]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/gpu/drm/amd/amdgpu/amdgpu_vm.c
Merge tag 'nfs-for-4.13-3' of git://git.linux-nfs.org/projects/anna/linux-nfs
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / amd / amdgpu / amdgpu_vm.c
1 /*
2 * Copyright 2008 Advanced Micro Devices, Inc.
3 * Copyright 2008 Red Hat Inc.
4 * Copyright 2009 Jerome Glisse.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22 * OTHER DEALINGS IN THE SOFTWARE.
23 *
24 * Authors: Dave Airlie
25 * Alex Deucher
26 * Jerome Glisse
27 */
28 #include <linux/dma-fence-array.h>
29 #include <linux/interval_tree_generic.h>
30 #include <drm/drmP.h>
31 #include <drm/amdgpu_drm.h>
32 #include "amdgpu.h"
33 #include "amdgpu_trace.h"
34
35 /*
36 * GPUVM
37 * GPUVM is similar to the legacy gart on older asics, however
38 * rather than there being a single global gart table
39 * for the entire GPU, there are multiple VM page tables active
40 * at any given time. The VM page tables can contain a mix
41 * vram pages and system memory pages and system memory pages
42 * can be mapped as snooped (cached system pages) or unsnooped
43 * (uncached system pages).
44 * Each VM has an ID associated with it and there is a page table
45 * associated with each VMID. When execting a command buffer,
46 * the kernel tells the the ring what VMID to use for that command
47 * buffer. VMIDs are allocated dynamically as commands are submitted.
48 * The userspace drivers maintain their own address space and the kernel
49 * sets up their pages tables accordingly when they submit their
50 * command buffers and a VMID is assigned.
51 * Cayman/Trinity support up to 8 active VMs at any given time;
52 * SI supports 16.
53 */
54
55 #define START(node) ((node)->start)
56 #define LAST(node) ((node)->last)
57
58 INTERVAL_TREE_DEFINE(struct amdgpu_bo_va_mapping, rb, uint64_t, __subtree_last,
59 START, LAST, static, amdgpu_vm_it)
60
61 #undef START
62 #undef LAST
63
64 /* Local structure. Encapsulate some VM table update parameters to reduce
65 * the number of function parameters
66 */
67 struct amdgpu_pte_update_params {
68 /* amdgpu device we do this update for */
69 struct amdgpu_device *adev;
70 /* optional amdgpu_vm we do this update for */
71 struct amdgpu_vm *vm;
72 /* address where to copy page table entries from */
73 uint64_t src;
74 /* indirect buffer to fill with commands */
75 struct amdgpu_ib *ib;
76 /* Function which actually does the update */
77 void (*func)(struct amdgpu_pte_update_params *params, uint64_t pe,
78 uint64_t addr, unsigned count, uint32_t incr,
79 uint64_t flags);
80 /* indicate update pt or its shadow */
81 bool shadow;
82 /* The next two are used during VM update by CPU
83 * DMA addresses to use for mapping
84 * Kernel pointer of PD/PT BO that needs to be updated
85 */
86 dma_addr_t *pages_addr;
87 void *kptr;
88 };
89
90 /* Helper to disable partial resident texture feature from a fence callback */
91 struct amdgpu_prt_cb {
92 struct amdgpu_device *adev;
93 struct dma_fence_cb cb;
94 };
95
96 /**
97 * amdgpu_vm_num_entries - return the number of entries in a PD/PT
98 *
99 * @adev: amdgpu_device pointer
100 *
101 * Calculate the number of entries in a page directory or page table.
102 */
103 static unsigned amdgpu_vm_num_entries(struct amdgpu_device *adev,
104 unsigned level)
105 {
106 if (level == 0)
107 /* For the root directory */
108 return adev->vm_manager.max_pfn >>
109 (adev->vm_manager.block_size *
110 adev->vm_manager.num_level);
111 else if (level == adev->vm_manager.num_level)
112 /* For the page tables on the leaves */
113 return AMDGPU_VM_PTE_COUNT(adev);
114 else
115 /* Everything in between */
116 return 1 << adev->vm_manager.block_size;
117 }
118
119 /**
120 * amdgpu_vm_bo_size - returns the size of the BOs in bytes
121 *
122 * @adev: amdgpu_device pointer
123 *
124 * Calculate the size of the BO for a page directory or page table in bytes.
125 */
126 static unsigned amdgpu_vm_bo_size(struct amdgpu_device *adev, unsigned level)
127 {
128 return AMDGPU_GPU_PAGE_ALIGN(amdgpu_vm_num_entries(adev, level) * 8);
129 }
130
131 /**
132 * amdgpu_vm_get_pd_bo - add the VM PD to a validation list
133 *
134 * @vm: vm providing the BOs
135 * @validated: head of validation list
136 * @entry: entry to add
137 *
138 * Add the page directory to the list of BOs to
139 * validate for command submission.
140 */
141 void amdgpu_vm_get_pd_bo(struct amdgpu_vm *vm,
142 struct list_head *validated,
143 struct amdgpu_bo_list_entry *entry)
144 {
145 entry->robj = vm->root.bo;
146 entry->priority = 0;
147 entry->tv.bo = &entry->robj->tbo;
148 entry->tv.shared = true;
149 entry->user_pages = NULL;
150 list_add(&entry->tv.head, validated);
151 }
152
153 /**
154 * amdgpu_vm_validate_layer - validate a single page table level
155 *
156 * @parent: parent page table level
157 * @validate: callback to do the validation
158 * @param: parameter for the validation callback
159 *
160 * Validate the page table BOs on command submission if neccessary.
161 */
162 static int amdgpu_vm_validate_level(struct amdgpu_vm_pt *parent,
163 int (*validate)(void *, struct amdgpu_bo *),
164 void *param)
165 {
166 unsigned i;
167 int r;
168
169 if (!parent->entries)
170 return 0;
171
172 for (i = 0; i <= parent->last_entry_used; ++i) {
173 struct amdgpu_vm_pt *entry = &parent->entries[i];
174
175 if (!entry->bo)
176 continue;
177
178 r = validate(param, entry->bo);
179 if (r)
180 return r;
181
182 /*
183 * Recurse into the sub directory. This is harmless because we
184 * have only a maximum of 5 layers.
185 */
186 r = amdgpu_vm_validate_level(entry, validate, param);
187 if (r)
188 return r;
189 }
190
191 return r;
192 }
193
194 /**
195 * amdgpu_vm_validate_pt_bos - validate the page table BOs
196 *
197 * @adev: amdgpu device pointer
198 * @vm: vm providing the BOs
199 * @validate: callback to do the validation
200 * @param: parameter for the validation callback
201 *
202 * Validate the page table BOs on command submission if neccessary.
203 */
204 int amdgpu_vm_validate_pt_bos(struct amdgpu_device *adev, struct amdgpu_vm *vm,
205 int (*validate)(void *p, struct amdgpu_bo *bo),
206 void *param)
207 {
208 uint64_t num_evictions;
209
210 /* We only need to validate the page tables
211 * if they aren't already valid.
212 */
213 num_evictions = atomic64_read(&adev->num_evictions);
214 if (num_evictions == vm->last_eviction_counter)
215 return 0;
216
217 return amdgpu_vm_validate_level(&vm->root, validate, param);
218 }
219
220 /**
221 * amdgpu_vm_move_level_in_lru - move one level of PT BOs to the LRU tail
222 *
223 * @adev: amdgpu device instance
224 * @vm: vm providing the BOs
225 *
226 * Move the PT BOs to the tail of the LRU.
227 */
228 static void amdgpu_vm_move_level_in_lru(struct amdgpu_vm_pt *parent)
229 {
230 unsigned i;
231
232 if (!parent->entries)
233 return;
234
235 for (i = 0; i <= parent->last_entry_used; ++i) {
236 struct amdgpu_vm_pt *entry = &parent->entries[i];
237
238 if (!entry->bo)
239 continue;
240
241 ttm_bo_move_to_lru_tail(&entry->bo->tbo);
242 amdgpu_vm_move_level_in_lru(entry);
243 }
244 }
245
246 /**
247 * amdgpu_vm_move_pt_bos_in_lru - move the PT BOs to the LRU tail
248 *
249 * @adev: amdgpu device instance
250 * @vm: vm providing the BOs
251 *
252 * Move the PT BOs to the tail of the LRU.
253 */
254 void amdgpu_vm_move_pt_bos_in_lru(struct amdgpu_device *adev,
255 struct amdgpu_vm *vm)
256 {
257 struct ttm_bo_global *glob = adev->mman.bdev.glob;
258
259 spin_lock(&glob->lru_lock);
260 amdgpu_vm_move_level_in_lru(&vm->root);
261 spin_unlock(&glob->lru_lock);
262 }
263
264 /**
265 * amdgpu_vm_alloc_levels - allocate the PD/PT levels
266 *
267 * @adev: amdgpu_device pointer
268 * @vm: requested vm
269 * @saddr: start of the address range
270 * @eaddr: end of the address range
271 *
272 * Make sure the page directories and page tables are allocated
273 */
274 static int amdgpu_vm_alloc_levels(struct amdgpu_device *adev,
275 struct amdgpu_vm *vm,
276 struct amdgpu_vm_pt *parent,
277 uint64_t saddr, uint64_t eaddr,
278 unsigned level)
279 {
280 unsigned shift = (adev->vm_manager.num_level - level) *
281 adev->vm_manager.block_size;
282 unsigned pt_idx, from, to;
283 int r;
284 u64 flags;
285
286 if (!parent->entries) {
287 unsigned num_entries = amdgpu_vm_num_entries(adev, level);
288
289 parent->entries = kvmalloc_array(num_entries,
290 sizeof(struct amdgpu_vm_pt),
291 GFP_KERNEL | __GFP_ZERO);
292 if (!parent->entries)
293 return -ENOMEM;
294 memset(parent->entries, 0 , sizeof(struct amdgpu_vm_pt));
295 }
296
297 from = saddr >> shift;
298 to = eaddr >> shift;
299 if (from >= amdgpu_vm_num_entries(adev, level) ||
300 to >= amdgpu_vm_num_entries(adev, level))
301 return -EINVAL;
302
303 if (to > parent->last_entry_used)
304 parent->last_entry_used = to;
305
306 ++level;
307 saddr = saddr & ((1 << shift) - 1);
308 eaddr = eaddr & ((1 << shift) - 1);
309
310 flags = AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS |
311 AMDGPU_GEM_CREATE_VRAM_CLEARED;
312 if (vm->use_cpu_for_update)
313 flags |= AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
314 else
315 flags |= (AMDGPU_GEM_CREATE_NO_CPU_ACCESS |
316 AMDGPU_GEM_CREATE_SHADOW);
317
318 /* walk over the address space and allocate the page tables */
319 for (pt_idx = from; pt_idx <= to; ++pt_idx) {
320 struct reservation_object *resv = vm->root.bo->tbo.resv;
321 struct amdgpu_vm_pt *entry = &parent->entries[pt_idx];
322 struct amdgpu_bo *pt;
323
324 if (!entry->bo) {
325 r = amdgpu_bo_create(adev,
326 amdgpu_vm_bo_size(adev, level),
327 AMDGPU_GPU_PAGE_SIZE, true,
328 AMDGPU_GEM_DOMAIN_VRAM,
329 flags,
330 NULL, resv, &pt);
331 if (r)
332 return r;
333
334 /* Keep a reference to the root directory to avoid
335 * freeing them up in the wrong order.
336 */
337 pt->parent = amdgpu_bo_ref(vm->root.bo);
338
339 entry->bo = pt;
340 entry->addr = 0;
341 }
342
343 if (level < adev->vm_manager.num_level) {
344 uint64_t sub_saddr = (pt_idx == from) ? saddr : 0;
345 uint64_t sub_eaddr = (pt_idx == to) ? eaddr :
346 ((1 << shift) - 1);
347 r = amdgpu_vm_alloc_levels(adev, vm, entry, sub_saddr,
348 sub_eaddr, level);
349 if (r)
350 return r;
351 }
352 }
353
354 return 0;
355 }
356
357 /**
358 * amdgpu_vm_alloc_pts - Allocate page tables.
359 *
360 * @adev: amdgpu_device pointer
361 * @vm: VM to allocate page tables for
362 * @saddr: Start address which needs to be allocated
363 * @size: Size from start address we need.
364 *
365 * Make sure the page tables are allocated.
