -EINVAL;
651 goto unlock;
652 }
653 /* Select the first entry VMID */
654 idle = list_first_entry(&id_mgr->ids_lru, struct amdgpu_vm_id, list);
655 list_del_init(&idle->list);
656 vm->reserved_vmid[vmhub] = idle;
657 mutex_unlock(&id_mgr->lock);
658
659 return 0;
660 unlock:
661 mutex_unlock(&id_mgr->lock);
662 return r;
663 }
664
665 /**
666 * amdgpu_vm_check_compute_bug - check whether asic has compute vm bug
667 *
668 * @adev: amdgpu_device pointer
669 */
670 void amdgpu_vm_check_compute_bug(struct amdgpu_device *adev)
671 {
672 const struct amdgpu_ip_block *ip_block;
673 bool has_compute_vm_bug;
674 struct amdgpu_ring *ring;
675 int i;
676
677 has_compute_vm_bug = false;
678
679 ip_block = amdgpu_get_ip_block(adev, AMD_IP_BLOCK_TYPE_GFX);
680 if (ip_block) {
681 /* Compute has a VM bug for GFX version < 7.
682 Compute has a VM bug for GFX 8 MEC firmware version < 673.*/
683 if (ip_block->version->major <= 7)
684 has_compute_vm_bug = true;
685 else if (ip_block->version->major == 8)
686 if (adev->gfx.mec_fw_version < 673)
687 has_compute_vm_bug = true;
688 }
689
690 for (i = 0; i < adev->num_rings; i++) {
691 ring = adev->rings[i];
692 if (ring->funcs->type == AMDGPU_RING_TYPE_COMPUTE)
693 /* only compute rings */
694 ring->has_compute_vm_bug = has_compute_vm_bug;
695 else
696 ring->has_compute_vm_bug = false;
697 }
698 }
699
700 bool amdgpu_vm_need_pipeline_sync(struct amdgpu_ring *ring,
701 struct amdgpu_job *job)
702 {
703 struct amdgpu_device *adev = ring->adev;
704 unsigned vmhub = ring->funcs->vmhub;
705 struct amdgpu_vm_id_manager *id_mgr = &adev->vm_manager.id_mgr[vmhub];
706 struct amdgpu_vm_id *id;
707 bool gds_switch_needed;
708 bool vm_flush_needed = job->vm_needs_flush || ring->has_compute_vm_bug;
709
710 if (job->vm_id == 0)
711 return false;
712 id = &id_mgr->ids[job->vm_id];
713 gds_switch_needed = ring->funcs->emit_gds_switch && (
714 id->gds_base != job->gds_base ||
715 id->gds_size != job->gds_size ||
716 id->gws_base != job->gws_base ||
717 id->gws_size != job->gws_size ||
718 id->oa_base != job->oa_base ||
719 id->oa_size != job->oa_size);
720
721 if (amdgpu_vm_had_gpu_reset(adev, id))
722 return true;
723
724 return vm_flush_needed || gds_switch_needed;
725 }
726
727 static bool amdgpu_vm_is_large_bar(struct amdgpu_device *adev)
728 {
729 return (adev->mc.real_vram_size == adev->mc.visible_vram_size);
730 }
731
732 /**
733 * amdgpu_vm_flush - hardware flush the vm
734 *
735 * @ring: ring to use for flush
736 * @vm_id: vmid number to use
737 * @pd_addr: address of the page directory
738 *
739 * Emit a VM flush when it is necessary.
740 */
741 int amdgpu_vm_flush(struct amdgpu_ring *ring, struct amdgpu_job *job, bool need_pipe_sync)
742 {
743 struct amdgpu_device *adev = ring->adev;
744 unsigned vmhub = ring->funcs->vmhub;
745 struct amdgpu_vm_id_manager *id_mgr = &adev->vm_manager.id_mgr[vmhub];
746 struct amdgpu_vm_id *id = &id_mgr->ids[job->vm_id];
747 bool gds_switch_needed = ring->funcs->emit_gds_switch && (
748 id->gds_base != job->gds_base ||
749 id->gds_size != job->gds_size ||
750 id->gws_base != job->gws_base ||
751 id->gws_size != job->gws_size ||
752 id->oa_base != job->oa_base ||
753 id->oa_size != job->oa_size);
754 bool vm_flush_needed = job->vm_needs_flush;
755 unsigned patch_offset = 0;
756 int r;
757
758 if (amdgpu_vm_had_gpu_reset(adev, id)) {
759 gds_switch_needed = true;
760 vm_flush_needed = true;
761 }
762
763 if (!vm_flush_needed && !gds_switch_needed && !need_pipe_sync)
764 return 0;
765
766 if (ring->funcs->init_cond_exec)
767 patch_offset = amdgpu_ring_init_cond_exec(ring);
768
769 if (need_pipe_sync)
770 amdgpu_ring_emit_pipeline_sync(ring);
771
772 if (ring->funcs->emit_vm_flush && vm_flush_needed) {
773 struct dma_fence *fence;
774
775 trace_amdgpu_vm_flush(ring, job->vm_id, job->vm_pd_addr);
776 amdgpu_ring_emit_vm_flush(ring, job->vm_id, job->vm_pd_addr);
777
778 r = amdgpu_fence_emit(ring, &fence);
779 if (r)
780 return r;
781
782 mutex_lock(&id_mgr->lock);
783 dma_fence_put(id->last_flush);
784 id->last_flush = fence;
785 id->current_gpu_reset_count = atomic_read(&adev->gpu_reset_counter);
786 mutex_unlock(&id_mgr->lock);
787 }
788
789 if (ring->funcs->emit_gds_switch && gds_switch_needed) {
790 id->gds_base = job->gds_base;
791 id->gds_size = job->gds_size;
792 id->gws_base = job->gws_base;
793 id->gws_size = job->gws_size;
794 id->oa_base = job->oa_base;
795 id->oa_size = job->oa_size;
796 amdgpu_ring_emit_gds_switch(ring, job->vm_id, job->gds_base,
797 job->gds_size, job->gws_base,
798 job->gws_size, job->oa_base,
799 job->oa_size);
800 }
801
802 if (ring->funcs->patch_cond_exec)
803 amdgpu_ring_patch_cond_exec(ring, patch_offset);
804
805 /* the double SWITCH_BUFFER here *cannot* be skipped by COND_EXEC */
806 if (ring->funcs->emit_switch_buffer) {
807 amdgpu_ring_emit_switch_buffer(ring);
808 amdgpu_ring_emit_switch_buffer(ring);
809 }
810 return 0;
811 }
812
813 /**
814 * amdgpu_vm_reset_id - reset VMID to zero
815 *
816 * @adev: amdgpu device structure
817 * @vm_id: vmid number to use
818 *
819 * Reset saved GDW, GWS and OA to force switch on next flush.
820 */
821 void amdgpu_vm_reset_id(struct amdgpu_device *adev, unsigned vmhub,
822 unsigned vmid)
823 {
824 struct amdgpu_vm_id_manager *id_mgr = &adev->vm_manager.id_mgr[vmhub];
825 struct amdgpu_vm_id *id = &id_mgr->ids[vmid];
826
827 atomic64_set(&id->owner, 0);
828 id->gds_base = 0;
829 id->gds_size = 0;
830 id->gws_base = 0;
831 id->gws_size = 0;
832 id->oa_base = 0;
833 id->oa_size = 0;
834 }
835
836 /**
837 * amdgpu_vm_reset_all_id - reset VMID to zero
838 *
839 * @adev: amdgpu device structure
840 *
841 * Reset VMID to force flush on next use
842 */
843 void amdgpu_vm_reset_all_ids(struct amdgpu_device *adev)
844 {
845 unsigned i, j;
846
847 for (i = 0; i < AMDGPU_MAX_VMHUBS; ++i) {
848 struct amdgpu_vm_id_manager *id_mgr =
849 &adev->vm_manager.id_mgr[i];
850
851 for (j = 1; j < id_mgr->num_ids; ++j)
852 amdgpu_vm_reset_id(adev, i, j);
853 }
854 }
855
856 /**
857 * amdgpu_vm_bo_find - find the bo_va for a specific vm & bo
858 *
859 * @vm: requested vm
860 * @bo: requested buffer object
861 *
862 * Find @bo inside the requested vm.
863 * Search inside the @bos vm list for the requested vm
864 * Returns the found bo_va or NULL if none is found
865 *
866 * Object has to be reserved!
867 */
868 struct amdgpu_bo_va *amdgpu_vm_bo_find(struct amdgpu_vm *vm,
869 struct amdgpu_bo *bo)
870 {
871 struct amdgpu_bo_va *bo_va;
872
873 list_for_each_entry(bo_va, &bo->va, base.bo_list) {
874 if (bo_va->base.vm == vm) {
875 return bo_va;
876 }
877 }
878 return NULL;
879 }
880
881 /**
882 * amdgpu_vm_do_set_ptes - helper to call the right asic function
883 *
884 * @params: see amdgpu_pte_update_params definition
885 * @pe: addr of the page entry
886 * @addr: dst addr to write into pe
887 * @count: number of page entries to update
888 * @incr: increase next addr by incr bytes
889 * @flags: hw access flags
890 *
891 * Traces the parameters and calls the right asic functions
892 * to setup the page table using the DMA.
893 */
894 static void amdgpu_vm_do_set_ptes(struct amdgpu_pte_update_params *params,
895 uint64_t pe, uint64_t addr,
896 unsigned count, uint32_t incr,
897 uint64_t flags)
898 {
899 trace_amdgpu_vm_set_ptes(pe, addr, count, incr, flags);
900
901 if (count < 3) {
902 amdgpu_vm_write_pte(params->adev, params->ib, pe,
903 addr | flags, count, incr);
904
905 } else {
906 amdgpu_vm_set_pte_pde(params->adev, params->ib, pe, addr,
907 count, incr, flags);
908 }
909 }
910
911 /**
912 * amdgpu_vm_do_copy_ptes - copy the PTEs from the GART
913 *
914 * @params: see amdgpu_pte_update_params definition
915 * @pe: addr of the page entry
916 * @addr: dst addr to write into pe
917 * @count: number of page entries to update
918 * @incr: increase next addr by incr bytes
919 * @flags: hw access flags
920 *
921 * Traces the parameters and calls the DMA function to copy the PTEs.
