]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/gpu/drm/amd/amdgpu/amdgpu_vm.c
drm/amdgpu: move VM table mapping into the backend as well
[mirror_ubuntu-jammy-kernel.git] / drivers / gpu / drm / amd / amdgpu / amdgpu_vm.c
1 /*
2 * Copyright 2008 Advanced Micro Devices, Inc.
3 * Copyright 2008 Red Hat Inc.
4 * Copyright 2009 Jerome Glisse.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22 * OTHER DEALINGS IN THE SOFTWARE.
23 *
24 * Authors: Dave Airlie
25 * Alex Deucher
26 * Jerome Glisse
27 */
28 #include <linux/dma-fence-array.h>
29 #include <linux/interval_tree_generic.h>
30 #include <linux/idr.h>
31 #include <drm/drmP.h>
32 #include <drm/amdgpu_drm.h>
33 #include "amdgpu.h"
34 #include "amdgpu_trace.h"
35 #include "amdgpu_amdkfd.h"
36 #include "amdgpu_gmc.h"
37 #include "amdgpu_xgmi.h"
38
39 /**
40 * DOC: GPUVM
41 *
42 * GPUVM is similar to the legacy gart on older asics, however
43 * rather than there being a single global gart table
44 * for the entire GPU, there are multiple VM page tables active
45 * at any given time. The VM page tables can contain a mix
46 * vram pages and system memory pages and system memory pages
47 * can be mapped as snooped (cached system pages) or unsnooped
48 * (uncached system pages).
49 * Each VM has an ID associated with it and there is a page table
50 * associated with each VMID. When execting a command buffer,
51 * the kernel tells the the ring what VMID to use for that command
52 * buffer. VMIDs are allocated dynamically as commands are submitted.
53 * The userspace drivers maintain their own address space and the kernel
54 * sets up their pages tables accordingly when they submit their
55 * command buffers and a VMID is assigned.
56 * Cayman/Trinity support up to 8 active VMs at any given time;
57 * SI supports 16.
58 */
59
60 #define START(node) ((node)->start)
61 #define LAST(node) ((node)->last)
62
63 INTERVAL_TREE_DEFINE(struct amdgpu_bo_va_mapping, rb, uint64_t, __subtree_last,
64 START, LAST, static, amdgpu_vm_it)
65
66 #undef START
67 #undef LAST
68
69 /**
70 * struct amdgpu_prt_cb - Helper to disable partial resident texture feature from a fence callback
71 */
72 struct amdgpu_prt_cb {
73
74 /**
75 * @adev: amdgpu device
76 */
77 struct amdgpu_device *adev;
78
79 /**
80 * @cb: callback
81 */
82 struct dma_fence_cb cb;
83 };
84
85 /**
86 * amdgpu_vm_level_shift - return the addr shift for each level
87 *
88 * @adev: amdgpu_device pointer
89 * @level: VMPT level
90 *
91 * Returns:
92 * The number of bits the pfn needs to be right shifted for a level.
93 */
94 static unsigned amdgpu_vm_level_shift(struct amdgpu_device *adev,
95 unsigned level)
96 {
97 unsigned shift = 0xff;
98
99 switch (level) {
100 case AMDGPU_VM_PDB2:
101 case AMDGPU_VM_PDB1:
102 case AMDGPU_VM_PDB0:
103 shift = 9 * (AMDGPU_VM_PDB0 - level) +
104 adev->vm_manager.block_size;
105 break;
106 case AMDGPU_VM_PTB:
107 shift = 0;
108 break;
109 default:
110 dev_err(adev->dev, "the level%d isn't supported.\n", level);
111 }
112
113 return shift;
114 }
115
116 /**
117 * amdgpu_vm_num_entries - return the number of entries in a PD/PT
118 *
119 * @adev: amdgpu_device pointer
120 * @level: VMPT level
121 *
122 * Returns:
123 * The number of entries in a page directory or page table.
124 */
125 static unsigned amdgpu_vm_num_entries(struct amdgpu_device *adev,
126 unsigned level)
127 {
128 unsigned shift = amdgpu_vm_level_shift(adev,
129 adev->vm_manager.root_level);
130
131 if (level == adev->vm_manager.root_level)
132 /* For the root directory */
133 return round_up(adev->vm_manager.max_pfn, 1ULL << shift) >> shift;
134 else if (level != AMDGPU_VM_PTB)
135 /* Everything in between */
136 return 512;
137 else
138 /* For the page tables on the leaves */
139 return AMDGPU_VM_PTE_COUNT(adev);
140 }
141
142 /**
143 * amdgpu_vm_num_ats_entries - return the number of ATS entries in the root PD
144 *
145 * @adev: amdgpu_device pointer
146 *
147 * Returns:
148 * The number of entries in the root page directory which needs the ATS setting.
149 */
150 static unsigned amdgpu_vm_num_ats_entries(struct amdgpu_device *adev)
151 {
152 unsigned shift;
153
154 shift = amdgpu_vm_level_shift(adev, adev->vm_manager.root_level);
155 return AMDGPU_GMC_HOLE_START >> (shift + AMDGPU_GPU_PAGE_SHIFT);
156 }
157
158 /**
159 * amdgpu_vm_entries_mask - the mask to get the entry number of a PD/PT
160 *
161 * @adev: amdgpu_device pointer
162 * @level: VMPT level
163 *
164 * Returns:
165 * The mask to extract the entry number of a PD/PT from an address.
166 */
167 static uint32_t amdgpu_vm_entries_mask(struct amdgpu_device *adev,
168 unsigned int level)
169 {
170 if (level <= adev->vm_manager.root_level)
171 return 0xffffffff;
172 else if (level != AMDGPU_VM_PTB)
173 return 0x1ff;
174 else
175 return AMDGPU_VM_PTE_COUNT(adev) - 1;
176 }
177
178 /**
179 * amdgpu_vm_bo_size - returns the size of the BOs in bytes
180 *
181 * @adev: amdgpu_device pointer
182 * @level: VMPT level
183 *
184 * Returns:
185 * The size of the BO for a page directory or page table in bytes.
186 */
187 static unsigned amdgpu_vm_bo_size(struct amdgpu_device *adev, unsigned level)
188 {
189 return AMDGPU_GPU_PAGE_ALIGN(amdgpu_vm_num_entries(adev, level) * 8);
190 }
191
192 /**
193 * amdgpu_vm_bo_evicted - vm_bo is evicted
194 *
195 * @vm_bo: vm_bo which is evicted
196 *
197 * State for PDs/PTs and per VM BOs which are not at the location they should
198 * be.
199 */
200 static void amdgpu_vm_bo_evicted(struct amdgpu_vm_bo_base *vm_bo)
201 {
202 struct amdgpu_vm *vm = vm_bo->vm;
203 struct amdgpu_bo *bo = vm_bo->bo;
204
205 vm_bo->moved = true;
206 if (bo->tbo.type == ttm_bo_type_kernel)
207 list_move(&vm_bo->vm_status, &vm->evicted);
208 else
209 list_move_tail(&vm_bo->vm_status, &vm->evicted);
210 }
211
212 /**
213 * amdgpu_vm_bo_relocated - vm_bo is reloacted
214 *
215 * @vm_bo: vm_bo which is relocated
216 *
217 * State for PDs/PTs which needs to update their parent PD.
218 */
219 static void amdgpu_vm_bo_relocated(struct amdgpu_vm_bo_base *vm_bo)
220 {
221 list_move(&vm_bo->vm_status, &vm_bo->vm->relocated);
222 }
223
224 /**
225 * amdgpu_vm_bo_moved - vm_bo is moved
226 *
227 * @vm_bo: vm_bo which is moved
228 *
229 * State for per VM BOs which are moved, but that change is not yet reflected
230 * in the page tables.
231 */
232 static void amdgpu_vm_bo_moved(struct amdgpu_vm_bo_base *vm_bo)
233 {
234 list_move(&vm_bo->vm_status, &vm_bo->vm->moved);
235 }
236
237 /**
238 * amdgpu_vm_bo_idle - vm_bo is idle
239 *
240 * @vm_bo: vm_bo which is now idle
241 *
242 * State for PDs/PTs and per VM BOs which have gone through the state machine
243 * and are now idle.
244 */
245 static void amdgpu_vm_bo_idle(struct amdgpu_vm_bo_base *vm_bo)
246 {
247 list_move(&vm_bo->vm_status, &vm_bo->vm->idle);
248 vm_bo->moved = false;
249 }
250
251 /**
252 * amdgpu_vm_bo_invalidated - vm_bo is invalidated
253 *
254 * @vm_bo: vm_bo which is now invalidated
255 *
256 * State for normal BOs which are invalidated and that change not yet reflected
257 * in the PTs.
258 */
259 static void amdgpu_vm_bo_invalidated(struct amdgpu_vm_bo_base *vm_bo)
260 {
261 spin_lock(&vm_bo->vm->invalidated_lock);
262 list_move(&vm_bo->vm_status, &vm_bo->vm->invalidated);
263 spin_unlock(&vm_bo->vm->invalidated_lock);
264 }
265
266 /**
267 * amdgpu_vm_bo_done - vm_bo is done
268 *
269 * @vm_bo: vm_bo which is now done
270 *
271 * State for normal BOs which are invalidated and that change has been updated
272 * in the PTs.
273 */
274 static void amdgpu_vm_bo_done(struct amdgpu_vm_bo_base *vm_bo)
275 {
276 spin_lock(&vm_bo->vm->invalidated_lock);
277 list_del_init(&vm_bo->vm_status);
278 spin_unlock(&vm_bo->vm->invalidated_lock);
279 }
280
281 /**
282 * amdgpu_vm_bo_base_init - Adds bo to the list of bos associated with the vm
283 *
284 * @base: base structure for tracking BO usage in a VM
285 * @vm: vm to which bo is to be added
286 * @bo: amdgpu buffer object
287 *
288 * Initialize a bo_va_base structure and add it to the appropriate lists
289 *
290 */
291 static void amdgpu_vm_bo_base_init(struct amdgpu_vm_bo_base *base,
292 struct amdgpu_vm *vm,
293 struct amdgpu_bo *bo)
294 {
295 base->vm = vm;
296 base->bo = bo;
297 base->next = NULL;
298 INIT_LIST_HEAD(&base->vm_status);
299
300 if (!bo)
301 return;
302 base->next = bo->vm_bo;
303 bo->vm_bo = base;
304
305 if (bo->tbo.resv != vm->root.base.bo->tbo.resv)
306 return;
307
308 vm->bulk_moveable = false;
309 if (bo->tbo.type == ttm_bo_type_kernel)
310 amdgpu_vm_bo_relocated(base);
311 else
312 amdgpu_vm_bo_idle(base);
313
314 if (bo->preferred_domains &
315 amdgpu_mem_type_to_domain(bo->tbo.mem.mem_type))
316 return;
317
318 /*
319 * we checked all the prerequisites, but it looks like this per vm bo
320 * is currently evicted. add the bo to the evicted list to make sure it
321 * is validated on next vm use to avoid fault.
322 * */
323 amdgpu_vm_bo_evicted(base);
324 }
325
326 /**
327 * amdgpu_vm_pt_parent - get the parent page directory
328 *
329 * @pt: child page table
330 *
331 * Helper to get the parent entry for the child page table. NULL if we are at
332 * the root page directory.
333 */
334 static struct amdgpu_vm_pt *amdgpu_vm_pt_parent(struct amdgpu_vm_pt *pt)
335 {
336 struct amdgpu_bo *parent = pt->base.bo->parent;
337
338 if (!parent)
339 return NULL;
340
341 return container_of(parent->vm_bo, struct amdgpu_vm_pt, base);
342 }
343
344 /**
345 * amdgpu_vm_pt_cursor - state for for_each_amdgpu_vm_pt
346 */
347 struct amdgpu_vm_pt_cursor {
348 uint64_t pfn;
349 struct amdgpu_vm_pt *parent;
350 struct amdgpu_vm_pt *entry;
351 unsigned level;
352 };
353
354 /**
355 * amdgpu_vm_pt_start - start PD/PT walk
356 *
357 * @adev: amdgpu_device pointer
358 * @vm: amdgpu_vm structure
359 * @start: start address of the walk
360 * @cursor: state to initialize
361 *
362 * Initialize a amdgpu_vm_pt_cursor to start a walk.
363 */
364 static void amdgpu_vm_pt_start(struct amdgpu_device *adev,
365 struct amdgpu_vm *vm, uint64_t start,
366 struct amdgpu_vm_pt_cursor *cursor)
367 {
368 cursor->pfn = start;
369 cursor->parent = NULL;
370 cursor->entry = &vm->root;
371 cursor->level = adev->vm_manager.root_level;
372 }
373
374 /**
375 * amdgpu_vm_pt_descendant - go to child node
376 *
377 * @adev: amdgpu_device pointer
378 * @cursor: current state
379 *
380 * Walk to the child node of the current node.
381 * Returns:
382 * True if the walk was possible, false otherwise.
383 */
384 static bool amdgpu_vm_pt_descendant(struct amdgpu_device *adev,
385 struct amdgpu_vm_pt_cursor *cursor)
386 {
387 unsigned mask, shift, idx;
388
389 if (!cursor->entry->entries)
390 return false;
391
392 BUG_ON(!cursor->entry->base.bo);
393 mask = amdgpu_vm_entries_mask(adev, cursor->level);
394 shift = amdgpu_vm_level_shift(adev, cursor->level);
395
396 ++cursor->level;
397 idx = (cursor->pfn >> shift) & mask;
398 cursor->parent = cursor->entry;
399 cursor->entry = &cursor->entry->entries[idx];
400 return true;
401 }
402
403 /**
404 * amdgpu_vm_pt_sibling - go to sibling node
405 *
406 * @adev: amdgpu_device pointer
407 * @cursor: current state
408 *
409 * Walk to the sibling node of the current node.
410 * Returns:
411 * True if the walk was possible, false otherwise.