366 */
367 int amdgpu_vm_alloc_pts(struct amdgpu_device *adev,
368 struct amdgpu_vm *vm,
369 uint64_t saddr, uint64_t size)
370 {
371 uint64_t last_pfn;
372 uint64_t eaddr;
373
374 /* validate the parameters */
375 if (saddr & AMDGPU_GPU_PAGE_MASK || size & AMDGPU_GPU_PAGE_MASK)
376 return -EINVAL;
377
378 eaddr = saddr + size - 1;
379 last_pfn = eaddr / AMDGPU_GPU_PAGE_SIZE;
380 if (last_pfn >= adev->vm_manager.max_pfn) {
381 dev_err(adev->dev, "va above limit (0x%08llX >= 0x%08llX)\n",
382 last_pfn, adev->vm_manager.max_pfn);
383 return -EINVAL;
384 }
385
386 saddr /= AMDGPU_GPU_PAGE_SIZE;
387 eaddr /= AMDGPU_GPU_PAGE_SIZE;
388
389 return amdgpu_vm_alloc_levels(adev, vm, &vm->root, saddr, eaddr, 0);
390 }
391
392 /**
393 * amdgpu_vm_had_gpu_reset - check if reset occured since last use
394 *
395 * @adev: amdgpu_device pointer
396 * @id: VMID structure
397 *
398 * Check if GPU reset occured since last use of the VMID.
399 */
400 static bool amdgpu_vm_had_gpu_reset(struct amdgpu_device *adev,
401 struct amdgpu_vm_id *id)
402 {
403 return id->current_gpu_reset_count !=
404 atomic_read(&adev->gpu_reset_counter);
405 }
406
407 static bool amdgpu_vm_reserved_vmid_ready(struct amdgpu_vm *vm, unsigned vmhub)
408 {
409 return !!vm->reserved_vmid[vmhub];
410 }
411
412 /* idr_mgr->lock must be held */
413 static int amdgpu_vm_grab_reserved_vmid_locked(struct amdgpu_vm *vm,
414 struct amdgpu_ring *ring,
415 struct amdgpu_sync *sync,
416 struct dma_fence *fence,
417 struct amdgpu_job *job)
418 {
419 struct amdgpu_device *adev = ring->adev;
420 unsigned vmhub = ring->funcs->vmhub;
421 uint64_t fence_context = adev->fence_context + ring->idx;
422 struct amdgpu_vm_id *id = vm->reserved_vmid[vmhub];
423 struct amdgpu_vm_id_manager *id_mgr = &adev->vm_manager.id_mgr[vmhub];
424 struct dma_fence *updates = sync->last_vm_update;
425 int r = 0;
426 struct dma_fence *flushed, *tmp;
427 bool needs_flush = false;
428
429 flushed = id->flushed_updates;
430 if ((amdgpu_vm_had_gpu_reset(adev, id)) ||
431 (atomic64_read(&id->owner) != vm->client_id) ||
432 (job->vm_pd_addr != id->pd_gpu_addr) ||
433 (updates && (!flushed || updates->context != flushed->context ||
434 dma_fence_is_later(updates, flushed))) ||
435 (!id->last_flush || (id->last_flush->context != fence_context &&
436 !dma_fence_is_signaled(id->last_flush)))) {
437 needs_flush = true;
438 /* to prevent one context starved by another context */
439 id->pd_gpu_addr = 0;
440 tmp = amdgpu_sync_peek_fence(&id->active, ring);
441 if (tmp) {
442 r = amdgpu_sync_fence(adev, sync, tmp);
443 return r;
444 }
445 }
446
447 /* Good we can use this VMID. Remember this submission as
448 * user of the VMID.
449 */
450 r = amdgpu_sync_fence(ring->adev, &id->active, fence);
451 if (r)
452 goto out;
453
454 if (updates && (!flushed || updates->context != flushed->context ||
455 dma_fence_is_later(updates, flushed))) {
456 dma_fence_put(id->flushed_updates);
457 id->flushed_updates = dma_fence_get(updates);
458 }
459 id->pd_gpu_addr = job->vm_pd_addr;
460 atomic64_set(&id->owner, vm->client_id);
461 job->vm_needs_flush = needs_flush;
462 if (needs_flush) {
463 dma_fence_put(id->last_flush);
464 id->last_flush = NULL;
465 }
466 job->vm_id = id - id_mgr->ids;
467 trace_amdgpu_vm_grab_id(vm, ring, job);
468 out:
469 return r;
470 }
471
472 /**
473 * amdgpu_vm_grab_id - allocate the next free VMID
474 *
475 * @vm: vm to allocate id for
476 * @ring: ring we want to submit job to
477 * @sync: sync object where we add dependencies
478 * @fence: fence protecting ID from reuse
479 *
480 * Allocate an id for the vm, adding fences to the sync obj as necessary.
481 */
482 int amdgpu_vm_grab_id(struct amdgpu_vm *vm, struct amdgpu_ring *ring,
483 struct amdgpu_sync *sync, struct dma_fence *fence,
484 struct amdgpu_job *job)
485 {
486 struct amdgpu_device *adev = ring->adev;
487 unsigned vmhub = ring->funcs->vmhub;
488 struct amdgpu_vm_id_manager *id_mgr = &adev->vm_manager.id_mgr[vmhub];
489 uint64_t fence_context = adev->fence_context + ring->idx;
490 struct dma_fence *updates = sync->last_vm_update;
491 struct amdgpu_vm_id *id, *idle;
492 struct dma_fence **fences;
493 unsigned i;
494 int r = 0;
495
496 mutex_lock(&id_mgr->lock);
497 if (amdgpu_vm_reserved_vmid_ready(vm, vmhub)) {
498 r = amdgpu_vm_grab_reserved_vmid_locked(vm, ring, sync, fence, job);
499 mutex_unlock(&id_mgr->lock);
500 return r;
501 }
502 fences = kmalloc_array(sizeof(void *), id_mgr->num_ids, GFP_KERNEL);
503 if (!fences) {
504 mutex_unlock(&id_mgr->lock);
505 return -ENOMEM;
506 }
507 /* Check if we have an idle VMID */
508 i = 0;
509 list_for_each_entry(idle, &id_mgr->ids_lru, list) {
510 fences[i] = amdgpu_sync_peek_fence(&idle->active, ring);
511 if (!fences[i])
512 break;
513 ++i;
514 }
515
516 /* If we can't find a idle VMID to use, wait till one becomes available */
517 if (&idle->list == &id_mgr->ids_lru) {
518 u64 fence_context = adev->vm_manager.fence_context + ring->idx;
519 unsigned seqno = ++adev->vm_manager.seqno[ring->idx];
520 struct dma_fence_array *array;
521 unsigned j;
522
523 for (j = 0; j < i; ++j)
524 dma_fence_get(fences[j]);
525
526 array = dma_fence_array_create(i, fences, fence_context,
527 seqno, true);
528 if (!array) {
529 for (j = 0; j < i; ++j)
530 dma_fence_put(fences[j]);
531 kfree(fences);
532 r = -ENOMEM;
533 goto error;
534 }
535
536
537 r = amdgpu_sync_fence(ring->adev, sync, &array->base);
538 dma_fence_put(&array->base);
539 if (r)
540 goto error;
541
542 mutex_unlock(&id_mgr->lock);
543 return 0;
544
545 }
546 kfree(fences);
547
548 job->vm_needs_flush = false;
549 /* Check if we can use a VMID already assigned to this VM */
550 list_for_each_entry_reverse(id, &id_mgr->ids_lru, list) {
551 struct dma_fence *flushed;
552 bool needs_flush = false;
553
554 /* Check all the prerequisites to using this VMID */
555 if (amdgpu_vm_had_gpu_reset(adev, id))
556 continue;
557
558 if (atomic64_read(&id->owner) != vm->client_id)
559 continue;
560
561 if (job->vm_pd_addr != id->pd_gpu_addr)
562 continue;
563
564 if (!id->last_flush ||
565 (id->last_flush->context != fence_context &&
566 !dma_fence_is_signaled(id->last_flush)))
567 needs_flush = true;
568
569 flushed = id->flushed_updates;
570 if (updates && (!flushed || dma_fence_is_later(updates, flushed)))
571 needs_flush = true;
572
573 /* Concurrent flushes are only possible starting with Vega10 */
574 if (adev->asic_type < CHIP_VEGA10 && needs_flush)
575 continue;
576
577 /* Good we can use this VMID. Remember this submission as
578 * user of the VMID.
579 */
580 r = amdgpu_sync_fence(ring->adev, &id->active, fence);
581 if (r)
582 goto error;
583
584 if (updates && (!flushed || dma_fence_is_later(updates, flushed))) {
585 dma_fence_put(id->flushed_updates);
586 id->flushed_updates = dma_fence_get(updates);
587 }
588
589 if (needs_flush)
590 goto needs_flush;
591 else
592 goto no_flush_needed;
593
594 };
595
596 /* Still no ID to use? Then use the idle one found earlier */
597 id = idle;
598
599 /* Remember this submission as user of the VMID */
600 r = amdgpu_sync_fence(ring->adev, &id->active, fence);
601 if (r)
602 goto error;
603
604 id->pd_gpu_addr = job->vm_pd_addr;
605 dma_fence_put(id->flushed_updates);
606 id->flushed_updates = dma_fence_get(updates);
607 atomic64_set(&id->owner, vm->client_id);
608
609 needs_flush:
610 job->vm_needs_flush = true;
611 dma_fence_put(id->last_flush);
612 id->last_flush = NULL;
613
614 no_flush_needed:
615 list_move_tail(&id->list, &id_mgr->ids_lru);
616
617 job->vm_id = id - id_mgr->ids;
618 trace_amdgpu_vm_grab_id(vm, ring, job);
619
620 error:
621 mutex_unlock(&id_mgr->lock);
622 return r;
623 }
624
625 static void amdgpu_vm_free_reserved_vmid(struct amdgpu_device *adev,
626 struct amdgpu_vm *vm,
627 unsigned vmhub)
628 {
629 struct amdgpu_vm_id_manager *id_mgr = &adev->vm_manager.id_mgr[vmhub];
630
631 mutex_lock(&id_mgr->lock);
632 if (vm->reserved_vmid[vmhub]) {
633 list_add(&vm->reserved_vmid[vmhub]->list,
634 &id_mgr->ids_lru);
635 vm->reserved_vmid[vmhub] = NULL;
636 atomic_dec(&id_mgr->reserved_vmid_num);
637 }
638 mutex_unlock(&id_mgr->lock);
639 }
640
641 static int amdgpu_vm_alloc_reserved_vmid(struct amdgpu_device *adev,
642 struct amdgpu_vm *vm,
643 unsigned vmhub)
644 {
645 struct amdgpu_vm_id_manager *id_mgr;
646 struct amdgpu_vm_id *idle;
647 int r = 0;
648
649 id_mgr = &adev->vm_manager.id_mgr[vmhub];
650 mutex_lock(&id_mgr->lock);
651 if (vm->reserved_vmid[vmhub])
652 goto unlock;
653 if (atomic_inc_return(&id_mgr->reserved_vmid_num) >
654 AMDGPU_VM_MAX_RESERVED_VMID) {
655 DRM_ERROR("Over limitation of reserved vmid\n");
656 atomic_dec(&id_mgr->reserved_vmid_num);
657 r = -EINVAL;
658 goto unlock;
659 }
660 /* Select the first entry VMID */
661 idle = list_first_entry(&id_mgr->ids_lru, struct amdgpu_vm_id, list);
662 list_del_init(&idle->list);
663 vm->reserved_vmid[vmhub] = idle;
664 mutex_unlock(&id_mgr->lock);
665
666 return 0;
667 unlock:
668 mutex_unlock(&id_mgr->lock);
669 return r;
670 }
671
672 /**
673 * amdgpu_vm_check_compute_bug - check whether asic has compute vm bug
674 *
675 * @adev: amdgpu_device pointer
676 */
677 void amdgpu_vm_check_compute_bug(struct amdgpu_device *adev)
678 {
679 const struct amdgpu_ip_block *ip_block;
680 bool has_compute_vm_bug;
681 struct amdgpu_ring *ring;
682 int i;
683
684 has_compute_vm_bug = false;
685
686 ip_block = amdgpu_get_ip_block(adev, AMD_IP_BLOCK_TYPE_GFX);
687 if (ip_block) {
688 /* Compute has a VM bug for GFX version < 7.
