]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/gpu/drm/amd/amdgpu/amdgpu_vm.c
Merge tag 'staging-4.12-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh...
[mirror_ubuntu-jammy-kernel.git] / drivers / gpu / drm / amd / amdgpu / amdgpu_vm.c
1 /*
2 * Copyright 2008 Advanced Micro Devices, Inc.
3 * Copyright 2008 Red Hat Inc.
4 * Copyright 2009 Jerome Glisse.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22 * OTHER DEALINGS IN THE SOFTWARE.
23 *
24 * Authors: Dave Airlie
25 * Alex Deucher
26 * Jerome Glisse
27 */
28 #include <linux/dma-fence-array.h>
29 #include <linux/interval_tree_generic.h>
30 #include <drm/drmP.h>
31 #include <drm/amdgpu_drm.h>
32 #include "amdgpu.h"
33 #include "amdgpu_trace.h"
34
35 /*
36 * GPUVM
37 * GPUVM is similar to the legacy gart on older asics, however
38 * rather than there being a single global gart table
39 * for the entire GPU, there are multiple VM page tables active
40 * at any given time. The VM page tables can contain a mix
41 * vram pages and system memory pages and system memory pages
42 * can be mapped as snooped (cached system pages) or unsnooped
43 * (uncached system pages).
44 * Each VM has an ID associated with it and there is a page table
45 * associated with each VMID. When execting a command buffer,
46 * the kernel tells the the ring what VMID to use for that command
47 * buffer. VMIDs are allocated dynamically as commands are submitted.
48 * The userspace drivers maintain their own address space and the kernel
49 * sets up their pages tables accordingly when they submit their
50 * command buffers and a VMID is assigned.
51 * Cayman/Trinity support up to 8 active VMs at any given time;
52 * SI supports 16.
53 */
54
55 #define START(node) ((node)->start)
56 #define LAST(node) ((node)->last)
57
58 INTERVAL_TREE_DEFINE(struct amdgpu_bo_va_mapping, rb, uint64_t, __subtree_last,
59 START, LAST, static, amdgpu_vm_it)
60
61 #undef START
62 #undef LAST
63
64 /* Local structure. Encapsulate some VM table update parameters to reduce
65 * the number of function parameters
66 */
67 struct amdgpu_pte_update_params {
68 /* amdgpu device we do this update for */
69 struct amdgpu_device *adev;
70 /* optional amdgpu_vm we do this update for */
71 struct amdgpu_vm *vm;
72 /* address where to copy page table entries from */
73 uint64_t src;
74 /* indirect buffer to fill with commands */
75 struct amdgpu_ib *ib;
76 /* Function which actually does the update */
77 void (*func)(struct amdgpu_pte_update_params *params, uint64_t pe,
78 uint64_t addr, unsigned count, uint32_t incr,
79 uint64_t flags);
80 /* indicate update pt or its shadow */
81 bool shadow;
82 };
83
84 /* Helper to disable partial resident texture feature from a fence callback */
85 struct amdgpu_prt_cb {
86 struct amdgpu_device *adev;
87 struct dma_fence_cb cb;
88 };
89
90 /**
91 * amdgpu_vm_num_entries - return the number of entries in a PD/PT
92 *
93 * @adev: amdgpu_device pointer
94 *
95 * Calculate the number of entries in a page directory or page table.
96 */
97 static unsigned amdgpu_vm_num_entries(struct amdgpu_device *adev,
98 unsigned level)
99 {
100 if (level == 0)
101 /* For the root directory */
102 return adev->vm_manager.max_pfn >>
103 (adev->vm_manager.block_size *
104 adev->vm_manager.num_level);
105 else if (level == adev->vm_manager.num_level)
106 /* For the page tables on the leaves */
107 return AMDGPU_VM_PTE_COUNT(adev);
108 else
109 /* Everything in between */
110 return 1 << adev->vm_manager.block_size;
111 }
112
113 /**
114 * amdgpu_vm_bo_size - returns the size of the BOs in bytes
115 *
116 * @adev: amdgpu_device pointer
117 *
118 * Calculate the size of the BO for a page directory or page table in bytes.
119 */
120 static unsigned amdgpu_vm_bo_size(struct amdgpu_device *adev, unsigned level)
121 {
122 return AMDGPU_GPU_PAGE_ALIGN(amdgpu_vm_num_entries(adev, level) * 8);
123 }
124
125 /**
126 * amdgpu_vm_get_pd_bo - add the VM PD to a validation list
127 *
128 * @vm: vm providing the BOs
129 * @validated: head of validation list
130 * @entry: entry to add
131 *
132 * Add the page directory to the list of BOs to
133 * validate for command submission.
134 */
135 void amdgpu_vm_get_pd_bo(struct amdgpu_vm *vm,
136 struct list_head *validated,
137 struct amdgpu_bo_list_entry *entry)
138 {
139 entry->robj = vm->root.bo;
140 entry->priority = 0;
141 entry->tv.bo = &entry->robj->tbo;
142 entry->tv.shared = true;
143 entry->user_pages = NULL;
144 list_add(&entry->tv.head, validated);
145 }
146
147 /**
148 * amdgpu_vm_validate_layer - validate a single page table level
149 *
150 * @parent: parent page table level
151 * @validate: callback to do the validation
152 * @param: parameter for the validation callback
153 *
154 * Validate the page table BOs on command submission if neccessary.
155 */
156 static int amdgpu_vm_validate_level(struct amdgpu_vm_pt *parent,
157 int (*validate)(void *, struct amdgpu_bo *),
158 void *param)
159 {
160 unsigned i;
161 int r;
162
163 if (!parent->entries)
164 return 0;
165
166 for (i = 0; i <= parent->last_entry_used; ++i) {
167 struct amdgpu_vm_pt *entry = &parent->entries[i];
168
169 if (!entry->bo)
170 continue;
171
172 r = validate(param, entry->bo);
173 if (r)
174 return r;
175
176 /*
177 * Recurse into the sub directory. This is harmless because we
178 * have only a maximum of 5 layers.
179 */
180 r = amdgpu_vm_validate_level(entry, validate, param);
181 if (r)
182 return r;
183 }
184
185 return r;
186 }
187
188 /**
189 * amdgpu_vm_validate_pt_bos - validate the page table BOs
190 *
191 * @adev: amdgpu device pointer
192 * @vm: vm providing the BOs
193 * @validate: callback to do the validation
194 * @param: parameter for the validation callback
195 *
196 * Validate the page table BOs on command submission if neccessary.
197 */
198 int amdgpu_vm_validate_pt_bos(struct amdgpu_device *adev, struct amdgpu_vm *vm,
199 int (*validate)(void *p, struct amdgpu_bo *bo),
200 void *param)
201 {
202 uint64_t num_evictions;
203
204 /* We only need to validate the page tables
205 * if they aren't already valid.
206 */
207 num_evictions = atomic64_read(&adev->num_evictions);
208 if (num_evictions == vm->last_eviction_counter)
209 return 0;
210
211 return amdgpu_vm_validate_level(&vm->root, validate, param);
212 }
213
214 /**
215 * amdgpu_vm_move_level_in_lru - move one level of PT BOs to the LRU tail
216 *
217 * @adev: amdgpu device instance
218 * @vm: vm providing the BOs
219 *
220 * Move the PT BOs to the tail of the LRU.
221 */
222 static void amdgpu_vm_move_level_in_lru(struct amdgpu_vm_pt *parent)
223 {
224 unsigned i;
225
226 if (!parent->entries)
227 return;
228
229 for (i = 0; i <= parent->last_entry_used; ++i) {
230 struct amdgpu_vm_pt *entry = &parent->entries[i];
231
232 if (!entry->bo)
233 continue;
234
235 ttm_bo_move_to_lru_tail(&entry->bo->tbo);
236 amdgpu_vm_move_level_in_lru(entry);
237 }
238 }
239
240 /**
241 * amdgpu_vm_move_pt_bos_in_lru - move the PT BOs to the LRU tail
242 *
243 * @adev: amdgpu device instance
244 * @vm: vm providing the BOs
245 *
246 * Move the PT BOs to the tail of the LRU.
247 */
248 void amdgpu_vm_move_pt_bos_in_lru(struct amdgpu_device *adev,
249 struct amdgpu_vm *vm)
250 {
251 struct ttm_bo_global *glob = adev->mman.bdev.glob;
252
253 spin_lock(&glob->lru_lock);
254 amdgpu_vm_move_level_in_lru(&vm->root);
255 spin_unlock(&glob->lru_lock);
256 }
257
258 /**
259 * amdgpu_vm_alloc_levels - allocate the PD/PT levels
260 *
261 * @adev: amdgpu_device pointer
262 * @vm: requested vm
263 * @saddr: start of the address range
264 * @eaddr: end of the address range
265 *
266 * Make sure the page directories and page tables are allocated
267 */
268 static int amdgpu_vm_alloc_levels(struct amdgpu_device *adev,
269 struct amdgpu_vm *vm,
270 struct amdgpu_vm_pt *parent,
271 uint64_t saddr, uint64_t eaddr,
272 unsigned level)
273 {
274 unsigned shift = (adev->vm_manager.num_level - level) *
275 adev->vm_manager.block_size;
276 unsigned pt_idx, from, to;
277 int r;
278
279 if (!parent->entries) {
280 unsigned num_entries = amdgpu_vm_num_entries(adev, level);
281
282 parent->entries = drm_calloc_large(num_entries,
283 sizeof(struct amdgpu_vm_pt));
284 if (!parent->entries)
285 return -ENOMEM;
286 memset(parent->entries, 0 , sizeof(struct amdgpu_vm_pt));
287 }
288
289 from = saddr >> shift;
290 to = eaddr >> shift;
291 if (from >= amdgpu_vm_num_entries(adev, level) ||
292 to >= amdgpu_vm_num_entries(adev, level))
293 return -EINVAL;
294
295 if (to > parent->last_entry_used)
296 parent->last_entry_used = to;
297
298 ++level;
299 saddr = saddr & ((1 << shift) - 1);
300 eaddr = eaddr & ((1 << shift) - 1);
301
302 /* walk over the address space and allocate the page tables */
303 for (pt_idx = from; pt_idx <= to; ++pt_idx) {
304 struct reservation_object *resv = vm->root.bo->tbo.resv;
305 struct amdgpu_vm_pt *entry = &parent->entries[pt_idx];
306 struct amdgpu_bo *pt;
307
308 if (!entry->bo) {
309 r = amdgpu_bo_create(adev,
310 amdgpu_vm_bo_size(adev, level),
311 AMDGPU_GPU_PAGE_SIZE, true,
312 AMDGPU_GEM_DOMAIN_VRAM,
313 AMDGPU_GEM_CREATE_NO_CPU_ACCESS |
314 AMDGPU_GEM_CREATE_SHADOW |
315 AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS |
316 AMDGPU_GEM_CREATE_VRAM_CLEARED,
317 NULL, resv, &pt);
318 if (r)
319 return r;
320
321 /* Keep a reference to the root directory to avoid
322 * freeing them up in the wrong order.
