]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/gpu/drm/amd/amdgpu/amdgpu_vm.c
Merge tag 'stratix10_fix_for_v5.1' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-jammy-kernel.git] / drivers / gpu / drm / amd / amdgpu / amdgpu_vm.c
1 /*
2 * Copyright 2008 Advanced Micro Devices, Inc.
3 * Copyright 2008 Red Hat Inc.
4 * Copyright 2009 Jerome Glisse.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22 * OTHER DEALINGS IN THE SOFTWARE.
23 *
24 * Authors: Dave Airlie
25 * Alex Deucher
26 * Jerome Glisse
27 */
28 #include <linux/dma-fence-array.h>
29 #include <linux/interval_tree_generic.h>
30 #include <linux/idr.h>
31 #include <drm/drmP.h>
32 #include <drm/amdgpu_drm.h>
33 #include "amdgpu.h"
34 #include "amdgpu_trace.h"
35 #include "amdgpu_amdkfd.h"
36 #include "amdgpu_gmc.h"
37
38 /**
39 * DOC: GPUVM
40 *
41 * GPUVM is similar to the legacy gart on older asics, however
42 * rather than there being a single global gart table
43 * for the entire GPU, there are multiple VM page tables active
44 * at any given time. The VM page tables can contain a mix
45 * vram pages and system memory pages and system memory pages
46 * can be mapped as snooped (cached system pages) or unsnooped
47 * (uncached system pages).
48 * Each VM has an ID associated with it and there is a page table
49 * associated with each VMID. When execting a command buffer,
50 * the kernel tells the the ring what VMID to use for that command
51 * buffer. VMIDs are allocated dynamically as commands are submitted.
52 * The userspace drivers maintain their own address space and the kernel
53 * sets up their pages tables accordingly when they submit their
54 * command buffers and a VMID is assigned.
55 * Cayman/Trinity support up to 8 active VMs at any given time;
56 * SI supports 16.
57 */
58
59 #define START(node) ((node)->start)
60 #define LAST(node) ((node)->last)
61
62 INTERVAL_TREE_DEFINE(struct amdgpu_bo_va_mapping, rb, uint64_t, __subtree_last,
63 START, LAST, static, amdgpu_vm_it)
64
65 #undef START
66 #undef LAST
67
68 /**
69 * struct amdgpu_pte_update_params - Local structure
70 *
71 * Encapsulate some VM table update parameters to reduce
72 * the number of function parameters
73 *
74 */
75 struct amdgpu_pte_update_params {
76
77 /**
78 * @adev: amdgpu device we do this update for
79 */
80 struct amdgpu_device *adev;
81
82 /**
83 * @vm: optional amdgpu_vm we do this update for
84 */
85 struct amdgpu_vm *vm;
86
87 /**
88 * @src: address where to copy page table entries from
89 */
90 uint64_t src;
91
92 /**
93 * @ib: indirect buffer to fill with commands
94 */
95 struct amdgpu_ib *ib;
96
97 /**
98 * @func: Function which actually does the update
99 */
100 void (*func)(struct amdgpu_pte_update_params *params,
101 struct amdgpu_bo *bo, uint64_t pe,
102 uint64_t addr, unsigned count, uint32_t incr,
103 uint64_t flags);
104 /**
105 * @pages_addr:
106 *
107 * DMA addresses to use for mapping, used during VM update by CPU
108 */
109 dma_addr_t *pages_addr;
110 };
111
112 /**
113 * struct amdgpu_prt_cb - Helper to disable partial resident texture feature from a fence callback
114 */
115 struct amdgpu_prt_cb {
116
117 /**
118 * @adev: amdgpu device
119 */
120 struct amdgpu_device *adev;
121
122 /**
123 * @cb: callback
124 */
125 struct dma_fence_cb cb;
126 };
127
128 /**
129 * amdgpu_vm_level_shift - return the addr shift for each level
130 *
131 * @adev: amdgpu_device pointer
132 * @level: VMPT level
133 *
134 * Returns:
135 * The number of bits the pfn needs to be right shifted for a level.
136 */
137 static unsigned amdgpu_vm_level_shift(struct amdgpu_device *adev,
138 unsigned level)
139 {
140 unsigned shift = 0xff;
141
142 switch (level) {
143 case AMDGPU_VM_PDB2:
144 case AMDGPU_VM_PDB1:
145 case AMDGPU_VM_PDB0:
146 shift = 9 * (AMDGPU_VM_PDB0 - level) +
147 adev->vm_manager.block_size;
148 break;
149 case AMDGPU_VM_PTB:
150 shift = 0;
151 break;
152 default:
153 dev_err(adev->dev, "the level%d isn't supported.\n", level);
154 }
155
156 return shift;
157 }
158
159 /**
160 * amdgpu_vm_num_entries - return the number of entries in a PD/PT
161 *
162 * @adev: amdgpu_device pointer
163 * @level: VMPT level
164 *
165 * Returns:
166 * The number of entries in a page directory or page table.
167 */
168 static unsigned amdgpu_vm_num_entries(struct amdgpu_device *adev,
169 unsigned level)
170 {
171 unsigned shift = amdgpu_vm_level_shift(adev,
172 adev->vm_manager.root_level);
173
174 if (level == adev->vm_manager.root_level)
175 /* For the root directory */
176 return round_up(adev->vm_manager.max_pfn, 1ULL << shift) >> shift;
177 else if (level != AMDGPU_VM_PTB)
178 /* Everything in between */
179 return 512;
180 else
181 /* For the page tables on the leaves */
182 return AMDGPU_VM_PTE_COUNT(adev);
183 }
184
185 /**
186 * amdgpu_vm_entries_mask - the mask to get the entry number of a PD/PT
187 *
188 * @adev: amdgpu_device pointer
189 * @level: VMPT level
190 *
191 * Returns:
192 * The mask to extract the entry number of a PD/PT from an address.
193 */
194 static uint32_t amdgpu_vm_entries_mask(struct amdgpu_device *adev,
195 unsigned int level)
196 {
197 if (level <= adev->vm_manager.root_level)
198 return 0xffffffff;
199 else if (level != AMDGPU_VM_PTB)
200 return 0x1ff;
201 else
202 return AMDGPU_VM_PTE_COUNT(adev) - 1;
203 }
204
205 /**
206 * amdgpu_vm_bo_size - returns the size of the BOs in bytes
207 *
208 * @adev: amdgpu_device pointer
209 * @level: VMPT level
210 *
211 * Returns:
212 * The size of the BO for a page directory or page table in bytes.
213 */
214 static unsigned amdgpu_vm_bo_size(struct amdgpu_device *adev, unsigned level)
215 {
216 return AMDGPU_GPU_PAGE_ALIGN(amdgpu_vm_num_entries(adev, level) * 8);
217 }
218
219 /**
220 * amdgpu_vm_bo_evicted - vm_bo is evicted
221 *
222 * @vm_bo: vm_bo which is evicted
223 *
224 * State for PDs/PTs and per VM BOs which are not at the location they should
225 * be.
226 */
227 static void amdgpu_vm_bo_evicted(struct amdgpu_vm_bo_base *vm_bo)
228 {
229 struct amdgpu_vm *vm = vm_bo->vm;
230 struct amdgpu_bo *bo = vm_bo->bo;
231
232 vm_bo->moved = true;
233 if (bo->tbo.type == ttm_bo_type_kernel)
234 list_move(&vm_bo->vm_status, &vm->evicted);
235 else
236 list_move_tail(&vm_bo->vm_status, &vm->evicted);
237 }
238
239 /**
240 * amdgpu_vm_bo_relocated - vm_bo is reloacted
241 *
242 * @vm_bo: vm_bo which is relocated
243 *
244 * State for PDs/PTs which needs to update their parent PD.
245 */
246 static void amdgpu_vm_bo_relocated(struct amdgpu_vm_bo_base *vm_bo)
247 {
248 list_move(&vm_bo->vm_status, &vm_bo->vm->relocated);
249 }
250
251 /**
252 * amdgpu_vm_bo_moved - vm_bo is moved
253 *
254 * @vm_bo: vm_bo which is moved
255 *
256 * State for per VM BOs which are moved, but that change is not yet reflected
257 * in the page tables.
258 */
259 static void amdgpu_vm_bo_moved(struct amdgpu_vm_bo_base *vm_bo)
260 {
261 list_move(&vm_bo->vm_status, &vm_bo->vm->moved);
262 }
263
264 /**
265 * amdgpu_vm_bo_idle - vm_bo is idle
266 *
267 * @vm_bo: vm_bo which is now idle
268 *
269 * State for PDs/PTs and per VM BOs which have gone through the state machine
270 * and are now idle.
271 */
272 static void amdgpu_vm_bo_idle(struct amdgpu_vm_bo_base *vm_bo)
273 {
274 list_move(&vm_bo->vm_status, &vm_bo->vm->idle);
275 vm_bo->moved = false;
276 }
277
278 /**
279 * amdgpu_vm_bo_invalidated - vm_bo is invalidated
280 *
281 * @vm_bo: vm_bo which is now invalidated
282 *
283 * State for normal BOs which are invalidated and that change not yet reflected
284 * in the PTs.
285 */
286 static void amdgpu_vm_bo_invalidated(struct amdgpu_vm_bo_base *vm_bo)
287 {
288 spin_lock(&vm_bo->vm->invalidated_lock);
289 list_move(&vm_bo->vm_status, &vm_bo->vm->invalidated);
290 spin_unlock(&vm_bo->vm->invalidated_lock);
291 }
292
293 /**
294 * amdgpu_vm_bo_done - vm_bo is done
295 *
296 * @vm_bo: vm_bo which is now done
297 *
298 * State for normal BOs which are invalidated and that change has been updated
299 * in the PTs.
300 */
301 static void amdgpu_vm_bo_done(struct amdgpu_vm_bo_base *vm_bo)
302 {
303 spin_lock(&vm_bo->vm->invalidated_lock);
304 list_del_init(&vm_bo->vm_status);
305 spin_unlock(&vm_bo->vm->invalidated_lock);
306 }
307
308 /**
309 * amdgpu_vm_bo_base_init - Adds bo to the list of bos associated with the vm
310 *
311 * @base: base structure for tracking BO usage in a VM
312 * @vm: vm to which bo is to be added
313 * @bo: amdgpu buffer object
314 *
315 * Initialize a bo_va_base structure and add it to the appropriate lists
316 *
317 */
318 static void amdgpu_vm_bo_base_init(struct amdgpu_vm_bo_base *base,
319 struct amdgpu_vm *vm,
320 struct amdgpu_bo *bo)
321 {
322 base->vm = vm;
323 base->bo = bo;
324 base->next = NULL;
325 INIT_LIST_HEAD(&base->vm_status);
326
327 if (!bo)
328 return;
329 base->next = bo->vm_bo;
330 bo->vm_bo = base;
331
332 if (bo->tbo.resv != vm->root.base.bo->tbo.resv)
333 return;
334
335 vm->bulk_moveable = false;
336 if (bo->tbo.type == ttm_bo_type_kernel)
337 amdgpu_vm_bo_relocated(base);
338 else
339 amdgpu_vm_bo_idle(base);
340
341 if (bo->preferred_domains &
342 amdgpu_mem_type_to_domain(bo->tbo.mem.mem_type))
343 return;
344
345 /*
346 * we checked all the prerequisites, but it looks like this per vm bo
347 * is currently evicted. add the bo to the evicted list to make sure it
348 * is validated on next vm use to avoid fault.
349 * */
350 amdgpu_vm_bo_evicted(base);
351 }
352
353 /**
354 * amdgpu_vm_pt_parent - get the parent page directory
355 *
356 * @pt: child page table
357 *
358 * Helper to get the parent entry for the child page table. NULL if we are at
359 * the root page directory.
360 */
361 static struct amdgpu_vm_pt *amdgpu_vm_pt_parent(struct amdgpu_vm_pt *pt)
362 {
363 struct amdgpu_bo *parent = pt->base.bo->parent;
364
365 if (!parent)
366 return NULL;
367
368 return container_of(parent->vm_bo, struct amdgpu_vm_pt, base);
369 }
370
371 /**
372 * amdgpu_vm_pt_cursor - state for for_each_amdgpu_vm_pt
373 */
374 struct amdgpu_vm_pt_cursor {
375 uint64_t pfn;
376 struct amdgpu_vm_pt *parent;
377 struct amdgpu_vm_pt *entry;
378 unsigned level;
379 };
380
381 /**
382 * amdgpu_vm_pt_start - start PD/PT walk
383 *
384 * @adev: amdgpu_device pointer
385 * @vm: amdgpu_vm structure
386 * @start: start address of the walk
387 * @cursor: state to initialize
388 *
389 * Initialize a amdgpu_vm_pt_cursor to start a walk.
390 */
391 static void amdgpu_vm_pt_start(struct amdgpu_device *adev,
392 struct amdgpu_vm *vm, uint64_t start,
393 struct amdgpu_vm_pt_cursor *cursor)
394 {
395 cursor->pfn = start;
396 cursor->parent = NULL;
397 cursor->entry = &vm->root;
398 cursor->level = adev->vm_manager.root_level;
399 }
400
401 /**
402 * amdgpu_vm_pt_descendant - go to child node
403 *
404 * @adev: amdgpu_device pointer
405 * @cursor: current state
406 *
407 * Walk to the child node of the current node.
408 * Returns:
409 * True if the walk was possible, false otherwise.
410 */
411 static bool amdgpu_vm_pt_descendant(struct amdgpu_device *adev,
412 struct amdgpu_vm_pt_cursor *cursor)
413 {
414 unsigned mask, shift, idx;
415
416 if (!cursor->entry->entries)
417 return false;
418
419 BUG_ON(!cursor->entry->base.bo);
420 mask = amdgpu_vm_entries_mask(adev, cursor->level);
421 shift = amdgpu_vm_level_shift(adev, cursor->level);
422
423 ++cursor->level;
424 idx = (cursor->pfn >> shift) & mask;
425 cursor->parent = cursor->entry;
426 cursor->entry = &cursor->entry->entries[idx];
427 return true;
428 }
429
430 /**
431 * amdgpu_vm_pt_sibling - go to sibling node
432 *
433 * @adev: amdgpu_device pointer
434 * @cursor: current state
435 *
436 * Walk to the sibling node of the current node.
437 * Returns:
438 * True if the walk was possible, false otherwise.
439 */
440 static bool amdgpu_vm_pt_sibling(struct amdgpu_device *adev,
441 struct amdgpu_vm_pt_cursor *cursor)
442 {
443 unsigned shift, num_entries;
444
445 /* Root doesn't have a sibling */
446 if (!cursor->parent)
447 return false;
448
449 /* Go to our parents and see if we got a sibling */
450 shift = amdgpu_vm_level_shift(adev, cursor->level - 1);
451 num_entries = amdgpu_vm_num_entries(adev, cursor->level - 1);
452
453 if (cursor->entry == &cursor->parent->entries[num_entries - 1])
454 return false;
455
456 cursor->pfn += 1ULL << shift;
457 cursor->pfn &= ~((1ULL << shift) - 1);
458 ++cursor->entry;
459 return true;
460 }
461
462 /**
463 * amdgpu_vm_pt_ancestor - go to parent node
464 *
465 * @cursor: current state
466 *
467 * Walk to the parent node of the current node.
468 * Returns:
469 * True if the walk was possible, false otherwise.
470 */
471 static bool amdgpu_vm_pt_ancestor(struct amdgpu_vm_pt_cursor *cursor)
472 {
473 if (!cursor->parent)
474 return false;
475
476 --cursor->level;
477 cursor->entry = cursor->parent;
478 cursor->parent = amdgpu_vm_pt_parent(cursor->parent);
479 return true;
480 }
481
482 /**
483 * amdgpu_vm_pt_next - get next PD/PT in hieratchy
484 *
485 * @adev: amdgpu_device pointer
486 * @cursor: current state
487 *
488 * Walk the PD/PT tree to the next node.
