]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/gpu/drm/amd/amdgpu/amdgpu_vm.c
drm/amdgpu: add reserved vmid field in vm struct v2
[mirror_ubuntu-jammy-kernel.git] / drivers / gpu / drm / amd / amdgpu / amdgpu_vm.c
1 /*
2 * Copyright 2008 Advanced Micro Devices, Inc.
3 * Copyright 2008 Red Hat Inc.
4 * Copyright 2009 Jerome Glisse.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22 * OTHER DEALINGS IN THE SOFTWARE.
23 *
24 * Authors: Dave Airlie
25 * Alex Deucher
26 * Jerome Glisse
27 */
28 #include <linux/dma-fence-array.h>
29 #include <linux/interval_tree_generic.h>
30 #include <drm/drmP.h>
31 #include <drm/amdgpu_drm.h>
32 #include "amdgpu.h"
33 #include "amdgpu_trace.h"
34
35 /*
36 * GPUVM
37 * GPUVM is similar to the legacy gart on older asics, however
38 * rather than there being a single global gart table
39 * for the entire GPU, there are multiple VM page tables active
40 * at any given time. The VM page tables can contain a mix
41 * vram pages and system memory pages and system memory pages
42 * can be mapped as snooped (cached system pages) or unsnooped
43 * (uncached system pages).
44 * Each VM has an ID associated with it and there is a page table
45 * associated with each VMID. When execting a command buffer,
46 * the kernel tells the the ring what VMID to use for that command
47 * buffer. VMIDs are allocated dynamically as commands are submitted.
48 * The userspace drivers maintain their own address space and the kernel
49 * sets up their pages tables accordingly when they submit their
50 * command buffers and a VMID is assigned.
51 * Cayman/Trinity support up to 8 active VMs at any given time;
52 * SI supports 16.
53 */
54
55 #define START(node) ((node)->start)
56 #define LAST(node) ((node)->last)
57
58 INTERVAL_TREE_DEFINE(struct amdgpu_bo_va_mapping, rb, uint64_t, __subtree_last,
59 START, LAST, static, amdgpu_vm_it)
60
61 #undef START
62 #undef LAST
63
64 /* Local structure. Encapsulate some VM table update parameters to reduce
65 * the number of function parameters
66 */
67 struct amdgpu_pte_update_params {
68 /* amdgpu device we do this update for */
69 struct amdgpu_device *adev;
70 /* optional amdgpu_vm we do this update for */
71 struct amdgpu_vm *vm;
72 /* address where to copy page table entries from */
73 uint64_t src;
74 /* indirect buffer to fill with commands */
75 struct amdgpu_ib *ib;
76 /* Function which actually does the update */
77 void (*func)(struct amdgpu_pte_update_params *params, uint64_t pe,
78 uint64_t addr, unsigned count, uint32_t incr,
79 uint64_t flags);
80 /* indicate update pt or its shadow */
81 bool shadow;
82 };
83
84 /* Helper to disable partial resident texture feature from a fence callback */
85 struct amdgpu_prt_cb {
86 struct amdgpu_device *adev;
87 struct dma_fence_cb cb;
88 };
89
90 /**
91 * amdgpu_vm_num_entries - return the number of entries in a PD/PT
92 *
93 * @adev: amdgpu_device pointer
94 *
95 * Calculate the number of entries in a page directory or page table.
96 */
97 static unsigned amdgpu_vm_num_entries(struct amdgpu_device *adev,
98 unsigned level)
99 {
100 if (level == 0)
101 /* For the root directory */
102 return adev->vm_manager.max_pfn >>
103 (adev->vm_manager.block_size *
104 adev->vm_manager.num_level);
105 else if (level == adev->vm_manager.num_level)
106 /* For the page tables on the leaves */
107 return AMDGPU_VM_PTE_COUNT(adev);
108 else
109 /* Everything in between */
110 return 1 << adev->vm_manager.block_size;
111 }
112
113 /**
114 * amdgpu_vm_bo_size - returns the size of the BOs in bytes
115 *
116 * @adev: amdgpu_device pointer
117 *
118 * Calculate the size of the BO for a page directory or page table in bytes.
119 */
120 static unsigned amdgpu_vm_bo_size(struct amdgpu_device *adev, unsigned level)
121 {
122 return AMDGPU_GPU_PAGE_ALIGN(amdgpu_vm_num_entries(adev, level) * 8);
123 }
124
125 /**
126 * amdgpu_vm_get_pd_bo - add the VM PD to a validation list
127 *
128 * @vm: vm providing the BOs
129 * @validated: head of validation list
130 * @entry: entry to add
131 *
132 * Add the page directory to the list of BOs to
133 * validate for command submission.
134 */
135 void amdgpu_vm_get_pd_bo(struct amdgpu_vm *vm,
136 struct list_head *validated,
137 struct amdgpu_bo_list_entry *entry)
138 {
139 entry->robj = vm->root.bo;
140 entry->priority = 0;
141 entry->tv.bo = &entry->robj->tbo;
142 entry->tv.shared = true;
143 entry->user_pages = NULL;
144 list_add(&entry->tv.head, validated);
145 }
146
147 /**
148 * amdgpu_vm_validate_layer - validate a single page table level
149 *
150 * @parent: parent page table level
151 * @validate: callback to do the validation
152 * @param: parameter for the validation callback
153 *
154 * Validate the page table BOs on command submission if neccessary.
155 */
156 static int amdgpu_vm_validate_level(struct amdgpu_vm_pt *parent,
157 int (*validate)(void *, struct amdgpu_bo *),
158 void *param)
159 {
160 unsigned i;
161 int r;
162
163 if (!parent->entries)
164 return 0;
165
166 for (i = 0; i <= parent->last_entry_used; ++i) {
167 struct amdgpu_vm_pt *entry = &parent->entries[i];
168
169 if (!entry->bo)
170 continue;
171
172 r = validate(param, entry->bo);
173 if (r)
174 return r;
175
176 /*
177 * Recurse into the sub directory. This is harmless because we
178 * have only a maximum of 5 layers.
179 */
180 r = amdgpu_vm_validate_level(entry, validate, param);
181 if (r)
182 return r;
183 }
184
185 return r;
186 }
187
188 /**
189 * amdgpu_vm_validate_pt_bos - validate the page table BOs
190 *
191 * @adev: amdgpu device pointer
192 * @vm: vm providing the BOs
193 * @validate: callback to do the validation
194 * @param: parameter for the validation callback
195 *
196 * Validate the page table BOs on command submission if neccessary.
197 */
198 int amdgpu_vm_validate_pt_bos(struct amdgpu_device *adev, struct amdgpu_vm *vm,
199 int (*validate)(void *p, struct amdgpu_bo *bo),
200 void *param)
201 {
202 uint64_t num_evictions;
203
204 /* We only need to validate the page tables
205 * if they aren't already valid.
206 */
207 num_evictions = atomic64_read(&adev->num_evictions);
208 if (num_evictions == vm->last_eviction_counter)
209 return 0;
210
211 return amdgpu_vm_validate_level(&vm->root, validate, param);
212 }
213
214 /**
215 * amdgpu_vm_move_level_in_lru - move one level of PT BOs to the LRU tail
216 *
217 * @adev: amdgpu device instance
218 * @vm: vm providing the BOs
219 *
220 * Move the PT BOs to the tail of the LRU.
221 */
222 static void amdgpu_vm_move_level_in_lru(struct amdgpu_vm_pt *parent)
223 {
224 unsigned i;
225
226 if (!parent->entries)
227 return;
228
229 for (i = 0; i <= parent->last_entry_used; ++i) {
230 struct amdgpu_vm_pt *entry = &parent->entries[i];
231
232 if (!entry->bo)
233 continue;
234
235 ttm_bo_move_to_lru_tail(&entry->bo->tbo);
236 amdgpu_vm_move_level_in_lru(entry);
237 }
238 }
239
240 /**
241 * amdgpu_vm_move_pt_bos_in_lru - move the PT BOs to the LRU tail
242 *
243 * @adev: amdgpu device instance
244 * @vm: vm providing the BOs
245 *
246 * Move the PT BOs to the tail of the LRU.
247 */
248 void amdgpu_vm_move_pt_bos_in_lru(struct amdgpu_device *adev,
249 struct amdgpu_vm *vm)
250 {
251 struct ttm_bo_global *glob = adev->mman.bdev.glob;
252
253 spin_lock(&glob->lru_lock);
254 amdgpu_vm_move_level_in_lru(&vm->root);
255 spin_unlock(&glob->lru_lock);
256 }
257
258 /**
259 * amdgpu_vm_alloc_levels - allocate the PD/PT levels
260 *
261 * @adev: amdgpu_device pointer
262 * @vm: requested vm
263 * @saddr: start of the address range
264 * @eaddr: end of the address range
265 *
266 * Make sure the page directories and page tables are allocated
267 */
268 static int amdgpu_vm_alloc_levels(struct amdgpu_device *adev,
269 struct amdgpu_vm *vm,
270 struct amdgpu_vm_pt *parent,
271 uint64_t saddr, uint64_t eaddr,
272 unsigned level)
273 {
274 unsigned shift = (adev->vm_manager.num_level - level) *
275 adev->vm_manager.block_size;
276 unsigned pt_idx, from, to;
277 int r;
278
279 if (!parent->entries) {
280 unsigned num_entries = amdgpu_vm_num_entries(adev, level);
281
282 parent->entries = drm_calloc_large(num_entries,
283 sizeof(struct amdgpu_vm_pt));
284 if (!parent->entries)
285 return -ENOMEM;
286 memset(parent->entries, 0 , sizeof(struct amdgpu_vm_pt));
287 }
288
289 from = saddr >> shift;
290 to = eaddr >> shift;
291 if (from >= amdgpu_vm_num_entries(adev, level) ||
292 to >= amdgpu_vm_num_entries(adev, level))
293 return -EINVAL;
294
295 if (to > parent->last_entry_used)
296 parent->last_entry_used = to;
297
298 ++level;
299 saddr = saddr & ((1 << shift) - 1);
300 eaddr = eaddr & ((1 << shift) - 1);
301
302 /* walk over the address space and allocate the page tables */
303 for (pt_idx = from; pt_idx <= to; ++pt_idx) {
304 struct reservation_object *resv = vm->root.bo->tbo.resv;
305 struct amdgpu_vm_pt *entry = &parent->entries[pt_idx];
306 struct amdgpu_bo *pt;
307
308 if (!entry->bo) {
309 r = amdgpu_bo_create(adev,
310 amdgpu_vm_bo_size(adev, level),
311 AMDGPU_GPU_PAGE_SIZE, true,
312 AMDGPU_GEM_DOMAIN_VRAM,
313 AMDGPU_GEM_CREATE_NO_CPU_ACCESS |
314 AMDGPU_GEM_CREATE_SHADOW |
315 AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS |
316 AMDGPU_GEM_CREATE_VRAM_CLEARED,
317 NULL, resv, &pt);
318 if (r)
319 return r;
320
321 /* Keep a reference to the root directory to avoid
322 * freeing them up in the wrong order.