323 */
324 pt->parent = amdgpu_bo_ref(vm->root.bo);
325
326 entry->bo = pt;
327 entry->addr = 0;
328 }
329
330 if (level < adev->vm_manager.num_level) {
331 uint64_t sub_saddr = (pt_idx == from) ? saddr : 0;
332 uint64_t sub_eaddr = (pt_idx == to) ? eaddr :
333 ((1 << shift) - 1);
334 r = amdgpu_vm_alloc_levels(adev, vm, entry, sub_saddr,
335 sub_eaddr, level);
336 if (r)
337 return r;
338 }
339 }
340
341 return 0;
342 }
343
344 /**
345 * amdgpu_vm_alloc_pts - Allocate page tables.
346 *
347 * @adev: amdgpu_device pointer
348 * @vm: VM to allocate page tables for
349 * @saddr: Start address which needs to be allocated
350 * @size: Size from start address we need.
351 *
352 * Make sure the page tables are allocated.
353 */
354 int amdgpu_vm_alloc_pts(struct amdgpu_device *adev,
355 struct amdgpu_vm *vm,
356 uint64_t saddr, uint64_t size)
357 {
358 uint64_t last_pfn;
359 uint64_t eaddr;
360
361 /* validate the parameters */
362 if (saddr & AMDGPU_GPU_PAGE_MASK || size & AMDGPU_GPU_PAGE_MASK)
363 return -EINVAL;
364
365 eaddr = saddr + size - 1;
366 last_pfn = eaddr / AMDGPU_GPU_PAGE_SIZE;
367 if (last_pfn >= adev->vm_manager.max_pfn) {
368 dev_err(adev->dev, "va above limit (0x%08llX >= 0x%08llX)\n",
369 last_pfn, adev->vm_manager.max_pfn);
370 return -EINVAL;
371 }
372
373 saddr /= AMDGPU_GPU_PAGE_SIZE;
374 eaddr /= AMDGPU_GPU_PAGE_SIZE;
375
376 return amdgpu_vm_alloc_levels(adev, vm, &vm->root, saddr, eaddr, 0);
377 }
378
379 /**
380 * amdgpu_vm_had_gpu_reset - check if reset occured since last use
381 *
382 * @adev: amdgpu_device pointer
383 * @id: VMID structure
384 *
385 * Check if GPU reset occured since last use of the VMID.
386 */
387 static bool amdgpu_vm_had_gpu_reset(struct amdgpu_device *adev,
388 struct amdgpu_vm_id *id)
389 {
390 return id->current_gpu_reset_count !=
391 atomic_read(&adev->gpu_reset_counter);
392 }
393
394 /**
395 * amdgpu_vm_grab_id - allocate the next free VMID
396 *
397 * @vm: vm to allocate id for
398 * @ring: ring we want to submit job to
399 * @sync: sync object where we add dependencies
400 * @fence: fence protecting ID from reuse
401 *
402 * Allocate an id for the vm, adding fences to the sync obj as necessary.
403 */
404 int amdgpu_vm_grab_id(struct amdgpu_vm *vm, struct amdgpu_ring *ring,
405 struct amdgpu_sync *sync, struct dma_fence *fence,
406 struct amdgpu_job *job)
407 {
408 struct amdgpu_device *adev = ring->adev;
409 uint64_t fence_context = adev->fence_context + ring->idx;
410 struct dma_fence *updates = sync->last_vm_update;
411 struct amdgpu_vm_id *id, *idle;
412 struct dma_fence **fences;
413 unsigned i;
414 int r = 0;
415
416 fences = kmalloc_array(sizeof(void *), adev->vm_manager.num_ids,
417 GFP_KERNEL);
418 if (!fences)
419 return -ENOMEM;
420
421 mutex_lock(&adev->vm_manager.lock);
422
423 /* Check if we have an idle VMID */
424 i = 0;
425 list_for_each_entry(idle, &adev->vm_manager.ids_lru, list) {
426 fences[i] = amdgpu_sync_peek_fence(&idle->active, ring);
427 if (!fences[i])
428 break;
429 ++i;
430 }
431
432 /* If we can't find a idle VMID to use, wait till one becomes available */
433 if (&idle->list == &adev->vm_manager.ids_lru) {
434 u64 fence_context = adev->vm_manager.fence_context + ring->idx;
435 unsigned seqno = ++adev->vm_manager.seqno[ring->idx];
436 struct dma_fence_array *array;
437 unsigned j;
438
439 for (j = 0; j < i; ++j)
440 dma_fence_get(fences[j]);
441
442 array = dma_fence_array_create(i, fences, fence_context,
443 seqno, true);
444 if (!array) {
445 for (j = 0; j < i; ++j)
446 dma_fence_put(fences[j]);
447 kfree(fences);
448 r = -ENOMEM;
449 goto error;
450 }
451
452
453 r = amdgpu_sync_fence(ring->adev, sync, &array->base);
454 dma_fence_put(&array->base);
455 if (r)
456 goto error;
457
458 mutex_unlock(&adev->vm_manager.lock);
459 return 0;
460
461 }
462 kfree(fences);
463
464 job->vm_needs_flush = true;
465 /* Check if we can use a VMID already assigned to this VM */
466 i = ring->idx;
467 do {
468 struct dma_fence *flushed;
469
470 id = vm->ids[i++];
471 if (i == AMDGPU_MAX_RINGS)
472 i = 0;
473
474 /* Check all the prerequisites to using this VMID */
475 if (!id)
476 continue;
477 if (amdgpu_vm_had_gpu_reset(adev, id))
478 continue;
479
480 if (atomic64_read(&id->owner) != vm->client_id)
481 continue;
482
483 if (job->vm_pd_addr != id->pd_gpu_addr)
484 continue;
485
486 if (!id->last_flush)
487 continue;
488
489 if (id->last_flush->context != fence_context &&
490 !dma_fence_is_signaled(id->last_flush))
491 continue;
492
493 flushed = id->flushed_updates;
494 if (updates &&
495 (!flushed || dma_fence_is_later(updates, flushed)))
496 continue;
497
498 /* Good we can use this VMID. Remember this submission as
499 * user of the VMID.
500 */
501 r = amdgpu_sync_fence(ring->adev, &id->active, fence);
502 if (r)
503 goto error;
504
505 list_move_tail(&id->list, &adev->vm_manager.ids_lru);
506 vm->ids[ring->idx] = id;
507
508 job->vm_id = id - adev->vm_manager.ids;
509 job->vm_needs_flush = false;
510 trace_amdgpu_vm_grab_id(vm, ring->idx, job);
511
512 mutex_unlock(&adev->vm_manager.lock);
513 return 0;
514
515 } while (i != ring->idx);
516
517 /* Still no ID to use? Then use the idle one found earlier */
518 id = idle;
519
520 /* Remember this submission as user of the VMID */
521 r = amdgpu_sync_fence(ring->adev, &id->active, fence);
522 if (r)
523 goto error;
524
525 dma_fence_put(id->last_flush);
526 id->last_flush = NULL;
527
528 dma_fence_put(id->flushed_updates);
529 id->flushed_updates = dma_fence_get(updates);
530
531 id->pd_gpu_addr = job->vm_pd_addr;
532 id->current_gpu_reset_count = atomic_read(&adev->gpu_reset_counter);
533 list_move_tail(&id->list, &adev->vm_manager.ids_lru);
534 atomic64_set(&id->owner, vm->client_id);
535 vm->ids[ring->idx] = id;
536
537 job->vm_id = id - adev->vm_manager.ids;
538 trace_amdgpu_vm_grab_id(vm, ring->idx, job);
539
540 error:
541 mutex_unlock(&adev->vm_manager.lock);
542 return r;
543 }
544
545 static bool amdgpu_vm_ring_has_compute_vm_bug(struct amdgpu_ring *ring)
546 {
547 struct amdgpu_device *adev = ring->adev;
548 const struct amdgpu_ip_block *ip_block;
549
550 if (ring->funcs->type != AMDGPU_RING_TYPE_COMPUTE)
551 /* only compute rings */
552 return false;
553
554 ip_block = amdgpu_get_ip_block(adev, AMD_IP_BLOCK_TYPE_GFX);
555 if (!ip_block)
556 return false;
557
558 if (ip_block->version->major <= 7) {
559 /* gfx7 has no workaround */
560 return true;
561 } else if (ip_block->version->major == 8) {
562 if (adev->gfx.mec_fw_version >= 673)
563 /* gfx8 is fixed in MEC firmware 673 */
564 return false;
565 else
566 return true;
567 }
568 return false;
569 }
570
571 static u64 amdgpu_vm_adjust_mc_addr(struct amdgpu_device *adev, u64 mc_addr)
572 {
573 u64 addr = mc_addr;
574
575 if (adev->gart.gart_funcs->adjust_mc_addr)
576 addr = adev->gart.gart_funcs->adjust_mc_addr(adev, addr);
577
578 return addr;
579 }
580
581 /**
582 * amdgpu_vm_flush - hardware flush the vm
583 *
584 * @ring: ring to use for flush
585 * @vm_id: vmid number to use
586 * @pd_addr: address of the page directory
587 *
588 * Emit a VM flush when it is necessary.
