]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/gpu/drm/amd/amdgpu/amdgpu_vm.c
drm/amdgpu: Add a parameter to amdgpu_bo_create()
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / amd / amdgpu / amdgpu_vm.c
1 /*
2 * Copyright 2008 Advanced Micro Devices, Inc.
3 * Copyright 2008 Red Hat Inc.
4 * Copyright 2009 Jerome Glisse.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22 * OTHER DEALINGS IN THE SOFTWARE.
23 *
24 * Authors: Dave Airlie
25 * Alex Deucher
26 * Jerome Glisse
27 */
28 #include <linux/dma-fence-array.h>
29 #include <linux/interval_tree_generic.h>
30 #include <drm/drmP.h>
31 #include <drm/amdgpu_drm.h>
32 #include "amdgpu.h"
33 #include "amdgpu_trace.h"
34
35 /*
36 * GPUVM
37 * GPUVM is similar to the legacy gart on older asics, however
38 * rather than there being a single global gart table
39 * for the entire GPU, there are multiple VM page tables active
40 * at any given time. The VM page tables can contain a mix
41 * vram pages and system memory pages and system memory pages
42 * can be mapped as snooped (cached system pages) or unsnooped
43 * (uncached system pages).
44 * Each VM has an ID associated with it and there is a page table
45 * associated with each VMID. When execting a command buffer,
46 * the kernel tells the the ring what VMID to use for that command
47 * buffer. VMIDs are allocated dynamically as commands are submitted.
48 * The userspace drivers maintain their own address space and the kernel
49 * sets up their pages tables accordingly when they submit their
50 * command buffers and a VMID is assigned.
51 * Cayman/Trinity support up to 8 active VMs at any given time;
52 * SI supports 16.
53 */
54
55 #define START(node) ((node)->start)
56 #define LAST(node) ((node)->last)
57
58 INTERVAL_TREE_DEFINE(struct amdgpu_bo_va_mapping, rb, uint64_t, __subtree_last,
59 START, LAST, static, amdgpu_vm_it)
60
61 #undef START
62 #undef LAST
63
64 /* Local structure. Encapsulate some VM table update parameters to reduce
65 * the number of function parameters
66 */
67 struct amdgpu_pte_update_params {
68 /* amdgpu device we do this update for */
69 struct amdgpu_device *adev;
70 /* optional amdgpu_vm we do this update for */
71 struct amdgpu_vm *vm;
72 /* address where to copy page table entries from */
73 uint64_t src;
74 /* indirect buffer to fill with commands */
75 struct amdgpu_ib *ib;
76 /* Function which actually does the update */
77 void (*func)(struct amdgpu_pte_update_params *params, uint64_t pe,
78 uint64_t addr, unsigned count, uint32_t incr,
79 uint64_t flags);
80 /* The next two are used during VM update by CPU
81 * DMA addresses to use for mapping
82 * Kernel pointer of PD/PT BO that needs to be updated
83 */
84 dma_addr_t *pages_addr;
85 void *kptr;
86 };
87
88 /* Helper to disable partial resident texture feature from a fence callback */
89 struct amdgpu_prt_cb {
90 struct amdgpu_device *adev;
91 struct dma_fence_cb cb;
92 };
93
94 /**
95 * amdgpu_vm_num_entries - return the number of entries in a PD/PT
96 *
97 * @adev: amdgpu_device pointer
98 *
99 * Calculate the number of entries in a page directory or page table.
100 */
101 static unsigned amdgpu_vm_num_entries(struct amdgpu_device *adev,
102 unsigned level)
103 {
104 if (level == 0)
105 /* For the root directory */
106 return adev->vm_manager.max_pfn >>
107 (adev->vm_manager.block_size *
108 adev->vm_manager.num_level);
109 else if (level == adev->vm_manager.num_level)
110 /* For the page tables on the leaves */
111 return AMDGPU_VM_PTE_COUNT(adev);
112 else
113 /* Everything in between */
114 return 1 << adev->vm_manager.block_size;
115 }
116
117 /**
118 * amdgpu_vm_bo_size - returns the size of the BOs in bytes
119 *
120 * @adev: amdgpu_device pointer
121 *
122 * Calculate the size of the BO for a page directory or page table in bytes.
123 */
124 static unsigned amdgpu_vm_bo_size(struct amdgpu_device *adev, unsigned level)
125 {
126 return AMDGPU_GPU_PAGE_ALIGN(amdgpu_vm_num_entries(adev, level) * 8);
127 }
128
129 /**
130 * amdgpu_vm_get_pd_bo - add the VM PD to a validation list
131 *
132 * @vm: vm providing the BOs
133 * @validated: head of validation list
134 * @entry: entry to add
135 *
136 * Add the page directory to the list of BOs to
137 * validate for command submission.
138 */
139 void amdgpu_vm_get_pd_bo(struct amdgpu_vm *vm,
140 struct list_head *validated,
141 struct amdgpu_bo_list_entry *entry)
142 {
143 entry->robj = vm->root.bo;
144 entry->priority = 0;
145 entry->tv.bo = &entry->robj->tbo;
146 entry->tv.shared = true;
147 entry->user_pages = NULL;
148 list_add(&entry->tv.head, validated);
149 }
150
151 /**
152 * amdgpu_vm_validate_layer - validate a single page table level
153 *
154 * @parent: parent page table level
155 * @validate: callback to do the validation
156 * @param: parameter for the validation callback
157 *
158 * Validate the page table BOs on command submission if neccessary.
159 */
160 static int amdgpu_vm_validate_level(struct amdgpu_vm_pt *parent,
161 int (*validate)(void *, struct amdgpu_bo *),
162 void *param, bool use_cpu_for_update)
163 {
164 unsigned i;
165 int r;
166
167 if (use_cpu_for_update) {
168 r = amdgpu_bo_kmap(parent->bo, NULL);
169 if (r)
170 return r;
171 }
172
173 if (!parent->entries)
174 return 0;
175
176 for (i = 0; i <= parent->last_entry_used; ++i) {
177 struct amdgpu_vm_pt *entry = &parent->entries[i];
178
179 if (!entry->bo)
180 continue;
181
182 r = validate(param, entry->bo);
183 if (r)
184 return r;
185
186 /*
187 * Recurse into the sub directory. This is harmless because we
188 * have only a maximum of 5 layers.
189 */
190 r = amdgpu_vm_validate_level(entry, validate, param,
191 use_cpu_for_update);
192 if (r)
193 return r;
194 }
195
196 return r;
197 }
198
199 /**
200 * amdgpu_vm_validate_pt_bos - validate the page table BOs
201 *
202 * @adev: amdgpu device pointer
203 * @vm: vm providing the BOs
204 * @validate: callback to do the validation
205 * @param: parameter for the validation callback
206 *
207 * Validate the page table BOs on command submission if neccessary.
208 */
209 int amdgpu_vm_validate_pt_bos(struct amdgpu_device *adev, struct amdgpu_vm *vm,
210 int (*validate)(void *p, struct amdgpu_bo *bo),
211 void *param)
212 {
213 uint64_t num_evictions;
214
215 /* We only need to validate the page tables
216 * if they aren't already valid.
217 */
218 num_evictions = atomic64_read(&adev->num_evictions);
219 if (num_evictions == vm->last_eviction_counter)
220 return 0;
221
222 return amdgpu_vm_validate_level(&vm->root, validate, param,
223 vm->use_cpu_for_update);
224 }
225
226 /**
227 * amdgpu_vm_move_level_in_lru - move one level of PT BOs to the LRU tail
228 *
229 * @adev: amdgpu device instance
230 * @vm: vm providing the BOs
231 *
232 * Move the PT BOs to the tail of the LRU.
233 */
234 static void amdgpu_vm_move_level_in_lru(struct amdgpu_vm_pt *parent)
235 {
236 unsigned i;
237
238 if (!parent->entries)
239 return;
240
241 for (i = 0; i <= parent->last_entry_used; ++i) {
242 struct amdgpu_vm_pt *entry = &parent->entries[i];
243
244 if (!entry->bo)
245 continue;
246
247 ttm_bo_move_to_lru_tail(&entry->bo->tbo);
248 amdgpu_vm_move_level_in_lru(entry);
249 }
250 }
251
252 /**
253 * amdgpu_vm_move_pt_bos_in_lru - move the PT BOs to the LRU tail
254 *
255 * @adev: amdgpu device instance
256 * @vm: vm providing the BOs
257 *
258 * Move the PT BOs to the tail of the LRU.
259 */
260 void amdgpu_vm_move_pt_bos_in_lru(struct amdgpu_device *adev,
261 struct amdgpu_vm *vm)
262 {
263 struct ttm_bo_global *glob = adev->mman.bdev.glob;
264
265 spin_lock(&glob->lru_lock);
266 amdgpu_vm_move_level_in_lru(&vm->root);
267 spin_unlock(&glob->lru_lock);
268 }
269
270 /**
271 * amdgpu_vm_alloc_levels - allocate the PD/PT levels
272 *
273 * @adev: amdgpu_device pointer
274 * @vm: requested vm
275 * @saddr: start of the address range
276 * @eaddr: end of the address range
277 *
278 * Make sure the page directories and page tables are allocated
279 */
280 static int amdgpu_vm_alloc_levels(struct amdgpu_device *adev,
281 struct amdgpu_vm *vm,
282 struct amdgpu_vm_pt *parent,
283 uint64_t saddr, uint64_t eaddr,
284 unsigned level)
285 {
286 unsigned shift = (adev->vm_manager.num_level - level) *
287 adev->vm_manager.block_size;
288 unsigned pt_idx, from, to;
289 int r;
290 u64 flags;
291
292 if (!parent->entries) {
293 unsigned num_entries = amdgpu_vm_num_entries(adev, level);
294
295 parent->entries = kvmalloc_array(num_entries,
296 sizeof(struct amdgpu_vm_pt),
297 GFP_KERNEL | __GFP_ZERO);
298 if (!parent->entries)
299 return -ENOMEM;
300 memset(parent->entries, 0 , sizeof(struct amdgpu_vm_pt));
301 }
302
303 from = saddr >> shift;
304 to = eaddr >> shift;
305 if (from >= amdgpu_vm_num_entries(adev, level) ||
306 to >= amdgpu_vm_num_entries(adev, level))
307 return -EINVAL;
308
309 if (to > parent->last_entry_used)
310 parent->last_entry_used = to;
311
312 ++level;
313 saddr = saddr & ((1 << shift) - 1);
314 eaddr = eaddr & ((1 << shift) - 1);
315
316 flags = AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS |
317 AMDGPU_GEM_CREATE_VRAM_CLEARED;
318 if (vm->use_cpu_for_update)
319 flags |= AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
320 else
321 flags |= (AMDGPU_GEM_CREATE_NO_CPU_ACCESS |
322 AMDGPU_GEM_CREATE_SHADOW);
323
324 /* walk over the address space and allocate the page tables */
325 for (pt_idx = from; pt_idx <= to; ++pt_idx) {
326 struct reservation_object *resv = vm->root.bo->tbo.resv;
327 struct amdgpu_vm_pt *entry = &parent->entries[pt_idx];
328 struct amdgpu_bo *pt;
329
330 if (!entry->bo) {
331 r = amdgpu_bo_create(adev,
332 amdgpu_vm_bo_size(adev, level),
333 AMDGPU_GPU_PAGE_SIZE, true,
334 AMDGPU_GEM_DOMAIN_VRAM,
335 flags,
336 NULL, resv, 0, &pt);
337 if (r)
338 return r;
339
340 if (vm->use_cpu_for_update) {
341 r = amdgpu_bo_kmap(pt, NULL);
342 if (r) {
343 amdgpu_bo_unref(&pt);
344 return r;
345 }
346 }
347
348 /* Keep a reference to the root directory to avoid
349 * freeing them up in the wrong order.
350 */
351 pt->parent = amdgpu_bo_ref(vm->root.bo);
352
353 entry->bo = pt;
354 entry->addr = 0;
355 entry->huge_page = false;
356 }
357
358 if (level < adev->vm_manager.num_level) {
359 uint64_t sub_saddr = (pt_idx == from) ? saddr : 0;
360 uint64_t sub_eaddr = (pt_idx == to) ? eaddr :
361 ((1 << shift) - 1);
362 r = amdgpu_vm_alloc_levels(adev, vm, entry, sub_saddr,
363 sub_eaddr, level);
364 if (r)
365 return r;
366 }
367 }
368
369 return 0;
370 }
371
372 /**
373 * amdgpu_vm_alloc_pts - Allocate page tables.
374 *
375 * @adev: amdgpu_device pointer
376 * @vm: VM to allocate page tables for
377 * @saddr: Start address which needs to be allocated
378 * @size: Size from start address we need.
379 *
380 * Make sure the page tables are allocated.