412 */
413 static bool amdgpu_vm_pt_sibling(struct amdgpu_device *adev,
414 struct amdgpu_vm_pt_cursor *cursor)
415 {
416 unsigned shift, num_entries;
417
418 /* Root doesn't have a sibling */
419 if (!cursor->parent)
420 return false;
421
422 /* Go to our parents and see if we got a sibling */
423 shift = amdgpu_vm_level_shift(adev, cursor->level - 1);
424 num_entries = amdgpu_vm_num_entries(adev, cursor->level - 1);
425
426 if (cursor->entry == &cursor->parent->entries[num_entries - 1])
427 return false;
428
429 cursor->pfn += 1ULL << shift;
430 cursor->pfn &= ~((1ULL << shift) - 1);
431 ++cursor->entry;
432 return true;
433 }
434
435 /**
436 * amdgpu_vm_pt_ancestor - go to parent node
437 *
438 * @cursor: current state
439 *
440 * Walk to the parent node of the current node.
441 * Returns:
442 * True if the walk was possible, false otherwise.
443 */
444 static bool amdgpu_vm_pt_ancestor(struct amdgpu_vm_pt_cursor *cursor)
445 {
446 if (!cursor->parent)
447 return false;
448
449 --cursor->level;
450 cursor->entry = cursor->parent;
451 cursor->parent = amdgpu_vm_pt_parent(cursor->parent);
452 return true;
453 }
454
455 /**
456 * amdgpu_vm_pt_next - get next PD/PT in hieratchy
457 *
458 * @adev: amdgpu_device pointer
459 * @cursor: current state
460 *
461 * Walk the PD/PT tree to the next node.
462 */
463 static void amdgpu_vm_pt_next(struct amdgpu_device *adev,
464 struct amdgpu_vm_pt_cursor *cursor)
465 {
466 /* First try a newborn child */
467 if (amdgpu_vm_pt_descendant(adev, cursor))
468 return;
469
470 /* If that didn't worked try to find a sibling */
471 while (!amdgpu_vm_pt_sibling(adev, cursor)) {
472 /* No sibling, go to our parents and grandparents */
473 if (!amdgpu_vm_pt_ancestor(cursor)) {
474 cursor->pfn = ~0ll;
475 return;
476 }
477 }
478 }
479
480 /**
481 * amdgpu_vm_pt_first_dfs - start a deep first search
482 *
483 * @adev: amdgpu_device structure
484 * @vm: amdgpu_vm structure
485 * @cursor: state to initialize
486 *
487 * Starts a deep first traversal of the PD/PT tree.
488 */
489 static void amdgpu_vm_pt_first_dfs(struct amdgpu_device *adev,
490 struct amdgpu_vm *vm,
491 struct amdgpu_vm_pt_cursor *start,
492 struct amdgpu_vm_pt_cursor *cursor)
493 {
494 if (start)
495 *cursor = *start;
496 else
497 amdgpu_vm_pt_start(adev, vm, 0, cursor);
498 while (amdgpu_vm_pt_descendant(adev, cursor));
499 }
500
501 /**
502 * amdgpu_vm_pt_continue_dfs - check if the deep first search should continue
503 *
504 * @start: starting point for the search
505 * @entry: current entry
506 *
507 * Returns:
508 * True when the search should continue, false otherwise.
509 */
510 static bool amdgpu_vm_pt_continue_dfs(struct amdgpu_vm_pt_cursor *start,
511 struct amdgpu_vm_pt *entry)
512 {
513 return entry && (!start || entry != start->entry);
514 }
515
516 /**
517 * amdgpu_vm_pt_next_dfs - get the next node for a deep first search
518 *
519 * @adev: amdgpu_device structure
520 * @cursor: current state
521 *
522 * Move the cursor to the next node in a deep first search.
523 */
524 static void amdgpu_vm_pt_next_dfs(struct amdgpu_device *adev,
525 struct amdgpu_vm_pt_cursor *cursor)
526 {
527 if (!cursor->entry)
528 return;
529
530 if (!cursor->parent)
531 cursor->entry = NULL;
532 else if (amdgpu_vm_pt_sibling(adev, cursor))
533 while (amdgpu_vm_pt_descendant(adev, cursor));
534 else
535 amdgpu_vm_pt_ancestor(cursor);
536 }
537
538 /**
539 * for_each_amdgpu_vm_pt_dfs_safe - safe deep first search of all PDs/PTs
540 */
541 #define for_each_amdgpu_vm_pt_dfs_safe(adev, vm, start, cursor, entry) \
542 for (amdgpu_vm_pt_first_dfs((adev), (vm), (start), &(cursor)), \
543 (entry) = (cursor).entry, amdgpu_vm_pt_next_dfs((adev), &(cursor));\
544 amdgpu_vm_pt_continue_dfs((start), (entry)); \
545 (entry) = (cursor).entry, amdgpu_vm_pt_next_dfs((adev), &(cursor)))
546
547 /**
548 * amdgpu_vm_get_pd_bo - add the VM PD to a validation list
549 *
550 * @vm: vm providing the BOs
551 * @validated: head of validation list
552 * @entry: entry to add
553 *
554 * Add the page directory to the list of BOs to
555 * validate for command submission.
556 */
557 void amdgpu_vm_get_pd_bo(struct amdgpu_vm *vm,
558 struct list_head *validated,
559 struct amdgpu_bo_list_entry *entry)
560 {
561 entry->priority = 0;
562 entry->tv.bo = &vm->root.base.bo->tbo;
563 /* One for the VM updates, one for TTM and one for the CS job */
564 entry->tv.num_shared = 3;
565 entry->user_pages = NULL;
566 list_add(&entry->tv.head, validated);
567 }
568
569 void amdgpu_vm_del_from_lru_notify(struct ttm_buffer_object *bo)
570 {
571 struct amdgpu_bo *abo;
572 struct amdgpu_vm_bo_base *bo_base;
573
574 if (!amdgpu_bo_is_amdgpu_bo(bo))
575 return;
576
577 if (bo->mem.placement & TTM_PL_FLAG_NO_EVICT)
578 return;
579
580 abo = ttm_to_amdgpu_bo(bo);
581 if (!abo->parent)
582 return;
583 for (bo_base = abo->vm_bo; bo_base; bo_base = bo_base->next) {
584 struct amdgpu_vm *vm = bo_base->vm;
585
586 if (abo->tbo.resv == vm->root.base.bo->tbo.resv)
587 vm->bulk_moveable = false;
588 }
589
590 }
591 /**
592 * amdgpu_vm_move_to_lru_tail - move all BOs to the end of LRU
593 *
594 * @adev: amdgpu device pointer
595 * @vm: vm providing the BOs
596 *
597 * Move all BOs to the end of LRU and remember their positions to put them
598 * together.
599 */
600 void amdgpu_vm_move_to_lru_tail(struct amdgpu_device *adev,
601 struct amdgpu_vm *vm)
602 {
603 struct ttm_bo_global *glob = adev->mman.bdev.glob;
604 struct amdgpu_vm_bo_base *bo_base;
605
606 if (vm->bulk_moveable) {
607 spin_lock(&glob->lru_lock);
608 ttm_bo_bulk_move_lru_tail(&vm->lru_bulk_move);
609 spin_unlock(&glob->lru_lock);
610 return;
611 }
612
613 memset(&vm->lru_bulk_move, 0, sizeof(vm->lru_bulk_move));
614
615 spin_lock(&glob->lru_lock);
616 list_for_each_entry(bo_base, &vm->idle, vm_status) {
617 struct amdgpu_bo *bo = bo_base->bo;
618
619 if (!bo->parent)
620 continue;
621
622 ttm_bo_move_to_lru_tail(&bo->tbo, &vm->lru_bulk_move);
623 if (bo->shadow)
624 ttm_bo_move_to_lru_tail(&bo->shadow->tbo,
625 &vm->lru_bulk_move);
626 }
627 spin_unlock(&glob->lru_lock);
628
629 vm->bulk_moveable = true;
630 }
631
632 /**
633 * amdgpu_vm_validate_pt_bos - validate the page table BOs
634 *
635 * @adev: amdgpu device pointer
636 * @vm: vm providing the BOs
637 * @validate: callback to do the validation
638 * @param: parameter for the validation callback
639 *
640 * Validate the page table BOs on command submission if neccessary.
641 *
642 * Returns:
643 * Validation result.
644 */
645 int amdgpu_vm_validate_pt_bos(struct amdgpu_device *adev, struct amdgpu_vm *vm,
646 int (*validate)(void *p, struct amdgpu_bo *bo),
647 void *param)
648 {
649 struct amdgpu_vm_bo_base *bo_base, *tmp;
650 int r = 0;
651
652 list_for_each_entry_safe(bo_base, tmp, &vm->evicted, vm_status) {
653 struct amdgpu_bo *bo = bo_base->bo;
654
655 r = validate(param, bo);
656 if (r)
657 break;
658
659 if (bo->tbo.type != ttm_bo_type_kernel) {
660 amdgpu_vm_bo_moved(bo_base);
661 } else {
662 vm->update_funcs->map_table(bo);
663 amdgpu_vm_bo_relocated(bo_base);
664 }
665 }
666
667 return r;
668 }
669
670 /**
671 * amdgpu_vm_ready - check VM is ready for updates
672 *
673 * @vm: VM to check
674 *
675 * Check if all VM PDs/PTs are ready for updates
676 *
677 * Returns:
678 * True if eviction list is empty.
679 */
680 bool amdgpu_vm_ready(struct amdgpu_vm *vm)
681 {
682 return list_empty(&vm->evicted);
683 }
684
685 /**
686 * amdgpu_vm_clear_bo - initially clear the PDs/PTs
687 *
688 * @adev: amdgpu_device pointer
689 * @vm: VM to clear BO from
690 * @bo: BO to clear
691 *
692 * Root PD needs to be reserved when calling this.
693 *
694 * Returns:
695 * 0 on success, errno otherwise.
696 */
697 static int amdgpu_vm_clear_bo(struct amdgpu_device *adev,
698 struct amdgpu_vm *vm,
699 struct amdgpu_bo *bo)
700 {
701 struct ttm_operation_ctx ctx = { true, false };
702 unsigned level = adev->vm_manager.root_level;
703 struct amdgpu_vm_update_params params;
704 struct amdgpu_bo *ancestor = bo;
705 unsigned entries, ats_entries;
706 uint64_t addr;
707 int r;
708
709 /* Figure out our place in the hierarchy */
710 if (ancestor->parent) {
711 ++level;
712 while (ancestor->parent->parent) {
713 ++level;
714 ancestor = ancestor->parent;
715 }
716 }
717
718 entries = amdgpu_bo_size(bo) / 8;
719 if (!vm->pte_support_ats) {
720 ats_entries = 0;
721
722 } else if (!bo->parent) {
723 ats_entries = amdgpu_vm_num_ats_entries(adev);
724 ats_entries = min(ats_entries, entries);
725 entries -= ats_entries;
726
727 } else {
728 struct amdgpu_vm_pt *pt;
729
730 pt = container_of(ancestor->vm_bo, struct amdgpu_vm_pt, base);
731 ats_entries = amdgpu_vm_num_ats_entries(adev);
732 if ((pt - vm->root.entries) >= ats_entries) {
733 ats_entries = 0;
734 } else {
735 ats_entries = entries;
736 entries = 0;
737 }
738 }
739
740 r = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
741 if (r)
742 return r;
743
744 if (bo->shadow) {
745 r = ttm_bo_validate(&bo->shadow->tbo, &bo->shadow->placement,
746 &ctx);
747 if (r)
748 return r;
749 }
750
751 r = vm->update_funcs->map_table(bo);
752 if (r)
753 return r;
754
755 memset(&params, 0, sizeof(params));
756 params.adev = adev;
757 params.vm = vm;
758
759 r = vm->update_funcs->prepare(&params, AMDGPU_FENCE_OWNER_KFD, NULL);
760 if (r)
761 return r;
762
763 addr = 0;
764 if (ats_entries) {
765 uint64_t ats_value;
766
767 ats_value = AMDGPU_PTE_DEFAULT_ATC;
768 if (level != AMDGPU_VM_PTB)
769 ats_value |= AMDGPU_PDE_PTE;
770
771 r = vm->update_funcs->update(&params, bo, addr, 0, ats_entries,
772 0, ats_value);
773 if (r)
774 return r;
775
776 addr += ats_entries * 8;
777 }
778
779 if (entries) {
780 uint64_t value = 0;
781
782 /* Workaround for fault priority problem on GMC9 */
783 if (level == AMDGPU_VM_PTB &&
784 adev->asic_type >= CHIP_VEGA10)
785 value = AMDGPU_PTE_EXECUTABLE;
786
787 r = vm->update_funcs->update(&params, bo, addr, 0, entries,
788 0, value);
789 if (r)
790 return r;
791 }
792
793 return vm->update_funcs->commit(&params, NULL);
794 }
795
796 /**
797 * amdgpu_vm_bo_param - fill in parameters for PD/PT allocation
798 *
799 * @adev: amdgpu_device pointer
800 * @vm: requesting vm
801 * @bp: resulting BO allocation parameters
802 */
803 static void amdgpu_vm_bo_param(struct amdgpu_device *adev, struct amdgpu_vm *vm,
804 int level, struct amdgpu_bo_param *bp)
805 {
806 memset(bp, 0, sizeof(*bp));
807
808 bp->size = amdgpu_vm_bo_size(adev, level);
809 bp->byte_align = AMDGPU_GPU_PAGE_SIZE;
810 bp->domain = AMDGPU_GEM_DOMAIN_VRAM;
811 bp->domain = amdgpu_bo_get_preferred_pin_domain(adev, bp->domain);
812 bp->flags = AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS |
813 AMDGPU_GEM_CREATE_CPU_GTT_USWC;
814 if (vm->use_cpu_for_update)
815 bp->flags |= AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
816 else if (!vm->root.base.bo || vm->root.base.bo->shadow)
817 bp->flags |= AMDGPU_GEM_CREATE_SHADOW;
818 bp->type = ttm_bo_type_kernel;
819 if (vm->root.base.bo)
820 bp->resv = vm->root.base.bo->tbo.resv;
821 }
822
823 /**
824 * amdgpu_vm_alloc_pts - Allocate a specific page table
825 *
826 * @adev: amdgpu_device pointer
827 * @vm: VM to allocate page tables for
828 * @cursor: Which page table to allocate
829 *
830 * Make sure a specific page table or directory is allocated.