589 */
590 int amdgpu_vm_flush(struct amdgpu_ring *ring, struct amdgpu_job *job)
591 {
592 struct amdgpu_device *adev = ring->adev;
593 struct amdgpu_vm_id *id = &adev->vm_manager.ids[job->vm_id];
594 bool gds_switch_needed = ring->funcs->emit_gds_switch && (
595 id->gds_base != job->gds_base ||
596 id->gds_size != job->gds_size ||
597 id->gws_base != job->gws_base ||
598 id->gws_size != job->gws_size ||
599 id->oa_base != job->oa_base ||
600 id->oa_size != job->oa_size);
601 bool vm_flush_needed = job->vm_needs_flush ||
602 amdgpu_vm_ring_has_compute_vm_bug(ring);
603 unsigned patch_offset = 0;
604 int r;
605
606 if (amdgpu_vm_had_gpu_reset(adev, id)) {
607 gds_switch_needed = true;
608 vm_flush_needed = true;
609 }
610
611 if (!vm_flush_needed && !gds_switch_needed)
612 return 0;
613
614 if (ring->funcs->init_cond_exec)
615 patch_offset = amdgpu_ring_init_cond_exec(ring);
616
617 if (ring->funcs->emit_pipeline_sync)
618 amdgpu_ring_emit_pipeline_sync(ring);
619
620 if (ring->funcs->emit_vm_flush && vm_flush_needed) {
621 u64 pd_addr = amdgpu_vm_adjust_mc_addr(adev, job->vm_pd_addr);
622 struct dma_fence *fence;
623
624 trace_amdgpu_vm_flush(pd_addr, ring->idx, job->vm_id);
625 amdgpu_ring_emit_vm_flush(ring, job->vm_id, pd_addr);
626
627 r = amdgpu_fence_emit(ring, &fence);
628 if (r)
629 return r;
630
631 mutex_lock(&adev->vm_manager.lock);
632 dma_fence_put(id->last_flush);
633 id->last_flush = fence;
634 mutex_unlock(&adev->vm_manager.lock);
635 }
636
637 if (gds_switch_needed) {
638 id->gds_base = job->gds_base;
639 id->gds_size = job->gds_size;
640 id->gws_base = job->gws_base;
641 id->gws_size = job->gws_size;
642 id->oa_base = job->oa_base;
643 id->oa_size = job->oa_size;
644 amdgpu_ring_emit_gds_switch(ring, job->vm_id, job->gds_base,
645 job->gds_size, job->gws_base,
646 job->gws_size, job->oa_base,
647 job->oa_size);
648 }
649
650 if (ring->funcs->patch_cond_exec)
651 amdgpu_ring_patch_cond_exec(ring, patch_offset);
652
653 /* the double SWITCH_BUFFER here *cannot* be skipped by COND_EXEC */
654 if (ring->funcs->emit_switch_buffer) {
655 amdgpu_ring_emit_switch_buffer(ring);
656 amdgpu_ring_emit_switch_buffer(ring);
657 }
658 return 0;
659 }
660
661 /**
662 * amdgpu_vm_reset_id - reset VMID to zero
663 *
664 * @adev: amdgpu device structure
665 * @vm_id: vmid number to use
666 *
667 * Reset saved GDW, GWS and OA to force switch on next flush.
668 */
669 void amdgpu_vm_reset_id(struct amdgpu_device *adev, unsigned vm_id)
670 {
671 struct amdgpu_vm_id *id = &adev->vm_manager.ids[vm_id];
672
673 id->gds_base = 0;
674 id->gds_size = 0;
675 id->gws_base = 0;
676 id->gws_size = 0;
677 id->oa_base = 0;
678 id->oa_size = 0;
679 }
680
681 /**
682 * amdgpu_vm_bo_find - find the bo_va for a specific vm & bo
683 *
684 * @vm: requested vm
685 * @bo: requested buffer object
686 *
687 * Find @bo inside the requested vm.
688 * Search inside the @bos vm list for the requested vm
689 * Returns the found bo_va or NULL if none is found
690 *
691 * Object has to be reserved!
692 */
693 struct amdgpu_bo_va *amdgpu_vm_bo_find(struct amdgpu_vm *vm,
694 struct amdgpu_bo *bo)
695 {
696 struct amdgpu_bo_va *bo_va;
697
698 list_for_each_entry(bo_va, &bo->va, bo_list) {
699 if (bo_va->vm == vm) {
700 return bo_va;
701 }
702 }
703 return NULL;
704 }
705
706 /**
707 * amdgpu_vm_do_set_ptes - helper to call the right asic function
708 *
709 * @params: see amdgpu_pte_update_params definition
710 * @pe: addr of the page entry
711 * @addr: dst addr to write into pe
712 * @count: number of page entries to update
713 * @incr: increase next addr by incr bytes
714 * @flags: hw access flags
715 *
716 * Traces the parameters and calls the right asic functions
717 * to setup the page table using the DMA.
718 */
719 static void amdgpu_vm_do_set_ptes(struct amdgpu_pte_update_params *params,
720 uint64_t pe, uint64_t addr,
721 unsigned count, uint32_t incr,
722 uint64_t flags)
723 {
724 trace_amdgpu_vm_set_ptes(pe, addr, count, incr, flags);
725
726 if (count < 3) {
727 amdgpu_vm_write_pte(params->adev, params->ib, pe,
728 addr | flags, count, incr);
729
730 } else {
731 amdgpu_vm_set_pte_pde(params->adev, params->ib, pe, addr,
732 count, incr, flags);
733 }
734 }
735
736 /**
737 * amdgpu_vm_do_copy_ptes - copy the PTEs from the GART
738 *
739 * @params: see amdgpu_pte_update_params definition
740 * @pe: addr of the page entry
741 * @addr: dst addr to write into pe
742 * @count: number of page entries to update
743 * @incr: increase next addr by incr bytes
744 * @flags: hw access flags
745 *
746 * Traces the parameters and calls the DMA function to copy the PTEs.
747 */
748 static void amdgpu_vm_do_copy_ptes(struct amdgpu_pte_update_params *params,
749 uint64_t pe, uint64_t addr,
750 unsigned count, uint32_t incr,
751 uint64_t flags)
752 {
753 uint64_t src = (params->src + (addr >> 12) * 8);
754
755
756 trace_amdgpu_vm_copy_ptes(pe, src, count);
757
758 amdgpu_vm_copy_pte(params->adev, params->ib, pe, src, count);
759 }
760
761 /**
762 * amdgpu_vm_map_gart - Resolve gart mapping of addr
763 *
764 * @pages_addr: optional DMA address to use for lookup
765 * @addr: the unmapped addr
766 *
767 * Look up the physical address of the page that the pte resolves
768 * to and return the pointer for the page table entry.
769 */
770 static uint64_t amdgpu_vm_map_gart(const dma_addr_t *pages_addr, uint64_t addr)
771 {
772 uint64_t result;
773
774 /* page table offset */
775 result = pages_addr[addr >> PAGE_SHIFT];
776
777 /* in case cpu page size != gpu page size*/
778 result |= addr & (~PAGE_MASK);
779
780 result &= 0xFFFFFFFFFFFFF000ULL;
781
782 return result;
783 }
784
785 /*
786 * amdgpu_vm_update_level - update a single level in the hierarchy
787 *
788 * @adev: amdgpu_device pointer
789 * @vm: requested vm
790 * @parent: parent directory
791 *
792 * Makes sure all entries in @parent are up to date.
793 * Returns 0 for success, error for failure.
794 */
795 static int amdgpu_vm_update_level(struct amdgpu_device *adev,
796 struct amdgpu_vm *vm,
797 struct amdgpu_vm_pt *parent,
798 unsigned level)
799 {
800 struct amdgpu_bo *shadow;
801 struct amdgpu_ring *ring;
802 uint64_t pd_addr, shadow_addr;
803 uint32_t incr = amdgpu_vm_bo_size(adev, level + 1);
804 uint64_t last_pde = ~0, last_pt = ~0, last_shadow = ~0;
805 unsigned count = 0, pt_idx, ndw;
806 struct amdgpu_job *job;
807 struct amdgpu_pte_update_params params;
808 struct dma_fence *fence = NULL;
809
810 int r;
811
812 if (!parent->entries)
813 return 0;
814 ring = container_of(vm->entity.sched, struct amdgpu_ring, sched);
815
816 /* padding, etc. */
817 ndw = 64;
818
819 /* assume the worst case */
820 ndw += parent->last_entry_used * 6;
821
822 pd_addr = amdgpu_bo_gpu_offset(parent->bo);
823
824 shadow = parent->bo->shadow;
825 if (shadow) {
826 r = amdgpu_ttm_bind(&shadow->tbo, &shadow->tbo.mem);
827 if (r)
828 return r;
829 shadow_addr = amdgpu_bo_gpu_offset(shadow);
830 ndw *= 2;
831 } else {
832 shadow_addr = 0;
833 }
834
835 r = amdgpu_job_alloc_with_ib(adev, ndw * 4, &job);
836 if (r)
837 return r;
838
839 memset(&params, 0, sizeof(params));
840 params.adev = adev;
841 params.ib = &job->ibs[0];
842
843 /* walk over the address space and update the directory */
844 for (pt_idx = 0; pt_idx <= parent->last_entry_used; ++pt_idx) {
845 struct amdgpu_bo *bo = parent->entries[pt_idx].bo;
846 uint64_t pde, pt;
847
848 if (bo == NULL)
849 continue;
850
851 if (bo->shadow) {
852 struct amdgpu_bo *pt_shadow = bo->shadow;
853
854 r = amdgpu_ttm_bind(&pt_shadow->tbo,
855 &pt_shadow->tbo.mem);
856 if (r)
857 return r;
858 }
859
860 pt = amdgpu_bo_gpu_offset(bo);
861 if (parent->entries[pt_idx].addr == pt)
862 continue;
863
864 parent->entries[pt_idx].addr = pt;
865
866 pde = pd_addr + pt_idx * 8;
867 if (((last_pde + 8 * count) != pde) ||
868 ((last_pt + incr * count) != pt) ||
869 (count == AMDGPU_VM_MAX_UPDATE_SIZE)) {
870
871 if (count) {
872 uint64_t pt_addr =
873 amdgpu_vm_adjust_mc_addr(adev, last_pt);
874
875 if (shadow)
876 amdgpu_vm_do_set_ptes(&params,
877 last_shadow,
878 pt_addr, count,
879 incr,
880 AMDGPU_PTE_VALID);
881
882 amdgpu_vm_do_set_ptes(&params, last_pde,
883 pt_addr, count, incr,
884 AMDGPU_PTE_VALID);
885 }
886
887 count = 1;
888 last_pde = pde;
889 last_shadow = shadow_addr + pt_idx * 8;
890 last_pt = pt;
891 } else {
892 ++count;
893 }
894 }
895
896 if (count) {
897 uint64_t pt_addr = amdgpu_vm_adjust_mc_addr(adev, last_pt);
898
899 if (vm->root.bo->shadow)
900 amdgpu_vm_do_set_ptes(&params, last_shadow, pt_addr,
901 count, incr, AMDGPU_PTE_VALID);
902
903 amdgpu_vm_do_set_ptes(&params, last_pde, pt_addr,
904 count, incr, AMDGPU_PTE_VALID);
905 }
906
907 if (params.ib->length_dw == 0) {
908 amdgpu_job_free(job);
909 } else {
910 amdgpu_ring_pad_ib(ring, params.ib);
911 amdgpu_sync_resv(adev, &job->sync, parent->bo->tbo.resv,
912 AMDGPU_FENCE_OWNER_VM);
913 if (shadow)
914 amdgpu_sync_resv(adev, &job->sync, shadow->tbo.resv,
915 AMDGPU_FENCE_OWNER_VM);
916
917 WARN_ON(params.ib->length_dw > ndw);
918 r = amdgpu_job_submit(job, ring, &vm->entity,
919 AMDGPU_FENCE_OWNER_VM, &fence);
920 if (r)
921 goto error_free;
922
923 amdgpu_bo_fence(parent->bo, fence, true);
924 dma_fence_put(vm->last_dir_update);
925 vm->last_dir_update = dma_fence_get(fence);
926 dma_fence_put(fence);
927 }
928 /*
929 * Recurse into the subdirectories. This recursion is harmless because
930 * we only have a maximum of 5 layers.