689 Compute has a VM bug for GFX 8 MEC firmware version < 673.*/
690 if (ip_block->version->major <= 7)
691 has_compute_vm_bug = true;
692 else if (ip_block->version->major == 8)
693 if (adev->gfx.mec_fw_version < 673)
694 has_compute_vm_bug = true;
695 }
696
697 for (i = 0; i < adev->num_rings; i++) {
698 ring = adev->rings[i];
699 if (ring->funcs->type == AMDGPU_RING_TYPE_COMPUTE)
700 /* only compute rings */
701 ring->has_compute_vm_bug = has_compute_vm_bug;
702 else
703 ring->has_compute_vm_bug = false;
704 }
705 }
706
707 bool amdgpu_vm_need_pipeline_sync(struct amdgpu_ring *ring,
708 struct amdgpu_job *job)
709 {
710 struct amdgpu_device *adev = ring->adev;
711 unsigned vmhub = ring->funcs->vmhub;
712 struct amdgpu_vm_id_manager *id_mgr = &adev->vm_manager.id_mgr[vmhub];
713 struct amdgpu_vm_id *id;
714 bool gds_switch_needed;
715 bool vm_flush_needed = job->vm_needs_flush || ring->has_compute_vm_bug;
716
717 if (job->vm_id == 0)
718 return false;
719 id = &id_mgr->ids[job->vm_id];
720 gds_switch_needed = ring->funcs->emit_gds_switch && (
721 id->gds_base != job->gds_base ||
722 id->gds_size != job->gds_size ||
723 id->gws_base != job->gws_base ||
724 id->gws_size != job->gws_size ||
725 id->oa_base != job->oa_base ||
726 id->oa_size != job->oa_size);
727
728 if (amdgpu_vm_had_gpu_reset(adev, id))
729 return true;
730
731 return vm_flush_needed || gds_switch_needed;
732 }
733
734 static bool amdgpu_vm_is_large_bar(struct amdgpu_device *adev)
735 {
736 return (adev->mc.real_vram_size == adev->mc.visible_vram_size);
737 }
738
739 /**
740 * amdgpu_vm_flush - hardware flush the vm
741 *
742 * @ring: ring to use for flush
743 * @vm_id: vmid number to use
744 * @pd_addr: address of the page directory
745 *
746 * Emit a VM flush when it is necessary.
747 */
748 int amdgpu_vm_flush(struct amdgpu_ring *ring, struct amdgpu_job *job)
749 {
750 struct amdgpu_device *adev = ring->adev;
751 unsigned vmhub = ring->funcs->vmhub;
752 struct amdgpu_vm_id_manager *id_mgr = &adev->vm_manager.id_mgr[vmhub];
753 struct amdgpu_vm_id *id = &id_mgr->ids[job->vm_id];
754 bool gds_switch_needed = ring->funcs->emit_gds_switch && (
755 id->gds_base != job->gds_base ||
756 id->gds_size != job->gds_size ||
757 id->gws_base != job->gws_base ||
758 id->gws_size != job->gws_size ||
759 id->oa_base != job->oa_base ||
760 id->oa_size != job->oa_size);
761 bool vm_flush_needed = job->vm_needs_flush;
762 unsigned patch_offset = 0;
763 int r;
764
765 if (amdgpu_vm_had_gpu_reset(adev, id)) {
766 gds_switch_needed = true;
767 vm_flush_needed = true;
768 }
769
770 if (!vm_flush_needed && !gds_switch_needed)
771 return 0;
772
773 if (ring->funcs->init_cond_exec)
774 patch_offset = amdgpu_ring_init_cond_exec(ring);
775
776 if (ring->funcs->emit_vm_flush && vm_flush_needed) {
777 struct dma_fence *fence;
778
779 trace_amdgpu_vm_flush(ring, job->vm_id, job->vm_pd_addr);
780 amdgpu_ring_emit_vm_flush(ring, job->vm_id, job->vm_pd_addr);
781
782 r = amdgpu_fence_emit(ring, &fence);
783 if (r)
784 return r;
785
786 mutex_lock(&id_mgr->lock);
787 dma_fence_put(id->last_flush);
788 id->last_flush = fence;
789 id->current_gpu_reset_count = atomic_read(&adev->gpu_reset_counter);
790 mutex_unlock(&id_mgr->lock);
791 }
792
793 if (ring->funcs->emit_gds_switch && gds_switch_needed) {
794 id->gds_base = job->gds_base;
795 id->gds_size = job->gds_size;
796 id->gws_base = job->gws_base;
797 id->gws_size = job->gws_size;
798 id->oa_base = job->oa_base;
799 id->oa_size = job->oa_size;
800 amdgpu_ring_emit_gds_switch(ring, job->vm_id, job->gds_base,
801 job->gds_size, job->gws_base,
802 job->gws_size, job->oa_base,
803 job->oa_size);
804 }
805
806 if (ring->funcs->patch_cond_exec)
807 amdgpu_ring_patch_cond_exec(ring, patch_offset);
808
809 /* the double SWITCH_BUFFER here *cannot* be skipped by COND_EXEC */
810 if (ring->funcs->emit_switch_buffer) {
811 amdgpu_ring_emit_switch_buffer(ring);
812 amdgpu_ring_emit_switch_buffer(ring);
813 }
814 return 0;
815 }
816
817 /**
818 * amdgpu_vm_reset_id - reset VMID to zero
819 *
820 * @adev: amdgpu device structure
821 * @vm_id: vmid number to use
822 *
823 * Reset saved GDW, GWS and OA to force switch on next flush.
824 */
825 void amdgpu_vm_reset_id(struct amdgpu_device *adev, unsigned vmhub,
826 unsigned vmid)
827 {
828 struct amdgpu_vm_id_manager *id_mgr = &adev->vm_manager.id_mgr[vmhub];
829 struct amdgpu_vm_id *id = &id_mgr->ids[vmid];
830
831 atomic64_set(&id->owner, 0);
832 id->gds_base = 0;
833 id->gds_size = 0;
834 id->gws_base = 0;
835 id->gws_size = 0;
836 id->oa_base = 0;
837 id->oa_size = 0;
838 }
839
840 /**
841 * amdgpu_vm_reset_all_id - reset VMID to zero
842 *
843 * @adev: amdgpu device structure
844 *
845 * Reset VMID to force flush on next use
846 */
847 void amdgpu_vm_reset_all_ids(struct amdgpu_device *adev)
848 {
849 unsigned i, j;
850
851 for (i = 0; i < AMDGPU_MAX_VMHUBS; ++i) {
852 struct amdgpu_vm_id_manager *id_mgr =
853 &adev->vm_manager.id_mgr[i];
854
855 for (j = 1; j < id_mgr->num_ids; ++j)
856 amdgpu_vm_reset_id(adev, i, j);
857 }
858 }
859
860 /**
861 * amdgpu_vm_bo_find - find the bo_va for a specific vm & bo
862 *
863 * @vm: requested vm
864 * @bo: requested buffer object
865 *
866 * Find @bo inside the requested vm.
867 * Search inside the @bos vm list for the requested vm
868 * Returns the found bo_va or NULL if none is found
869 *
870 * Object has to be reserved!
871 */
872 struct amdgpu_bo_va *amdgpu_vm_bo_find(struct amdgpu_vm *vm,
873 struct amdgpu_bo *bo)
874 {
875 struct amdgpu_bo_va *bo_va;
876
877 list_for_each_entry(bo_va, &bo->va, bo_list) {
878 if (bo_va->vm == vm) {
879 return bo_va;
880 }
881 }
882 return NULL;
883 }
884
885 /**
886 * amdgpu_vm_do_set_ptes - helper to call the right asic function
887 *
888 * @params: see amdgpu_pte_update_params definition
889 * @pe: addr of the page entry
890 * @addr: dst addr to write into pe
891 * @count: number of page entries to update
892 * @incr: increase next addr by incr bytes
893 * @flags: hw access flags
894 *
895 * Traces the parameters and calls the right asic functions
896 * to setup the page table using the DMA.
897 */
898 static void amdgpu_vm_do_set_ptes(struct amdgpu_pte_update_params *params,
899 uint64_t pe, uint64_t addr,
900 unsigned count, uint32_t incr,
901 uint64_t flags)
902 {
903 trace_amdgpu_vm_set_ptes(pe, addr, count, incr, flags);
904
905 if (count < 3) {
906 amdgpu_vm_write_pte(params->adev, params->ib, pe,
907 addr | flags, count, incr);
908
909 } else {
910 amdgpu_vm_set_pte_pde(params->adev, params->ib, pe, addr,
911 count, incr, flags);
912 }
913 }
914
915 /**
916 * amdgpu_vm_do_copy_ptes - copy the PTEs from the GART
917 *
918 * @params: see amdgpu_pte_update_params definition
919 * @pe: addr of the page entry
920 * @addr: dst addr to write into pe
921 * @count: number of page entries to update
922 * @incr: increase next addr by incr bytes
923 * @flags: hw access flags
924 *
925 * Traces the parameters and calls the DMA function to copy the PTEs.
926 */
927 static void amdgpu_vm_do_copy_ptes(struct amdgpu_pte_update_params *params,
928 uint64_t pe, uint64_t addr,
929 unsigned count, uint32_t incr,
930 uint64_t flags)
931 {
932 uint64_t src = (params->src + (addr >> 12) * 8);
933
934
935 trace_amdgpu_vm_copy_ptes(pe, src, count);
936
937 amdgpu_vm_copy_pte(params->adev, params->ib, pe, src, count);
938 }
939
940 /**
941 * amdgpu_vm_map_gart - Resolve gart mapping of addr
942 *
943 * @pages_addr: optional DMA address to use for lookup
944 * @addr: the unmapped addr
945 *
946 * Look up the physical address of the page that the pte resolves
947 * to and return the pointer for the page table entry.
948 */
949 static uint64_t amdgpu_vm_map_gart(const dma_addr_t *pages_addr, uint64_t addr)
950 {
951 uint64_t result;
952
953 /* page table offset */
954 result = pages_addr[addr >> PAGE_SHIFT];
955
956 /* in case cpu page size != gpu page size*/
957 result |= addr & (~PAGE_MASK);
958
959 result &= 0xFFFFFFFFFFFFF000ULL;
960
961 return result;
962 }
963
964 /**
965 * amdgpu_vm_cpu_set_ptes - helper to update page tables via CPU
966 *
967 * @params: see amdgpu_pte_update_params definition
968 * @pe: kmap addr of the page entry
969 * @addr: dst addr to write into pe
970 * @count: number of page entries to update
971 * @incr: increase next addr by incr bytes
972 * @flags: hw access flags
973 *
974 * Write count number of PT/PD entries directly.
975 */
976 static void amdgpu_vm_cpu_set_ptes(struct amdgpu_pte_update_params *params,
977 uint64_t pe, uint64_t addr,
978 unsigned count, uint32_t incr,
979 uint64_t flags)
980 {
981 unsigned int i;
982 uint64_t value;
983
984 for (i = 0; i < count; i++) {
985 value = params->pages_addr ?
986 amdgpu_vm_map_gart(params->pages_addr, addr) :
987 addr;
988 amdgpu_gart_set_pte_pde(params->adev, (void *)(uintptr_t)pe,
989 i, value, flags);
990 addr += incr;
991 }
992
993 /* Flush HDP */
994 mb();
995 amdgpu_gart_flush_gpu_tlb(params->adev, 0);
996 }
997
998 static int amdgpu_vm_bo_wait(struct amdgpu_device *adev, struct amdgpu_bo *bo)
999 {
1000 struct amdgpu_sync sync;
1001 int r;
1002
1003 amdgpu_sync_create(&sync);
1004 amdgpu_sync_resv(adev, &sync, bo->tbo.resv, AMDGPU_FENCE_OWNER_VM);
1005 r = amdgpu_sync_wait(&sync, true);
1006 amdgpu_sync_free(&sync);
1007
1008 return r;
1009 }
1010
1011 /*
1012 * amdgpu_vm_update_level - update a single level in the hierarchy
1013 *
1014 * @adev: amdgpu_device pointer
1015 * @vm: requested vm
1016 * @parent: parent directory
1017 *
1018 * Makes sure all entries in @parent are up to date.
1019 * Returns 0 for success, error for failure.