489 */
490 static void amdgpu_vm_pt_next(struct amdgpu_device *adev,
491 struct amdgpu_vm_pt_cursor *cursor)
492 {
493 /* First try a newborn child */
494 if (amdgpu_vm_pt_descendant(adev, cursor))
495 return;
496
497 /* If that didn't worked try to find a sibling */
498 while (!amdgpu_vm_pt_sibling(adev, cursor)) {
499 /* No sibling, go to our parents and grandparents */
500 if (!amdgpu_vm_pt_ancestor(cursor)) {
501 cursor->pfn = ~0ll;
502 return;
503 }
504 }
505 }
506
507 /**
508 * amdgpu_vm_pt_first_leaf - get first leaf PD/PT
509 *
510 * @adev: amdgpu_device pointer
511 * @vm: amdgpu_vm structure
512 * @start: start addr of the walk
513 * @cursor: state to initialize
514 *
515 * Start a walk and go directly to the leaf node.
516 */
517 static void amdgpu_vm_pt_first_leaf(struct amdgpu_device *adev,
518 struct amdgpu_vm *vm, uint64_t start,
519 struct amdgpu_vm_pt_cursor *cursor)
520 {
521 amdgpu_vm_pt_start(adev, vm, start, cursor);
522 while (amdgpu_vm_pt_descendant(adev, cursor));
523 }
524
525 /**
526 * amdgpu_vm_pt_next_leaf - get next leaf PD/PT
527 *
528 * @adev: amdgpu_device pointer
529 * @cursor: current state
530 *
531 * Walk the PD/PT tree to the next leaf node.
532 */
533 static void amdgpu_vm_pt_next_leaf(struct amdgpu_device *adev,
534 struct amdgpu_vm_pt_cursor *cursor)
535 {
536 amdgpu_vm_pt_next(adev, cursor);
537 if (cursor->pfn != ~0ll)
538 while (amdgpu_vm_pt_descendant(adev, cursor));
539 }
540
541 /**
542 * for_each_amdgpu_vm_pt_leaf - walk over all leaf PDs/PTs in the hierarchy
543 */
544 #define for_each_amdgpu_vm_pt_leaf(adev, vm, start, end, cursor) \
545 for (amdgpu_vm_pt_first_leaf((adev), (vm), (start), &(cursor)); \
546 (cursor).pfn <= end; amdgpu_vm_pt_next_leaf((adev), &(cursor)))
547
548 /**
549 * amdgpu_vm_pt_first_dfs - start a deep first search
550 *
551 * @adev: amdgpu_device structure
552 * @vm: amdgpu_vm structure
553 * @cursor: state to initialize
554 *
555 * Starts a deep first traversal of the PD/PT tree.
556 */
557 static void amdgpu_vm_pt_first_dfs(struct amdgpu_device *adev,
558 struct amdgpu_vm *vm,
559 struct amdgpu_vm_pt_cursor *cursor)
560 {
561 amdgpu_vm_pt_start(adev, vm, 0, cursor);
562 while (amdgpu_vm_pt_descendant(adev, cursor));
563 }
564
565 /**
566 * amdgpu_vm_pt_next_dfs - get the next node for a deep first search
567 *
568 * @adev: amdgpu_device structure
569 * @cursor: current state
570 *
571 * Move the cursor to the next node in a deep first search.
572 */
573 static void amdgpu_vm_pt_next_dfs(struct amdgpu_device *adev,
574 struct amdgpu_vm_pt_cursor *cursor)
575 {
576 if (!cursor->entry)
577 return;
578
579 if (!cursor->parent)
580 cursor->entry = NULL;
581 else if (amdgpu_vm_pt_sibling(adev, cursor))
582 while (amdgpu_vm_pt_descendant(adev, cursor));
583 else
584 amdgpu_vm_pt_ancestor(cursor);
585 }
586
587 /**
588 * for_each_amdgpu_vm_pt_dfs_safe - safe deep first search of all PDs/PTs
589 */
590 #define for_each_amdgpu_vm_pt_dfs_safe(adev, vm, cursor, entry) \
591 for (amdgpu_vm_pt_first_dfs((adev), (vm), &(cursor)), \
592 (entry) = (cursor).entry, amdgpu_vm_pt_next_dfs((adev), &(cursor));\
593 (entry); (entry) = (cursor).entry, \
594 amdgpu_vm_pt_next_dfs((adev), &(cursor)))
595
596 /**
597 * amdgpu_vm_get_pd_bo - add the VM PD to a validation list
598 *
599 * @vm: vm providing the BOs
600 * @validated: head of validation list
601 * @entry: entry to add
602 *
603 * Add the page directory to the list of BOs to
604 * validate for command submission.
605 */
606 void amdgpu_vm_get_pd_bo(struct amdgpu_vm *vm,
607 struct list_head *validated,
608 struct amdgpu_bo_list_entry *entry)
609 {
610 entry->priority = 0;
611 entry->tv.bo = &vm->root.base.bo->tbo;
612 /* One for the VM updates, one for TTM and one for the CS job */
613 entry->tv.num_shared = 3;
614 entry->user_pages = NULL;
615 list_add(&entry->tv.head, validated);
616 }
617
618 void amdgpu_vm_del_from_lru_notify(struct ttm_buffer_object *bo)
619 {
620 struct amdgpu_bo *abo;
621 struct amdgpu_vm_bo_base *bo_base;
622
623 if (!amdgpu_bo_is_amdgpu_bo(bo))
624 return;
625
626 if (bo->mem.placement & TTM_PL_FLAG_NO_EVICT)
627 return;
628
629 abo = ttm_to_amdgpu_bo(bo);
630 if (!abo->parent)
631 return;
632 for (bo_base = abo->vm_bo; bo_base; bo_base = bo_base->next) {
633 struct amdgpu_vm *vm = bo_base->vm;
634
635 if (abo->tbo.resv == vm->root.base.bo->tbo.resv)
636 vm->bulk_moveable = false;
637 }
638
639 }
640 /**
641 * amdgpu_vm_move_to_lru_tail - move all BOs to the end of LRU
642 *
643 * @adev: amdgpu device pointer
644 * @vm: vm providing the BOs
645 *
646 * Move all BOs to the end of LRU and remember their positions to put them
647 * together.
648 */
649 void amdgpu_vm_move_to_lru_tail(struct amdgpu_device *adev,
650 struct amdgpu_vm *vm)
651 {
652 struct ttm_bo_global *glob = adev->mman.bdev.glob;
653 struct amdgpu_vm_bo_base *bo_base;
654
655 #if 0
656 if (vm->bulk_moveable) {
657 spin_lock(&glob->lru_lock);
658 ttm_bo_bulk_move_lru_tail(&vm->lru_bulk_move);
659 spin_unlock(&glob->lru_lock);
660 return;
661 }
662 #endif
663
664 memset(&vm->lru_bulk_move, 0, sizeof(vm->lru_bulk_move));
665
666 spin_lock(&glob->lru_lock);
667 list_for_each_entry(bo_base, &vm->idle, vm_status) {
668 struct amdgpu_bo *bo = bo_base->bo;
669
670 if (!bo->parent)
671 continue;
672
673 ttm_bo_move_to_lru_tail(&bo->tbo, &vm->lru_bulk_move);
674 if (bo->shadow)
675 ttm_bo_move_to_lru_tail(&bo->shadow->tbo,
676 &vm->lru_bulk_move);
677 }
678 spin_unlock(&glob->lru_lock);
679
680 vm->bulk_moveable = true;
681 }
682
683 /**
684 * amdgpu_vm_validate_pt_bos - validate the page table BOs
685 *
686 * @adev: amdgpu device pointer
687 * @vm: vm providing the BOs
688 * @validate: callback to do the validation
689 * @param: parameter for the validation callback
690 *
691 * Validate the page table BOs on command submission if neccessary.
692 *
693 * Returns:
694 * Validation result.
695 */
696 int amdgpu_vm_validate_pt_bos(struct amdgpu_device *adev, struct amdgpu_vm *vm,
697 int (*validate)(void *p, struct amdgpu_bo *bo),
698 void *param)
699 {
700 struct amdgpu_vm_bo_base *bo_base, *tmp;
701 int r = 0;
702
703 vm->bulk_moveable &= list_empty(&vm->evicted);
704
705 list_for_each_entry_safe(bo_base, tmp, &vm->evicted, vm_status) {
706 struct amdgpu_bo *bo = bo_base->bo;
707
708 r = validate(param, bo);
709 if (r)
710 break;
711
712 if (bo->tbo.type != ttm_bo_type_kernel) {
713 amdgpu_vm_bo_moved(bo_base);
714 } else {
715 if (vm->use_cpu_for_update)
716 r = amdgpu_bo_kmap(bo, NULL);
717 else
718 r = amdgpu_ttm_alloc_gart(&bo->tbo);
719 if (r)
720 break;
721 if (bo->shadow) {
722 r = amdgpu_ttm_alloc_gart(&bo->shadow->tbo);
723 if (r)
724 break;
725 }
726 amdgpu_vm_bo_relocated(bo_base);
727 }
728 }
729
730 return r;
731 }
732
733 /**
734 * amdgpu_vm_ready - check VM is ready for updates
735 *
736 * @vm: VM to check
737 *
738 * Check if all VM PDs/PTs are ready for updates
739 *
740 * Returns:
741 * True if eviction list is empty.
742 */
743 bool amdgpu_vm_ready(struct amdgpu_vm *vm)
744 {
745 return list_empty(&vm->evicted);
746 }
747
748 /**
749 * amdgpu_vm_clear_bo - initially clear the PDs/PTs
750 *
751 * @adev: amdgpu_device pointer
752 * @vm: VM to clear BO from
753 * @bo: BO to clear
754 * @level: level this BO is at
755 * @pte_support_ats: indicate ATS support from PTE
756 *
757 * Root PD needs to be reserved when calling this.
758 *
759 * Returns:
760 * 0 on success, errno otherwise.
761 */
762 static int amdgpu_vm_clear_bo(struct amdgpu_device *adev,
763 struct amdgpu_vm *vm, struct amdgpu_bo *bo,
764 unsigned level, bool pte_support_ats)
765 {
766 struct ttm_operation_ctx ctx = { true, false };
767 struct dma_fence *fence = NULL;
768 unsigned entries, ats_entries;
769 struct amdgpu_ring *ring;
770 struct amdgpu_job *job;
771 uint64_t addr;
772 int r;
773
774 entries = amdgpu_bo_size(bo) / 8;
775
776 if (pte_support_ats) {
777 if (level == adev->vm_manager.root_level) {
778 ats_entries = amdgpu_vm_level_shift(adev, level);
779 ats_entries += AMDGPU_GPU_PAGE_SHIFT;
780 ats_entries = AMDGPU_GMC_HOLE_START >> ats_entries;
781 ats_entries = min(ats_entries, entries);
782 entries -= ats_entries;
783 } else {
784 ats_entries = entries;
785 entries = 0;
786 }
787 } else {
788 ats_entries = 0;
789 }
790
791 ring = container_of(vm->entity.rq->sched, struct amdgpu_ring, sched);
792
793 r = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
794 if (r)
795 goto error;
796
797 r = amdgpu_ttm_alloc_gart(&bo->tbo);
798 if (r)
799 return r;
800
801 r = amdgpu_job_alloc_with_ib(adev, 64, &job);
802 if (r)
803 goto error;
804
805 addr = amdgpu_bo_gpu_offset(bo);
806 if (ats_entries) {
807 uint64_t ats_value;
808
809 ats_value = AMDGPU_PTE_DEFAULT_ATC;
810 if (level != AMDGPU_VM_PTB)
811 ats_value |= AMDGPU_PDE_PTE;
812
813 amdgpu_vm_set_pte_pde(adev, &job->ibs[0], addr, 0,
814 ats_entries, 0, ats_value);
815 addr += ats_entries * 8;
816 }
817
818 if (entries) {
819 uint64_t value = 0;
820
821 /* Workaround for fault priority problem on GMC9 */
822 if (level == AMDGPU_VM_PTB && adev->asic_type >= CHIP_VEGA10)
823 value = AMDGPU_PTE_EXECUTABLE;
824
825 amdgpu_vm_set_pte_pde(adev, &job->ibs[0], addr, 0,
826 entries, 0, value);
827 }
828
829 amdgpu_ring_pad_ib(ring, &job->ibs[0]);
830
831 WARN_ON(job->ibs[0].length_dw > 64);
832 r = amdgpu_sync_resv(adev, &job->sync, bo->tbo.resv,
833 AMDGPU_FENCE_OWNER_KFD, false);
834 if (r)
835 goto error_free;
836
837 r = amdgpu_job_submit(job, &vm->entity, AMDGPU_FENCE_OWNER_UNDEFINED,
838 &fence);
839 if (r)
840 goto error_free;
841
842 amdgpu_bo_fence(bo, fence, true);
843 dma_fence_put(fence);
844
845 if (bo->shadow)
846 return amdgpu_vm_clear_bo(adev, vm, bo->shadow,
847 level, pte_support_ats);
848
849 return 0;
850
851 error_free:
852 amdgpu_job_free(job);
853
854 error:
855 return r;
856 }
857
858 /**
859 * amdgpu_vm_bo_param - fill in parameters for PD/PT allocation
860 *
861 * @adev: amdgpu_device pointer
862 * @vm: requesting vm
863 * @bp: resulting BO allocation parameters
864 */
865 static void amdgpu_vm_bo_param(struct amdgpu_device *adev, struct amdgpu_vm *vm,
866 int level, struct amdgpu_bo_param *bp)
867 {
868 memset(bp, 0, sizeof(*bp));
869
870 bp->size = amdgpu_vm_bo_size(adev, level);
871 bp->byte_align = AMDGPU_GPU_PAGE_SIZE;
872 bp->domain = AMDGPU_GEM_DOMAIN_VRAM;
873 bp->domain = amdgpu_bo_get_preferred_pin_domain(adev, bp->domain);
874 bp->flags = AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS |
875 AMDGPU_GEM_CREATE_CPU_GTT_USWC;
876 if (vm->use_cpu_for_update)
877 bp->flags |= AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
878 else if (!vm->root.base.bo || vm->root.base.bo->shadow)
879 bp->flags |= AMDGPU_GEM_CREATE_SHADOW;
880 bp->type = ttm_bo_type_kernel;
881 if (vm->root.base.bo)
882 bp->resv = vm->root.base.bo->tbo.resv;
883 }
884
885 /**
886 * amdgpu_vm_alloc_pts - Allocate page tables.
887 *
888 * @adev: amdgpu_device pointer
889 * @vm: VM to allocate page tables for
890 * @saddr: Start address which needs to be allocated
891 * @size: Size from start address we need.
892 *
893 * Make sure the page directories and page tables are allocated
894 *
895 * Returns:
896 * 0 on success, errno otherwise.
897 */
898 int amdgpu_vm_alloc_pts(struct amdgpu_device *adev,
899 struct amdgpu_vm *vm,
900 uint64_t saddr, uint64_t size)
901 {
902 struct amdgpu_vm_pt_cursor cursor;
903 struct amdgpu_bo *pt;
904 bool ats = false;
905 uint64_t eaddr;
906 int r;
907
908 /* validate the parameters */
909 if (saddr & AMDGPU_GPU_PAGE_MASK || size & AMDGPU_GPU_PAGE_MASK)
910 return -EINVAL;
911
912 eaddr = saddr + size - 1;
913
914 if (vm->pte_support_ats)
915 ats = saddr < AMDGPU_GMC_HOLE_START;
916
917 saddr /= AMDGPU_GPU_PAGE_SIZE;
918 eaddr /= AMDGPU_GPU_PAGE_SIZE;
919
920 if (eaddr >= adev->vm_manager.max_pfn) {
921 dev_err(adev->dev, "va above limit (0x%08llX >= 0x%08llX)\n",
922 eaddr, adev->vm_manager.max_pfn);
923 return -EINVAL;
924 }
925
926 for_each_amdgpu_vm_pt_leaf(adev, vm, saddr, eaddr, cursor) {
927 struct amdgpu_vm_pt *entry = cursor.entry;
928 struct amdgpu_bo_param bp;
929
930 if (cursor.level < AMDGPU_VM_PTB) {
931 unsigned num_entries;
932
933 num_entries = amdgpu_vm_num_entries(adev, cursor.level);
934 entry->entries = kvmalloc_array(num_entries,
935 sizeof(*entry->entries),
936 GFP_KERNEL |
937 __GFP_ZERO);
938 if (!entry->entries)
939 return -ENOMEM;
940 }
941
942
943 if (entry->base.bo)
944 continue;
945
946 amdgpu_vm_bo_param(adev, vm, cursor.level, &bp);
947
948 r = amdgpu_bo_create(adev, &bp, &pt);
949 if (r)
950 return r;
951
952 if (vm->use_cpu_for_update) {
953 r = amdgpu_bo_kmap(pt, NULL);
954 if (r)
955 goto error_free_pt;
956 }
957
958 /* Keep a reference to the root directory to avoid
959 * freeing them up in the wrong order.