831 *
832 * Returns:
833 * 1 if page table needed to be allocated, 0 if page table was already
834 * allocated, negative errno if an error occurred.
835 */
836 static int amdgpu_vm_alloc_pts(struct amdgpu_device *adev,
837 struct amdgpu_vm *vm,
838 struct amdgpu_vm_pt_cursor *cursor)
839 {
840 struct amdgpu_vm_pt *entry = cursor->entry;
841 struct amdgpu_bo_param bp;
842 struct amdgpu_bo *pt;
843 int r;
844
845 if (cursor->level < AMDGPU_VM_PTB && !entry->entries) {
846 unsigned num_entries;
847
848 num_entries = amdgpu_vm_num_entries(adev, cursor->level);
849 entry->entries = kvmalloc_array(num_entries,
850 sizeof(*entry->entries),
851 GFP_KERNEL | __GFP_ZERO);
852 if (!entry->entries)
853 return -ENOMEM;
854 }
855
856 if (entry->base.bo)
857 return 0;
858
859 amdgpu_vm_bo_param(adev, vm, cursor->level, &bp);
860
861 r = amdgpu_bo_create(adev, &bp, &pt);
862 if (r)
863 return r;
864
865 /* Keep a reference to the root directory to avoid
866 * freeing them up in the wrong order.
867 */
868 pt->parent = amdgpu_bo_ref(cursor->parent->base.bo);
869 amdgpu_vm_bo_base_init(&entry->base, vm, pt);
870
871 r = amdgpu_vm_clear_bo(adev, vm, pt);
872 if (r)
873 goto error_free_pt;
874
875 return 0;
876
877 error_free_pt:
878 amdgpu_bo_unref(&pt->shadow);
879 amdgpu_bo_unref(&pt);
880 return r;
881 }
882
883 /**
884 * amdgpu_vm_free_table - fre one PD/PT
885 *
886 * @entry: PDE to free
887 */
888 static void amdgpu_vm_free_table(struct amdgpu_vm_pt *entry)
889 {
890 if (entry->base.bo) {
891 entry->base.bo->vm_bo = NULL;
892 list_del(&entry->base.vm_status);
893 amdgpu_bo_unref(&entry->base.bo->shadow);
894 amdgpu_bo_unref(&entry->base.bo);
895 }
896 kvfree(entry->entries);
897 entry->entries = NULL;
898 }
899
900 /**
901 * amdgpu_vm_free_pts - free PD/PT levels
902 *
903 * @adev: amdgpu device structure
904 * @vm: amdgpu vm structure
905 * @start: optional cursor where to start freeing PDs/PTs
906 *
907 * Free the page directory or page table level and all sub levels.
908 */
909 static void amdgpu_vm_free_pts(struct amdgpu_device *adev,
910 struct amdgpu_vm *vm,
911 struct amdgpu_vm_pt_cursor *start)
912 {
913 struct amdgpu_vm_pt_cursor cursor;
914 struct amdgpu_vm_pt *entry;
915
916 vm->bulk_moveable = false;
917
918 for_each_amdgpu_vm_pt_dfs_safe(adev, vm, start, cursor, entry)
919 amdgpu_vm_free_table(entry);
920
921 if (start)
922 amdgpu_vm_free_table(start->entry);
923 }
924
925 /**
926 * amdgpu_vm_check_compute_bug - check whether asic has compute vm bug
927 *
928 * @adev: amdgpu_device pointer
929 */
930 void amdgpu_vm_check_compute_bug(struct amdgpu_device *adev)
931 {
932 const struct amdgpu_ip_block *ip_block;
933 bool has_compute_vm_bug;
934 struct amdgpu_ring *ring;
935 int i;
936
937 has_compute_vm_bug = false;
938
939 ip_block = amdgpu_device_ip_get_ip_block(adev, AMD_IP_BLOCK_TYPE_GFX);
940 if (ip_block) {
941 /* Compute has a VM bug for GFX version < 7.
942 Compute has a VM bug for GFX 8 MEC firmware version < 673.*/
943 if (ip_block->version->major <= 7)
944 has_compute_vm_bug = true;
945 else if (ip_block->version->major == 8)
946 if (adev->gfx.mec_fw_version < 673)
947 has_compute_vm_bug = true;
948 }
949
950 for (i = 0; i < adev->num_rings; i++) {
951 ring = adev->rings[i];
952 if (ring->funcs->type == AMDGPU_RING_TYPE_COMPUTE)
953 /* only compute rings */
954 ring->has_compute_vm_bug = has_compute_vm_bug;
955 else
956 ring->has_compute_vm_bug = false;
957 }
958 }
959
960 /**
961 * amdgpu_vm_need_pipeline_sync - Check if pipe sync is needed for job.
962 *
963 * @ring: ring on which the job will be submitted
964 * @job: job to submit
965 *
966 * Returns:
967 * True if sync is needed.
968 */
969 bool amdgpu_vm_need_pipeline_sync(struct amdgpu_ring *ring,
970 struct amdgpu_job *job)
971 {
972 struct amdgpu_device *adev = ring->adev;
973 unsigned vmhub = ring->funcs->vmhub;
974 struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub];
975 struct amdgpu_vmid *id;
976 bool gds_switch_needed;
977 bool vm_flush_needed = job->vm_needs_flush || ring->has_compute_vm_bug;
978
979 if (job->vmid == 0)
980 return false;
981 id = &id_mgr->ids[job->vmid];
982 gds_switch_needed = ring->funcs->emit_gds_switch && (
983 id->gds_base != job->gds_base ||
984 id->gds_size != job->gds_size ||
985 id->gws_base != job->gws_base ||
986 id->gws_size != job->gws_size ||
987 id->oa_base != job->oa_base ||
988 id->oa_size != job->oa_size);
989
990 if (amdgpu_vmid_had_gpu_reset(adev, id))
991 return true;
992
993 return vm_flush_needed || gds_switch_needed;
994 }
995
996 /**
997 * amdgpu_vm_flush - hardware flush the vm
998 *
999 * @ring: ring to use for flush
1000 * @job: related job
1001 * @need_pipe_sync: is pipe sync needed
1002 *
1003 * Emit a VM flush when it is necessary.
1004 *
1005 * Returns:
1006 * 0 on success, errno otherwise.
1007 */
1008 int amdgpu_vm_flush(struct amdgpu_ring *ring, struct amdgpu_job *job, bool need_pipe_sync)
1009 {
1010 struct amdgpu_device *adev = ring->adev;
1011 unsigned vmhub = ring->funcs->vmhub;
1012 struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub];
1013 struct amdgpu_vmid *id = &id_mgr->ids[job->vmid];
1014 bool gds_switch_needed = ring->funcs->emit_gds_switch && (
1015 id->gds_base != job->gds_base ||
1016 id->gds_size != job->gds_size ||
1017 id->gws_base != job->gws_base ||
1018 id->gws_size != job->gws_size ||
1019 id->oa_base != job->oa_base ||
1020 id->oa_size != job->oa_size);
1021 bool vm_flush_needed = job->vm_needs_flush;
1022 bool pasid_mapping_needed = id->pasid != job->pasid ||
1023 !id->pasid_mapping ||
1024 !dma_fence_is_signaled(id->pasid_mapping);
1025 struct dma_fence *fence = NULL;
1026 unsigned patch_offset = 0;
1027 int r;
1028
1029 if (amdgpu_vmid_had_gpu_reset(adev, id)) {
1030 gds_switch_needed = true;
1031 vm_flush_needed = true;
1032 pasid_mapping_needed = true;
1033 }
1034
1035 gds_switch_needed &= !!ring->funcs->emit_gds_switch;
1036 vm_flush_needed &= !!ring->funcs->emit_vm_flush &&
1037 job->vm_pd_addr != AMDGPU_BO_INVALID_OFFSET;
1038 pasid_mapping_needed &= adev->gmc.gmc_funcs->emit_pasid_mapping &&
1039 ring->funcs->emit_wreg;
1040
1041 if (!vm_flush_needed && !gds_switch_needed && !need_pipe_sync)
1042 return 0;
1043
1044 if (ring->funcs->init_cond_exec)
1045 patch_offset = amdgpu_ring_init_cond_exec(ring);
1046
1047 if (need_pipe_sync)
1048 amdgpu_ring_emit_pipeline_sync(ring);
1049
1050 if (vm_flush_needed) {
1051 trace_amdgpu_vm_flush(ring, job->vmid, job->vm_pd_addr);
1052 amdgpu_ring_emit_vm_flush(ring, job->vmid, job->vm_pd_addr);
1053 }
1054
1055 if (pasid_mapping_needed)
1056 amdgpu_gmc_emit_pasid_mapping(ring, job->vmid, job->pasid);
1057
1058 if (vm_flush_needed || pasid_mapping_needed) {
1059 r = amdgpu_fence_emit(ring, &fence, 0);
1060 if (r)
1061 return r;
1062 }
1063
1064 if (vm_flush_needed) {
1065 mutex_lock(&id_mgr->lock);
1066 dma_fence_put(id->last_flush);
1067 id->last_flush = dma_fence_get(fence);
1068 id->current_gpu_reset_count =
1069 atomic_read(&adev->gpu_reset_counter);
1070 mutex_unlock(&id_mgr->lock);
1071 }
1072
1073 if (pasid_mapping_needed) {
1074 id->pasid = job->pasid;
1075 dma_fence_put(id->pasid_mapping);
1076 id->pasid_mapping = dma_fence_get(fence);
1077 }
1078 dma_fence_put(fence);
1079
1080 if (ring->funcs->emit_gds_switch && gds_switch_needed) {
1081 id->gds_base = job->gds_base;
1082 id->gds_size = job->gds_size;
1083 id->gws_base = job->gws_base;
1084 id->gws_size = job->gws_size;
1085 id->oa_base = job->oa_base;
1086 id->oa_size = job->oa_size;
1087 amdgpu_ring_emit_gds_switch(ring, job->vmid, job->gds_base,
1088 job->gds_size, job->gws_base,
1089 job->gws_size, job->oa_base,
1090 job->oa_size);
1091 }
1092
1093 if (ring->funcs->patch_cond_exec)
1094 amdgpu_ring_patch_cond_exec(ring, patch_offset);
1095
1096 /* the double SWITCH_BUFFER here *cannot* be skipped by COND_EXEC */
1097 if (ring->funcs->emit_switch_buffer) {
1098 amdgpu_ring_emit_switch_buffer(ring);
1099 amdgpu_ring_emit_switch_buffer(ring);
1100 }
1101 return 0;
1102 }
1103
1104 /**
1105 * amdgpu_vm_bo_find - find the bo_va for a specific vm & bo
1106 *
1107 * @vm: requested vm
1108 * @bo: requested buffer object
1109 *
1110 * Find @bo inside the requested vm.
1111 * Search inside the @bos vm list for the requested vm
1112 * Returns the found bo_va or NULL if none is found
1113 *
1114 * Object has to be reserved!
1115 *
1116 * Returns:
1117 * Found bo_va or NULL.
1118 */
1119 struct amdgpu_bo_va *amdgpu_vm_bo_find(struct amdgpu_vm *vm,
1120 struct amdgpu_bo *bo)
1121 {
1122 struct amdgpu_vm_bo_base *base;
1123
1124 for (base = bo->vm_bo; base; base = base->next) {
1125 if (base->vm != vm)
1126 continue;
1127
1128 return container_of(base, struct amdgpu_bo_va, base);
1129 }
1130 return NULL;
1131 }
1132
1133 /**
1134 * amdgpu_vm_map_gart - Resolve gart mapping of addr
1135 *
1136 * @pages_addr: optional DMA address to use for lookup
1137 * @addr: the unmapped addr
1138 *
1139 * Look up the physical address of the page that the pte resolves
1140 * to.
1141 *
1142 * Returns:
1143 * The pointer for the page table entry.
1144 */
1145 uint64_t amdgpu_vm_map_gart(const dma_addr_t *pages_addr, uint64_t addr)
1146 {
1147 uint64_t result;
1148
1149 /* page table offset */
1150 result = pages_addr[addr >> PAGE_SHIFT];
1151
1152 /* in case cpu page size != gpu page size*/
1153 result |= addr & (~PAGE_MASK);
1154
1155 result &= 0xFFFFFFFFFFFFF000ULL;
1156
1157 return result;
1158 }
1159
1160 /*
1161 * amdgpu_vm_update_pde - update a single level in the hierarchy
1162 *
1163 * @param: parameters for the update
1164 * @vm: requested vm
1165 * @parent: parent directory
1166 * @entry: entry to update
1167 *
1168 * Makes sure the requested entry in parent is up to date.
1169 */
1170 static int amdgpu_vm_update_pde(struct amdgpu_vm_update_params *params,
1171 struct amdgpu_vm *vm,
1172 struct amdgpu_vm_pt *parent,
1173 struct amdgpu_vm_pt *entry)
1174 {
1175 struct amdgpu_bo *bo = parent->base.bo, *pbo;
1176 uint64_t pde, pt, flags;
1177 unsigned level;
1178
1179 for (level = 0, pbo = bo->parent; pbo; ++level)
1180 pbo = pbo->parent;
1181
1182 level += params->adev->vm_manager.root_level;
1183 amdgpu_gmc_get_pde_for_bo(entry->base.bo, level, &pt, &flags);
1184 pde = (entry - parent->entries) * 8;
1185 return vm->update_funcs->update(params, bo, pde, pt, 1, 0, flags);
1186 }
1187
1188 /*
1189 * amdgpu_vm_invalidate_pds - mark all PDs as invalid
1190 *
1191 * @adev: amdgpu_device pointer
1192 * @vm: related vm
1193 *
1194 * Mark all PD level as invalid after an error.
1195 */
1196 static void amdgpu_vm_invalidate_pds(struct amdgpu_device *adev,
1197 struct amdgpu_vm *vm)
1198 {
1199 struct amdgpu_vm_pt_cursor cursor;
1200 struct amdgpu_vm_pt *entry;
1201
1202 for_each_amdgpu_vm_pt_dfs_safe(adev, vm, NULL, cursor, entry)
1203 if (entry->base.bo && !entry->base.moved)
1204 amdgpu_vm_bo_relocated(&entry->base);
1205 }
1206
1207 /*
1208 * amdgpu_vm_update_directories - make sure that all directories are valid
1209 *
1210 * @adev: amdgpu_device pointer
1211 * @vm: requested vm
1212 *
1213 * Makes sure all directories are up to date.