381 */
382 int amdgpu_vm_alloc_pts(struct amdgpu_device *adev,
383 struct amdgpu_vm *vm,
384 uint64_t saddr, uint64_t size)
385 {
386 uint64_t last_pfn;
387 uint64_t eaddr;
388
389 /* validate the parameters */
390 if (saddr & AMDGPU_GPU_PAGE_MASK || size & AMDGPU_GPU_PAGE_MASK)
391 return -EINVAL;
392
393 eaddr = saddr + size - 1;
394 last_pfn = eaddr / AMDGPU_GPU_PAGE_SIZE;
395 if (last_pfn >= adev->vm_manager.max_pfn) {
396 dev_err(adev->dev, "va above limit (0x%08llX >= 0x%08llX)\n",
397 last_pfn, adev->vm_manager.max_pfn);
398 return -EINVAL;
399 }
400
401 saddr /= AMDGPU_GPU_PAGE_SIZE;
402 eaddr /= AMDGPU_GPU_PAGE_SIZE;
403
404 return amdgpu_vm_alloc_levels(adev, vm, &vm->root, saddr, eaddr, 0);
405 }
406
407 /**
408 * amdgpu_vm_had_gpu_reset - check if reset occured since last use
409 *
410 * @adev: amdgpu_device pointer
411 * @id: VMID structure
412 *
413 * Check if GPU reset occured since last use of the VMID.
414 */
415 static bool amdgpu_vm_had_gpu_reset(struct amdgpu_device *adev,
416 struct amdgpu_vm_id *id)
417 {
418 return id->current_gpu_reset_count !=
419 atomic_read(&adev->gpu_reset_counter);
420 }
421
422 static bool amdgpu_vm_reserved_vmid_ready(struct amdgpu_vm *vm, unsigned vmhub)
423 {
424 return !!vm->reserved_vmid[vmhub];
425 }
426
427 /* idr_mgr->lock must be held */
428 static int amdgpu_vm_grab_reserved_vmid_locked(struct amdgpu_vm *vm,
429 struct amdgpu_ring *ring,
430 struct amdgpu_sync *sync,
431 struct dma_fence *fence,
432 struct amdgpu_job *job)
433 {
434 struct amdgpu_device *adev = ring->adev;
435 unsigned vmhub = ring->funcs->vmhub;
436 uint64_t fence_context = adev->fence_context + ring->idx;
437 struct amdgpu_vm_id *id = vm->reserved_vmid[vmhub];
438 struct amdgpu_vm_id_manager *id_mgr = &adev->vm_manager.id_mgr[vmhub];
439 struct dma_fence *updates = sync->last_vm_update;
440 int r = 0;
441 struct dma_fence *flushed, *tmp;
442 bool needs_flush = vm->use_cpu_for_update;
443
444 flushed = id->flushed_updates;
445 if ((amdgpu_vm_had_gpu_reset(adev, id)) ||
446 (atomic64_read(&id->owner) != vm->client_id) ||
447 (job->vm_pd_addr != id->pd_gpu_addr) ||
448 (updates && (!flushed || updates->context != flushed->context ||
449 dma_fence_is_later(updates, flushed))) ||
450 (!id->last_flush || (id->last_flush->context != fence_context &&
451 !dma_fence_is_signaled(id->last_flush)))) {
452 needs_flush = true;
453 /* to prevent one context starved by another context */
454 id->pd_gpu_addr = 0;
455 tmp = amdgpu_sync_peek_fence(&id->active, ring);
456 if (tmp) {
457 r = amdgpu_sync_fence(adev, sync, tmp);
458 return r;
459 }
460 }
461
462 /* Good we can use this VMID. Remember this submission as
463 * user of the VMID.
464 */
465 r = amdgpu_sync_fence(ring->adev, &id->active, fence);
466 if (r)
467 goto out;
468
469 if (updates && (!flushed || updates->context != flushed->context ||
470 dma_fence_is_later(updates, flushed))) {
471 dma_fence_put(id->flushed_updates);
472 id->flushed_updates = dma_fence_get(updates);
473 }
474 id->pd_gpu_addr = job->vm_pd_addr;
475 atomic64_set(&id->owner, vm->client_id);
476 job->vm_needs_flush = needs_flush;
477 if (needs_flush) {
478 dma_fence_put(id->last_flush);
479 id->last_flush = NULL;
480 }
481 job->vm_id = id - id_mgr->ids;
482 trace_amdgpu_vm_grab_id(vm, ring, job);
483 out:
484 return r;
485 }
486
487 /**
488 * amdgpu_vm_grab_id - allocate the next free VMID
489 *
490 * @vm: vm to allocate id for
491 * @ring: ring we want to submit job to
492 * @sync: sync object where we add dependencies
493 * @fence: fence protecting ID from reuse
494 *
495 * Allocate an id for the vm, adding fences to the sync obj as necessary.
496 */
497 int amdgpu_vm_grab_id(struct amdgpu_vm *vm, struct amdgpu_ring *ring,
498 struct amdgpu_sync *sync, struct dma_fence *fence,
499 struct amdgpu_job *job)
500 {
501 struct amdgpu_device *adev = ring->adev;
502 unsigned vmhub = ring->funcs->vmhub;
503 struct amdgpu_vm_id_manager *id_mgr = &adev->vm_manager.id_mgr[vmhub];
504 uint64_t fence_context = adev->fence_context + ring->idx;
505 struct dma_fence *updates = sync->last_vm_update;
506 struct amdgpu_vm_id *id, *idle;
507 struct dma_fence **fences;
508 unsigned i;
509 int r = 0;
510
511 mutex_lock(&id_mgr->lock);
512 if (amdgpu_vm_reserved_vmid_ready(vm, vmhub)) {
513 r = amdgpu_vm_grab_reserved_vmid_locked(vm, ring, sync, fence, job);
514 mutex_unlock(&id_mgr->lock);
515 return r;
516 }
517 fences = kmalloc_array(sizeof(void *), id_mgr->num_ids, GFP_KERNEL);
518 if (!fences) {
519 mutex_unlock(&id_mgr->lock);
520 return -ENOMEM;
521 }
522 /* Check if we have an idle VMID */
523 i = 0;
524 list_for_each_entry(idle, &id_mgr->ids_lru, list) {
525 fences[i] = amdgpu_sync_peek_fence(&idle->active, ring);
526 if (!fences[i])
527 break;
528 ++i;
529 }
530
531 /* If we can't find a idle VMID to use, wait till one becomes available */
532 if (&idle->list == &id_mgr->ids_lru) {
533 u64 fence_context = adev->vm_manager.fence_context + ring->idx;
534 unsigned seqno = ++adev->vm_manager.seqno[ring->idx];
535 struct dma_fence_array *array;
536 unsigned j;
537
538 for (j = 0; j < i; ++j)
539 dma_fence_get(fences[j]);
540
541 array = dma_fence_array_create(i, fences, fence_context,
542 seqno, true);
543 if (!array) {
544 for (j = 0; j < i; ++j)
545 dma_fence_put(fences[j]);
546 kfree(fences);
547 r = -ENOMEM;
548 goto error;
549 }
550
551
552 r = amdgpu_sync_fence(ring->adev, sync, &array->base);
553 dma_fence_put(&array->base);
554 if (r)
555 goto error;
556
557 mutex_unlock(&id_mgr->lock);
558 return 0;
559
560 }
561 kfree(fences);
562
563 job->vm_needs_flush = vm->use_cpu_for_update;
564 /* Check if we can use a VMID already assigned to this VM */
565 list_for_each_entry_reverse(id, &id_mgr->ids_lru, list) {
566 struct dma_fence *flushed;
567 bool needs_flush = vm->use_cpu_for_update;
568
569 /* Check all the prerequisites to using this VMID */
570 if (amdgpu_vm_had_gpu_reset(adev, id))
571 continue;
572
573 if (atomic64_read(&id->owner) != vm->client_id)
574 continue;
575
576 if (job->vm_pd_addr != id->pd_gpu_addr)
577 continue;
578
579 if (!id->last_flush ||
580 (id->last_flush->context != fence_context &&
581 !dma_fence_is_signaled(id->last_flush)))
582 needs_flush = true;
583
584 flushed = id->flushed_updates;
585 if (updates && (!flushed || dma_fence_is_later(updates, flushed)))
586 needs_flush = true;
587
588 /* Concurrent flushes are only possible starting with Vega10 */
589 if (adev->asic_type < CHIP_VEGA10 && needs_flush)
590 continue;
591
592 /* Good we can use this VMID. Remember this submission as
593 * user of the VMID.
594 */
595 r = amdgpu_sync_fence(ring->adev, &id->active, fence);
596 if (r)
597 goto error;
598
599 if (updates && (!flushed || dma_fence_is_later(updates, flushed))) {
600 dma_fence_put(id->flushed_updates);
601 id->flushed_updates = dma_fence_get(updates);
602 }
603
604 if (needs_flush)
605 goto needs_flush;
606 else
607 goto no_flush_needed;
608
609 };
610
611 /* Still no ID to use? Then use the idle one found earlier */
612 id = idle;
613
614 /* Remember this submission as user of the VMID */
615 r = amdgpu_sync_fence(ring->adev, &id->active, fence);
616 if (r)
617 goto error;
618
619 id->pd_gpu_addr = job->vm_pd_addr;
620 dma_fence_put(id->flushed_updates);
621 id->flushed_updates = dma_fence_get(updates);
622 atomic64_set(&id->owner, vm->client_id);
623
624 needs_flush:
625 job->vm_needs_flush = true;
626 dma_fence_put(id->last_flush);
627 id->last_flush = NULL;
628
629 no_flush_needed:
630 list_move_tail(&id->list, &id_mgr->ids_lru);
631
632 job->vm_id = id - id_mgr->ids;
633 trace_amdgpu_vm_grab_id(vm, ring, job);
634
635 error:
636 mutex_unlock(&id_mgr->lock);
637 return r;
638 }
639
640 static void amdgpu_vm_free_reserved_vmid(struct amdgpu_device *adev,
641 struct amdgpu_vm *vm,
642 unsigned vmhub)
643 {
644 struct amdgpu_vm_id_manager *id_mgr = &adev->vm_manager.id_mgr[vmhub];
645
646 mutex_lock(&id_mgr->lock);
647 if (vm->reserved_vmid[vmhub]) {
648 list_add(&vm->reserved_vmid[vmhub]->list,
649 &id_mgr->ids_lru);
650 vm->reserved_vmid[vmhub] = NULL;
651 atomic_dec(&id_mgr->reserved_vmid_num);
652 }
653 mutex_unlock(&id_mgr->lock);
654 }
655
656 static int amdgpu_vm_alloc_reserved_vmid(struct amdgpu_device *adev,
657 struct amdgpu_vm *vm,
658 unsigned vmhub)
659 {
660 struct amdgpu_vm_id_manager *id_mgr;
661 struct amdgpu_vm_id *idle;
662 int r = 0;
663
664 id_mgr = &adev->vm_manager.id_mgr[vmhub];
665 mutex_lock(&id_mgr->lock);
666 if (vm->reserved_vmid[vmhub])
667 goto unlock;
668 if (atomic_inc_return(&id_mgr->reserved_vmid_num) >
669 AMDGPU_VM_MAX_RESERVED_VMID) {
670 DRM_ERROR("Over limitation of reserved vmid\n");
671 atomic_dec(&id_mgr->reserved_vmid_num);
672 r = -EINVAL;
673 goto unlock;
674 }
675 /* Select the first entry VMID */
676 idle = list_first_entry(&id_mgr->ids_lru, struct amdgpu_vm_id, list);
677 list_del_init(&idle->list);
678 vm->reserved_vmid[vmhub] = idle;
679 mutex_unlock(&id_mgr->lock);
680
681 return 0;
682 unlock:
683 mutex_unlock(&id_mgr->lock);
684 return r;
685 }
686
687 /**
688 * amdgpu_vm_check_compute_bug - check whether asic has compute vm bug
689 *
690 * @adev: amdgpu_device pointer
691 */
692 void amdgpu_vm_check_compute_bug(struct amdgpu_device *adev)
693 {
694 const struct amdgpu_ip_block *ip_block;
695 bool has_compute_vm_bug;
696 struct amdgpu_ring *ring;
697 int i;
698
699 has_compute_vm_bug = false;
700
701 ip_block = amdgpu_get_ip_block(adev, AMD_IP_BLOCK_TYPE_GFX);
702 if (ip_block) {
703 /* Compute has a VM bug for GFX version < 7.