922 */
923 static void amdgpu_vm_do_copy_ptes(struct amdgpu_pte_update_params *params,
924 uint64_t pe, uint64_t addr,
925 unsigned count, uint32_t incr,
926 uint64_t flags)
927 {
928 uint64_t src = (params->src + (addr >> 12) * 8);
929
930
931 trace_amdgpu_vm_copy_ptes(pe, src, count);
932
933 amdgpu_vm_copy_pte(params->adev, params->ib, pe, src, count);
934 }
935
936 /**
937 * amdgpu_vm_map_gart - Resolve gart mapping of addr
938 *
939 * @pages_addr: optional DMA address to use for lookup
940 * @addr: the unmapped addr
941 *
942 * Look up the physical address of the page that the pte resolves
943 * to and return the pointer for the page table entry.
944 */
945 static uint64_t amdgpu_vm_map_gart(const dma_addr_t *pages_addr, uint64_t addr)
946 {
947 uint64_t result;
948
949 /* page table offset */
950 result = pages_addr[addr >> PAGE_SHIFT];
951
952 /* in case cpu page size != gpu page size*/
953 result |= addr & (~PAGE_MASK);
954
955 result &= 0xFFFFFFFFFFFFF000ULL;
956
957 return result;
958 }
959
960 /**
961 * amdgpu_vm_cpu_set_ptes - helper to update page tables via CPU
962 *
963 * @params: see amdgpu_pte_update_params definition
964 * @pe: kmap addr of the page entry
965 * @addr: dst addr to write into pe
966 * @count: number of page entries to update
967 * @incr: increase next addr by incr bytes
968 * @flags: hw access flags
969 *
970 * Write count number of PT/PD entries directly.
971 */
972 static void amdgpu_vm_cpu_set_ptes(struct amdgpu_pte_update_params *params,
973 uint64_t pe, uint64_t addr,
974 unsigned count, uint32_t incr,
975 uint64_t flags)
976 {
977 unsigned int i;
978 uint64_t value;
979
980 trace_amdgpu_vm_set_ptes(pe, addr, count, incr, flags);
981
982 for (i = 0; i < count; i++) {
983 value = params->pages_addr ?
984 amdgpu_vm_map_gart(params->pages_addr, addr) :
985 addr;
986 amdgpu_gart_set_pte_pde(params->adev, (void *)(uintptr_t)pe,
987 i, value, flags);
988 addr += incr;
989 }
990 }
991
992 static int amdgpu_vm_wait_pd(struct amdgpu_device *adev, struct amdgpu_vm *vm,
993 void *owner)
994 {
995 struct amdgpu_sync sync;
996 int r;
997
998 amdgpu_sync_create(&sync);
999 amdgpu_sync_resv(adev, &sync, vm->root.bo->tbo.resv, owner);
1000 r = amdgpu_sync_wait(&sync, true);
1001 amdgpu_sync_free(&sync);
1002
1003 return r;
1004 }
1005
1006 /*
1007 * amdgpu_vm_update_level - update a single level in the hierarchy
1008 *
1009 * @adev: amdgpu_device pointer
1010 * @vm: requested vm
1011 * @parent: parent directory
1012 *
1013 * Makes sure all entries in @parent are up to date.
1014 * Returns 0 for success, error for failure.
1015 */
1016 static int amdgpu_vm_update_level(struct amdgpu_device *adev,
1017 struct amdgpu_vm *vm,
1018 struct amdgpu_vm_pt *parent,
1019 unsigned level)
1020 {
1021 struct amdgpu_bo *shadow;
1022 struct amdgpu_ring *ring = NULL;
1023 uint64_t pd_addr, shadow_addr = 0;
1024 uint32_t incr = amdgpu_vm_bo_size(adev, level + 1);
1025 uint64_t last_pde = ~0, last_pt = ~0, last_shadow = ~0;
1026 unsigned count = 0, pt_idx, ndw = 0;
1027 struct amdgpu_job *job;
1028 struct amdgpu_pte_update_params params;
1029 struct dma_fence *fence = NULL;
1030
1031 int r;
1032
1033 if (!parent->entries)
1034 return 0;
1035
1036 memset(&params, 0, sizeof(params));
1037 params.adev = adev;
1038 shadow = parent->bo->shadow;
1039
1040 if (vm->use_cpu_for_update) {
1041 pd_addr = (unsigned long)amdgpu_bo_kptr(parent->bo);
1042 r = amdgpu_vm_wait_pd(adev, vm, AMDGPU_FENCE_OWNER_VM);
1043 if (unlikely(r))
1044 return r;
1045
1046 params.func = amdgpu_vm_cpu_set_ptes;
1047 } else {
1048 ring = container_of(vm->entity.sched, struct amdgpu_ring,
1049 sched);
1050
1051 /* padding, etc. */
1052 ndw = 64;
1053
1054 /* assume the worst case */
1055 ndw += parent->last_entry_used * 6;
1056
1057 pd_addr = amdgpu_bo_gpu_offset(parent->bo);
1058
1059 if (shadow) {
1060 shadow_addr = amdgpu_bo_gpu_offset(shadow);
1061 ndw *= 2;
1062 } else {
1063 shadow_addr = 0;
1064 }
1065
1066 r = amdgpu_job_alloc_with_ib(adev, ndw * 4, &job);
1067 if (r)
1068 return r;
1069
1070 params.ib = &job->ibs[0];
1071 params.func = amdgpu_vm_do_set_ptes;
1072 }
1073
1074
1075 /* walk over the address space and update the directory */
1076 for (pt_idx = 0; pt_idx <= parent->last_entry_used; ++pt_idx) {
1077 struct amdgpu_bo *bo = parent->entries[pt_idx].bo;
1078 uint64_t pde, pt;
1079
1080 if (bo == NULL)
1081 continue;
1082
1083 pt = amdgpu_bo_gpu_offset(bo);
1084 pt = amdgpu_gart_get_vm_pde(adev, pt);
1085 /* Don't update huge pages here */
1086 if ((parent->entries[pt_idx].addr & AMDGPU_PDE_PTE) ||
1087 parent->entries[pt_idx].addr == (pt | AMDGPU_PTE_VALID))
1088 continue;
1089
1090 parent->entries[pt_idx].addr = pt | AMDGPU_PTE_VALID;
1091
1092 pde = pd_addr + pt_idx * 8;
1093 if (((last_pde + 8 * count) != pde) ||
1094 ((last_pt + incr * count) != pt) ||
1095 (count == AMDGPU_VM_MAX_UPDATE_SIZE)) {
1096
1097 if (count) {
1098 if (shadow)
1099 params.func(&params,
1100 last_shadow,
1101 last_pt, count,
1102 incr,
1103 AMDGPU_PTE_VALID);
1104
1105 params.func(&params, last_pde,
1106 last_pt, count, incr,
1107 AMDGPU_PTE_VALID);
1108 }
1109
1110 count = 1;
1111 last_pde = pde;
1112 last_shadow = shadow_addr + pt_idx * 8;
1113 last_pt = pt;
1114 } else {
1115 ++count;
1116 }
1117 }
1118
1119 if (count) {
1120 if (vm->root.bo->shadow)
1121 params.func(&params, last_shadow, last_pt,
1122 count, incr, AMDGPU_PTE_VALID);
1123
1124 params.func(&params, last_pde, last_pt,
1125 count, incr, AMDGPU_PTE_VALID);
1126 }
1127
1128 if (!vm->use_cpu_for_update) {
1129 if (params.ib->length_dw == 0) {
1130 amdgpu_job_free(job);
1131 } else {
1132 amdgpu_ring_pad_ib(ring, params.ib);
1133 amdgpu_sync_resv(adev, &job->sync, parent->bo->tbo.resv,
1134 AMDGPU_FENCE_OWNER_VM);
1135 if (shadow)
1136 amdgpu_sync_resv(adev, &job->sync,
1137 shadow->tbo.resv,
1138 AMDGPU_FENCE_OWNER_VM);
1139
1140 WARN_ON(params.ib->length_dw > ndw);
1141 r = amdgpu_job_submit(job, ring, &vm->entity,
1142 AMDGPU_FENCE_OWNER_VM, &fence);
1143 if (r)
1144 goto error_free;
1145
1146 amdgpu_bo_fence(parent->bo, fence, true);
1147 dma_fence_put(vm->last_dir_update);
1148 vm->last_dir_update = dma_fence_get(fence);
1149 dma_fence_put(fence);
1150 }
1151 }
1152 /*
1153 * Recurse into the subdirectories. This recursion is harmless because
1154 * we only have a maximum of 5 layers.
1155 */
1156 for (pt_idx = 0; pt_idx <= parent->last_entry_used; ++pt_idx) {
1157 struct amdgpu_vm_pt *entry = &parent->entries[pt_idx];
1158
1159 if (!entry->bo)
1160 continue;
1161
1162 r = amdgpu_vm_update_level(adev, vm, entry, level + 1);
1163 if (r)
1164 return r;
1165 }
1166
1167 return 0;
1168
1169 error_free:
1170 amdgpu_job_free(job);
1171 return r;
1172 }
1173
1174 /*
1175 * amdgpu_vm_invalidate_level - mark all PD levels as invalid
1176 *
1177 * @parent: parent PD
1178 *
1179 * Mark all PD level as invalid after an error.
1180 */
1181 static void amdgpu_vm_invalidate_level(struct amdgpu_vm_pt *parent)
1182 {
1183 unsigned pt_idx;
1184
1185 /*
1186 * Recurse into the subdirectories. This recursion is harmless because
1187 * we only have a maximum of 5 layers.