1214 *
1215 * Returns:
1216 * 0 for success, error for failure.
1217 */
1218 int amdgpu_vm_update_directories(struct amdgpu_device *adev,
1219 struct amdgpu_vm *vm)
1220 {
1221 struct amdgpu_vm_update_params params;
1222 int r;
1223
1224 if (list_empty(&vm->relocated))
1225 return 0;
1226
1227 memset(&params, 0, sizeof(params));
1228 params.adev = adev;
1229 params.vm = vm;
1230
1231 r = vm->update_funcs->prepare(&params, AMDGPU_FENCE_OWNER_VM, NULL);
1232 if (r)
1233 return r;
1234
1235 while (!list_empty(&vm->relocated)) {
1236 struct amdgpu_vm_pt *pt, *entry;
1237
1238 entry = list_first_entry(&vm->relocated, struct amdgpu_vm_pt,
1239 base.vm_status);
1240 amdgpu_vm_bo_idle(&entry->base);
1241
1242 pt = amdgpu_vm_pt_parent(entry);
1243 if (!pt)
1244 continue;
1245
1246 r = amdgpu_vm_update_pde(&params, vm, pt, entry);
1247 if (r)
1248 goto error;
1249 }
1250
1251 r = vm->update_funcs->commit(&params, &vm->last_update);
1252 if (r)
1253 goto error;
1254 return 0;
1255
1256 error:
1257 amdgpu_vm_invalidate_pds(adev, vm);
1258 return r;
1259 }
1260
1261 /**
1262 * amdgpu_vm_update_flags - figure out flags for PTE updates
1263 *
1264 * Make sure to set the right flags for the PTEs at the desired level.
1265 */
1266 static void amdgpu_vm_update_flags(struct amdgpu_vm_update_params *params,
1267 struct amdgpu_bo *bo, unsigned level,
1268 uint64_t pe, uint64_t addr,
1269 unsigned count, uint32_t incr,
1270 uint64_t flags)
1271
1272 {
1273 if (level != AMDGPU_VM_PTB) {
1274 flags |= AMDGPU_PDE_PTE;
1275 amdgpu_gmc_get_vm_pde(params->adev, level, &addr, &flags);
1276
1277 } else if (params->adev->asic_type >= CHIP_VEGA10 &&
1278 !(flags & AMDGPU_PTE_VALID) &&
1279 !(flags & AMDGPU_PTE_PRT)) {
1280
1281 /* Workaround for fault priority problem on GMC9 */
1282 flags |= AMDGPU_PTE_EXECUTABLE;
1283 }
1284
1285 params->vm->update_funcs->update(params, bo, pe, addr, count, incr,
1286 flags);
1287 }
1288
1289 /**
1290 * amdgpu_vm_fragment - get fragment for PTEs
1291 *
1292 * @params: see amdgpu_vm_update_params definition
1293 * @start: first PTE to handle
1294 * @end: last PTE to handle
1295 * @flags: hw mapping flags
1296 * @frag: resulting fragment size
1297 * @frag_end: end of this fragment
1298 *
1299 * Returns the first possible fragment for the start and end address.
1300 */
1301 static void amdgpu_vm_fragment(struct amdgpu_vm_update_params *params,
1302 uint64_t start, uint64_t end, uint64_t flags,
1303 unsigned int *frag, uint64_t *frag_end)
1304 {
1305 /**
1306 * The MC L1 TLB supports variable sized pages, based on a fragment
1307 * field in the PTE. When this field is set to a non-zero value, page
1308 * granularity is increased from 4KB to (1 << (12 + frag)). The PTE
1309 * flags are considered valid for all PTEs within the fragment range
1310 * and corresponding mappings are assumed to be physically contiguous.
1311 *
1312 * The L1 TLB can store a single PTE for the whole fragment,
1313 * significantly increasing the space available for translation
1314 * caching. This leads to large improvements in throughput when the
1315 * TLB is under pressure.
1316 *
1317 * The L2 TLB distributes small and large fragments into two
1318 * asymmetric partitions. The large fragment cache is significantly
1319 * larger. Thus, we try to use large fragments wherever possible.
1320 * Userspace can support this by aligning virtual base address and
1321 * allocation size to the fragment size.
1322 *
1323 * Starting with Vega10 the fragment size only controls the L1. The L2
1324 * is now directly feed with small/huge/giant pages from the walker.
1325 */
1326 unsigned max_frag;
1327
1328 if (params->adev->asic_type < CHIP_VEGA10)
1329 max_frag = params->adev->vm_manager.fragment_size;
1330 else
1331 max_frag = 31;
1332
1333 /* system pages are non continuously */
1334 if (params->pages_addr) {
1335 *frag = 0;
1336 *frag_end = end;
1337 return;
1338 }
1339
1340 /* This intentionally wraps around if no bit is set */
1341 *frag = min((unsigned)ffs(start) - 1, (unsigned)fls64(end - start) - 1);
1342 if (*frag >= max_frag) {
1343 *frag = max_frag;
1344 *frag_end = end & ~((1ULL << max_frag) - 1);
1345 } else {
1346 *frag_end = start + (1 << *frag);
1347 }
1348 }
1349
1350 /**
1351 * amdgpu_vm_update_ptes - make sure that page tables are valid
1352 *
1353 * @params: see amdgpu_vm_update_params definition
1354 * @start: start of GPU address range
1355 * @end: end of GPU address range
1356 * @dst: destination address to map to, the next dst inside the function
1357 * @flags: mapping flags
1358 *
1359 * Update the page tables in the range @start - @end.
1360 *
1361 * Returns:
1362 * 0 for success, -EINVAL for failure.
1363 */
1364 static int amdgpu_vm_update_ptes(struct amdgpu_vm_update_params *params,
1365 uint64_t start, uint64_t end,
1366 uint64_t dst, uint64_t flags)
1367 {
1368 struct amdgpu_device *adev = params->adev;
1369 struct amdgpu_vm_pt_cursor cursor;
1370 uint64_t frag_start = start, frag_end;
1371 unsigned int frag;
1372 int r;
1373
1374 /* figure out the initial fragment */
1375 amdgpu_vm_fragment(params, frag_start, end, flags, &frag, &frag_end);
1376
1377 /* walk over the address space and update the PTs */
1378 amdgpu_vm_pt_start(adev, params->vm, start, &cursor);
1379 while (cursor.pfn < end) {
1380 unsigned shift, parent_shift, mask;
1381 uint64_t incr, entry_end, pe_start;
1382 struct amdgpu_bo *pt;
1383
1384 r = amdgpu_vm_alloc_pts(params->adev, params->vm, &cursor);
1385 if (r)
1386 return r;
1387
1388 pt = cursor.entry->base.bo;
1389
1390 /* The root level can't be a huge page */
1391 if (cursor.level == adev->vm_manager.root_level) {
1392 if (!amdgpu_vm_pt_descendant(adev, &cursor))
1393 return -ENOENT;
1394 continue;
1395 }
1396
1397 shift = amdgpu_vm_level_shift(adev, cursor.level);
1398 parent_shift = amdgpu_vm_level_shift(adev, cursor.level - 1);
1399 if (adev->asic_type < CHIP_VEGA10 &&
1400 (flags & AMDGPU_PTE_VALID)) {
1401 /* No huge page support before GMC v9 */
1402 if (cursor.level != AMDGPU_VM_PTB) {
1403 if (!amdgpu_vm_pt_descendant(adev, &cursor))
1404 return -ENOENT;
1405 continue;
1406 }
1407 } else if (frag < shift) {
1408 /* We can't use this level when the fragment size is
1409 * smaller than the address shift. Go to the next
1410 * child entry and try again.
1411 */
1412 if (!amdgpu_vm_pt_descendant(adev, &cursor))
1413 return -ENOENT;
1414 continue;
1415 } else if (frag >= parent_shift &&
1416 cursor.level - 1 != adev->vm_manager.root_level) {
1417 /* If the fragment size is even larger than the parent
1418 * shift we should go up one level and check it again
1419 * unless one level up is the root level.
1420 */
1421 if (!amdgpu_vm_pt_ancestor(&cursor))
1422 return -ENOENT;
1423 continue;
1424 }
1425
1426 /* Looks good so far, calculate parameters for the update */
1427 incr = (uint64_t)AMDGPU_GPU_PAGE_SIZE << shift;
1428 mask = amdgpu_vm_entries_mask(adev, cursor.level);
1429 pe_start = ((cursor.pfn >> shift) & mask) * 8;
1430 entry_end = (uint64_t)(mask + 1) << shift;
1431 entry_end += cursor.pfn & ~(entry_end - 1);
1432 entry_end = min(entry_end, end);
1433
1434 do {
1435 uint64_t upd_end = min(entry_end, frag_end);
1436 unsigned nptes = (upd_end - frag_start) >> shift;
1437
1438 amdgpu_vm_update_flags(params, pt, cursor.level,
1439 pe_start, dst, nptes, incr,
1440 flags | AMDGPU_PTE_FRAG(frag));
1441
1442 pe_start += nptes * 8;
1443 dst += (uint64_t)nptes * AMDGPU_GPU_PAGE_SIZE << shift;
1444
1445 frag_start = upd_end;
1446 if (frag_start >= frag_end) {
1447 /* figure out the next fragment */
1448 amdgpu_vm_fragment(params, frag_start, end,
1449 flags, &frag, &frag_end);
1450 if (frag < shift)
1451 break;
1452 }
1453 } while (frag_start < entry_end);
1454
1455 if (amdgpu_vm_pt_descendant(adev, &cursor)) {
1456 /* Free all child entries */
1457 while (cursor.pfn < frag_start) {
1458 amdgpu_vm_free_pts(adev, params->vm, &cursor);
1459 amdgpu_vm_pt_next(adev, &cursor);
1460 }
1461
1462 } else if (frag >= shift) {
1463 /* or just move on to the next on the same level. */
1464 amdgpu_vm_pt_next(adev, &cursor);
1465 }
1466 }
1467
1468 return 0;
1469 }
1470
1471 /**
1472 * amdgpu_vm_bo_update_mapping - update a mapping in the vm page table
1473 *
1474 * @adev: amdgpu_device pointer
1475 * @exclusive: fence we need to sync to
1476 * @pages_addr: DMA addresses to use for mapping
1477 * @vm: requested vm
1478 * @start: start of mapped range
1479 * @last: last mapped entry
1480 * @flags: flags for the entries
1481 * @addr: addr to set the area to
1482 * @fence: optional resulting fence
1483 *
1484 * Fill in the page table entries between @start and @last.
1485 *
1486 * Returns:
1487 * 0 for success, -EINVAL for failure.
1488 */
1489 static int amdgpu_vm_bo_update_mapping(struct amdgpu_device *adev,
1490 struct dma_fence *exclusive,
1491 dma_addr_t *pages_addr,
1492 struct amdgpu_vm *vm,
1493 uint64_t start, uint64_t last,
1494 uint64_t flags, uint64_t addr,
1495 struct dma_fence **fence)
1496 {
1497 struct amdgpu_vm_update_params params;
1498 void *owner = AMDGPU_FENCE_OWNER_VM;
1499 int r;
1500
1501 memset(&params, 0, sizeof(params));
1502 params.adev = adev;
1503 params.vm = vm;
1504 params.pages_addr = pages_addr;
1505
1506 /* sync to everything except eviction fences on unmapping */
1507 if (!(flags & AMDGPU_PTE_VALID))
1508 owner = AMDGPU_FENCE_OWNER_KFD;
1509
1510 r = vm->update_funcs->prepare(&params, owner, exclusive);
1511 if (r)
1512 return r;
1513
1514 r = amdgpu_vm_update_ptes(&params, start, last + 1, addr, flags);
1515 if (r)
1516 return r;
1517
1518 return vm->update_funcs->commit(&params, fence);
1519 }
1520
1521 /**
1522 * amdgpu_vm_bo_split_mapping - split a mapping into smaller chunks
1523 *
1524 * @adev: amdgpu_device pointer
1525 * @exclusive: fence we need to sync to
1526 * @pages_addr: DMA addresses to use for mapping
1527 * @vm: requested vm
1528 * @mapping: mapped range and flags to use for the update
1529 * @flags: HW flags for the mapping
1530 * @bo_adev: amdgpu_device pointer that bo actually been allocated
1531 * @nodes: array of drm_mm_nodes with the MC addresses
1532 * @fence: optional resulting fence
1533 *
1534 * Split the mapping into smaller chunks so that each update fits
1535 * into a SDMA IB.
1536 *
1537 * Returns:
1538 * 0 for success, -EINVAL for failure.