704 Compute has a VM bug for GFX 8 MEC firmware version < 673.*/
705 if (ip_block->version->major <= 7)
706 has_compute_vm_bug = true;
707 else if (ip_block->version->major == 8)
708 if (adev->gfx.mec_fw_version < 673)
709 has_compute_vm_bug = true;
710 }
711
712 for (i = 0; i < adev->num_rings; i++) {
713 ring = adev->rings[i];
714 if (ring->funcs->type == AMDGPU_RING_TYPE_COMPUTE)
715 /* only compute rings */
716 ring->has_compute_vm_bug = has_compute_vm_bug;
717 else
718 ring->has_compute_vm_bug = false;
719 }
720 }
721
722 bool amdgpu_vm_need_pipeline_sync(struct amdgpu_ring *ring,
723 struct amdgpu_job *job)
724 {
725 struct amdgpu_device *adev = ring->adev;
726 unsigned vmhub = ring->funcs->vmhub;
727 struct amdgpu_vm_id_manager *id_mgr = &adev->vm_manager.id_mgr[vmhub];
728 struct amdgpu_vm_id *id;
729 bool gds_switch_needed;
730 bool vm_flush_needed = job->vm_needs_flush || ring->has_compute_vm_bug;
731
732 if (job->vm_id == 0)
733 return false;
734 id = &id_mgr->ids[job->vm_id];
735 gds_switch_needed = ring->funcs->emit_gds_switch && (
736 id->gds_base != job->gds_base ||
737 id->gds_size != job->gds_size ||
738 id->gws_base != job->gws_base ||
739 id->gws_size != job->gws_size ||
740 id->oa_base != job->oa_base ||
741 id->oa_size != job->oa_size);
742
743 if (amdgpu_vm_had_gpu_reset(adev, id))
744 return true;
745
746 return vm_flush_needed || gds_switch_needed;
747 }
748
749 static bool amdgpu_vm_is_large_bar(struct amdgpu_device *adev)
750 {
751 return (adev->mc.real_vram_size == adev->mc.visible_vram_size);
752 }
753
754 /**
755 * amdgpu_vm_flush - hardware flush the vm
756 *
757 * @ring: ring to use for flush
758 * @vm_id: vmid number to use
759 * @pd_addr: address of the page directory
760 *
761 * Emit a VM flush when it is necessary.
762 */
763 int amdgpu_vm_flush(struct amdgpu_ring *ring, struct amdgpu_job *job, bool need_pipe_sync)
764 {
765 struct amdgpu_device *adev = ring->adev;
766 unsigned vmhub = ring->funcs->vmhub;
767 struct amdgpu_vm_id_manager *id_mgr = &adev->vm_manager.id_mgr[vmhub];
768 struct amdgpu_vm_id *id = &id_mgr->ids[job->vm_id];
769 bool gds_switch_needed = ring->funcs->emit_gds_switch && (
770 id->gds_base != job->gds_base ||
771 id->gds_size != job->gds_size ||
772 id->gws_base != job->gws_base ||
773 id->gws_size != job->gws_size ||
774 id->oa_base != job->oa_base ||
775 id->oa_size != job->oa_size);
776 bool vm_flush_needed = job->vm_needs_flush;
777 unsigned patch_offset = 0;
778 int r;
779
780 if (amdgpu_vm_had_gpu_reset(adev, id)) {
781 gds_switch_needed = true;
782 vm_flush_needed = true;
783 }
784
785 if (!vm_flush_needed && !gds_switch_needed && !need_pipe_sync)
786 return 0;
787
788 if (ring->funcs->init_cond_exec)
789 patch_offset = amdgpu_ring_init_cond_exec(ring);
790
791 if (need_pipe_sync)
792 amdgpu_ring_emit_pipeline_sync(ring);
793
794 if (ring->funcs->emit_vm_flush && vm_flush_needed) {
795 struct dma_fence *fence;
796
797 trace_amdgpu_vm_flush(ring, job->vm_id, job->vm_pd_addr);
798 amdgpu_ring_emit_vm_flush(ring, job->vm_id, job->vm_pd_addr);
799
800 r = amdgpu_fence_emit(ring, &fence);
801 if (r)
802 return r;
803
804 mutex_lock(&id_mgr->lock);
805 dma_fence_put(id->last_flush);
806 id->last_flush = fence;
807 id->current_gpu_reset_count = atomic_read(&adev->gpu_reset_counter);
808 mutex_unlock(&id_mgr->lock);
809 }
810
811 if (ring->funcs->emit_gds_switch && gds_switch_needed) {
812 id->gds_base = job->gds_base;
813 id->gds_size = job->gds_size;
814 id->gws_base = job->gws_base;
815 id->gws_size = job->gws_size;
816 id->oa_base = job->oa_base;
817 id->oa_size = job->oa_size;
818 amdgpu_ring_emit_gds_switch(ring, job->vm_id, job->gds_base,
819 job->gds_size, job->gws_base,
820 job->gws_size, job->oa_base,
821 job->oa_size);
822 }
823
824 if (ring->funcs->patch_cond_exec)
825 amdgpu_ring_patch_cond_exec(ring, patch_offset);
826
827 /* the double SWITCH_BUFFER here *cannot* be skipped by COND_EXEC */
828 if (ring->funcs->emit_switch_buffer) {
829 amdgpu_ring_emit_switch_buffer(ring);
830 amdgpu_ring_emit_switch_buffer(ring);
831 }
832 return 0;
833 }
834
835 /**
836 * amdgpu_vm_reset_id - reset VMID to zero
837 *
838 * @adev: amdgpu device structure
839 * @vm_id: vmid number to use
840 *
841 * Reset saved GDW, GWS and OA to force switch on next flush.
842 */
843 void amdgpu_vm_reset_id(struct amdgpu_device *adev, unsigned vmhub,
844 unsigned vmid)
845 {
846 struct amdgpu_vm_id_manager *id_mgr = &adev->vm_manager.id_mgr[vmhub];
847 struct amdgpu_vm_id *id = &id_mgr->ids[vmid];
848
849 atomic64_set(&id->owner, 0);
850 id->gds_base = 0;
851 id->gds_size = 0;
852 id->gws_base = 0;
853 id->gws_size = 0;
854 id->oa_base = 0;
855 id->oa_size = 0;
856 }
857
858 /**
859 * amdgpu_vm_reset_all_id - reset VMID to zero
860 *
861 * @adev: amdgpu device structure
862 *
863 * Reset VMID to force flush on next use
864 */
865 void amdgpu_vm_reset_all_ids(struct amdgpu_device *adev)
866 {
867 unsigned i, j;
868
869 for (i = 0; i < AMDGPU_MAX_VMHUBS; ++i) {
870 struct amdgpu_vm_id_manager *id_mgr =
871 &adev->vm_manager.id_mgr[i];
872
873 for (j = 1; j < id_mgr->num_ids; ++j)
874 amdgpu_vm_reset_id(adev, i, j);
875 }
876 }
877
878 /**
879 * amdgpu_vm_bo_find - find the bo_va for a specific vm & bo
880 *
881 * @vm: requested vm
882 * @bo: requested buffer object
883 *
884 * Find @bo inside the requested vm.
885 * Search inside the @bos vm list for the requested vm
886 * Returns the found bo_va or NULL if none is found
887 *
888 * Object has to be reserved!
889 */
890 struct amdgpu_bo_va *amdgpu_vm_bo_find(struct amdgpu_vm *vm,
891 struct amdgpu_bo *bo)
892 {
893 struct amdgpu_bo_va *bo_va;
894
895 list_for_each_entry(bo_va, &bo->va, bo_list) {
896 if (bo_va->vm == vm) {
897 return bo_va;
898 }
899 }
900 return NULL;
901 }
902
903 /**
904 * amdgpu_vm_do_set_ptes - helper to call the right asic function
905 *
906 * @params: see amdgpu_pte_update_params definition
907 * @pe: addr of the page entry
908 * @addr: dst addr to write into pe
909 * @count: number of page entries to update
910 * @incr: increase next addr by incr bytes
911 * @flags: hw access flags
912 *
913 * Traces the parameters and calls the right asic functions
914 * to setup the page table using the DMA.
915 */
916 static void amdgpu_vm_do_set_ptes(struct amdgpu_pte_update_params *params,
917 uint64_t pe, uint64_t addr,
918 unsigned count, uint32_t incr,
919 uint64_t flags)
920 {
921 trace_amdgpu_vm_set_ptes(pe, addr, count, incr, flags);
922
923 if (count < 3) {
924 amdgpu_vm_write_pte(params->adev, params->ib, pe,
925 addr | flags, count, incr);
926
927 } else {
928 amdgpu_vm_set_pte_pde(params->adev, params->ib, pe, addr,
929 count, incr, flags);
930 }
931 }
932
933 /**
934 * amdgpu_vm_do_copy_ptes - copy the PTEs from the GART
935 *
936 * @params: see amdgpu_pte_update_params definition
937 * @pe: addr of the page entry
938 * @addr: dst addr to write into pe
939 * @count: number of page entries to update
940 * @incr: increase next addr by incr bytes
941 * @flags: hw access flags
942 *
943 * Traces the parameters and calls the DMA function to copy the PTEs.
944 */
945 static void amdgpu_vm_do_copy_ptes(struct amdgpu_pte_update_params *params,
946 uint64_t pe, uint64_t addr,
947 unsigned count, uint32_t incr,
948 uint64_t flags)
949 {
950 uint64_t src = (params->src + (addr >> 12) * 8);
951
952
953 trace_amdgpu_vm_copy_ptes(pe, src, count);
954
955 amdgpu_vm_copy_pte(params->adev, params->ib, pe, src, count);
956 }
957
958 /**
959 * amdgpu_vm_map_gart - Resolve gart mapping of addr
960 *
961 * @pages_addr: optional DMA address to use for lookup
962 * @addr: the unmapped addr
963 *
964 * Look up the physical address of the page that the pte resolves
965 * to and return the pointer for the page table entry.
966 */
967 static uint64_t amdgpu_vm_map_gart(const dma_addr_t *pages_addr, uint64_t addr)
968 {
969 uint64_t result;
970
971 /* page table offset */
972 result = pages_addr[addr >> PAGE_SHIFT];
973
974 /* in case cpu page size != gpu page size*/
975 result |= addr & (~PAGE_MASK);
976
977 result &= 0xFFFFFFFFFFFFF000ULL;
978
979 return result;
980 }
981
982 /**
983 * amdgpu_vm_cpu_set_ptes - helper to update page tables via CPU
984 *
985 * @params: see amdgpu_pte_update_params definition
986 * @pe: kmap addr of the page entry
987 * @addr: dst addr to write into pe
988 * @count: number of page entries to update
989 * @incr: increase next addr by incr bytes
990 * @flags: hw access flags
991 *
992 * Write count number of PT/PD entries directly.
993 */
994 static void amdgpu_vm_cpu_set_ptes(struct amdgpu_pte_update_params *params,
995 uint64_t pe, uint64_t addr,
996 unsigned count, uint32_t incr,
997 uint64_t flags)
998 {
999 unsigned int i;
1000 uint64_t value;
1001
1002 trace_amdgpu_vm_set_ptes(pe, addr, count, incr, flags);
1003
1004 for (i = 0; i < count; i++) {
1005 value = params->pages_addr ?
1006 amdgpu_vm_map_gart(params->pages_addr, addr) :
1007 addr;
1008 amdgpu_gart_set_pte_pde(params->adev, (void *)(uintptr_t)pe,
1009 i, value, flags);
1010 addr += incr;
1011 }
1012 }
1013
1014 static int amdgpu_vm_wait_pd(struct amdgpu_device *adev, struct amdgpu_vm *vm,
1015 void *owner)
1016 {
1017 struct amdgpu_sync sync;
1018 int r;
1019
1020 amdgpu_sync_create(&sync);
1021 amdgpu_sync_resv(adev, &sync, vm->root.bo->tbo.resv, owner);
1022 r = amdgpu_sync_wait(&sync, true);
1023 amdgpu_sync_free(&sync);
1024
1025 return r;
1026 }
1027
1028 /*
1029 * amdgpu_vm_update_level - update a single level in the hierarchy
1030 *
1031 * @adev: amdgpu_device pointer
1032 * @vm: requested vm
1033 * @parent: parent directory
1034 *
1035 * Makes sure all entries in @parent are up to date.
1036 * Returns 0 for success, error for failure.