1188 */
1189 for (pt_idx = 0; pt_idx <= parent->last_entry_used; ++pt_idx) {
1190 struct amdgpu_vm_pt *entry = &parent->entries[pt_idx];
1191
1192 if (!entry->bo)
1193 continue;
1194
1195 entry->addr = ~0ULL;
1196 amdgpu_vm_invalidate_level(entry);
1197 }
1198 }
1199
1200 /*
1201 * amdgpu_vm_update_directories - make sure that all directories are valid
1202 *
1203 * @adev: amdgpu_device pointer
1204 * @vm: requested vm
1205 *
1206 * Makes sure all directories are up to date.
1207 * Returns 0 for success, error for failure.
1208 */
1209 int amdgpu_vm_update_directories(struct amdgpu_device *adev,
1210 struct amdgpu_vm *vm)
1211 {
1212 int r;
1213
1214 r = amdgpu_vm_update_level(adev, vm, &vm->root, 0);
1215 if (r)
1216 amdgpu_vm_invalidate_level(&vm->root);
1217
1218 if (vm->use_cpu_for_update) {
1219 /* Flush HDP */
1220 mb();
1221 amdgpu_gart_flush_gpu_tlb(adev, 0);
1222 }
1223
1224 return r;
1225 }
1226
1227 /**
1228 * amdgpu_vm_find_entry - find the entry for an address
1229 *
1230 * @p: see amdgpu_pte_update_params definition
1231 * @addr: virtual address in question
1232 * @entry: resulting entry or NULL
1233 * @parent: parent entry
1234 *
1235 * Find the vm_pt entry and it's parent for the given address.
1236 */
1237 void amdgpu_vm_get_entry(struct amdgpu_pte_update_params *p, uint64_t addr,
1238 struct amdgpu_vm_pt **entry,
1239 struct amdgpu_vm_pt **parent)
1240 {
1241 unsigned idx, level = p->adev->vm_manager.num_level;
1242
1243 *parent = NULL;
1244 *entry = &p->vm->root;
1245 while ((*entry)->entries) {
1246 idx = addr >> (p->adev->vm_manager.block_size * level--);
1247 idx %= amdgpu_bo_size((*entry)->bo) / 8;
1248 *parent = *entry;
1249 *entry = &(*entry)->entries[idx];
1250 }
1251
1252 if (level)
1253 *entry = NULL;
1254 }
1255
1256 /**
1257 * amdgpu_vm_handle_huge_pages - handle updating the PD with huge pages
1258 *
1259 * @p: see amdgpu_pte_update_params definition
1260 * @entry: vm_pt entry to check
1261 * @parent: parent entry
1262 * @nptes: number of PTEs updated with this operation
1263 * @dst: destination address where the PTEs should point to
1264 * @flags: access flags fro the PTEs
1265 *
1266 * Check if we can update the PD with a huge page.
1267 */
1268 static void amdgpu_vm_handle_huge_pages(struct amdgpu_pte_update_params *p,
1269 struct amdgpu_vm_pt *entry,
1270 struct amdgpu_vm_pt *parent,
1271 unsigned nptes, uint64_t dst,
1272 uint64_t flags)
1273 {
1274 bool use_cpu_update = (p->func == amdgpu_vm_cpu_set_ptes);
1275 uint64_t pd_addr, pde;
1276
1277 /* In the case of a mixed PT the PDE must point to it*/
1278 if (p->adev->asic_type < CHIP_VEGA10 ||
1279 nptes != AMDGPU_VM_PTE_COUNT(p->adev) ||
1280 p->func == amdgpu_vm_do_copy_ptes ||
1281 !(flags & AMDGPU_PTE_VALID)) {
1282
1283 dst = amdgpu_bo_gpu_offset(entry->bo);
1284 dst = amdgpu_gart_get_vm_pde(p->adev, dst);
1285 flags = AMDGPU_PTE_VALID;
1286 } else {
1287 /* Set the huge page flag to stop scanning at this PDE */
1288 flags |= AMDGPU_PDE_PTE;
1289 }
1290
1291 if (entry->addr == (dst | flags))
1292 return;
1293
1294 entry->addr = (dst | flags);
1295
1296 if (use_cpu_update) {
1297 pd_addr = (unsigned long)amdgpu_bo_kptr(parent->bo);
1298 pde = pd_addr + (entry - parent->entries) * 8;
1299 amdgpu_vm_cpu_set_ptes(p, pde, dst, 1, 0, flags);
1300 } else {
1301 if (parent->bo->shadow) {
1302 pd_addr = amdgpu_bo_gpu_offset(parent->bo->shadow);
1303 pde = pd_addr + (entry - parent->entries) * 8;
1304 amdgpu_vm_do_set_ptes(p, pde, dst, 1, 0, flags);
1305 }
1306 pd_addr = amdgpu_bo_gpu_offset(parent->bo);
1307 pde = pd_addr + (entry - parent->entries) * 8;
1308 amdgpu_vm_do_set_ptes(p, pde, dst, 1, 0, flags);
1309 }
1310 }
1311
1312 /**
1313 * amdgpu_vm_update_ptes - make sure that page tables are valid
1314 *
1315 * @params: see amdgpu_pte_update_params definition
1316 * @vm: requested vm
1317 * @start: start of GPU address range
1318 * @end: end of GPU address range
1319 * @dst: destination address to map to, the next dst inside the function
1320 * @flags: mapping flags
1321 *
1322 * Update the page tables in the range @start - @end.
1323 * Returns 0 for success, -EINVAL for failure.
1324 */
1325 static int amdgpu_vm_update_ptes(struct amdgpu_pte_update_params *params,
1326 uint64_t start, uint64_t end,
1327 uint64_t dst, uint64_t flags)
1328 {
1329 struct amdgpu_device *adev = params->adev;
1330 const uint64_t mask = AMDGPU_VM_PTE_COUNT(adev) - 1;
1331
1332 uint64_t addr, pe_start;
1333 struct amdgpu_bo *pt;
1334 unsigned nptes;
1335 bool use_cpu_update = (params->func == amdgpu_vm_cpu_set_ptes);
1336
1337 /* walk over the address space and update the page tables */
1338 for (addr = start; addr < end; addr += nptes,
1339 dst += nptes * AMDGPU_GPU_PAGE_SIZE) {
1340 struct amdgpu_vm_pt *entry, *parent;
1341
1342 amdgpu_vm_get_entry(params, addr, &entry, &parent);
1343 if (!entry)
1344 return -ENOENT;
1345
1346 if ((addr & ~mask) == (end & ~mask))
1347 nptes = end - addr;
1348 else
1349 nptes = AMDGPU_VM_PTE_COUNT(adev) - (addr & mask);
1350
1351 amdgpu_vm_handle_huge_pages(params, entry, parent,
1352 nptes, dst, flags);
1353 /* We don't need to update PTEs for huge pages */
1354 if (entry->addr & AMDGPU_PDE_PTE)
1355 continue;
1356
1357 pt = entry->bo;
1358 if (use_cpu_update) {
1359 pe_start = (unsigned long)amdgpu_bo_kptr(pt);
1360 } else {
1361 if (pt->shadow) {
1362 pe_start = amdgpu_bo_gpu_offset(pt->shadow);
1363 pe_start += (addr & mask) * 8;
1364 params->func(params, pe_start, dst, nptes,
1365 AMDGPU_GPU_PAGE_SIZE, flags);
1366 }
1367 pe_start = amdgpu_bo_gpu_offset(pt);
1368 }
1369
1370 pe_start += (addr & mask) * 8;
1371 params->func(params, pe_start, dst, nptes,
1372 AMDGPU_GPU_PAGE_SIZE, flags);
1373 }
1374
1375 return 0;
1376 }
1377
1378 /*
1379 * amdgpu_vm_frag_ptes - add fragment information to PTEs
1380 *
1381 * @params: see amdgpu_pte_update_params definition
1382 * @vm: requested vm
1383 * @start: first PTE to handle
1384 * @end: last PTE to handle
1385 * @dst: addr those PTEs should point to
1386 * @flags: hw mapping flags
1387 * Returns 0 for success, -EINVAL for failure.
1388 */
1389 static int amdgpu_vm_frag_ptes(struct amdgpu_pte_update_params *params,
1390 uint64_t start, uint64_t end,
1391 uint64_t dst, uint64_t flags)
1392 {
1393 int r;
1394
1395 /**
1396 * The MC L1 TLB supports variable sized pages, based on a fragment
1397 * field in the PTE. When this field is set to a non-zero value, page
1398 * granularity is increased from 4KB to (1 << (12 + frag)). The PTE
1399 * flags are considered valid for all PTEs within the fragment range
1400 * and corresponding mappings are assumed to be physically contiguous.
1401 *
1402 * The L1 TLB can store a single PTE for the whole fragment,
1403 * significantly increasing the space available for translation
1404 * caching. This leads to large improvements in throughput when the
1405 * TLB is under pressure.
1406 *
1407 * The L2 TLB distributes small and large fragments into two
1408 * asymmetric partitions. The large fragment cache is significantly
1409 * larger. Thus, we try to use large fragments wherever possible.
1410 * Userspace can support this by aligning virtual base address and
1411 * allocation size to the fragment size.
1412 */
1413 unsigned pages_per_frag = params->adev->vm_manager.fragment_size;
1414 uint64_t frag_flags = AMDGPU_PTE_FRAG(pages_per_frag);
1415 uint64_t frag_align = 1 << pages_per_frag;
1416
1417 uint64_t frag_start = ALIGN(start, frag_align);
1418 uint64_t frag_end = end & ~(frag_align - 1);
1419
1420 /* system pages are non continuously */
1421 if (params->src || !(flags & AMDGPU_PTE_VALID) ||
1422 (frag_start >= frag_end))
1423 return amdgpu_vm_update_ptes(params, start, end, dst, flags);
1424
1425 /* handle the 4K area at the beginning */
1426 if (start != frag_start) {
1427 r = amdgpu_vm_update_ptes(params, start, frag_start,
1428 dst, flags);
1429 if (r)
1430 return r;
1431 dst += (frag_start - start) * AMDGPU_GPU_PAGE_SIZE;
1432 }
1433
1434 /* handle the area in the middle */
1435 r = amdgpu_vm_update_ptes(params, frag_start, frag_end, dst,
1436 flags | frag_flags);
1437 if (r)
1438 return r;
1439
1440 /* handle the 4K area at the end */
1441 if (frag_end != end) {
1442 dst += (frag_end - frag_start) * AMDGPU_GPU_PAGE_SIZE;
1443 r = amdgpu_vm_update_ptes(params, frag_end, end, dst, flags);
1444 }
1445 return r;
1446 }
1447
1448 /**
1449 * amdgpu_vm_bo_update_mapping - update a mapping in the vm page table
1450 *
1451 * @adev: amdgpu_device pointer
1452 * @exclusive: fence we need to sync to
1453 * @src: address where to copy page table entries from
1454 * @pages_addr: DMA addresses to use for mapping
1455 * @vm: requested vm
1456 * @start: start of mapped range
1457 * @last: last mapped entry
1458 * @flags: flags for the entries
1459 * @addr: addr to set the area to
1460 * @fence: optional resulting fence
1461 *
1462 * Fill in the page table entries between @start and @last.