1539 */
1540 static int amdgpu_vm_bo_split_mapping(struct amdgpu_device *adev,
1541 struct dma_fence *exclusive,
1542 dma_addr_t *pages_addr,
1543 struct amdgpu_vm *vm,
1544 struct amdgpu_bo_va_mapping *mapping,
1545 uint64_t flags,
1546 struct amdgpu_device *bo_adev,
1547 struct drm_mm_node *nodes,
1548 struct dma_fence **fence)
1549 {
1550 unsigned min_linear_pages = 1 << adev->vm_manager.fragment_size;
1551 uint64_t pfn, start = mapping->start;
1552 int r;
1553
1554 /* normally,bo_va->flags only contians READABLE and WIRTEABLE bit go here
1555 * but in case of something, we filter the flags in first place
1556 */
1557 if (!(mapping->flags & AMDGPU_PTE_READABLE))
1558 flags &= ~AMDGPU_PTE_READABLE;
1559 if (!(mapping->flags & AMDGPU_PTE_WRITEABLE))
1560 flags &= ~AMDGPU_PTE_WRITEABLE;
1561
1562 flags &= ~AMDGPU_PTE_EXECUTABLE;
1563 flags |= mapping->flags & AMDGPU_PTE_EXECUTABLE;
1564
1565 flags &= ~AMDGPU_PTE_MTYPE_MASK;
1566 flags |= (mapping->flags & AMDGPU_PTE_MTYPE_MASK);
1567
1568 if ((mapping->flags & AMDGPU_PTE_PRT) &&
1569 (adev->asic_type >= CHIP_VEGA10)) {
1570 flags |= AMDGPU_PTE_PRT;
1571 flags &= ~AMDGPU_PTE_VALID;
1572 }
1573
1574 trace_amdgpu_vm_bo_update(mapping);
1575
1576 pfn = mapping->offset >> PAGE_SHIFT;
1577 if (nodes) {
1578 while (pfn >= nodes->size) {
1579 pfn -= nodes->size;
1580 ++nodes;
1581 }
1582 }
1583
1584 do {
1585 dma_addr_t *dma_addr = NULL;
1586 uint64_t max_entries;
1587 uint64_t addr, last;
1588
1589 if (nodes) {
1590 addr = nodes->start << PAGE_SHIFT;
1591 max_entries = (nodes->size - pfn) *
1592 AMDGPU_GPU_PAGES_IN_CPU_PAGE;
1593 } else {
1594 addr = 0;
1595 max_entries = S64_MAX;
1596 }
1597
1598 if (pages_addr) {
1599 uint64_t count;
1600
1601 for (count = 1;
1602 count < max_entries / AMDGPU_GPU_PAGES_IN_CPU_PAGE;
1603 ++count) {
1604 uint64_t idx = pfn + count;
1605
1606 if (pages_addr[idx] !=
1607 (pages_addr[idx - 1] + PAGE_SIZE))
1608 break;
1609 }
1610
1611 if (count < min_linear_pages) {
1612 addr = pfn << PAGE_SHIFT;
1613 dma_addr = pages_addr;
1614 } else {
1615 addr = pages_addr[pfn];
1616 max_entries = count * AMDGPU_GPU_PAGES_IN_CPU_PAGE;
1617 }
1618
1619 } else if (flags & AMDGPU_PTE_VALID) {
1620 addr += bo_adev->vm_manager.vram_base_offset;
1621 addr += pfn << PAGE_SHIFT;
1622 }
1623
1624 last = min((uint64_t)mapping->last, start + max_entries - 1);
1625 r = amdgpu_vm_bo_update_mapping(adev, exclusive, dma_addr, vm,
1626 start, last, flags, addr,
1627 fence);
1628 if (r)
1629 return r;
1630
1631 pfn += (last - start + 1) / AMDGPU_GPU_PAGES_IN_CPU_PAGE;
1632 if (nodes && nodes->size == pfn) {
1633 pfn = 0;
1634 ++nodes;
1635 }
1636 start = last + 1;
1637
1638 } while (unlikely(start != mapping->last + 1));
1639
1640 return 0;
1641 }
1642
1643 /**
1644 * amdgpu_vm_bo_update - update all BO mappings in the vm page table
1645 *
1646 * @adev: amdgpu_device pointer
1647 * @bo_va: requested BO and VM object
1648 * @clear: if true clear the entries
1649 *
1650 * Fill in the page table entries for @bo_va.
1651 *
1652 * Returns:
1653 * 0 for success, -EINVAL for failure.
1654 */
1655 int amdgpu_vm_bo_update(struct amdgpu_device *adev,
1656 struct amdgpu_bo_va *bo_va,
1657 bool clear)
1658 {
1659 struct amdgpu_bo *bo = bo_va->base.bo;
1660 struct amdgpu_vm *vm = bo_va->base.vm;
1661 struct amdgpu_bo_va_mapping *mapping;
1662 dma_addr_t *pages_addr = NULL;
1663 struct ttm_mem_reg *mem;
1664 struct drm_mm_node *nodes;
1665 struct dma_fence *exclusive, **last_update;
1666 uint64_t flags;
1667 struct amdgpu_device *bo_adev = adev;
1668 int r;
1669
1670 if (clear || !bo) {
1671 mem = NULL;
1672 nodes = NULL;
1673 exclusive = NULL;
1674 } else {
1675 struct ttm_dma_tt *ttm;
1676
1677 mem = &bo->tbo.mem;
1678 nodes = mem->mm_node;
1679 if (mem->mem_type == TTM_PL_TT) {
1680 ttm = container_of(bo->tbo.ttm, struct ttm_dma_tt, ttm);
1681 pages_addr = ttm->dma_address;
1682 }
1683 exclusive = reservation_object_get_excl(bo->tbo.resv);
1684 }
1685
1686 if (bo) {
1687 flags = amdgpu_ttm_tt_pte_flags(adev, bo->tbo.ttm, mem);
1688 bo_adev = amdgpu_ttm_adev(bo->tbo.bdev);
1689 } else {
1690 flags = 0x0;
1691 }
1692
1693 if (clear || (bo && bo->tbo.resv == vm->root.base.bo->tbo.resv))
1694 last_update = &vm->last_update;
1695 else
1696 last_update = &bo_va->last_pt_update;
1697
1698 if (!clear && bo_va->base.moved) {
1699 bo_va->base.moved = false;
1700 list_splice_init(&bo_va->valids, &bo_va->invalids);
1701
1702 } else if (bo_va->cleared != clear) {
1703 list_splice_init(&bo_va->valids, &bo_va->invalids);
1704 }
1705
1706 list_for_each_entry(mapping, &bo_va->invalids, list) {
1707 r = amdgpu_vm_bo_split_mapping(adev, exclusive, pages_addr, vm,
1708 mapping, flags, bo_adev, nodes,
1709 last_update);
1710 if (r)
1711 return r;
1712 }
1713
1714 if (vm->use_cpu_for_update) {
1715 /* Flush HDP */
1716 mb();
1717 amdgpu_asic_flush_hdp(adev, NULL);
1718 }
1719
1720 /* If the BO is not in its preferred location add it back to
1721 * the evicted list so that it gets validated again on the
1722 * next command submission.
1723 */
1724 if (bo && bo->tbo.resv == vm->root.base.bo->tbo.resv) {
1725 uint32_t mem_type = bo->tbo.mem.mem_type;
1726
1727 if (!(bo->preferred_domains & amdgpu_mem_type_to_domain(mem_type)))
1728 amdgpu_vm_bo_evicted(&bo_va->base);
1729 else
1730 amdgpu_vm_bo_idle(&bo_va->base);
1731 } else {
1732 amdgpu_vm_bo_done(&bo_va->base);
1733 }
1734
1735 list_splice_init(&bo_va->invalids, &bo_va->valids);
1736 bo_va->cleared = clear;
1737
1738 if (trace_amdgpu_vm_bo_mapping_enabled()) {
1739 list_for_each_entry(mapping, &bo_va->valids, list)
1740 trace_amdgpu_vm_bo_mapping(mapping);
1741 }
1742
1743 return 0;
1744 }
1745
1746 /**
1747 * amdgpu_vm_update_prt_state - update the global PRT state
1748 *
1749 * @adev: amdgpu_device pointer
1750 */
1751 static void amdgpu_vm_update_prt_state(struct amdgpu_device *adev)
1752 {
1753 unsigned long flags;
1754 bool enable;
1755
1756 spin_lock_irqsave(&adev->vm_manager.prt_lock, flags);
1757 enable = !!atomic_read(&adev->vm_manager.num_prt_users);
1758 adev->gmc.gmc_funcs->set_prt(adev, enable);
1759 spin_unlock_irqrestore(&adev->vm_manager.prt_lock, flags);
1760 }
1761
1762 /**
1763 * amdgpu_vm_prt_get - add a PRT user
1764 *
1765 * @adev: amdgpu_device pointer
1766 */
1767 static void amdgpu_vm_prt_get(struct amdgpu_device *adev)
1768 {
1769 if (!adev->gmc.gmc_funcs->set_prt)
1770 return;
1771
1772 if (atomic_inc_return(&adev->vm_manager.num_prt_users) == 1)
1773 amdgpu_vm_update_prt_state(adev);
1774 }
1775
1776 /**
1777 * amdgpu_vm_prt_put - drop a PRT user
1778 *
1779 * @adev: amdgpu_device pointer
1780 */
1781 static void amdgpu_vm_prt_put(struct amdgpu_device *adev)
1782 {
1783 if (atomic_dec_return(&adev->vm_manager.num_prt_users) == 0)
1784 amdgpu_vm_update_prt_state(adev);
1785 }
1786
1787 /**
1788 * amdgpu_vm_prt_cb - callback for updating the PRT status
1789 *
1790 * @fence: fence for the callback
1791 * @_cb: the callback function
1792 */
1793 static void amdgpu_vm_prt_cb(struct dma_fence *fence, struct dma_fence_cb *_cb)
1794 {
1795 struct amdgpu_prt_cb *cb = container_of(_cb, struct amdgpu_prt_cb, cb);
1796
1797 amdgpu_vm_prt_put(cb->adev);
1798 kfree(cb);
1799 }
1800
1801 /**
1802 * amdgpu_vm_add_prt_cb - add callback for updating the PRT status
1803 *
1804 * @adev: amdgpu_device pointer
1805 * @fence: fence for the callback
1806 */
1807 static void amdgpu_vm_add_prt_cb(struct amdgpu_device *adev,
1808 struct dma_fence *fence)
1809 {
1810 struct amdgpu_prt_cb *cb;
1811
1812 if (!adev->gmc.gmc_funcs->set_prt)
1813 return;
1814
1815 cb = kmalloc(sizeof(struct amdgpu_prt_cb), GFP_KERNEL);
1816 if (!cb) {
1817 /* Last resort when we are OOM */
1818 if (fence)
1819 dma_fence_wait(fence, false);
1820
1821 amdgpu_vm_prt_put(adev);
1822 } else {
1823 cb->adev = adev;
1824 if (!fence || dma_fence_add_callback(fence, &cb->cb,
1825 amdgpu_vm_prt_cb))
1826 amdgpu_vm_prt_cb(fence, &cb->cb);
1827 }
1828 }
1829
1830 /**
1831 * amdgpu_vm_free_mapping - free a mapping
1832 *
1833 * @adev: amdgpu_device pointer
1834 * @vm: requested vm
1835 * @mapping: mapping to be freed
1836 * @fence: fence of the unmap operation
1837 *
1838 * Free a mapping and make sure we decrease the PRT usage count if applicable.
1839 */
1840 static void amdgpu_vm_free_mapping(struct amdgpu_device *adev,
1841 struct amdgpu_vm *vm,
1842 struct amdgpu_bo_va_mapping *mapping,
1843 struct dma_fence *fence)
1844 {
1845 if (mapping->flags & AMDGPU_PTE_PRT)
1846 amdgpu_vm_add_prt_cb(adev, fence);
1847 kfree(mapping);
1848 }
1849
1850 /**
1851 * amdgpu_vm_prt_fini - finish all prt mappings
1852 *
1853 * @adev: amdgpu_device pointer
1854 * @vm: requested vm
1855 *
1856 * Register a cleanup callback to disable PRT support after VM dies.
1857 */
1858 static void amdgpu_vm_prt_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm)
1859 {
1860 struct reservation_object *resv = vm->root.base.bo->tbo.resv;
1861 struct dma_fence *excl, **shared;
1862 unsigned i, shared_count;
1863 int r;
1864
1865 r = reservation_object_get_fences_rcu(resv, &excl,
1866 &shared_count, &shared);
1867 if (r) {
1868 /* Not enough memory to grab the fence list, as last resort
1869 * block for all the fences to complete.
1870 */
1871 reservation_object_wait_timeout_rcu(resv, true, false,
1872 MAX_SCHEDULE_TIMEOUT);
1873 return;
1874 }
1875
1876 /* Add a callback for each fence in the reservation object */
1877 amdgpu_vm_prt_get(adev);
1878 amdgpu_vm_add_prt_cb(adev, excl);
1879
1880 for (i = 0; i < shared_count; ++i) {
1881 amdgpu_vm_prt_get(adev);
1882 amdgpu_vm_add_prt_cb(adev, shared[i]);
1883 }
1884
1885 kfree(shared);
1886 }
1887
1888 /**
1889 * amdgpu_vm_clear_freed - clear freed BOs in the PT
1890 *
1891 * @adev: amdgpu_device pointer
1892 * @vm: requested vm
1893 * @fence: optional resulting fence (unchanged if no work needed to be done
1894 * or if an error occurred)
1895 *
1896 * Make sure all freed BOs are cleared in the PT.
1897 * PTs have to be reserved and mutex must be locked!
1898 *
1899 * Returns:
1900 * 0 for success.
1901 *
1902 */
1903 int amdgpu_vm_clear_freed(struct amdgpu_device *adev,
1904 struct amdgpu_vm *vm,
1905 struct dma_fence **fence)
1906 {
1907 struct amdgpu_bo_va_mapping *mapping;
1908 uint64_t init_pte_value = 0;
1909 struct dma_fence *f = NULL;
1910 int r;
1911
1912 while (!list_empty(&vm->freed)) {
1913 mapping = list_first_entry(&vm->freed,
1914 struct amdgpu_bo_va_mapping, list);
1915 list_del(&mapping->list);
1916
1917 if (vm->pte_support_ats &&
1918 mapping->start < AMDGPU_GMC_HOLE_START)
1919 init_pte_value = AMDGPU_PTE_DEFAULT_ATC;
1920
1921 r = amdgpu_vm_bo_update_mapping(adev, NULL, NULL, vm,
1922 mapping->start, mapping->last,
1923 init_pte_value, 0, &f);
1924 amdgpu_vm_free_mapping(adev, vm, mapping, f);
1925 if (r) {
1926 dma_fence_put(f);
1927 return r;
1928 }
1929 }
1930
1931 if (fence && f) {
1932 dma_fence_put(*fence);
1933 *fence = f;
1934 } else {
1935 dma_fence_put(f);
1936 }
1937
1938 return 0;
1939
1940 }
1941
1942 /**
1943 * amdgpu_vm_handle_moved - handle moved BOs in the PT
1944 *
1945 * @adev: amdgpu_device pointer
1946 * @vm: requested vm
1947 *
1948 * Make sure all BOs which are moved are updated in the PTs.
1949 *
1950 * Returns:
1951 * 0 for success.
1952 *
1953 * PTs have to be reserved!