323 */
324 pt->parent = amdgpu_bo_ref(vm->root.bo);
325
326 entry->bo = pt;
327 entry->addr = 0;
328 }
329
330 if (level < adev->vm_manager.num_level) {
331 uint64_t sub_saddr = (pt_idx == from) ? saddr : 0;
332 uint64_t sub_eaddr = (pt_idx == to) ? eaddr :
333 ((1 << shift) - 1);
334 r = amdgpu_vm_alloc_levels(adev, vm, entry, sub_saddr,
335 sub_eaddr, level);
336 if (r)
337 return r;
338 }
339 }
340
341 return 0;
342 }
343
344 /**
345 * amdgpu_vm_alloc_pts - Allocate page tables.
346 *
347 * @adev: amdgpu_device pointer
348 * @vm: VM to allocate page tables for
349 * @saddr: Start address which needs to be allocated
350 * @size: Size from start address we need.
351 *
352 * Make sure the page tables are allocated.
353 */
354 int amdgpu_vm_alloc_pts(struct amdgpu_device *adev,
355 struct amdgpu_vm *vm,
356 uint64_t saddr, uint64_t size)
357 {
358 uint64_t last_pfn;
359 uint64_t eaddr;
360
361 /* validate the parameters */
362 if (saddr & AMDGPU_GPU_PAGE_MASK || size & AMDGPU_GPU_PAGE_MASK)
363 return -EINVAL;
364
365 eaddr = saddr + size - 1;
366 last_pfn = eaddr / AMDGPU_GPU_PAGE_SIZE;
367 if (last_pfn >= adev->vm_manager.max_pfn) {
368 dev_err(adev->dev, "va above limit (0x%08llX >= 0x%08llX)\n",
369 last_pfn, adev->vm_manager.max_pfn);
370 return -EINVAL;
371 }
372
373 saddr /= AMDGPU_GPU_PAGE_SIZE;
374 eaddr /= AMDGPU_GPU_PAGE_SIZE;
375
376 return amdgpu_vm_alloc_levels(adev, vm, &vm->root, saddr, eaddr, 0);
377 }
378
379 /**
380 * amdgpu_vm_had_gpu_reset - check if reset occured since last use
381 *
382 * @adev: amdgpu_device pointer
383 * @id: VMID structure
384 *
385 * Check if GPU reset occured since last use of the VMID.
386 */
387 static bool amdgpu_vm_had_gpu_reset(struct amdgpu_device *adev,
388 struct amdgpu_vm_id *id)
389 {
390 return id->current_gpu_reset_count !=
391 atomic_read(&adev->gpu_reset_counter);
392 }
393
394 /**
395 * amdgpu_vm_grab_id - allocate the next free VMID
396 *
397 * @vm: vm to allocate id for
398 * @ring: ring we want to submit job to
399 * @sync: sync object where we add dependencies
400 * @fence: fence protecting ID from reuse
401 *
402 * Allocate an id for the vm, adding fences to the sync obj as necessary.
403 */
404 int amdgpu_vm_grab_id(struct amdgpu_vm *vm, struct amdgpu_ring *ring,
405 struct amdgpu_sync *sync, struct dma_fence *fence,
406 struct amdgpu_job *job)
407 {
408 struct amdgpu_device *adev = ring->adev;
409 unsigned vmhub = ring->funcs->vmhub;
410 struct amdgpu_vm_id_manager *id_mgr = &adev->vm_manager.id_mgr[vmhub];
411 uint64_t fence_context = adev->fence_context + ring->idx;
412 struct dma_fence *updates = sync->last_vm_update;
413 struct amdgpu_vm_id *id, *idle;
414 struct dma_fence **fences;
415 unsigned i;
416 int r = 0;
417
418 fences = kmalloc_array(sizeof(void *), id_mgr->num_ids, GFP_KERNEL);
419 if (!fences)
420 return -ENOMEM;
421
422 mutex_lock(&id_mgr->lock);
423
424 /* Check if we have an idle VMID */
425 i = 0;
426 list_for_each_entry(idle, &id_mgr->ids_lru, list) {
427 fences[i] = amdgpu_sync_peek_fence(&idle->active, ring);
428 if (!fences[i])
429 break;
430 ++i;
431 }
432
433 /* If we can't find a idle VMID to use, wait till one becomes available */
434 if (&idle->list == &id_mgr->ids_lru) {
435 u64 fence_context = adev->vm_manager.fence_context + ring->idx;
436 unsigned seqno = ++adev->vm_manager.seqno[ring->idx];
437 struct dma_fence_array *array;
438 unsigned j;
439
440 for (j = 0; j < i; ++j)
441 dma_fence_get(fences[j]);
442
443 array = dma_fence_array_create(i, fences, fence_context,
444 seqno, true);
445 if (!array) {
446 for (j = 0; j < i; ++j)
447 dma_fence_put(fences[j]);
448 kfree(fences);
449 r = -ENOMEM;
450 goto error;
451 }
452
453
454 r = amdgpu_sync_fence(ring->adev, sync, &array->base);
455 dma_fence_put(&array->base);
456 if (r)
457 goto error;
458
459 mutex_unlock(&id_mgr->lock);
460 return 0;
461
462 }
463 kfree(fences);
464
465 job->vm_needs_flush = false;
466 /* Check if we can use a VMID already assigned to this VM */
467 list_for_each_entry_reverse(id, &id_mgr->ids_lru, list) {
468 struct dma_fence *flushed;
469 bool needs_flush = false;
470
471 /* Check all the prerequisites to using this VMID */
472 if (amdgpu_vm_had_gpu_reset(adev, id))
473 continue;
474
475 if (atomic64_read(&id->owner) != vm->client_id)
476 continue;
477
478 if (job->vm_pd_addr != id->pd_gpu_addr)
479 continue;
480
481 if (!id->last_flush ||
482 (id->last_flush->context != fence_context &&
483 !dma_fence_is_signaled(id->last_flush)))
484 needs_flush = true;
485
486 flushed = id->flushed_updates;
487 if (updates && (!flushed || dma_fence_is_later(updates, flushed)))
488 needs_flush = true;
489
490 /* Concurrent flushes are only possible starting with Vega10 */
491 if (adev->asic_type < CHIP_VEGA10 && needs_flush)
492 continue;
493
494 /* Good we can use this VMID. Remember this submission as
495 * user of the VMID.
496 */
497 r = amdgpu_sync_fence(ring->adev, &id->active, fence);
498 if (r)
499 goto error;
500
501 if (updates && (!flushed || dma_fence_is_later(updates, flushed))) {
502 dma_fence_put(id->flushed_updates);
503 id->flushed_updates = dma_fence_get(updates);
504 }
505
506 if (needs_flush)
507 goto needs_flush;
508 else
509 goto no_flush_needed;
510
511 };
512
513 /* Still no ID to use? Then use the idle one found earlier */
514 id = idle;
515
516 /* Remember this submission as user of the VMID */
517 r = amdgpu_sync_fence(ring->adev, &id->active, fence);
518 if (r)
519 goto error;
520
521 id->pd_gpu_addr = job->vm_pd_addr;
522 dma_fence_put(id->flushed_updates);
523 id->flushed_updates = dma_fence_get(updates);
524 id->current_gpu_reset_count = atomic_read(&adev->gpu_reset_counter);
525 atomic64_set(&id->owner, vm->client_id);
526
527 needs_flush:
528 job->vm_needs_flush = true;
529 dma_fence_put(id->last_flush);
530 id->last_flush = NULL;
531
532 no_flush_needed:
533 list_move_tail(&id->list, &id_mgr->ids_lru);
534
535 job->vm_id = id - id_mgr->ids;
536 trace_amdgpu_vm_grab_id(vm, ring, job);
537
538 error:
539 mutex_unlock(&id_mgr->lock);
540 return r;
541 }
542
543 static bool amdgpu_vm_ring_has_compute_vm_bug(struct amdgpu_ring *ring)
544 {
545 struct amdgpu_device *adev = ring->adev;
546 const struct amdgpu_ip_block *ip_block;
547
548 if (ring->funcs->type != AMDGPU_RING_TYPE_COMPUTE)
549 /* only compute rings */
550 return false;
551
552 ip_block = amdgpu_get_ip_block(adev, AMD_IP_BLOCK_TYPE_GFX);
553 if (!ip_block)
554 return false;
555
556 if (ip_block->version->major <= 7) {
557 /* gfx7 has no workaround */
558 return true;
559 } else if (ip_block->version->major == 8) {
560 if (adev->gfx.mec_fw_version >= 673)
561 /* gfx8 is fixed in MEC firmware 673 */
562 return false;
563 else
564 return true;
565 }
566 return false;
567 }
568
569 static u64 amdgpu_vm_adjust_mc_addr(struct amdgpu_device *adev, u64 mc_addr)
570 {
571 u64 addr = mc_addr;
572
573 if (adev->gart.gart_funcs->adjust_mc_addr)
574 addr = adev->gart.gart_funcs->adjust_mc_addr(adev, addr);
575
576 return addr;
577 }
578
579 /**
580 * amdgpu_vm_flush - hardware flush the vm
581 *
582 * @ring: ring to use for flush
583 * @vm_id: vmid number to use
584 * @pd_addr: address of the page directory
585 *
586 * Emit a VM flush when it is necessary.