1037 */
1038 static int amdgpu_vm_update_level(struct amdgpu_device *adev,
1039 struct amdgpu_vm *vm,
1040 struct amdgpu_vm_pt *parent,
1041 unsigned level)
1042 {
1043 struct amdgpu_bo *shadow;
1044 struct amdgpu_ring *ring = NULL;
1045 uint64_t pd_addr, shadow_addr = 0;
1046 uint32_t incr = amdgpu_vm_bo_size(adev, level + 1);
1047 uint64_t last_pde = ~0, last_pt = ~0, last_shadow = ~0;
1048 unsigned count = 0, pt_idx, ndw = 0;
1049 struct amdgpu_job *job;
1050 struct amdgpu_pte_update_params params;
1051 struct dma_fence *fence = NULL;
1052
1053 int r;
1054
1055 if (!parent->entries)
1056 return 0;
1057
1058 memset(&params, 0, sizeof(params));
1059 params.adev = adev;
1060 shadow = parent->bo->shadow;
1061
1062 if (vm->use_cpu_for_update) {
1063 pd_addr = (unsigned long)amdgpu_bo_kptr(parent->bo);
1064 r = amdgpu_vm_wait_pd(adev, vm, AMDGPU_FENCE_OWNER_VM);
1065 if (unlikely(r))
1066 return r;
1067
1068 params.func = amdgpu_vm_cpu_set_ptes;
1069 } else {
1070 if (shadow) {
1071 r = amdgpu_ttm_bind(&shadow->tbo, &shadow->tbo.mem);
1072 if (r)
1073 return r;
1074 }
1075 ring = container_of(vm->entity.sched, struct amdgpu_ring,
1076 sched);
1077
1078 /* padding, etc. */
1079 ndw = 64;
1080
1081 /* assume the worst case */
1082 ndw += parent->last_entry_used * 6;
1083
1084 pd_addr = amdgpu_bo_gpu_offset(parent->bo);
1085
1086 if (shadow) {
1087 shadow_addr = amdgpu_bo_gpu_offset(shadow);
1088 ndw *= 2;
1089 } else {
1090 shadow_addr = 0;
1091 }
1092
1093 r = amdgpu_job_alloc_with_ib(adev, ndw * 4, &job);
1094 if (r)
1095 return r;
1096
1097 params.ib = &job->ibs[0];
1098 params.func = amdgpu_vm_do_set_ptes;
1099 }
1100
1101
1102 /* walk over the address space and update the directory */
1103 for (pt_idx = 0; pt_idx <= parent->last_entry_used; ++pt_idx) {
1104 struct amdgpu_bo *bo = parent->entries[pt_idx].bo;
1105 uint64_t pde, pt;
1106
1107 if (bo == NULL)
1108 continue;
1109
1110 if (bo->shadow) {
1111 struct amdgpu_bo *pt_shadow = bo->shadow;
1112
1113 r = amdgpu_ttm_bind(&pt_shadow->tbo,
1114 &pt_shadow->tbo.mem);
1115 if (r)
1116 return r;
1117 }
1118
1119 pt = amdgpu_bo_gpu_offset(bo);
1120 pt = amdgpu_gart_get_vm_pde(adev, pt);
1121 if (parent->entries[pt_idx].addr == pt ||
1122 parent->entries[pt_idx].huge_page)
1123 continue;
1124
1125 parent->entries[pt_idx].addr = pt;
1126
1127 pde = pd_addr + pt_idx * 8;
1128 if (((last_pde + 8 * count) != pde) ||
1129 ((last_pt + incr * count) != pt) ||
1130 (count == AMDGPU_VM_MAX_UPDATE_SIZE)) {
1131
1132 if (count) {
1133 if (shadow)
1134 params.func(&params,
1135 last_shadow,
1136 last_pt, count,
1137 incr,
1138 AMDGPU_PTE_VALID);
1139
1140 params.func(&params, last_pde,
1141 last_pt, count, incr,
1142 AMDGPU_PTE_VALID);
1143 }
1144
1145 count = 1;
1146 last_pde = pde;
1147 last_shadow = shadow_addr + pt_idx * 8;
1148 last_pt = pt;
1149 } else {
1150 ++count;
1151 }
1152 }
1153
1154 if (count) {
1155 if (vm->root.bo->shadow)
1156 params.func(&params, last_shadow, last_pt,
1157 count, incr, AMDGPU_PTE_VALID);
1158
1159 params.func(&params, last_pde, last_pt,
1160 count, incr, AMDGPU_PTE_VALID);
1161 }
1162
1163 if (!vm->use_cpu_for_update) {
1164 if (params.ib->length_dw == 0) {
1165 amdgpu_job_free(job);
1166 } else {
1167 amdgpu_ring_pad_ib(ring, params.ib);
1168 amdgpu_sync_resv(adev, &job->sync, parent->bo->tbo.resv,
1169 AMDGPU_FENCE_OWNER_VM);
1170 if (shadow)
1171 amdgpu_sync_resv(adev, &job->sync,
1172 shadow->tbo.resv,
1173 AMDGPU_FENCE_OWNER_VM);
1174
1175 WARN_ON(params.ib->length_dw > ndw);
1176 r = amdgpu_job_submit(job, ring, &vm->entity,
1177 AMDGPU_FENCE_OWNER_VM, &fence);
1178 if (r)
1179 goto error_free;
1180
1181 amdgpu_bo_fence(parent->bo, fence, true);
1182 dma_fence_put(vm->last_dir_update);
1183 vm->last_dir_update = dma_fence_get(fence);
1184 dma_fence_put(fence);
1185 }
1186 }
1187 /*
1188 * Recurse into the subdirectories. This recursion is harmless because
1189 * we only have a maximum of 5 layers.
1190 */
1191 for (pt_idx = 0; pt_idx <= parent->last_entry_used; ++pt_idx) {
1192 struct amdgpu_vm_pt *entry = &parent->entries[pt_idx];
1193
1194 if (!entry->bo)
1195 continue;
1196
1197 r = amdgpu_vm_update_level(adev, vm, entry, level + 1);
1198 if (r)
1199 return r;
1200 }
1201
1202 return 0;
1203
1204 error_free:
1205 amdgpu_job_free(job);
1206 return r;
1207 }
1208
1209 /*
1210 * amdgpu_vm_invalidate_level - mark all PD levels as invalid
1211 *
1212 * @parent: parent PD
1213 *
1214 * Mark all PD level as invalid after an error.
1215 */
1216 static void amdgpu_vm_invalidate_level(struct amdgpu_vm_pt *parent)
1217 {
1218 unsigned pt_idx;
1219
1220 /*
1221 * Recurse into the subdirectories. This recursion is harmless because
1222 * we only have a maximum of 5 layers.
1223 */
1224 for (pt_idx = 0; pt_idx <= parent->last_entry_used; ++pt_idx) {
1225 struct amdgpu_vm_pt *entry = &parent->entries[pt_idx];
1226
1227 if (!entry->bo)
1228 continue;
1229
1230 entry->addr = ~0ULL;
1231 amdgpu_vm_invalidate_level(entry);
1232 }
1233 }
1234
1235 /*
1236 * amdgpu_vm_update_directories - make sure that all directories are valid
1237 *
1238 * @adev: amdgpu_device pointer
1239 * @vm: requested vm
1240 *
1241 * Makes sure all directories are up to date.
1242 * Returns 0 for success, error for failure.
1243 */
1244 int amdgpu_vm_update_directories(struct amdgpu_device *adev,
1245 struct amdgpu_vm *vm)
1246 {
1247 int r;
1248
1249 r = amdgpu_vm_update_level(adev, vm, &vm->root, 0);
1250 if (r)
1251 amdgpu_vm_invalidate_level(&vm->root);
1252
1253 if (vm->use_cpu_for_update) {
1254 /* Flush HDP */
1255 mb();
1256 amdgpu_gart_flush_gpu_tlb(adev, 0);
1257 }
1258
1259 return r;
1260 }
1261
1262 /**
1263 * amdgpu_vm_find_entry - find the entry for an address
1264 *
1265 * @p: see amdgpu_pte_update_params definition
1266 * @addr: virtual address in question
1267 * @entry: resulting entry or NULL
1268 * @parent: parent entry
1269 *
1270 * Find the vm_pt entry and it's parent for the given address.
1271 */
1272 void amdgpu_vm_get_entry(struct amdgpu_pte_update_params *p, uint64_t addr,
1273 struct amdgpu_vm_pt **entry,
1274 struct amdgpu_vm_pt **parent)
1275 {
1276 unsigned idx, level = p->adev->vm_manager.num_level;
1277
1278 *parent = NULL;
1279 *entry = &p->vm->root;
1280 while ((*entry)->entries) {
1281 idx = addr >> (p->adev->vm_manager.block_size * level--);
1282 idx %= amdgpu_bo_size((*entry)->bo) / 8;
1283 *parent = *entry;
1284 *entry = &(*entry)->entries[idx];
1285 }
1286
1287 if (level)
1288 *entry = NULL;
1289 }
1290
1291 /**
1292 * amdgpu_vm_handle_huge_pages - handle updating the PD with huge pages
1293 *
1294 * @p: see amdgpu_pte_update_params definition
1295 * @entry: vm_pt entry to check
1296 * @parent: parent entry
1297 * @nptes: number of PTEs updated with this operation
1298 * @dst: destination address where the PTEs should point to
1299 * @flags: access flags fro the PTEs
1300 *
1301 * Check if we can update the PD with a huge page.
1302 */
1303 static int amdgpu_vm_handle_huge_pages(struct amdgpu_pte_update_params *p,
1304 struct amdgpu_vm_pt *entry,
1305 struct amdgpu_vm_pt *parent,
1306 unsigned nptes, uint64_t dst,
1307 uint64_t flags)
1308 {
1309 bool use_cpu_update = (p->func == amdgpu_vm_cpu_set_ptes);
1310 uint64_t pd_addr, pde;
1311 int r;
1312
1313 /* In the case of a mixed PT the PDE must point to it*/
1314 if (p->adev->asic_type < CHIP_VEGA10 ||
1315 nptes != AMDGPU_VM_PTE_COUNT(p->adev) ||
1316 p->func == amdgpu_vm_do_copy_ptes ||
1317 !(flags & AMDGPU_PTE_VALID)) {
1318
1319 dst = amdgpu_bo_gpu_offset(entry->bo);
1320 dst = amdgpu_gart_get_vm_pde(p->adev, dst);
1321 flags = AMDGPU_PTE_VALID;
1322 } else {
1323 flags |= AMDGPU_PDE_PTE;
1324 }
1325
1326 if (entry->addr == dst &&
1327 entry->huge_page == !!(flags & AMDGPU_PDE_PTE))
1328 return 0;
1329
1330 entry->addr = dst;
1331 entry->huge_page = !!(flags & AMDGPU_PDE_PTE);
1332
1333 if (use_cpu_update) {
1334 r = amdgpu_bo_kmap(parent->bo, (void *)&pd_addr);
1335 if (r)
1336 return r;
1337
1338 pde = pd_addr + (entry - parent->entries) * 8;
1339 amdgpu_vm_cpu_set_ptes(p, pde, dst, 1, 0, flags);
1340 } else {
1341 if (parent->bo->shadow) {
1342 pd_addr = amdgpu_bo_gpu_offset(parent->bo->shadow);
1343 pde = pd_addr + (entry - parent->entries) * 8;
1344 amdgpu_vm_do_set_ptes(p, pde, dst, 1, 0, flags);
1345 }
1346 pd_addr = amdgpu_bo_gpu_offset(parent->bo);
1347 pde = pd_addr + (entry - parent->entries) * 8;
1348 amdgpu_vm_do_set_ptes(p, pde, dst, 1, 0, flags);
1349 }
1350
1351 return 0;
1352 }
1353
1354 /**
1355 * amdgpu_vm_update_ptes - make sure that page tables are valid
1356 *
1357 * @params: see amdgpu_pte_update_params definition
1358 * @vm: requested vm
1359 * @start: start of GPU address range
1360 * @end: end of GPU address range
1361 * @dst: destination address to map to, the next dst inside the function
1362 * @flags: mapping flags
1363 *
1364 * Update the page tables in the range @start - @end.
1365 * Returns 0 for success, -EINVAL for failure.
1366 */
1367 static int amdgpu_vm_update_ptes(struct amdgpu_pte_update_params *params,
1368 uint64_t start, uint64_t end,
1369 uint64_t dst, uint64_t flags)
1370 {
1371 struct amdgpu_device *adev = params->adev;
1372 const uint64_t mask = AMDGPU_VM_PTE_COUNT(adev) - 1;
1373
1374 uint64_t addr, pe_start;
1375 struct amdgpu_bo *pt;
1376 unsigned nptes;
1377 bool use_cpu_update = (params->func == amdgpu_vm_cpu_set_ptes);
1378 int r;
1379
1380 /* walk over the address space and update the page tables */
1381 for (addr = start; addr < end; addr += nptes,
1382 dst += nptes * AMDGPU_GPU_PAGE_SIZE) {
1383 struct amdgpu_vm_pt *entry, *parent;
1384
1385 amdgpu_vm_get_entry(params, addr, &entry, &parent);
1386 if (!entry)
1387 return -ENOENT;
1388
1389 if ((addr & ~mask) == (end & ~mask))
1390 nptes = end - addr;
1391 else
1392 nptes = AMDGPU_VM_PTE_COUNT(adev) - (addr & mask);
1393
1394 r = amdgpu_vm_handle_huge_pages(params, entry, parent,
1395 nptes, dst, flags);
1396 if (r)
1397 return r;
1398
1399 if (entry->huge_page)
1400 continue;
1401
1402 pt = entry->bo;
1403 if (use_cpu_update) {
1404 pe_start = (unsigned long)amdgpu_bo_kptr(pt);
1405 } else {
1406 if (pt->shadow) {
1407 pe_start = amdgpu_bo_gpu_offset(pt->shadow);
1408 pe_start += (addr & mask) * 8;
1409 params->func(params, pe_start, dst, nptes,
1410 AMDGPU_GPU_PAGE_SIZE, flags);
1411 }
1412 pe_start = amdgpu_bo_gpu_offset(pt);
1413 }
1414
1415 pe_start += (addr & mask) * 8;
1416 params->func(params, pe_start, dst, nptes,
1417 AMDGPU_GPU_PAGE_SIZE, flags);
1418 }
1419
1420 return 0;
1421 }
1422
1423 /*
1424 * amdgpu_vm_frag_ptes - add fragment information to PTEs
1425 *
1426 * @params: see amdgpu_pte_update_params definition
1427 * @vm: requested vm
1428 * @start: first PTE to handle
1429 * @end: last PTE to handle
1430 * @dst: addr those PTEs should point to
1431 * @flags: hw mapping flags
1432 * Returns 0 for success, -EINVAL for failure.
