]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/gpu/drm/amd/amdgpu/amdgpu_vm.c
1dda9321bd5a2c26ecc1069d222ca7ec0b9ed14d
[mirror_ubuntu-zesty-kernel.git] / drivers / gpu / drm / amd / amdgpu / amdgpu_vm.c
1 /*
2 * Copyright 2008 Advanced Micro Devices, Inc.
3 * Copyright 2008 Red Hat Inc.
4 * Copyright 2009 Jerome Glisse.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22 * OTHER DEALINGS IN THE SOFTWARE.
23 *
24 * Authors: Dave Airlie
25 * Alex Deucher
26 * Jerome Glisse
27 */
28 #include <linux/dma-fence-array.h>
29 #include <drm/drmP.h>
30 #include <drm/amdgpu_drm.h>
31 #include "amdgpu.h"
32 #include "amdgpu_trace.h"
33
34 /*
35 * GPUVM
36 * GPUVM is similar to the legacy gart on older asics, however
37 * rather than there being a single global gart table
38 * for the entire GPU, there are multiple VM page tables active
39 * at any given time. The VM page tables can contain a mix
40 * vram pages and system memory pages and system memory pages
41 * can be mapped as snooped (cached system pages) or unsnooped
42 * (uncached system pages).
43 * Each VM has an ID associated with it and there is a page table
44 * associated with each VMID. When execting a command buffer,
45 * the kernel tells the the ring what VMID to use for that command
46 * buffer. VMIDs are allocated dynamically as commands are submitted.
47 * The userspace drivers maintain their own address space and the kernel
48 * sets up their pages tables accordingly when they submit their
49 * command buffers and a VMID is assigned.
50 * Cayman/Trinity support up to 8 active VMs at any given time;
51 * SI supports 16.
52 */
53
54 /* Local structure. Encapsulate some VM table update parameters to reduce
55 * the number of function parameters
56 */
57 struct amdgpu_pte_update_params {
58 /* amdgpu device we do this update for */
59 struct amdgpu_device *adev;
60 /* address where to copy page table entries from */
61 uint64_t src;
62 /* indirect buffer to fill with commands */
63 struct amdgpu_ib *ib;
64 /* Function which actually does the update */
65 void (*func)(struct amdgpu_pte_update_params *params, uint64_t pe,
66 uint64_t addr, unsigned count, uint32_t incr,
67 uint32_t flags);
68 /* indicate update pt or its shadow */
69 bool shadow;
70 };
71
72 /**
73 * amdgpu_vm_num_pde - return the number of page directory entries
74 *
75 * @adev: amdgpu_device pointer
76 *
77 * Calculate the number of page directory entries.
78 */
79 static unsigned amdgpu_vm_num_pdes(struct amdgpu_device *adev)
80 {
81 return adev->vm_manager.max_pfn >> amdgpu_vm_block_size;
82 }
83
84 /**
85 * amdgpu_vm_directory_size - returns the size of the page directory in bytes
86 *
87 * @adev: amdgpu_device pointer
88 *
89 * Calculate the size of the page directory in bytes.
90 */
91 static unsigned amdgpu_vm_directory_size(struct amdgpu_device *adev)
92 {
93 return AMDGPU_GPU_PAGE_ALIGN(amdgpu_vm_num_pdes(adev) * 8);
94 }
95
96 /**
97 * amdgpu_vm_get_pd_bo - add the VM PD to a validation list
98 *
99 * @vm: vm providing the BOs
100 * @validated: head of validation list
101 * @entry: entry to add
102 *
103 * Add the page directory to the list of BOs to
104 * validate for command submission.