931 */
932 for (pt_idx = 0; pt_idx <= parent->last_entry_used; ++pt_idx) {
933 struct amdgpu_vm_pt *entry = &parent->entries[pt_idx];
934
935 if (!entry->bo)
936 continue;
937
938 r = amdgpu_vm_update_level(adev, vm, entry, level + 1);
939 if (r)
940 return r;
941 }
942
943 return 0;
944
945 error_free:
946 amdgpu_job_free(job);
947 return r;
948 }
949
950 /*
951 * amdgpu_vm_update_directories - make sure that all directories are valid
952 *
953 * @adev: amdgpu_device pointer
954 * @vm: requested vm
955 *
956 * Makes sure all directories are up to date.
957 * Returns 0 for success, error for failure.
958 */
959 int amdgpu_vm_update_directories(struct amdgpu_device *adev,
960 struct amdgpu_vm *vm)
961 {
962 return amdgpu_vm_update_level(adev, vm, &vm->root, 0);
963 }
964
965 /**
966 * amdgpu_vm_find_pt - find the page table for an address
967 *
968 * @p: see amdgpu_pte_update_params definition
969 * @addr: virtual address in question
970 *
971 * Find the page table BO for a virtual address, return NULL when none found.
972 */
973 static struct amdgpu_bo *amdgpu_vm_get_pt(struct amdgpu_pte_update_params *p,
974 uint64_t addr)
975 {
976 struct amdgpu_vm_pt *entry = &p->vm->root;
977 unsigned idx, level = p->adev->vm_manager.num_level;
978
979 while (entry->entries) {
980 idx = addr >> (p->adev->vm_manager.block_size * level--);
981 idx %= amdgpu_bo_size(entry->bo) / 8;
982 entry = &entry->entries[idx];
983 }
984
985 if (level)
986 return NULL;
987
988 return entry->bo;
989 }
990
991 /**
992 * amdgpu_vm_update_ptes - make sure that page tables are valid
993 *
994 * @params: see amdgpu_pte_update_params definition
995 * @vm: requested vm
996 * @start: start of GPU address range
997 * @end: end of GPU address range
998 * @dst: destination address to map to, the next dst inside the function
999 * @flags: mapping flags
1000 *
1001 * Update the page tables in the range @start - @end.
1002 */
1003 static void amdgpu_vm_update_ptes(struct amdgpu_pte_update_params *params,
1004 uint64_t start, uint64_t end,
1005 uint64_t dst, uint64_t flags)
1006 {
1007 struct amdgpu_device *adev = params->adev;
1008 const uint64_t mask = AMDGPU_VM_PTE_COUNT(adev) - 1;
1009
1010 uint64_t cur_pe_start, cur_nptes, cur_dst;
1011 uint64_t addr; /* next GPU address to be updated */
1012 struct amdgpu_bo *pt;
1013 unsigned nptes; /* next number of ptes to be updated */
1014 uint64_t next_pe_start;
1015
1016 /* initialize the variables */
1017 addr = start;
1018 pt = amdgpu_vm_get_pt(params, addr);
1019 if (!pt) {
1020 pr_err("PT not found, aborting update_ptes\n");
1021 return;
1022 }
1023
1024 if (params->shadow) {
1025 if (!pt->shadow)
1026 return;
1027 pt = pt->shadow;
1028 }
1029 if ((addr & ~mask) == (end & ~mask))
1030 nptes = end - addr;
1031 else
1032 nptes = AMDGPU_VM_PTE_COUNT(adev) - (addr & mask);
1033
1034 cur_pe_start = amdgpu_bo_gpu_offset(pt);
1035 cur_pe_start += (addr & mask) * 8;
1036 cur_nptes = nptes;
1037 cur_dst = dst;
1038
1039 /* for next ptb*/
1040 addr += nptes;
1041 dst += nptes * AMDGPU_GPU_PAGE_SIZE;
1042
1043 /* walk over the address space and update the page tables */
1044 while (addr < end) {
1045 pt = amdgpu_vm_get_pt(params, addr);
1046 if (!pt) {
1047 pr_err("PT not found, aborting update_ptes\n");
1048 return;
1049 }
1050
1051 if (params->shadow) {
1052 if (!pt->shadow)
1053 return;
1054 pt = pt->shadow;
1055 }
1056
1057 if ((addr & ~mask) == (end & ~mask))
1058 nptes = end - addr;
1059 else
1060 nptes = AMDGPU_VM_PTE_COUNT(adev) - (addr & mask);
1061
1062 next_pe_start = amdgpu_bo_gpu_offset(pt);
1063 next_pe_start += (addr & mask) * 8;
1064
1065 if ((cur_pe_start + 8 * cur_nptes) == next_pe_start &&
1066 ((cur_nptes + nptes) <= AMDGPU_VM_MAX_UPDATE_SIZE)) {
1067 /* The next ptb is consecutive to current ptb.
1068 * Don't call the update function now.
1069 * Will update two ptbs together in future.
1070 */
1071 cur_nptes += nptes;
1072 } else {
1073 params->func(params, cur_pe_start, cur_dst, cur_nptes,
1074 AMDGPU_GPU_PAGE_SIZE, flags);
1075
1076 cur_pe_start = next_pe_start;
1077 cur_nptes = nptes;
1078 cur_dst = dst;
1079 }
1080
1081 /* for next ptb*/
1082 addr += nptes;
1083 dst += nptes * AMDGPU_GPU_PAGE_SIZE;
1084 }
1085
1086 params->func(params, cur_pe_start, cur_dst, cur_nptes,
1087 AMDGPU_GPU_PAGE_SIZE, flags);
1088 }
1089
1090 /*
1091 * amdgpu_vm_frag_ptes - add fragment information to PTEs
1092 *
1093 * @params: see amdgpu_pte_update_params definition
1094 * @vm: requested vm
1095 * @start: first PTE to handle
1096 * @end: last PTE to handle
1097 * @dst: addr those PTEs should point to
1098 * @flags: hw mapping flags
1099 */
1100 static void amdgpu_vm_frag_ptes(struct amdgpu_pte_update_params *params,
1101 uint64_t start, uint64_t end,
1102 uint64_t dst, uint64_t flags)
1103 {
1104 /**
1105 * The MC L1 TLB supports variable sized pages, based on a fragment
1106 * field in the PTE. When this field is set to a non-zero value, page
1107 * granularity is increased from 4KB to (1 << (12 + frag)). The PTE
1108 * flags are considered valid for all PTEs within the fragment range
1109 * and corresponding mappings are assumed to be physically contiguous.
1110 *
1111 * The L1 TLB can store a single PTE for the whole fragment,
1112 * significantly increasing the space available for translation
1113 * caching. This leads to large improvements in throughput when the
1114 * TLB is under pressure.
1115 *
1116 * The L2 TLB distributes small and large fragments into two
1117 * asymmetric partitions. The large fragment cache is significantly
1118 * larger. Thus, we try to use large fragments wherever possible.
1119 * Userspace can support this by aligning virtual base address and
1120 * allocation size to the fragment size.
1121 */
1122
1123 /* SI and newer are optimized for 64KB */
1124 uint64_t frag_flags = AMDGPU_PTE_FRAG(AMDGPU_LOG2_PAGES_PER_FRAG);
1125 uint64_t frag_align = 1 << AMDGPU_LOG2_PAGES_PER_FRAG;
1126
1127 uint64_t frag_start = ALIGN(start, frag_align);
1128 uint64_t frag_end = end & ~(frag_align - 1);
1129
1130 /* system pages are non continuously */
1131 if (params->src || !(flags & AMDGPU_PTE_VALID) ||
1132 (frag_start >= frag_end)) {
1133
1134 amdgpu_vm_update_ptes(params, start, end, dst, flags);
1135 return;
1136 }
1137
1138 /* handle the 4K area at the beginning */
1139 if (start != frag_start) {
1140 amdgpu_vm_update_ptes(params, start, frag_start,
1141 dst, flags);
1142 dst += (frag_start - start) * AMDGPU_GPU_PAGE_SIZE;
1143 }
1144
1145 /* handle the area in the middle */
1146 amdgpu_vm_update_ptes(params, frag_start, frag_end, dst,
1147 flags | frag_flags);
1148
1149 /* handle the 4K area at the end */
1150 if (frag_end != end) {
1151 dst += (frag_end - frag_start) * AMDGPU_GPU_PAGE_SIZE;
1152 amdgpu_vm_update_ptes(params, frag_end, end, dst, flags);
1153 }
1154 }
1155
1156 /**
1157 * amdgpu_vm_bo_update_mapping - update a mapping in the vm page table
1158 *
1159 * @adev: amdgpu_device pointer
1160 * @exclusive: fence we need to sync to
1161 * @src: address where to copy page table entries from
1162 * @pages_addr: DMA addresses to use for mapping
1163 * @vm: requested vm
1164 * @start: start of mapped range
1165 * @last: last mapped entry
1166 * @flags: flags for the entries
1167 * @addr: addr to set the area to
1168 * @fence: optional resulting fence
1169 *
1170 * Fill in the page table entries between @start and @last.
1171 * Returns 0 for success, -EINVAL for failure.