1954 */
1955 int amdgpu_vm_handle_moved(struct amdgpu_device *adev,
1956 struct amdgpu_vm *vm)
1957 {
1958 struct amdgpu_bo_va *bo_va, *tmp;
1959 struct reservation_object *resv;
1960 bool clear;
1961 int r;
1962
1963 list_for_each_entry_safe(bo_va, tmp, &vm->moved, base.vm_status) {
1964 /* Per VM BOs never need to bo cleared in the page tables */
1965 r = amdgpu_vm_bo_update(adev, bo_va, false);
1966 if (r)
1967 return r;
1968 }
1969
1970 spin_lock(&vm->invalidated_lock);
1971 while (!list_empty(&vm->invalidated)) {
1972 bo_va = list_first_entry(&vm->invalidated, struct amdgpu_bo_va,
1973 base.vm_status);
1974 resv = bo_va->base.bo->tbo.resv;
1975 spin_unlock(&vm->invalidated_lock);
1976
1977 /* Try to reserve the BO to avoid clearing its ptes */
1978 if (!amdgpu_vm_debug && reservation_object_trylock(resv))
1979 clear = false;
1980 /* Somebody else is using the BO right now */
1981 else
1982 clear = true;
1983
1984 r = amdgpu_vm_bo_update(adev, bo_va, clear);
1985 if (r)
1986 return r;
1987
1988 if (!clear)
1989 reservation_object_unlock(resv);
1990 spin_lock(&vm->invalidated_lock);
1991 }
1992 spin_unlock(&vm->invalidated_lock);
1993
1994 return 0;
1995 }
1996
1997 /**
1998 * amdgpu_vm_bo_add - add a bo to a specific vm
1999 *
2000 * @adev: amdgpu_device pointer
2001 * @vm: requested vm
2002 * @bo: amdgpu buffer object
2003 *
2004 * Add @bo into the requested vm.
2005 * Add @bo to the list of bos associated with the vm
2006 *
2007 * Returns:
2008 * Newly added bo_va or NULL for failure
2009 *
2010 * Object has to be reserved!
2011 */
2012 struct amdgpu_bo_va *amdgpu_vm_bo_add(struct amdgpu_device *adev,
2013 struct amdgpu_vm *vm,
2014 struct amdgpu_bo *bo)
2015 {
2016 struct amdgpu_bo_va *bo_va;
2017
2018 bo_va = kzalloc(sizeof(struct amdgpu_bo_va), GFP_KERNEL);
2019 if (bo_va == NULL) {
2020 return NULL;
2021 }
2022 amdgpu_vm_bo_base_init(&bo_va->base, vm, bo);
2023
2024 bo_va->ref_count = 1;
2025 INIT_LIST_HEAD(&bo_va->valids);
2026 INIT_LIST_HEAD(&bo_va->invalids);
2027
2028 if (bo && amdgpu_xgmi_same_hive(adev, amdgpu_ttm_adev(bo->tbo.bdev))) {
2029 bo_va->is_xgmi = true;
2030 mutex_lock(&adev->vm_manager.lock_pstate);
2031 /* Power up XGMI if it can be potentially used */
2032 if (++adev->vm_manager.xgmi_map_counter == 1)
2033 amdgpu_xgmi_set_pstate(adev, 1);
2034 mutex_unlock(&adev->vm_manager.lock_pstate);
2035 }
2036
2037 return bo_va;
2038 }
2039
2040
2041 /**
2042 * amdgpu_vm_bo_insert_mapping - insert a new mapping
2043 *
2044 * @adev: amdgpu_device pointer
2045 * @bo_va: bo_va to store the address
2046 * @mapping: the mapping to insert
2047 *
2048 * Insert a new mapping into all structures.
2049 */
2050 static void amdgpu_vm_bo_insert_map(struct amdgpu_device *adev,
2051 struct amdgpu_bo_va *bo_va,
2052 struct amdgpu_bo_va_mapping *mapping)
2053 {
2054 struct amdgpu_vm *vm = bo_va->base.vm;
2055 struct amdgpu_bo *bo = bo_va->base.bo;
2056
2057 mapping->bo_va = bo_va;
2058 list_add(&mapping->list, &bo_va->invalids);
2059 amdgpu_vm_it_insert(mapping, &vm->va);
2060
2061 if (mapping->flags & AMDGPU_PTE_PRT)
2062 amdgpu_vm_prt_get(adev);
2063
2064 if (bo && bo->tbo.resv == vm->root.base.bo->tbo.resv &&
2065 !bo_va->base.moved) {
2066 list_move(&bo_va->base.vm_status, &vm->moved);
2067 }
2068 trace_amdgpu_vm_bo_map(bo_va, mapping);
2069 }
2070
2071 /**
2072 * amdgpu_vm_bo_map - map bo inside a vm
2073 *
2074 * @adev: amdgpu_device pointer
2075 * @bo_va: bo_va to store the address
2076 * @saddr: where to map the BO
2077 * @offset: requested offset in the BO
2078 * @size: BO size in bytes
2079 * @flags: attributes of pages (read/write/valid/etc.)
2080 *
2081 * Add a mapping of the BO at the specefied addr into the VM.
2082 *
2083 * Returns:
2084 * 0 for success, error for failure.
2085 *
2086 * Object has to be reserved and unreserved outside!
2087 */
2088 int amdgpu_vm_bo_map(struct amdgpu_device *adev,
2089 struct amdgpu_bo_va *bo_va,
2090 uint64_t saddr, uint64_t offset,
2091 uint64_t size, uint64_t flags)
2092 {
2093 struct amdgpu_bo_va_mapping *mapping, *tmp;
2094 struct amdgpu_bo *bo = bo_va->base.bo;
2095 struct amdgpu_vm *vm = bo_va->base.vm;
2096 uint64_t eaddr;
2097
2098 /* validate the parameters */
2099 if (saddr & AMDGPU_GPU_PAGE_MASK || offset & AMDGPU_GPU_PAGE_MASK ||
2100 size == 0 || size & AMDGPU_GPU_PAGE_MASK)
2101 return -EINVAL;
2102
2103 /* make sure object fit at this offset */
2104 eaddr = saddr + size - 1;
2105 if (saddr >= eaddr ||
2106 (bo && offset + size > amdgpu_bo_size(bo)))
2107 return -EINVAL;
2108
2109 saddr /= AMDGPU_GPU_PAGE_SIZE;
2110 eaddr /= AMDGPU_GPU_PAGE_SIZE;
2111
2112 tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr);
2113 if (tmp) {
2114 /* bo and tmp overlap, invalid addr */
2115 dev_err(adev->dev, "bo %p va 0x%010Lx-0x%010Lx conflict with "
2116 "0x%010Lx-0x%010Lx\n", bo, saddr, eaddr,
2117 tmp->start, tmp->last + 1);
2118 return -EINVAL;
2119 }
2120
2121 mapping = kmalloc(sizeof(*mapping), GFP_KERNEL);
2122 if (!mapping)
2123 return -ENOMEM;
2124
2125 mapping->start = saddr;
2126 mapping->last = eaddr;
2127 mapping->offset = offset;
2128 mapping->flags = flags;
2129
2130 amdgpu_vm_bo_insert_map(adev, bo_va, mapping);
2131
2132 return 0;
2133 }
2134
2135 /**
2136 * amdgpu_vm_bo_replace_map - map bo inside a vm, replacing existing mappings
2137 *
2138 * @adev: amdgpu_device pointer
2139 * @bo_va: bo_va to store the address
2140 * @saddr: where to map the BO
2141 * @offset: requested offset in the BO
2142 * @size: BO size in bytes
2143 * @flags: attributes of pages (read/write/valid/etc.)
2144 *
2145 * Add a mapping of the BO at the specefied addr into the VM. Replace existing
2146 * mappings as we do so.
2147 *
2148 * Returns:
2149 * 0 for success, error for failure.
2150 *
2151 * Object has to be reserved and unreserved outside!
2152 */
2153 int amdgpu_vm_bo_replace_map(struct amdgpu_device *adev,
2154 struct amdgpu_bo_va *bo_va,
2155 uint64_t saddr, uint64_t offset,
2156 uint64_t size, uint64_t flags)
2157 {
2158 struct amdgpu_bo_va_mapping *mapping;
2159 struct amdgpu_bo *bo = bo_va->base.bo;
2160 uint64_t eaddr;
2161 int r;
2162
2163 /* validate the parameters */
2164 if (saddr & AMDGPU_GPU_PAGE_MASK || offset & AMDGPU_GPU_PAGE_MASK ||
2165 size == 0 || size & AMDGPU_GPU_PAGE_MASK)
2166 return -EINVAL;
2167
2168 /* make sure object fit at this offset */
2169 eaddr = saddr + size - 1;
2170 if (saddr >= eaddr ||
2171 (bo && offset + size > amdgpu_bo_size(bo)))
2172 return -EINVAL;
2173
2174 /* Allocate all the needed memory */
2175 mapping = kmalloc(sizeof(*mapping), GFP_KERNEL);
2176 if (!mapping)
2177 return -ENOMEM;
2178
2179 r = amdgpu_vm_bo_clear_mappings(adev, bo_va->base.vm, saddr, size);
2180 if (r) {
2181 kfree(mapping);
2182 return r;
2183 }
2184
2185 saddr /= AMDGPU_GPU_PAGE_SIZE;
2186 eaddr /= AMDGPU_GPU_PAGE_SIZE;
2187
2188 mapping->start = saddr;
2189 mapping->last = eaddr;
2190 mapping->offset = offset;
2191 mapping->flags = flags;
2192
2193 amdgpu_vm_bo_insert_map(adev, bo_va, mapping);
2194
2195 return 0;
2196 }
2197
2198 /**
2199 * amdgpu_vm_bo_unmap - remove bo mapping from vm
2200 *
2201 * @adev: amdgpu_device pointer
2202 * @bo_va: bo_va to remove the address from
2203 * @saddr: where to the BO is mapped
2204 *
2205 * Remove a mapping of the BO at the specefied addr from the VM.
2206 *
2207 * Returns:
2208 * 0 for success, error for failure.
2209 *
2210 * Object has to be reserved and unreserved outside!
2211 */
2212 int amdgpu_vm_bo_unmap(struct amdgpu_device *adev,
2213 struct amdgpu_bo_va *bo_va,
2214 uint64_t saddr)
2215 {
2216 struct amdgpu_bo_va_mapping *mapping;
2217 struct amdgpu_vm *vm = bo_va->base.vm;
2218 bool valid = true;
2219
2220 saddr /= AMDGPU_GPU_PAGE_SIZE;
2221
2222 list_for_each_entry(mapping, &bo_va->valids, list) {
2223 if (mapping->start == saddr)
2224 break;
2225 }
2226
2227 if (&mapping->list == &bo_va->valids) {
2228 valid = false;
2229
2230 list_for_each_entry(mapping, &bo_va->invalids, list) {
2231 if (mapping->start == saddr)
2232 break;
2233 }
2234
2235 if (&mapping->list == &bo_va->invalids)
2236 return -ENOENT;
2237 }
2238
2239 list_del(&mapping->list);
2240 amdgpu_vm_it_remove(mapping, &vm->va);
2241 mapping->bo_va = NULL;
2242 trace_amdgpu_vm_bo_unmap(bo_va, mapping);
2243
2244 if (valid)
2245 list_add(&mapping->list, &vm->freed);
2246 else
2247 amdgpu_vm_free_mapping(adev, vm, mapping,
2248 bo_va->last_pt_update);
2249
2250 return 0;
2251 }
2252
2253 /**
2254 * amdgpu_vm_bo_clear_mappings - remove all mappings in a specific range
2255 *
2256 * @adev: amdgpu_device pointer
2257 * @vm: VM structure to use
2258 * @saddr: start of the range
2259 * @size: size of the range
2260 *
2261 * Remove all mappings in a range, split them as appropriate.
2262 *
2263 * Returns:
2264 * 0 for success, error for failure.
2265 */
2266 int amdgpu_vm_bo_clear_mappings(struct amdgpu_device *adev,
2267 struct amdgpu_vm *vm,
2268 uint64_t saddr, uint64_t size)
2269 {
2270 struct amdgpu_bo_va_mapping *before, *after, *tmp, *next;
2271 LIST_HEAD(removed);
2272 uint64_t eaddr;
2273
2274 eaddr = saddr + size - 1;
2275 saddr /= AMDGPU_GPU_PAGE_SIZE;
2276 eaddr /= AMDGPU_GPU_PAGE_SIZE;
2277
2278 /* Allocate all the needed memory */
2279 before = kzalloc(sizeof(*before), GFP_KERNEL);
2280 if (!before)
2281 return -ENOMEM;
2282 INIT_LIST_HEAD(&before->list);
2283
2284 after = kzalloc(sizeof(*after), GFP_KERNEL);
2285 if (!after) {
2286 kfree(before);
2287 return -ENOMEM;
2288 }
2289 INIT_LIST_HEAD(&after->list);
2290
2291 /* Now gather all removed mappings */
2292 tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr);
2293 while (tmp) {
2294 /* Remember mapping split at the start */
2295 if (tmp->start < saddr) {
2296 before->start = tmp->start;
2297 before->last = saddr - 1;
2298 before->offset = tmp->offset;
2299 before->flags = tmp->flags;
2300 before->bo_va = tmp->bo_va;
2301 list_add(&before->list, &tmp->bo_va->invalids);
2302 }
2303
2304 /* Remember mapping split at the end */
2305 if (tmp->last > eaddr) {
2306 after->start = eaddr + 1;
2307 after->last = tmp->last;
2308 after->offset = tmp->offset;
2309 after->offset += after->start - tmp->start;
2310 after->flags = tmp->flags;
2311 after->bo_va = tmp->bo_va;
2312 list_add(&after->list, &tmp->bo_va->invalids);
2313 }
2314
2315 list_del(&tmp->list);
2316 list_add(&tmp->list, &removed);
2317
2318 tmp = amdgpu_vm_it_iter_next(tmp, saddr, eaddr);
2319 }
2320
2321 /* And free them up */
2322 list_for_each_entry_safe(tmp, next, &removed, list) {
2323 amdgpu_vm_it_remove(tmp, &vm->va);
2324 list_del(&tmp->list);
2325
2326 if (tmp->start < saddr)
2327 tmp->start = saddr;
2328 if (tmp->last > eaddr)
2329 tmp->last = eaddr;
2330
2331 tmp->bo_va = NULL;
2332 list_add(&tmp->list, &vm->freed);
2333 trace_amdgpu_vm_bo_unmap(NULL, tmp);
2334 }
2335
2336 /* Insert partial mapping before the range */
2337 if (!list_empty(&before->list)) {
2338 amdgpu_vm_it_insert(before, &vm->va);
2339 if (before->flags & AMDGPU_PTE_PRT)
2340 amdgpu_vm_prt_get(adev);
2341 } else {
2342 kfree(before);
2343 }
2344
2345 /* Insert partial mapping after the range */
2346 if (!list_empty(&after->list)) {
2347 amdgpu_vm_it_insert(after, &vm->va);
2348 if (after->flags & AMDGPU_PTE_PRT)
2349 amdgpu_vm_prt_get(adev);
2350 } else {
2351 kfree(after);
2352 }
2353
2354 return 0;
2355 }
2356
2357 /**
2358 * amdgpu_vm_bo_lookup_mapping - find mapping by address
2359 *
2360 * @vm: the requested VM
2361 * @addr: the address
2362 *
2363 * Find a mapping by it's address.