105 */
106 void amdgpu_vm_get_pd_bo(struct amdgpu_vm *vm,
107 struct list_head *validated,
108 struct amdgpu_bo_list_entry *entry)
109 {
110 entry->robj = vm->page_directory;
111 entry->priority = 0;
112 entry->tv.bo = &vm->page_directory->tbo;
113 entry->tv.shared = true;
114 entry->user_pages = NULL;
115 list_add(&entry->tv.head, validated);
116 }
117
118 /**
119 * amdgpu_vm_validate_pt_bos - validate the page table BOs
120 *
121 * @adev: amdgpu device pointer
122 * @vm: vm providing the BOs
123 * @validate: callback to do the validation
124 * @param: parameter for the validation callback
125 *
126 * Validate the page table BOs on command submission if neccessary.
127 */
128 int amdgpu_vm_validate_pt_bos(struct amdgpu_device *adev, struct amdgpu_vm *vm,
129 int (*validate)(void *p, struct amdgpu_bo *bo),
130 void *param)
131 {
132 uint64_t num_evictions;
133 unsigned i;
134 int r;
135
136 /* We only need to validate the page tables
137 * if they aren't already valid.
138 */
139 num_evictions = atomic64_read(&adev->num_evictions);
140 if (num_evictions == vm->last_eviction_counter)
141 return 0;
142
143 /* add the vm page table to the list */
144 for (i = 0; i <= vm->max_pde_used; ++i) {
145 struct amdgpu_bo *bo = vm->page_tables[i].bo;
146
147 if (!bo)
148 continue;
149
150 r = validate(param, bo);
151 if (r)
152 return r;
153 }
154
155 return 0;
156 }
157
158 /**
159 * amdgpu_vm_move_pt_bos_in_lru - move the PT BOs to the LRU tail
160 *
161 * @adev: amdgpu device instance
162 * @vm: vm providing the BOs
163 *
164 * Move the PT BOs to the tail of the LRU.
165 */
166 void amdgpu_vm_move_pt_bos_in_lru(struct amdgpu_device *adev,
167 struct amdgpu_vm *vm)
168 {
169 struct ttm_bo_global *glob = adev->mman.bdev.glob;
170 unsigned i;
171
172 spin_lock(&glob->lru_lock);
173 for (i = 0; i <= vm->max_pde_used; ++i) {
174 struct amdgpu_bo *bo = vm->page_tables[i].bo;
175
176 if (!bo)
177 continue;
178
179 ttm_bo_move_to_lru_tail(&bo->tbo);
180 }
181 spin_unlock(&glob->lru_lock);
182 }
183
184 static bool amdgpu_vm_is_gpu_reset(struct amdgpu_device *adev,
185 struct amdgpu_vm_id *id)
186 {
187 return id->current_gpu_reset_count !=
188 atomic_read(&adev->gpu_reset_counter) ? true : false;
189 }
190
191 /**
192 * amdgpu_vm_grab_id - allocate the next free VMID
193 *
194 * @vm: vm to allocate id for
195 * @ring: ring we want to submit job to
196 * @sync: sync object where we add dependencies
197 * @fence: fence protecting ID from reuse
198 *
199 * Allocate an id for the vm, adding fences to the sync obj as necessary.