1172 */
1173 static int amdgpu_vm_bo_update_mapping(struct amdgpu_device *adev,
1174 struct dma_fence *exclusive,
1175 uint64_t src,
1176 dma_addr_t *pages_addr,
1177 struct amdgpu_vm *vm,
1178 uint64_t start, uint64_t last,
1179 uint64_t flags, uint64_t addr,
1180 struct dma_fence **fence)
1181 {
1182 struct amdgpu_ring *ring;
1183 void *owner = AMDGPU_FENCE_OWNER_VM;
1184 unsigned nptes, ncmds, ndw;
1185 struct amdgpu_job *job;
1186 struct amdgpu_pte_update_params params;
1187 struct dma_fence *f = NULL;
1188 int r;
1189
1190 memset(&params, 0, sizeof(params));
1191 params.adev = adev;
1192 params.vm = vm;
1193 params.src = src;
1194
1195 ring = container_of(vm->entity.sched, struct amdgpu_ring, sched);
1196
1197 /* sync to everything on unmapping */
1198 if (!(flags & AMDGPU_PTE_VALID))
1199 owner = AMDGPU_FENCE_OWNER_UNDEFINED;
1200
1201 nptes = last - start + 1;
1202
1203 /*
1204 * reserve space for one command every (1 << BLOCK_SIZE)
1205 * entries or 2k dwords (whatever is smaller)
1206 */
1207 ncmds = (nptes >> min(adev->vm_manager.block_size, 11u)) + 1;
1208
1209 /* padding, etc. */
1210 ndw = 64;
1211
1212 if (src) {
1213 /* only copy commands needed */
1214 ndw += ncmds * 7;
1215
1216 params.func = amdgpu_vm_do_copy_ptes;
1217
1218 } else if (pages_addr) {
1219 /* copy commands needed */
1220 ndw += ncmds * 7;
1221
1222 /* and also PTEs */
1223 ndw += nptes * 2;
1224
1225 params.func = amdgpu_vm_do_copy_ptes;
1226
1227 } else {
1228 /* set page commands needed */
1229 ndw += ncmds * 10;
1230
1231 /* two extra commands for begin/end of fragment */
1232 ndw += 2 * 10;
1233
1234 params.func = amdgpu_vm_do_set_ptes;
1235 }
1236
1237 r = amdgpu_job_alloc_with_ib(adev, ndw * 4, &job);
1238 if (r)
1239 return r;
1240
1241 params.ib = &job->ibs[0];
1242
1243 if (!src && pages_addr) {
1244 uint64_t *pte;
1245 unsigned i;
1246
1247 /* Put the PTEs at the end of the IB. */
1248 i = ndw - nptes * 2;
1249 pte= (uint64_t *)&(job->ibs->ptr[i]);
1250 params.src = job->ibs->gpu_addr + i * 4;
1251
1252 for (i = 0; i < nptes; ++i) {
1253 pte[i] = amdgpu_vm_map_gart(pages_addr, addr + i *
1254 AMDGPU_GPU_PAGE_SIZE);
1255 pte[i] |= flags;
1256 }
1257 addr = 0;
1258 }
1259
1260 r = amdgpu_sync_fence(adev, &job->sync, exclusive);
1261 if (r)
1262 goto error_free;
1263
1264 r = amdgpu_sync_resv(adev, &job->sync, vm->root.bo->tbo.resv,
1265 owner);
1266 if (r)
1267 goto error_free;
1268
1269 r = reservation_object_reserve_shared(vm->root.bo->tbo.resv);
1270 if (r)
1271 goto error_free;
1272
1273 params.shadow = true;
1274 amdgpu_vm_frag_ptes(&params, start, last + 1, addr, flags);
1275 params.shadow = false;
1276 amdgpu_vm_frag_ptes(&params, start, last + 1, addr, flags);
1277
1278 amdgpu_ring_pad_ib(ring, params.ib);
1279 WARN_ON(params.ib->length_dw > ndw);
1280 r = amdgpu_job_submit(job, ring, &vm->entity,
1281 AMDGPU_FENCE_OWNER_VM, &f);
1282 if (r)
1283 goto error_free;
1284
1285 amdgpu_bo_fence(vm->root.bo, f, true);
1286 dma_fence_put(*fence);
1287 *fence = f;
1288 return 0;
1289
1290 error_free:
1291 amdgpu_job_free(job);
1292 return r;
1293 }
1294
1295 /**
1296 * amdgpu_vm_bo_split_mapping - split a mapping into smaller chunks
1297 *
1298 * @adev: amdgpu_device pointer
1299 * @exclusive: fence we need to sync to
1300 * @gtt_flags: flags as they are used for GTT
1301 * @pages_addr: DMA addresses to use for mapping
1302 * @vm: requested vm
1303 * @mapping: mapped range and flags to use for the update
1304 * @flags: HW flags for the mapping
1305 * @nodes: array of drm_mm_nodes with the MC addresses
1306 * @fence: optional resulting fence
1307 *
1308 * Split the mapping into smaller chunks so that each update fits
1309 * into a SDMA IB.
1310 * Returns 0 for success, -EINVAL for failure.
1311 */
1312 static int amdgpu_vm_bo_split_mapping(struct amdgpu_device *adev,
1313 struct dma_fence *exclusive,
1314 uint64_t gtt_flags,
1315 dma_addr_t *pages_addr,
1316 struct amdgpu_vm *vm,
1317 struct amdgpu_bo_va_mapping *mapping,
1318 uint64_t flags,
1319 struct drm_mm_node *nodes,
1320 struct dma_fence **fence)
1321 {
1322 uint64_t pfn, src = 0, start = mapping->start;
1323 int r;
1324
1325 /* normally,bo_va->flags only contians READABLE and WIRTEABLE bit go here
1326 * but in case of something, we filter the flags in first place
1327 */
1328 if (!(mapping->flags & AMDGPU_PTE_READABLE))
1329 flags &= ~AMDGPU_PTE_READABLE;
1330 if (!(mapping->flags & AMDGPU_PTE_WRITEABLE))
1331 flags &= ~AMDGPU_PTE_WRITEABLE;
1332
1333 flags &= ~AMDGPU_PTE_EXECUTABLE;
1334 flags |= mapping->flags & AMDGPU_PTE_EXECUTABLE;
1335
1336 flags &= ~AMDGPU_PTE_MTYPE_MASK;
1337 flags |= (mapping->flags & AMDGPU_PTE_MTYPE_MASK);
1338
1339 trace_amdgpu_vm_bo_update(mapping);
1340
1341 pfn = mapping->offset >> PAGE_SHIFT;
1342 if (nodes) {
1343 while (pfn >= nodes->size) {
1344 pfn -= nodes->size;
1345 ++nodes;
1346 }
1347 }
1348
1349 do {
1350 uint64_t max_entries;
1351 uint64_t addr, last;
1352
1353 if (nodes) {
1354 addr = nodes->start << PAGE_SHIFT;
1355 max_entries = (nodes->size - pfn) *
1356 (PAGE_SIZE / AMDGPU_GPU_PAGE_SIZE);
1357 } else {
1358 addr = 0;
1359 max_entries = S64_MAX;
1360 }
1361
1362 if (pages_addr) {
1363 if (flags == gtt_flags)
1364 src = adev->gart.table_addr +
1365 (addr >> AMDGPU_GPU_PAGE_SHIFT) * 8;
1366 else
1367 max_entries = min(max_entries, 16ull * 1024ull);
1368 addr = 0;
1369 } else if (flags & AMDGPU_PTE_VALID) {
1370 addr += adev->vm_manager.vram_base_offset;
1371 }
1372 addr += pfn << PAGE_SHIFT;
1373
1374 last = min((uint64_t)mapping->last, start + max_entries - 1);
1375 r = amdgpu_vm_bo_update_mapping(adev, exclusive,
1376 src, pages_addr, vm,
1377 start, last, flags, addr,
1378 fence);
1379 if (r)
1380 return r;
1381
1382 pfn += last - start + 1;
1383 if (nodes && nodes->size == pfn) {
1384 pfn = 0;
1385 ++nodes;
1386 }
1387 start = last + 1;
1388
1389 } while (unlikely(start != mapping->last + 1));
1390
1391 return 0;
1392 }
1393
1394 /**
1395 * amdgpu_vm_bo_update - update all BO mappings in the vm page table
1396 *
1397 * @adev: amdgpu_device pointer
1398 * @bo_va: requested BO and VM object
1399 * @clear: if true clear the entries
1400 *
1401 * Fill in the page table entries for @bo_va.
1402 * Returns 0 for success, -EINVAL for failure.
1403 */
1404 int amdgpu_vm_bo_update(struct amdgpu_device *adev,
1405 struct amdgpu_bo_va *bo_va,
1406 bool clear)
1407 {
1408 struct amdgpu_vm *vm = bo_va->vm;
1409 struct amdgpu_bo_va_mapping *mapping;
1410 dma_addr_t *pages_addr = NULL;
1411 uint64_t gtt_flags, flags;
1412 struct ttm_mem_reg *mem;
1413 struct drm_mm_node *nodes;
1414 struct dma_fence *exclusive;
1415 int r;
1416
1417 if (clear || !bo_va->bo) {
1418 mem = NULL;
1419 nodes = NULL;
1420 exclusive = NULL;
1421 } else {
1422 struct ttm_dma_tt *ttm;
1423
1424 mem = &bo_va->bo->tbo.mem;
1425 nodes = mem->mm_node;
1426 if (mem->mem_type == TTM_PL_TT) {
1427 ttm = container_of(bo_va->bo->tbo.ttm, struct
1428 ttm_dma_tt, ttm);
1429 pages_addr = ttm->dma_address;
1430 }
1431 exclusive = reservation_object_get_excl(bo_va->bo->tbo.resv);
1432 }
1433
1434 if (bo_va->bo) {
1435 flags = amdgpu_ttm_tt_pte_flags(adev, bo_va->bo->tbo.ttm, mem);
1436 gtt_flags = (amdgpu_ttm_is_bound(bo_va->bo->tbo.ttm) &&
1437 adev == amdgpu_ttm_adev(bo_va->bo->tbo.bdev)) ?