1020 */
1021 static int amdgpu_vm_update_level(struct amdgpu_device *adev,
1022 struct amdgpu_vm *vm,
1023 struct amdgpu_vm_pt *parent,
1024 unsigned level)
1025 {
1026 struct amdgpu_bo *shadow;
1027 struct amdgpu_ring *ring = NULL;
1028 uint64_t pd_addr, shadow_addr = 0;
1029 uint32_t incr = amdgpu_vm_bo_size(adev, level + 1);
1030 uint64_t last_pde = ~0, last_pt = ~0, last_shadow = ~0;
1031 unsigned count = 0, pt_idx, ndw = 0;
1032 struct amdgpu_job *job;
1033 struct amdgpu_pte_update_params params;
1034 struct dma_fence *fence = NULL;
1035
1036 int r;
1037
1038 if (!parent->entries)
1039 return 0;
1040
1041 memset(&params, 0, sizeof(params));
1042 params.adev = adev;
1043 shadow = parent->bo->shadow;
1044
1045 WARN_ON(vm->use_cpu_for_update && shadow);
1046 if (vm->use_cpu_for_update && !shadow) {
1047 r = amdgpu_bo_kmap(parent->bo, (void **)&pd_addr);
1048 if (r)
1049 return r;
1050 r = amdgpu_vm_bo_wait(adev, parent->bo);
1051 if (unlikely(r)) {
1052 amdgpu_bo_kunmap(parent->bo);
1053 return r;
1054 }
1055 params.func = amdgpu_vm_cpu_set_ptes;
1056 } else {
1057 if (shadow) {
1058 r = amdgpu_ttm_bind(&shadow->tbo, &shadow->tbo.mem);
1059 if (r)
1060 return r;
1061 }
1062 ring = container_of(vm->entity.sched, struct amdgpu_ring,
1063 sched);
1064
1065 /* padding, etc. */
1066 ndw = 64;
1067
1068 /* assume the worst case */
1069 ndw += parent->last_entry_used * 6;
1070
1071 pd_addr = amdgpu_bo_gpu_offset(parent->bo);
1072
1073 if (shadow) {
1074 shadow_addr = amdgpu_bo_gpu_offset(shadow);
1075 ndw *= 2;
1076 } else {
1077 shadow_addr = 0;
1078 }
1079
1080 r = amdgpu_job_alloc_with_ib(adev, ndw * 4, &job);
1081 if (r)
1082 return r;
1083
1084 params.ib = &job->ibs[0];
1085 params.func = amdgpu_vm_do_set_ptes;
1086 }
1087
1088
1089 /* walk over the address space and update the directory */
1090 for (pt_idx = 0; pt_idx <= parent->last_entry_used; ++pt_idx) {
1091 struct amdgpu_bo *bo = parent->entries[pt_idx].bo;
1092 uint64_t pde, pt;
1093
1094 if (bo == NULL)
1095 continue;
1096
1097 if (bo->shadow) {
1098 struct amdgpu_bo *pt_shadow = bo->shadow;
1099
1100 r = amdgpu_ttm_bind(&pt_shadow->tbo,
1101 &pt_shadow->tbo.mem);
1102 if (r)
1103 return r;
1104 }
1105
1106 pt = amdgpu_bo_gpu_offset(bo);
1107 pt = amdgpu_gart_get_vm_pde(adev, pt);
1108 if (parent->entries[pt_idx].addr == pt)
1109 continue;
1110
1111 parent->entries[pt_idx].addr = pt;
1112
1113 pde = pd_addr + pt_idx * 8;
1114 if (((last_pde + 8 * count) != pde) ||
1115 ((last_pt + incr * count) != pt) ||
1116 (count == AMDGPU_VM_MAX_UPDATE_SIZE)) {
1117
1118 if (count) {
1119 if (shadow)
1120 params.func(&params,
1121 last_shadow,
1122 last_pt, count,
1123 incr,
1124 AMDGPU_PTE_VALID);
1125
1126 params.func(&params, last_pde,
1127 last_pt, count, incr,
1128 AMDGPU_PTE_VALID);
1129 }
1130
1131 count = 1;
1132 last_pde = pde;
1133 last_shadow = shadow_addr + pt_idx * 8;
1134 last_pt = pt;
1135 } else {
1136 ++count;
1137 }
1138 }
1139
1140 if (count) {
1141 if (vm->root.bo->shadow)
1142 params.func(&params, last_shadow, last_pt,
1143 count, incr, AMDGPU_PTE_VALID);
1144
1145 params.func(&params, last_pde, last_pt,
1146 count, incr, AMDGPU_PTE_VALID);
1147 }
1148
1149 if (params.func == amdgpu_vm_cpu_set_ptes)
1150 amdgpu_bo_kunmap(parent->bo);
1151 else if (params.ib->length_dw == 0) {
1152 amdgpu_job_free(job);
1153 } else {
1154 amdgpu_ring_pad_ib(ring, params.ib);
1155 amdgpu_sync_resv(adev, &job->sync, parent->bo->tbo.resv,
1156 AMDGPU_FENCE_OWNER_VM);
1157 if (shadow)
1158 amdgpu_sync_resv(adev, &job->sync, shadow->tbo.resv,
1159 AMDGPU_FENCE_OWNER_VM);
1160
1161 WARN_ON(params.ib->length_dw > ndw);
1162 r = amdgpu_job_submit(job, ring, &vm->entity,
1163 AMDGPU_FENCE_OWNER_VM, &fence);
1164 if (r)
1165 goto error_free;
1166
1167 amdgpu_bo_fence(parent->bo, fence, true);
1168 dma_fence_put(vm->last_dir_update);
1169 vm->last_dir_update = dma_fence_get(fence);
1170 dma_fence_put(fence);
1171 }
1172 /*
1173 * Recurse into the subdirectories. This recursion is harmless because
1174 * we only have a maximum of 5 layers.
1175 */
1176 for (pt_idx = 0; pt_idx <= parent->last_entry_used; ++pt_idx) {
1177 struct amdgpu_vm_pt *entry = &parent->entries[pt_idx];
1178
1179 if (!entry->bo)
1180 continue;
1181
1182 r = amdgpu_vm_update_level(adev, vm, entry, level + 1);
1183 if (r)
1184 return r;
1185 }
1186
1187 return 0;
1188
1189 error_free:
1190 amdgpu_job_free(job);
1191 return r;
1192 }
1193
1194 /*
1195 * amdgpu_vm_invalidate_level - mark all PD levels as invalid
1196 *
1197 * @parent: parent PD
1198 *
1199 * Mark all PD level as invalid after an error.
1200 */
1201 static void amdgpu_vm_invalidate_level(struct amdgpu_vm_pt *parent)
1202 {
1203 unsigned pt_idx;
1204
1205 /*
1206 * Recurse into the subdirectories. This recursion is harmless because
1207 * we only have a maximum of 5 layers.
1208 */
1209 for (pt_idx = 0; pt_idx <= parent->last_entry_used; ++pt_idx) {
1210 struct amdgpu_vm_pt *entry = &parent->entries[pt_idx];
1211
1212 if (!entry->bo)
1213 continue;
1214
1215 entry->addr = ~0ULL;
1216 amdgpu_vm_invalidate_level(entry);
1217 }
1218 }
1219
1220 /*
1221 * amdgpu_vm_update_directories - make sure that all directories are valid
1222 *
1223 * @adev: amdgpu_device pointer
1224 * @vm: requested vm
1225 *
1226 * Makes sure all directories are up to date.
1227 * Returns 0 for success, error for failure.
1228 */
1229 int amdgpu_vm_update_directories(struct amdgpu_device *adev,
1230 struct amdgpu_vm *vm)
1231 {
1232 int r;
1233
1234 r = amdgpu_vm_update_level(adev, vm, &vm->root, 0);
1235 if (r)
1236 amdgpu_vm_invalidate_level(&vm->root);
1237
1238 return r;
1239 }
1240
1241 /**
1242 * amdgpu_vm_find_pt - find the page table for an address
1243 *
1244 * @p: see amdgpu_pte_update_params definition
1245 * @addr: virtual address in question
1246 *
1247 * Find the page table BO for a virtual address, return NULL when none found.
1248 */
1249 static struct amdgpu_bo *amdgpu_vm_get_pt(struct amdgpu_pte_update_params *p,
1250 uint64_t addr)
1251 {
1252 struct amdgpu_vm_pt *entry = &p->vm->root;
1253 unsigned idx, level = p->adev->vm_manager.num_level;
1254
1255 while (entry->entries) {
1256 idx = addr >> (p->adev->vm_manager.block_size * level--);
1257 idx %= amdgpu_bo_size(entry->bo) / 8;
1258 entry = &entry->entries[idx];
1259 }
1260
1261 if (level)
1262 return NULL;
1263
1264 return entry->bo;
1265 }
1266
1267 /**
1268 * amdgpu_vm_update_ptes - make sure that page tables are valid
1269 *
1270 * @params: see amdgpu_pte_update_params definition
1271 * @vm: requested vm
1272 * @start: start of GPU address range
1273 * @end: end of GPU address range
1274 * @dst: destination address to map to, the next dst inside the function
1275 * @flags: mapping flags
1276 *
1277 * Update the page tables in the range @start - @end.
1278 * Returns 0 for success, -EINVAL for failure.
1279 */
1280 static int amdgpu_vm_update_ptes(struct amdgpu_pte_update_params *params,
1281 uint64_t start, uint64_t end,
1282 uint64_t dst, uint64_t flags)
1283 {
1284 struct amdgpu_device *adev = params->adev;
1285 const uint64_t mask = AMDGPU_VM_PTE_COUNT(adev) - 1;
1286
1287 uint64_t addr, pe_start;
1288 struct amdgpu_bo *pt;
1289 unsigned nptes;
1290 int r;
1291 bool use_cpu_update = (params->func == amdgpu_vm_cpu_set_ptes);
1292
1293
1294 /* walk over the address space and update the page tables */
1295 for (addr = start; addr < end; addr += nptes) {
1296 pt = amdgpu_vm_get_pt(params, addr);
1297 if (!pt) {
1298 pr_err("PT not found, aborting update_ptes\n");
1299 return -EINVAL;
1300 }
1301
1302 if (params->shadow) {
1303 if (WARN_ONCE(use_cpu_update,
1304 "CPU VM update doesn't suuport shadow pages"))
1305 return 0;
1306
1307 if (!pt->shadow)
1308 return 0;
1309 pt = pt->shadow;
1310 }
1311
1312 if ((addr & ~mask) == (end & ~mask))
1313 nptes = end - addr;
1314 else
1315 nptes = AMDGPU_VM_PTE_COUNT(adev) - (addr & mask);
1316
1317 if (use_cpu_update) {
1318 r = amdgpu_bo_kmap(pt, (void *)&pe_start);
1319 if (r)
1320 return r;
1321 } else
1322 pe_start = amdgpu_bo_gpu_offset(pt);
1323
1324 pe_start += (addr & mask) * 8;
1325
1326 params->func(params, pe_start, dst, nptes,
1327 AMDGPU_GPU_PAGE_SIZE, flags);
1328
1329 dst += nptes * AMDGPU_GPU_PAGE_SIZE;
1330
1331 if (use_cpu_update)
1332 amdgpu_bo_kunmap(pt);
1333 }
1334
1335 return 0;
1336 }
1337
1338 /*
1339 * amdgpu_vm_frag_ptes - add fragment information to PTEs
1340 *
1341 * @params: see amdgpu_pte_update_params definition
1342 * @vm: requested vm
1343 * @start: first PTE to handle
1344 * @end: last PTE to handle
1345 * @dst: addr those PTEs should point to
1346 * @flags: hw mapping flags
1347 * Returns 0 for success, -EINVAL for failure.
1348 */
1349 static int amdgpu_vm_frag_ptes(struct amdgpu_pte_update_params *params,
1350 uint64_t start, uint64_t end,
1351 uint64_t dst, uint64_t flags)
1352 {
1353 int r;
1354
1355 /**
1356 * The MC L1 TLB supports variable sized pages, based on a fragment
1357 * field in the PTE. When this field is set to a non-zero value, page
1358 * granularity is increased from 4KB to (1 << (12 + frag)). The PTE
1359 * flags are considered valid for all PTEs within the fragment range
1360 * and corresponding mappings are assumed to be physically contiguous.
1361 *
1362 * The L1 TLB can store a single PTE for the whole fragment,
1363 * significantly increasing the space available for translation
1364 * caching. This leads to large improvements in throughput when the
1365 * TLB is under pressure.