587 */
588 int amdgpu_vm_flush(struct amdgpu_ring *ring, struct amdgpu_job *job)
589 {
590 struct amdgpu_device *adev = ring->adev;
591 unsigned vmhub = ring->funcs->vmhub;
592 struct amdgpu_vm_id_manager *id_mgr = &adev->vm_manager.id_mgr[vmhub];
593 struct amdgpu_vm_id *id = &id_mgr->ids[job->vm_id];
594 bool gds_switch_needed = ring->funcs->emit_gds_switch && (
595 id->gds_base != job->gds_base ||
596 id->gds_size != job->gds_size ||
597 id->gws_base != job->gws_base ||
598 id->gws_size != job->gws_size ||
599 id->oa_base != job->oa_base ||
600 id->oa_size != job->oa_size);
601 bool vm_flush_needed = job->vm_needs_flush ||
602 amdgpu_vm_ring_has_compute_vm_bug(ring);
603 unsigned patch_offset = 0;
604 int r;
605
606 if (amdgpu_vm_had_gpu_reset(adev, id)) {
607 gds_switch_needed = true;
608 vm_flush_needed = true;
609 }
610
611 if (!vm_flush_needed && !gds_switch_needed)
612 return 0;
613
614 if (ring->funcs->init_cond_exec)
615 patch_offset = amdgpu_ring_init_cond_exec(ring);
616
617 if (ring->funcs->emit_pipeline_sync && !job->need_pipeline_sync)
618 amdgpu_ring_emit_pipeline_sync(ring);
619
620 if (ring->funcs->emit_vm_flush && vm_flush_needed) {
621 u64 pd_addr = amdgpu_vm_adjust_mc_addr(adev, job->vm_pd_addr);
622 struct dma_fence *fence;
623
624 trace_amdgpu_vm_flush(ring, job->vm_id, pd_addr);
625 amdgpu_ring_emit_vm_flush(ring, job->vm_id, pd_addr);
626
627 r = amdgpu_fence_emit(ring, &fence);
628 if (r)
629 return r;
630
631 mutex_lock(&id_mgr->lock);
632 dma_fence_put(id->last_flush);
633 id->last_flush = fence;
634 mutex_unlock(&id_mgr->lock);
635 }
636
637 if (ring->funcs->emit_gds_switch && gds_switch_needed) {
638 id->gds_base = job->gds_base;
639 id->gds_size = job->gds_size;
640 id->gws_base = job->gws_base;
641 id->gws_size = job->gws_size;
642 id->oa_base = job->oa_base;
643 id->oa_size = job->oa_size;
644 amdgpu_ring_emit_gds_switch(ring, job->vm_id, job->gds_base,
645 job->gds_size, job->gws_base,
646 job->gws_size, job->oa_base,
647 job->oa_size);
648 }
649
650 if (ring->funcs->patch_cond_exec)
651 amdgpu_ring_patch_cond_exec(ring, patch_offset);
652
653 /* the double SWITCH_BUFFER here *cannot* be skipped by COND_EXEC */
654 if (ring->funcs->emit_switch_buffer) {
655 amdgpu_ring_emit_switch_buffer(ring);
656 amdgpu_ring_emit_switch_buffer(ring);
657 }
658 return 0;
659 }
660
661 /**
662 * amdgpu_vm_reset_id - reset VMID to zero
663 *
664 * @adev: amdgpu device structure
665 * @vm_id: vmid number to use
666 *
667 * Reset saved GDW, GWS and OA to force switch on next flush.
668 */
669 void amdgpu_vm_reset_id(struct amdgpu_device *adev, unsigned vmhub,
670 unsigned vmid)
671 {
672 struct amdgpu_vm_id_manager *id_mgr = &adev->vm_manager.id_mgr[vmhub];
673 struct amdgpu_vm_id *id = &id_mgr->ids[vmid];
674
675 atomic64_set(&id->owner, 0);
676 id->gds_base = 0;
677 id->gds_size = 0;
678 id->gws_base = 0;
679 id->gws_size = 0;
680 id->oa_base = 0;
681 id->oa_size = 0;
682 }
683
684 /**
685 * amdgpu_vm_reset_all_id - reset VMID to zero
686 *
687 * @adev: amdgpu device structure
688 *
689 * Reset VMID to force flush on next use
690 */
691 void amdgpu_vm_reset_all_ids(struct amdgpu_device *adev)
692 {
693 unsigned i, j;
694
695 for (i = 0; i < AMDGPU_MAX_VMHUBS; ++i) {
696 struct amdgpu_vm_id_manager *id_mgr =
697 &adev->vm_manager.id_mgr[i];
698
699 for (j = 1; j < id_mgr->num_ids; ++j)
700 amdgpu_vm_reset_id(adev, i, j);
701 }
702 }
703
704 /**
705 * amdgpu_vm_bo_find - find the bo_va for a specific vm & bo
706 *
707 * @vm: requested vm
708 * @bo: requested buffer object
709 *
710 * Find @bo inside the requested vm.
711 * Search inside the @bos vm list for the requested vm
712 * Returns the found bo_va or NULL if none is found
713 *
714 * Object has to be reserved!
715 */
716 struct amdgpu_bo_va *amdgpu_vm_bo_find(struct amdgpu_vm *vm,
717 struct amdgpu_bo *bo)
718 {
719 struct amdgpu_bo_va *bo_va;
720
721 list_for_each_entry(bo_va, &bo->va, bo_list) {
722 if (bo_va->vm == vm) {
723 return bo_va;
724 }
725 }
726 return NULL;
727 }
728
729 /**
730 * amdgpu_vm_do_set_ptes - helper to call the right asic function
731 *
732 * @params: see amdgpu_pte_update_params definition
733 * @pe: addr of the page entry
734 * @addr: dst addr to write into pe
735 * @count: number of page entries to update
736 * @incr: increase next addr by incr bytes
737 * @flags: hw access flags
738 *
739 * Traces the parameters and calls the right asic functions
740 * to setup the page table using the DMA.
741 */
742 static void amdgpu_vm_do_set_ptes(struct amdgpu_pte_update_params *params,
743 uint64_t pe, uint64_t addr,
744 unsigned count, uint32_t incr,
745 uint64_t flags)
746 {
747 trace_amdgpu_vm_set_ptes(pe, addr, count, incr, flags);
748
749 if (count < 3) {
750 amdgpu_vm_write_pte(params->adev, params->ib, pe,
751 addr | flags, count, incr);
752
753 } else {
754 amdgpu_vm_set_pte_pde(params->adev, params->ib, pe, addr,
755 count, incr, flags);
756 }
757 }
758
759 /**
760 * amdgpu_vm_do_copy_ptes - copy the PTEs from the GART
761 *
762 * @params: see amdgpu_pte_update_params definition
763 * @pe: addr of the page entry
764 * @addr: dst addr to write into pe
765 * @count: number of page entries to update
766 * @incr: increase next addr by incr bytes
767 * @flags: hw access flags
768 *
769 * Traces the parameters and calls the DMA function to copy the PTEs.
770 */
771 static void amdgpu_vm_do_copy_ptes(struct amdgpu_pte_update_params *params,
772 uint64_t pe, uint64_t addr,
773 unsigned count, uint32_t incr,
774 uint64_t flags)
775 {
776 uint64_t src = (params->src + (addr >> 12) * 8);
777
778
779 trace_amdgpu_vm_copy_ptes(pe, src, count);
780
781 amdgpu_vm_copy_pte(params->adev, params->ib, pe, src, count);
782 }
783
784 /**
785 * amdgpu_vm_map_gart - Resolve gart mapping of addr
786 *
787 * @pages_addr: optional DMA address to use for lookup
788 * @addr: the unmapped addr
789 *
790 * Look up the physical address of the page that the pte resolves
791 * to and return the pointer for the page table entry.
792 */
793 static uint64_t amdgpu_vm_map_gart(const dma_addr_t *pages_addr, uint64_t addr)
794 {
795 uint64_t result;
796
797 /* page table offset */
798 result = pages_addr[addr >> PAGE_SHIFT];
799
800 /* in case cpu page size != gpu page size*/
801 result |= addr & (~PAGE_MASK);
802
803 result &= 0xFFFFFFFFFFFFF000ULL;
804
805 return result;
806 }
807
808 /*
809 * amdgpu_vm_update_level - update a single level in the hierarchy
810 *
811 * @adev: amdgpu_device pointer
812 * @vm: requested vm
813 * @parent: parent directory
814 *
815 * Makes sure all entries in @parent are up to date.
816 * Returns 0 for success, error for failure.
817 */
818 static int amdgpu_vm_update_level(struct amdgpu_device *adev,
819 struct amdgpu_vm *vm,
820 struct amdgpu_vm_pt *parent,
821 unsigned level)
822 {
823 struct amdgpu_bo *shadow;
824 struct amdgpu_ring *ring;
825 uint64_t pd_addr, shadow_addr;
826 uint32_t incr = amdgpu_vm_bo_size(adev, level + 1);
827 uint64_t last_pde = ~0, last_pt = ~0, last_shadow = ~0;
828 unsigned count = 0, pt_idx, ndw;
829 struct amdgpu_job *job;
830 struct amdgpu_pte_update_params params;
831 struct dma_fence *fence = NULL;
832
833 int r;
834
835 if (!parent->entries)
836 return 0;
837 ring = container_of(vm->entity.sched, struct amdgpu_ring, sched);
838
839 /* padding, etc. */
840 ndw = 64;
841
842 /* assume the worst case */
843 ndw += parent->last_entry_used * 6;
844
845 pd_addr = amdgpu_bo_gpu_offset(parent->bo);
846
847 shadow = parent->bo->shadow;
848 if (shadow) {
849 r = amdgpu_ttm_bind(&shadow->tbo, &shadow->tbo.mem);
850 if (r)
851 return r;
852 shadow_addr = amdgpu_bo_gpu_offset(shadow);
853 ndw *= 2;
854 } else {
855 shadow_addr = 0;
856 }
857
858 r = amdgpu_job_alloc_with_ib(adev, ndw * 4, &job);
859 if (r)
860 return r;
861
862 memset(&params, 0, sizeof(params));
863 params.adev = adev;
864 params.ib = &job->ibs[0];
865
866 /* walk over the address space and update the directory */
867 for (pt_idx = 0; pt_idx <= parent->last_entry_used; ++pt_idx) {
868 struct amdgpu_bo *bo = parent->entries[pt_idx].bo;
869 uint64_t pde, pt;
870
871 if (bo == NULL)
872 continue;
873
874 if (bo->shadow) {
875 struct amdgpu_bo *pt_shadow = bo->shadow;
876
877 r = amdgpu_ttm_bind(&pt_shadow->tbo,
878 &pt_shadow->tbo.mem);
879 if (r)
880 return r;
881 }
882
883 pt = amdgpu_bo_gpu_offset(bo);
884 if (parent->entries[pt_idx].addr == pt)
885 continue;
886
887 parent->entries[pt_idx].addr = pt;
888
889 pde = pd_addr + pt_idx * 8;
890 if (((last_pde + 8 * count) != pde) ||
891 ((last_pt + incr * count) != pt) ||
892 (count == AMDGPU_VM_MAX_UPDATE_SIZE)) {
893
894 if (count) {
895 uint64_t pt_addr =
896 amdgpu_vm_adjust_mc_addr(adev, last_pt);
897
898 if (shadow)
899 amdgpu_vm_do_set_ptes(&params,
900 last_shadow,
901 pt_addr, count,
902 incr,
903 AMDGPU_PTE_VALID);
904
905 amdgpu_vm_do_set_ptes(&params, last_pde,
906 pt_addr, count, incr,
907 AMDGPU_PTE_VALID);
908 }
909
910 count = 1;
911 last_pde = pde;
912 last_shadow = shadow_addr + pt_idx * 8;
913 last_pt = pt;
914 } else {
915 ++count;
916 }
917 }
918
919 if (count) {
920 uint64_t pt_addr = amdgpu_vm_adjust_mc_addr(adev, last_pt);
921
922 if (vm->root.bo->shadow)
923 amdgpu_vm_do_set_ptes(&params, last_shadow, pt_addr,
924 count, incr, AMDGPU_PTE_VALID);
925
926 amdgpu_vm_do_set_ptes(&params, last_pde, pt_addr,
927 count, incr, AMDGPU_PTE_VALID);
928 }
929
930 if (params.ib->length_dw == 0) {
931 amdgpu_job_free(job);
932 } else {
933 amdgpu_ring_pad_ib(ring, params.ib);
934 amdgpu_sync_resv(adev, &job->sync, parent->bo->tbo.resv,
935 AMDGPU_FENCE_OWNER_VM);
936 if (shadow)
937 amdgpu_sync_resv(adev, &job->sync, shadow->tbo.resv,
938 AMDGPU_FENCE_OWNER_VM);
939
940 WARN_ON(params.ib->length_dw > ndw);
941 r = amdgpu_job_submit(job, ring, &vm->entity,
942 AMDGPU_FENCE_OWNER_VM, &fence);
943 if (r)
944 goto error_free;
945
946 amdgpu_bo_fence(parent->bo, fence, true);
947 dma_fence_put(vm->last_dir_update);
948 vm->last_dir_update = dma_fence_get(fence);
949 dma_fence_put(fence);
950 }
951 /*
952 * Recurse into the subdirectories. This recursion is harmless because
953 * we only have a maximum of 5 layers.