1438 flags : 0;
1439 } else {
1440 flags = 0x0;
1441 gtt_flags = ~0x0;
1442 }
1443
1444 spin_lock(&vm->status_lock);
1445 if (!list_empty(&bo_va->vm_status))
1446 list_splice_init(&bo_va->valids, &bo_va->invalids);
1447 spin_unlock(&vm->status_lock);
1448
1449 list_for_each_entry(mapping, &bo_va->invalids, list) {
1450 r = amdgpu_vm_bo_split_mapping(adev, exclusive,
1451 gtt_flags, pages_addr, vm,
1452 mapping, flags, nodes,
1453 &bo_va->last_pt_update);
1454 if (r)
1455 return r;
1456 }
1457
1458 if (trace_amdgpu_vm_bo_mapping_enabled()) {
1459 list_for_each_entry(mapping, &bo_va->valids, list)
1460 trace_amdgpu_vm_bo_mapping(mapping);
1461
1462 list_for_each_entry(mapping, &bo_va->invalids, list)
1463 trace_amdgpu_vm_bo_mapping(mapping);
1464 }
1465
1466 spin_lock(&vm->status_lock);
1467 list_splice_init(&bo_va->invalids, &bo_va->valids);
1468 list_del_init(&bo_va->vm_status);
1469 if (clear)
1470 list_add(&bo_va->vm_status, &vm->cleared);
1471 spin_unlock(&vm->status_lock);
1472
1473 return 0;
1474 }
1475
1476 /**
1477 * amdgpu_vm_update_prt_state - update the global PRT state
1478 */
1479 static void amdgpu_vm_update_prt_state(struct amdgpu_device *adev)
1480 {
1481 unsigned long flags;
1482 bool enable;
1483
1484 spin_lock_irqsave(&adev->vm_manager.prt_lock, flags);
1485 enable = !!atomic_read(&adev->vm_manager.num_prt_users);
1486 adev->gart.gart_funcs->set_prt(adev, enable);
1487 spin_unlock_irqrestore(&adev->vm_manager.prt_lock, flags);
1488 }
1489
1490 /**
1491 * amdgpu_vm_prt_get - add a PRT user
1492 */
1493 static void amdgpu_vm_prt_get(struct amdgpu_device *adev)
1494 {
1495 if (!adev->gart.gart_funcs->set_prt)
1496 return;
1497
1498 if (atomic_inc_return(&adev->vm_manager.num_prt_users) == 1)
1499 amdgpu_vm_update_prt_state(adev);
1500 }
1501
1502 /**
1503 * amdgpu_vm_prt_put - drop a PRT user
1504 */
1505 static void amdgpu_vm_prt_put(struct amdgpu_device *adev)
1506 {
1507 if (atomic_dec_return(&adev->vm_manager.num_prt_users) == 0)
1508 amdgpu_vm_update_prt_state(adev);
1509 }
1510
1511 /**
1512 * amdgpu_vm_prt_cb - callback for updating the PRT status
1513 */
1514 static void amdgpu_vm_prt_cb(struct dma_fence *fence, struct dma_fence_cb *_cb)
1515 {
1516 struct amdgpu_prt_cb *cb = container_of(_cb, struct amdgpu_prt_cb, cb);
1517
1518 amdgpu_vm_prt_put(cb->adev);
1519 kfree(cb);
1520 }
1521
1522 /**
1523 * amdgpu_vm_add_prt_cb - add callback for updating the PRT status
1524 */
1525 static void amdgpu_vm_add_prt_cb(struct amdgpu_device *adev,
1526 struct dma_fence *fence)
1527 {
1528 struct amdgpu_prt_cb *cb;
1529
1530 if (!adev->gart.gart_funcs->set_prt)
1531 return;
1532
1533 cb = kmalloc(sizeof(struct amdgpu_prt_cb), GFP_KERNEL);
1534 if (!cb) {
1535 /* Last resort when we are OOM */
1536 if (fence)
1537 dma_fence_wait(fence, false);
1538
1539 amdgpu_vm_prt_put(adev);
1540 } else {
1541 cb->adev = adev;
1542 if (!fence || dma_fence_add_callback(fence, &cb->cb,
1543 amdgpu_vm_prt_cb))
1544 amdgpu_vm_prt_cb(fence, &cb->cb);
1545 }
1546 }
1547
1548 /**
1549 * amdgpu_vm_free_mapping - free a mapping
1550 *
1551 * @adev: amdgpu_device pointer
1552 * @vm: requested vm
1553 * @mapping: mapping to be freed
1554 * @fence: fence of the unmap operation
1555 *
1556 * Free a mapping and make sure we decrease the PRT usage count if applicable.
1557 */
1558 static void amdgpu_vm_free_mapping(struct amdgpu_device *adev,
1559 struct amdgpu_vm *vm,
1560 struct amdgpu_bo_va_mapping *mapping,
1561 struct dma_fence *fence)
1562 {
1563 if (mapping->flags & AMDGPU_PTE_PRT)
1564 amdgpu_vm_add_prt_cb(adev, fence);
1565 kfree(mapping);
1566 }
1567
1568 /**
1569 * amdgpu_vm_prt_fini - finish all prt mappings
1570 *
1571 * @adev: amdgpu_device pointer
1572 * @vm: requested vm
1573 *
1574 * Register a cleanup callback to disable PRT support after VM dies.
1575 */
1576 static void amdgpu_vm_prt_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm)
1577 {
1578 struct reservation_object *resv = vm->root.bo->tbo.resv;
1579 struct dma_fence *excl, **shared;
1580 unsigned i, shared_count;
1581 int r;
1582
1583 r = reservation_object_get_fences_rcu(resv, &excl,
1584 &shared_count, &shared);
1585 if (r) {
1586 /* Not enough memory to grab the fence list, as last resort
1587 * block for all the fences to complete.
1588 */
1589 reservation_object_wait_timeout_rcu(resv, true, false,
1590 MAX_SCHEDULE_TIMEOUT);
1591 return;
1592 }
1593
1594 /* Add a callback for each fence in the reservation object */
1595 amdgpu_vm_prt_get(adev);
1596 amdgpu_vm_add_prt_cb(adev, excl);
1597
1598 for (i = 0; i < shared_count; ++i) {
1599 amdgpu_vm_prt_get(adev);
1600 amdgpu_vm_add_prt_cb(adev, shared[i]);
1601 }
1602
1603 kfree(shared);
1604 }
1605
1606 /**
1607 * amdgpu_vm_clear_freed - clear freed BOs in the PT
1608 *
1609 * @adev: amdgpu_device pointer
1610 * @vm: requested vm
1611 * @fence: optional resulting fence (unchanged if no work needed to be done
1612 * or if an error occurred)
1613 *
1614 * Make sure all freed BOs are cleared in the PT.
1615 * Returns 0 for success.
1616 *
1617 * PTs have to be reserved and mutex must be locked!
1618 */
1619 int amdgpu_vm_clear_freed(struct amdgpu_device *adev,
1620 struct amdgpu_vm *vm,
1621 struct dma_fence **fence)
1622 {
1623 struct amdgpu_bo_va_mapping *mapping;
1624 struct dma_fence *f = NULL;
1625 int r;
1626
1627 while (!list_empty(&vm->freed)) {
1628 mapping = list_first_entry(&vm->freed,
1629 struct amdgpu_bo_va_mapping, list);
1630 list_del(&mapping->list);
1631
1632 r = amdgpu_vm_bo_split_mapping(adev, NULL, 0, NULL, vm, mapping,
1633 0, 0, &f);
1634 amdgpu_vm_free_mapping(adev, vm, mapping, f);
1635 if (r) {
1636 dma_fence_put(f);
1637 return r;
1638 }
1639 }
1640
1641 if (fence && f) {
1642 dma_fence_put(*fence);
1643 *fence = f;
1644 } else {
1645 dma_fence_put(f);
1646 }
1647
1648 return 0;
1649
1650 }
1651
1652 /**
1653 * amdgpu_vm_clear_invalids - clear invalidated BOs in the PT
1654 *
1655 * @adev: amdgpu_device pointer
1656 * @vm: requested vm
1657 *
1658 * Make sure all invalidated BOs are cleared in the PT.
1659 * Returns 0 for success.
1660 *
1661 * PTs have to be reserved and mutex must be locked!
1662 */
1663 int amdgpu_vm_clear_invalids(struct amdgpu_device *adev,
1664 struct amdgpu_vm *vm, struct amdgpu_sync *sync)
1665 {
1666 struct amdgpu_bo_va *bo_va = NULL;
1667 int r = 0;
1668
1669 spin_lock(&vm->status_lock);
1670 while (!list_empty(&vm->invalidated)) {
1671 bo_va = list_first_entry(&vm->invalidated,
1672 struct amdgpu_bo_va, vm_status);
1673 spin_unlock(&vm->status_lock);
1674
1675 r = amdgpu_vm_bo_update(adev, bo_va, true);
1676 if (r)
1677 return r;
1678
1679 spin_lock(&vm->status_lock);
1680 }
1681 spin_unlock(&vm->status_lock);
1682
1683 if (bo_va)
1684 r = amdgpu_sync_fence(adev, sync, bo_va->last_pt_update);
1685
1686 return r;
1687 }
1688
1689 /**
1690 * amdgpu_vm_bo_add - add a bo to a specific vm
1691 *
1692 * @adev: amdgpu_device pointer
1693 * @vm: requested vm
1694 * @bo: amdgpu buffer object
1695 *
1696 * Add @bo into the requested vm.
1697 * Add @bo to the list of bos associated with the vm
1698 * Returns newly added bo_va or NULL for failure
1699 *
1700 * Object has to be reserved!
1701 */
1702 struct amdgpu_bo_va *amdgpu_vm_bo_add(struct amdgpu_device *adev,
1703 struct amdgpu_vm *vm,
1704 struct amdgpu_bo *bo)
1705 {
1706 struct amdgpu_bo_va *bo_va;
1707
1708 bo_va = kzalloc(sizeof(struct amdgpu_bo_va), GFP_KERNEL);
1709 if (bo_va == NULL) {
1710 return NULL;
1711 }
1712 bo_va->vm = vm;
1713 bo_va->bo = bo;
1714 bo_va->ref_count = 1;
1715 INIT_LIST_HEAD(&bo_va->bo_list);
1716 INIT_LIST_HEAD(&bo_va->valids);
1717 INIT_LIST_HEAD(&bo_va->invalids);
1718 INIT_LIST_HEAD(&bo_va->vm_status);
1719
1720 if (bo)
1721 list_add_tail(&bo_va->bo_list, &bo->va);
1722
1723 return bo_va;
1724 }
1725
1726 /**
1727 * amdgpu_vm_bo_map - map bo inside a vm
1728 *
1729 * @adev: amdgpu_device pointer
1730 * @bo_va: bo_va to store the address
1731 * @saddr: where to map the BO
1732 * @offset: requested offset in the BO
1733 * @flags: attributes of pages (read/write/valid/etc.)
1734 *
1735 * Add a mapping of the BO at the specefied addr into the VM.
1736 * Returns 0 for success, error for failure.
1737 *
1738 * Object has to be reserved and unreserved outside!