960 */
961 pt->parent = amdgpu_bo_ref(cursor.parent->base.bo);
962
963 amdgpu_vm_bo_base_init(&entry->base, vm, pt);
964
965 r = amdgpu_vm_clear_bo(adev, vm, pt, cursor.level, ats);
966 if (r)
967 goto error_free_pt;
968 }
969
970 return 0;
971
972 error_free_pt:
973 amdgpu_bo_unref(&pt->shadow);
974 amdgpu_bo_unref(&pt);
975 return r;
976 }
977
978 /**
979 * amdgpu_vm_free_pts - free PD/PT levels
980 *
981 * @adev: amdgpu device structure
982 * @vm: amdgpu vm structure
983 *
984 * Free the page directory or page table level and all sub levels.
985 */
986 static void amdgpu_vm_free_pts(struct amdgpu_device *adev,
987 struct amdgpu_vm *vm)
988 {
989 struct amdgpu_vm_pt_cursor cursor;
990 struct amdgpu_vm_pt *entry;
991
992 for_each_amdgpu_vm_pt_dfs_safe(adev, vm, cursor, entry) {
993
994 if (entry->base.bo) {
995 entry->base.bo->vm_bo = NULL;
996 list_del(&entry->base.vm_status);
997 amdgpu_bo_unref(&entry->base.bo->shadow);
998 amdgpu_bo_unref(&entry->base.bo);
999 }
1000 kvfree(entry->entries);
1001 }
1002
1003 BUG_ON(vm->root.base.bo);
1004 }
1005
1006 /**
1007 * amdgpu_vm_check_compute_bug - check whether asic has compute vm bug
1008 *
1009 * @adev: amdgpu_device pointer
1010 */
1011 void amdgpu_vm_check_compute_bug(struct amdgpu_device *adev)
1012 {
1013 const struct amdgpu_ip_block *ip_block;
1014 bool has_compute_vm_bug;
1015 struct amdgpu_ring *ring;
1016 int i;
1017
1018 has_compute_vm_bug = false;
1019
1020 ip_block = amdgpu_device_ip_get_ip_block(adev, AMD_IP_BLOCK_TYPE_GFX);
1021 if (ip_block) {
1022 /* Compute has a VM bug for GFX version < 7.
1023 Compute has a VM bug for GFX 8 MEC firmware version < 673.*/
1024 if (ip_block->version->major <= 7)
1025 has_compute_vm_bug = true;
1026 else if (ip_block->version->major == 8)
1027 if (adev->gfx.mec_fw_version < 673)
1028 has_compute_vm_bug = true;
1029 }
1030
1031 for (i = 0; i < adev->num_rings; i++) {
1032 ring = adev->rings[i];
1033 if (ring->funcs->type == AMDGPU_RING_TYPE_COMPUTE)
1034 /* only compute rings */
1035 ring->has_compute_vm_bug = has_compute_vm_bug;
1036 else
1037 ring->has_compute_vm_bug = false;
1038 }
1039 }
1040
1041 /**
1042 * amdgpu_vm_need_pipeline_sync - Check if pipe sync is needed for job.
1043 *
1044 * @ring: ring on which the job will be submitted
1045 * @job: job to submit
1046 *
1047 * Returns:
1048 * True if sync is needed.
1049 */
1050 bool amdgpu_vm_need_pipeline_sync(struct amdgpu_ring *ring,
1051 struct amdgpu_job *job)
1052 {
1053 struct amdgpu_device *adev = ring->adev;
1054 unsigned vmhub = ring->funcs->vmhub;
1055 struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub];
1056 struct amdgpu_vmid *id;
1057 bool gds_switch_needed;
1058 bool vm_flush_needed = job->vm_needs_flush || ring->has_compute_vm_bug;
1059
1060 if (job->vmid == 0)
1061 return false;
1062 id = &id_mgr->ids[job->vmid];
1063 gds_switch_needed = ring->funcs->emit_gds_switch && (
1064 id->gds_base != job->gds_base ||
1065 id->gds_size != job->gds_size ||
1066 id->gws_base != job->gws_base ||
1067 id->gws_size != job->gws_size ||
1068 id->oa_base != job->oa_base ||
1069 id->oa_size != job->oa_size);
1070
1071 if (amdgpu_vmid_had_gpu_reset(adev, id))
1072 return true;
1073
1074 return vm_flush_needed || gds_switch_needed;
1075 }
1076
1077 /**
1078 * amdgpu_vm_flush - hardware flush the vm
1079 *
1080 * @ring: ring to use for flush
1081 * @job: related job
1082 * @need_pipe_sync: is pipe sync needed
1083 *
1084 * Emit a VM flush when it is necessary.
1085 *
1086 * Returns:
1087 * 0 on success, errno otherwise.
1088 */
1089 int amdgpu_vm_flush(struct amdgpu_ring *ring, struct amdgpu_job *job, bool need_pipe_sync)
1090 {
1091 struct amdgpu_device *adev = ring->adev;
1092 unsigned vmhub = ring->funcs->vmhub;
1093 struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub];
1094 struct amdgpu_vmid *id = &id_mgr->ids[job->vmid];
1095 bool gds_switch_needed = ring->funcs->emit_gds_switch && (
1096 id->gds_base != job->gds_base ||
1097 id->gds_size != job->gds_size ||
1098 id->gws_base != job->gws_base ||
1099 id->gws_size != job->gws_size ||
1100 id->oa_base != job->oa_base ||
1101 id->oa_size != job->oa_size);
1102 bool vm_flush_needed = job->vm_needs_flush;
1103 bool pasid_mapping_needed = id->pasid != job->pasid ||
1104 !id->pasid_mapping ||
1105 !dma_fence_is_signaled(id->pasid_mapping);
1106 struct dma_fence *fence = NULL;
1107 unsigned patch_offset = 0;
1108 int r;
1109
1110 if (amdgpu_vmid_had_gpu_reset(adev, id)) {
1111 gds_switch_needed = true;
1112 vm_flush_needed = true;
1113 pasid_mapping_needed = true;
1114 }
1115
1116 gds_switch_needed &= !!ring->funcs->emit_gds_switch;
1117 vm_flush_needed &= !!ring->funcs->emit_vm_flush &&
1118 job->vm_pd_addr != AMDGPU_BO_INVALID_OFFSET;
1119 pasid_mapping_needed &= adev->gmc.gmc_funcs->emit_pasid_mapping &&
1120 ring->funcs->emit_wreg;
1121
1122 if (!vm_flush_needed && !gds_switch_needed && !need_pipe_sync)
1123 return 0;
1124
1125 if (ring->funcs->init_cond_exec)
1126 patch_offset = amdgpu_ring_init_cond_exec(ring);
1127
1128 if (need_pipe_sync)
1129 amdgpu_ring_emit_pipeline_sync(ring);
1130
1131 if (vm_flush_needed) {
1132 trace_amdgpu_vm_flush(ring, job->vmid, job->vm_pd_addr);
1133 amdgpu_ring_emit_vm_flush(ring, job->vmid, job->vm_pd_addr);
1134 }
1135
1136 if (pasid_mapping_needed)
1137 amdgpu_gmc_emit_pasid_mapping(ring, job->vmid, job->pasid);
1138
1139 if (vm_flush_needed || pasid_mapping_needed) {
1140 r = amdgpu_fence_emit(ring, &fence, 0);
1141 if (r)
1142 return r;
1143 }
1144
1145 if (vm_flush_needed) {
1146 mutex_lock(&id_mgr->lock);
1147 dma_fence_put(id->last_flush);
1148 id->last_flush = dma_fence_get(fence);
1149 id->current_gpu_reset_count =
1150 atomic_read(&adev->gpu_reset_counter);
1151 mutex_unlock(&id_mgr->lock);
1152 }
1153
1154 if (pasid_mapping_needed) {
1155 id->pasid = job->pasid;
1156 dma_fence_put(id->pasid_mapping);
1157 id->pasid_mapping = dma_fence_get(fence);
1158 }
1159 dma_fence_put(fence);
1160
1161 if (ring->funcs->emit_gds_switch && gds_switch_needed) {
1162 id->gds_base = job->gds_base;
1163 id->gds_size = job->gds_size;
1164 id->gws_base = job->gws_base;
1165 id->gws_size = job->gws_size;
1166 id->oa_base = job->oa_base;
1167 id->oa_size = job->oa_size;
1168 amdgpu_ring_emit_gds_switch(ring, job->vmid, job->gds_base,
1169 job->gds_size, job->gws_base,
1170 job->gws_size, job->oa_base,
1171 job->oa_size);
1172 }
1173
1174 if (ring->funcs->patch_cond_exec)
1175 amdgpu_ring_patch_cond_exec(ring, patch_offset);
1176
1177 /* the double SWITCH_BUFFER here *cannot* be skipped by COND_EXEC */
1178 if (ring->funcs->emit_switch_buffer) {
1179 amdgpu_ring_emit_switch_buffer(ring);
1180 amdgpu_ring_emit_switch_buffer(ring);
1181 }
1182 return 0;
1183 }
1184
1185 /**
1186 * amdgpu_vm_bo_find - find the bo_va for a specific vm & bo
1187 *
1188 * @vm: requested vm
1189 * @bo: requested buffer object
1190 *
1191 * Find @bo inside the requested vm.
1192 * Search inside the @bos vm list for the requested vm
1193 * Returns the found bo_va or NULL if none is found
1194 *
1195 * Object has to be reserved!
1196 *
1197 * Returns:
1198 * Found bo_va or NULL.
1199 */
1200 struct amdgpu_bo_va *amdgpu_vm_bo_find(struct amdgpu_vm *vm,
1201 struct amdgpu_bo *bo)
1202 {
1203 struct amdgpu_vm_bo_base *base;
1204
1205 for (base = bo->vm_bo; base; base = base->next) {
1206 if (base->vm != vm)
1207 continue;
1208
1209 return container_of(base, struct amdgpu_bo_va, base);
1210 }
1211 return NULL;
1212 }
1213
1214 /**
1215 * amdgpu_vm_do_set_ptes - helper to call the right asic function
1216 *
1217 * @params: see amdgpu_pte_update_params definition
1218 * @bo: PD/PT to update
1219 * @pe: addr of the page entry
1220 * @addr: dst addr to write into pe
1221 * @count: number of page entries to update
1222 * @incr: increase next addr by incr bytes
1223 * @flags: hw access flags
1224 *
1225 * Traces the parameters and calls the right asic functions
1226 * to setup the page table using the DMA.
1227 */
1228 static void amdgpu_vm_do_set_ptes(struct amdgpu_pte_update_params *params,
1229 struct amdgpu_bo *bo,
1230 uint64_t pe, uint64_t addr,
1231 unsigned count, uint32_t incr,
1232 uint64_t flags)
1233 {
1234 pe += amdgpu_bo_gpu_offset(bo);
1235 trace_amdgpu_vm_set_ptes(pe, addr, count, incr, flags);
1236
1237 if (count < 3) {
1238 amdgpu_vm_write_pte(params->adev, params->ib, pe,
1239 addr | flags, count, incr);
1240
1241 } else {
1242 amdgpu_vm_set_pte_pde(params->adev, params->ib, pe, addr,
1243 count, incr, flags);
1244 }
1245 }
1246
1247 /**
1248 * amdgpu_vm_do_copy_ptes - copy the PTEs from the GART
1249 *
1250 * @params: see amdgpu_pte_update_params definition
1251 * @bo: PD/PT to update
1252 * @pe: addr of the page entry
1253 * @addr: dst addr to write into pe
1254 * @count: number of page entries to update
1255 * @incr: increase next addr by incr bytes
1256 * @flags: hw access flags
1257 *
1258 * Traces the parameters and calls the DMA function to copy the PTEs.
1259 */
1260 static void amdgpu_vm_do_copy_ptes(struct amdgpu_pte_update_params *params,
1261 struct amdgpu_bo *bo,
1262 uint64_t pe, uint64_t addr,
1263 unsigned count, uint32_t incr,
1264 uint64_t flags)
1265 {
1266 uint64_t src = (params->src + (addr >> 12) * 8);
1267
1268 pe += amdgpu_bo_gpu_offset(bo);
1269 trace_amdgpu_vm_copy_ptes(pe, src, count);
1270
1271 amdgpu_vm_copy_pte(params->adev, params->ib, pe, src, count);
1272 }
1273
1274 /**
1275 * amdgpu_vm_map_gart - Resolve gart mapping of addr
1276 *
1277 * @pages_addr: optional DMA address to use for lookup
1278 * @addr: the unmapped addr
1279 *
1280 * Look up the physical address of the page that the pte resolves
1281 * to.
1282 *
1283 * Returns:
1284 * The pointer for the page table entry.
1285 */
1286 static uint64_t amdgpu_vm_map_gart(const dma_addr_t *pages_addr, uint64_t addr)
1287 {
1288 uint64_t result;
1289
1290 /* page table offset */
1291 result = pages_addr[addr >> PAGE_SHIFT];
1292
1293 /* in case cpu page size != gpu page size*/
1294 result |= addr & (~PAGE_MASK);
1295
1296 result &= 0xFFFFFFFFFFFFF000ULL;
1297
1298 return result;
1299 }
1300
1301 /**
1302 * amdgpu_vm_cpu_set_ptes - helper to update page tables via CPU
1303 *
1304 * @params: see amdgpu_pte_update_params definition
1305 * @bo: PD/PT to update
1306 * @pe: kmap addr of the page entry
1307 * @addr: dst addr to write into pe
1308 * @count: number of page entries to update
1309 * @incr: increase next addr by incr bytes
1310 * @flags: hw access flags
1311 *
1312 * Write count number of PT/PD entries directly.
1313 */
1314 static void amdgpu_vm_cpu_set_ptes(struct amdgpu_pte_update_params *params,
1315 struct amdgpu_bo *bo,
1316 uint64_t pe, uint64_t addr,
1317 unsigned count, uint32_t incr,
1318 uint64_t flags)
1319 {
1320 unsigned int i;
1321 uint64_t value;
1322
1323 pe += (unsigned long)amdgpu_bo_kptr(bo);
1324
1325 trace_amdgpu_vm_set_ptes(pe, addr, count, incr, flags);
1326
1327 for (i = 0; i < count; i++) {
1328 value = params->pages_addr ?
1329 amdgpu_vm_map_gart(params->pages_addr, addr) :
1330 addr;
1331 amdgpu_gmc_set_pte_pde(params->adev, (void *)(uintptr_t)pe,
1332 i, value, flags);
1333 addr += incr;
1334 }
1335 }
1336
1337 /**
1338 * amdgpu_vm_update_func - helper to call update function
1339 *
1340 * Calls the update function for both the given BO as well as its shadow.
1341 */
1342 static void amdgpu_vm_update_func(struct amdgpu_pte_update_params *params,
1343 struct amdgpu_bo *bo,
1344 uint64_t pe, uint64_t addr,
1345 unsigned count, uint32_t incr,
1346 uint64_t flags)
1347 {
1348 if (bo->shadow)
1349 params->func(params, bo->shadow, pe, addr, count, incr, flags);
1350 params->func(params, bo, pe, addr, count, incr, flags);
1351 }
1352
1353 /*
1354 * amdgpu_vm_update_pde - update a single level in the hierarchy
1355 *
1356 * @param: parameters for the update
1357 * @vm: requested vm
1358 * @parent: parent directory
1359 * @entry: entry to update
1360 *
1361 * Makes sure the requested entry in parent is up to date.