954 */
955 for (pt_idx = 0; pt_idx <= parent->last_entry_used; ++pt_idx) {
956 struct amdgpu_vm_pt *entry = &parent->entries[pt_idx];
957
958 if (!entry->bo)
959 continue;
960
961 r = amdgpu_vm_update_level(adev, vm, entry, level + 1);
962 if (r)
963 return r;
964 }
965
966 return 0;
967
968 error_free:
969 amdgpu_job_free(job);
970 return r;
971 }
972
973 /*
974 * amdgpu_vm_update_directories - make sure that all directories are valid
975 *
976 * @adev: amdgpu_device pointer
977 * @vm: requested vm
978 *
979 * Makes sure all directories are up to date.
980 * Returns 0 for success, error for failure.
981 */
982 int amdgpu_vm_update_directories(struct amdgpu_device *adev,
983 struct amdgpu_vm *vm)
984 {
985 return amdgpu_vm_update_level(adev, vm, &vm->root, 0);
986 }
987
988 /**
989 * amdgpu_vm_find_pt - find the page table for an address
990 *
991 * @p: see amdgpu_pte_update_params definition
992 * @addr: virtual address in question
993 *
994 * Find the page table BO for a virtual address, return NULL when none found.
995 */
996 static struct amdgpu_bo *amdgpu_vm_get_pt(struct amdgpu_pte_update_params *p,
997 uint64_t addr)
998 {
999 struct amdgpu_vm_pt *entry = &p->vm->root;
1000 unsigned idx, level = p->adev->vm_manager.num_level;
1001
1002 while (entry->entries) {
1003 idx = addr >> (p->adev->vm_manager.block_size * level--);
1004 idx %= amdgpu_bo_size(entry->bo) / 8;
1005 entry = &entry->entries[idx];
1006 }
1007
1008 if (level)
1009 return NULL;
1010
1011 return entry->bo;
1012 }
1013
1014 /**
1015 * amdgpu_vm_update_ptes - make sure that page tables are valid
1016 *
1017 * @params: see amdgpu_pte_update_params definition
1018 * @vm: requested vm
1019 * @start: start of GPU address range
1020 * @end: end of GPU address range
1021 * @dst: destination address to map to, the next dst inside the function
1022 * @flags: mapping flags
1023 *
1024 * Update the page tables in the range @start - @end.
1025 */
1026 static void amdgpu_vm_update_ptes(struct amdgpu_pte_update_params *params,
1027 uint64_t start, uint64_t end,
1028 uint64_t dst, uint64_t flags)
1029 {
1030 struct amdgpu_device *adev = params->adev;
1031 const uint64_t mask = AMDGPU_VM_PTE_COUNT(adev) - 1;
1032
1033 uint64_t cur_pe_start, cur_nptes, cur_dst;
1034 uint64_t addr; /* next GPU address to be updated */
1035 struct amdgpu_bo *pt;
1036 unsigned nptes; /* next number of ptes to be updated */
1037 uint64_t next_pe_start;
1038
1039 /* initialize the variables */
1040 addr = start;
1041 pt = amdgpu_vm_get_pt(params, addr);
1042 if (!pt) {
1043 pr_err("PT not found, aborting update_ptes\n");
1044 return;
1045 }
1046
1047 if (params->shadow) {
1048 if (!pt->shadow)
1049 return;
1050 pt = pt->shadow;
1051 }
1052 if ((addr & ~mask) == (end & ~mask))
1053 nptes = end - addr;
1054 else
1055 nptes = AMDGPU_VM_PTE_COUNT(adev) - (addr & mask);
1056
1057 cur_pe_start = amdgpu_bo_gpu_offset(pt);
1058 cur_pe_start += (addr & mask) * 8;
1059 cur_nptes = nptes;
1060 cur_dst = dst;
1061
1062 /* for next ptb*/
1063 addr += nptes;
1064 dst += nptes * AMDGPU_GPU_PAGE_SIZE;
1065
1066 /* walk over the address space and update the page tables */
1067 while (addr < end) {
1068 pt = amdgpu_vm_get_pt(params, addr);
1069 if (!pt) {
1070 pr_err("PT not found, aborting update_ptes\n");
1071 return;
1072 }
1073
1074 if (params->shadow) {
1075 if (!pt->shadow)
1076 return;
1077 pt = pt->shadow;
1078 }
1079
1080 if ((addr & ~mask) == (end & ~mask))
1081 nptes = end - addr;
1082 else
1083 nptes = AMDGPU_VM_PTE_COUNT(adev) - (addr & mask);
1084
1085 next_pe_start = amdgpu_bo_gpu_offset(pt);
1086 next_pe_start += (addr & mask) * 8;
1087
1088 if ((cur_pe_start + 8 * cur_nptes) == next_pe_start &&
1089 ((cur_nptes + nptes) <= AMDGPU_VM_MAX_UPDATE_SIZE)) {
1090 /* The next ptb is consecutive to current ptb.
1091 * Don't call the update function now.
1092 * Will update two ptbs together in future.
1093 */
1094 cur_nptes += nptes;
1095 } else {
1096 params->func(params, cur_pe_start, cur_dst, cur_nptes,
1097 AMDGPU_GPU_PAGE_SIZE, flags);
1098
1099 cur_pe_start = next_pe_start;
1100 cur_nptes = nptes;
1101 cur_dst = dst;
1102 }
1103
1104 /* for next ptb*/
1105 addr += nptes;
1106 dst += nptes * AMDGPU_GPU_PAGE_SIZE;
1107 }
1108
1109 params->func(params, cur_pe_start, cur_dst, cur_nptes,
1110 AMDGPU_GPU_PAGE_SIZE, flags);
1111 }
1112
1113 /*
1114 * amdgpu_vm_frag_ptes - add fragment information to PTEs
1115 *
1116 * @params: see amdgpu_pte_update_params definition
1117 * @vm: requested vm
1118 * @start: first PTE to handle
1119 * @end: last PTE to handle
1120 * @dst: addr those PTEs should point to
1121 * @flags: hw mapping flags
1122 */
1123 static void amdgpu_vm_frag_ptes(struct amdgpu_pte_update_params *params,
1124 uint64_t start, uint64_t end,
1125 uint64_t dst, uint64_t flags)
1126 {
1127 /**
1128 * The MC L1 TLB supports variable sized pages, based on a fragment
1129 * field in the PTE. When this field is set to a non-zero value, page
1130 * granularity is increased from 4KB to (1 << (12 + frag)). The PTE
1131 * flags are considered valid for all PTEs within the fragment range
1132 * and corresponding mappings are assumed to be physically contiguous.
1133 *
1134 * The L1 TLB can store a single PTE for the whole fragment,
1135 * significantly increasing the space available for translation
1136 * caching. This leads to large improvements in throughput when the
1137 * TLB is under pressure.
1138 *
1139 * The L2 TLB distributes small and large fragments into two
1140 * asymmetric partitions. The large fragment cache is significantly
1141 * larger. Thus, we try to use large fragments wherever possible.
1142 * Userspace can support this by aligning virtual base address and
1143 * allocation size to the fragment size.
1144 */
1145
1146 /* SI and newer are optimized for 64KB */
1147 uint64_t frag_flags = AMDGPU_PTE_FRAG(AMDGPU_LOG2_PAGES_PER_FRAG);
1148 uint64_t frag_align = 1 << AMDGPU_LOG2_PAGES_PER_FRAG;
1149
1150 uint64_t frag_start = ALIGN(start, frag_align);
1151 uint64_t frag_end = end & ~(frag_align - 1);
1152
1153 /* system pages are non continuously */
1154 if (params->src || !(flags & AMDGPU_PTE_VALID) ||
1155 (frag_start >= frag_end)) {
1156
1157 amdgpu_vm_update_ptes(params, start, end, dst, flags);
1158 return;
1159 }
1160
1161 /* handle the 4K area at the beginning */
1162 if (start != frag_start) {
1163 amdgpu_vm_update_ptes(params, start, frag_start,
1164 dst, flags);
1165 dst += (frag_start - start) * AMDGPU_GPU_PAGE_SIZE;
1166 }
1167
1168 /* handle the area in the middle */
1169 amdgpu_vm_update_ptes(params, frag_start, frag_end, dst,
1170 flags | frag_flags);
1171
1172 /* handle the 4K area at the end */
1173 if (frag_end != end) {
1174 dst += (frag_end - frag_start) * AMDGPU_GPU_PAGE_SIZE;
1175 amdgpu_vm_update_ptes(params, frag_end, end, dst, flags);
1176 }
1177 }
1178
1179 /**
1180 * amdgpu_vm_bo_update_mapping - update a mapping in the vm page table
1181 *
1182 * @adev: amdgpu_device pointer
1183 * @exclusive: fence we need to sync to
1184 * @src: address where to copy page table entries from
1185 * @pages_addr: DMA addresses to use for mapping
1186 * @vm: requested vm
1187 * @start: start of mapped range
1188 * @last: last mapped entry
1189 * @flags: flags for the entries
1190 * @addr: addr to set the area to
1191 * @fence: optional resulting fence
1192 *
1193 * Fill in the page table entries between @start and @last.
1194 * Returns 0 for success, -EINVAL for failure.