1463 * Returns 0 for success, -EINVAL for failure.
1464 */
1465 static int amdgpu_vm_bo_update_mapping(struct amdgpu_device *adev,
1466 struct dma_fence *exclusive,
1467 uint64_t src,
1468 dma_addr_t *pages_addr,
1469 struct amdgpu_vm *vm,
1470 uint64_t start, uint64_t last,
1471 uint64_t flags, uint64_t addr,
1472 struct dma_fence **fence)
1473 {
1474 struct amdgpu_ring *ring;
1475 void *owner = AMDGPU_FENCE_OWNER_VM;
1476 unsigned nptes, ncmds, ndw;
1477 struct amdgpu_job *job;
1478 struct amdgpu_pte_update_params params;
1479 struct dma_fence *f = NULL;
1480 int r;
1481
1482 memset(&params, 0, sizeof(params));
1483 params.adev = adev;
1484 params.vm = vm;
1485 params.src = src;
1486
1487 /* sync to everything on unmapping */
1488 if (!(flags & AMDGPU_PTE_VALID))
1489 owner = AMDGPU_FENCE_OWNER_UNDEFINED;
1490
1491 if (vm->use_cpu_for_update) {
1492 /* params.src is used as flag to indicate system Memory */
1493 if (pages_addr)
1494 params.src = ~0;
1495
1496 /* Wait for PT BOs to be free. PTs share the same resv. object
1497 * as the root PD BO
1498 */
1499 r = amdgpu_vm_wait_pd(adev, vm, owner);
1500 if (unlikely(r))
1501 return r;
1502
1503 params.func = amdgpu_vm_cpu_set_ptes;
1504 params.pages_addr = pages_addr;
1505 return amdgpu_vm_frag_ptes(&params, start, last + 1,
1506 addr, flags);
1507 }
1508
1509 ring = container_of(vm->entity.sched, struct amdgpu_ring, sched);
1510
1511 nptes = last - start + 1;
1512
1513 /*
1514 * reserve space for one command every (1 << BLOCK_SIZE)
1515 * entries or 2k dwords (whatever is smaller)
1516 */
1517 ncmds = (nptes >> min(adev->vm_manager.block_size, 11u)) + 1;
1518
1519 /* padding, etc. */
1520 ndw = 64;
1521
1522 /* one PDE write for each huge page */
1523 ndw += ((nptes >> adev->vm_manager.block_size) + 1) * 6;
1524
1525 if (src) {
1526 /* only copy commands needed */
1527 ndw += ncmds * 7;
1528
1529 params.func = amdgpu_vm_do_copy_ptes;
1530
1531 } else if (pages_addr) {
1532 /* copy commands needed */
1533 ndw += ncmds * 7;
1534
1535 /* and also PTEs */
1536 ndw += nptes * 2;
1537
1538 params.func = amdgpu_vm_do_copy_ptes;
1539
1540 } else {
1541 /* set page commands needed */
1542 ndw += ncmds * 10;
1543
1544 /* two extra commands for begin/end of fragment */
1545 ndw += 2 * 10;
1546
1547 params.func = amdgpu_vm_do_set_ptes;
1548 }
1549
1550 r = amdgpu_job_alloc_with_ib(adev, ndw * 4, &job);
1551 if (r)
1552 return r;
1553
1554 params.ib = &job->ibs[0];
1555
1556 if (!src && pages_addr) {
1557 uint64_t *pte;
1558 unsigned i;
1559
1560 /* Put the PTEs at the end of the IB. */
1561 i = ndw - nptes * 2;
1562 pte= (uint64_t *)&(job->ibs->ptr[i]);
1563 params.src = job->ibs->gpu_addr + i * 4;
1564
1565 for (i = 0; i < nptes; ++i) {
1566 pte[i] = amdgpu_vm_map_gart(pages_addr, addr + i *
1567 AMDGPU_GPU_PAGE_SIZE);
1568 pte[i] |= flags;
1569 }
1570 addr = 0;
1571 }
1572
1573 r = amdgpu_sync_fence(adev, &job->sync, exclusive);
1574 if (r)
1575 goto error_free;
1576
1577 r = amdgpu_sync_resv(adev, &job->sync, vm->root.bo->tbo.resv,
1578 owner);
1579 if (r)
1580 goto error_free;
1581
1582 r = reservation_object_reserve_shared(vm->root.bo->tbo.resv);
1583 if (r)
1584 goto error_free;
1585
1586 r = amdgpu_vm_frag_ptes(&params, start, last + 1, addr, flags);
1587 if (r)
1588 goto error_free;
1589
1590 amdgpu_ring_pad_ib(ring, params.ib);
1591 WARN_ON(params.ib->length_dw > ndw);
1592 r = amdgpu_job_submit(job, ring, &vm->entity,
1593 AMDGPU_FENCE_OWNER_VM, &f);
1594 if (r)
1595 goto error_free;
1596
1597 amdgpu_bo_fence(vm->root.bo, f, true);
1598 dma_fence_put(*fence);
1599 *fence = f;
1600 return 0;
1601
1602 error_free:
1603 amdgpu_job_free(job);
1604 amdgpu_vm_invalidate_level(&vm->root);
1605 return r;
1606 }
1607
1608 /**
1609 * amdgpu_vm_bo_split_mapping - split a mapping into smaller chunks
1610 *
1611 * @adev: amdgpu_device pointer
1612 * @exclusive: fence we need to sync to
1613 * @gtt_flags: flags as they are used for GTT
1614 * @pages_addr: DMA addresses to use for mapping
1615 * @vm: requested vm
1616 * @mapping: mapped range and flags to use for the update
1617 * @flags: HW flags for the mapping
1618 * @nodes: array of drm_mm_nodes with the MC addresses
1619 * @fence: optional resulting fence
1620 *
1621 * Split the mapping into smaller chunks so that each update fits
1622 * into a SDMA IB.
1623 * Returns 0 for success, -EINVAL for failure.
1624 */
1625 static int amdgpu_vm_bo_split_mapping(struct amdgpu_device *adev,
1626 struct dma_fence *exclusive,
1627 uint64_t gtt_flags,
1628 dma_addr_t *pages_addr,
1629 struct amdgpu_vm *vm,
1630 struct amdgpu_bo_va_mapping *mapping,
1631 uint64_t flags,
1632 struct drm_mm_node *nodes,
1633 struct dma_fence **fence)
1634 {
1635 uint64_t pfn, src = 0, start = mapping->start;
1636 int r;
1637
1638 /* normally,bo_va->flags only contians READABLE and WIRTEABLE bit go here
1639 * but in case of something, we filter the flags in first place
1640 */
1641 if (!(mapping->flags & AMDGPU_PTE_READABLE))
1642 flags &= ~AMDGPU_PTE_READABLE;
1643 if (!(mapping->flags & AMDGPU_PTE_WRITEABLE))
1644 flags &= ~AMDGPU_PTE_WRITEABLE;
1645
1646 flags &= ~AMDGPU_PTE_EXECUTABLE;
1647 flags |= mapping->flags & AMDGPU_PTE_EXECUTABLE;
1648
1649 flags &= ~AMDGPU_PTE_MTYPE_MASK;
1650 flags |= (mapping->flags & AMDGPU_PTE_MTYPE_MASK);
1651
1652 if ((mapping->flags & AMDGPU_PTE_PRT) &&
1653 (adev->asic_type >= CHIP_VEGA10)) {
1654 flags |= AMDGPU_PTE_PRT;
1655 flags &= ~AMDGPU_PTE_VALID;
1656 }
1657
1658 trace_amdgpu_vm_bo_update(mapping);
1659
1660 pfn = mapping->offset >> PAGE_SHIFT;
1661 if (nodes) {
1662 while (pfn >= nodes->size) {
1663 pfn -= nodes->size;
1664 ++nodes;
1665 }
1666 }
1667
1668 do {
1669 uint64_t max_entries;
1670 uint64_t addr, last;
1671
1672 if (nodes) {
1673 addr = nodes->start << PAGE_SHIFT;
1674 max_entries = (nodes->size - pfn) *
1675 (PAGE_SIZE / AMDGPU_GPU_PAGE_SIZE);
1676 } else {
1677 addr = 0;
1678 max_entries = S64_MAX;
1679 }
1680
1681 if (pages_addr) {
1682 if (flags == gtt_flags)
1683 src = adev->gart.table_addr +
1684 (addr >> AMDGPU_GPU_PAGE_SHIFT) * 8;
1685 else
1686 max_entries = min(max_entries, 16ull * 1024ull);
1687 addr = 0;
1688 } else if (flags & AMDGPU_PTE_VALID) {
1689 addr += adev->vm_manager.vram_base_offset;
1690 }
1691 addr += pfn << PAGE_SHIFT;
1692
1693 last = min((uint64_t)mapping->last, start + max_entries - 1);
1694 r = amdgpu_vm_bo_update_mapping(adev, exclusive,
1695 src, pages_addr, vm,
1696 start, last, flags, addr,
1697 fence);
1698 if (r)
1699 return r;
1700
1701 pfn += last - start + 1;
1702 if (nodes && nodes->size == pfn) {
1703 pfn = 0;
1704 ++nodes;
1705 }
1706 start = last + 1;
1707
1708 } while (unlikely(start != mapping->last + 1));
1709
1710 return 0;
1711 }
1712
1713 /**
1714 * amdgpu_vm_bo_update - update all BO mappings in the vm page table
1715 *
1716 * @adev: amdgpu_device pointer
1717 * @bo_va: requested BO and VM object
1718 * @clear: if true clear the entries
1719 *
1720 * Fill in the page table entries for @bo_va.