200 */
201 int amdgpu_vm_grab_id(struct amdgpu_vm *vm, struct amdgpu_ring *ring,
202 struct amdgpu_sync *sync, struct dma_fence *fence,
203 struct amdgpu_job *job)
204 {
205 struct amdgpu_device *adev = ring->adev;
206 uint64_t fence_context = adev->fence_context + ring->idx;
207 struct dma_fence *updates = sync->last_vm_update;
208 struct amdgpu_vm_id *id, *idle;
209 struct dma_fence **fences;
210 unsigned i;
211 int r = 0;
212
213 fences = kmalloc_array(sizeof(void *), adev->vm_manager.num_ids,
214 GFP_KERNEL);
215 if (!fences)
216 return -ENOMEM;
217
218 mutex_lock(&adev->vm_manager.lock);
219
220 /* Check if we have an idle VMID */
221 i = 0;
222 list_for_each_entry(idle, &adev->vm_manager.ids_lru, list) {
223 fences[i] = amdgpu_sync_peek_fence(&idle->active, ring);
224 if (!fences[i])
225 break;
226 ++i;
227 }
228
229 /* If we can't find a idle VMID to use, wait till one becomes available */
230 if (&idle->list == &adev->vm_manager.ids_lru) {
231 u64 fence_context = adev->vm_manager.fence_context + ring->idx;
232 unsigned seqno = ++adev->vm_manager.seqno[ring->idx];
233 struct dma_fence_array *array;
234 unsigned j;
235
236 for (j = 0; j < i; ++j)
237 dma_fence_get(fences[j]);
238
239 array = dma_fence_array_create(i, fences, fence_context,
240 seqno, true);
241 if (!array) {
242 for (j = 0; j < i; ++j)
243 dma_fence_put(fences[j]);
244 kfree(fences);
245 r = -ENOMEM;
246 goto error;
247 }
248
249
250 r = amdgpu_sync_fence(ring->adev, sync, &array->base);
251 dma_fence_put(&array->base);
252 if (r)
253 goto error;
254
255 mutex_unlock(&adev->vm_manager.lock);
256 return 0;
257
258 }
259 kfree(fences);
260
261 job->vm_needs_flush = true;
262 /* Check if we can use a VMID already assigned to this VM */
263 i = ring->idx;
264 do {
265 struct dma_fence *flushed;
266
267 id = vm->ids[i++];
268 if (i == AMDGPU_MAX_RINGS)
269 i = 0;
270
271 /* Check all the prerequisites to using this VMID */
272 if (!id)
273 continue;
274 if (amdgpu_vm_is_gpu_reset(adev, id))
275 continue;
276
277 if (atomic64_read(&id->owner) != vm->client_id)
278 continue;
279
280 if (job->vm_pd_addr != id->pd_gpu_addr)
281 continue;
282
283 if (!id->last_flush)
284 continue;
285
286 if (id->last_flush->context != fence_context &&
287 !dma_fence_is_signaled(id->last_flush))
288 continue;
289
290 flushed = id->flushed_updates;
291 if (updates &&
292 (!flushed || dma_fence_is_later(updates, flushed)))
293 continue;
294
295 /* Good we can use this VMID. Remember this submission as
296 * user of the VMID.
297 */
298 r = amdgpu_sync_fence(ring->adev, &id->active, fence);
299 if (r)
300 goto error;
301
302 id->current_gpu_reset_count = atomic_read(&adev->gpu_reset_counter);
303 list_move_tail(&id->list, &adev->vm_manager.ids_lru);
304 vm->ids[ring->idx] = id;
305
306 job->vm_id = id - adev->vm_manager.ids;
307 job->vm_needs_flush = false;
308 trace_amdgpu_vm_grab_id(vm, ring->idx, job);
309
310 mutex_unlock(&adev->vm_manager.lock);
311 return 0;
312
313 } while (i != ring->idx);
314
315 /* Still no ID to use? Then use the idle one found earlier */
316 id = idle;
317
318 /* Remember this submission as user of the VMID */
319 r = amdgpu_sync_fence(ring->adev, &id->active, fence);
320 if (r)
321 goto error;
322
323 dma_fence_put(id->first);
324 id->first = dma_fence_get(fence);
325
326 dma_fence_put(id->last_flush);
327 id->last_flush = NULL;
328
329 dma_fence_put(id->flushed_updates);
330 id->flushed_updates = dma_fence_get(updates);
331
332 id->pd_gpu_addr = job->vm_pd_addr;
333 id->current_gpu_reset_count = atomic_read(&adev->gpu_reset_counter);
334 list_move_tail(&id->list, &adev->vm_manager.ids_lru);
335 atomic64_set(&id->owner, vm->client_id);
336 vm->ids[ring->idx] = id;
337
338 job->vm_id = id - adev->vm_manager.ids;
339 trace_amdgpu_vm_grab_id(vm, ring->idx, job);
340
341 error:
342 mutex_unlock(&adev->vm_manager.lock);
343 return r;
344 }
345
346 static bool amdgpu_vm_ring_has_compute_vm_bug(struct amdgpu_ring *ring)
347 {
348 struct amdgpu_device *adev = ring->adev;
349 const struct amdgpu_ip_block *ip_block;
350
351 if (ring->funcs->type != AMDGPU_RING_TYPE_COMPUTE)
352 /* only compute rings */
353 return false;
354
355 ip_block = amdgpu_get_ip_block(adev, AMD_IP_BLOCK_TYPE_GFX);
356 if (!ip_block)
357 return false;
358
359 if (ip_block->version->major <= 7) {
360 /* gfx7 has no workaround */
361 return true;
362 } else if (ip_block->version->major == 8) {
363 if (adev->gfx.mec_fw_version >= 673)
364 /* gfx8 is fixed in MEC firmware 673 */
365 return false;
366 else
367 return true;
368 }
369 return false;
370 }
371
372 /**
373 * amdgpu_vm_flush - hardware flush the vm
374 *
375 * @ring: ring to use for flush
376 * @vm_id: vmid number to use
377 * @pd_addr: address of the page directory
378 *
379 * Emit a VM flush when it is necessary.