1195 */
1196 static int amdgpu_vm_bo_update_mapping(struct amdgpu_device *adev,
1197 struct dma_fence *exclusive,
1198 uint64_t src,
1199 dma_addr_t *pages_addr,
1200 struct amdgpu_vm *vm,
1201 uint64_t start, uint64_t last,
1202 uint64_t flags, uint64_t addr,
1203 struct dma_fence **fence)
1204 {
1205 struct amdgpu_ring *ring;
1206 void *owner = AMDGPU_FENCE_OWNER_VM;
1207 unsigned nptes, ncmds, ndw;
1208 struct amdgpu_job *job;
1209 struct amdgpu_pte_update_params params;
1210 struct dma_fence *f = NULL;
1211 int r;
1212
1213 memset(&params, 0, sizeof(params));
1214 params.adev = adev;
1215 params.vm = vm;
1216 params.src = src;
1217
1218 ring = container_of(vm->entity.sched, struct amdgpu_ring, sched);
1219
1220 /* sync to everything on unmapping */
1221 if (!(flags & AMDGPU_PTE_VALID))
1222 owner = AMDGPU_FENCE_OWNER_UNDEFINED;
1223
1224 nptes = last - start + 1;
1225
1226 /*
1227 * reserve space for one command every (1 << BLOCK_SIZE)
1228 * entries or 2k dwords (whatever is smaller)
1229 */
1230 ncmds = (nptes >> min(adev->vm_manager.block_size, 11u)) + 1;
1231
1232 /* padding, etc. */
1233 ndw = 64;
1234
1235 if (src) {
1236 /* only copy commands needed */
1237 ndw += ncmds * 7;
1238
1239 params.func = amdgpu_vm_do_copy_ptes;
1240
1241 } else if (pages_addr) {
1242 /* copy commands needed */
1243 ndw += ncmds * 7;
1244
1245 /* and also PTEs */
1246 ndw += nptes * 2;
1247
1248 params.func = amdgpu_vm_do_copy_ptes;
1249
1250 } else {
1251 /* set page commands needed */
1252 ndw += ncmds * 10;
1253
1254 /* two extra commands for begin/end of fragment */
1255 ndw += 2 * 10;
1256
1257 params.func = amdgpu_vm_do_set_ptes;
1258 }
1259
1260 r = amdgpu_job_alloc_with_ib(adev, ndw * 4, &job);
1261 if (r)
1262 return r;
1263
1264 params.ib = &job->ibs[0];
1265
1266 if (!src && pages_addr) {
1267 uint64_t *pte;
1268 unsigned i;
1269
1270 /* Put the PTEs at the end of the IB. */
1271 i = ndw - nptes * 2;
1272 pte= (uint64_t *)&(job->ibs->ptr[i]);
1273 params.src = job->ibs->gpu_addr + i * 4;
1274
1275 for (i = 0; i < nptes; ++i) {
1276 pte[i] = amdgpu_vm_map_gart(pages_addr, addr + i *
1277 AMDGPU_GPU_PAGE_SIZE);
1278 pte[i] |= flags;
1279 }
1280 addr = 0;
1281 }
1282
1283 r = amdgpu_sync_fence(adev, &job->sync, exclusive);
1284 if (r)
1285 goto error_free;
1286
1287 r = amdgpu_sync_resv(adev, &job->sync, vm->root.bo->tbo.resv,
1288 owner);
1289 if (r)
1290 goto error_free;
1291
1292 r = reservation_object_reserve_shared(vm->root.bo->tbo.resv);
1293 if (r)
1294 goto error_free;
1295
1296 params.shadow = true;
1297 amdgpu_vm_frag_ptes(&params, start, last + 1, addr, flags);
1298 params.shadow = false;
1299 amdgpu_vm_frag_ptes(&params, start, last + 1, addr, flags);
1300
1301 amdgpu_ring_pad_ib(ring, params.ib);
1302 WARN_ON(params.ib->length_dw > ndw);
1303 r = amdgpu_job_submit(job, ring, &vm->entity,
1304 AMDGPU_FENCE_OWNER_VM, &f);
1305 if (r)
1306 goto error_free;
1307
1308 amdgpu_bo_fence(vm->root.bo, f, true);
1309 dma_fence_put(*fence);
1310 *fence = f;
1311 return 0;
1312
1313 error_free:
1314 amdgpu_job_free(job);
1315 return r;
1316 }
1317
1318 /**
1319 * amdgpu_vm_bo_split_mapping - split a mapping into smaller chunks
1320 *
1321 * @adev: amdgpu_device pointer
1322 * @exclusive: fence we need to sync to
1323 * @gtt_flags: flags as they are used for GTT
1324 * @pages_addr: DMA addresses to use for mapping
1325 * @vm: requested vm
1326 * @mapping: mapped range and flags to use for the update
1327 * @flags: HW flags for the mapping
1328 * @nodes: array of drm_mm_nodes with the MC addresses
1329 * @fence: optional resulting fence
1330 *
1331 * Split the mapping into smaller chunks so that each update fits
1332 * into a SDMA IB.
1333 * Returns 0 for success, -EINVAL for failure.
1334 */
1335 static int amdgpu_vm_bo_split_mapping(struct amdgpu_device *adev,
1336 struct dma_fence *exclusive,
1337 uint64_t gtt_flags,
1338 dma_addr_t *pages_addr,
1339 struct amdgpu_vm *vm,
1340 struct amdgpu_bo_va_mapping *mapping,
1341 uint64_t flags,
1342 struct drm_mm_node *nodes,
1343 struct dma_fence **fence)
1344 {
1345 uint64_t pfn, src = 0, start = mapping->start;
1346 int r;
1347
1348 /* normally,bo_va->flags only contians READABLE and WIRTEABLE bit go here
1349 * but in case of something, we filter the flags in first place
1350 */
1351 if (!(mapping->flags & AMDGPU_PTE_READABLE))
1352 flags &= ~AMDGPU_PTE_READABLE;
1353 if (!(mapping->flags & AMDGPU_PTE_WRITEABLE))
1354 flags &= ~AMDGPU_PTE_WRITEABLE;
1355
1356 flags &= ~AMDGPU_PTE_EXECUTABLE;
1357 flags |= mapping->flags & AMDGPU_PTE_EXECUTABLE;
1358
1359 flags &= ~AMDGPU_PTE_MTYPE_MASK;
1360 flags |= (mapping->flags & AMDGPU_PTE_MTYPE_MASK);
1361
1362 if ((mapping->flags & AMDGPU_PTE_PRT) &&
1363 (adev->asic_type >= CHIP_VEGA10)) {
1364 flags |= AMDGPU_PTE_PRT;
1365 flags &= ~AMDGPU_PTE_VALID;
1366 }
1367
1368 trace_amdgpu_vm_bo_update(mapping);
1369
1370 pfn = mapping->offset >> PAGE_SHIFT;
1371 if (nodes) {
1372 while (pfn >= nodes->size) {
1373 pfn -= nodes->size;
1374 ++nodes;
1375 }
1376 }
1377
1378 do {
1379 uint64_t max_entries;
1380 uint64_t addr, last;
1381
1382 if (nodes) {
1383 addr = nodes->start << PAGE_SHIFT;
1384 max_entries = (nodes->size - pfn) *
1385 (PAGE_SIZE / AMDGPU_GPU_PAGE_SIZE);
1386 } else {
1387 addr = 0;
1388 max_entries = S64_MAX;
1389 }
1390
1391 if (pages_addr) {
1392 if (flags == gtt_flags)
1393 src = adev->gart.table_addr +
1394 (addr >> AMDGPU_GPU_PAGE_SHIFT) * 8;
1395 else
1396 max_entries = min(max_entries, 16ull * 1024ull);
1397 addr = 0;
1398 } else if (flags & AMDGPU_PTE_VALID) {
1399 addr += adev->vm_manager.vram_base_offset;
1400 }
1401 addr += pfn << PAGE_SHIFT;
1402
1403 last = min((uint64_t)mapping->last, start + max_entries - 1);
1404 r = amdgpu_vm_bo_update_mapping(adev, exclusive,
1405 src, pages_addr, vm,
1406 start, last, flags, addr,
1407 fence);
1408 if (r)
1409 return r;
1410
1411 pfn += last - start + 1;
1412 if (nodes && nodes->size == pfn) {
1413 pfn = 0;
1414 ++nodes;
1415 }
1416 start = last + 1;
1417
1418 } while (unlikely(start != mapping->last + 1));
1419
1420 return 0;
1421 }
1422
1423 /**
1424 * amdgpu_vm_bo_update - update all BO mappings in the vm page table
1425 *
1426 * @adev: amdgpu_device pointer
1427 * @bo_va: requested BO and VM object
1428 * @clear: if true clear the entries
1429 *
1430 * Fill in the page table entries for @bo_va.
1431 * Returns 0 for success, -EINVAL for failure.
1432 */
1433 int amdgpu_vm_bo_update(struct amdgpu_device *adev,
1434 struct amdgpu_bo_va *bo_va,
1435 bool clear)
1436 {
1437 struct amdgpu_vm *vm = bo_va->vm;
1438 struct amdgpu_bo_va_mapping *mapping;
1439 dma_addr_t *pages_addr = NULL;
1440 uint64_t gtt_flags, flags;
1441 struct ttm_mem_reg *mem;
1442 struct drm_mm_node *nodes;
1443 struct dma_fence *exclusive;
1444 int r;
1445
1446 if (clear || !bo_va->bo) {
1447 mem = NULL;
1448 nodes = NULL;
1449 exclusive = NULL;
1450 } else {
1451 struct ttm_dma_tt *ttm;
1452
1453 mem = &bo_va->bo->tbo.mem;
1454 nodes = mem->mm_node;
1455 if (mem->mem_type == TTM_PL_TT) {
1456 ttm = container_of(bo_va->bo->tbo.ttm, struct
1457 ttm_dma_tt, ttm);
1458 pages_addr = ttm->dma_address;
1459 }
1460 exclusive = reservation_object_get_excl(bo_va->bo->tbo.resv);
1461 }
1462
1463 if (bo_va->bo) {
1464 flags = amdgpu_ttm_tt_pte_flags(adev, bo_va->bo->tbo.ttm, mem);
1465 gtt_flags = (amdgpu_ttm_is_bound(bo_va->bo->tbo.ttm) &&
1466 adev == amdgpu_ttm_adev(bo_va->bo->tbo.bdev)) ?