2364 *
2365 * Returns:
2366 * The amdgpu_bo_va_mapping matching for addr or NULL
2367 *
2368 */
2369 struct amdgpu_bo_va_mapping *amdgpu_vm_bo_lookup_mapping(struct amdgpu_vm *vm,
2370 uint64_t addr)
2371 {
2372 return amdgpu_vm_it_iter_first(&vm->va, addr, addr);
2373 }
2374
2375 /**
2376 * amdgpu_vm_bo_trace_cs - trace all reserved mappings
2377 *
2378 * @vm: the requested vm
2379 * @ticket: CS ticket
2380 *
2381 * Trace all mappings of BOs reserved during a command submission.
2382 */
2383 void amdgpu_vm_bo_trace_cs(struct amdgpu_vm *vm, struct ww_acquire_ctx *ticket)
2384 {
2385 struct amdgpu_bo_va_mapping *mapping;
2386
2387 if (!trace_amdgpu_vm_bo_cs_enabled())
2388 return;
2389
2390 for (mapping = amdgpu_vm_it_iter_first(&vm->va, 0, U64_MAX); mapping;
2391 mapping = amdgpu_vm_it_iter_next(mapping, 0, U64_MAX)) {
2392 if (mapping->bo_va && mapping->bo_va->base.bo) {
2393 struct amdgpu_bo *bo;
2394
2395 bo = mapping->bo_va->base.bo;
2396 if (READ_ONCE(bo->tbo.resv->lock.ctx) != ticket)
2397 continue;
2398 }
2399
2400 trace_amdgpu_vm_bo_cs(mapping);
2401 }
2402 }
2403
2404 /**
2405 * amdgpu_vm_bo_rmv - remove a bo to a specific vm
2406 *
2407 * @adev: amdgpu_device pointer
2408 * @bo_va: requested bo_va
2409 *
2410 * Remove @bo_va->bo from the requested vm.
2411 *
2412 * Object have to be reserved!
2413 */
2414 void amdgpu_vm_bo_rmv(struct amdgpu_device *adev,
2415 struct amdgpu_bo_va *bo_va)
2416 {
2417 struct amdgpu_bo_va_mapping *mapping, *next;
2418 struct amdgpu_bo *bo = bo_va->base.bo;
2419 struct amdgpu_vm *vm = bo_va->base.vm;
2420 struct amdgpu_vm_bo_base **base;
2421
2422 if (bo) {
2423 if (bo->tbo.resv == vm->root.base.bo->tbo.resv)
2424 vm->bulk_moveable = false;
2425
2426 for (base = &bo_va->base.bo->vm_bo; *base;
2427 base = &(*base)->next) {
2428 if (*base != &bo_va->base)
2429 continue;
2430
2431 *base = bo_va->base.next;
2432 break;
2433 }
2434 }
2435
2436 spin_lock(&vm->invalidated_lock);
2437 list_del(&bo_va->base.vm_status);
2438 spin_unlock(&vm->invalidated_lock);
2439
2440 list_for_each_entry_safe(mapping, next, &bo_va->valids, list) {
2441 list_del(&mapping->list);
2442 amdgpu_vm_it_remove(mapping, &vm->va);
2443 mapping->bo_va = NULL;
2444 trace_amdgpu_vm_bo_unmap(bo_va, mapping);
2445 list_add(&mapping->list, &vm->freed);
2446 }
2447 list_for_each_entry_safe(mapping, next, &bo_va->invalids, list) {
2448 list_del(&mapping->list);
2449 amdgpu_vm_it_remove(mapping, &vm->va);
2450 amdgpu_vm_free_mapping(adev, vm, mapping,
2451 bo_va->last_pt_update);
2452 }
2453
2454 dma_fence_put(bo_va->last_pt_update);
2455
2456 if (bo && bo_va->is_xgmi) {
2457 mutex_lock(&adev->vm_manager.lock_pstate);
2458 if (--adev->vm_manager.xgmi_map_counter == 0)
2459 amdgpu_xgmi_set_pstate(adev, 0);
2460 mutex_unlock(&adev->vm_manager.lock_pstate);
2461 }
2462
2463 kfree(bo_va);
2464 }
2465
2466 /**
2467 * amdgpu_vm_bo_invalidate - mark the bo as invalid
2468 *
2469 * @adev: amdgpu_device pointer
2470 * @bo: amdgpu buffer object
2471 * @evicted: is the BO evicted
2472 *
2473 * Mark @bo as invalid.
2474 */
2475 void amdgpu_vm_bo_invalidate(struct amdgpu_device *adev,
2476 struct amdgpu_bo *bo, bool evicted)
2477 {
2478 struct amdgpu_vm_bo_base *bo_base;
2479
2480 /* shadow bo doesn't have bo base, its validation needs its parent */
2481 if (bo->parent && bo->parent->shadow == bo)
2482 bo = bo->parent;
2483
2484 for (bo_base = bo->vm_bo; bo_base; bo_base = bo_base->next) {
2485 struct amdgpu_vm *vm = bo_base->vm;
2486
2487 if (evicted && bo->tbo.resv == vm->root.base.bo->tbo.resv) {
2488 amdgpu_vm_bo_evicted(bo_base);
2489 continue;
2490 }
2491
2492 if (bo_base->moved)
2493 continue;
2494 bo_base->moved = true;
2495
2496 if (bo->tbo.type == ttm_bo_type_kernel)
2497 amdgpu_vm_bo_relocated(bo_base);
2498 else if (bo->tbo.resv == vm->root.base.bo->tbo.resv)
2499 amdgpu_vm_bo_moved(bo_base);
2500 else
2501 amdgpu_vm_bo_invalidated(bo_base);
2502 }
2503 }
2504
2505 /**
2506 * amdgpu_vm_get_block_size - calculate VM page table size as power of two
2507 *
2508 * @vm_size: VM size
2509 *
2510 * Returns:
2511 * VM page table as power of two
2512 */
2513 static uint32_t amdgpu_vm_get_block_size(uint64_t vm_size)
2514 {
2515 /* Total bits covered by PD + PTs */
2516 unsigned bits = ilog2(vm_size) + 18;
2517
2518 /* Make sure the PD is 4K in size up to 8GB address space.
2519 Above that split equal between PD and PTs */
2520 if (vm_size <= 8)
2521 return (bits - 9);
2522 else
2523 return ((bits + 3) / 2);
2524 }
2525
2526 /**
2527 * amdgpu_vm_adjust_size - adjust vm size, block size and fragment size
2528 *
2529 * @adev: amdgpu_device pointer
2530 * @min_vm_size: the minimum vm size in GB if it's set auto
2531 * @fragment_size_default: Default PTE fragment size
2532 * @max_level: max VMPT level
2533 * @max_bits: max address space size in bits
2534 *
2535 */
2536 void amdgpu_vm_adjust_size(struct amdgpu_device *adev, uint32_t min_vm_size,
2537 uint32_t fragment_size_default, unsigned max_level,
2538 unsigned max_bits)
2539 {
2540 unsigned int max_size = 1 << (max_bits - 30);
2541 unsigned int vm_size;
2542 uint64_t tmp;
2543
2544 /* adjust vm size first */
2545 if (amdgpu_vm_size != -1) {
2546 vm_size = amdgpu_vm_size;
2547 if (vm_size > max_size) {
2548 dev_warn(adev->dev, "VM size (%d) too large, max is %u GB\n",
2549 amdgpu_vm_size, max_size);
2550 vm_size = max_size;
2551 }
2552 } else {
2553 struct sysinfo si;
2554 unsigned int phys_ram_gb;
2555
2556 /* Optimal VM size depends on the amount of physical
2557 * RAM available. Underlying requirements and
2558 * assumptions:
2559 *
2560 * - Need to map system memory and VRAM from all GPUs
2561 * - VRAM from other GPUs not known here
2562 * - Assume VRAM <= system memory
2563 * - On GFX8 and older, VM space can be segmented for
2564 * different MTYPEs
2565 * - Need to allow room for fragmentation, guard pages etc.
2566 *
2567 * This adds up to a rough guess of system memory x3.
2568 * Round up to power of two to maximize the available
2569 * VM size with the given page table size.
2570 */
2571 si_meminfo(&si);
2572 phys_ram_gb = ((uint64_t)si.totalram * si.mem_unit +
2573 (1 << 30) - 1) >> 30;
2574 vm_size = roundup_pow_of_two(
2575 min(max(phys_ram_gb * 3, min_vm_size), max_size));
2576 }
2577
2578 adev->vm_manager.max_pfn = (uint64_t)vm_size << 18;
2579
2580 tmp = roundup_pow_of_two(adev->vm_manager.max_pfn);
2581 if (amdgpu_vm_block_size != -1)
2582 tmp >>= amdgpu_vm_block_size - 9;
2583 tmp = DIV_ROUND_UP(fls64(tmp) - 1, 9) - 1;
2584 adev->vm_manager.num_level = min(max_level, (unsigned)tmp);
2585 switch (adev->vm_manager.num_level) {
2586 case 3:
2587 adev->vm_manager.root_level = AMDGPU_VM_PDB2;
2588 break;
2589 case 2:
2590 adev->vm_manager.root_level = AMDGPU_VM_PDB1;
2591 break;
2592 case 1:
2593 adev->vm_manager.root_level = AMDGPU_VM_PDB0;
2594 break;
2595 default:
2596 dev_err(adev->dev, "VMPT only supports 2~4+1 levels\n");
2597 }
2598 /* block size depends on vm size and hw setup*/
2599 if (amdgpu_vm_block_size != -1)
2600 adev->vm_manager.block_size =
2601 min((unsigned)amdgpu_vm_block_size, max_bits
2602 - AMDGPU_GPU_PAGE_SHIFT
2603 - 9 * adev->vm_manager.num_level);
2604 else if (adev->vm_manager.num_level > 1)
2605 adev->vm_manager.block_size = 9;
2606 else
2607 adev->vm_manager.block_size = amdgpu_vm_get_block_size(tmp);
2608
2609 if (amdgpu_vm_fragment_size == -1)
2610 adev->vm_manager.fragment_size = fragment_size_default;
2611 else
2612 adev->vm_manager.fragment_size = amdgpu_vm_fragment_size;
2613
2614 DRM_INFO("vm size is %u GB, %u levels, block size is %u-bit, fragment size is %u-bit\n",
2615 vm_size, adev->vm_manager.num_level + 1,
2616 adev->vm_manager.block_size,
2617 adev->vm_manager.fragment_size);
2618 }
2619
2620 /**
2621 * amdgpu_vm_wait_idle - wait for the VM to become idle
2622 *
2623 * @vm: VM object to wait for
2624 * @timeout: timeout to wait for VM to become idle
2625 */
2626 long amdgpu_vm_wait_idle(struct amdgpu_vm *vm, long timeout)
2627 {
2628 return reservation_object_wait_timeout_rcu(vm->root.base.bo->tbo.resv,
2629 true, true, timeout);
2630 }
2631
2632 /**
2633 * amdgpu_vm_init - initialize a vm instance
2634 *
2635 * @adev: amdgpu_device pointer
2636 * @vm: requested vm
2637 * @vm_context: Indicates if it GFX or Compute context
2638 * @pasid: Process address space identifier
2639 *
2640 * Init @vm fields.
2641 *
2642 * Returns:
2643 * 0 for success, error for failure.