1362 */
1363 static void amdgpu_vm_update_pde(struct amdgpu_pte_update_params *params,
1364 struct amdgpu_vm *vm,
1365 struct amdgpu_vm_pt *parent,
1366 struct amdgpu_vm_pt *entry)
1367 {
1368 struct amdgpu_bo *bo = parent->base.bo, *pbo;
1369 uint64_t pde, pt, flags;
1370 unsigned level;
1371
1372 /* Don't update huge pages here */
1373 if (entry->huge)
1374 return;
1375
1376 for (level = 0, pbo = bo->parent; pbo; ++level)
1377 pbo = pbo->parent;
1378
1379 level += params->adev->vm_manager.root_level;
1380 amdgpu_gmc_get_pde_for_bo(entry->base.bo, level, &pt, &flags);
1381 pde = (entry - parent->entries) * 8;
1382 amdgpu_vm_update_func(params, bo, pde, pt, 1, 0, flags);
1383 }
1384
1385 /*
1386 * amdgpu_vm_invalidate_pds - mark all PDs as invalid
1387 *
1388 * @adev: amdgpu_device pointer
1389 * @vm: related vm
1390 *
1391 * Mark all PD level as invalid after an error.
1392 */
1393 static void amdgpu_vm_invalidate_pds(struct amdgpu_device *adev,
1394 struct amdgpu_vm *vm)
1395 {
1396 struct amdgpu_vm_pt_cursor cursor;
1397 struct amdgpu_vm_pt *entry;
1398
1399 for_each_amdgpu_vm_pt_dfs_safe(adev, vm, cursor, entry)
1400 if (entry->base.bo && !entry->base.moved)
1401 amdgpu_vm_bo_relocated(&entry->base);
1402 }
1403
1404 /*
1405 * amdgpu_vm_update_directories - make sure that all directories are valid
1406 *
1407 * @adev: amdgpu_device pointer
1408 * @vm: requested vm
1409 *
1410 * Makes sure all directories are up to date.
1411 *
1412 * Returns:
1413 * 0 for success, error for failure.
1414 */
1415 int amdgpu_vm_update_directories(struct amdgpu_device *adev,
1416 struct amdgpu_vm *vm)
1417 {
1418 struct amdgpu_pte_update_params params;
1419 struct amdgpu_job *job;
1420 unsigned ndw = 0;
1421 int r = 0;
1422
1423 if (list_empty(&vm->relocated))
1424 return 0;
1425
1426 restart:
1427 memset(&params, 0, sizeof(params));
1428 params.adev = adev;
1429
1430 if (vm->use_cpu_for_update) {
1431 r = amdgpu_bo_sync_wait(vm->root.base.bo,
1432 AMDGPU_FENCE_OWNER_VM, true);
1433 if (unlikely(r))
1434 return r;
1435
1436 params.func = amdgpu_vm_cpu_set_ptes;
1437 } else {
1438 ndw = 512 * 8;
1439 r = amdgpu_job_alloc_with_ib(adev, ndw * 4, &job);
1440 if (r)
1441 return r;
1442
1443 params.ib = &job->ibs[0];
1444 params.func = amdgpu_vm_do_set_ptes;
1445 }
1446
1447 while (!list_empty(&vm->relocated)) {
1448 struct amdgpu_vm_pt *pt, *entry;
1449
1450 entry = list_first_entry(&vm->relocated, struct amdgpu_vm_pt,
1451 base.vm_status);
1452 amdgpu_vm_bo_idle(&entry->base);
1453
1454 pt = amdgpu_vm_pt_parent(entry);
1455 if (!pt)
1456 continue;
1457
1458 amdgpu_vm_update_pde(&params, vm, pt, entry);
1459
1460 if (!vm->use_cpu_for_update &&
1461 (ndw - params.ib->length_dw) < 32)
1462 break;
1463 }
1464
1465 if (vm->use_cpu_for_update) {
1466 /* Flush HDP */
1467 mb();
1468 amdgpu_asic_flush_hdp(adev, NULL);
1469 } else if (params.ib->length_dw == 0) {
1470 amdgpu_job_free(job);
1471 } else {
1472 struct amdgpu_bo *root = vm->root.base.bo;
1473 struct amdgpu_ring *ring;
1474 struct dma_fence *fence;
1475
1476 ring = container_of(vm->entity.rq->sched, struct amdgpu_ring,
1477 sched);
1478
1479 amdgpu_ring_pad_ib(ring, params.ib);
1480 amdgpu_sync_resv(adev, &job->sync, root->tbo.resv,
1481 AMDGPU_FENCE_OWNER_VM, false);
1482 WARN_ON(params.ib->length_dw > ndw);
1483 r = amdgpu_job_submit(job, &vm->entity, AMDGPU_FENCE_OWNER_VM,
1484 &fence);
1485 if (r)
1486 goto error;
1487
1488 amdgpu_bo_fence(root, fence, true);
1489 dma_fence_put(vm->last_update);
1490 vm->last_update = fence;
1491 }
1492
1493 if (!list_empty(&vm->relocated))
1494 goto restart;
1495
1496 return 0;
1497
1498 error:
1499 amdgpu_vm_invalidate_pds(adev, vm);
1500 amdgpu_job_free(job);
1501 return r;
1502 }
1503
1504 /**
1505 * amdgpu_vm_update_flags - figure out flags for PTE updates
1506 *
1507 * Make sure to set the right flags for the PTEs at the desired level.
1508 */
1509 static void amdgpu_vm_update_flags(struct amdgpu_pte_update_params *params,
1510 struct amdgpu_bo *bo, unsigned level,
1511 uint64_t pe, uint64_t addr,
1512 unsigned count, uint32_t incr,
1513 uint64_t flags)
1514
1515 {
1516 if (level != AMDGPU_VM_PTB) {
1517 flags |= AMDGPU_PDE_PTE;
1518 amdgpu_gmc_get_vm_pde(params->adev, level, &addr, &flags);
1519
1520 } else if (params->adev->asic_type >= CHIP_VEGA10 &&
1521 !(flags & AMDGPU_PTE_VALID) &&
1522 !(flags & AMDGPU_PTE_PRT)) {
1523
1524 /* Workaround for fault priority problem on GMC9 */
1525 flags |= AMDGPU_PTE_EXECUTABLE;
1526 }
1527
1528 amdgpu_vm_update_func(params, bo, pe, addr, count, incr, flags);
1529 }
1530
1531 /**
1532 * amdgpu_vm_fragment - get fragment for PTEs
1533 *
1534 * @params: see amdgpu_pte_update_params definition
1535 * @start: first PTE to handle
1536 * @end: last PTE to handle
1537 * @flags: hw mapping flags
1538 * @frag: resulting fragment size
1539 * @frag_end: end of this fragment
1540 *
1541 * Returns the first possible fragment for the start and end address.
1542 */
1543 static void amdgpu_vm_fragment(struct amdgpu_pte_update_params *params,
1544 uint64_t start, uint64_t end, uint64_t flags,
1545 unsigned int *frag, uint64_t *frag_end)
1546 {
1547 /**
1548 * The MC L1 TLB supports variable sized pages, based on a fragment
1549 * field in the PTE. When this field is set to a non-zero value, page
1550 * granularity is increased from 4KB to (1 << (12 + frag)). The PTE
1551 * flags are considered valid for all PTEs within the fragment range
1552 * and corresponding mappings are assumed to be physically contiguous.
1553 *
1554 * The L1 TLB can store a single PTE for the whole fragment,
1555 * significantly increasing the space available for translation
1556 * caching. This leads to large improvements in throughput when the
1557 * TLB is under pressure.
1558 *
1559 * The L2 TLB distributes small and large fragments into two
1560 * asymmetric partitions. The large fragment cache is significantly
1561 * larger. Thus, we try to use large fragments wherever possible.
1562 * Userspace can support this by aligning virtual base address and
1563 * allocation size to the fragment size.
1564 *
1565 * Starting with Vega10 the fragment size only controls the L1. The L2
1566 * is now directly feed with small/huge/giant pages from the walker.
1567 */
1568 unsigned max_frag;
1569
1570 if (params->adev->asic_type < CHIP_VEGA10)
1571 max_frag = params->adev->vm_manager.fragment_size;
1572 else
1573 max_frag = 31;
1574
1575 /* system pages are non continuously */
1576 if (params->src) {
1577 *frag = 0;
1578 *frag_end = end;
1579 return;
1580 }
1581
1582 /* This intentionally wraps around if no bit is set */
1583 *frag = min((unsigned)ffs(start) - 1, (unsigned)fls64(end - start) - 1);
1584 if (*frag >= max_frag) {
1585 *frag = max_frag;
1586 *frag_end = end & ~((1ULL << max_frag) - 1);
1587 } else {
1588 *frag_end = start + (1 << *frag);
1589 }
1590 }
1591
1592 /**
1593 * amdgpu_vm_update_ptes - make sure that page tables are valid
1594 *
1595 * @params: see amdgpu_pte_update_params definition
1596 * @start: start of GPU address range
1597 * @end: end of GPU address range
1598 * @dst: destination address to map to, the next dst inside the function
1599 * @flags: mapping flags
1600 *
1601 * Update the page tables in the range @start - @end.
1602 *
1603 * Returns:
1604 * 0 for success, -EINVAL for failure.
1605 */
1606 static int amdgpu_vm_update_ptes(struct amdgpu_pte_update_params *params,
1607 uint64_t start, uint64_t end,
1608 uint64_t dst, uint64_t flags)
1609 {
1610 struct amdgpu_device *adev = params->adev;
1611 struct amdgpu_vm_pt_cursor cursor;
1612 uint64_t frag_start = start, frag_end;
1613 unsigned int frag;
1614
1615 /* figure out the initial fragment */
1616 amdgpu_vm_fragment(params, frag_start, end, flags, &frag, &frag_end);
1617
1618 /* walk over the address space and update the PTs */
1619 amdgpu_vm_pt_start(adev, params->vm, start, &cursor);
1620 while (cursor.pfn < end) {
1621 struct amdgpu_bo *pt = cursor.entry->base.bo;
1622 unsigned shift, parent_shift, mask;
1623 uint64_t incr, entry_end, pe_start;
1624
1625 if (!pt)
1626 return -ENOENT;
1627
1628 /* The root level can't be a huge page */
1629 if (cursor.level == adev->vm_manager.root_level) {
1630 if (!amdgpu_vm_pt_descendant(adev, &cursor))
1631 return -ENOENT;
1632 continue;
1633 }
1634
1635 /* If it isn't already handled it can't be a huge page */
1636 if (cursor.entry->huge) {
1637 /* Add the entry to the relocated list to update it. */
1638 cursor.entry->huge = false;
1639 amdgpu_vm_bo_relocated(&cursor.entry->base);
1640 }
1641
1642 shift = amdgpu_vm_level_shift(adev, cursor.level);
1643 parent_shift = amdgpu_vm_level_shift(adev, cursor.level - 1);
1644 if (adev->asic_type < CHIP_VEGA10) {
1645 /* No huge page support before GMC v9 */
1646 if (cursor.level != AMDGPU_VM_PTB) {
1647 if (!amdgpu_vm_pt_descendant(adev, &cursor))
1648 return -ENOENT;
1649 continue;
1650 }
1651 } else if (frag < shift) {
1652 /* We can't use this level when the fragment size is
1653 * smaller than the address shift. Go to the next
1654 * child entry and try again.
1655 */
1656 if (!amdgpu_vm_pt_descendant(adev, &cursor))
1657 return -ENOENT;
1658 continue;
1659 } else if (frag >= parent_shift &&
1660 cursor.level - 1 != adev->vm_manager.root_level) {
1661 /* If the fragment size is even larger than the parent
1662 * shift we should go up one level and check it again
1663 * unless one level up is the root level.
1664 */
1665 if (!amdgpu_vm_pt_ancestor(&cursor))
1666 return -ENOENT;
1667 continue;
1668 }
1669
1670 /* Looks good so far, calculate parameters for the update */
1671 incr = (uint64_t)AMDGPU_GPU_PAGE_SIZE << shift;
1672 mask = amdgpu_vm_entries_mask(adev, cursor.level);
1673 pe_start = ((cursor.pfn >> shift) & mask) * 8;
1674 entry_end = (uint64_t)(mask + 1) << shift;
1675 entry_end += cursor.pfn & ~(entry_end - 1);
1676 entry_end = min(entry_end, end);
1677
1678 do {
1679 uint64_t upd_end = min(entry_end, frag_end);
1680 unsigned nptes = (upd_end - frag_start) >> shift;
1681
1682 amdgpu_vm_update_flags(params, pt, cursor.level,
1683 pe_start, dst, nptes, incr,
1684 flags | AMDGPU_PTE_FRAG(frag));
1685
1686 pe_start += nptes * 8;
1687 dst += (uint64_t)nptes * AMDGPU_GPU_PAGE_SIZE << shift;
1688
1689 frag_start = upd_end;
1690 if (frag_start >= frag_end) {
1691 /* figure out the next fragment */
1692 amdgpu_vm_fragment(params, frag_start, end,
1693 flags, &frag, &frag_end);
1694 if (frag < shift)
1695 break;
1696 }
1697 } while (frag_start < entry_end);
1698
1699 if (amdgpu_vm_pt_descendant(adev, &cursor)) {
1700 /* Mark all child entries as huge */
1701 while (cursor.pfn < frag_start) {
1702 cursor.entry->huge = true;
1703 amdgpu_vm_pt_next(adev, &cursor);
1704 }
1705
1706 } else if (frag >= shift) {
1707 /* or just move on to the next on the same level. */
1708 amdgpu_vm_pt_next(adev, &cursor);
1709 }
1710 }
1711
1712 return 0;
1713 }
1714
1715 /**
1716 * amdgpu_vm_bo_update_mapping - update a mapping in the vm page table
1717 *
1718 * @adev: amdgpu_device pointer
1719 * @exclusive: fence we need to sync to
1720 * @pages_addr: DMA addresses to use for mapping
1721 * @vm: requested vm
1722 * @start: start of mapped range
1723 * @last: last mapped entry
1724 * @flags: flags for the entries
1725 * @addr: addr to set the area to
1726 * @fence: optional resulting fence
1727 *
1728 * Fill in the page table entries between @start and @last.
1729 *
1730 * Returns:
1731 * 0 for success, -EINVAL for failure.