1467 flags : 0;
1468 } else {
1469 flags = 0x0;
1470 gtt_flags = ~0x0;
1471 }
1472
1473 spin_lock(&vm->status_lock);
1474 if (!list_empty(&bo_va->vm_status))
1475 list_splice_init(&bo_va->valids, &bo_va->invalids);
1476 spin_unlock(&vm->status_lock);
1477
1478 list_for_each_entry(mapping, &bo_va->invalids, list) {
1479 r = amdgpu_vm_bo_split_mapping(adev, exclusive,
1480 gtt_flags, pages_addr, vm,
1481 mapping, flags, nodes,
1482 &bo_va->last_pt_update);
1483 if (r)
1484 return r;
1485 }
1486
1487 if (trace_amdgpu_vm_bo_mapping_enabled()) {
1488 list_for_each_entry(mapping, &bo_va->valids, list)
1489 trace_amdgpu_vm_bo_mapping(mapping);
1490
1491 list_for_each_entry(mapping, &bo_va->invalids, list)
1492 trace_amdgpu_vm_bo_mapping(mapping);
1493 }
1494
1495 spin_lock(&vm->status_lock);
1496 list_splice_init(&bo_va->invalids, &bo_va->valids);
1497 list_del_init(&bo_va->vm_status);
1498 if (clear)
1499 list_add(&bo_va->vm_status, &vm->cleared);
1500 spin_unlock(&vm->status_lock);
1501
1502 return 0;
1503 }
1504
1505 /**
1506 * amdgpu_vm_update_prt_state - update the global PRT state
1507 */
1508 static void amdgpu_vm_update_prt_state(struct amdgpu_device *adev)
1509 {
1510 unsigned long flags;
1511 bool enable;
1512
1513 spin_lock_irqsave(&adev->vm_manager.prt_lock, flags);
1514 enable = !!atomic_read(&adev->vm_manager.num_prt_users);
1515 adev->gart.gart_funcs->set_prt(adev, enable);
1516 spin_unlock_irqrestore(&adev->vm_manager.prt_lock, flags);
1517 }
1518
1519 /**
1520 * amdgpu_vm_prt_get - add a PRT user
1521 */
1522 static void amdgpu_vm_prt_get(struct amdgpu_device *adev)
1523 {
1524 if (!adev->gart.gart_funcs->set_prt)
1525 return;
1526
1527 if (atomic_inc_return(&adev->vm_manager.num_prt_users) == 1)
1528 amdgpu_vm_update_prt_state(adev);
1529 }
1530
1531 /**
1532 * amdgpu_vm_prt_put - drop a PRT user
1533 */
1534 static void amdgpu_vm_prt_put(struct amdgpu_device *adev)
1535 {
1536 if (atomic_dec_return(&adev->vm_manager.num_prt_users) == 0)
1537 amdgpu_vm_update_prt_state(adev);
1538 }
1539
1540 /**
1541 * amdgpu_vm_prt_cb - callback for updating the PRT status
1542 */
1543 static void amdgpu_vm_prt_cb(struct dma_fence *fence, struct dma_fence_cb *_cb)
1544 {
1545 struct amdgpu_prt_cb *cb = container_of(_cb, struct amdgpu_prt_cb, cb);
1546
1547 amdgpu_vm_prt_put(cb->adev);
1548 kfree(cb);
1549 }
1550
1551 /**
1552 * amdgpu_vm_add_prt_cb - add callback for updating the PRT status
1553 */
1554 static void amdgpu_vm_add_prt_cb(struct amdgpu_device *adev,
1555 struct dma_fence *fence)
1556 {
1557 struct amdgpu_prt_cb *cb;
1558
1559 if (!adev->gart.gart_funcs->set_prt)
1560 return;
1561
1562 cb = kmalloc(sizeof(struct amdgpu_prt_cb), GFP_KERNEL);
1563 if (!cb) {
1564 /* Last resort when we are OOM */
1565 if (fence)
1566 dma_fence_wait(fence, false);
1567
1568 amdgpu_vm_prt_put(adev);
1569 } else {
1570 cb->adev = adev;
1571 if (!fence || dma_fence_add_callback(fence, &cb->cb,
1572 amdgpu_vm_prt_cb))
1573 amdgpu_vm_prt_cb(fence, &cb->cb);
1574 }
1575 }
1576
1577 /**
1578 * amdgpu_vm_free_mapping - free a mapping
1579 *
1580 * @adev: amdgpu_device pointer
1581 * @vm: requested vm
1582 * @mapping: mapping to be freed
1583 * @fence: fence of the unmap operation
1584 *
1585 * Free a mapping and make sure we decrease the PRT usage count if applicable.
1586 */
1587 static void amdgpu_vm_free_mapping(struct amdgpu_device *adev,
1588 struct amdgpu_vm *vm,
1589 struct amdgpu_bo_va_mapping *mapping,
1590 struct dma_fence *fence)
1591 {
1592 if (mapping->flags & AMDGPU_PTE_PRT)
1593 amdgpu_vm_add_prt_cb(adev, fence);
1594 kfree(mapping);
1595 }
1596
1597 /**
1598 * amdgpu_vm_prt_fini - finish all prt mappings
1599 *
1600 * @adev: amdgpu_device pointer
1601 * @vm: requested vm
1602 *
1603 * Register a cleanup callback to disable PRT support after VM dies.
1604 */
1605 static void amdgpu_vm_prt_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm)
1606 {
1607 struct reservation_object *resv = vm->root.bo->tbo.resv;
1608 struct dma_fence *excl, **shared;
1609 unsigned i, shared_count;
1610 int r;
1611
1612 r = reservation_object_get_fences_rcu(resv, &excl,
1613 &shared_count, &shared);
1614 if (r) {
1615 /* Not enough memory to grab the fence list, as last resort
1616 * block for all the fences to complete.
1617 */
1618 reservation_object_wait_timeout_rcu(resv, true, false,
1619 MAX_SCHEDULE_TIMEOUT);
1620 return;
1621 }
1622
1623 /* Add a callback for each fence in the reservation object */
1624 amdgpu_vm_prt_get(adev);
1625 amdgpu_vm_add_prt_cb(adev, excl);
1626
1627 for (i = 0; i < shared_count; ++i) {
1628 amdgpu_vm_prt_get(adev);
1629 amdgpu_vm_add_prt_cb(adev, shared[i]);
1630 }
1631
1632 kfree(shared);
1633 }
1634
1635 /**
1636 * amdgpu_vm_clear_freed - clear freed BOs in the PT
1637 *
1638 * @adev: amdgpu_device pointer
1639 * @vm: requested vm
1640 * @fence: optional resulting fence (unchanged if no work needed to be done
1641 * or if an error occurred)
1642 *
1643 * Make sure all freed BOs are cleared in the PT.
1644 * Returns 0 for success.
1645 *
1646 * PTs have to be reserved and mutex must be locked!
1647 */
1648 int amdgpu_vm_clear_freed(struct amdgpu_device *adev,
1649 struct amdgpu_vm *vm,
1650 struct dma_fence **fence)
1651 {
1652 struct amdgpu_bo_va_mapping *mapping;
1653 struct dma_fence *f = NULL;
1654 int r;
1655
1656 while (!list_empty(&vm->freed)) {
1657 mapping = list_first_entry(&vm->freed,
1658 struct amdgpu_bo_va_mapping, list);
1659 list_del(&mapping->list);
1660
1661 r = amdgpu_vm_bo_update_mapping(adev, NULL, 0, NULL, vm,
1662 mapping->start, mapping->last,
1663 0, 0, &f);
1664 amdgpu_vm_free_mapping(adev, vm, mapping, f);
1665 if (r) {
1666 dma_fence_put(f);
1667 return r;
1668 }
1669 }
1670
1671 if (fence && f) {
1672 dma_fence_put(*fence);
1673 *fence = f;
1674 } else {
1675 dma_fence_put(f);
1676 }
1677
1678 return 0;
1679
1680 }
1681
1682 /**
1683 * amdgpu_vm_clear_invalids - clear invalidated BOs in the PT
1684 *
1685 * @adev: amdgpu_device pointer
1686 * @vm: requested vm
1687 *
1688 * Make sure all invalidated BOs are cleared in the PT.
1689 * Returns 0 for success.
1690 *
1691 * PTs have to be reserved and mutex must be locked!
1692 */
1693 int amdgpu_vm_clear_invalids(struct amdgpu_device *adev,
1694 struct amdgpu_vm *vm, struct amdgpu_sync *sync)
1695 {
1696 struct amdgpu_bo_va *bo_va = NULL;
1697 int r = 0;
1698
1699 spin_lock(&vm->status_lock);
1700 while (!list_empty(&vm->invalidated)) {
1701 bo_va = list_first_entry(&vm->invalidated,
1702 struct amdgpu_bo_va, vm_status);
1703 spin_unlock(&vm->status_lock);
1704
1705 r = amdgpu_vm_bo_update(adev, bo_va, true);
1706 if (r)
1707 return r;
1708
1709 spin_lock(&vm->status_lock);
1710 }
1711 spin_unlock(&vm->status_lock);
1712
1713 if (bo_va)
1714 r = amdgpu_sync_fence(adev, sync, bo_va->last_pt_update);
1715
1716 return r;
1717 }
1718
1719 /**
1720 * amdgpu_vm_bo_add - add a bo to a specific vm
1721 *
1722 * @adev: amdgpu_device pointer
1723 * @vm: requested vm
1724 * @bo: amdgpu buffer object
1725 *
1726 * Add @bo into the requested vm.
1727 * Add @bo to the list of bos associated with the vm
1728 * Returns newly added bo_va or NULL for failure
1729 *
1730 * Object has to be reserved!
1731 */
1732 struct amdgpu_bo_va *amdgpu_vm_bo_add(struct amdgpu_device *adev,
1733 struct amdgpu_vm *vm,
1734 struct amdgpu_bo *bo)
1735 {
1736 struct amdgpu_bo_va *bo_va;
1737
1738 bo_va = kzalloc(sizeof(struct amdgpu_bo_va), GFP_KERNEL);
1739 if (bo_va == NULL) {
1740 return NULL;
1741 }
1742 bo_va->vm = vm;
1743 bo_va->bo = bo;
1744 bo_va->ref_count = 1;
1745 INIT_LIST_HEAD(&bo_va->bo_list);
1746 INIT_LIST_HEAD(&bo_va->valids);
1747 INIT_LIST_HEAD(&bo_va->invalids);
1748 INIT_LIST_HEAD(&bo_va->vm_status);
1749
1750 if (bo)
1751 list_add_tail(&bo_va->bo_list, &bo->va);
1752
1753 return bo_va;
1754 }
1755
1756 /**
1757 * amdgpu_vm_bo_map - map bo inside a vm
1758 *
1759 * @adev: amdgpu_device pointer
1760 * @bo_va: bo_va to store the address
1761 * @saddr: where to map the BO
1762 * @offset: requested offset in the BO
1763 * @flags: attributes of pages (read/write/valid/etc.)
1764 *
1765 * Add a mapping of the BO at the specefied addr into the VM.
1766 * Returns 0 for success, error for failure.
1767 *
1768 * Object has to be reserved and unreserved outside!