1433 */
1434 static int amdgpu_vm_frag_ptes(struct amdgpu_pte_update_params *params,
1435 uint64_t start, uint64_t end,
1436 uint64_t dst, uint64_t flags)
1437 {
1438 int r;
1439
1440 /**
1441 * The MC L1 TLB supports variable sized pages, based on a fragment
1442 * field in the PTE. When this field is set to a non-zero value, page
1443 * granularity is increased from 4KB to (1 << (12 + frag)). The PTE
1444 * flags are considered valid for all PTEs within the fragment range
1445 * and corresponding mappings are assumed to be physically contiguous.
1446 *
1447 * The L1 TLB can store a single PTE for the whole fragment,
1448 * significantly increasing the space available for translation
1449 * caching. This leads to large improvements in throughput when the
1450 * TLB is under pressure.
1451 *
1452 * The L2 TLB distributes small and large fragments into two
1453 * asymmetric partitions. The large fragment cache is significantly
1454 * larger. Thus, we try to use large fragments wherever possible.
1455 * Userspace can support this by aligning virtual base address and
1456 * allocation size to the fragment size.
1457 */
1458
1459 /* SI and newer are optimized for 64KB */
1460 unsigned pages_per_frag = AMDGPU_LOG2_PAGES_PER_FRAG(params->adev);
1461 uint64_t frag_flags = AMDGPU_PTE_FRAG(pages_per_frag);
1462 uint64_t frag_align = 1 << pages_per_frag;
1463
1464 uint64_t frag_start = ALIGN(start, frag_align);
1465 uint64_t frag_end = end & ~(frag_align - 1);
1466
1467 /* system pages are non continuously */
1468 if (params->src || !(flags & AMDGPU_PTE_VALID) ||
1469 (frag_start >= frag_end))
1470 return amdgpu_vm_update_ptes(params, start, end, dst, flags);
1471
1472 /* handle the 4K area at the beginning */
1473 if (start != frag_start) {
1474 r = amdgpu_vm_update_ptes(params, start, frag_start,
1475 dst, flags);
1476 if (r)
1477 return r;
1478 dst += (frag_start - start) * AMDGPU_GPU_PAGE_SIZE;
1479 }
1480
1481 /* handle the area in the middle */
1482 r = amdgpu_vm_update_ptes(params, frag_start, frag_end, dst,
1483 flags | frag_flags);
1484 if (r)
1485 return r;
1486
1487 /* handle the 4K area at the end */
1488 if (frag_end != end) {
1489 dst += (frag_end - frag_start) * AMDGPU_GPU_PAGE_SIZE;
1490 r = amdgpu_vm_update_ptes(params, frag_end, end, dst, flags);
1491 }
1492 return r;
1493 }
1494
1495 /**
1496 * amdgpu_vm_bo_update_mapping - update a mapping in the vm page table
1497 *
1498 * @adev: amdgpu_device pointer
1499 * @exclusive: fence we need to sync to
1500 * @src: address where to copy page table entries from
1501 * @pages_addr: DMA addresses to use for mapping
1502 * @vm: requested vm
1503 * @start: start of mapped range
1504 * @last: last mapped entry
1505 * @flags: flags for the entries
1506 * @addr: addr to set the area to
1507 * @fence: optional resulting fence
1508 *
1509 * Fill in the page table entries between @start and @last.
1510 * Returns 0 for success, -EINVAL for failure.
1511 */
1512 static int amdgpu_vm_bo_update_mapping(struct amdgpu_device *adev,
1513 struct dma_fence *exclusive,
1514 uint64_t src,
1515 dma_addr_t *pages_addr,
1516 struct amdgpu_vm *vm,
1517 uint64_t start, uint64_t last,
1518 uint64_t flags, uint64_t addr,
1519 struct dma_fence **fence)
1520 {
1521 struct amdgpu_ring *ring;
1522 void *owner = AMDGPU_FENCE_OWNER_VM;
1523 unsigned nptes, ncmds, ndw;
1524 struct amdgpu_job *job;
1525 struct amdgpu_pte_update_params params;
1526 struct dma_fence *f = NULL;
1527 int r;
1528
1529 memset(&params, 0, sizeof(params));
1530 params.adev = adev;
1531 params.vm = vm;
1532 params.src = src;
1533
1534 /* sync to everything on unmapping */
1535 if (!(flags & AMDGPU_PTE_VALID))
1536 owner = AMDGPU_FENCE_OWNER_UNDEFINED;
1537
1538 if (vm->use_cpu_for_update) {
1539 /* params.src is used as flag to indicate system Memory */
1540 if (pages_addr)
1541 params.src = ~0;
1542
1543 /* Wait for PT BOs to be free. PTs share the same resv. object
1544 * as the root PD BO
1545 */
1546 r = amdgpu_vm_wait_pd(adev, vm, owner);
1547 if (unlikely(r))
1548 return r;
1549
1550 params.func = amdgpu_vm_cpu_set_ptes;
1551 params.pages_addr = pages_addr;
1552 return amdgpu_vm_frag_ptes(&params, start, last + 1,
1553 addr, flags);
1554 }
1555
1556 ring = container_of(vm->entity.sched, struct amdgpu_ring, sched);
1557
1558 nptes = last - start + 1;
1559
1560 /*
1561 * reserve space for one command every (1 << BLOCK_SIZE)
1562 * entries or 2k dwords (whatever is smaller)
1563 */
1564 ncmds = (nptes >> min(adev->vm_manager.block_size, 11u)) + 1;
1565
1566 /* padding, etc. */
1567 ndw = 64;
1568
1569 /* one PDE write for each huge page */
1570 ndw += ((nptes >> adev->vm_manager.block_size) + 1) * 6;
1571
1572 if (src) {
1573 /* only copy commands needed */
1574 ndw += ncmds * 7;
1575
1576 params.func = amdgpu_vm_do_copy_ptes;
1577
1578 } else if (pages_addr) {
1579 /* copy commands needed */
1580 ndw += ncmds * 7;
1581
1582 /* and also PTEs */
1583 ndw += nptes * 2;
1584
1585 params.func = amdgpu_vm_do_copy_ptes;
1586
1587 } else {
1588 /* set page commands needed */
1589 ndw += ncmds * 10;
1590
1591 /* two extra commands for begin/end of fragment */
1592 ndw += 2 * 10;
1593
1594 params.func = amdgpu_vm_do_set_ptes;
1595 }
1596
1597 r = amdgpu_job_alloc_with_ib(adev, ndw * 4, &job);
1598 if (r)
1599 return r;
1600
1601 params.ib = &job->ibs[0];
1602
1603 if (!src && pages_addr) {
1604 uint64_t *pte;
1605 unsigned i;
1606
1607 /* Put the PTEs at the end of the IB. */
1608 i = ndw - nptes * 2;
1609 pte= (uint64_t *)&(job->ibs->ptr[i]);
1610 params.src = job->ibs->gpu_addr + i * 4;
1611
1612 for (i = 0; i < nptes; ++i) {
1613 pte[i] = amdgpu_vm_map_gart(pages_addr, addr + i *
1614 AMDGPU_GPU_PAGE_SIZE);
1615 pte[i] |= flags;
1616 }
1617 addr = 0;
1618 }
1619
1620 r = amdgpu_sync_fence(adev, &job->sync, exclusive);
1621 if (r)
1622 goto error_free;
1623
1624 r = amdgpu_sync_resv(adev, &job->sync, vm->root.bo->tbo.resv,
1625 owner);
1626 if (r)
1627 goto error_free;
1628
1629 r = reservation_object_reserve_shared(vm->root.bo->tbo.resv);
1630 if (r)
1631 goto error_free;
1632
1633 r = amdgpu_vm_frag_ptes(&params, start, last + 1, addr, flags);
1634 if (r)
1635 goto error_free;
1636
1637 amdgpu_ring_pad_ib(ring, params.ib);
1638 WARN_ON(params.ib->length_dw > ndw);
1639 r = amdgpu_job_submit(job, ring, &vm->entity,
1640 AMDGPU_FENCE_OWNER_VM, &f);
1641 if (r)
1642 goto error_free;
1643
1644 amdgpu_bo_fence(vm->root.bo, f, true);
1645 dma_fence_put(*fence);
1646 *fence = f;
1647 return 0;
1648
1649 error_free:
1650 amdgpu_job_free(job);
1651 amdgpu_vm_invalidate_level(&vm->root);
1652 return r;
1653 }
1654
1655 /**
1656 * amdgpu_vm_bo_split_mapping - split a mapping into smaller chunks
1657 *
1658 * @adev: amdgpu_device pointer
1659 * @exclusive: fence we need to sync to
1660 * @gtt_flags: flags as they are used for GTT
1661 * @pages_addr: DMA addresses to use for mapping
1662 * @vm: requested vm
1663 * @mapping: mapped range and flags to use for the update
1664 * @flags: HW flags for the mapping
1665 * @nodes: array of drm_mm_nodes with the MC addresses
1666 * @fence: optional resulting fence
1667 *
1668 * Split the mapping into smaller chunks so that each update fits
1669 * into a SDMA IB.
1670 * Returns 0 for success, -EINVAL for failure.
1671 */
1672 static int amdgpu_vm_bo_split_mapping(struct amdgpu_device *adev,
1673 struct dma_fence *exclusive,
1674 uint64_t gtt_flags,
1675 dma_addr_t *pages_addr,
1676 struct amdgpu_vm *vm,
1677 struct amdgpu_bo_va_mapping *mapping,
1678 uint64_t flags,
1679 struct drm_mm_node *nodes,
1680 struct dma_fence **fence)
1681 {
1682 uint64_t pfn, src = 0, start = mapping->start;
1683 int r;
1684
1685 /* normally,bo_va->flags only contians READABLE and WIRTEABLE bit go here
1686 * but in case of something, we filter the flags in first place
1687 */
1688 if (!(mapping->flags & AMDGPU_PTE_READABLE))
1689 flags &= ~AMDGPU_PTE_READABLE;
1690 if (!(mapping->flags & AMDGPU_PTE_WRITEABLE))
1691 flags &= ~AMDGPU_PTE_WRITEABLE;
1692
1693 flags &= ~AMDGPU_PTE_EXECUTABLE;
1694 flags |= mapping->flags & AMDGPU_PTE_EXECUTABLE;
1695
1696 flags &= ~AMDGPU_PTE_MTYPE_MASK;
1697 flags |= (mapping->flags & AMDGPU_PTE_MTYPE_MASK);
1698
1699 if ((mapping->flags & AMDGPU_PTE_PRT) &&
1700 (adev->asic_type >= CHIP_VEGA10)) {
1701 flags |= AMDGPU_PTE_PRT;
1702 flags &= ~AMDGPU_PTE_VALID;
1703 }
1704
1705 trace_amdgpu_vm_bo_update(mapping);
1706
1707 pfn = mapping->offset >> PAGE_SHIFT;
1708 if (nodes) {
1709 while (pfn >= nodes->size) {
1710 pfn -= nodes->size;
1711 ++nodes;
1712 }
1713 }
1714
1715 do {
1716 uint64_t max_entries;
1717 uint64_t addr, last;
1718
1719 if (nodes) {
1720 addr = nodes->start << PAGE_SHIFT;
1721 max_entries = (nodes->size - pfn) *
1722 (PAGE_SIZE / AMDGPU_GPU_PAGE_SIZE);
1723 } else {
1724 addr = 0;
1725 max_entries = S64_MAX;
1726 }
1727
1728 if (pages_addr) {
1729 if (flags == gtt_flags)
1730 src = adev->gart.table_addr +
1731 (addr >> AMDGPU_GPU_PAGE_SHIFT) * 8;
1732 else
1733 max_entries = min(max_entries, 16ull * 1024ull);
1734 addr = 0;
1735 } else if (flags & AMDGPU_PTE_VALID) {
1736 addr += adev->vm_manager.vram_base_offset;
1737 }
1738 addr += pfn << PAGE_SHIFT;
1739
1740 last = min((uint64_t)mapping->last, start + max_entries - 1);
1741 r = amdgpu_vm_bo_update_mapping(adev, exclusive,
1742 src, pages_addr, vm,
1743 start, last, flags, addr,
1744 fence);
1745 if (r)
1746 return r;
1747
1748 pfn += last - start + 1;
1749 if (nodes && nodes->size == pfn) {
1750 pfn = 0;
1751 ++nodes;
1752 }
1753 start = last + 1;
1754
1755 } while (unlikely(start != mapping->last + 1));
1756
1757 return 0;
1758 }
1759
1760 /**
1761 * amdgpu_vm_bo_update - update all BO mappings in the vm page table
1762 *
1763 * @adev: amdgpu_device pointer
1764 * @bo_va: requested BO and VM object
1765 * @clear: if true clear the entries
1766 *
1767 * Fill in the page table entries for @bo_va.