1732 */
1733 static int amdgpu_vm_bo_update_mapping(struct amdgpu_device *adev,
1734 struct dma_fence *exclusive,
1735 dma_addr_t *pages_addr,
1736 struct amdgpu_vm *vm,
1737 uint64_t start, uint64_t last,
1738 uint64_t flags, uint64_t addr,
1739 struct dma_fence **fence)
1740 {
1741 struct amdgpu_ring *ring;
1742 void *owner = AMDGPU_FENCE_OWNER_VM;
1743 unsigned nptes, ncmds, ndw;
1744 struct amdgpu_job *job;
1745 struct amdgpu_pte_update_params params;
1746 struct dma_fence *f = NULL;
1747 int r;
1748
1749 memset(&params, 0, sizeof(params));
1750 params.adev = adev;
1751 params.vm = vm;
1752
1753 /* sync to everything except eviction fences on unmapping */
1754 if (!(flags & AMDGPU_PTE_VALID))
1755 owner = AMDGPU_FENCE_OWNER_KFD;
1756
1757 if (vm->use_cpu_for_update) {
1758 /* params.src is used as flag to indicate system Memory */
1759 if (pages_addr)
1760 params.src = ~0;
1761
1762 /* Wait for PT BOs to be idle. PTs share the same resv. object
1763 * as the root PD BO
1764 */
1765 r = amdgpu_bo_sync_wait(vm->root.base.bo, owner, true);
1766 if (unlikely(r))
1767 return r;
1768
1769 /* Wait for any BO move to be completed */
1770 if (exclusive) {
1771 r = dma_fence_wait(exclusive, true);
1772 if (unlikely(r))
1773 return r;
1774 }
1775
1776 params.func = amdgpu_vm_cpu_set_ptes;
1777 params.pages_addr = pages_addr;
1778 return amdgpu_vm_update_ptes(&params, start, last + 1,
1779 addr, flags);
1780 }
1781
1782 ring = container_of(vm->entity.rq->sched, struct amdgpu_ring, sched);
1783
1784 nptes = last - start + 1;
1785
1786 /*
1787 * reserve space for two commands every (1 << BLOCK_SIZE)
1788 * entries or 2k dwords (whatever is smaller)
1789 */
1790 ncmds = ((nptes >> min(adev->vm_manager.block_size, 11u)) + 1);
1791
1792 /* The second command is for the shadow pagetables. */
1793 if (vm->root.base.bo->shadow)
1794 ncmds *= 2;
1795
1796 /* padding, etc. */
1797 ndw = 64;
1798
1799 if (pages_addr) {
1800 /* copy commands needed */
1801 ndw += ncmds * adev->vm_manager.vm_pte_funcs->copy_pte_num_dw;
1802
1803 /* and also PTEs */
1804 ndw += nptes * 2;
1805
1806 params.func = amdgpu_vm_do_copy_ptes;
1807
1808 } else {
1809 /* set page commands needed */
1810 ndw += ncmds * 10;
1811
1812 /* extra commands for begin/end fragments */
1813 ncmds = 2 * adev->vm_manager.fragment_size;
1814 if (vm->root.base.bo->shadow)
1815 ncmds *= 2;
1816
1817 ndw += 10 * ncmds;
1818
1819 params.func = amdgpu_vm_do_set_ptes;
1820 }
1821
1822 r = amdgpu_job_alloc_with_ib(adev, ndw * 4, &job);
1823 if (r)
1824 return r;
1825
1826 params.ib = &job->ibs[0];
1827
1828 if (pages_addr) {
1829 uint64_t *pte;
1830 unsigned i;
1831
1832 /* Put the PTEs at the end of the IB. */
1833 i = ndw - nptes * 2;
1834 pte= (uint64_t *)&(job->ibs->ptr[i]);
1835 params.src = job->ibs->gpu_addr + i * 4;
1836
1837 for (i = 0; i < nptes; ++i) {
1838 pte[i] = amdgpu_vm_map_gart(pages_addr, addr + i *
1839 AMDGPU_GPU_PAGE_SIZE);
1840 pte[i] |= flags;
1841 }
1842 addr = 0;
1843 }
1844
1845 r = amdgpu_sync_fence(adev, &job->sync, exclusive, false);
1846 if (r)
1847 goto error_free;
1848
1849 r = amdgpu_sync_resv(adev, &job->sync, vm->root.base.bo->tbo.resv,
1850 owner, false);
1851 if (r)
1852 goto error_free;
1853
1854 r = amdgpu_vm_update_ptes(&params, start, last + 1, addr, flags);
1855 if (r)
1856 goto error_free;
1857
1858 amdgpu_ring_pad_ib(ring, params.ib);
1859 WARN_ON(params.ib->length_dw > ndw);
1860 r = amdgpu_job_submit(job, &vm->entity, AMDGPU_FENCE_OWNER_VM, &f);
1861 if (r)
1862 goto error_free;
1863
1864 amdgpu_bo_fence(vm->root.base.bo, f, true);
1865 dma_fence_put(*fence);
1866 *fence = f;
1867 return 0;
1868
1869 error_free:
1870 amdgpu_job_free(job);
1871 return r;
1872 }
1873
1874 /**
1875 * amdgpu_vm_bo_split_mapping - split a mapping into smaller chunks
1876 *
1877 * @adev: amdgpu_device pointer
1878 * @exclusive: fence we need to sync to
1879 * @pages_addr: DMA addresses to use for mapping
1880 * @vm: requested vm
1881 * @mapping: mapped range and flags to use for the update
1882 * @flags: HW flags for the mapping
1883 * @nodes: array of drm_mm_nodes with the MC addresses
1884 * @fence: optional resulting fence
1885 *
1886 * Split the mapping into smaller chunks so that each update fits
1887 * into a SDMA IB.
1888 *
1889 * Returns:
1890 * 0 for success, -EINVAL for failure.
1891 */
1892 static int amdgpu_vm_bo_split_mapping(struct amdgpu_device *adev,
1893 struct dma_fence *exclusive,
1894 dma_addr_t *pages_addr,
1895 struct amdgpu_vm *vm,
1896 struct amdgpu_bo_va_mapping *mapping,
1897 uint64_t flags,
1898 struct drm_mm_node *nodes,
1899 struct dma_fence **fence)
1900 {
1901 unsigned min_linear_pages = 1 << adev->vm_manager.fragment_size;
1902 uint64_t pfn, start = mapping->start;
1903 int r;
1904
1905 /* normally,bo_va->flags only contians READABLE and WIRTEABLE bit go here
1906 * but in case of something, we filter the flags in first place
1907 */
1908 if (!(mapping->flags & AMDGPU_PTE_READABLE))
1909 flags &= ~AMDGPU_PTE_READABLE;
1910 if (!(mapping->flags & AMDGPU_PTE_WRITEABLE))
1911 flags &= ~AMDGPU_PTE_WRITEABLE;
1912
1913 flags &= ~AMDGPU_PTE_EXECUTABLE;
1914 flags |= mapping->flags & AMDGPU_PTE_EXECUTABLE;
1915
1916 flags &= ~AMDGPU_PTE_MTYPE_MASK;
1917 flags |= (mapping->flags & AMDGPU_PTE_MTYPE_MASK);
1918
1919 if ((mapping->flags & AMDGPU_PTE_PRT) &&
1920 (adev->asic_type >= CHIP_VEGA10)) {
1921 flags |= AMDGPU_PTE_PRT;
1922 flags &= ~AMDGPU_PTE_VALID;
1923 }
1924
1925 trace_amdgpu_vm_bo_update(mapping);
1926
1927 pfn = mapping->offset >> PAGE_SHIFT;
1928 if (nodes) {
1929 while (pfn >= nodes->size) {
1930 pfn -= nodes->size;
1931 ++nodes;
1932 }
1933 }
1934
1935 do {
1936 dma_addr_t *dma_addr = NULL;
1937 uint64_t max_entries;
1938 uint64_t addr, last;
1939
1940 if (nodes) {
1941 addr = nodes->start << PAGE_SHIFT;
1942 max_entries = (nodes->size - pfn) *
1943 AMDGPU_GPU_PAGES_IN_CPU_PAGE;
1944 } else {
1945 addr = 0;
1946 max_entries = S64_MAX;
1947 }
1948
1949 if (pages_addr) {
1950 uint64_t count;
1951
1952 max_entries = min(max_entries, 16ull * 1024ull);
1953 for (count = 1;
1954 count < max_entries / AMDGPU_GPU_PAGES_IN_CPU_PAGE;
1955 ++count) {
1956 uint64_t idx = pfn + count;
1957
1958 if (pages_addr[idx] !=
1959 (pages_addr[idx - 1] + PAGE_SIZE))
1960 break;
1961 }
1962
1963 if (count < min_linear_pages) {
1964 addr = pfn << PAGE_SHIFT;
1965 dma_addr = pages_addr;
1966 } else {
1967 addr = pages_addr[pfn];
1968 max_entries = count * AMDGPU_GPU_PAGES_IN_CPU_PAGE;
1969 }
1970
1971 } else if (flags & AMDGPU_PTE_VALID) {
1972 addr += adev->vm_manager.vram_base_offset;
1973 addr += pfn << PAGE_SHIFT;
1974 }
1975
1976 last = min((uint64_t)mapping->last, start + max_entries - 1);
1977 r = amdgpu_vm_bo_update_mapping(adev, exclusive, dma_addr, vm,
1978 start, last, flags, addr,
1979 fence);
1980 if (r)
1981 return r;
1982
1983 pfn += (last - start + 1) / AMDGPU_GPU_PAGES_IN_CPU_PAGE;
1984 if (nodes && nodes->size == pfn) {
1985 pfn = 0;
1986 ++nodes;
1987 }
1988 start = last + 1;
1989
1990 } while (unlikely(start != mapping->last + 1));
1991
1992 return 0;
1993 }
1994
1995 /**
1996 * amdgpu_vm_bo_update - update all BO mappings in the vm page table
1997 *
1998 * @adev: amdgpu_device pointer
1999 * @bo_va: requested BO and VM object
2000 * @clear: if true clear the entries
2001 *
2002 * Fill in the page table entries for @bo_va.
2003 *
2004 * Returns:
2005 * 0 for success, -EINVAL for failure.
2006 */
2007 int amdgpu_vm_bo_update(struct amdgpu_device *adev,
2008 struct amdgpu_bo_va *bo_va,
2009 bool clear)
2010 {
2011 struct amdgpu_bo *bo = bo_va->base.bo;
2012 struct amdgpu_vm *vm = bo_va->base.vm;
2013 struct amdgpu_bo_va_mapping *mapping;
2014 dma_addr_t *pages_addr = NULL;
2015 struct ttm_mem_reg *mem;
2016 struct drm_mm_node *nodes;
2017 struct dma_fence *exclusive, **last_update;
2018 uint64_t flags;
2019 int r;
2020
2021 if (clear || !bo) {
2022 mem = NULL;
2023 nodes = NULL;
2024 exclusive = NULL;
2025 } else {
2026 struct ttm_dma_tt *ttm;
2027
2028 mem = &bo->tbo.mem;
2029 nodes = mem->mm_node;
2030 if (mem->mem_type == TTM_PL_TT) {
2031 ttm = container_of(bo->tbo.ttm, struct ttm_dma_tt, ttm);
2032 pages_addr = ttm->dma_address;
2033 }
2034 exclusive = reservation_object_get_excl(bo->tbo.resv);
2035 }
2036
2037 if (bo)
2038 flags = amdgpu_ttm_tt_pte_flags(adev, bo->tbo.ttm, mem);
2039 else
2040 flags = 0x0;
2041
2042 if (clear || (bo && bo->tbo.resv == vm->root.base.bo->tbo.resv))
2043 last_update = &vm->last_update;
2044 else
2045 last_update = &bo_va->last_pt_update;
2046
2047 if (!clear && bo_va->base.moved) {
2048 bo_va->base.moved = false;
2049 list_splice_init(&bo_va->valids, &bo_va->invalids);
2050
2051 } else if (bo_va->cleared != clear) {
2052 list_splice_init(&bo_va->valids, &bo_va->invalids);
2053 }
2054
2055 list_for_each_entry(mapping, &bo_va->invalids, list) {
2056 r = amdgpu_vm_bo_split_mapping(adev, exclusive, pages_addr, vm,
2057 mapping, flags, nodes,
2058 last_update);
2059 if (r)
2060 return r;
2061 }
2062
2063 if (vm->use_cpu_for_update) {
2064 /* Flush HDP */
2065 mb();
2066 amdgpu_asic_flush_hdp(adev, NULL);
2067 }
2068
2069 /* If the BO is not in its preferred location add it back to
2070 * the evicted list so that it gets validated again on the
2071 * next command submission.
2072 */
2073 if (bo && bo->tbo.resv == vm->root.base.bo->tbo.resv) {
2074 uint32_t mem_type = bo->tbo.mem.mem_type;
2075
2076 if (!(bo->preferred_domains & amdgpu_mem_type_to_domain(mem_type)))
2077 amdgpu_vm_bo_evicted(&bo_va->base);
2078 else
2079 amdgpu_vm_bo_idle(&bo_va->base);
2080 } else {
2081 amdgpu_vm_bo_done(&bo_va->base);
2082 }
2083
2084 list_splice_init(&bo_va->invalids, &bo_va->valids);
2085 bo_va->cleared = clear;
2086
2087 if (trace_amdgpu_vm_bo_mapping_enabled()) {
2088 list_for_each_entry(mapping, &bo_va->valids, list)
2089 trace_amdgpu_vm_bo_mapping(mapping);
2090 }
2091
2092 return 0;
2093 }
2094
2095 /**
2096 * amdgpu_vm_update_prt_state - update the global PRT state
2097 *
2098 * @adev: amdgpu_device pointer
2099 */
2100 static void amdgpu_vm_update_prt_state(struct amdgpu_device *adev)
2101 {
2102 unsigned long flags;
2103 bool enable;
2104
2105 spin_lock_irqsave(&adev->vm_manager.prt_lock, flags);
2106 enable = !!atomic_read(&adev->vm_manager.num_prt_users);
2107 adev->gmc.gmc_funcs->set_prt(adev, enable);
2108 spin_unlock_irqrestore(&adev->vm_manager.prt_lock, flags);
2109 }
2110
2111 /**
2112 * amdgpu_vm_prt_get - add a PRT user
2113 *
2114 * @adev: amdgpu_device pointer
2115 */
2116 static void amdgpu_vm_prt_get(struct amdgpu_device *adev)
2117 {
2118 if (!adev->gmc.gmc_funcs->set_prt)
2119 return;
2120
2121 if (atomic_inc_return(&adev->vm_manager.num_prt_users) == 1)
2122 amdgpu_vm_update_prt_state(adev);
2123 }
2124
2125 /**
2126 * amdgpu_vm_prt_put - drop a PRT user
2127 *
2128 * @adev: amdgpu_device pointer
2129 */
2130 static void amdgpu_vm_prt_put(struct amdgpu_device *adev)
2131 {
2132 if (atomic_dec_return(&adev->vm_manager.num_prt_users) == 0)
2133 amdgpu_vm_update_prt_state(adev);
2134 }
2135
2136 /**
2137 * amdgpu_vm_prt_cb - callback for updating the PRT status
2138 *
2139 * @fence: fence for the callback
2140 * @_cb: the callback function
2141 */
2142 static void amdgpu_vm_prt_cb(struct dma_fence *fence, struct dma_fence_cb *_cb)
2143 {
2144 struct amdgpu_prt_cb *cb = container_of(_cb, struct amdgpu_prt_cb, cb);
2145
2146 amdgpu_vm_prt_put(cb->adev);
2147 kfree(cb);
2148 }
2149
2150 /**
2151 * amdgpu_vm_add_prt_cb - add callback for updating the PRT status
2152 *
2153 * @adev: amdgpu_device pointer
2154 * @fence: fence for the callback
2155 */
2156 static void amdgpu_vm_add_prt_cb(struct amdgpu_device *adev,
2157 struct dma_fence *fence)
2158 {
2159 struct amdgpu_prt_cb *cb;
2160
2161 if (!adev->gmc.gmc_funcs->set_prt)
2162 return;
2163
2164 cb = kmalloc(sizeof(struct amdgpu_prt_cb), GFP_KERNEL);
2165 if (!cb) {
2166 /* Last resort when we are OOM */
2167 if (fence)
2168 dma_fence_wait(fence, false);
2169
2170 amdgpu_vm_prt_put(adev);
2171 } else {
2172 cb->adev = adev;
2173 if (!fence || dma_fence_add_callback(fence, &cb->cb,
2174 amdgpu_vm_prt_cb))
2175 amdgpu_vm_prt_cb(fence, &cb->cb);
2176 }
2177 }
2178
2179 /**
2180 * amdgpu_vm_free_mapping - free a mapping
2181 *
2182 * @adev: amdgpu_device pointer
2183 * @vm: requested vm
2184 * @mapping: mapping to be freed
2185 * @fence: fence of the unmap operation
2186 *
2187 * Free a mapping and make sure we decrease the PRT usage count if applicable.
2188 */
2189 static void amdgpu_vm_free_mapping(struct amdgpu_device *adev,
2190 struct amdgpu_vm *vm,
2191 struct amdgpu_bo_va_mapping *mapping,
2192 struct dma_fence *fence)
2193 {
2194 if (mapping->flags & AMDGPU_PTE_PRT)
2195 amdgpu_vm_add_prt_cb(adev, fence);
2196 kfree(mapping);
2197 }
2198
2199 /**
2200 * amdgpu_vm_prt_fini - finish all prt mappings
2201 *
2202 * @adev: amdgpu_device pointer
2203 * @vm: requested vm
2204 *
2205 * Register a cleanup callback to disable PRT support after VM dies.