1769 */
1770 int amdgpu_vm_bo_map(struct amdgpu_device *adev,
1771 struct amdgpu_bo_va *bo_va,
1772 uint64_t saddr, uint64_t offset,
1773 uint64_t size, uint64_t flags)
1774 {
1775 struct amdgpu_bo_va_mapping *mapping, *tmp;
1776 struct amdgpu_vm *vm = bo_va->vm;
1777 uint64_t eaddr;
1778
1779 /* validate the parameters */
1780 if (saddr & AMDGPU_GPU_PAGE_MASK || offset & AMDGPU_GPU_PAGE_MASK ||
1781 size == 0 || size & AMDGPU_GPU_PAGE_MASK)
1782 return -EINVAL;
1783
1784 /* make sure object fit at this offset */
1785 eaddr = saddr + size - 1;
1786 if (saddr >= eaddr ||
1787 (bo_va->bo && offset + size > amdgpu_bo_size(bo_va->bo)))
1788 return -EINVAL;
1789
1790 saddr /= AMDGPU_GPU_PAGE_SIZE;
1791 eaddr /= AMDGPU_GPU_PAGE_SIZE;
1792
1793 tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr);
1794 if (tmp) {
1795 /* bo and tmp overlap, invalid addr */
1796 dev_err(adev->dev, "bo %p va 0x%010Lx-0x%010Lx conflict with "
1797 "0x%010Lx-0x%010Lx\n", bo_va->bo, saddr, eaddr,
1798 tmp->start, tmp->last + 1);
1799 return -EINVAL;
1800 }
1801
1802 mapping = kmalloc(sizeof(*mapping), GFP_KERNEL);
1803 if (!mapping)
1804 return -ENOMEM;
1805
1806 INIT_LIST_HEAD(&mapping->list);
1807 mapping->start = saddr;
1808 mapping->last = eaddr;
1809 mapping->offset = offset;
1810 mapping->flags = flags;
1811
1812 list_add(&mapping->list, &bo_va->invalids);
1813 amdgpu_vm_it_insert(mapping, &vm->va);
1814
1815 if (flags & AMDGPU_PTE_PRT)
1816 amdgpu_vm_prt_get(adev);
1817
1818 return 0;
1819 }
1820
1821 /**
1822 * amdgpu_vm_bo_replace_map - map bo inside a vm, replacing existing mappings
1823 *
1824 * @adev: amdgpu_device pointer
1825 * @bo_va: bo_va to store the address
1826 * @saddr: where to map the BO
1827 * @offset: requested offset in the BO
1828 * @flags: attributes of pages (read/write/valid/etc.)
1829 *
1830 * Add a mapping of the BO at the specefied addr into the VM. Replace existing
1831 * mappings as we do so.
1832 * Returns 0 for success, error for failure.
1833 *
1834 * Object has to be reserved and unreserved outside!
1835 */
1836 int amdgpu_vm_bo_replace_map(struct amdgpu_device *adev,
1837 struct amdgpu_bo_va *bo_va,
1838 uint64_t saddr, uint64_t offset,
1839 uint64_t size, uint64_t flags)
1840 {
1841 struct amdgpu_bo_va_mapping *mapping;
1842 struct amdgpu_vm *vm = bo_va->vm;
1843 uint64_t eaddr;
1844 int r;
1845
1846 /* validate the parameters */
1847 if (saddr & AMDGPU_GPU_PAGE_MASK || offset & AMDGPU_GPU_PAGE_MASK ||
1848 size == 0 || size & AMDGPU_GPU_PAGE_MASK)
1849 return -EINVAL;
1850
1851 /* make sure object fit at this offset */
1852 eaddr = saddr + size - 1;
1853 if (saddr >= eaddr ||
1854 (bo_va->bo && offset + size > amdgpu_bo_size(bo_va->bo)))
1855 return -EINVAL;
1856
1857 /* Allocate all the needed memory */
1858 mapping = kmalloc(sizeof(*mapping), GFP_KERNEL);
1859 if (!mapping)
1860 return -ENOMEM;
1861
1862 r = amdgpu_vm_bo_clear_mappings(adev, bo_va->vm, saddr, size);
1863 if (r) {
1864 kfree(mapping);
1865 return r;
1866 }
1867
1868 saddr /= AMDGPU_GPU_PAGE_SIZE;
1869 eaddr /= AMDGPU_GPU_PAGE_SIZE;
1870
1871 mapping->start = saddr;
1872 mapping->last = eaddr;
1873 mapping->offset = offset;
1874 mapping->flags = flags;
1875
1876 list_add(&mapping->list, &bo_va->invalids);
1877 amdgpu_vm_it_insert(mapping, &vm->va);
1878
1879 if (flags & AMDGPU_PTE_PRT)
1880 amdgpu_vm_prt_get(adev);
1881
1882 return 0;
1883 }
1884
1885 /**
1886 * amdgpu_vm_bo_unmap - remove bo mapping from vm
1887 *
1888 * @adev: amdgpu_device pointer
1889 * @bo_va: bo_va to remove the address from
1890 * @saddr: where to the BO is mapped
1891 *
1892 * Remove a mapping of the BO at the specefied addr from the VM.
1893 * Returns 0 for success, error for failure.
1894 *
1895 * Object has to be reserved and unreserved outside!
1896 */
1897 int amdgpu_vm_bo_unmap(struct amdgpu_device *adev,
1898 struct amdgpu_bo_va *bo_va,
1899 uint64_t saddr)
1900 {
1901 struct amdgpu_bo_va_mapping *mapping;
1902 struct amdgpu_vm *vm = bo_va->vm;
1903 bool valid = true;
1904
1905 saddr /= AMDGPU_GPU_PAGE_SIZE;
1906
1907 list_for_each_entry(mapping, &bo_va->valids, list) {
1908 if (mapping->start == saddr)
1909 break;
1910 }
1911
1912 if (&mapping->list == &bo_va->valids) {
1913 valid = false;
1914
1915 list_for_each_entry(mapping, &bo_va->invalids, list) {
1916 if (mapping->start == saddr)
1917 break;
1918 }
1919
1920 if (&mapping->list == &bo_va->invalids)
1921 return -ENOENT;
1922 }
1923
1924 list_del(&mapping->list);
1925 amdgpu_vm_it_remove(mapping, &vm->va);
1926 trace_amdgpu_vm_bo_unmap(bo_va, mapping);
1927
1928 if (valid)
1929 list_add(&mapping->list, &vm->freed);
1930 else
1931 amdgpu_vm_free_mapping(adev, vm, mapping,
1932 bo_va->last_pt_update);
1933
1934 return 0;
1935 }
1936
1937 /**
1938 * amdgpu_vm_bo_clear_mappings - remove all mappings in a specific range
1939 *
1940 * @adev: amdgpu_device pointer
1941 * @vm: VM structure to use
1942 * @saddr: start of the range
1943 * @size: size of the range
1944 *
1945 * Remove all mappings in a range, split them as appropriate.
1946 * Returns 0 for success, error for failure.
1947 */
1948 int amdgpu_vm_bo_clear_mappings(struct amdgpu_device *adev,
1949 struct amdgpu_vm *vm,
1950 uint64_t saddr, uint64_t size)
1951 {
1952 struct amdgpu_bo_va_mapping *before, *after, *tmp, *next;
1953 LIST_HEAD(removed);
1954 uint64_t eaddr;
1955
1956 eaddr = saddr + size - 1;
1957 saddr /= AMDGPU_GPU_PAGE_SIZE;
1958 eaddr /= AMDGPU_GPU_PAGE_SIZE;
1959
1960 /* Allocate all the needed memory */
1961 before = kzalloc(sizeof(*before), GFP_KERNEL);
1962 if (!before)
1963 return -ENOMEM;
1964 INIT_LIST_HEAD(&before->list);
1965
1966 after = kzalloc(sizeof(*after), GFP_KERNEL);
1967 if (!after) {
1968 kfree(before);
1969 return -ENOMEM;
1970 }
1971 INIT_LIST_HEAD(&after->list);
1972
1973 /* Now gather all removed mappings */
1974 tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr);
1975 while (tmp) {
1976 /* Remember mapping split at the start */
1977 if (tmp->start < saddr) {
1978 before->start = tmp->start;
1979 before->last = saddr - 1;
1980 before->offset = tmp->offset;
1981 before->flags = tmp->flags;
1982 list_add(&before->list, &tmp->list);
1983 }
1984
1985 /* Remember mapping split at the end */
1986 if (tmp->last > eaddr) {
1987 after->start = eaddr + 1;
1988 after->last = tmp->last;
1989 after->offset = tmp->offset;
1990 after->offset += after->start - tmp->start;
1991 after->flags = tmp->flags;
1992 list_add(&after->list, &tmp->list);
1993 }
1994
1995 list_del(&tmp->list);
1996 list_add(&tmp->list, &removed);
1997
1998 tmp = amdgpu_vm_it_iter_next(tmp, saddr, eaddr);
1999 }
2000
2001 /* And free them up */
2002 list_for_each_entry_safe(tmp, next, &removed, list) {
2003 amdgpu_vm_it_remove(tmp, &vm->va);
2004 list_del(&tmp->list);
2005
2006 if (tmp->start < saddr)
2007 tmp->start = saddr;
2008 if (tmp->last > eaddr)
2009 tmp->last = eaddr;
2010
2011 list_add(&tmp->list, &vm->freed);
2012 trace_amdgpu_vm_bo_unmap(NULL, tmp);
2013 }
2014
2015 /* Insert partial mapping before the range */
2016 if (!list_empty(&before->list)) {
2017 amdgpu_vm_it_insert(before, &vm->va);
2018 if (before->flags & AMDGPU_PTE_PRT)
2019 amdgpu_vm_prt_get(adev);
2020 } else {
2021 kfree(before);
2022 }
2023
2024 /* Insert partial mapping after the range */
2025 if (!list_empty(&after->list)) {
2026 amdgpu_vm_it_insert(after, &vm->va);
2027 if (after->flags & AMDGPU_PTE_PRT)
2028 amdgpu_vm_prt_get(adev);
2029 } else {
2030 kfree(after);
2031 }
2032
2033 return 0;
2034 }
2035
2036 /**
2037 * amdgpu_vm_bo_rmv - remove a bo to a specific vm
2038 *
2039 * @adev: amdgpu_device pointer
2040 * @bo_va: requested bo_va
2041 *
2042 * Remove @bo_va->bo from the requested vm.
2043 *
2044 * Object have to be reserved!
2045 */
2046 void amdgpu_vm_bo_rmv(struct amdgpu_device *adev,
2047 struct amdgpu_bo_va *bo_va)
2048 {
2049 struct amdgpu_bo_va_mapping *mapping, *next;
2050 struct amdgpu_vm *vm = bo_va->vm;
2051
2052 list_del(&bo_va->bo_list);
2053
2054 spin_lock(&vm->status_lock);
2055 list_del(&bo_va->vm_status);
2056 spin_unlock(&vm->status_lock);
2057
2058 list_for_each_entry_safe(mapping, next, &bo_va->valids, list) {
2059 list_del(&mapping->list);
2060 amdgpu_vm_it_remove(mapping, &vm->va);
2061 trace_amdgpu_vm_bo_unmap(bo_va, mapping);
2062 list_add(&mapping->list, &vm->freed);
2063 }
2064 list_for_each_entry_safe(mapping, next, &bo_va->invalids, list) {
2065 list_del(&mapping->list);
2066 amdgpu_vm_it_remove(mapping, &vm->va);
2067 amdgpu_vm_free_mapping(adev, vm, mapping,
2068 bo_va->last_pt_update);
2069 }
2070
2071 dma_fence_put(bo_va->last_pt_update);
2072 kfree(bo_va);
2073 }
2074
2075 /**
2076 * amdgpu_vm_bo_invalidate - mark the bo as invalid
2077 *
2078 * @adev: amdgpu_device pointer
2079 * @vm: requested vm
2080 * @bo: amdgpu buffer object
2081 *
2082 * Mark @bo as invalid.