1366 *
1367 * The L2 TLB distributes small and large fragments into two
1368 * asymmetric partitions. The large fragment cache is significantly
1369 * larger. Thus, we try to use large fragments wherever possible.
1370 * Userspace can support this by aligning virtual base address and
1371 * allocation size to the fragment size.
1372 */
1373
1374 /* SI and newer are optimized for 64KB */
1375 uint64_t frag_flags = AMDGPU_PTE_FRAG(AMDGPU_LOG2_PAGES_PER_FRAG);
1376 uint64_t frag_align = 1 << AMDGPU_LOG2_PAGES_PER_FRAG;
1377
1378 uint64_t frag_start = ALIGN(start, frag_align);
1379 uint64_t frag_end = end & ~(frag_align - 1);
1380
1381 /* system pages are non continuously */
1382 if (params->src || !(flags & AMDGPU_PTE_VALID) ||
1383 (frag_start >= frag_end))
1384 return amdgpu_vm_update_ptes(params, start, end, dst, flags);
1385
1386 /* handle the 4K area at the beginning */
1387 if (start != frag_start) {
1388 r = amdgpu_vm_update_ptes(params, start, frag_start,
1389 dst, flags);
1390 if (r)
1391 return r;
1392 dst += (frag_start - start) * AMDGPU_GPU_PAGE_SIZE;
1393 }
1394
1395 /* handle the area in the middle */
1396 r = amdgpu_vm_update_ptes(params, frag_start, frag_end, dst,
1397 flags | frag_flags);
1398 if (r)
1399 return r;
1400
1401 /* handle the 4K area at the end */
1402 if (frag_end != end) {
1403 dst += (frag_end - frag_start) * AMDGPU_GPU_PAGE_SIZE;
1404 r = amdgpu_vm_update_ptes(params, frag_end, end, dst, flags);
1405 }
1406 return r;
1407 }
1408
1409 /**
1410 * amdgpu_vm_bo_update_mapping - update a mapping in the vm page table
1411 *
1412 * @adev: amdgpu_device pointer
1413 * @exclusive: fence we need to sync to
1414 * @src: address where to copy page table entries from
1415 * @pages_addr: DMA addresses to use for mapping
1416 * @vm: requested vm
1417 * @start: start of mapped range
1418 * @last: last mapped entry
1419 * @flags: flags for the entries
1420 * @addr: addr to set the area to
1421 * @fence: optional resulting fence
1422 *
1423 * Fill in the page table entries between @start and @last.
1424 * Returns 0 for success, -EINVAL for failure.
1425 */
1426 static int amdgpu_vm_bo_update_mapping(struct amdgpu_device *adev,
1427 struct dma_fence *exclusive,
1428 uint64_t src,
1429 dma_addr_t *pages_addr,
1430 struct amdgpu_vm *vm,
1431 uint64_t start, uint64_t last,
1432 uint64_t flags, uint64_t addr,
1433 struct dma_fence **fence)
1434 {
1435 struct amdgpu_ring *ring;
1436 void *owner = AMDGPU_FENCE_OWNER_VM;
1437 unsigned nptes, ncmds, ndw;
1438 struct amdgpu_job *job;
1439 struct amdgpu_pte_update_params params;
1440 struct dma_fence *f = NULL;
1441 int r;
1442
1443 memset(&params, 0, sizeof(params));
1444 params.adev = adev;
1445 params.vm = vm;
1446 params.src = src;
1447
1448 if (vm->use_cpu_for_update) {
1449 /* params.src is used as flag to indicate system Memory */
1450 if (pages_addr)
1451 params.src = ~0;
1452
1453 /* Wait for PT BOs to be free. PTs share the same resv. object
1454 * as the root PD BO
1455 */
1456 r = amdgpu_vm_bo_wait(adev, vm->root.bo);
1457 if (unlikely(r))
1458 return r;
1459
1460 params.func = amdgpu_vm_cpu_set_ptes;
1461 params.pages_addr = pages_addr;
1462 params.shadow = false;
1463 return amdgpu_vm_frag_ptes(&params, start, last + 1,
1464 addr, flags);
1465 }
1466
1467 ring = container_of(vm->entity.sched, struct amdgpu_ring, sched);
1468
1469 /* sync to everything on unmapping */
1470 if (!(flags & AMDGPU_PTE_VALID))
1471 owner = AMDGPU_FENCE_OWNER_UNDEFINED;
1472
1473 nptes = last - start + 1;
1474
1475 /*
1476 * reserve space for one command every (1 << BLOCK_SIZE)
1477 * entries or 2k dwords (whatever is smaller)
1478 */
1479 ncmds = (nptes >> min(adev->vm_manager.block_size, 11u)) + 1;
1480
1481 /* padding, etc. */
1482 ndw = 64;
1483
1484 if (src) {
1485 /* only copy commands needed */
1486 ndw += ncmds * 7;
1487
1488 params.func = amdgpu_vm_do_copy_ptes;
1489
1490 } else if (pages_addr) {
1491 /* copy commands needed */
1492 ndw += ncmds * 7;
1493
1494 /* and also PTEs */
1495 ndw += nptes * 2;
1496
1497 params.func = amdgpu_vm_do_copy_ptes;
1498
1499 } else {
1500 /* set page commands needed */
1501 ndw += ncmds * 10;
1502
1503 /* two extra commands for begin/end of fragment */
1504 ndw += 2 * 10;
1505
1506 params.func = amdgpu_vm_do_set_ptes;
1507 }
1508
1509 r = amdgpu_job_alloc_with_ib(adev, ndw * 4, &job);
1510 if (r)
1511 return r;
1512
1513 params.ib = &job->ibs[0];
1514
1515 if (!src && pages_addr) {
1516 uint64_t *pte;
1517 unsigned i;
1518
1519 /* Put the PTEs at the end of the IB. */
1520 i = ndw - nptes * 2;
1521 pte= (uint64_t *)&(job->ibs->ptr[i]);
1522 params.src = job->ibs->gpu_addr + i * 4;
1523
1524 for (i = 0; i < nptes; ++i) {
1525 pte[i] = amdgpu_vm_map_gart(pages_addr, addr + i *
1526 AMDGPU_GPU_PAGE_SIZE);
1527 pte[i] |= flags;
1528 }
1529 addr = 0;
1530 }
1531
1532 r = amdgpu_sync_fence(adev, &job->sync, exclusive);
1533 if (r)
1534 goto error_free;
1535
1536 r = amdgpu_sync_resv(adev, &job->sync, vm->root.bo->tbo.resv,
1537 owner);
1538 if (r)
1539 goto error_free;
1540
1541 r = reservation_object_reserve_shared(vm->root.bo->tbo.resv);
1542 if (r)
1543 goto error_free;
1544
1545 params.shadow = true;
1546 r = amdgpu_vm_frag_ptes(&params, start, last + 1, addr, flags);
1547 if (r)
1548 goto error_free;
1549 params.shadow = false;
1550 r = amdgpu_vm_frag_ptes(&params, start, last + 1, addr, flags);
1551 if (r)
1552 goto error_free;
1553
1554 amdgpu_ring_pad_ib(ring, params.ib);
1555 WARN_ON(params.ib->length_dw > ndw);
1556 r = amdgpu_job_submit(job, ring, &vm->entity,
1557 AMDGPU_FENCE_OWNER_VM, &f);
1558 if (r)
1559 goto error_free;
1560
1561 amdgpu_bo_fence(vm->root.bo, f, true);
1562 dma_fence_put(*fence);
1563 *fence = f;
1564 return 0;
1565
1566 error_free:
1567 amdgpu_job_free(job);
1568 return r;
1569 }
1570
1571 /**
1572 * amdgpu_vm_bo_split_mapping - split a mapping into smaller chunks
1573 *
1574 * @adev: amdgpu_device pointer
1575 * @exclusive: fence we need to sync to
1576 * @gtt_flags: flags as they are used for GTT
1577 * @pages_addr: DMA addresses to use for mapping
1578 * @vm: requested vm
1579 * @mapping: mapped range and flags to use for the update
1580 * @flags: HW flags for the mapping
1581 * @nodes: array of drm_mm_nodes with the MC addresses
1582 * @fence: optional resulting fence
1583 *
1584 * Split the mapping into smaller chunks so that each update fits
1585 * into a SDMA IB.
1586 * Returns 0 for success, -EINVAL for failure.
1587 */
1588 static int amdgpu_vm_bo_split_mapping(struct amdgpu_device *adev,
1589 struct dma_fence *exclusive,
1590 uint64_t gtt_flags,
1591 dma_addr_t *pages_addr,
1592 struct amdgpu_vm *vm,
1593 struct amdgpu_bo_va_mapping *mapping,
1594 uint64_t flags,
1595 struct drm_mm_node *nodes,
1596 struct dma_fence **fence)
1597 {
1598 uint64_t pfn, src = 0, start = mapping->start;
1599 int r;
1600
1601 /* normally,bo_va->flags only contians READABLE and WIRTEABLE bit go here
1602 * but in case of something, we filter the flags in first place
1603 */
1604 if (!(mapping->flags & AMDGPU_PTE_READABLE))
1605 flags &= ~AMDGPU_PTE_READABLE;
1606 if (!(mapping->flags & AMDGPU_PTE_WRITEABLE))
1607 flags &= ~AMDGPU_PTE_WRITEABLE;
1608
1609 flags &= ~AMDGPU_PTE_EXECUTABLE;
1610 flags |= mapping->flags & AMDGPU_PTE_EXECUTABLE;
1611
1612 flags &= ~AMDGPU_PTE_MTYPE_MASK;
1613 flags |= (mapping->flags & AMDGPU_PTE_MTYPE_MASK);
1614
1615 if ((mapping->flags & AMDGPU_PTE_PRT) &&
1616 (adev->asic_type >= CHIP_VEGA10)) {
1617 flags |= AMDGPU_PTE_PRT;
1618 flags &= ~AMDGPU_PTE_VALID;
1619 }
1620
1621 trace_amdgpu_vm_bo_update(mapping);
1622
1623 pfn = mapping->offset >> PAGE_SHIFT;
1624 if (nodes) {
1625 while (pfn >= nodes->size) {
1626 pfn -= nodes->size;
1627 ++nodes;
1628 }
1629 }
1630
1631 do {
1632 uint64_t max_entries;
1633 uint64_t addr, last;
1634
1635 if (nodes) {
1636 addr = nodes->start << PAGE_SHIFT;
1637 max_entries = (nodes->size - pfn) *
1638 (PAGE_SIZE / AMDGPU_GPU_PAGE_SIZE);
1639 } else {
1640 addr = 0;
1641 max_entries = S64_MAX;
1642 }
1643
1644 if (pages_addr) {
1645 if (flags == gtt_flags)
1646 src = adev->gart.table_addr +
1647 (addr >> AMDGPU_GPU_PAGE_SHIFT) * 8;
1648 else
1649 max_entries = min(max_entries, 16ull * 1024ull);
1650 addr = 0;
1651 } else if (flags & AMDGPU_PTE_VALID) {
1652 addr += adev->vm_manager.vram_base_offset;
1653 }
1654 addr += pfn << PAGE_SHIFT;
1655
1656 last = min((uint64_t)mapping->last, start + max_entries - 1);
1657 r = amdgpu_vm_bo_update_mapping(adev, exclusive,
1658 src, pages_addr, vm,
1659 start, last, flags, addr,
1660 fence);
1661 if (r)
1662 return r;
1663
1664 pfn += last - start + 1;
1665 if (nodes && nodes->size == pfn) {
1666 pfn = 0;
1667 ++nodes;
1668 }
1669 start = last + 1;
1670
1671 } while (unlikely(start != mapping->last + 1));
1672
1673 return 0;
1674 }
1675
1676 /**
1677 * amdgpu_vm_bo_update - update all BO mappings in the vm page table
1678 *
1679 * @adev: amdgpu_device pointer
1680 * @bo_va: requested BO and VM object
1681 * @clear: if true clear the entries
1682 *
1683 * Fill in the page table entries for @bo_va.
1684 * Returns 0 for success, -EINVAL for failure.