2206 */
2207 static void amdgpu_vm_prt_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm)
2208 {
2209 struct reservation_object *resv = vm->root.base.bo->tbo.resv;
2210 struct dma_fence *excl, **shared;
2211 unsigned i, shared_count;
2212 int r;
2213
2214 r = reservation_object_get_fences_rcu(resv, &excl,
2215 &shared_count, &shared);
2216 if (r) {
2217 /* Not enough memory to grab the fence list, as last resort
2218 * block for all the fences to complete.
2219 */
2220 reservation_object_wait_timeout_rcu(resv, true, false,
2221 MAX_SCHEDULE_TIMEOUT);
2222 return;
2223 }
2224
2225 /* Add a callback for each fence in the reservation object */
2226 amdgpu_vm_prt_get(adev);
2227 amdgpu_vm_add_prt_cb(adev, excl);
2228
2229 for (i = 0; i < shared_count; ++i) {
2230 amdgpu_vm_prt_get(adev);
2231 amdgpu_vm_add_prt_cb(adev, shared[i]);
2232 }
2233
2234 kfree(shared);
2235 }
2236
2237 /**
2238 * amdgpu_vm_clear_freed - clear freed BOs in the PT
2239 *
2240 * @adev: amdgpu_device pointer
2241 * @vm: requested vm
2242 * @fence: optional resulting fence (unchanged if no work needed to be done
2243 * or if an error occurred)
2244 *
2245 * Make sure all freed BOs are cleared in the PT.
2246 * PTs have to be reserved and mutex must be locked!
2247 *
2248 * Returns:
2249 * 0 for success.
2250 *
2251 */
2252 int amdgpu_vm_clear_freed(struct amdgpu_device *adev,
2253 struct amdgpu_vm *vm,
2254 struct dma_fence **fence)
2255 {
2256 struct amdgpu_bo_va_mapping *mapping;
2257 uint64_t init_pte_value = 0;
2258 struct dma_fence *f = NULL;
2259 int r;
2260
2261 while (!list_empty(&vm->freed)) {
2262 mapping = list_first_entry(&vm->freed,
2263 struct amdgpu_bo_va_mapping, list);
2264 list_del(&mapping->list);
2265
2266 if (vm->pte_support_ats &&
2267 mapping->start < AMDGPU_GMC_HOLE_START)
2268 init_pte_value = AMDGPU_PTE_DEFAULT_ATC;
2269
2270 r = amdgpu_vm_bo_update_mapping(adev, NULL, NULL, vm,
2271 mapping->start, mapping->last,
2272 init_pte_value, 0, &f);
2273 amdgpu_vm_free_mapping(adev, vm, mapping, f);
2274 if (r) {
2275 dma_fence_put(f);
2276 return r;
2277 }
2278 }
2279
2280 if (fence && f) {
2281 dma_fence_put(*fence);
2282 *fence = f;
2283 } else {
2284 dma_fence_put(f);
2285 }
2286
2287 return 0;
2288
2289 }
2290
2291 /**
2292 * amdgpu_vm_handle_moved - handle moved BOs in the PT
2293 *
2294 * @adev: amdgpu_device pointer
2295 * @vm: requested vm
2296 *
2297 * Make sure all BOs which are moved are updated in the PTs.
2298 *
2299 * Returns:
2300 * 0 for success.
2301 *
2302 * PTs have to be reserved!
2303 */
2304 int amdgpu_vm_handle_moved(struct amdgpu_device *adev,
2305 struct amdgpu_vm *vm)
2306 {
2307 struct amdgpu_bo_va *bo_va, *tmp;
2308 struct reservation_object *resv;
2309 bool clear;
2310 int r;
2311
2312 list_for_each_entry_safe(bo_va, tmp, &vm->moved, base.vm_status) {
2313 /* Per VM BOs never need to bo cleared in the page tables */
2314 r = amdgpu_vm_bo_update(adev, bo_va, false);
2315 if (r)
2316 return r;
2317 }
2318
2319 spin_lock(&vm->invalidated_lock);
2320 while (!list_empty(&vm->invalidated)) {
2321 bo_va = list_first_entry(&vm->invalidated, struct amdgpu_bo_va,
2322 base.vm_status);
2323 resv = bo_va->base.bo->tbo.resv;
2324 spin_unlock(&vm->invalidated_lock);
2325
2326 /* Try to reserve the BO to avoid clearing its ptes */
2327 if (!amdgpu_vm_debug && reservation_object_trylock(resv))
2328 clear = false;
2329 /* Somebody else is using the BO right now */
2330 else
2331 clear = true;
2332
2333 r = amdgpu_vm_bo_update(adev, bo_va, clear);
2334 if (r)
2335 return r;
2336
2337 if (!clear)
2338 reservation_object_unlock(resv);
2339 spin_lock(&vm->invalidated_lock);
2340 }
2341 spin_unlock(&vm->invalidated_lock);
2342
2343 return 0;
2344 }
2345
2346 /**
2347 * amdgpu_vm_bo_add - add a bo to a specific vm
2348 *
2349 * @adev: amdgpu_device pointer
2350 * @vm: requested vm
2351 * @bo: amdgpu buffer object
2352 *
2353 * Add @bo into the requested vm.
2354 * Add @bo to the list of bos associated with the vm
2355 *
2356 * Returns:
2357 * Newly added bo_va or NULL for failure
2358 *
2359 * Object has to be reserved!
2360 */
2361 struct amdgpu_bo_va *amdgpu_vm_bo_add(struct amdgpu_device *adev,
2362 struct amdgpu_vm *vm,
2363 struct amdgpu_bo *bo)
2364 {
2365 struct amdgpu_bo_va *bo_va;
2366
2367 bo_va = kzalloc(sizeof(struct amdgpu_bo_va), GFP_KERNEL);
2368 if (bo_va == NULL) {
2369 return NULL;
2370 }
2371 amdgpu_vm_bo_base_init(&bo_va->base, vm, bo);
2372
2373 bo_va->ref_count = 1;
2374 INIT_LIST_HEAD(&bo_va->valids);
2375 INIT_LIST_HEAD(&bo_va->invalids);
2376
2377 return bo_va;
2378 }
2379
2380
2381 /**
2382 * amdgpu_vm_bo_insert_mapping - insert a new mapping
2383 *
2384 * @adev: amdgpu_device pointer
2385 * @bo_va: bo_va to store the address
2386 * @mapping: the mapping to insert
2387 *
2388 * Insert a new mapping into all structures.
2389 */
2390 static void amdgpu_vm_bo_insert_map(struct amdgpu_device *adev,
2391 struct amdgpu_bo_va *bo_va,
2392 struct amdgpu_bo_va_mapping *mapping)
2393 {
2394 struct amdgpu_vm *vm = bo_va->base.vm;
2395 struct amdgpu_bo *bo = bo_va->base.bo;
2396
2397 mapping->bo_va = bo_va;
2398 list_add(&mapping->list, &bo_va->invalids);
2399 amdgpu_vm_it_insert(mapping, &vm->va);
2400
2401 if (mapping->flags & AMDGPU_PTE_PRT)
2402 amdgpu_vm_prt_get(adev);
2403
2404 if (bo && bo->tbo.resv == vm->root.base.bo->tbo.resv &&
2405 !bo_va->base.moved) {
2406 list_move(&bo_va->base.vm_status, &vm->moved);
2407 }
2408 trace_amdgpu_vm_bo_map(bo_va, mapping);
2409 }
2410
2411 /**
2412 * amdgpu_vm_bo_map - map bo inside a vm
2413 *
2414 * @adev: amdgpu_device pointer
2415 * @bo_va: bo_va to store the address
2416 * @saddr: where to map the BO
2417 * @offset: requested offset in the BO
2418 * @size: BO size in bytes
2419 * @flags: attributes of pages (read/write/valid/etc.)
2420 *
2421 * Add a mapping of the BO at the specefied addr into the VM.
2422 *
2423 * Returns:
2424 * 0 for success, error for failure.
2425 *
2426 * Object has to be reserved and unreserved outside!
2427 */
2428 int amdgpu_vm_bo_map(struct amdgpu_device *adev,
2429 struct amdgpu_bo_va *bo_va,
2430 uint64_t saddr, uint64_t offset,
2431 uint64_t size, uint64_t flags)
2432 {
2433 struct amdgpu_bo_va_mapping *mapping, *tmp;
2434 struct amdgpu_bo *bo = bo_va->base.bo;
2435 struct amdgpu_vm *vm = bo_va->base.vm;
2436 uint64_t eaddr;
2437
2438 /* validate the parameters */
2439 if (saddr & AMDGPU_GPU_PAGE_MASK || offset & AMDGPU_GPU_PAGE_MASK ||
2440 size == 0 || size & AMDGPU_GPU_PAGE_MASK)
2441 return -EINVAL;
2442
2443 /* make sure object fit at this offset */
2444 eaddr = saddr + size - 1;
2445 if (saddr >= eaddr ||
2446 (bo && offset + size > amdgpu_bo_size(bo)))
2447 return -EINVAL;
2448
2449 saddr /= AMDGPU_GPU_PAGE_SIZE;
2450 eaddr /= AMDGPU_GPU_PAGE_SIZE;
2451
2452 tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr);
2453 if (tmp) {
2454 /* bo and tmp overlap, invalid addr */
2455 dev_err(adev->dev, "bo %p va 0x%010Lx-0x%010Lx conflict with "
2456 "0x%010Lx-0x%010Lx\n", bo, saddr, eaddr,
2457 tmp->start, tmp->last + 1);
2458 return -EINVAL;
2459 }
2460
2461 mapping = kmalloc(sizeof(*mapping), GFP_KERNEL);
2462 if (!mapping)
2463 return -ENOMEM;
2464
2465 mapping->start = saddr;
2466 mapping->last = eaddr;
2467 mapping->offset = offset;
2468 mapping->flags = flags;
2469
2470 amdgpu_vm_bo_insert_map(adev, bo_va, mapping);
2471
2472 return 0;
2473 }
2474
2475 /**
2476 * amdgpu_vm_bo_replace_map - map bo inside a vm, replacing existing mappings
2477 *
2478 * @adev: amdgpu_device pointer
2479 * @bo_va: bo_va to store the address
2480 * @saddr: where to map the BO
2481 * @offset: requested offset in the BO
2482 * @size: BO size in bytes
2483 * @flags: attributes of pages (read/write/valid/etc.)
2484 *
2485 * Add a mapping of the BO at the specefied addr into the VM. Replace existing
2486 * mappings as we do so.
2487 *
2488 * Returns:
2489 * 0 for success, error for failure.
2490 *
2491 * Object has to be reserved and unreserved outside!
2492 */
2493 int amdgpu_vm_bo_replace_map(struct amdgpu_device *adev,
2494 struct amdgpu_bo_va *bo_va,
2495 uint64_t saddr, uint64_t offset,
2496 uint64_t size, uint64_t flags)
2497 {
2498 struct amdgpu_bo_va_mapping *mapping;
2499 struct amdgpu_bo *bo = bo_va->base.bo;
2500 uint64_t eaddr;
2501 int r;
2502
2503 /* validate the parameters */
2504 if (saddr & AMDGPU_GPU_PAGE_MASK || offset & AMDGPU_GPU_PAGE_MASK ||
2505 size == 0 || size & AMDGPU_GPU_PAGE_MASK)
2506 return -EINVAL;
2507
2508 /* make sure object fit at this offset */
2509 eaddr = saddr + size - 1;
2510 if (saddr >= eaddr ||
2511 (bo && offset + size > amdgpu_bo_size(bo)))
2512 return -EINVAL;
2513
2514 /* Allocate all the needed memory */
2515 mapping = kmalloc(sizeof(*mapping), GFP_KERNEL);
2516 if (!mapping)
2517 return -ENOMEM;
2518
2519 r = amdgpu_vm_bo_clear_mappings(adev, bo_va->base.vm, saddr, size);
2520 if (r) {
2521 kfree(mapping);
2522 return r;
2523 }
2524
2525 saddr /= AMDGPU_GPU_PAGE_SIZE;
2526 eaddr /= AMDGPU_GPU_PAGE_SIZE;
2527
2528 mapping->start = saddr;
2529 mapping->last = eaddr;
2530 mapping->offset = offset;
2531 mapping->flags = flags;
2532
2533 amdgpu_vm_bo_insert_map(adev, bo_va, mapping);
2534
2535 return 0;
2536 }
2537
2538 /**
2539 * amdgpu_vm_bo_unmap - remove bo mapping from vm
2540 *
2541 * @adev: amdgpu_device pointer
2542 * @bo_va: bo_va to remove the address from
2543 * @saddr: where to the BO is mapped
2544 *
2545 * Remove a mapping of the BO at the specefied addr from the VM.
2546 *
2547 * Returns:
2548 * 0 for success, error for failure.
2549 *
2550 * Object has to be reserved and unreserved outside!
2551 */
2552 int amdgpu_vm_bo_unmap(struct amdgpu_device *adev,
2553 struct amdgpu_bo_va *bo_va,
2554 uint64_t saddr)
2555 {
2556 struct amdgpu_bo_va_mapping *mapping;
2557 struct amdgpu_vm *vm = bo_va->base.vm;
2558 bool valid = true;
2559
2560 saddr /= AMDGPU_GPU_PAGE_SIZE;
2561
2562 list_for_each_entry(mapping, &bo_va->valids, list) {
2563 if (mapping->start == saddr)
2564 break;
2565 }
2566
2567 if (&mapping->list == &bo_va->valids) {
2568 valid = false;
2569
2570 list_for_each_entry(mapping, &bo_va->invalids, list) {
2571 if (mapping->start == saddr)
2572 break;
2573 }
2574
2575 if (&mapping->list == &bo_va->invalids)
2576 return -ENOENT;
2577 }
2578
2579 list_del(&mapping->list);
2580 amdgpu_vm_it_remove(mapping, &vm->va);
2581 mapping->bo_va = NULL;
2582 trace_amdgpu_vm_bo_unmap(bo_va, mapping);
2583
2584 if (valid)
2585 list_add(&mapping->list, &vm->freed);
2586 else
2587 amdgpu_vm_free_mapping(adev, vm, mapping,
2588 bo_va->last_pt_update);
2589
2590 return 0;
2591 }
2592
2593 /**
2594 * amdgpu_vm_bo_clear_mappings - remove all mappings in a specific range
2595 *
2596 * @adev: amdgpu_device pointer
2597 * @vm: VM structure to use
2598 * @saddr: start of the range
2599 * @size: size of the range
2600 *
2601 * Remove all mappings in a range, split them as appropriate.
2602 *
2603 * Returns:
2604 * 0 for success, error for failure.