2083 */
2084 void amdgpu_vm_bo_invalidate(struct amdgpu_device *adev,
2085 struct amdgpu_bo *bo)
2086 {
2087 struct amdgpu_bo_va *bo_va;
2088
2089 list_for_each_entry(bo_va, &bo->va, bo_list) {
2090 spin_lock(&bo_va->vm->status_lock);
2091 if (list_empty(&bo_va->vm_status))
2092 list_add(&bo_va->vm_status, &bo_va->vm->invalidated);
2093 spin_unlock(&bo_va->vm->status_lock);
2094 }
2095 }
2096
2097 static uint32_t amdgpu_vm_get_block_size(uint64_t vm_size)
2098 {
2099 /* Total bits covered by PD + PTs */
2100 unsigned bits = ilog2(vm_size) + 18;
2101
2102 /* Make sure the PD is 4K in size up to 8GB address space.
2103 Above that split equal between PD and PTs */
2104 if (vm_size <= 8)
2105 return (bits - 9);
2106 else
2107 return ((bits + 3) / 2);
2108 }
2109
2110 /**
2111 * amdgpu_vm_adjust_size - adjust vm size and block size
2112 *
2113 * @adev: amdgpu_device pointer
2114 * @vm_size: the default vm size if it's set auto
2115 */
2116 void amdgpu_vm_adjust_size(struct amdgpu_device *adev, uint64_t vm_size)
2117 {
2118 /* adjust vm size firstly */
2119 if (amdgpu_vm_size == -1)
2120 adev->vm_manager.vm_size = vm_size;
2121 else
2122 adev->vm_manager.vm_size = amdgpu_vm_size;
2123
2124 /* block size depends on vm size */
2125 if (amdgpu_vm_block_size == -1)
2126 adev->vm_manager.block_size =
2127 amdgpu_vm_get_block_size(adev->vm_manager.vm_size);
2128 else
2129 adev->vm_manager.block_size = amdgpu_vm_block_size;
2130
2131 DRM_INFO("vm size is %llu GB, block size is %u-bit\n",
2132 adev->vm_manager.vm_size, adev->vm_manager.block_size);
2133 }
2134
2135 /**
2136 * amdgpu_vm_init - initialize a vm instance
2137 *
2138 * @adev: amdgpu_device pointer
2139 * @vm: requested vm
2140 *
2141 * Init @vm fields.
2142 */
2143 int amdgpu_vm_init(struct amdgpu_device *adev, struct amdgpu_vm *vm)
2144 {
2145 const unsigned align = min(AMDGPU_VM_PTB_ALIGN_SIZE,
2146 AMDGPU_VM_PTE_COUNT(adev) * 8);
2147 unsigned ring_instance;
2148 struct amdgpu_ring *ring;
2149 struct amd_sched_rq *rq;
2150 int r, i;
2151
2152 vm->va = RB_ROOT;
2153 vm->client_id = atomic64_inc_return(&adev->vm_manager.client_counter);
2154 for (i = 0; i < AMDGPU_MAX_VMHUBS; i++)
2155 vm->reserved_vmid[i] = NULL;
2156 spin_lock_init(&vm->status_lock);
2157 INIT_LIST_HEAD(&vm->invalidated);
2158 INIT_LIST_HEAD(&vm->cleared);
2159 INIT_LIST_HEAD(&vm->freed);
2160
2161 /* create scheduler entity for page table updates */
2162
2163 ring_instance = atomic_inc_return(&adev->vm_manager.vm_pte_next_ring);
2164 ring_instance %= adev->vm_manager.vm_pte_num_rings;
2165 ring = adev->vm_manager.vm_pte_rings[ring_instance];
2166 rq = &ring->sched.sched_rq[AMD_SCHED_PRIORITY_KERNEL];
2167 r = amd_sched_entity_init(&ring->sched, &vm->entity,
2168 rq, amdgpu_sched_jobs);
2169 if (r)
2170 return r;
2171
2172 vm->last_dir_update = NULL;
2173
2174 r = amdgpu_bo_create(adev, amdgpu_vm_bo_size(adev, 0), align, true,
2175 AMDGPU_GEM_DOMAIN_VRAM,
2176 AMDGPU_GEM_CREATE_NO_CPU_ACCESS |
2177 AMDGPU_GEM_CREATE_SHADOW |
2178 AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS |
2179 AMDGPU_GEM_CREATE_VRAM_CLEARED,
2180 NULL, NULL, &vm->root.bo);
2181 if (r)
2182 goto error_free_sched_entity;
2183
2184 r = amdgpu_bo_reserve(vm->root.bo, false);
2185 if (r)
2186 goto error_free_root;
2187
2188 vm->last_eviction_counter = atomic64_read(&adev->num_evictions);
2189 amdgpu_bo_unreserve(vm->root.bo);
2190
2191 return 0;
2192
2193 error_free_root:
2194 amdgpu_bo_unref(&vm->root.bo->shadow);
2195 amdgpu_bo_unref(&vm->root.bo);
2196 vm->root.bo = NULL;
2197
2198 error_free_sched_entity:
2199 amd_sched_entity_fini(&ring->sched, &vm->entity);
2200
2201 return r;
2202 }
2203
2204 /**
2205 * amdgpu_vm_free_levels - free PD/PT levels
2206 *
2207 * @level: PD/PT starting level to free
2208 *
2209 * Free the page directory or page table level and all sub levels.
2210 */
2211 static void amdgpu_vm_free_levels(struct amdgpu_vm_pt *level)
2212 {
2213 unsigned i;
2214
2215 if (level->bo) {
2216 amdgpu_bo_unref(&level->bo->shadow);
2217 amdgpu_bo_unref(&level->bo);
2218 }
2219
2220 if (level->entries)
2221 for (i = 0; i <= level->last_entry_used; i++)
2222 amdgpu_vm_free_levels(&level->entries[i]);
2223
2224 drm_free_large(level->entries);
2225 }
2226
2227 /**
2228 * amdgpu_vm_fini - tear down a vm instance
2229 *
2230 * @adev: amdgpu_device pointer
2231 * @vm: requested vm
2232 *
2233 * Tear down @vm.
2234 * Unbind the VM and remove all bos from the vm bo list
2235 */
2236 void amdgpu_vm_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm)
2237 {
2238 struct amdgpu_bo_va_mapping *mapping, *tmp;
2239 bool prt_fini_needed = !!adev->gart.gart_funcs->set_prt;
2240 int i;
2241
2242 amd_sched_entity_fini(vm->entity.sched, &vm->entity);
2243
2244 if (!RB_EMPTY_ROOT(&vm->va)) {
2245 dev_err(adev->dev, "still active bo inside vm\n");
2246 }
2247 rbtree_postorder_for_each_entry_safe(mapping, tmp, &vm->va, rb) {
2248 list_del(&mapping->list);
2249 amdgpu_vm_it_remove(mapping, &vm->va);
2250 kfree(mapping);
2251 }
2252 list_for_each_entry_safe(mapping, tmp, &vm->freed, list) {
2253 if (mapping->flags & AMDGPU_PTE_PRT && prt_fini_needed) {
2254 amdgpu_vm_prt_fini(adev, vm);
2255 prt_fini_needed = false;
2256 }
2257
2258 list_del(&mapping->list);
2259 amdgpu_vm_free_mapping(adev, vm, mapping, NULL);
2260 }
2261
2262 amdgpu_vm_free_levels(&vm->root);
2263 dma_fence_put(vm->last_dir_update);
2264 for (i = 0; i < AMDGPU_MAX_VMHUBS; i++) {
2265 struct amdgpu_vm_id_manager *id_mgr =
2266 &adev->vm_manager.id_mgr[i];
2267
2268 mutex_lock(&id_mgr->lock);
2269 if (vm->reserved_vmid[i]) {
2270 list_add(&vm->reserved_vmid[i]->list,
2271 &id_mgr->ids_lru);
2272 vm->reserved_vmid[i] = NULL;
2273 }
2274 mutex_unlock(&id_mgr->lock);
2275 }
2276 }
2277
2278 /**
2279 * amdgpu_vm_manager_init - init the VM manager
2280 *
2281 * @adev: amdgpu_device pointer
2282 *
2283 * Initialize the VM manager structures
2284 */
2285 void amdgpu_vm_manager_init(struct amdgpu_device *adev)
2286 {
2287 unsigned i, j;
2288
2289 for (i = 0; i < AMDGPU_MAX_VMHUBS; ++i) {
2290 struct amdgpu_vm_id_manager *id_mgr =
2291 &adev->vm_manager.id_mgr[i];
2292
2293 mutex_init(&id_mgr->lock);
2294 INIT_LIST_HEAD(&id_mgr->ids_lru);
2295
2296 /* skip over VMID 0, since it is the system VM */
2297 for (j = 1; j < id_mgr->num_ids; ++j) {
2298 amdgpu_vm_reset_id(adev, i, j);
2299 amdgpu_sync_create(&id_mgr->ids[i].active);
2300 list_add_tail(&id_mgr->ids[j].list, &id_mgr->ids_lru);
2301 }
2302 }
2303
2304 adev->vm_manager.fence_context =
2305 dma_fence_context_alloc(AMDGPU_MAX_RINGS);
2306 for (i = 0; i < AMDGPU_MAX_RINGS; ++i)
2307 adev->vm_manager.seqno[i] = 0;
2308
2309 atomic_set(&adev->vm_manager.vm_pte_next_ring, 0);
2310 atomic64_set(&adev->vm_manager.client_counter, 0);
2311 spin_lock_init(&adev->vm_manager.prt_lock);
2312 atomic_set(&adev->vm_manager.num_prt_users, 0);
2313 }
2314
2315 /**
2316 * amdgpu_vm_manager_fini - cleanup VM manager
2317 *
2318 * @adev: amdgpu_device pointer
2319 *
2320 * Cleanup the VM manager and free resources.
2321 */
2322 void amdgpu_vm_manager_fini(struct amdgpu_device *adev)
2323 {
2324 unsigned i, j;
2325
2326 for (i = 0; i < AMDGPU_MAX_VMHUBS; ++i) {
2327 struct amdgpu_vm_id_manager *id_mgr =
2328 &adev->vm_manager.id_mgr[i];
2329
2330 mutex_destroy(&id_mgr->lock);
2331 for (j = 0; j < AMDGPU_NUM_VM; ++j) {
2332 struct amdgpu_vm_id *id = &id_mgr->ids[j];
2333
2334 amdgpu_sync_free(&id->active);
2335 dma_fence_put(id->flushed_updates);
2336 dma_fence_put(id->last_flush);
2337 }
2338 }
2339 }
2340
2341 int amdgpu_vm_ioctl(struct drm_device *dev, void *data, struct drm_file *filp)
2342 {
2343 union drm_amdgpu_vm *args = data;
2344
2345 switch (args->in.op) {
2346 case AMDGPU_VM_OP_RESERVE_VMID:
2347 case AMDGPU_VM_OP_UNRESERVE_VMID:
2348 return -EINVAL;
2349 break;
2350 default:
2351 return -EINVAL;
2352 }
2353
2354 return 0;
2355 }