1721 * Returns 0 for success, -EINVAL for failure.
1722 */
1723 int amdgpu_vm_bo_update(struct amdgpu_device *adev,
1724 struct amdgpu_bo_va *bo_va,
1725 bool clear)
1726 {
1727 struct amdgpu_bo *bo = bo_va->base.bo;
1728 struct amdgpu_vm *vm = bo_va->base.vm;
1729 struct amdgpu_bo_va_mapping *mapping;
1730 dma_addr_t *pages_addr = NULL;
1731 uint64_t gtt_flags, flags;
1732 struct ttm_mem_reg *mem;
1733 struct drm_mm_node *nodes;
1734 struct dma_fence *exclusive;
1735 int r;
1736
1737 if (clear || !bo_va->base.bo) {
1738 mem = NULL;
1739 nodes = NULL;
1740 exclusive = NULL;
1741 } else {
1742 struct ttm_dma_tt *ttm;
1743
1744 mem = &bo_va->base.bo->tbo.mem;
1745 nodes = mem->mm_node;
1746 if (mem->mem_type == TTM_PL_TT) {
1747 ttm = container_of(bo_va->base.bo->tbo.ttm,
1748 struct ttm_dma_tt, ttm);
1749 pages_addr = ttm->dma_address;
1750 }
1751 exclusive = reservation_object_get_excl(bo->tbo.resv);
1752 }
1753
1754 if (bo) {
1755 flags = amdgpu_ttm_tt_pte_flags(adev, bo->tbo.ttm, mem);
1756 gtt_flags = (amdgpu_ttm_is_bound(bo->tbo.ttm) &&
1757 adev == amdgpu_ttm_adev(bo->tbo.bdev)) ?
1758 flags : 0;
1759 } else {
1760 flags = 0x0;
1761 gtt_flags = ~0x0;
1762 }
1763
1764 spin_lock(&vm->status_lock);
1765 if (!list_empty(&bo_va->base.vm_status))
1766 list_splice_init(&bo_va->valids, &bo_va->invalids);
1767 spin_unlock(&vm->status_lock);
1768
1769 list_for_each_entry(mapping, &bo_va->invalids, list) {
1770 r = amdgpu_vm_bo_split_mapping(adev, exclusive,
1771 gtt_flags, pages_addr, vm,
1772 mapping, flags, nodes,
1773 &bo_va->last_pt_update);
1774 if (r)
1775 return r;
1776 }
1777
1778 if (trace_amdgpu_vm_bo_mapping_enabled()) {
1779 list_for_each_entry(mapping, &bo_va->valids, list)
1780 trace_amdgpu_vm_bo_mapping(mapping);
1781
1782 list_for_each_entry(mapping, &bo_va->invalids, list)
1783 trace_amdgpu_vm_bo_mapping(mapping);
1784 }
1785
1786 spin_lock(&vm->status_lock);
1787 list_splice_init(&bo_va->invalids, &bo_va->valids);
1788 list_del_init(&bo_va->base.vm_status);
1789 if (clear)
1790 list_add(&bo_va->base.vm_status, &vm->cleared);
1791 spin_unlock(&vm->status_lock);
1792
1793 if (vm->use_cpu_for_update) {
1794 /* Flush HDP */
1795 mb();
1796 amdgpu_gart_flush_gpu_tlb(adev, 0);
1797 }
1798
1799 return 0;
1800 }
1801
1802 /**
1803 * amdgpu_vm_update_prt_state - update the global PRT state
1804 */
1805 static void amdgpu_vm_update_prt_state(struct amdgpu_device *adev)
1806 {
1807 unsigned long flags;
1808 bool enable;
1809
1810 spin_lock_irqsave(&adev->vm_manager.prt_lock, flags);
1811 enable = !!atomic_read(&adev->vm_manager.num_prt_users);
1812 adev->gart.gart_funcs->set_prt(adev, enable);
1813 spin_unlock_irqrestore(&adev->vm_manager.prt_lock, flags);
1814 }
1815
1816 /**
1817 * amdgpu_vm_prt_get - add a PRT user
1818 */
1819 static void amdgpu_vm_prt_get(struct amdgpu_device *adev)
1820 {
1821 if (!adev->gart.gart_funcs->set_prt)
1822 return;
1823
1824 if (atomic_inc_return(&adev->vm_manager.num_prt_users) == 1)
1825 amdgpu_vm_update_prt_state(adev);
1826 }
1827
1828 /**
1829 * amdgpu_vm_prt_put - drop a PRT user
1830 */
1831 static void amdgpu_vm_prt_put(struct amdgpu_device *adev)
1832 {
1833 if (atomic_dec_return(&adev->vm_manager.num_prt_users) == 0)
1834 amdgpu_vm_update_prt_state(adev);
1835 }
1836
1837 /**
1838 * amdgpu_vm_prt_cb - callback for updating the PRT status
1839 */
1840 static void amdgpu_vm_prt_cb(struct dma_fence *fence, struct dma_fence_cb *_cb)
1841 {
1842 struct amdgpu_prt_cb *cb = container_of(_cb, struct amdgpu_prt_cb, cb);
1843
1844 amdgpu_vm_prt_put(cb->adev);
1845 kfree(cb);
1846 }
1847
1848 /**
1849 * amdgpu_vm_add_prt_cb - add callback for updating the PRT status
1850 */
1851 static void amdgpu_vm_add_prt_cb(struct amdgpu_device *adev,
1852 struct dma_fence *fence)
1853 {
1854 struct amdgpu_prt_cb *cb;
1855
1856 if (!adev->gart.gart_funcs->set_prt)
1857 return;
1858
1859 cb = kmalloc(sizeof(struct amdgpu_prt_cb), GFP_KERNEL);
1860 if (!cb) {
1861 /* Last resort when we are OOM */
1862 if (fence)
1863 dma_fence_wait(fence, false);
1864
1865 amdgpu_vm_prt_put(adev);
1866 } else {
1867 cb->adev = adev;
1868 if (!fence || dma_fence_add_callback(fence, &cb->cb,
1869 amdgpu_vm_prt_cb))
1870 amdgpu_vm_prt_cb(fence, &cb->cb);
1871 }
1872 }
1873
1874 /**
1875 * amdgpu_vm_free_mapping - free a mapping
1876 *
1877 * @adev: amdgpu_device pointer
1878 * @vm: requested vm
1879 * @mapping: mapping to be freed
1880 * @fence: fence of the unmap operation
1881 *
1882 * Free a mapping and make sure we decrease the PRT usage count if applicable.
1883 */
1884 static void amdgpu_vm_free_mapping(struct amdgpu_device *adev,
1885 struct amdgpu_vm *vm,
1886 struct amdgpu_bo_va_mapping *mapping,
1887 struct dma_fence *fence)
1888 {
1889 if (mapping->flags & AMDGPU_PTE_PRT)
1890 amdgpu_vm_add_prt_cb(adev, fence);
1891 kfree(mapping);
1892 }
1893
1894 /**
1895 * amdgpu_vm_prt_fini - finish all prt mappings
1896 *
1897 * @adev: amdgpu_device pointer
1898 * @vm: requested vm
1899 *
1900 * Register a cleanup callback to disable PRT support after VM dies.
1901 */
1902 static void amdgpu_vm_prt_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm)
1903 {
1904 struct reservation_object *resv = vm->root.bo->tbo.resv;
1905 struct dma_fence *excl, **shared;
1906 unsigned i, shared_count;
1907 int r;
1908
1909 r = reservation_object_get_fences_rcu(resv, &excl,
1910 &shared_count, &shared);
1911 if (r) {
1912 /* Not enough memory to grab the fence list, as last resort
1913 * block for all the fences to complete.
1914 */
1915 reservation_object_wait_timeout_rcu(resv, true, false,
1916 MAX_SCHEDULE_TIMEOUT);
1917 return;
1918 }
1919
1920 /* Add a callback for each fence in the reservation object */
1921 amdgpu_vm_prt_get(adev);
1922 amdgpu_vm_add_prt_cb(adev, excl);
1923
1924 for (i = 0; i < shared_count; ++i) {
1925 amdgpu_vm_prt_get(adev);
1926 amdgpu_vm_add_prt_cb(adev, shared[i]);
1927 }
1928
1929 kfree(shared);
1930 }
1931
1932 /**
1933 * amdgpu_vm_clear_freed - clear freed BOs in the PT
1934 *
1935 * @adev: amdgpu_device pointer
1936 * @vm: requested vm
1937 * @fence: optional resulting fence (unchanged if no work needed to be done
1938 * or if an error occurred)
1939 *
1940 * Make sure all freed BOs are cleared in the PT.
1941 * Returns 0 for success.
1942 *
1943 * PTs have to be reserved and mutex must be locked!
1944 */
1945 int amdgpu_vm_clear_freed(struct amdgpu_device *adev,
1946 struct amdgpu_vm *vm,
1947 struct dma_fence **fence)
1948 {
1949 struct amdgpu_bo_va_mapping *mapping;
1950 struct dma_fence *f = NULL;
1951 int r;
1952 uint64_t init_pte_value = 0;
1953
1954 while (!list_empty(&vm->freed)) {
1955 mapping = list_first_entry(&vm->freed,
1956 struct amdgpu_bo_va_mapping, list);
1957 list_del(&mapping->list);
1958
1959 if (vm->pte_support_ats)
1960 init_pte_value = AMDGPU_PTE_SYSTEM;
1961
1962 r = amdgpu_vm_bo_update_mapping(adev, NULL, 0, NULL, vm,
1963 mapping->start, mapping->last,
1964 init_pte_value, 0, &f);
1965 amdgpu_vm_free_mapping(adev, vm, mapping, f);
1966 if (r) {
1967 dma_fence_put(f);
1968 return r;
1969 }
1970 }
1971
1972 if (fence && f) {
1973 dma_fence_put(*fence);
1974 *fence = f;
1975 } else {
1976 dma_fence_put(f);
1977 }
1978
1979 return 0;
1980
1981 }
1982
1983 /**
1984 * amdgpu_vm_clear_moved - clear moved BOs in the PT
1985 *
1986 * @adev: amdgpu_device pointer
1987 * @vm: requested vm
1988 *
1989 * Make sure all moved BOs are cleared in the PT.