2644 */
2645 int amdgpu_vm_init(struct amdgpu_device *adev, struct amdgpu_vm *vm,
2646 int vm_context, unsigned int pasid)
2647 {
2648 struct amdgpu_bo_param bp;
2649 struct amdgpu_bo *root;
2650 int r, i;
2651
2652 vm->va = RB_ROOT_CACHED;
2653 for (i = 0; i < AMDGPU_MAX_VMHUBS; i++)
2654 vm->reserved_vmid[i] = NULL;
2655 INIT_LIST_HEAD(&vm->evicted);
2656 INIT_LIST_HEAD(&vm->relocated);
2657 INIT_LIST_HEAD(&vm->moved);
2658 INIT_LIST_HEAD(&vm->idle);
2659 INIT_LIST_HEAD(&vm->invalidated);
2660 spin_lock_init(&vm->invalidated_lock);
2661 INIT_LIST_HEAD(&vm->freed);
2662
2663 /* create scheduler entity for page table updates */
2664 r = drm_sched_entity_init(&vm->entity, adev->vm_manager.vm_pte_rqs,
2665 adev->vm_manager.vm_pte_num_rqs, NULL);
2666 if (r)
2667 return r;
2668
2669 vm->pte_support_ats = false;
2670
2671 if (vm_context == AMDGPU_VM_CONTEXT_COMPUTE) {
2672 vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode &
2673 AMDGPU_VM_USE_CPU_FOR_COMPUTE);
2674
2675 if (adev->asic_type == CHIP_RAVEN)
2676 vm->pte_support_ats = true;
2677 } else {
2678 vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode &
2679 AMDGPU_VM_USE_CPU_FOR_GFX);
2680 }
2681 DRM_DEBUG_DRIVER("VM update mode is %s\n",
2682 vm->use_cpu_for_update ? "CPU" : "SDMA");
2683 WARN_ONCE((vm->use_cpu_for_update && !amdgpu_gmc_vram_full_visible(&adev->gmc)),
2684 "CPU update of VM recommended only for large BAR system\n");
2685
2686 if (vm->use_cpu_for_update)
2687 vm->update_funcs = &amdgpu_vm_cpu_funcs;
2688 else
2689 vm->update_funcs = &amdgpu_vm_sdma_funcs;
2690 vm->last_update = NULL;
2691
2692 amdgpu_vm_bo_param(adev, vm, adev->vm_manager.root_level, &bp);
2693 if (vm_context == AMDGPU_VM_CONTEXT_COMPUTE)
2694 bp.flags &= ~AMDGPU_GEM_CREATE_SHADOW;
2695 r = amdgpu_bo_create(adev, &bp, &root);
2696 if (r)
2697 goto error_free_sched_entity;
2698
2699 r = amdgpu_bo_reserve(root, true);
2700 if (r)
2701 goto error_free_root;
2702
2703 r = reservation_object_reserve_shared(root->tbo.resv, 1);
2704 if (r)
2705 goto error_unreserve;
2706
2707 amdgpu_vm_bo_base_init(&vm->root.base, vm, root);
2708
2709 r = amdgpu_vm_clear_bo(adev, vm, root);
2710 if (r)
2711 goto error_unreserve;
2712
2713 amdgpu_bo_unreserve(vm->root.base.bo);
2714
2715 if (pasid) {
2716 unsigned long flags;
2717
2718 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
2719 r = idr_alloc(&adev->vm_manager.pasid_idr, vm, pasid, pasid + 1,
2720 GFP_ATOMIC);
2721 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
2722 if (r < 0)
2723 goto error_free_root;
2724
2725 vm->pasid = pasid;
2726 }
2727
2728 INIT_KFIFO(vm->faults);
2729
2730 return 0;
2731
2732 error_unreserve:
2733 amdgpu_bo_unreserve(vm->root.base.bo);
2734
2735 error_free_root:
2736 amdgpu_bo_unref(&vm->root.base.bo->shadow);
2737 amdgpu_bo_unref(&vm->root.base.bo);
2738 vm->root.base.bo = NULL;
2739
2740 error_free_sched_entity:
2741 drm_sched_entity_destroy(&vm->entity);
2742
2743 return r;
2744 }
2745
2746 /**
2747 * amdgpu_vm_make_compute - Turn a GFX VM into a compute VM
2748 *
2749 * @adev: amdgpu_device pointer
2750 * @vm: requested vm
2751 *
2752 * This only works on GFX VMs that don't have any BOs added and no
2753 * page tables allocated yet.
2754 *
2755 * Changes the following VM parameters:
2756 * - use_cpu_for_update
2757 * - pte_supports_ats
2758 * - pasid (old PASID is released, because compute manages its own PASIDs)
2759 *
2760 * Reinitializes the page directory to reflect the changed ATS
2761 * setting.
2762 *
2763 * Returns:
2764 * 0 for success, -errno for errors.
2765 */
2766 int amdgpu_vm_make_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm, unsigned int pasid)
2767 {
2768 bool pte_support_ats = (adev->asic_type == CHIP_RAVEN);
2769 int r;
2770
2771 r = amdgpu_bo_reserve(vm->root.base.bo, true);
2772 if (r)
2773 return r;
2774
2775 /* Sanity checks */
2776 if (!RB_EMPTY_ROOT(&vm->va.rb_root) || vm->root.entries) {
2777 r = -EINVAL;
2778 goto unreserve_bo;
2779 }
2780
2781 if (pasid) {
2782 unsigned long flags;
2783
2784 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
2785 r = idr_alloc(&adev->vm_manager.pasid_idr, vm, pasid, pasid + 1,
2786 GFP_ATOMIC);
2787 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
2788
2789 if (r == -ENOSPC)
2790 goto unreserve_bo;
2791 r = 0;
2792 }
2793
2794 /* Check if PD needs to be reinitialized and do it before
2795 * changing any other state, in case it fails.
2796 */
2797 if (pte_support_ats != vm->pte_support_ats) {
2798 vm->pte_support_ats = pte_support_ats;
2799 r = amdgpu_vm_clear_bo(adev, vm, vm->root.base.bo);
2800 if (r)
2801 goto free_idr;
2802 }
2803
2804 /* Update VM state */
2805 vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode &
2806 AMDGPU_VM_USE_CPU_FOR_COMPUTE);
2807 DRM_DEBUG_DRIVER("VM update mode is %s\n",
2808 vm->use_cpu_for_update ? "CPU" : "SDMA");
2809 WARN_ONCE((vm->use_cpu_for_update && !amdgpu_gmc_vram_full_visible(&adev->gmc)),
2810 "CPU update of VM recommended only for large BAR system\n");
2811
2812 if (vm->pasid) {
2813 unsigned long flags;
2814
2815 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
2816 idr_remove(&adev->vm_manager.pasid_idr, vm->pasid);
2817 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
2818
2819 /* Free the original amdgpu allocated pasid
2820 * Will be replaced with kfd allocated pasid
2821 */
2822 amdgpu_pasid_free(vm->pasid);
2823 vm->pasid = 0;
2824 }
2825
2826 /* Free the shadow bo for compute VM */
2827 amdgpu_bo_unref(&vm->root.base.bo->shadow);
2828
2829 if (pasid)
2830 vm->pasid = pasid;
2831
2832 goto unreserve_bo;
2833
2834 free_idr:
2835 if (pasid) {
2836 unsigned long flags;
2837
2838 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
2839 idr_remove(&adev->vm_manager.pasid_idr, pasid);
2840 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
2841 }
2842 unreserve_bo:
2843 amdgpu_bo_unreserve(vm->root.base.bo);
2844 return r;
2845 }
2846
2847 /**
2848 * amdgpu_vm_release_compute - release a compute vm
2849 * @adev: amdgpu_device pointer
2850 * @vm: a vm turned into compute vm by calling amdgpu_vm_make_compute
2851 *
2852 * This is a correspondant of amdgpu_vm_make_compute. It decouples compute
2853 * pasid from vm. Compute should stop use of vm after this call.
2854 */
2855 void amdgpu_vm_release_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm)
2856 {
2857 if (vm->pasid) {
2858 unsigned long flags;
2859
2860 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
2861 idr_remove(&adev->vm_manager.pasid_idr, vm->pasid);
2862 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
2863 }
2864 vm->pasid = 0;
2865 }
2866
2867 /**
2868 * amdgpu_vm_fini - tear down a vm instance
2869 *
2870 * @adev: amdgpu_device pointer
2871 * @vm: requested vm
2872 *
2873 * Tear down @vm.
2874 * Unbind the VM and remove all bos from the vm bo list
2875 */
2876 void amdgpu_vm_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm)
2877 {
2878 struct amdgpu_bo_va_mapping *mapping, *tmp;
2879 bool prt_fini_needed = !!adev->gmc.gmc_funcs->set_prt;
2880 struct amdgpu_bo *root;
2881 int i, r;
2882
2883 amdgpu_amdkfd_gpuvm_destroy_cb(adev, vm);
2884
2885 if (vm->pasid) {
2886 unsigned long flags;
2887
2888 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
2889 idr_remove(&adev->vm_manager.pasid_idr, vm->pasid);
2890 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
2891 }
2892
2893 drm_sched_entity_destroy(&vm->entity);
2894
2895 if (!RB_EMPTY_ROOT(&vm->va.rb_root)) {
2896 dev_err(adev->dev, "still active bo inside vm\n");
2897 }
2898 rbtree_postorder_for_each_entry_safe(mapping, tmp,
2899 &vm->va.rb_root, rb) {
2900 /* Don't remove the mapping here, we don't want to trigger a
2901 * rebalance and the tree is about to be destroyed anyway.
2902 */
2903 list_del(&mapping->list);
2904 kfree(mapping);
2905 }
2906 list_for_each_entry_safe(mapping, tmp, &vm->freed, list) {
2907 if (mapping->flags & AMDGPU_PTE_PRT && prt_fini_needed) {
2908 amdgpu_vm_prt_fini(adev, vm);
2909 prt_fini_needed = false;
2910 }
2911
2912 list_del(&mapping->list);
2913 amdgpu_vm_free_mapping(adev, vm, mapping, NULL);
2914 }
2915
2916 root = amdgpu_bo_ref(vm->root.base.bo);
2917 r = amdgpu_bo_reserve(root, true);
2918 if (r) {
2919 dev_err(adev->dev, "Leaking page tables because BO reservation failed\n");
2920 } else {
2921 amdgpu_vm_free_pts(adev, vm, NULL);
2922 amdgpu_bo_unreserve(root);
2923 }
2924 amdgpu_bo_unref(&root);
2925 WARN_ON(vm->root.base.bo);
2926 dma_fence_put(vm->last_update);
2927 for (i = 0; i < AMDGPU_MAX_VMHUBS; i++)
2928 amdgpu_vmid_free_reserved(adev, vm, i);
2929 }
2930
2931 /**
2932 * amdgpu_vm_manager_init - init the VM manager
2933 *
2934 * @adev: amdgpu_device pointer
2935 *
2936 * Initialize the VM manager structures
2937 */
2938 void amdgpu_vm_manager_init(struct amdgpu_device *adev)
2939 {
2940 unsigned i;
2941
2942 amdgpu_vmid_mgr_init(adev);
2943
2944 adev->vm_manager.fence_context =
2945 dma_fence_context_alloc(AMDGPU_MAX_RINGS);
2946 for (i = 0; i < AMDGPU_MAX_RINGS; ++i)
2947 adev->vm_manager.seqno[i] = 0;
2948
2949 spin_lock_init(&adev->vm_manager.prt_lock);
2950 atomic_set(&adev->vm_manager.num_prt_users, 0);
2951
2952 /* If not overridden by the user, by default, only in large BAR systems
2953 * Compute VM tables will be updated by CPU
2954 */
2955 #ifdef CONFIG_X86_64
2956 if (amdgpu_vm_update_mode == -1) {
2957 if (amdgpu_gmc_vram_full_visible(&adev->gmc))
2958 adev->vm_manager.vm_update_mode =
2959 AMDGPU_VM_USE_CPU_FOR_COMPUTE;
2960 else
2961 adev->vm_manager.vm_update_mode = 0;
2962 } else
2963 adev->vm_manager.vm_update_mode = amdgpu_vm_update_mode;
2964 #else
2965 adev->vm_manager.vm_update_mode = 0;
2966 #endif
2967
2968 idr_init(&adev->vm_manager.pasid_idr);
2969 spin_lock_init(&adev->vm_manager.pasid_lock);
2970
2971 adev->vm_manager.xgmi_map_counter = 0;
2972 mutex_init(&adev->vm_manager.lock_pstate);
2973 }
2974
2975 /**
2976 * amdgpu_vm_manager_fini - cleanup VM manager
2977 *
2978 * @adev: amdgpu_device pointer
2979 *
2980 * Cleanup the VM manager and free resources.
2981 */
2982 void amdgpu_vm_manager_fini(struct amdgpu_device *adev)
2983 {
2984 WARN_ON(!idr_is_empty(&adev->vm_manager.pasid_idr));
2985 idr_destroy(&adev->vm_manager.pasid_idr);
2986
2987 amdgpu_vmid_mgr_fini(adev);
2988 }
2989
2990 /**
2991 * amdgpu_vm_ioctl - Manages VMID reservation for vm hubs.
2992 *
2993 * @dev: drm device pointer
2994 * @data: drm_amdgpu_vm
2995 * @filp: drm file pointer
2996 *
2997 * Returns:
2998 * 0 for success, -errno for errors.
2999 */
3000 int amdgpu_vm_ioctl(struct drm_device *dev, void *data, struct drm_file *filp)
3001 {
3002 union drm_amdgpu_vm *args = data;
3003 struct amdgpu_device *adev = dev->dev_private;
3004 struct amdgpu_fpriv *fpriv = filp->driver_priv;
3005 int r;
3006
3007 switch (args->in.op) {
3008 case AMDGPU_VM_OP_RESERVE_VMID:
3009 /* current, we only have requirement to reserve vmid from gfxhub */
3010 r = amdgpu_vmid_alloc_reserved(adev, &fpriv->vm, AMDGPU_GFXHUB);
3011 if (r)
3012 return r;
3013 break;
3014 case AMDGPU_VM_OP_UNRESERVE_VMID:
3015 amdgpu_vmid_free_reserved(adev, &fpriv->vm, AMDGPU_GFXHUB);
3016 break;
3017 default:
3018 return -EINVAL;
3019 }
3020
3021 return 0;
3022 }
3023
3024 /**
3025 * amdgpu_vm_get_task_info - Extracts task info for a PASID.
3026 *
3027 * @adev: drm device pointer
3028 * @pasid: PASID identifier for VM
3029 * @task_info: task_info to fill.
3030 */
3031 void amdgpu_vm_get_task_info(struct amdgpu_device *adev, unsigned int pasid,
3032 struct amdgpu_task_info *task_info)
3033 {
3034 struct amdgpu_vm *vm;
3035 unsigned long flags;
3036
3037 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
3038
3039 vm = idr_find(&adev->vm_manager.pasid_idr, pasid);
3040 if (vm)
3041 *task_info = vm->task_info;
3042
3043 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
3044 }
3045
3046 /**
3047 * amdgpu_vm_set_task_info - Sets VMs task info.
3048 *
3049 * @vm: vm for which to set the info
3050 */
3051 void amdgpu_vm_set_task_info(struct amdgpu_vm *vm)
3052 {
3053 if (!vm->task_info.pid) {
3054 vm->task_info.pid = current->pid;
3055 get_task_comm(vm->task_info.task_name, current);
3056
3057 if (current->group_leader->mm == current->mm) {
3058 vm->task_info.tgid = current->group_leader->pid;
3059 get_task_comm(vm->task_info.process_name, current->group_leader);
3060 }
3061 }
3062 }