2605 */
2606 int amdgpu_vm_bo_clear_mappings(struct amdgpu_device *adev,
2607 struct amdgpu_vm *vm,
2608 uint64_t saddr, uint64_t size)
2609 {
2610 struct amdgpu_bo_va_mapping *before, *after, *tmp, *next;
2611 LIST_HEAD(removed);
2612 uint64_t eaddr;
2613
2614 eaddr = saddr + size - 1;
2615 saddr /= AMDGPU_GPU_PAGE_SIZE;
2616 eaddr /= AMDGPU_GPU_PAGE_SIZE;
2617
2618 /* Allocate all the needed memory */
2619 before = kzalloc(sizeof(*before), GFP_KERNEL);
2620 if (!before)
2621 return -ENOMEM;
2622 INIT_LIST_HEAD(&before->list);
2623
2624 after = kzalloc(sizeof(*after), GFP_KERNEL);
2625 if (!after) {
2626 kfree(before);
2627 return -ENOMEM;
2628 }
2629 INIT_LIST_HEAD(&after->list);
2630
2631 /* Now gather all removed mappings */
2632 tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr);
2633 while (tmp) {
2634 /* Remember mapping split at the start */
2635 if (tmp->start < saddr) {
2636 before->start = tmp->start;
2637 before->last = saddr - 1;
2638 before->offset = tmp->offset;
2639 before->flags = tmp->flags;
2640 before->bo_va = tmp->bo_va;
2641 list_add(&before->list, &tmp->bo_va->invalids);
2642 }
2643
2644 /* Remember mapping split at the end */
2645 if (tmp->last > eaddr) {
2646 after->start = eaddr + 1;
2647 after->last = tmp->last;
2648 after->offset = tmp->offset;
2649 after->offset += after->start - tmp->start;
2650 after->flags = tmp->flags;
2651 after->bo_va = tmp->bo_va;
2652 list_add(&after->list, &tmp->bo_va->invalids);
2653 }
2654
2655 list_del(&tmp->list);
2656 list_add(&tmp->list, &removed);
2657
2658 tmp = amdgpu_vm_it_iter_next(tmp, saddr, eaddr);
2659 }
2660
2661 /* And free them up */
2662 list_for_each_entry_safe(tmp, next, &removed, list) {
2663 amdgpu_vm_it_remove(tmp, &vm->va);
2664 list_del(&tmp->list);
2665
2666 if (tmp->start < saddr)
2667 tmp->start = saddr;
2668 if (tmp->last > eaddr)
2669 tmp->last = eaddr;
2670
2671 tmp->bo_va = NULL;
2672 list_add(&tmp->list, &vm->freed);
2673 trace_amdgpu_vm_bo_unmap(NULL, tmp);
2674 }
2675
2676 /* Insert partial mapping before the range */
2677 if (!list_empty(&before->list)) {
2678 amdgpu_vm_it_insert(before, &vm->va);
2679 if (before->flags & AMDGPU_PTE_PRT)
2680 amdgpu_vm_prt_get(adev);
2681 } else {
2682 kfree(before);
2683 }
2684
2685 /* Insert partial mapping after the range */
2686 if (!list_empty(&after->list)) {
2687 amdgpu_vm_it_insert(after, &vm->va);
2688 if (after->flags & AMDGPU_PTE_PRT)
2689 amdgpu_vm_prt_get(adev);
2690 } else {
2691 kfree(after);
2692 }
2693
2694 return 0;
2695 }
2696
2697 /**
2698 * amdgpu_vm_bo_lookup_mapping - find mapping by address
2699 *
2700 * @vm: the requested VM
2701 * @addr: the address
2702 *
2703 * Find a mapping by it's address.
2704 *
2705 * Returns:
2706 * The amdgpu_bo_va_mapping matching for addr or NULL
2707 *
2708 */
2709 struct amdgpu_bo_va_mapping *amdgpu_vm_bo_lookup_mapping(struct amdgpu_vm *vm,
2710 uint64_t addr)
2711 {
2712 return amdgpu_vm_it_iter_first(&vm->va, addr, addr);
2713 }
2714
2715 /**
2716 * amdgpu_vm_bo_trace_cs - trace all reserved mappings
2717 *
2718 * @vm: the requested vm
2719 * @ticket: CS ticket
2720 *
2721 * Trace all mappings of BOs reserved during a command submission.
2722 */
2723 void amdgpu_vm_bo_trace_cs(struct amdgpu_vm *vm, struct ww_acquire_ctx *ticket)
2724 {
2725 struct amdgpu_bo_va_mapping *mapping;
2726
2727 if (!trace_amdgpu_vm_bo_cs_enabled())
2728 return;
2729
2730 for (mapping = amdgpu_vm_it_iter_first(&vm->va, 0, U64_MAX); mapping;
2731 mapping = amdgpu_vm_it_iter_next(mapping, 0, U64_MAX)) {
2732 if (mapping->bo_va && mapping->bo_va->base.bo) {
2733 struct amdgpu_bo *bo;
2734
2735 bo = mapping->bo_va->base.bo;
2736 if (READ_ONCE(bo->tbo.resv->lock.ctx) != ticket)
2737 continue;
2738 }
2739
2740 trace_amdgpu_vm_bo_cs(mapping);
2741 }
2742 }
2743
2744 /**
2745 * amdgpu_vm_bo_rmv - remove a bo to a specific vm
2746 *
2747 * @adev: amdgpu_device pointer
2748 * @bo_va: requested bo_va
2749 *
2750 * Remove @bo_va->bo from the requested vm.
2751 *
2752 * Object have to be reserved!
2753 */
2754 void amdgpu_vm_bo_rmv(struct amdgpu_device *adev,
2755 struct amdgpu_bo_va *bo_va)
2756 {
2757 struct amdgpu_bo_va_mapping *mapping, *next;
2758 struct amdgpu_bo *bo = bo_va->base.bo;
2759 struct amdgpu_vm *vm = bo_va->base.vm;
2760 struct amdgpu_vm_bo_base **base;
2761
2762 if (bo) {
2763 if (bo->tbo.resv == vm->root.base.bo->tbo.resv)
2764 vm->bulk_moveable = false;
2765
2766 for (base = &bo_va->base.bo->vm_bo; *base;
2767 base = &(*base)->next) {
2768 if (*base != &bo_va->base)
2769 continue;
2770
2771 *base = bo_va->base.next;
2772 break;
2773 }
2774 }
2775
2776 spin_lock(&vm->invalidated_lock);
2777 list_del(&bo_va->base.vm_status);
2778 spin_unlock(&vm->invalidated_lock);
2779
2780 list_for_each_entry_safe(mapping, next, &bo_va->valids, list) {
2781 list_del(&mapping->list);
2782 amdgpu_vm_it_remove(mapping, &vm->va);
2783 mapping->bo_va = NULL;
2784 trace_amdgpu_vm_bo_unmap(bo_va, mapping);
2785 list_add(&mapping->list, &vm->freed);
2786 }
2787 list_for_each_entry_safe(mapping, next, &bo_va->invalids, list) {
2788 list_del(&mapping->list);
2789 amdgpu_vm_it_remove(mapping, &vm->va);
2790 amdgpu_vm_free_mapping(adev, vm, mapping,
2791 bo_va->last_pt_update);
2792 }
2793
2794 dma_fence_put(bo_va->last_pt_update);
2795 kfree(bo_va);
2796 }
2797
2798 /**
2799 * amdgpu_vm_bo_invalidate - mark the bo as invalid
2800 *
2801 * @adev: amdgpu_device pointer
2802 * @bo: amdgpu buffer object
2803 * @evicted: is the BO evicted
2804 *
2805 * Mark @bo as invalid.
2806 */
2807 void amdgpu_vm_bo_invalidate(struct amdgpu_device *adev,
2808 struct amdgpu_bo *bo, bool evicted)
2809 {
2810 struct amdgpu_vm_bo_base *bo_base;
2811
2812 /* shadow bo doesn't have bo base, its validation needs its parent */
2813 if (bo->parent && bo->parent->shadow == bo)
2814 bo = bo->parent;
2815
2816 for (bo_base = bo->vm_bo; bo_base; bo_base = bo_base->next) {
2817 struct amdgpu_vm *vm = bo_base->vm;
2818
2819 if (evicted && bo->tbo.resv == vm->root.base.bo->tbo.resv) {
2820 amdgpu_vm_bo_evicted(bo_base);
2821 continue;
2822 }
2823
2824 if (bo_base->moved)
2825 continue;
2826 bo_base->moved = true;
2827
2828 if (bo->tbo.type == ttm_bo_type_kernel)
2829 amdgpu_vm_bo_relocated(bo_base);
2830 else if (bo->tbo.resv == vm->root.base.bo->tbo.resv)
2831 amdgpu_vm_bo_moved(bo_base);
2832 else
2833 amdgpu_vm_bo_invalidated(bo_base);
2834 }
2835 }
2836
2837 /**
2838 * amdgpu_vm_get_block_size - calculate VM page table size as power of two
2839 *
2840 * @vm_size: VM size
2841 *
2842 * Returns:
2843 * VM page table as power of two
2844 */
2845 static uint32_t amdgpu_vm_get_block_size(uint64_t vm_size)
2846 {
2847 /* Total bits covered by PD + PTs */
2848 unsigned bits = ilog2(vm_size) + 18;
2849
2850 /* Make sure the PD is 4K in size up to 8GB address space.
2851 Above that split equal between PD and PTs */
2852 if (vm_size <= 8)
2853 return (bits - 9);
2854 else
2855 return ((bits + 3) / 2);
2856 }
2857
2858 /**
2859 * amdgpu_vm_adjust_size - adjust vm size, block size and fragment size
2860 *
2861 * @adev: amdgpu_device pointer
2862 * @min_vm_size: the minimum vm size in GB if it's set auto
2863 * @fragment_size_default: Default PTE fragment size
2864 * @max_level: max VMPT level
2865 * @max_bits: max address space size in bits
2866 *
2867 */
2868 void amdgpu_vm_adjust_size(struct amdgpu_device *adev, uint32_t min_vm_size,
2869 uint32_t fragment_size_default, unsigned max_level,
2870 unsigned max_bits)
2871 {
2872 unsigned int max_size = 1 << (max_bits - 30);
2873 unsigned int vm_size;
2874 uint64_t tmp;
2875
2876 /* adjust vm size first */
2877 if (amdgpu_vm_size != -1) {
2878 vm_size = amdgpu_vm_size;
2879 if (vm_size > max_size) {
2880 dev_warn(adev->dev, "VM size (%d) too large, max is %u GB\n",
2881 amdgpu_vm_size, max_size);
2882 vm_size = max_size;
2883 }
2884 } else {
2885 struct sysinfo si;
2886 unsigned int phys_ram_gb;
2887
2888 /* Optimal VM size depends on the amount of physical
2889 * RAM available. Underlying requirements and
2890 * assumptions:
2891 *
2892 * - Need to map system memory and VRAM from all GPUs
2893 * - VRAM from other GPUs not known here
2894 * - Assume VRAM <= system memory
2895 * - On GFX8 and older, VM space can be segmented for
2896 * different MTYPEs
2897 * - Need to allow room for fragmentation, guard pages etc.
2898 *
2899 * This adds up to a rough guess of system memory x3.
2900 * Round up to power of two to maximize the available
2901 * VM size with the given page table size.
2902 */
2903 si_meminfo(&si);
2904 phys_ram_gb = ((uint64_t)si.totalram * si.mem_unit +
2905 (1 << 30) - 1) >> 30;
2906 vm_size = roundup_pow_of_two(
2907 min(max(phys_ram_gb * 3, min_vm_size), max_size));
2908 }
2909
2910 adev->vm_manager.max_pfn = (uint64_t)vm_size << 18;
2911
2912 tmp = roundup_pow_of_two(adev->vm_manager.max_pfn);
2913 if (amdgpu_vm_block_size != -1)
2914 tmp >>= amdgpu_vm_block_size - 9;
2915 tmp = DIV_ROUND_UP(fls64(tmp) - 1, 9) - 1;
2916 adev->vm_manager.num_level = min(max_level, (unsigned)tmp);
2917 switch (adev->vm_manager.num_level) {
2918 case 3:
2919 adev->vm_manager.root_level = AMDGPU_VM_PDB2;
2920 break;
2921 case 2:
2922 adev->vm_manager.root_level = AMDGPU_VM_PDB1;
2923 break;
2924 case 1:
2925 adev->vm_manager.root_level = AMDGPU_VM_PDB0;
2926 break;
2927 default:
2928 dev_err(adev->dev, "VMPT only supports 2~4+1 levels\n");
2929 }
2930 /* block size depends on vm size and hw setup*/
2931 if (amdgpu_vm_block_size != -1)
2932 adev->vm_manager.block_size =
2933 min((unsigned)amdgpu_vm_block_size, max_bits
2934 - AMDGPU_GPU_PAGE_SHIFT
2935 - 9 * adev->vm_manager.num_level);
2936 else if (adev->vm_manager.num_level > 1)
2937 adev->vm_manager.block_size = 9;
2938 else
2939 adev->vm_manager.block_size = amdgpu_vm_get_block_size(tmp);
2940
2941 if (amdgpu_vm_fragment_size == -1)
2942 adev->vm_manager.fragment_size = fragment_size_default;
2943 else
2944 adev->vm_manager.fragment_size = amdgpu_vm_fragment_size;
2945
2946 DRM_INFO("vm size is %u GB, %u levels, block size is %u-bit, fragment size is %u-bit\n",
2947 vm_size, adev->vm_manager.num_level + 1,
2948 adev->vm_manager.block_size,
2949 adev->vm_manager.fragment_size);
2950 }
2951
2952 static struct amdgpu_retryfault_hashtable *init_fault_hash(void)
2953 {
2954 struct amdgpu_retryfault_hashtable *fault_hash;
2955
2956 fault_hash = kmalloc(sizeof(*fault_hash), GFP_KERNEL);
2957 if (!fault_hash)
2958 return fault_hash;
2959
2960 INIT_CHASH_TABLE(fault_hash->hash,
2961 AMDGPU_PAGEFAULT_HASH_BITS, 8, 0);
2962 spin_lock_init(&fault_hash->lock);
2963 fault_hash->count = 0;
2964
2965 return fault_hash;
2966 }
2967
2968 /**
2969 * amdgpu_vm_init - initialize a vm instance
2970 *
2971 * @adev: amdgpu_device pointer
2972 * @vm: requested vm
2973 * @vm_context: Indicates if it GFX or Compute context
2974 * @pasid: Process address space identifier
2975 *
2976 * Init @vm fields.
2977 *
2978 * Returns:
2979 * 0 for success, error for failure.
2980 */
2981 int amdgpu_vm_init(struct amdgpu_device *adev, struct amdgpu_vm *vm,
2982 int vm_context, unsigned int pasid)
2983 {
2984 struct amdgpu_bo_param bp;
2985 struct amdgpu_bo *root;
2986 int r, i;
2987
2988 vm->va = RB_ROOT_CACHED;
2989 for (i = 0; i < AMDGPU_MAX_VMHUBS; i++)
2990 vm->reserved_vmid[i] = NULL;
2991 INIT_LIST_HEAD(&vm->evicted);
2992 INIT_LIST_HEAD(&vm->relocated);
2993 INIT_LIST_HEAD(&vm->moved);
2994 INIT_LIST_HEAD(&vm->idle);
2995 INIT_LIST_HEAD(&vm->invalidated);
2996 spin_lock_init(&vm->invalidated_lock);
2997 INIT_LIST_HEAD(&vm->freed);
2998
2999 /* create scheduler entity for page table updates */
3000 r = drm_sched_entity_init(&vm->entity, adev->vm_manager.vm_pte_rqs,
3001 adev->vm_manager.vm_pte_num_rqs, NULL);
3002 if (r)
3003 return r;
3004
3005 vm->pte_support_ats = false;
3006
3007 if (vm_context == AMDGPU_VM_CONTEXT_COMPUTE) {
3008 vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode &
3009 AMDGPU_VM_USE_CPU_FOR_COMPUTE);
3010
3011 if (adev->asic_type == CHIP_RAVEN)
3012 vm->pte_support_ats = true;
3013 } else {
3014 vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode &
3015 AMDGPU_VM_USE_CPU_FOR_GFX);
3016 }
3017 DRM_DEBUG_DRIVER("VM update mode is %s\n",
3018 vm->use_cpu_for_update ? "CPU" : "SDMA");
3019 WARN_ONCE((vm->use_cpu_for_update && !amdgpu_gmc_vram_full_visible(&adev->gmc)),
3020 "CPU update of VM recommended only for large BAR system\n");
3021 vm->last_update = NULL;
3022
3023 amdgpu_vm_bo_param(adev, vm, adev->vm_manager.root_level, &bp);
3024 if (vm_context == AMDGPU_VM_CONTEXT_COMPUTE)
3025 bp.flags &= ~AMDGPU_GEM_CREATE_SHADOW;
3026 r = amdgpu_bo_create(adev, &bp, &root);
3027 if (r)
3028 goto error_free_sched_entity;
3029
3030 r = amdgpu_bo_reserve(root, true);
3031 if (r)
3032 goto error_free_root;
3033
3034 r = reservation_object_reserve_shared(root->tbo.resv, 1);
3035 if (r)
3036 goto error_unreserve;
3037
3038 amdgpu_vm_bo_base_init(&vm->root.base, vm, root);
3039
3040 r = amdgpu_vm_clear_bo(adev, vm, root,
3041 adev->vm_manager.root_level,
3042 vm->pte_support_ats);
3043 if (r)
3044 goto error_unreserve;
3045
3046 amdgpu_bo_unreserve(vm->root.base.bo);
3047
3048 if (pasid) {
3049 unsigned long flags;
3050
3051 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
3052 r = idr_alloc(&adev->vm_manager.pasid_idr, vm, pasid, pasid + 1,
3053 GFP_ATOMIC);
3054 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
3055 if (r < 0)
3056 goto error_free_root;
3057
3058 vm->pasid = pasid;
3059 }
3060
3061 vm->fault_hash = init_fault_hash();
3062 if (!vm->fault_hash) {
3063 r = -ENOMEM;
3064 goto error_free_root;
3065 }
3066
3067 INIT_KFIFO(vm->faults);
3068
3069 return 0;
3070
3071 error_unreserve:
3072 amdgpu_bo_unreserve(vm->root.base.bo);
3073
3074 error_free_root:
3075 amdgpu_bo_unref(&vm->root.base.bo->shadow);
3076 amdgpu_bo_unref(&vm->root.base.bo);
3077 vm->root.base.bo = NULL;
3078
3079 error_free_sched_entity:
3080 drm_sched_entity_destroy(&vm->entity);
3081
3082 return r;
3083 }
3084
3085 /**
3086 * amdgpu_vm_make_compute - Turn a GFX VM into a compute VM
3087 *
3088 * @adev: amdgpu_device pointer
3089 * @vm: requested vm
3090 *
3091 * This only works on GFX VMs that don't have any BOs added and no
3092 * page tables allocated yet.