1990 * Returns 0 for success.
1991 *
1992 * PTs have to be reserved and mutex must be locked!
1993 */
1994 int amdgpu_vm_clear_moved(struct amdgpu_device *adev, struct amdgpu_vm *vm,
1995 struct amdgpu_sync *sync)
1996 {
1997 struct amdgpu_bo_va *bo_va = NULL;
1998 int r = 0;
1999
2000 spin_lock(&vm->status_lock);
2001 while (!list_empty(&vm->moved)) {
2002 bo_va = list_first_entry(&vm->moved,
2003 struct amdgpu_bo_va, base.vm_status);
2004 spin_unlock(&vm->status_lock);
2005
2006 r = amdgpu_vm_bo_update(adev, bo_va, true);
2007 if (r)
2008 return r;
2009
2010 spin_lock(&vm->status_lock);
2011 }
2012 spin_unlock(&vm->status_lock);
2013
2014 if (bo_va)
2015 r = amdgpu_sync_fence(adev, sync, bo_va->last_pt_update);
2016
2017 return r;
2018 }
2019
2020 /**
2021 * amdgpu_vm_bo_add - add a bo to a specific vm
2022 *
2023 * @adev: amdgpu_device pointer
2024 * @vm: requested vm
2025 * @bo: amdgpu buffer object
2026 *
2027 * Add @bo into the requested vm.
2028 * Add @bo to the list of bos associated with the vm
2029 * Returns newly added bo_va or NULL for failure
2030 *
2031 * Object has to be reserved!
2032 */
2033 struct amdgpu_bo_va *amdgpu_vm_bo_add(struct amdgpu_device *adev,
2034 struct amdgpu_vm *vm,
2035 struct amdgpu_bo *bo)
2036 {
2037 struct amdgpu_bo_va *bo_va;
2038
2039 bo_va = kzalloc(sizeof(struct amdgpu_bo_va), GFP_KERNEL);
2040 if (bo_va == NULL) {
2041 return NULL;
2042 }
2043 bo_va->base.vm = vm;
2044 bo_va->base.bo = bo;
2045 INIT_LIST_HEAD(&bo_va->base.bo_list);
2046 INIT_LIST_HEAD(&bo_va->base.vm_status);
2047
2048 bo_va->ref_count = 1;
2049 INIT_LIST_HEAD(&bo_va->valids);
2050 INIT_LIST_HEAD(&bo_va->invalids);
2051
2052 if (bo)
2053 list_add_tail(&bo_va->base.bo_list, &bo->va);
2054
2055 return bo_va;
2056 }
2057
2058 /**
2059 * amdgpu_vm_bo_map - map bo inside a vm
2060 *
2061 * @adev: amdgpu_device pointer
2062 * @bo_va: bo_va to store the address
2063 * @saddr: where to map the BO
2064 * @offset: requested offset in the BO
2065 * @flags: attributes of pages (read/write/valid/etc.)
2066 *
2067 * Add a mapping of the BO at the specefied addr into the VM.
2068 * Returns 0 for success, error for failure.
2069 *
2070 * Object has to be reserved and unreserved outside!
2071 */
2072 int amdgpu_vm_bo_map(struct amdgpu_device *adev,
2073 struct amdgpu_bo_va *bo_va,
2074 uint64_t saddr, uint64_t offset,
2075 uint64_t size, uint64_t flags)
2076 {
2077 struct amdgpu_bo_va_mapping *mapping, *tmp;
2078 struct amdgpu_bo *bo = bo_va->base.bo;
2079 struct amdgpu_vm *vm = bo_va->base.vm;
2080 uint64_t eaddr;
2081
2082 /* validate the parameters */
2083 if (saddr & AMDGPU_GPU_PAGE_MASK || offset & AMDGPU_GPU_PAGE_MASK ||
2084 size == 0 || size & AMDGPU_GPU_PAGE_MASK)
2085 return -EINVAL;
2086
2087 /* make sure object fit at this offset */
2088 eaddr = saddr + size - 1;
2089 if (saddr >= eaddr ||
2090 (bo && offset + size > amdgpu_bo_size(bo)))
2091 return -EINVAL;
2092
2093 saddr /= AMDGPU_GPU_PAGE_SIZE;
2094 eaddr /= AMDGPU_GPU_PAGE_SIZE;
2095
2096 tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr);
2097 if (tmp) {
2098 /* bo and tmp overlap, invalid addr */
2099 dev_err(adev->dev, "bo %p va 0x%010Lx-0x%010Lx conflict with "
2100 "0x%010Lx-0x%010Lx\n", bo, saddr, eaddr,
2101 tmp->start, tmp->last + 1);
2102 return -EINVAL;
2103 }
2104
2105 mapping = kmalloc(sizeof(*mapping), GFP_KERNEL);
2106 if (!mapping)
2107 return -ENOMEM;
2108
2109 INIT_LIST_HEAD(&mapping->list);
2110 mapping->start = saddr;
2111 mapping->last = eaddr;
2112 mapping->offset = offset;
2113 mapping->flags = flags;
2114
2115 list_add(&mapping->list, &bo_va->invalids);
2116 amdgpu_vm_it_insert(mapping, &vm->va);
2117
2118 if (flags & AMDGPU_PTE_PRT)
2119 amdgpu_vm_prt_get(adev);
2120
2121 return 0;
2122 }
2123
2124 /**
2125 * amdgpu_vm_bo_replace_map - map bo inside a vm, replacing existing mappings
2126 *
2127 * @adev: amdgpu_device pointer
2128 * @bo_va: bo_va to store the address
2129 * @saddr: where to map the BO
2130 * @offset: requested offset in the BO
2131 * @flags: attributes of pages (read/write/valid/etc.)
2132 *
2133 * Add a mapping of the BO at the specefied addr into the VM. Replace existing
2134 * mappings as we do so.
2135 * Returns 0 for success, error for failure.
2136 *
2137 * Object has to be reserved and unreserved outside!
2138 */
2139 int amdgpu_vm_bo_replace_map(struct amdgpu_device *adev,
2140 struct amdgpu_bo_va *bo_va,
2141 uint64_t saddr, uint64_t offset,
2142 uint64_t size, uint64_t flags)
2143 {
2144 struct amdgpu_bo_va_mapping *mapping;
2145 struct amdgpu_bo *bo = bo_va->base.bo;
2146 struct amdgpu_vm *vm = bo_va->base.vm;
2147 uint64_t eaddr;
2148 int r;
2149
2150 /* validate the parameters */
2151 if (saddr & AMDGPU_GPU_PAGE_MASK || offset & AMDGPU_GPU_PAGE_MASK ||
2152 size == 0 || size & AMDGPU_GPU_PAGE_MASK)
2153 return -EINVAL;
2154
2155 /* make sure object fit at this offset */
2156 eaddr = saddr + size - 1;
2157 if (saddr >= eaddr ||
2158 (bo && offset + size > amdgpu_bo_size(bo)))
2159 return -EINVAL;
2160
2161 /* Allocate all the needed memory */
2162 mapping = kmalloc(sizeof(*mapping), GFP_KERNEL);
2163 if (!mapping)
2164 return -ENOMEM;
2165
2166 r = amdgpu_vm_bo_clear_mappings(adev, bo_va->base.vm, saddr, size);
2167 if (r) {
2168 kfree(mapping);
2169 return r;
2170 }
2171
2172 saddr /= AMDGPU_GPU_PAGE_SIZE;
2173 eaddr /= AMDGPU_GPU_PAGE_SIZE;
2174
2175 mapping->start = saddr;
2176 mapping->last = eaddr;
2177 mapping->offset = offset;
2178 mapping->flags = flags;
2179
2180 list_add(&mapping->list, &bo_va->invalids);
2181 amdgpu_vm_it_insert(mapping, &vm->va);
2182
2183 if (flags & AMDGPU_PTE_PRT)
2184 amdgpu_vm_prt_get(adev);
2185
2186 return 0;
2187 }
2188
2189 /**
2190 * amdgpu_vm_bo_unmap - remove bo mapping from vm
2191 *
2192 * @adev: amdgpu_device pointer
2193 * @bo_va: bo_va to remove the address from
2194 * @saddr: where to the BO is mapped
2195 *
2196 * Remove a mapping of the BO at the specefied addr from the VM.
2197 * Returns 0 for success, error for failure.
2198 *
2199 * Object has to be reserved and unreserved outside!
2200 */
2201 int amdgpu_vm_bo_unmap(struct amdgpu_device *adev,
2202 struct amdgpu_bo_va *bo_va,
2203 uint64_t saddr)
2204 {
2205 struct amdgpu_bo_va_mapping *mapping;
2206 struct amdgpu_vm *vm = bo_va->base.vm;
2207 bool valid = true;
2208
2209 saddr /= AMDGPU_GPU_PAGE_SIZE;
2210
2211 list_for_each_entry(mapping, &bo_va->valids, list) {
2212 if (mapping->start == saddr)
2213 break;
2214 }
2215
2216 if (&mapping->list == &bo_va->valids) {
2217 valid = false;
2218
2219 list_for_each_entry(mapping, &bo_va->invalids, list) {
2220 if (mapping->start == saddr)
2221 break;
2222 }
2223
2224 if (&mapping->list == &bo_va->invalids)
2225 return -ENOENT;
2226 }
2227
2228 list_del(&mapping->list);
2229 amdgpu_vm_it_remove(mapping, &vm->va);
2230 trace_amdgpu_vm_bo_unmap(bo_va, mapping);
2231
2232 if (valid)
2233 list_add(&mapping->list, &vm->freed);
2234 else
2235 amdgpu_vm_free_mapping(adev, vm, mapping,
2236 bo_va->last_pt_update);
2237
2238 return 0;
2239 }
2240
2241 /**
2242 * amdgpu_vm_bo_clear_mappings - remove all mappings in a specific range
2243 *
2244 * @adev: amdgpu_device pointer
2245 * @vm: VM structure to use
2246 * @saddr: start of the range
2247 * @size: size of the range
2248 *
2249 * Remove all mappings in a range, split them as appropriate.