1685 */
1686 int amdgpu_vm_bo_update(struct amdgpu_device *adev,
1687 struct amdgpu_bo_va *bo_va,
1688 bool clear)
1689 {
1690 struct amdgpu_vm *vm = bo_va->vm;
1691 struct amdgpu_bo_va_mapping *mapping;
1692 dma_addr_t *pages_addr = NULL;
1693 uint64_t gtt_flags, flags;
1694 struct ttm_mem_reg *mem;
1695 struct drm_mm_node *nodes;
1696 struct dma_fence *exclusive;
1697 int r;
1698
1699 if (clear || !bo_va->bo) {
1700 mem = NULL;
1701 nodes = NULL;
1702 exclusive = NULL;
1703 } else {
1704 struct ttm_dma_tt *ttm;
1705
1706 mem = &bo_va->bo->tbo.mem;
1707 nodes = mem->mm_node;
1708 if (mem->mem_type == TTM_PL_TT) {
1709 ttm = container_of(bo_va->bo->tbo.ttm, struct
1710 ttm_dma_tt, ttm);
1711 pages_addr = ttm->dma_address;
1712 }
1713 exclusive = reservation_object_get_excl(bo_va->bo->tbo.resv);
1714 }
1715
1716 if (bo_va->bo) {
1717 flags = amdgpu_ttm_tt_pte_flags(adev, bo_va->bo->tbo.ttm, mem);
1718 gtt_flags = (amdgpu_ttm_is_bound(bo_va->bo->tbo.ttm) &&
1719 adev == amdgpu_ttm_adev(bo_va->bo->tbo.bdev)) ?
1720 flags : 0;
1721 } else {
1722 flags = 0x0;
1723 gtt_flags = ~0x0;
1724 }
1725
1726 spin_lock(&vm->status_lock);
1727 if (!list_empty(&bo_va->vm_status))
1728 list_splice_init(&bo_va->valids, &bo_va->invalids);
1729 spin_unlock(&vm->status_lock);
1730
1731 list_for_each_entry(mapping, &bo_va->invalids, list) {
1732 r = amdgpu_vm_bo_split_mapping(adev, exclusive,
1733 gtt_flags, pages_addr, vm,
1734 mapping, flags, nodes,
1735 &bo_va->last_pt_update);
1736 if (r)
1737 return r;
1738 }
1739
1740 if (trace_amdgpu_vm_bo_mapping_enabled()) {
1741 list_for_each_entry(mapping, &bo_va->valids, list)
1742 trace_amdgpu_vm_bo_mapping(mapping);
1743
1744 list_for_each_entry(mapping, &bo_va->invalids, list)
1745 trace_amdgpu_vm_bo_mapping(mapping);
1746 }
1747
1748 spin_lock(&vm->status_lock);
1749 list_splice_init(&bo_va->invalids, &bo_va->valids);
1750 list_del_init(&bo_va->vm_status);
1751 if (clear)
1752 list_add(&bo_va->vm_status, &vm->cleared);
1753 spin_unlock(&vm->status_lock);
1754
1755 return 0;
1756 }
1757
1758 /**
1759 * amdgpu_vm_update_prt_state - update the global PRT state
1760 */
1761 static void amdgpu_vm_update_prt_state(struct amdgpu_device *adev)
1762 {
1763 unsigned long flags;
1764 bool enable;
1765
1766 spin_lock_irqsave(&adev->vm_manager.prt_lock, flags);
1767 enable = !!atomic_read(&adev->vm_manager.num_prt_users);
1768 adev->gart.gart_funcs->set_prt(adev, enable);
1769 spin_unlock_irqrestore(&adev->vm_manager.prt_lock, flags);
1770 }
1771
1772 /**
1773 * amdgpu_vm_prt_get - add a PRT user
1774 */
1775 static void amdgpu_vm_prt_get(struct amdgpu_device *adev)
1776 {
1777 if (!adev->gart.gart_funcs->set_prt)
1778 return;
1779
1780 if (atomic_inc_return(&adev->vm_manager.num_prt_users) == 1)
1781 amdgpu_vm_update_prt_state(adev);
1782 }
1783
1784 /**
1785 * amdgpu_vm_prt_put - drop a PRT user
1786 */
1787 static void amdgpu_vm_prt_put(struct amdgpu_device *adev)
1788 {
1789 if (atomic_dec_return(&adev->vm_manager.num_prt_users) == 0)
1790 amdgpu_vm_update_prt_state(adev);
1791 }
1792
1793 /**
1794 * amdgpu_vm_prt_cb - callback for updating the PRT status
1795 */
1796 static void amdgpu_vm_prt_cb(struct dma_fence *fence, struct dma_fence_cb *_cb)
1797 {
1798 struct amdgpu_prt_cb *cb = container_of(_cb, struct amdgpu_prt_cb, cb);
1799
1800 amdgpu_vm_prt_put(cb->adev);
1801 kfree(cb);
1802 }
1803
1804 /**
1805 * amdgpu_vm_add_prt_cb - add callback for updating the PRT status
1806 */
1807 static void amdgpu_vm_add_prt_cb(struct amdgpu_device *adev,
1808 struct dma_fence *fence)
1809 {
1810 struct amdgpu_prt_cb *cb;
1811
1812 if (!adev->gart.gart_funcs->set_prt)
1813 return;
1814
1815 cb = kmalloc(sizeof(struct amdgpu_prt_cb), GFP_KERNEL);
1816 if (!cb) {
1817 /* Last resort when we are OOM */
1818 if (fence)
1819 dma_fence_wait(fence, false);
1820
1821 amdgpu_vm_prt_put(adev);
1822 } else {
1823 cb->adev = adev;
1824 if (!fence || dma_fence_add_callback(fence, &cb->cb,
1825 amdgpu_vm_prt_cb))
1826 amdgpu_vm_prt_cb(fence, &cb->cb);
1827 }
1828 }
1829
1830 /**
1831 * amdgpu_vm_free_mapping - free a mapping
1832 *
1833 * @adev: amdgpu_device pointer
1834 * @vm: requested vm
1835 * @mapping: mapping to be freed
1836 * @fence: fence of the unmap operation
1837 *
1838 * Free a mapping and make sure we decrease the PRT usage count if applicable.
1839 */
1840 static void amdgpu_vm_free_mapping(struct amdgpu_device *adev,
1841 struct amdgpu_vm *vm,
1842 struct amdgpu_bo_va_mapping *mapping,
1843 struct dma_fence *fence)
1844 {
1845 if (mapping->flags & AMDGPU_PTE_PRT)
1846 amdgpu_vm_add_prt_cb(adev, fence);
1847 kfree(mapping);
1848 }
1849
1850 /**
1851 * amdgpu_vm_prt_fini - finish all prt mappings
1852 *
1853 * @adev: amdgpu_device pointer
1854 * @vm: requested vm
1855 *
1856 * Register a cleanup callback to disable PRT support after VM dies.
1857 */
1858 static void amdgpu_vm_prt_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm)
1859 {
1860 struct reservation_object *resv = vm->root.bo->tbo.resv;
1861 struct dma_fence *excl, **shared;
1862 unsigned i, shared_count;
1863 int r;
1864
1865 r = reservation_object_get_fences_rcu(resv, &excl,
1866 &shared_count, &shared);
1867 if (r) {
1868 /* Not enough memory to grab the fence list, as last resort
1869 * block for all the fences to complete.
1870 */
1871 reservation_object_wait_timeout_rcu(resv, true, false,
1872 MAX_SCHEDULE_TIMEOUT);
1873 return;
1874 }
1875
1876 /* Add a callback for each fence in the reservation object */
1877 amdgpu_vm_prt_get(adev);
1878 amdgpu_vm_add_prt_cb(adev, excl);
1879
1880 for (i = 0; i < shared_count; ++i) {
1881 amdgpu_vm_prt_get(adev);
1882 amdgpu_vm_add_prt_cb(adev, shared[i]);
1883 }
1884
1885 kfree(shared);
1886 }
1887
1888 /**
1889 * amdgpu_vm_clear_freed - clear freed BOs in the PT
1890 *
1891 * @adev: amdgpu_device pointer
1892 * @vm: requested vm
1893 * @fence: optional resulting fence (unchanged if no work needed to be done
1894 * or if an error occurred)
1895 *
1896 * Make sure all freed BOs are cleared in the PT.
1897 * Returns 0 for success.
1898 *
1899 * PTs have to be reserved and mutex must be locked!
1900 */
1901 int amdgpu_vm_clear_freed(struct amdgpu_device *adev,
1902 struct amdgpu_vm *vm,
1903 struct dma_fence **fence)
1904 {
1905 struct amdgpu_bo_va_mapping *mapping;
1906 struct dma_fence *f = NULL;
1907 int r;
1908
1909 while (!list_empty(&vm->freed)) {
1910 mapping = list_first_entry(&vm->freed,
1911 struct amdgpu_bo_va_mapping, list);
1912 list_del(&mapping->list);
1913
1914 r = amdgpu_vm_bo_update_mapping(adev, NULL, 0, NULL, vm,
1915 mapping->start, mapping->last,
1916 0, 0, &f);
1917 amdgpu_vm_free_mapping(adev, vm, mapping, f);
1918 if (r) {
1919 dma_fence_put(f);
1920 return r;
1921 }
1922 }
1923
1924 if (fence && f) {
1925 dma_fence_put(*fence);
1926 *fence = f;
1927 } else {
1928 dma_fence_put(f);
1929 }
1930
1931 return 0;
1932
1933 }
1934
1935 /**
1936 * amdgpu_vm_clear_invalids - clear invalidated BOs in the PT
1937 *
1938 * @adev: amdgpu_device pointer
1939 * @vm: requested vm
1940 *
1941 * Make sure all invalidated BOs are cleared in the PT.
1942 * Returns 0 for success.
1943 *
1944 * PTs have to be reserved and mutex must be locked!
1945 */
1946 int amdgpu_vm_clear_invalids(struct amdgpu_device *adev,
1947 struct amdgpu_vm *vm, struct amdgpu_sync *sync)
1948 {
1949 struct amdgpu_bo_va *bo_va = NULL;
1950 int r = 0;
1951
1952 spin_lock(&vm->status_lock);
1953 while (!list_empty(&vm->invalidated)) {
1954 bo_va = list_first_entry(&vm->invalidated,
1955 struct amdgpu_bo_va, vm_status);
1956 spin_unlock(&vm->status_lock);
1957
1958 r = amdgpu_vm_bo_update(adev, bo_va, true);
1959 if (r)
1960 return r;
1961
1962 spin_lock(&vm->status_lock);
1963 }
1964 spin_unlock(&vm->status_lock);
1965
1966 if (bo_va)
1967 r = amdgpu_sync_fence(adev, sync, bo_va->last_pt_update);
1968
1969 return r;
1970 }
1971
1972 /**
1973 * amdgpu_vm_bo_add - add a bo to a specific vm
1974 *
1975 * @adev: amdgpu_device pointer
1976 * @vm: requested vm
1977 * @bo: amdgpu buffer object
1978 *
1979 * Add @bo into the requested vm.
1980 * Add @bo to the list of bos associated with the vm
1981 * Returns newly added bo_va or NULL for failure
1982 *
1983 * Object has to be reserved!
1984 */
1985 struct amdgpu_bo_va *amdgpu_vm_bo_add(struct amdgpu_device *adev,
1986 struct amdgpu_vm *vm,
1987 struct amdgpu_bo *bo)
1988 {
1989 struct amdgpu_bo_va *bo_va;
1990
1991 bo_va = kzalloc(sizeof(struct amdgpu_bo_va), GFP_KERNEL);
1992 if (bo_va == NULL) {
1993 return NULL;
1994 }
1995 bo_va->vm = vm;
1996 bo_va->bo = bo;
1997 bo_va->ref_count = 1;
1998 INIT_LIST_HEAD(&bo_va->bo_list);
1999 INIT_LIST_HEAD(&bo_va->valids);
2000 INIT_LIST_HEAD(&bo_va->invalids);
2001 INIT_LIST_HEAD(&bo_va->vm_status);
2002
2003 if (bo)
2004 list_add_tail(&bo_va->bo_list, &bo->va);
2005
2006 return bo_va;
2007 }
2008
2009 /**
2010 * amdgpu_vm_bo_map - map bo inside a vm
2011 *
2012 * @adev: amdgpu_device pointer
2013 * @bo_va: bo_va to store the address
2014 * @saddr: where to map the BO
2015 * @offset: requested offset in the BO
2016 * @flags: attributes of pages (read/write/valid/etc.)
2017 *
2018 * Add a mapping of the BO at the specefied addr into the VM.
2019 * Returns 0 for success, error for failure.
2020 *
2021 * Object has to be reserved and unreserved outside!