1739 */
1740 int amdgpu_vm_bo_map(struct amdgpu_device *adev,
1741 struct amdgpu_bo_va *bo_va,
1742 uint64_t saddr, uint64_t offset,
1743 uint64_t size, uint64_t flags)
1744 {
1745 struct amdgpu_bo_va_mapping *mapping, *tmp;
1746 struct amdgpu_vm *vm = bo_va->vm;
1747 uint64_t eaddr;
1748
1749 /* validate the parameters */
1750 if (saddr & AMDGPU_GPU_PAGE_MASK || offset & AMDGPU_GPU_PAGE_MASK ||
1751 size == 0 || size & AMDGPU_GPU_PAGE_MASK)
1752 return -EINVAL;
1753
1754 /* make sure object fit at this offset */
1755 eaddr = saddr + size - 1;
1756 if (saddr >= eaddr ||
1757 (bo_va->bo && offset + size > amdgpu_bo_size(bo_va->bo)))
1758 return -EINVAL;
1759
1760 saddr /= AMDGPU_GPU_PAGE_SIZE;
1761 eaddr /= AMDGPU_GPU_PAGE_SIZE;
1762
1763 tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr);
1764 if (tmp) {
1765 /* bo and tmp overlap, invalid addr */
1766 dev_err(adev->dev, "bo %p va 0x%010Lx-0x%010Lx conflict with "
1767 "0x%010Lx-0x%010Lx\n", bo_va->bo, saddr, eaddr,
1768 tmp->start, tmp->last + 1);
1769 return -EINVAL;
1770 }
1771
1772 mapping = kmalloc(sizeof(*mapping), GFP_KERNEL);
1773 if (!mapping)
1774 return -ENOMEM;
1775
1776 INIT_LIST_HEAD(&mapping->list);
1777 mapping->start = saddr;
1778 mapping->last = eaddr;
1779 mapping->offset = offset;
1780 mapping->flags = flags;
1781
1782 list_add(&mapping->list, &bo_va->invalids);
1783 amdgpu_vm_it_insert(mapping, &vm->va);
1784
1785 if (flags & AMDGPU_PTE_PRT)
1786 amdgpu_vm_prt_get(adev);
1787
1788 return 0;
1789 }
1790
1791 /**
1792 * amdgpu_vm_bo_replace_map - map bo inside a vm, replacing existing mappings
1793 *
1794 * @adev: amdgpu_device pointer
1795 * @bo_va: bo_va to store the address
1796 * @saddr: where to map the BO
1797 * @offset: requested offset in the BO
1798 * @flags: attributes of pages (read/write/valid/etc.)
1799 *
1800 * Add a mapping of the BO at the specefied addr into the VM. Replace existing
1801 * mappings as we do so.
1802 * Returns 0 for success, error for failure.
1803 *
1804 * Object has to be reserved and unreserved outside!
1805 */
1806 int amdgpu_vm_bo_replace_map(struct amdgpu_device *adev,
1807 struct amdgpu_bo_va *bo_va,
1808 uint64_t saddr, uint64_t offset,
1809 uint64_t size, uint64_t flags)
1810 {
1811 struct amdgpu_bo_va_mapping *mapping;
1812 struct amdgpu_vm *vm = bo_va->vm;
1813 uint64_t eaddr;
1814 int r;
1815
1816 /* validate the parameters */
1817 if (saddr & AMDGPU_GPU_PAGE_MASK || offset & AMDGPU_GPU_PAGE_MASK ||
1818 size == 0 || size & AMDGPU_GPU_PAGE_MASK)
1819 return -EINVAL;
1820
1821 /* make sure object fit at this offset */
1822 eaddr = saddr + size - 1;
1823 if (saddr >= eaddr ||
1824 (bo_va->bo && offset + size > amdgpu_bo_size(bo_va->bo)))
1825 return -EINVAL;
1826
1827 /* Allocate all the needed memory */
1828 mapping = kmalloc(sizeof(*mapping), GFP_KERNEL);
1829 if (!mapping)
1830 return -ENOMEM;
1831
1832 r = amdgpu_vm_bo_clear_mappings(adev, bo_va->vm, saddr, size);
1833 if (r) {
1834 kfree(mapping);
1835 return r;
1836 }
1837
1838 saddr /= AMDGPU_GPU_PAGE_SIZE;
1839 eaddr /= AMDGPU_GPU_PAGE_SIZE;
1840
1841 mapping->start = saddr;
1842 mapping->last = eaddr;
1843 mapping->offset = offset;
1844 mapping->flags = flags;
1845
1846 list_add(&mapping->list, &bo_va->invalids);
1847 amdgpu_vm_it_insert(mapping, &vm->va);
1848
1849 if (flags & AMDGPU_PTE_PRT)
1850 amdgpu_vm_prt_get(adev);
1851
1852 return 0;
1853 }
1854
1855 /**
1856 * amdgpu_vm_bo_unmap - remove bo mapping from vm
1857 *
1858 * @adev: amdgpu_device pointer
1859 * @bo_va: bo_va to remove the address from
1860 * @saddr: where to the BO is mapped
1861 *
1862 * Remove a mapping of the BO at the specefied addr from the VM.
1863 * Returns 0 for success, error for failure.
1864 *
1865 * Object has to be reserved and unreserved outside!
1866 */
1867 int amdgpu_vm_bo_unmap(struct amdgpu_device *adev,
1868 struct amdgpu_bo_va *bo_va,
1869 uint64_t saddr)
1870 {
1871 struct amdgpu_bo_va_mapping *mapping;
1872 struct amdgpu_vm *vm = bo_va->vm;
1873 bool valid = true;
1874
1875 saddr /= AMDGPU_GPU_PAGE_SIZE;
1876
1877 list_for_each_entry(mapping, &bo_va->valids, list) {
1878 if (mapping->start == saddr)
1879 break;
1880 }
1881
1882 if (&mapping->list == &bo_va->valids) {
1883 valid = false;
1884
1885 list_for_each_entry(mapping, &bo_va->invalids, list) {
1886 if (mapping->start == saddr)
1887 break;
1888 }
1889
1890 if (&mapping->list == &bo_va->invalids)
1891 return -ENOENT;
1892 }
1893
1894 list_del(&mapping->list);
1895 amdgpu_vm_it_remove(mapping, &vm->va);
1896 trace_amdgpu_vm_bo_unmap(bo_va, mapping);
1897
1898 if (valid)
1899 list_add(&mapping->list, &vm->freed);
1900 else
1901 amdgpu_vm_free_mapping(adev, vm, mapping,
1902 bo_va->last_pt_update);
1903
1904 return 0;
1905 }
1906
1907 /**
1908 * amdgpu_vm_bo_clear_mappings - remove all mappings in a specific range
1909 *
1910 * @adev: amdgpu_device pointer
1911 * @vm: VM structure to use
1912 * @saddr: start of the range
1913 * @size: size of the range
1914 *
1915 * Remove all mappings in a range, split them as appropriate.
1916 * Returns 0 for success, error for failure.
1917 */
1918 int amdgpu_vm_bo_clear_mappings(struct amdgpu_device *adev,
1919 struct amdgpu_vm *vm,
1920 uint64_t saddr, uint64_t size)
1921 {
1922 struct amdgpu_bo_va_mapping *before, *after, *tmp, *next;
1923 LIST_HEAD(removed);
1924 uint64_t eaddr;
1925
1926 eaddr = saddr + size - 1;
1927 saddr /= AMDGPU_GPU_PAGE_SIZE;
1928 eaddr /= AMDGPU_GPU_PAGE_SIZE;
1929
1930 /* Allocate all the needed memory */
1931 before = kzalloc(sizeof(*before), GFP_KERNEL);
1932 if (!before)
1933 return -ENOMEM;
1934 INIT_LIST_HEAD(&before->list);
1935
1936 after = kzalloc(sizeof(*after), GFP_KERNEL);
1937 if (!after) {
1938 kfree(before);
1939 return -ENOMEM;
1940 }
1941 INIT_LIST_HEAD(&after->list);
1942
1943 /* Now gather all removed mappings */
1944 tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr);
1945 while (tmp) {
1946 /* Remember mapping split at the start */
1947 if (tmp->start < saddr) {
1948 before->start = tmp->start;
1949 before->last = saddr - 1;
1950 before->offset = tmp->offset;
1951 before->flags = tmp->flags;
1952 list_add(&before->list, &tmp->list);
1953 }
1954
1955 /* Remember mapping split at the end */
1956 if (tmp->last > eaddr) {
1957 after->start = eaddr + 1;
1958 after->last = tmp->last;
1959 after->offset = tmp->offset;
1960 after->offset += after->start - tmp->start;
1961 after->flags = tmp->flags;
1962 list_add(&after->list, &tmp->list);
1963 }
1964
1965 list_del(&tmp->list);
1966 list_add(&tmp->list, &removed);
1967
1968 tmp = amdgpu_vm_it_iter_next(tmp, saddr, eaddr);
1969 }
1970
1971 /* And free them up */
1972 list_for_each_entry_safe(tmp, next, &removed, list) {
1973 amdgpu_vm_it_remove(tmp, &vm->va);
1974 list_del(&tmp->list);
1975
1976 if (tmp->start < saddr)
1977 tmp->start = saddr;
1978 if (tmp->last > eaddr)
1979 tmp->last = eaddr;
1980
1981 list_add(&tmp->list, &vm->freed);
1982 trace_amdgpu_vm_bo_unmap(NULL, tmp);
1983 }
1984
1985 /* Insert partial mapping before the range */
1986 if (!list_empty(&before->list)) {
1987 amdgpu_vm_it_insert(before, &vm->va);
1988 if (before->flags & AMDGPU_PTE_PRT)
1989 amdgpu_vm_prt_get(adev);
1990 } else {
1991 kfree(before);
1992 }
1993
1994 /* Insert partial mapping after the range */
1995 if (!list_empty(&after->list)) {
1996 amdgpu_vm_it_insert(after, &vm->va);
1997 if (after->flags & AMDGPU_PTE_PRT)
1998 amdgpu_vm_prt_get(adev);
1999 } else {
2000 kfree(after);
2001 }
2002
2003 return 0;
2004 }
2005
2006 /**
2007 * amdgpu_vm_bo_rmv - remove a bo to a specific vm
2008 *
2009 * @adev: amdgpu_device pointer
2010 * @bo_va: requested bo_va
2011 *
2012 * Remove @bo_va->bo from the requested vm.
2013 *
2014 * Object have to be reserved!