2250 * Returns 0 for success, error for failure.
2251 */
2252 int amdgpu_vm_bo_clear_mappings(struct amdgpu_device *adev,
2253 struct amdgpu_vm *vm,
2254 uint64_t saddr, uint64_t size)
2255 {
2256 struct amdgpu_bo_va_mapping *before, *after, *tmp, *next;
2257 LIST_HEAD(removed);
2258 uint64_t eaddr;
2259
2260 eaddr = saddr + size - 1;
2261 saddr /= AMDGPU_GPU_PAGE_SIZE;
2262 eaddr /= AMDGPU_GPU_PAGE_SIZE;
2263
2264 /* Allocate all the needed memory */
2265 before = kzalloc(sizeof(*before), GFP_KERNEL);
2266 if (!before)
2267 return -ENOMEM;
2268 INIT_LIST_HEAD(&before->list);
2269
2270 after = kzalloc(sizeof(*after), GFP_KERNEL);
2271 if (!after) {
2272 kfree(before);
2273 return -ENOMEM;
2274 }
2275 INIT_LIST_HEAD(&after->list);
2276
2277 /* Now gather all removed mappings */
2278 tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr);
2279 while (tmp) {
2280 /* Remember mapping split at the start */
2281 if (tmp->start < saddr) {
2282 before->start = tmp->start;
2283 before->last = saddr - 1;
2284 before->offset = tmp->offset;
2285 before->flags = tmp->flags;
2286 list_add(&before->list, &tmp->list);
2287 }
2288
2289 /* Remember mapping split at the end */
2290 if (tmp->last > eaddr) {
2291 after->start = eaddr + 1;
2292 after->last = tmp->last;
2293 after->offset = tmp->offset;
2294 after->offset += after->start - tmp->start;
2295 after->flags = tmp->flags;
2296 list_add(&after->list, &tmp->list);
2297 }
2298
2299 list_del(&tmp->list);
2300 list_add(&tmp->list, &removed);
2301
2302 tmp = amdgpu_vm_it_iter_next(tmp, saddr, eaddr);
2303 }
2304
2305 /* And free them up */
2306 list_for_each_entry_safe(tmp, next, &removed, list) {
2307 amdgpu_vm_it_remove(tmp, &vm->va);
2308 list_del(&tmp->list);
2309
2310 if (tmp->start < saddr)
2311 tmp->start = saddr;
2312 if (tmp->last > eaddr)
2313 tmp->last = eaddr;
2314
2315 list_add(&tmp->list, &vm->freed);
2316 trace_amdgpu_vm_bo_unmap(NULL, tmp);
2317 }
2318
2319 /* Insert partial mapping before the range */
2320 if (!list_empty(&before->list)) {
2321 amdgpu_vm_it_insert(before, &vm->va);
2322 if (before->flags & AMDGPU_PTE_PRT)
2323 amdgpu_vm_prt_get(adev);
2324 } else {
2325 kfree(before);
2326 }
2327
2328 /* Insert partial mapping after the range */
2329 if (!list_empty(&after->list)) {
2330 amdgpu_vm_it_insert(after, &vm->va);
2331 if (after->flags & AMDGPU_PTE_PRT)
2332 amdgpu_vm_prt_get(adev);
2333 } else {
2334 kfree(after);
2335 }
2336
2337 return 0;
2338 }
2339
2340 /**
2341 * amdgpu_vm_bo_rmv - remove a bo to a specific vm
2342 *
2343 * @adev: amdgpu_device pointer
2344 * @bo_va: requested bo_va
2345 *
2346 * Remove @bo_va->bo from the requested vm.
2347 *
2348 * Object have to be reserved!
2349 */
2350 void amdgpu_vm_bo_rmv(struct amdgpu_device *adev,
2351 struct amdgpu_bo_va *bo_va)
2352 {
2353 struct amdgpu_bo_va_mapping *mapping, *next;
2354 struct amdgpu_vm *vm = bo_va->base.vm;
2355
2356 list_del(&bo_va->base.bo_list);
2357
2358 spin_lock(&vm->status_lock);
2359 list_del(&bo_va->base.vm_status);
2360 spin_unlock(&vm->status_lock);
2361
2362 list_for_each_entry_safe(mapping, next, &bo_va->valids, list) {
2363 list_del(&mapping->list);
2364 amdgpu_vm_it_remove(mapping, &vm->va);
2365 trace_amdgpu_vm_bo_unmap(bo_va, mapping);
2366 list_add(&mapping->list, &vm->freed);
2367 }
2368 list_for_each_entry_safe(mapping, next, &bo_va->invalids, list) {
2369 list_del(&mapping->list);
2370 amdgpu_vm_it_remove(mapping, &vm->va);
2371 amdgpu_vm_free_mapping(adev, vm, mapping,
2372 bo_va->last_pt_update);
2373 }
2374
2375 dma_fence_put(bo_va->last_pt_update);
2376 kfree(bo_va);
2377 }
2378
2379 /**
2380 * amdgpu_vm_bo_invalidate - mark the bo as invalid
2381 *
2382 * @adev: amdgpu_device pointer
2383 * @vm: requested vm
2384 * @bo: amdgpu buffer object
2385 *
2386 * Mark @bo as invalid.
2387 */
2388 void amdgpu_vm_bo_invalidate(struct amdgpu_device *adev,
2389 struct amdgpu_bo *bo)
2390 {
2391 struct amdgpu_vm_bo_base *bo_base;
2392
2393 list_for_each_entry(bo_base, &bo->va, bo_list) {
2394 spin_lock(&bo_base->vm->status_lock);
2395 if (list_empty(&bo_base->vm_status))
2396 list_add(&bo_base->vm_status,
2397 &bo_base->vm->moved);
2398 spin_unlock(&bo_base->vm->status_lock);
2399 }
2400 }
2401
2402 static uint32_t amdgpu_vm_get_block_size(uint64_t vm_size)
2403 {
2404 /* Total bits covered by PD + PTs */
2405 unsigned bits = ilog2(vm_size) + 18;
2406
2407 /* Make sure the PD is 4K in size up to 8GB address space.
2408 Above that split equal between PD and PTs */
2409 if (vm_size <= 8)
2410 return (bits - 9);
2411 else
2412 return ((bits + 3) / 2);
2413 }
2414
2415 /**
2416 * amdgpu_vm_set_fragment_size - adjust fragment size in PTE
2417 *
2418 * @adev: amdgpu_device pointer
2419 * @fragment_size_default: the default fragment size if it's set auto
2420 */
2421 void amdgpu_vm_set_fragment_size(struct amdgpu_device *adev, uint32_t fragment_size_default)
2422 {
2423 if (amdgpu_vm_fragment_size == -1)
2424 adev->vm_manager.fragment_size = fragment_size_default;
2425 else
2426 adev->vm_manager.fragment_size = amdgpu_vm_fragment_size;
2427 }
2428
2429 /**
2430 * amdgpu_vm_adjust_size - adjust vm size, block size and fragment size
2431 *
2432 * @adev: amdgpu_device pointer
2433 * @vm_size: the default vm size if it's set auto
2434 */
2435 void amdgpu_vm_adjust_size(struct amdgpu_device *adev, uint64_t vm_size, uint32_t fragment_size_default)
2436 {
2437 /* adjust vm size firstly */
2438 if (amdgpu_vm_size == -1)
2439 adev->vm_manager.vm_size = vm_size;
2440 else
2441 adev->vm_manager.vm_size = amdgpu_vm_size;
2442
2443 /* block size depends on vm size */
2444 if (amdgpu_vm_block_size == -1)
2445 adev->vm_manager.block_size =
2446 amdgpu_vm_get_block_size(adev->vm_manager.vm_size);
2447 else
2448 adev->vm_manager.block_size = amdgpu_vm_block_size;
2449
2450 amdgpu_vm_set_fragment_size(adev, fragment_size_default);
2451
2452 DRM_INFO("vm size is %llu GB, block size is %u-bit, fragment size is %u-bit\n",
2453 adev->vm_manager.vm_size, adev->vm_manager.block_size,
2454 adev->vm_manager.fragment_size);
2455 }
2456
2457 /**
2458 * amdgpu_vm_init - initialize a vm instance
2459 *
2460 * @adev: amdgpu_device pointer
2461 * @vm: requested vm
2462 * @vm_context: Indicates if it GFX or Compute context
2463 *
2464 * Init @vm fields.