2022 */
2023 int amdgpu_vm_bo_map(struct amdgpu_device *adev,
2024 struct amdgpu_bo_va *bo_va,
2025 uint64_t saddr, uint64_t offset,
2026 uint64_t size, uint64_t flags)
2027 {
2028 struct amdgpu_bo_va_mapping *mapping, *tmp;
2029 struct amdgpu_vm *vm = bo_va->vm;
2030 uint64_t eaddr;
2031
2032 /* validate the parameters */
2033 if (saddr & AMDGPU_GPU_PAGE_MASK || offset & AMDGPU_GPU_PAGE_MASK ||
2034 size == 0 || size & AMDGPU_GPU_PAGE_MASK)
2035 return -EINVAL;
2036
2037 /* make sure object fit at this offset */
2038 eaddr = saddr + size - 1;
2039 if (saddr >= eaddr ||
2040 (bo_va->bo && offset + size > amdgpu_bo_size(bo_va->bo)))
2041 return -EINVAL;
2042
2043 saddr /= AMDGPU_GPU_PAGE_SIZE;
2044 eaddr /= AMDGPU_GPU_PAGE_SIZE;
2045
2046 tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr);
2047 if (tmp) {
2048 /* bo and tmp overlap, invalid addr */
2049 dev_err(adev->dev, "bo %p va 0x%010Lx-0x%010Lx conflict with "
2050 "0x%010Lx-0x%010Lx\n", bo_va->bo, saddr, eaddr,
2051 tmp->start, tmp->last + 1);
2052 return -EINVAL;
2053 }
2054
2055 mapping = kmalloc(sizeof(*mapping), GFP_KERNEL);
2056 if (!mapping)
2057 return -ENOMEM;
2058
2059 INIT_LIST_HEAD(&mapping->list);
2060 mapping->start = saddr;
2061 mapping->last = eaddr;
2062 mapping->offset = offset;
2063 mapping->flags = flags;
2064
2065 list_add(&mapping->list, &bo_va->invalids);
2066 amdgpu_vm_it_insert(mapping, &vm->va);
2067
2068 if (flags & AMDGPU_PTE_PRT)
2069 amdgpu_vm_prt_get(adev);
2070
2071 return 0;
2072 }
2073
2074 /**
2075 * amdgpu_vm_bo_replace_map - map bo inside a vm, replacing existing mappings
2076 *
2077 * @adev: amdgpu_device pointer
2078 * @bo_va: bo_va to store the address
2079 * @saddr: where to map the BO
2080 * @offset: requested offset in the BO
2081 * @flags: attributes of pages (read/write/valid/etc.)
2082 *
2083 * Add a mapping of the BO at the specefied addr into the VM. Replace existing
2084 * mappings as we do so.
2085 * Returns 0 for success, error for failure.
2086 *
2087 * Object has to be reserved and unreserved outside!
2088 */
2089 int amdgpu_vm_bo_replace_map(struct amdgpu_device *adev,
2090 struct amdgpu_bo_va *bo_va,
2091 uint64_t saddr, uint64_t offset,
2092 uint64_t size, uint64_t flags)
2093 {
2094 struct amdgpu_bo_va_mapping *mapping;
2095 struct amdgpu_vm *vm = bo_va->vm;
2096 uint64_t eaddr;
2097 int r;
2098
2099 /* validate the parameters */
2100 if (saddr & AMDGPU_GPU_PAGE_MASK || offset & AMDGPU_GPU_PAGE_MASK ||
2101 size == 0 || size & AMDGPU_GPU_PAGE_MASK)
2102 return -EINVAL;
2103
2104 /* make sure object fit at this offset */
2105 eaddr = saddr + size - 1;
2106 if (saddr >= eaddr ||
2107 (bo_va->bo && offset + size > amdgpu_bo_size(bo_va->bo)))
2108 return -EINVAL;
2109
2110 /* Allocate all the needed memory */
2111 mapping = kmalloc(sizeof(*mapping), GFP_KERNEL);
2112 if (!mapping)
2113 return -ENOMEM;
2114
2115 r = amdgpu_vm_bo_clear_mappings(adev, bo_va->vm, saddr, size);
2116 if (r) {
2117 kfree(mapping);
2118 return r;
2119 }
2120
2121 saddr /= AMDGPU_GPU_PAGE_SIZE;
2122 eaddr /= AMDGPU_GPU_PAGE_SIZE;
2123
2124 mapping->start = saddr;
2125 mapping->last = eaddr;
2126 mapping->offset = offset;
2127 mapping->flags = flags;
2128
2129 list_add(&mapping->list, &bo_va->invalids);
2130 amdgpu_vm_it_insert(mapping, &vm->va);
2131
2132 if (flags & AMDGPU_PTE_PRT)
2133 amdgpu_vm_prt_get(adev);
2134
2135 return 0;
2136 }
2137
2138 /**
2139 * amdgpu_vm_bo_unmap - remove bo mapping from vm
2140 *
2141 * @adev: amdgpu_device pointer
2142 * @bo_va: bo_va to remove the address from
2143 * @saddr: where to the BO is mapped
2144 *
2145 * Remove a mapping of the BO at the specefied addr from the VM.
2146 * Returns 0 for success, error for failure.
2147 *
2148 * Object has to be reserved and unreserved outside!
2149 */
2150 int amdgpu_vm_bo_unmap(struct amdgpu_device *adev,
2151 struct amdgpu_bo_va *bo_va,
2152 uint64_t saddr)
2153 {
2154 struct amdgpu_bo_va_mapping *mapping;
2155 struct amdgpu_vm *vm = bo_va->vm;
2156 bool valid = true;
2157
2158 saddr /= AMDGPU_GPU_PAGE_SIZE;
2159
2160 list_for_each_entry(mapping, &bo_va->valids, list) {
2161 if (mapping->start == saddr)
2162 break;
2163 }
2164
2165 if (&mapping->list == &bo_va->valids) {
2166 valid = false;
2167
2168 list_for_each_entry(mapping, &bo_va->invalids, list) {
2169 if (mapping->start == saddr)
2170 break;
2171 }
2172
2173 if (&mapping->list == &bo_va->invalids)
2174 return -ENOENT;
2175 }
2176
2177 list_del(&mapping->list);
2178 amdgpu_vm_it_remove(mapping, &vm->va);
2179 trace_amdgpu_vm_bo_unmap(bo_va, mapping);
2180
2181 if (valid)
2182 list_add(&mapping->list, &vm->freed);
2183 else
2184 amdgpu_vm_free_mapping(adev, vm, mapping,
2185 bo_va->last_pt_update);
2186
2187 return 0;
2188 }
2189
2190 /**
2191 * amdgpu_vm_bo_clear_mappings - remove all mappings in a specific range
2192 *
2193 * @adev: amdgpu_device pointer
2194 * @vm: VM structure to use
2195 * @saddr: start of the range
2196 * @size: size of the range
2197 *
2198 * Remove all mappings in a range, split them as appropriate.
2199 * Returns 0 for success, error for failure.
2200 */
2201 int amdgpu_vm_bo_clear_mappings(struct amdgpu_device *adev,
2202 struct amdgpu_vm *vm,
2203 uint64_t saddr, uint64_t size)
2204 {
2205 struct amdgpu_bo_va_mapping *before, *after, *tmp, *next;
2206 LIST_HEAD(removed);
2207 uint64_t eaddr;
2208
2209 eaddr = saddr + size - 1;
2210 saddr /= AMDGPU_GPU_PAGE_SIZE;
2211 eaddr /= AMDGPU_GPU_PAGE_SIZE;
2212
2213 /* Allocate all the needed memory */
2214 before = kzalloc(sizeof(*before), GFP_KERNEL);
2215 if (!before)
2216 return -ENOMEM;
2217 INIT_LIST_HEAD(&before->list);
2218
2219 after = kzalloc(sizeof(*after), GFP_KERNEL);
2220 if (!after) {
2221 kfree(before);
2222 return -ENOMEM;
2223 }
2224 INIT_LIST_HEAD(&after->list);
2225
2226 /* Now gather all removed mappings */
2227 tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr);
2228 while (tmp) {
2229 /* Remember mapping split at the start */
2230 if (tmp->start < saddr) {
2231 before->start = tmp->start;
2232 before->last = saddr - 1;
2233 before->offset = tmp->offset;
2234 before->flags = tmp->flags;
2235 list_add(&before->list, &tmp->list);
2236 }
2237
2238 /* Remember mapping split at the end */
2239 if (tmp->last > eaddr) {
2240 after->start = eaddr + 1;
2241 after->last = tmp->last;
2242 after->offset = tmp->offset;
2243 after->offset += after->start - tmp->start;
2244 after->flags = tmp->flags;
2245 list_add(&after->list, &tmp->list);
2246 }
2247
2248 list_del(&tmp->list);
2249 list_add(&tmp->list, &removed);
2250
2251 tmp = amdgpu_vm_it_iter_next(tmp, saddr, eaddr);
2252 }
2253
2254 /* And free them up */
2255 list_for_each_entry_safe(tmp, next, &removed, list) {
2256 amdgpu_vm_it_remove(tmp, &vm->va);
2257 list_del(&tmp->list);
2258
2259 if (tmp->start < saddr)
2260 tmp->start = saddr;
2261 if (tmp->last > eaddr)
2262 tmp->last = eaddr;
2263
2264 list_add(&tmp->list, &vm->freed);
2265 trace_amdgpu_vm_bo_unmap(NULL, tmp);
2266 }
2267
2268 /* Insert partial mapping before the range */
2269 if (!list_empty(&before->list)) {
2270 amdgpu_vm_it_insert(before, &vm->va);
2271 if (before->flags & AMDGPU_PTE_PRT)
2272 amdgpu_vm_prt_get(adev);
2273 } else {
2274 kfree(before);
2275 }
2276
2277 /* Insert partial mapping after the range */
2278 if (!list_empty(&after->list)) {
2279 amdgpu_vm_it_insert(after, &vm->va);
2280 if (after->flags & AMDGPU_PTE_PRT)
2281 amdgpu_vm_prt_get(adev);
2282 } else {
2283 kfree(after);
2284 }
2285
2286 return 0;
2287 }
2288
2289 /**
2290 * amdgpu_vm_bo_rmv - remove a bo to a specific vm
2291 *
2292 * @adev: amdgpu_device pointer
2293 * @bo_va: requested bo_va
2294 *
2295 * Remove @bo_va->bo from the requested vm.
2296 *
2297 * Object have to be reserved!
2298 */
2299 void amdgpu_vm_bo_rmv(struct amdgpu_device *adev,
2300 struct amdgpu_bo_va *bo_va)
2301 {
2302 struct amdgpu_bo_va_mapping *mapping, *next;
2303 struct amdgpu_vm *vm = bo_va->vm;
2304
2305 list_del(&bo_va->bo_list);
2306
2307 spin_lock(&vm->status_lock);
2308 list_del(&bo_va->vm_status);
2309 spin_unlock(&vm->status_lock);
2310
2311 list_for_each_entry_safe(mapping, next, &bo_va->valids, list) {
2312 list_del(&mapping->list);
2313 amdgpu_vm_it_remove(mapping, &vm->va);
2314 trace_amdgpu_vm_bo_unmap(bo_va, mapping);
2315 list_add(&mapping->list, &vm->freed);
2316 }
2317 list_for_each_entry_safe(mapping, next, &bo_va->invalids, list) {
2318 list_del(&mapping->list);
2319 amdgpu_vm_it_remove(mapping, &vm->va);
2320 amdgpu_vm_free_mapping(adev, vm, mapping,
2321 bo_va->last_pt_update);
2322 }
2323
2324 dma_fence_put(bo_va->last_pt_update);
2325 kfree(bo_va);
2326 }
2327
2328 /**
2329 * amdgpu_vm_bo_invalidate - mark the bo as invalid
2330 *
2331 * @adev: amdgpu_device pointer
2332 * @vm: requested vm
2333 * @bo: amdgpu buffer object
2334 *
2335 * Mark @bo as invalid.