1768 * Returns 0 for success, -EINVAL for failure.
1769 */
1770 int amdgpu_vm_bo_update(struct amdgpu_device *adev,
1771 struct amdgpu_bo_va *bo_va,
1772 bool clear)
1773 {
1774 struct amdgpu_vm *vm = bo_va->vm;
1775 struct amdgpu_bo_va_mapping *mapping;
1776 dma_addr_t *pages_addr = NULL;
1777 uint64_t gtt_flags, flags;
1778 struct ttm_mem_reg *mem;
1779 struct drm_mm_node *nodes;
1780 struct dma_fence *exclusive;
1781 int r;
1782
1783 if (clear || !bo_va->bo) {
1784 mem = NULL;
1785 nodes = NULL;
1786 exclusive = NULL;
1787 } else {
1788 struct ttm_dma_tt *ttm;
1789
1790 mem = &bo_va->bo->tbo.mem;
1791 nodes = mem->mm_node;
1792 if (mem->mem_type == TTM_PL_TT) {
1793 ttm = container_of(bo_va->bo->tbo.ttm, struct
1794 ttm_dma_tt, ttm);
1795 pages_addr = ttm->dma_address;
1796 }
1797 exclusive = reservation_object_get_excl(bo_va->bo->tbo.resv);
1798 }
1799
1800 if (bo_va->bo) {
1801 flags = amdgpu_ttm_tt_pte_flags(adev, bo_va->bo->tbo.ttm, mem);
1802 gtt_flags = (amdgpu_ttm_is_bound(bo_va->bo->tbo.ttm) &&
1803 adev == amdgpu_ttm_adev(bo_va->bo->tbo.bdev)) ?
1804 flags : 0;
1805 } else {
1806 flags = 0x0;
1807 gtt_flags = ~0x0;
1808 }
1809
1810 spin_lock(&vm->status_lock);
1811 if (!list_empty(&bo_va->vm_status))
1812 list_splice_init(&bo_va->valids, &bo_va->invalids);
1813 spin_unlock(&vm->status_lock);
1814
1815 list_for_each_entry(mapping, &bo_va->invalids, list) {
1816 r = amdgpu_vm_bo_split_mapping(adev, exclusive,
1817 gtt_flags, pages_addr, vm,
1818 mapping, flags, nodes,
1819 &bo_va->last_pt_update);
1820 if (r)
1821 return r;
1822 }
1823
1824 if (trace_amdgpu_vm_bo_mapping_enabled()) {
1825 list_for_each_entry(mapping, &bo_va->valids, list)
1826 trace_amdgpu_vm_bo_mapping(mapping);
1827
1828 list_for_each_entry(mapping, &bo_va->invalids, list)
1829 trace_amdgpu_vm_bo_mapping(mapping);
1830 }
1831
1832 spin_lock(&vm->status_lock);
1833 list_splice_init(&bo_va->invalids, &bo_va->valids);
1834 list_del_init(&bo_va->vm_status);
1835 if (clear)
1836 list_add(&bo_va->vm_status, &vm->cleared);
1837 spin_unlock(&vm->status_lock);
1838
1839 if (vm->use_cpu_for_update) {
1840 /* Flush HDP */
1841 mb();
1842 amdgpu_gart_flush_gpu_tlb(adev, 0);
1843 }
1844
1845 return 0;
1846 }
1847
1848 /**
1849 * amdgpu_vm_update_prt_state - update the global PRT state
1850 */
1851 static void amdgpu_vm_update_prt_state(struct amdgpu_device *adev)
1852 {
1853 unsigned long flags;
1854 bool enable;
1855
1856 spin_lock_irqsave(&adev->vm_manager.prt_lock, flags);
1857 enable = !!atomic_read(&adev->vm_manager.num_prt_users);
1858 adev->gart.gart_funcs->set_prt(adev, enable);
1859 spin_unlock_irqrestore(&adev->vm_manager.prt_lock, flags);
1860 }
1861
1862 /**
1863 * amdgpu_vm_prt_get - add a PRT user
1864 */
1865 static void amdgpu_vm_prt_get(struct amdgpu_device *adev)
1866 {
1867 if (!adev->gart.gart_funcs->set_prt)
1868 return;
1869
1870 if (atomic_inc_return(&adev->vm_manager.num_prt_users) == 1)
1871 amdgpu_vm_update_prt_state(adev);
1872 }
1873
1874 /**
1875 * amdgpu_vm_prt_put - drop a PRT user
1876 */
1877 static void amdgpu_vm_prt_put(struct amdgpu_device *adev)
1878 {
1879 if (atomic_dec_return(&adev->vm_manager.num_prt_users) == 0)
1880 amdgpu_vm_update_prt_state(adev);
1881 }
1882
1883 /**
1884 * amdgpu_vm_prt_cb - callback for updating the PRT status
1885 */
1886 static void amdgpu_vm_prt_cb(struct dma_fence *fence, struct dma_fence_cb *_cb)
1887 {
1888 struct amdgpu_prt_cb *cb = container_of(_cb, struct amdgpu_prt_cb, cb);
1889
1890 amdgpu_vm_prt_put(cb->adev);
1891 kfree(cb);
1892 }
1893
1894 /**
1895 * amdgpu_vm_add_prt_cb - add callback for updating the PRT status
1896 */
1897 static void amdgpu_vm_add_prt_cb(struct amdgpu_device *adev,
1898 struct dma_fence *fence)
1899 {
1900 struct amdgpu_prt_cb *cb;
1901
1902 if (!adev->gart.gart_funcs->set_prt)
1903 return;
1904
1905 cb = kmalloc(sizeof(struct amdgpu_prt_cb), GFP_KERNEL);
1906 if (!cb) {
1907 /* Last resort when we are OOM */
1908 if (fence)
1909 dma_fence_wait(fence, false);
1910
1911 amdgpu_vm_prt_put(adev);
1912 } else {
1913 cb->adev = adev;
1914 if (!fence || dma_fence_add_callback(fence, &cb->cb,
1915 amdgpu_vm_prt_cb))
1916 amdgpu_vm_prt_cb(fence, &cb->cb);
1917 }
1918 }
1919
1920 /**
1921 * amdgpu_vm_free_mapping - free a mapping
1922 *
1923 * @adev: amdgpu_device pointer
1924 * @vm: requested vm
1925 * @mapping: mapping to be freed
1926 * @fence: fence of the unmap operation
1927 *
1928 * Free a mapping and make sure we decrease the PRT usage count if applicable.
1929 */
1930 static void amdgpu_vm_free_mapping(struct amdgpu_device *adev,
1931 struct amdgpu_vm *vm,
1932 struct amdgpu_bo_va_mapping *mapping,
1933 struct dma_fence *fence)
1934 {
1935 if (mapping->flags & AMDGPU_PTE_PRT)
1936 amdgpu_vm_add_prt_cb(adev, fence);
1937 kfree(mapping);
1938 }
1939
1940 /**
1941 * amdgpu_vm_prt_fini - finish all prt mappings
1942 *
1943 * @adev: amdgpu_device pointer
1944 * @vm: requested vm
1945 *
1946 * Register a cleanup callback to disable PRT support after VM dies.
1947 */
1948 static void amdgpu_vm_prt_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm)
1949 {
1950 struct reservation_object *resv = vm->root.bo->tbo.resv;
1951 struct dma_fence *excl, **shared;
1952 unsigned i, shared_count;
1953 int r;
1954
1955 r = reservation_object_get_fences_rcu(resv, &excl,
1956 &shared_count, &shared);
1957 if (r) {
1958 /* Not enough memory to grab the fence list, as last resort
1959 * block for all the fences to complete.
1960 */
1961 reservation_object_wait_timeout_rcu(resv, true, false,
1962 MAX_SCHEDULE_TIMEOUT);
1963 return;
1964 }
1965
1966 /* Add a callback for each fence in the reservation object */
1967 amdgpu_vm_prt_get(adev);
1968 amdgpu_vm_add_prt_cb(adev, excl);
1969
1970 for (i = 0; i < shared_count; ++i) {
1971 amdgpu_vm_prt_get(adev);
1972 amdgpu_vm_add_prt_cb(adev, shared[i]);
1973 }
1974
1975 kfree(shared);
1976 }
1977
1978 /**
1979 * amdgpu_vm_clear_freed - clear freed BOs in the PT
1980 *
1981 * @adev: amdgpu_device pointer
1982 * @vm: requested vm
1983 * @fence: optional resulting fence (unchanged if no work needed to be done
1984 * or if an error occurred)
1985 *
1986 * Make sure all freed BOs are cleared in the PT.
1987 * Returns 0 for success.
1988 *
1989 * PTs have to be reserved and mutex must be locked!
1990 */
1991 int amdgpu_vm_clear_freed(struct amdgpu_device *adev,
1992 struct amdgpu_vm *vm,
1993 struct dma_fence **fence)
1994 {
1995 struct amdgpu_bo_va_mapping *mapping;
1996 struct dma_fence *f = NULL;
1997 int r;
1998
1999 while (!list_empty(&vm->freed)) {
2000 mapping = list_first_entry(&vm->freed,
2001 struct amdgpu_bo_va_mapping, list);
2002 list_del(&mapping->list);
2003
2004 r = amdgpu_vm_bo_update_mapping(adev, NULL, 0, NULL, vm,
2005 mapping->start, mapping->last,
2006 0, 0, &f);
2007 amdgpu_vm_free_mapping(adev, vm, mapping, f);
2008 if (r) {
2009 dma_fence_put(f);
2010 return r;
2011 }
2012 }
2013
2014 if (fence && f) {
2015 dma_fence_put(*fence);
2016 *fence = f;
2017 } else {
2018 dma_fence_put(f);
2019 }
2020
2021 return 0;
2022
2023 }
2024
2025 /**
2026 * amdgpu_vm_clear_invalids - clear invalidated BOs in the PT
2027 *
2028 * @adev: amdgpu_device pointer
2029 * @vm: requested vm
2030 *
2031 * Make sure all invalidated BOs are cleared in the PT.
2032 * Returns 0 for success.
2033 *
2034 * PTs have to be reserved and mutex must be locked!
2035 */
2036 int amdgpu_vm_clear_invalids(struct amdgpu_device *adev,
2037 struct amdgpu_vm *vm, struct amdgpu_sync *sync)
2038 {
2039 struct amdgpu_bo_va *bo_va = NULL;
2040 int r = 0;
2041
2042 spin_lock(&vm->status_lock);
2043 while (!list_empty(&vm->invalidated)) {
2044 bo_va = list_first_entry(&vm->invalidated,
2045 struct amdgpu_bo_va, vm_status);
2046 spin_unlock(&vm->status_lock);
2047
2048 r = amdgpu_vm_bo_update(adev, bo_va, true);
2049 if (r)
2050 return r;
2051
2052 spin_lock(&vm->status_lock);
2053 }
2054 spin_unlock(&vm->status_lock);
2055
2056 if (bo_va)
2057 r = amdgpu_sync_fence(adev, sync, bo_va->last_pt_update);
2058
2059 return r;
2060 }
2061
2062 /**
2063 * amdgpu_vm_bo_add - add a bo to a specific vm
2064 *
2065 * @adev: amdgpu_device pointer
2066 * @vm: requested vm
2067 * @bo: amdgpu buffer object
2068 *
2069 * Add @bo into the requested vm.
2070 * Add @bo to the list of bos associated with the vm
2071 * Returns newly added bo_va or NULL for failure
2072 *
2073 * Object has to be reserved!
2074 */
2075 struct amdgpu_bo_va *amdgpu_vm_bo_add(struct amdgpu_device *adev,
2076 struct amdgpu_vm *vm,
2077 struct amdgpu_bo *bo)
2078 {
2079 struct amdgpu_bo_va *bo_va;
2080
2081 bo_va = kzalloc(sizeof(struct amdgpu_bo_va), GFP_KERNEL);
2082 if (bo_va == NULL) {
2083 return NULL;
2084 }
2085 bo_va->vm = vm;
2086 bo_va->bo = bo;
2087 bo_va->ref_count = 1;
2088 INIT_LIST_HEAD(&bo_va->bo_list);
2089 INIT_LIST_HEAD(&bo_va->valids);
2090 INIT_LIST_HEAD(&bo_va->invalids);
2091 INIT_LIST_HEAD(&bo_va->vm_status);
2092
2093 if (bo)
2094 list_add_tail(&bo_va->bo_list, &bo->va);
2095
2096 return bo_va;
2097 }
2098
2099 /**
2100 * amdgpu_vm_bo_map - map bo inside a vm
2101 *
2102 * @adev: amdgpu_device pointer
2103 * @bo_va: bo_va to store the address
2104 * @saddr: where to map the BO
2105 * @offset: requested offset in the BO
2106 * @flags: attributes of pages (read/write/valid/etc.)