2465 */
2466 int amdgpu_vm_init(struct amdgpu_device *adev, struct amdgpu_vm *vm,
2467 int vm_context)
2468 {
2469 const unsigned align = min(AMDGPU_VM_PTB_ALIGN_SIZE,
2470 AMDGPU_VM_PTE_COUNT(adev) * 8);
2471 unsigned ring_instance;
2472 struct amdgpu_ring *ring;
2473 struct amd_sched_rq *rq;
2474 int r, i;
2475 u64 flags;
2476 uint64_t init_pde_value = 0;
2477
2478 vm->va = RB_ROOT_CACHED;
2479 vm->client_id = atomic64_inc_return(&adev->vm_manager.client_counter);
2480 for (i = 0; i < AMDGPU_MAX_VMHUBS; i++)
2481 vm->reserved_vmid[i] = NULL;
2482 spin_lock_init(&vm->status_lock);
2483 INIT_LIST_HEAD(&vm->moved);
2484 INIT_LIST_HEAD(&vm->cleared);
2485 INIT_LIST_HEAD(&vm->freed);
2486
2487 /* create scheduler entity for page table updates */
2488
2489 ring_instance = atomic_inc_return(&adev->vm_manager.vm_pte_next_ring);
2490 ring_instance %= adev->vm_manager.vm_pte_num_rings;
2491 ring = adev->vm_manager.vm_pte_rings[ring_instance];
2492 rq = &ring->sched.sched_rq[AMD_SCHED_PRIORITY_KERNEL];
2493 r = amd_sched_entity_init(&ring->sched, &vm->entity,
2494 rq, amdgpu_sched_jobs);
2495 if (r)
2496 return r;
2497
2498 vm->pte_support_ats = false;
2499
2500 if (vm_context == AMDGPU_VM_CONTEXT_COMPUTE) {
2501 vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode &
2502 AMDGPU_VM_USE_CPU_FOR_COMPUTE);
2503
2504 if (adev->asic_type == CHIP_RAVEN) {
2505 vm->pte_support_ats = true;
2506 init_pde_value = AMDGPU_PTE_SYSTEM | AMDGPU_PDE_PTE;
2507 }
2508 } else
2509 vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode &
2510 AMDGPU_VM_USE_CPU_FOR_GFX);
2511 DRM_DEBUG_DRIVER("VM update mode is %s\n",
2512 vm->use_cpu_for_update ? "CPU" : "SDMA");
2513 WARN_ONCE((vm->use_cpu_for_update & !amdgpu_vm_is_large_bar(adev)),
2514 "CPU update of VM recommended only for large BAR system\n");
2515 vm->last_dir_update = NULL;
2516
2517 flags = AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS |
2518 AMDGPU_GEM_CREATE_VRAM_CLEARED;
2519 if (vm->use_cpu_for_update)
2520 flags |= AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
2521 else
2522 flags |= (AMDGPU_GEM_CREATE_NO_CPU_ACCESS |
2523 AMDGPU_GEM_CREATE_SHADOW);
2524
2525 r = amdgpu_bo_create(adev, amdgpu_vm_bo_size(adev, 0), align, true,
2526 AMDGPU_GEM_DOMAIN_VRAM,
2527 flags,
2528 NULL, NULL, init_pde_value, &vm->root.bo);
2529 if (r)
2530 goto error_free_sched_entity;
2531
2532 r = amdgpu_bo_reserve(vm->root.bo, false);
2533 if (r)
2534 goto error_free_root;
2535
2536 vm->last_eviction_counter = atomic64_read(&adev->num_evictions);
2537
2538 if (vm->use_cpu_for_update) {
2539 r = amdgpu_bo_kmap(vm->root.bo, NULL);
2540 if (r)
2541 goto error_free_root;
2542 }
2543
2544 amdgpu_bo_unreserve(vm->root.bo);
2545
2546 return 0;
2547
2548 error_free_root:
2549 amdgpu_bo_unref(&vm->root.bo->shadow);
2550 amdgpu_bo_unref(&vm->root.bo);
2551 vm->root.bo = NULL;
2552
2553 error_free_sched_entity:
2554 amd_sched_entity_fini(&ring->sched, &vm->entity);
2555
2556 return r;
2557 }
2558
2559 /**
2560 * amdgpu_vm_free_levels - free PD/PT levels
2561 *
2562 * @level: PD/PT starting level to free
2563 *
2564 * Free the page directory or page table level and all sub levels.
2565 */
2566 static void amdgpu_vm_free_levels(struct amdgpu_vm_pt *level)
2567 {
2568 unsigned i;
2569
2570 if (level->bo) {
2571 amdgpu_bo_unref(&level->bo->shadow);
2572 amdgpu_bo_unref(&level->bo);
2573 }
2574
2575 if (level->entries)
2576 for (i = 0; i <= level->last_entry_used; i++)
2577 amdgpu_vm_free_levels(&level->entries[i]);
2578
2579 kvfree(level->entries);
2580 }
2581
2582 /**
2583 * amdgpu_vm_fini - tear down a vm instance
2584 *
2585 * @adev: amdgpu_device pointer
2586 * @vm: requested vm
2587 *
2588 * Tear down @vm.
2589 * Unbind the VM and remove all bos from the vm bo list
2590 */
2591 void amdgpu_vm_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm)
2592 {
2593 struct amdgpu_bo_va_mapping *mapping, *tmp;
2594 bool prt_fini_needed = !!adev->gart.gart_funcs->set_prt;
2595 int i;
2596
2597 amd_sched_entity_fini(vm->entity.sched, &vm->entity);
2598
2599 if (!RB_EMPTY_ROOT(&vm->va.rb_root)) {
2600 dev_err(adev->dev, "still active bo inside vm\n");
2601 }
2602 rbtree_postorder_for_each_entry_safe(mapping, tmp,
2603 &vm->va.rb_root, rb) {
2604 list_del(&mapping->list);
2605 amdgpu_vm_it_remove(mapping, &vm->va);
2606 kfree(mapping);
2607 }
2608 list_for_each_entry_safe(mapping, tmp, &vm->freed, list) {
2609 if (mapping->flags & AMDGPU_PTE_PRT && prt_fini_needed) {
2610 amdgpu_vm_prt_fini(adev, vm);
2611 prt_fini_needed = false;
2612 }
2613
2614 list_del(&mapping->list);
2615 amdgpu_vm_free_mapping(adev, vm, mapping, NULL);
2616 }
2617
2618 amdgpu_vm_free_levels(&vm->root);
2619 dma_fence_put(vm->last_dir_update);
2620 for (i = 0; i < AMDGPU_MAX_VMHUBS; i++)
2621 amdgpu_vm_free_reserved_vmid(adev, vm, i);
2622 }
2623
2624 /**
2625 * amdgpu_vm_manager_init - init the VM manager
2626 *
2627 * @adev: amdgpu_device pointer
2628 *
2629 * Initialize the VM manager structures
2630 */
2631 void amdgpu_vm_manager_init(struct amdgpu_device *adev)
2632 {
2633 unsigned i, j;
2634
2635 for (i = 0; i < AMDGPU_MAX_VMHUBS; ++i) {
2636 struct amdgpu_vm_id_manager *id_mgr =
2637 &adev->vm_manager.id_mgr[i];
2638
2639 mutex_init(&id_mgr->lock);
2640 INIT_LIST_HEAD(&id_mgr->ids_lru);
2641 atomic_set(&id_mgr->reserved_vmid_num, 0);
2642
2643 /* skip over VMID 0, since it is the system VM */
2644 for (j = 1; j < id_mgr->num_ids; ++j) {
2645 amdgpu_vm_reset_id(adev, i, j);
2646 amdgpu_sync_create(&id_mgr->ids[i].active);
2647 list_add_tail(&id_mgr->ids[j].list, &id_mgr->ids_lru);
2648 }
2649 }
2650
2651 adev->vm_manager.fence_context =
2652 dma_fence_context_alloc(AMDGPU_MAX_RINGS);
2653 for (i = 0; i < AMDGPU_MAX_RINGS; ++i)
2654 adev->vm_manager.seqno[i] = 0;
2655
2656 atomic_set(&adev->vm_manager.vm_pte_next_ring, 0);
2657 atomic64_set(&adev->vm_manager.client_counter, 0);
2658 spin_lock_init(&adev->vm_manager.prt_lock);
2659 atomic_set(&adev->vm_manager.num_prt_users, 0);
2660
2661 /* If not overridden by the user, by default, only in large BAR systems
2662 * Compute VM tables will be updated by CPU
2663 */
2664 #ifdef CONFIG_X86_64
2665 if (amdgpu_vm_update_mode == -1) {
2666 if (amdgpu_vm_is_large_bar(adev))
2667 adev->vm_manager.vm_update_mode =
2668 AMDGPU_VM_USE_CPU_FOR_COMPUTE;
2669 else
2670 adev->vm_manager.vm_update_mode = 0;
2671 } else
2672 adev->vm_manager.vm_update_mode = amdgpu_vm_update_mode;
2673 #else
2674 adev->vm_manager.vm_update_mode = 0;
2675 #endif
2676
2677 }
2678
2679 /**
2680 * amdgpu_vm_manager_fini - cleanup VM manager
2681 *
2682 * @adev: amdgpu_device pointer
2683 *
2684 * Cleanup the VM manager and free resources.
2685 */
2686 void amdgpu_vm_manager_fini(struct amdgpu_device *adev)
2687 {
2688 unsigned i, j;
2689
2690 for (i = 0; i < AMDGPU_MAX_VMHUBS; ++i) {
2691 struct amdgpu_vm_id_manager *id_mgr =
2692 &adev->vm_manager.id_mgr[i];
2693
2694 mutex_destroy(&id_mgr->lock);
2695 for (j = 0; j < AMDGPU_NUM_VM; ++j) {
2696 struct amdgpu_vm_id *id = &id_mgr->ids[j];
2697
2698 amdgpu_sync_free(&id->active);
2699 dma_fence_put(id->flushed_updates);
2700 dma_fence_put(id->last_flush);
2701 }
2702 }
2703 }
2704
2705 int amdgpu_vm_ioctl(struct drm_device *dev, void *data, struct drm_file *filp)
2706 {
2707 union drm_amdgpu_vm *args = data;
2708 struct amdgpu_device *adev = dev->dev_private;
2709 struct amdgpu_fpriv *fpriv = filp->driver_priv;
2710 int r;
2711
2712 switch (args->in.op) {
2713 case AMDGPU_VM_OP_RESERVE_VMID:
2714 /* current, we only have requirement to reserve vmid from gfxhub */
2715 r = amdgpu_vm_alloc_reserved_vmid(adev, &fpriv->vm,
2716 AMDGPU_GFXHUB);
2717 if (r)
2718 return r;
2719 break;
2720 case AMDGPU_VM_OP_UNRESERVE_VMID:
2721 amdgpu_vm_free_reserved_vmid(adev, &fpriv->vm, AMDGPU_GFXHUB);
2722 break;
2723 default:
2724 return -EINVAL;
2725 }
2726
2727 return 0;
2728 }