2336 */
2337 void amdgpu_vm_bo_invalidate(struct amdgpu_device *adev,
2338 struct amdgpu_bo *bo)
2339 {
2340 struct amdgpu_bo_va *bo_va;
2341
2342 list_for_each_entry(bo_va, &bo->va, bo_list) {
2343 spin_lock(&bo_va->vm->status_lock);
2344 if (list_empty(&bo_va->vm_status))
2345 list_add(&bo_va->vm_status, &bo_va->vm->invalidated);
2346 spin_unlock(&bo_va->vm->status_lock);
2347 }
2348 }
2349
2350 static uint32_t amdgpu_vm_get_block_size(uint64_t vm_size)
2351 {
2352 /* Total bits covered by PD + PTs */
2353 unsigned bits = ilog2(vm_size) + 18;
2354
2355 /* Make sure the PD is 4K in size up to 8GB address space.
2356 Above that split equal between PD and PTs */
2357 if (vm_size <= 8)
2358 return (bits - 9);
2359 else
2360 return ((bits + 3) / 2);
2361 }
2362
2363 /**
2364 * amdgpu_vm_adjust_size - adjust vm size and block size
2365 *
2366 * @adev: amdgpu_device pointer
2367 * @vm_size: the default vm size if it's set auto
2368 */
2369 void amdgpu_vm_adjust_size(struct amdgpu_device *adev, uint64_t vm_size)
2370 {
2371 /* adjust vm size firstly */
2372 if (amdgpu_vm_size == -1)
2373 adev->vm_manager.vm_size = vm_size;
2374 else
2375 adev->vm_manager.vm_size = amdgpu_vm_size;
2376
2377 /* block size depends on vm size */
2378 if (amdgpu_vm_block_size == -1)
2379 adev->vm_manager.block_size =
2380 amdgpu_vm_get_block_size(adev->vm_manager.vm_size);
2381 else
2382 adev->vm_manager.block_size = amdgpu_vm_block_size;
2383
2384 DRM_INFO("vm size is %llu GB, block size is %u-bit\n",
2385 adev->vm_manager.vm_size, adev->vm_manager.block_size);
2386 }
2387
2388 /**
2389 * amdgpu_vm_init - initialize a vm instance
2390 *
2391 * @adev: amdgpu_device pointer
2392 * @vm: requested vm
2393 * @vm_context: Indicates if it GFX or Compute context
2394 *
2395 * Init @vm fields.
2396 */
2397 int amdgpu_vm_init(struct amdgpu_device *adev, struct amdgpu_vm *vm,
2398 int vm_context)
2399 {
2400 const unsigned align = min(AMDGPU_VM_PTB_ALIGN_SIZE,
2401 AMDGPU_VM_PTE_COUNT(adev) * 8);
2402 unsigned ring_instance;
2403 struct amdgpu_ring *ring;
2404 struct amd_sched_rq *rq;
2405 int r, i;
2406 u64 flags;
2407
2408 vm->va = RB_ROOT;
2409 vm->client_id = atomic64_inc_return(&adev->vm_manager.client_counter);
2410 for (i = 0; i < AMDGPU_MAX_VMHUBS; i++)
2411 vm->reserved_vmid[i] = NULL;
2412 spin_lock_init(&vm->status_lock);
2413 INIT_LIST_HEAD(&vm->invalidated);
2414 INIT_LIST_HEAD(&vm->cleared);
2415 INIT_LIST_HEAD(&vm->freed);
2416
2417 /* create scheduler entity for page table updates */
2418
2419 ring_instance = atomic_inc_return(&adev->vm_manager.vm_pte_next_ring);
2420 ring_instance %= adev->vm_manager.vm_pte_num_rings;
2421 ring = adev->vm_manager.vm_pte_rings[ring_instance];
2422 rq = &ring->sched.sched_rq[AMD_SCHED_PRIORITY_KERNEL];
2423 r = amd_sched_entity_init(&ring->sched, &vm->entity,
2424 rq, amdgpu_sched_jobs);
2425 if (r)
2426 return r;
2427
2428 if (vm_context == AMDGPU_VM_CONTEXT_COMPUTE)
2429 vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode &
2430 AMDGPU_VM_USE_CPU_FOR_COMPUTE);
2431 else
2432 vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode &
2433 AMDGPU_VM_USE_CPU_FOR_GFX);
2434 DRM_DEBUG_DRIVER("VM update mode is %s\n",
2435 vm->use_cpu_for_update ? "CPU" : "SDMA");
2436 WARN_ONCE((vm->use_cpu_for_update & !amdgpu_vm_is_large_bar(adev)),
2437 "CPU update of VM recommended only for large BAR system\n");
2438 vm->last_dir_update = NULL;
2439
2440 flags = AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS |
2441 AMDGPU_GEM_CREATE_VRAM_CLEARED;
2442 if (vm->use_cpu_for_update)
2443 flags |= AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
2444 else
2445 flags |= (AMDGPU_GEM_CREATE_NO_CPU_ACCESS |
2446 AMDGPU_GEM_CREATE_SHADOW);
2447
2448 r = amdgpu_bo_create(adev, amdgpu_vm_bo_size(adev, 0), align, true,
2449 AMDGPU_GEM_DOMAIN_VRAM,
2450 flags,
2451 NULL, NULL, &vm->root.bo);
2452 if (r)
2453 goto error_free_sched_entity;
2454
2455 r = amdgpu_bo_reserve(vm->root.bo, false);
2456 if (r)
2457 goto error_free_root;
2458
2459 vm->last_eviction_counter = atomic64_read(&adev->num_evictions);
2460 amdgpu_bo_unreserve(vm->root.bo);
2461
2462 return 0;
2463
2464 error_free_root:
2465 amdgpu_bo_unref(&vm->root.bo->shadow);
2466 amdgpu_bo_unref(&vm->root.bo);
2467 vm->root.bo = NULL;
2468
2469 error_free_sched_entity:
2470 amd_sched_entity_fini(&ring->sched, &vm->entity);
2471
2472 return r;
2473 }
2474
2475 /**
2476 * amdgpu_vm_free_levels - free PD/PT levels
2477 *
2478 * @level: PD/PT starting level to free
2479 *
2480 * Free the page directory or page table level and all sub levels.
2481 */
2482 static void amdgpu_vm_free_levels(struct amdgpu_vm_pt *level)
2483 {
2484 unsigned i;
2485
2486 if (level->bo) {
2487 amdgpu_bo_unref(&level->bo->shadow);
2488 amdgpu_bo_unref(&level->bo);
2489 }
2490
2491 if (level->entries)
2492 for (i = 0; i <= level->last_entry_used; i++)
2493 amdgpu_vm_free_levels(&level->entries[i]);
2494
2495 kvfree(level->entries);
2496 }
2497
2498 /**
2499 * amdgpu_vm_fini - tear down a vm instance
2500 *
2501 * @adev: amdgpu_device pointer
2502 * @vm: requested vm
2503 *
2504 * Tear down @vm.
2505 * Unbind the VM and remove all bos from the vm bo list
2506 */
2507 void amdgpu_vm_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm)
2508 {
2509 struct amdgpu_bo_va_mapping *mapping, *tmp;
2510 bool prt_fini_needed = !!adev->gart.gart_funcs->set_prt;
2511 int i;
2512
2513 amd_sched_entity_fini(vm->entity.sched, &vm->entity);
2514
2515 if (!RB_EMPTY_ROOT(&vm->va)) {
2516 dev_err(adev->dev, "still active bo inside vm\n");
2517 }
2518 rbtree_postorder_for_each_entry_safe(mapping, tmp, &vm->va, rb) {
2519 list_del(&mapping->list);
2520 amdgpu_vm_it_remove(mapping, &vm->va);
2521 kfree(mapping);
2522 }
2523 list_for_each_entry_safe(mapping, tmp, &vm->freed, list) {
2524 if (mapping->flags & AMDGPU_PTE_PRT && prt_fini_needed) {
2525 amdgpu_vm_prt_fini(adev, vm);
2526 prt_fini_needed = false;
2527 }
2528
2529 list_del(&mapping->list);
2530 amdgpu_vm_free_mapping(adev, vm, mapping, NULL);
2531 }
2532
2533 amdgpu_vm_free_levels(&vm->root);
2534 dma_fence_put(vm->last_dir_update);
2535 for (i = 0; i < AMDGPU_MAX_VMHUBS; i++)
2536 amdgpu_vm_free_reserved_vmid(adev, vm, i);
2537 }
2538
2539 /**
2540 * amdgpu_vm_manager_init - init the VM manager
2541 *
2542 * @adev: amdgpu_device pointer
2543 *
2544 * Initialize the VM manager structures
2545 */
2546 void amdgpu_vm_manager_init(struct amdgpu_device *adev)
2547 {
2548 unsigned i, j;
2549
2550 for (i = 0; i < AMDGPU_MAX_VMHUBS; ++i) {
2551 struct amdgpu_vm_id_manager *id_mgr =
2552 &adev->vm_manager.id_mgr[i];
2553
2554 mutex_init(&id_mgr->lock);
2555 INIT_LIST_HEAD(&id_mgr->ids_lru);
2556 atomic_set(&id_mgr->reserved_vmid_num, 0);
2557
2558 /* skip over VMID 0, since it is the system VM */
2559 for (j = 1; j < id_mgr->num_ids; ++j) {
2560 amdgpu_vm_reset_id(adev, i, j);
2561 amdgpu_sync_create(&id_mgr->ids[i].active);
2562 list_add_tail(&id_mgr->ids[j].list, &id_mgr->ids_lru);
2563 }
2564 }
2565
2566 adev->vm_manager.fence_context =
2567 dma_fence_context_alloc(AMDGPU_MAX_RINGS);
2568 for (i = 0; i < AMDGPU_MAX_RINGS; ++i)
2569 adev->vm_manager.seqno[i] = 0;
2570
2571 atomic_set(&adev->vm_manager.vm_pte_next_ring, 0);
2572 atomic64_set(&adev->vm_manager.client_counter, 0);
2573 spin_lock_init(&adev->vm_manager.prt_lock);
2574 atomic_set(&adev->vm_manager.num_prt_users, 0);
2575
2576 /* If not overridden by the user, by default, only in large BAR systems
2577 * Compute VM tables will be updated by CPU
2578 */
2579 #ifdef CONFIG_X86_64
2580 if (amdgpu_vm_update_mode == -1) {
2581 if (amdgpu_vm_is_large_bar(adev))
2582 adev->vm_manager.vm_update_mode =
2583 AMDGPU_VM_USE_CPU_FOR_COMPUTE;
2584 else
2585 adev->vm_manager.vm_update_mode = 0;
2586 } else
2587 adev->vm_manager.vm_update_mode = amdgpu_vm_update_mode;
2588 #else
2589 adev->vm_manager.vm_update_mode = 0;
2590 #endif
2591
2592 }
2593
2594 /**
2595 * amdgpu_vm_manager_fini - cleanup VM manager
2596 *
2597 * @adev: amdgpu_device pointer
2598 *
2599 * Cleanup the VM manager and free resources.
2600 */
2601 void amdgpu_vm_manager_fini(struct amdgpu_device *adev)
2602 {
2603 unsigned i, j;
2604
2605 for (i = 0; i < AMDGPU_MAX_VMHUBS; ++i) {
2606 struct amdgpu_vm_id_manager *id_mgr =
2607 &adev->vm_manager.id_mgr[i];
2608
2609 mutex_destroy(&id_mgr->lock);
2610 for (j = 0; j < AMDGPU_NUM_VM; ++j) {
2611 struct amdgpu_vm_id *id = &id_mgr->ids[j];
2612
2613 amdgpu_sync_free(&id->active);
2614 dma_fence_put(id->flushed_updates);
2615 dma_fence_put(id->last_flush);
2616 }
2617 }
2618 }
2619
2620 int amdgpu_vm_ioctl(struct drm_device *dev, void *data, struct drm_file *filp)
2621 {
2622 union drm_amdgpu_vm *args = data;
2623 struct amdgpu_device *adev = dev->dev_private;
2624 struct amdgpu_fpriv *fpriv = filp->driver_priv;
2625 int r;
2626
2627 switch (args->in.op) {
2628 case AMDGPU_VM_OP_RESERVE_VMID:
2629 /* current, we only have requirement to reserve vmid from gfxhub */
2630 r = amdgpu_vm_alloc_reserved_vmid(adev, &fpriv->vm,
2631 AMDGPU_GFXHUB);
2632 if (r)
2633 return r;
2634 break;
2635 case AMDGPU_VM_OP_UNRESERVE_VMID:
2636 amdgpu_vm_free_reserved_vmid(adev, &fpriv->vm, AMDGPU_GFXHUB);
2637 break;
2638 default:
2639 return -EINVAL;
2640 }
2641
2642 return 0;
2643 }