380 */
381 int amdgpu_vm_flush(struct amdgpu_ring *ring, struct amdgpu_job *job)
382 {
383 struct amdgpu_device *adev = ring->adev;
384 struct amdgpu_vm_id *id = &adev->vm_manager.ids[job->vm_id];
385 bool gds_switch_needed = ring->funcs->emit_gds_switch && (
386 id->gds_base != job->gds_base ||
387 id->gds_size != job->gds_size ||
388 id->gws_base != job->gws_base ||
389 id->gws_size != job->gws_size ||
390 id->oa_base != job->oa_base ||
391 id->oa_size != job->oa_size);
392 int r;
393
394 if (ring->funcs->emit_pipeline_sync && (
395 job->vm_needs_flush || gds_switch_needed ||
396 amdgpu_vm_ring_has_compute_vm_bug(ring)))
397 amdgpu_ring_emit_pipeline_sync(ring);
398
399 if (ring->funcs->emit_vm_flush && (job->vm_needs_flush ||
400 amdgpu_vm_is_gpu_reset(adev, id))) {
401 struct dma_fence *fence;
402
403 trace_amdgpu_vm_flush(job->vm_pd_addr, ring->idx, job->vm_id);
404 amdgpu_ring_emit_vm_flush(ring, job->vm_id, job->vm_pd_addr);
405
406 r = amdgpu_fence_emit(ring, &fence);
407 if (r)
408 return r;
409
410 mutex_lock(&adev->vm_manager.lock);
411 dma_fence_put(id->last_flush);
412 id->last_flush = fence;
413 mutex_unlock(&adev->vm_manager.lock);
414 }
415
416 if (gds_switch_needed) {
417 id->gds_base = job->gds_base;
418 id->gds_size = job->gds_size;
419 id->gws_base = job->gws_base;
420 id->gws_size = job->gws_size;
421 id->oa_base = job->oa_base;
422 id->oa_size = job->oa_size;
423 amdgpu_ring_emit_gds_switch(ring, job->vm_id,
424 job->gds_base, job->gds_size,
425 job->gws_base, job->gws_size,
426 job->oa_base, job->oa_size);
427 }
428
429 return 0;
430 }
431
432 /**
433 * amdgpu_vm_reset_id - reset VMID to zero
434 *
435 * @adev: amdgpu device structure
436 * @vm_id: vmid number to use
437 *
438 * Reset saved GDW, GWS and OA to force switch on next flush.
439 */
440 void amdgpu_vm_reset_id(struct amdgpu_device *adev, unsigned vm_id)
441 {
442 struct amdgpu_vm_id *id = &adev->vm_manager.ids[vm_id];
443
444 id->gds_base = 0;
445 id->gds_size = 0;
446 id->gws_base = 0;
447 id->gws_size = 0;
448 id->oa_base = 0;
449 id->oa_size = 0;
450 }
451
452 /**
453 * amdgpu_vm_bo_find - find the bo_va for a specific vm & bo
454 *
455 * @vm: requested vm
456 * @bo: requested buffer object
457 *
458 * Find @bo inside the requested vm.