3093 *
3094 * Changes the following VM parameters:
3095 * - use_cpu_for_update
3096 * - pte_supports_ats
3097 * - pasid (old PASID is released, because compute manages its own PASIDs)
3098 *
3099 * Reinitializes the page directory to reflect the changed ATS
3100 * setting.
3101 *
3102 * Returns:
3103 * 0 for success, -errno for errors.
3104 */
3105 int amdgpu_vm_make_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm, unsigned int pasid)
3106 {
3107 bool pte_support_ats = (adev->asic_type == CHIP_RAVEN);
3108 int r;
3109
3110 r = amdgpu_bo_reserve(vm->root.base.bo, true);
3111 if (r)
3112 return r;
3113
3114 /* Sanity checks */
3115 if (!RB_EMPTY_ROOT(&vm->va.rb_root) || vm->root.entries) {
3116 r = -EINVAL;
3117 goto unreserve_bo;
3118 }
3119
3120 if (pasid) {
3121 unsigned long flags;
3122
3123 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
3124 r = idr_alloc(&adev->vm_manager.pasid_idr, vm, pasid, pasid + 1,
3125 GFP_ATOMIC);
3126 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
3127
3128 if (r == -ENOSPC)
3129 goto unreserve_bo;
3130 r = 0;
3131 }
3132
3133 /* Check if PD needs to be reinitialized and do it before
3134 * changing any other state, in case it fails.
3135 */
3136 if (pte_support_ats != vm->pte_support_ats) {
3137 r = amdgpu_vm_clear_bo(adev, vm, vm->root.base.bo,
3138 adev->vm_manager.root_level,
3139 pte_support_ats);
3140 if (r)
3141 goto free_idr;
3142 }
3143
3144 /* Update VM state */
3145 vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode &
3146 AMDGPU_VM_USE_CPU_FOR_COMPUTE);
3147 vm->pte_support_ats = pte_support_ats;
3148 DRM_DEBUG_DRIVER("VM update mode is %s\n",
3149 vm->use_cpu_for_update ? "CPU" : "SDMA");
3150 WARN_ONCE((vm->use_cpu_for_update && !amdgpu_gmc_vram_full_visible(&adev->gmc)),
3151 "CPU update of VM recommended only for large BAR system\n");
3152
3153 if (vm->pasid) {
3154 unsigned long flags;
3155
3156 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
3157 idr_remove(&adev->vm_manager.pasid_idr, vm->pasid);
3158 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
3159
3160 /* Free the original amdgpu allocated pasid
3161 * Will be replaced with kfd allocated pasid
3162 */
3163 amdgpu_pasid_free(vm->pasid);
3164 vm->pasid = 0;
3165 }
3166
3167 /* Free the shadow bo for compute VM */
3168 amdgpu_bo_unref(&vm->root.base.bo->shadow);
3169
3170 if (pasid)
3171 vm->pasid = pasid;
3172
3173 goto unreserve_bo;
3174
3175 free_idr:
3176 if (pasid) {
3177 unsigned long flags;
3178
3179 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
3180 idr_remove(&adev->vm_manager.pasid_idr, pasid);
3181 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
3182 }
3183 unreserve_bo:
3184 amdgpu_bo_unreserve(vm->root.base.bo);
3185 return r;
3186 }
3187
3188 /**
3189 * amdgpu_vm_release_compute - release a compute vm
3190 * @adev: amdgpu_device pointer
3191 * @vm: a vm turned into compute vm by calling amdgpu_vm_make_compute
3192 *
3193 * This is a correspondant of amdgpu_vm_make_compute. It decouples compute
3194 * pasid from vm. Compute should stop use of vm after this call.
3195 */
3196 void amdgpu_vm_release_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm)
3197 {
3198 if (vm->pasid) {
3199 unsigned long flags;
3200
3201 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
3202 idr_remove(&adev->vm_manager.pasid_idr, vm->pasid);
3203 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
3204 }
3205 vm->pasid = 0;
3206 }
3207
3208 /**
3209 * amdgpu_vm_fini - tear down a vm instance
3210 *
3211 * @adev: amdgpu_device pointer
3212 * @vm: requested vm
3213 *
3214 * Tear down @vm.
3215 * Unbind the VM and remove all bos from the vm bo list
3216 */
3217 void amdgpu_vm_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm)
3218 {
3219 struct amdgpu_bo_va_mapping *mapping, *tmp;
3220 bool prt_fini_needed = !!adev->gmc.gmc_funcs->set_prt;
3221 struct amdgpu_bo *root;
3222 u64 fault;
3223 int i, r;
3224
3225 amdgpu_amdkfd_gpuvm_destroy_cb(adev, vm);
3226
3227 /* Clear pending page faults from IH when the VM is destroyed */
3228 while (kfifo_get(&vm->faults, &fault))
3229 amdgpu_vm_clear_fault(vm->fault_hash, fault);
3230
3231 if (vm->pasid) {
3232 unsigned long flags;
3233
3234 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
3235 idr_remove(&adev->vm_manager.pasid_idr, vm->pasid);
3236 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
3237 }
3238
3239 kfree(vm->fault_hash);
3240 vm->fault_hash = NULL;
3241
3242 drm_sched_entity_destroy(&vm->entity);
3243
3244 if (!RB_EMPTY_ROOT(&vm->va.rb_root)) {
3245 dev_err(adev->dev, "still active bo inside vm\n");
3246 }
3247 rbtree_postorder_for_each_entry_safe(mapping, tmp,
3248 &vm->va.rb_root, rb) {
3249 /* Don't remove the mapping here, we don't want to trigger a
3250 * rebalance and the tree is about to be destroyed anyway.
3251 */
3252 list_del(&mapping->list);
3253 kfree(mapping);
3254 }
3255 list_for_each_entry_safe(mapping, tmp, &vm->freed, list) {
3256 if (mapping->flags & AMDGPU_PTE_PRT && prt_fini_needed) {
3257 amdgpu_vm_prt_fini(adev, vm);
3258 prt_fini_needed = false;
3259 }
3260
3261 list_del(&mapping->list);
3262 amdgpu_vm_free_mapping(adev, vm, mapping, NULL);
3263 }
3264
3265 root = amdgpu_bo_ref(vm->root.base.bo);
3266 r = amdgpu_bo_reserve(root, true);
3267 if (r) {
3268 dev_err(adev->dev, "Leaking page tables because BO reservation failed\n");
3269 } else {
3270 amdgpu_vm_free_pts(adev, vm);
3271 amdgpu_bo_unreserve(root);
3272 }
3273 amdgpu_bo_unref(&root);
3274 dma_fence_put(vm->last_update);
3275 for (i = 0; i < AMDGPU_MAX_VMHUBS; i++)
3276 amdgpu_vmid_free_reserved(adev, vm, i);
3277 }
3278
3279 /**
3280 * amdgpu_vm_manager_init - init the VM manager
3281 *
3282 * @adev: amdgpu_device pointer
3283 *
3284 * Initialize the VM manager structures
3285 */
3286 void amdgpu_vm_manager_init(struct amdgpu_device *adev)
3287 {
3288 unsigned i;
3289
3290 amdgpu_vmid_mgr_init(adev);
3291
3292 adev->vm_manager.fence_context =
3293 dma_fence_context_alloc(AMDGPU_MAX_RINGS);
3294 for (i = 0; i < AMDGPU_MAX_RINGS; ++i)
3295 adev->vm_manager.seqno[i] = 0;
3296
3297 spin_lock_init(&adev->vm_manager.prt_lock);
3298 atomic_set(&adev->vm_manager.num_prt_users, 0);
3299
3300 /* If not overridden by the user, by default, only in large BAR systems
3301 * Compute VM tables will be updated by CPU
3302 */
3303 #ifdef CONFIG_X86_64
3304 if (amdgpu_vm_update_mode == -1) {
3305 if (amdgpu_gmc_vram_full_visible(&adev->gmc))
3306 adev->vm_manager.vm_update_mode =
3307 AMDGPU_VM_USE_CPU_FOR_COMPUTE;
3308 else
3309 adev->vm_manager.vm_update_mode = 0;
3310 } else
3311 adev->vm_manager.vm_update_mode = amdgpu_vm_update_mode;
3312 #else
3313 adev->vm_manager.vm_update_mode = 0;
3314 #endif
3315
3316 idr_init(&adev->vm_manager.pasid_idr);
3317 spin_lock_init(&adev->vm_manager.pasid_lock);
3318 }
3319
3320 /**
3321 * amdgpu_vm_manager_fini - cleanup VM manager
3322 *
3323 * @adev: amdgpu_device pointer
3324 *
3325 * Cleanup the VM manager and free resources.
3326 */
3327 void amdgpu_vm_manager_fini(struct amdgpu_device *adev)
3328 {
3329 WARN_ON(!idr_is_empty(&adev->vm_manager.pasid_idr));
3330 idr_destroy(&adev->vm_manager.pasid_idr);
3331
3332 amdgpu_vmid_mgr_fini(adev);
3333 }
3334
3335 /**
3336 * amdgpu_vm_ioctl - Manages VMID reservation for vm hubs.
3337 *
3338 * @dev: drm device pointer
3339 * @data: drm_amdgpu_vm
3340 * @filp: drm file pointer
3341 *
3342 * Returns:
3343 * 0 for success, -errno for errors.
3344 */
3345 int amdgpu_vm_ioctl(struct drm_device *dev, void *data, struct drm_file *filp)
3346 {
3347 union drm_amdgpu_vm *args = data;
3348 struct amdgpu_device *adev = dev->dev_private;
3349 struct amdgpu_fpriv *fpriv = filp->driver_priv;
3350 int r;
3351
3352 switch (args->in.op) {
3353 case AMDGPU_VM_OP_RESERVE_VMID:
3354 /* current, we only have requirement to reserve vmid from gfxhub */
3355 r = amdgpu_vmid_alloc_reserved(adev, &fpriv->vm, AMDGPU_GFXHUB);
3356 if (r)
3357 return r;
3358 break;
3359 case AMDGPU_VM_OP_UNRESERVE_VMID:
3360 amdgpu_vmid_free_reserved(adev, &fpriv->vm, AMDGPU_GFXHUB);
3361 break;
3362 default:
3363 return -EINVAL;
3364 }
3365
3366 return 0;
3367 }
3368
3369 /**
3370 * amdgpu_vm_get_task_info - Extracts task info for a PASID.
3371 *
3372 * @adev: drm device pointer
3373 * @pasid: PASID identifier for VM
3374 * @task_info: task_info to fill.
3375 */
3376 void amdgpu_vm_get_task_info(struct amdgpu_device *adev, unsigned int pasid,
3377 struct amdgpu_task_info *task_info)
3378 {
3379 struct amdgpu_vm *vm;
3380 unsigned long flags;
3381
3382 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
3383
3384 vm = idr_find(&adev->vm_manager.pasid_idr, pasid);
3385 if (vm)
3386 *task_info = vm->task_info;
3387
3388 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
3389 }
3390
3391 /**
3392 * amdgpu_vm_set_task_info - Sets VMs task info.
3393 *
3394 * @vm: vm for which to set the info
3395 */
3396 void amdgpu_vm_set_task_info(struct amdgpu_vm *vm)
3397 {
3398 if (!vm->task_info.pid) {
3399 vm->task_info.pid = current->pid;
3400 get_task_comm(vm->task_info.task_name, current);
3401
3402 if (current->group_leader->mm == current->mm) {
3403 vm->task_info.tgid = current->group_leader->pid;
3404 get_task_comm(vm->task_info.process_name, current->group_leader);
3405 }
3406 }
3407 }
3408
3409 /**
3410 * amdgpu_vm_add_fault - Add a page fault record to fault hash table
3411 *
3412 * @fault_hash: fault hash table
3413 * @key: 64-bit encoding of PASID and address
3414 *
3415 * This should be called when a retry page fault interrupt is
3416 * received. If this is a new page fault, it will be added to a hash
3417 * table. The return value indicates whether this is a new fault, or
3418 * a fault that was already known and is already being handled.
3419 *
3420 * If there are too many pending page faults, this will fail. Retry
3421 * interrupts should be ignored in this case until there is enough
3422 * free space.
3423 *
3424 * Returns 0 if the fault was added, 1 if the fault was already known,
3425 * -ENOSPC if there are too many pending faults.
3426 */
3427 int amdgpu_vm_add_fault(struct amdgpu_retryfault_hashtable *fault_hash, u64 key)
3428 {
3429 unsigned long flags;
3430 int r = -ENOSPC;
3431
3432 if (WARN_ON_ONCE(!fault_hash))
3433 /* Should be allocated in amdgpu_vm_init
3434 */
3435 return r;
3436
3437 spin_lock_irqsave(&fault_hash->lock, flags);
3438
3439 /* Only let the hash table fill up to 50% for best performance */
3440 if (fault_hash->count >= (1 << (AMDGPU_PAGEFAULT_HASH_BITS-1)))
3441 goto unlock_out;
3442
3443 r = chash_table_copy_in(&fault_hash->hash, key, NULL);
3444 if (!r)
3445 fault_hash->count++;
3446
3447 /* chash_table_copy_in should never fail unless we're losing count */
3448 WARN_ON_ONCE(r < 0);
3449
3450 unlock_out:
3451 spin_unlock_irqrestore(&fault_hash->lock, flags);
3452 return r;
3453 }
3454
3455 /**
3456 * amdgpu_vm_clear_fault - Remove a page fault record
3457 *
3458 * @fault_hash: fault hash table
3459 * @key: 64-bit encoding of PASID and address
3460 *
3461 * This should be called when a page fault has been handled. Any
3462 * future interrupt with this key will be processed as a new
3463 * page fault.
3464 */
3465 void amdgpu_vm_clear_fault(struct amdgpu_retryfault_hashtable *fault_hash, u64 key)
3466 {
3467 unsigned long flags;
3468 int r;
3469
3470 if (!fault_hash)
3471 return;
3472
3473 spin_lock_irqsave(&fault_hash->lock, flags);
3474
3475 r = chash_table_remove(&fault_hash->hash, key, NULL);
3476 if (!WARN_ON_ONCE(r < 0)) {
3477 fault_hash->count--;
3478 WARN_ON_ONCE(fault_hash->count < 0);
3479 }
3480
3481 spin_unlock_irqrestore(&fault_hash->lock, flags);
3482 }