2015 */
2016 void amdgpu_vm_bo_rmv(struct amdgpu_device *adev,
2017 struct amdgpu_bo_va *bo_va)
2018 {
2019 struct amdgpu_bo_va_mapping *mapping, *next;
2020 struct amdgpu_vm *vm = bo_va->vm;
2021
2022 list_del(&bo_va->bo_list);
2023
2024 spin_lock(&vm->status_lock);
2025 list_del(&bo_va->vm_status);
2026 spin_unlock(&vm->status_lock);
2027
2028 list_for_each_entry_safe(mapping, next, &bo_va->valids, list) {
2029 list_del(&mapping->list);
2030 amdgpu_vm_it_remove(mapping, &vm->va);
2031 trace_amdgpu_vm_bo_unmap(bo_va, mapping);
2032 list_add(&mapping->list, &vm->freed);
2033 }
2034 list_for_each_entry_safe(mapping, next, &bo_va->invalids, list) {
2035 list_del(&mapping->list);
2036 amdgpu_vm_it_remove(mapping, &vm->va);
2037 amdgpu_vm_free_mapping(adev, vm, mapping,
2038 bo_va->last_pt_update);
2039 }
2040
2041 dma_fence_put(bo_va->last_pt_update);
2042 kfree(bo_va);
2043 }
2044
2045 /**
2046 * amdgpu_vm_bo_invalidate - mark the bo as invalid
2047 *
2048 * @adev: amdgpu_device pointer
2049 * @vm: requested vm
2050 * @bo: amdgpu buffer object
2051 *
2052 * Mark @bo as invalid.
2053 */
2054 void amdgpu_vm_bo_invalidate(struct amdgpu_device *adev,
2055 struct amdgpu_bo *bo)
2056 {
2057 struct amdgpu_bo_va *bo_va;
2058
2059 list_for_each_entry(bo_va, &bo->va, bo_list) {
2060 spin_lock(&bo_va->vm->status_lock);
2061 if (list_empty(&bo_va->vm_status))
2062 list_add(&bo_va->vm_status, &bo_va->vm->invalidated);
2063 spin_unlock(&bo_va->vm->status_lock);
2064 }
2065 }
2066
2067 static uint32_t amdgpu_vm_get_block_size(uint64_t vm_size)
2068 {
2069 /* Total bits covered by PD + PTs */
2070 unsigned bits = ilog2(vm_size) + 18;
2071
2072 /* Make sure the PD is 4K in size up to 8GB address space.
2073 Above that split equal between PD and PTs */
2074 if (vm_size <= 8)
2075 return (bits - 9);
2076 else
2077 return ((bits + 3) / 2);
2078 }
2079
2080 /**
2081 * amdgpu_vm_adjust_size - adjust vm size and block size
2082 *
2083 * @adev: amdgpu_device pointer
2084 * @vm_size: the default vm size if it's set auto
2085 */
2086 void amdgpu_vm_adjust_size(struct amdgpu_device *adev, uint64_t vm_size)
2087 {
2088 /* adjust vm size firstly */
2089 if (amdgpu_vm_size == -1)
2090 adev->vm_manager.vm_size = vm_size;
2091 else
2092 adev->vm_manager.vm_size = amdgpu_vm_size;
2093
2094 /* block size depends on vm size */
2095 if (amdgpu_vm_block_size == -1)
2096 adev->vm_manager.block_size =
2097 amdgpu_vm_get_block_size(adev->vm_manager.vm_size);
2098 else
2099 adev->vm_manager.block_size = amdgpu_vm_block_size;
2100
2101 DRM_INFO("vm size is %llu GB, block size is %u-bit\n",
2102 adev->vm_manager.vm_size, adev->vm_manager.block_size);
2103 }
2104
2105 /**
2106 * amdgpu_vm_init - initialize a vm instance
2107 *
2108 * @adev: amdgpu_device pointer
2109 * @vm: requested vm
2110 *
2111 * Init @vm fields.
2112 */
2113 int amdgpu_vm_init(struct amdgpu_device *adev, struct amdgpu_vm *vm)
2114 {
2115 const unsigned align = min(AMDGPU_VM_PTB_ALIGN_SIZE,
2116 AMDGPU_VM_PTE_COUNT(adev) * 8);
2117 unsigned ring_instance;
2118 struct amdgpu_ring *ring;
2119 struct amd_sched_rq *rq;
2120 int i, r;
2121
2122 for (i = 0; i < AMDGPU_MAX_RINGS; ++i)
2123 vm->ids[i] = NULL;
2124 vm->va = RB_ROOT;
2125 vm->client_id = atomic64_inc_return(&adev->vm_manager.client_counter);
2126 spin_lock_init(&vm->status_lock);
2127 INIT_LIST_HEAD(&vm->invalidated);
2128 INIT_LIST_HEAD(&vm->cleared);
2129 INIT_LIST_HEAD(&vm->freed);
2130
2131 /* create scheduler entity for page table updates */
2132
2133 ring_instance = atomic_inc_return(&adev->vm_manager.vm_pte_next_ring);
2134 ring_instance %= adev->vm_manager.vm_pte_num_rings;
2135 ring = adev->vm_manager.vm_pte_rings[ring_instance];
2136 rq = &ring->sched.sched_rq[AMD_SCHED_PRIORITY_KERNEL];
2137 r = amd_sched_entity_init(&ring->sched, &vm->entity,
2138 rq, amdgpu_sched_jobs);
2139 if (r)
2140 return r;
2141
2142 vm->last_dir_update = NULL;
2143
2144 r = amdgpu_bo_create(adev, amdgpu_vm_bo_size(adev, 0), align, true,
2145 AMDGPU_GEM_DOMAIN_VRAM,
2146 AMDGPU_GEM_CREATE_NO_CPU_ACCESS |
2147 AMDGPU_GEM_CREATE_SHADOW |
2148 AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS |
2149 AMDGPU_GEM_CREATE_VRAM_CLEARED,
2150 NULL, NULL, &vm->root.bo);
2151 if (r)
2152 goto error_free_sched_entity;
2153
2154 r = amdgpu_bo_reserve(vm->root.bo, false);
2155 if (r)
2156 goto error_free_root;
2157
2158 vm->last_eviction_counter = atomic64_read(&adev->num_evictions);
2159 amdgpu_bo_unreserve(vm->root.bo);
2160
2161 return 0;
2162
2163 error_free_root:
2164 amdgpu_bo_unref(&vm->root.bo->shadow);
2165 amdgpu_bo_unref(&vm->root.bo);
2166 vm->root.bo = NULL;
2167
2168 error_free_sched_entity:
2169 amd_sched_entity_fini(&ring->sched, &vm->entity);
2170
2171 return r;
2172 }
2173
2174 /**
2175 * amdgpu_vm_free_levels - free PD/PT levels
2176 *
2177 * @level: PD/PT starting level to free
2178 *
2179 * Free the page directory or page table level and all sub levels.
2180 */
2181 static void amdgpu_vm_free_levels(struct amdgpu_vm_pt *level)
2182 {
2183 unsigned i;
2184
2185 if (level->bo) {
2186 amdgpu_bo_unref(&level->bo->shadow);
2187 amdgpu_bo_unref(&level->bo);
2188 }
2189
2190 if (level->entries)
2191 for (i = 0; i <= level->last_entry_used; i++)
2192 amdgpu_vm_free_levels(&level->entries[i]);
2193
2194 drm_free_large(level->entries);
2195 }
2196
2197 /**
2198 * amdgpu_vm_fini - tear down a vm instance
2199 *
2200 * @adev: amdgpu_device pointer
2201 * @vm: requested vm
2202 *
2203 * Tear down @vm.
2204 * Unbind the VM and remove all bos from the vm bo list
2205 */
2206 void amdgpu_vm_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm)
2207 {
2208 struct amdgpu_bo_va_mapping *mapping, *tmp;
2209 bool prt_fini_needed = !!adev->gart.gart_funcs->set_prt;
2210
2211 amd_sched_entity_fini(vm->entity.sched, &vm->entity);
2212
2213 if (!RB_EMPTY_ROOT(&vm->va)) {
2214 dev_err(adev->dev, "still active bo inside vm\n");
2215 }
2216 rbtree_postorder_for_each_entry_safe(mapping, tmp, &vm->va, rb) {
2217 list_del(&mapping->list);
2218 amdgpu_vm_it_remove(mapping, &vm->va);
2219 kfree(mapping);
2220 }
2221 list_for_each_entry_safe(mapping, tmp, &vm->freed, list) {
2222 if (mapping->flags & AMDGPU_PTE_PRT && prt_fini_needed) {
2223 amdgpu_vm_prt_fini(adev, vm);
2224 prt_fini_needed = false;
2225 }
2226
2227 list_del(&mapping->list);
2228 amdgpu_vm_free_mapping(adev, vm, mapping, NULL);
2229 }
2230
2231 amdgpu_vm_free_levels(&vm->root);
2232 dma_fence_put(vm->last_dir_update);
2233 }
2234
2235 /**
2236 * amdgpu_vm_manager_init - init the VM manager
2237 *
2238 * @adev: amdgpu_device pointer
2239 *
2240 * Initialize the VM manager structures
2241 */
2242 void amdgpu_vm_manager_init(struct amdgpu_device *adev)
2243 {
2244 unsigned i;
2245
2246 INIT_LIST_HEAD(&adev->vm_manager.ids_lru);
2247
2248 /* skip over VMID 0, since it is the system VM */
2249 for (i = 1; i < adev->vm_manager.num_ids; ++i) {
2250 amdgpu_vm_reset_id(adev, i);
2251 amdgpu_sync_create(&adev->vm_manager.ids[i].active);
2252 list_add_tail(&adev->vm_manager.ids[i].list,
2253 &adev->vm_manager.ids_lru);
2254 }
2255
2256 adev->vm_manager.fence_context =
2257 dma_fence_context_alloc(AMDGPU_MAX_RINGS);
2258 for (i = 0; i < AMDGPU_MAX_RINGS; ++i)
2259 adev->vm_manager.seqno[i] = 0;
2260
2261 atomic_set(&adev->vm_manager.vm_pte_next_ring, 0);
2262 atomic64_set(&adev->vm_manager.client_counter, 0);
2263 spin_lock_init(&adev->vm_manager.prt_lock);
2264 atomic_set(&adev->vm_manager.num_prt_users, 0);
2265 }
2266
2267 /**
2268 * amdgpu_vm_manager_fini - cleanup VM manager
2269 *
2270 * @adev: amdgpu_device pointer
2271 *
2272 * Cleanup the VM manager and free resources.
2273 */
2274 void amdgpu_vm_manager_fini(struct amdgpu_device *adev)
2275 {
2276 unsigned i;
2277
2278 for (i = 0; i < AMDGPU_NUM_VM; ++i) {
2279 struct amdgpu_vm_id *id = &adev->vm_manager.ids[i];
2280
2281 amdgpu_sync_free(&adev->vm_manager.ids[i].active);
2282 dma_fence_put(id->flushed_updates);
2283 dma_fence_put(id->last_flush);
2284 }
2285 }