2107 *
2108 * Add a mapping of the BO at the specefied addr into the VM.
2109 * Returns 0 for success, error for failure.
2110 *
2111 * Object has to be reserved and unreserved outside!
2112 */
2113 int amdgpu_vm_bo_map(struct amdgpu_device *adev,
2114 struct amdgpu_bo_va *bo_va,
2115 uint64_t saddr, uint64_t offset,
2116 uint64_t size, uint64_t flags)
2117 {
2118 struct amdgpu_bo_va_mapping *mapping, *tmp;
2119 struct amdgpu_vm *vm = bo_va->vm;
2120 uint64_t eaddr;
2121
2122 /* validate the parameters */
2123 if (saddr & AMDGPU_GPU_PAGE_MASK || offset & AMDGPU_GPU_PAGE_MASK ||
2124 size == 0 || size & AMDGPU_GPU_PAGE_MASK)
2125 return -EINVAL;
2126
2127 /* make sure object fit at this offset */
2128 eaddr = saddr + size - 1;
2129 if (saddr >= eaddr ||
2130 (bo_va->bo && offset + size > amdgpu_bo_size(bo_va->bo)))
2131 return -EINVAL;
2132
2133 saddr /= AMDGPU_GPU_PAGE_SIZE;
2134 eaddr /= AMDGPU_GPU_PAGE_SIZE;
2135
2136 tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr);
2137 if (tmp) {
2138 /* bo and tmp overlap, invalid addr */
2139 dev_err(adev->dev, "bo %p va 0x%010Lx-0x%010Lx conflict with "
2140 "0x%010Lx-0x%010Lx\n", bo_va->bo, saddr, eaddr,
2141 tmp->start, tmp->last + 1);
2142 return -EINVAL;
2143 }
2144
2145 mapping = kmalloc(sizeof(*mapping), GFP_KERNEL);
2146 if (!mapping)
2147 return -ENOMEM;
2148
2149 INIT_LIST_HEAD(&mapping->list);
2150 mapping->start = saddr;
2151 mapping->last = eaddr;
2152 mapping->offset = offset;
2153 mapping->flags = flags;
2154
2155 list_add(&mapping->list, &bo_va->invalids);
2156 amdgpu_vm_it_insert(mapping, &vm->va);
2157
2158 if (flags & AMDGPU_PTE_PRT)
2159 amdgpu_vm_prt_get(adev);
2160
2161 return 0;
2162 }
2163
2164 /**
2165 * amdgpu_vm_bo_replace_map - map bo inside a vm, replacing existing mappings
2166 *
2167 * @adev: amdgpu_device pointer
2168 * @bo_va: bo_va to store the address
2169 * @saddr: where to map the BO
2170 * @offset: requested offset in the BO
2171 * @flags: attributes of pages (read/write/valid/etc.)
2172 *
2173 * Add a mapping of the BO at the specefied addr into the VM. Replace existing
2174 * mappings as we do so.
2175 * Returns 0 for success, error for failure.
2176 *
2177 * Object has to be reserved and unreserved outside!
2178 */
2179 int amdgpu_vm_bo_replace_map(struct amdgpu_device *adev,
2180 struct amdgpu_bo_va *bo_va,
2181 uint64_t saddr, uint64_t offset,
2182 uint64_t size, uint64_t flags)
2183 {
2184 struct amdgpu_bo_va_mapping *mapping;
2185 struct amdgpu_vm *vm = bo_va->vm;
2186 uint64_t eaddr;
2187 int r;
2188
2189 /* validate the parameters */
2190 if (saddr & AMDGPU_GPU_PAGE_MASK || offset & AMDGPU_GPU_PAGE_MASK ||
2191 size == 0 || size & AMDGPU_GPU_PAGE_MASK)
2192 return -EINVAL;
2193
2194 /* make sure object fit at this offset */
2195 eaddr = saddr + size - 1;
2196 if (saddr >= eaddr ||
2197 (bo_va->bo && offset + size > amdgpu_bo_size(bo_va->bo)))
2198 return -EINVAL;
2199
2200 /* Allocate all the needed memory */
2201 mapping = kmalloc(sizeof(*mapping), GFP_KERNEL);
2202 if (!mapping)
2203 return -ENOMEM;
2204
2205 r = amdgpu_vm_bo_clear_mappings(adev, bo_va->vm, saddr, size);
2206 if (r) {
2207 kfree(mapping);
2208 return r;
2209 }
2210
2211 saddr /= AMDGPU_GPU_PAGE_SIZE;
2212 eaddr /= AMDGPU_GPU_PAGE_SIZE;
2213
2214 mapping->start = saddr;
2215 mapping->last = eaddr;
2216 mapping->offset = offset;
2217 mapping->flags = flags;
2218
2219 list_add(&mapping->list, &bo_va->invalids);
2220 amdgpu_vm_it_insert(mapping, &vm->va);
2221
2222 if (flags & AMDGPU_PTE_PRT)
2223 amdgpu_vm_prt_get(adev);
2224
2225 return 0;
2226 }
2227
2228 /**
2229 * amdgpu_vm_bo_unmap - remove bo mapping from vm
2230 *
2231 * @adev: amdgpu_device pointer
2232 * @bo_va: bo_va to remove the address from
2233 * @saddr: where to the BO is mapped
2234 *
2235 * Remove a mapping of the BO at the specefied addr from the VM.
2236 * Returns 0 for success, error for failure.
2237 *
2238 * Object has to be reserved and unreserved outside!
2239 */
2240 int amdgpu_vm_bo_unmap(struct amdgpu_device *adev,
2241 struct amdgpu_bo_va *bo_va,
2242 uint64_t saddr)
2243 {
2244 struct amdgpu_bo_va_mapping *mapping;
2245 struct amdgpu_vm *vm = bo_va->vm;
2246 bool valid = true;
2247
2248 saddr /= AMDGPU_GPU_PAGE_SIZE;
2249
2250 list_for_each_entry(mapping, &bo_va->valids, list) {
2251 if (mapping->start == saddr)
2252 break;
2253 }
2254
2255 if (&mapping->list == &bo_va->valids) {
2256 valid = false;
2257
2258 list_for_each_entry(mapping, &bo_va->invalids, list) {
2259 if (mapping->start == saddr)
2260 break;
2261 }
2262
2263 if (&mapping->list == &bo_va->invalids)
2264 return -ENOENT;
2265 }
2266
2267 list_del(&mapping->list);
2268 amdgpu_vm_it_remove(mapping, &vm->va);
2269 trace_amdgpu_vm_bo_unmap(bo_va, mapping);
2270
2271 if (valid)
2272 list_add(&mapping->list, &vm->freed);
2273 else
2274 amdgpu_vm_free_mapping(adev, vm, mapping,
2275 bo_va->last_pt_update);
2276
2277 return 0;
2278 }
2279
2280 /**
2281 * amdgpu_vm_bo_clear_mappings - remove all mappings in a specific range
2282 *
2283 * @adev: amdgpu_device pointer
2284 * @vm: VM structure to use
2285 * @saddr: start of the range
2286 * @size: size of the range
2287 *
2288 * Remove all mappings in a range, split them as appropriate.
2289 * Returns 0 for success, error for failure.
2290 */
2291 int amdgpu_vm_bo_clear_mappings(struct amdgpu_device *adev,
2292 struct amdgpu_vm *vm,
2293 uint64_t saddr, uint64_t size)
2294 {
2295 struct amdgpu_bo_va_mapping *before, *after, *tmp, *next;
2296 LIST_HEAD(removed);
2297 uint64_t eaddr;
2298
2299 eaddr = saddr + size - 1;
2300 saddr /= AMDGPU_GPU_PAGE_SIZE;
2301 eaddr /= AMDGPU_GPU_PAGE_SIZE;
2302
2303 /* Allocate all the needed memory */
2304 before = kzalloc(sizeof(*before), GFP_KERNEL);
2305 if (!before)
2306 return -ENOMEM;
2307 INIT_LIST_HEAD(&before->list);
2308
2309 after = kzalloc(sizeof(*after), GFP_KERNEL);
2310 if (!after) {
2311 kfree(before);
2312 return -ENOMEM;
2313 }
2314 INIT_LIST_HEAD(&after->list);
2315
2316 /* Now gather all removed mappings */
2317 tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr);
2318 while (tmp) {
2319 /* Remember mapping split at the start */
2320 if (tmp->start < saddr) {
2321 before->start = tmp->start;
2322 before->last = saddr - 1;
2323 before->offset = tmp->offset;
2324 before->flags = tmp->flags;
2325 list_add(&before->list, &tmp->list);
2326 }
2327
2328 /* Remember mapping split at the end */
2329 if (tmp->last > eaddr) {
2330 after->start = eaddr + 1;
2331 after->last = tmp->last;
2332 after->offset = tmp->offset;
2333 after->offset += after->start - tmp->start;
2334 after->flags = tmp->flags;
2335 list_add(&after->list, &tmp->list);
2336 }
2337
2338 list_del(&tmp->list);
2339 list_add(&tmp->list, &removed);
2340
2341 tmp = amdgpu_vm_it_iter_next(tmp, saddr, eaddr);
2342 }
2343
2344 /* And free them up */
2345 list_for_each_entry_safe(tmp, next, &removed, list) {
2346 amdgpu_vm_it_remove(tmp, &vm->va);
2347 list_del(&tmp->list);
2348
2349 if (tmp->start < saddr)
2350 tmp->start = saddr;
2351 if (tmp->last > eaddr)
2352 tmp->last = eaddr;
2353
2354 list_add(&tmp->list, &vm->freed);
2355 trace_amdgpu_vm_bo_unmap(NULL, tmp);
2356 }
2357
2358 /* Insert partial mapping before the range */
2359 if (!list_empty(&before->list)) {
2360 amdgpu_vm_it_insert(before, &vm->va);
2361 if (before->flags & AMDGPU_PTE_PRT)
2362 amdgpu_vm_prt_get(adev);
2363 } else {
2364 kfree(before);
2365 }
2366
2367 /* Insert partial mapping after the range */
2368 if (!list_empty(&after->list)) {
2369 amdgpu_vm_it_insert(after, &vm->va);
2370 if (after->flags & AMDGPU_PTE_PRT)
2371 amdgpu_vm_prt_get(adev);
2372 } else {
2373 kfree(after);
2374 }
2375
2376 return 0;
2377 }
2378
2379 /**
2380 * amdgpu_vm_bo_rmv - remove a bo to a specific vm
2381 *
2382 * @adev: amdgpu_device pointer
2383 * @bo_va: requested bo_va
2384 *
2385 * Remove @bo_va->bo from the requested vm.
2386 *
2387 * Object have to be reserved!
2388 */
2389 void amdgpu_vm_bo_rmv(struct amdgpu_device *adev,
2390 struct amdgpu_bo_va *bo_va)
2391 {
2392 struct amdgpu_bo_va_mapping *mapping, *next;
2393 struct amdgpu_vm *vm = bo_va->vm;
2394
2395 list_del(&bo_va->bo_list);
2396
2397 spin_lock(&vm->status_lock);
2398 list_del(&bo_va->vm_status);
2399 spin_unlock(&vm->status_lock);
2400
2401 list_for_each_entry_safe(mapping, next, &bo_va->valids, list) {
2402 list_del(&mapping->list);
2403 amdgpu_vm_it_remove(mapping, &vm->va);
2404 trace_amdgpu_vm_bo_unmap(bo_va, mapping);
2405 list_add(&mapping->list, &vm->freed);
2406 }
2407 list_for_each_entry_safe(mapping, next, &bo_va->invalids, list) {
2408 list_del(&mapping->list);
2409 amdgpu_vm_it_remove(mapping, &vm->va);
2410 amdgpu_vm_free_mapping(adev, vm, mapping,
2411 bo_va->last_pt_update);
2412 }
2413
2414 dma_fence_put(bo_va->last_pt_update);
2415 kfree(bo_va);
2416 }
2417
2418 /**
2419 * amdgpu_vm_bo_invalidate - mark the bo as invalid
2420 *
2421 * @adev: amdgpu_device pointer
2422 * @vm: requested vm
2423 * @bo: amdgpu buffer object
2424 *
2425 * Mark @bo as invalid.
2426 */
2427 void amdgpu_vm_bo_invalidate(struct amdgpu_device *adev,
2428 struct amdgpu_bo *bo)
2429 {
2430 struct amdgpu_bo_va *bo_va;
2431
2432 list_for_each_entry(bo_va, &bo->va, bo_list) {
2433 spin_lock(&bo_va->vm->status_lock);
2434 if (list_empty(&bo_va->vm_status))
2435 list_add(&bo_va->vm_status, &bo_va->vm->invalidated);
2436 spin_unlock(&bo_va->vm->status_lock);
2437 }
2438 }
2439
2440 static uint32_t amdgpu_vm_get_block_size(uint64_t vm_size)
2441 {
2442 /* Total bits covered by PD + PTs */
2443 unsigned bits = ilog2(vm_size) + 18;
2444
2445 /* Make sure the PD is 4K in size up to 8GB address space.
2446 Above that split equal between PD and PTs */
2447 if (vm_size <= 8)
2448 return (bits - 9);
2449 else
2450 return ((bits + 3) / 2);
2451 }
2452
2453 /**
2454 * amdgpu_vm_adjust_size - adjust vm size and block size
2455 *
2456 * @adev: amdgpu_device pointer
2457 * @vm_size: the default vm size if it's set auto
2458 */
2459 void amdgpu_vm_adjust_size(struct amdgpu_device *adev, uint64_t vm_size)
2460 {
2461 /* adjust vm size firstly */
2462 if (amdgpu_vm_size == -1)
2463 adev->vm_manager.vm_size = vm_size;
2464 else
2465 adev->vm_manager.vm_size = amdgpu_vm_size;
2466
2467 /* block size depends on vm size */
2468 if (amdgpu_vm_block_size == -1)
2469 adev->vm_manager.block_size =
2470 amdgpu_vm_get_block_size(adev->vm_manager.vm_size);
2471 else
2472 adev->vm_manager.block_size = amdgpu_vm_block_size;
2473
2474 DRM_INFO("vm size is %llu GB, block size is %u-bit\n",
2475 adev->vm_manager.vm_size, adev->vm_manager.block_size);
2476 }
2477
2478 /**
2479 * amdgpu_vm_init - initialize a vm instance
2480 *
2481 * @adev: amdgpu_device pointer
2482 * @vm: requested vm
2483 * @vm_context: Indicates if it GFX or Compute context
2484 *
2485 * Init @vm fields.
2486 */
2487 int amdgpu_vm_init(struct amdgpu_device *adev, struct amdgpu_vm *vm,
2488 int vm_context)
2489 {
2490 const unsigned align = min(AMDGPU_VM_PTB_ALIGN_SIZE,
2491 AMDGPU_VM_PTE_COUNT(adev) * 8);
2492 unsigned ring_instance;
2493 struct amdgpu_ring *ring;
2494 struct amd_sched_rq *rq;
2495 int r, i;
2496 u64 flags;
2497
2498 vm->va = RB_ROOT;
2499 vm->client_id = atomic64_inc_return(&adev->vm_manager.client_counter);
2500 for (i = 0; i < AMDGPU_MAX_VMHUBS; i++)
2501 vm->reserved_vmid[i] = NULL;
2502 spin_lock_init(&vm->status_lock);
2503 INIT_LIST_HEAD(&vm->invalidated);
2504 INIT_LIST_HEAD(&vm->cleared);
2505 INIT_LIST_HEAD(&vm->freed);
2506
2507 /* create scheduler entity for page table updates */
2508
2509 ring_instance = atomic_inc_return(&adev->vm_manager.vm_pte_next_ring);
2510 ring_instance %= adev->vm_manager.vm_pte_num_rings;
2511 ring = adev->vm_manager.vm_pte_rings[ring_instance];
2512 rq = &ring->sched.sched_rq[AMD_SCHED_PRIORITY_KERNEL];
2513 r = amd_sched_entity_init(&ring->sched, &vm->entity,
2514 rq, amdgpu_sched_jobs);
2515 if (r)
2516 return r;
2517
2518 if (vm_context == AMDGPU_VM_CONTEXT_COMPUTE)
2519 vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode &
2520 AMDGPU_VM_USE_CPU_FOR_COMPUTE);
2521 else
2522 vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode &
2523 AMDGPU_VM_USE_CPU_FOR_GFX);
2524 DRM_DEBUG_DRIVER("VM update mode is %s\n",
2525 vm->use_cpu_for_update ? "CPU" : "SDMA");
2526 WARN_ONCE((vm->use_cpu_for_update & !amdgpu_vm_is_large_bar(adev)),
2527 "CPU update of VM recommended only for large BAR system\n");
2528 vm->last_dir_update = NULL;
2529
2530 flags = AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS |
2531 AMDGPU_GEM_CREATE_VRAM_CLEARED;
2532 if (vm->use_cpu_for_update)
2533 flags |= AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
2534 else
2535 flags |= (AMDGPU_GEM_CREATE_NO_CPU_ACCESS |
2536 AMDGPU_GEM_CREATE_SHADOW);
2537
2538 r = amdgpu_bo_create(adev, amdgpu_vm_bo_size(adev, 0), align, true,
2539 AMDGPU_GEM_DOMAIN_VRAM,
2540 flags,
2541 NULL, NULL, 0, &vm->root.bo);
2542 if (r)
2543 goto error_free_sched_entity;
2544
2545 r = amdgpu_bo_reserve(vm->root.bo, false);
2546 if (r)
2547 goto error_free_root;
2548
2549 vm->last_eviction_counter = atomic64_read(&adev->num_evictions);
2550
2551 if (vm->use_cpu_for_update) {
2552 r = amdgpu_bo_kmap(vm->root.bo, NULL);
2553 if (r)
2554 goto error_free_root;
2555 }
2556
2557 amdgpu_bo_unreserve(vm->root.bo);
2558
2559 return 0;
2560
2561 error_free_root:
2562 amdgpu_bo_unref(&vm->root.bo->shadow);
2563 amdgpu_bo_unref(&vm->root.bo);
2564 vm->root.bo = NULL;
2565
2566 error_free_sched_entity:
2567 amd_sched_entity_fini(&ring->sched, &vm->entity);
2568
2569 return r;
2570 }
2571
2572 /**
2573 * amdgpu_vm_free_levels - free PD/PT levels
2574 *
2575 * @level: PD/PT starting level to free
2576 *
2577 * Free the page directory or page table level and all sub levels.
2578 */
2579 static void amdgpu_vm_free_levels(struct amdgpu_vm_pt *level)
2580 {
2581 unsigned i;
2582
2583 if (level->bo) {
2584 amdgpu_bo_unref(&level->bo->shadow);
2585 amdgpu_bo_unref(&level->bo);
2586 }
2587
2588 if (level->entries)
2589 for (i = 0; i <= level->last_entry_used; i++)
2590 amdgpu_vm_free_levels(&level->entries[i]);
2591
2592 kvfree(level->entries);
2593 }
2594
2595 /**
2596 * amdgpu_vm_fini - tear down a vm instance
2597 *
2598 * @adev: amdgpu_device pointer
2599 * @vm: requested vm
2600 *
2601 * Tear down @vm.
2602 * Unbind the VM and remove all bos from the vm bo list
2603 */
2604 void amdgpu_vm_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm)
2605 {
2606 struct amdgpu_bo_va_mapping *mapping, *tmp;
2607 bool prt_fini_needed = !!adev->gart.gart_funcs->set_prt;
2608 int i;
2609
2610 amd_sched_entity_fini(vm->entity.sched, &vm->entity);
2611
2612 if (!RB_EMPTY_ROOT(&vm->va)) {
2613 dev_err(adev->dev, "still active bo inside vm\n");
2614 }
2615 rbtree_postorder_for_each_entry_safe(mapping, tmp, &vm->va, rb) {
2616 list_del(&mapping->list);
2617 amdgpu_vm_it_remove(mapping, &vm->va);
2618 kfree(mapping);
2619 }
2620 list_for_each_entry_safe(mapping, tmp, &vm->freed, list) {
2621 if (mapping->flags & AMDGPU_PTE_PRT && prt_fini_needed) {
2622 amdgpu_vm_prt_fini(adev, vm);
2623 prt_fini_needed = false;
2624 }
2625
2626 list_del(&mapping->list);
2627 amdgpu_vm_free_mapping(adev, vm, mapping, NULL);
2628 }
2629
2630 amdgpu_vm_free_levels(&vm->root);
2631 dma_fence_put(vm->last_dir_update);
2632 for (i = 0; i < AMDGPU_MAX_VMHUBS; i++)
2633 amdgpu_vm_free_reserved_vmid(adev, vm, i);
2634 }
2635
2636 /**
2637 * amdgpu_vm_manager_init - init the VM manager
2638 *
2639 * @adev: amdgpu_device pointer
2640 *
2641 * Initialize the VM manager structures
2642 */
2643 void amdgpu_vm_manager_init(struct amdgpu_device *adev)
2644 {
2645 unsigned i, j;
2646
2647 for (i = 0; i < AMDGPU_MAX_VMHUBS; ++i) {
2648 struct amdgpu_vm_id_manager *id_mgr =
2649 &adev->vm_manager.id_mgr[i];
2650
2651 mutex_init(&id_mgr->lock);
2652 INIT_LIST_HEAD(&id_mgr->ids_lru);
2653 atomic_set(&id_mgr->reserved_vmid_num, 0);
2654
2655 /* skip over VMID 0, since it is the system VM */
2656 for (j = 1; j < id_mgr->num_ids; ++j) {
2657 amdgpu_vm_reset_id(adev, i, j);
2658 amdgpu_sync_create(&id_mgr->ids[i].active);
2659 list_add_tail(&id_mgr->ids[j].list, &id_mgr->ids_lru);
2660 }
2661 }
2662
2663 adev->vm_manager.fence_context =
2664 dma_fence_context_alloc(AMDGPU_MAX_RINGS);
2665 for (i = 0; i < AMDGPU_MAX_RINGS; ++i)
2666 adev->vm_manager.seqno[i] = 0;
2667
2668 atomic_set(&adev->vm_manager.vm_pte_next_ring, 0);
2669 atomic64_set(&adev->vm_manager.client_counter, 0);
2670 spin_lock_init(&adev->vm_manager.prt_lock);
2671 atomic_set(&adev->vm_manager.num_prt_users, 0);
2672
2673 /* If not overridden by the user, by default, only in large BAR systems
2674 * Compute VM tables will be updated by CPU
2675 */
2676 #ifdef CONFIG_X86_64
2677 if (amdgpu_vm_update_mode == -1) {
2678 if (amdgpu_vm_is_large_bar(adev))
2679 adev->vm_manager.vm_update_mode =
2680 AMDGPU_VM_USE_CPU_FOR_COMPUTE;
2681 else
2682 adev->vm_manager.vm_update_mode = 0;
2683 } else
2684 adev->vm_manager.vm_update_mode = amdgpu_vm_update_mode;
2685 #else
2686 adev->vm_manager.vm_update_mode = 0;
2687 #endif
2688
2689 }
2690
2691 /**
2692 * amdgpu_vm_manager_fini - cleanup VM manager
2693 *
2694 * @adev: amdgpu_device pointer
2695 *
2696 * Cleanup the VM manager and free resources.
2697 */
2698 void amdgpu_vm_manager_fini(struct amdgpu_device *adev)
2699 {
2700 unsigned i, j;
2701
2702 for (i = 0; i < AMDGPU_MAX_VMHUBS; ++i) {
2703 struct amdgpu_vm_id_manager *id_mgr =
2704 &adev->vm_manager.id_mgr[i];
2705
2706 mutex_destroy(&id_mgr->lock);
2707 for (j = 0; j < AMDGPU_NUM_VM; ++j) {
2708 struct amdgpu_vm_id *id = &id_mgr->ids[j];
2709
2710 amdgpu_sync_free(&id->active);
2711 dma_fence_put(id->flushed_updates);
2712 dma_fence_put(id->last_flush);
2713 }
2714 }
2715 }
2716
2717 int amdgpu_vm_ioctl(struct drm_device *dev, void *data, struct drm_file *filp)
2718 {
2719 union drm_amdgpu_vm *args = data;
2720 struct amdgpu_device *adev = dev->dev_private;
2721 struct amdgpu_fpriv *fpriv = filp->driver_priv;
2722 int r;
2723
2724 switch (args->in.op) {
2725 case AMDGPU_VM_OP_RESERVE_VMID:
2726 /* current, we only have requirement to reserve vmid from gfxhub */
2727 r = amdgpu_vm_alloc_reserved_vmid(adev, &fpriv->vm,
2728 AMDGPU_GFXHUB);
2729 if (r)
2730 return r;
2731 break;
2732 case AMDGPU_VM_OP_UNRESERVE_VMID:
2733 amdgpu_vm_free_reserved_vmid(adev, &fpriv->vm, AMDGPU_GFXHUB);
2734 break;
2735 default:
2736 return -EINVAL;
2737 }
2738
2739 return 0;
2740 }