459 * Search inside the @bos vm list for the requested vm
460 * Returns the found bo_va or NULL if none is found
461 *
462 * Object has to be reserved!
463 */
464 struct amdgpu_bo_va *amdgpu_vm_bo_find(struct amdgpu_vm *vm,
465 struct amdgpu_bo *bo)
466 {
467 struct amdgpu_bo_va *bo_va;
468
469 list_for_each_entry(bo_va, &bo->va, bo_list) {
470 if (bo_va->vm == vm) {
471 return bo_va;
472 }
473 }
474 return NULL;
475 }
476
477 /**
478 * amdgpu_vm_do_set_ptes - helper to call the right asic function
479 *
480 * @params: see amdgpu_pte_update_params definition
481 * @pe: addr of the page entry
482 * @addr: dst addr to write into pe
483 * @count: number of page entries to update
484 * @incr: increase next addr by incr bytes
485 * @flags: hw access flags
486 *
487 * Traces the parameters and calls the right asic functions
488 * to setup the page table using the DMA.
489 */
490 static void amdgpu_vm_do_set_ptes(struct amdgpu_pte_update_params *params,
491 uint64_t pe, uint64_t addr,
492 unsigned count, uint32_t incr,
493 uint32_t flags)
494 {
495 trace_amdgpu_vm_set_ptes(pe, addr, count, incr, flags);
496
497 if (count < 3) {
498 amdgpu_vm_write_pte(params->adev, params->ib, pe,
499 addr | flags, count, incr);
500
501 } else {
502 amdgpu_vm_set_pte_pde(params->adev, params->ib, pe, addr,
503 count, incr, flags);
504 }
505 }
506
507 /**
508 * amdgpu_vm_do_copy_ptes - copy the PTEs from the GART
509 *
510 * @params: see amdgpu_pte_update_params definition
511 * @pe: addr of the page entry
512 * @addr: dst addr to write into pe
513 * @count: number of page entries to update
514 * @incr: increase next addr by incr bytes
515 * @flags: hw access flags
516 *
517 * Traces the parameters and calls the DMA function to copy the PTEs.
518 */
519 static void amdgpu_vm_do_copy_ptes(struct amdgpu_pte_update_params *params,
520 uint64_t pe, uint64_t addr,
521 unsigned count, uint32_t incr,
522 uint32_t flags)
523 {
524 uint64_t src = (params->src + (addr >> 12) * 8);
525
526
527 trace_amdgpu_vm_copy_ptes(pe, src, count);
528
529 amdgpu_vm_copy_pte(params->adev, params->ib, pe, src, count);
530 }
531
532 /**
533 * amdgpu_vm_map_gart - Resolve gart mapping of addr
534 *
535 * @pages_addr: optional DMA address to use for lookup
536 * @addr: the unmapped addr
537 *
538 * Look up the physical address of the page that the pte resolves
539 * to and return the pointer for the page table entry.
540 */
541 static uint64_t amdgpu_vm_map_gart(const dma_addr_t *pages_addr, uint64_t addr)
542 {
543 uint64_t result;
544
545 /* page table offset */
546 result = pages_addr[addr >> PAGE_SHIFT];
547
548 /* in case cpu page size != gpu page size*/
549 result |= addr & (~PAGE_MASK);
550
551 result &= 0xFFFFFFFFFFFFF000ULL;
552
553 return result;
554 }
555
556 /*
557 * amdgpu_vm_update_pdes - make sure that page directory is valid
558 *
559 * @adev: amdgpu_device pointer
560 * @vm: requested vm
561 * @start: start of GPU address range
562 * @end: end of GPU address range
563 *
564 * Allocates new page tables if necessary
565 * and updates the page directory.
566 * Returns 0 for success, error for failure.
567 */
568 int amdgpu_vm_update_page_directory(struct amdgpu_device *adev,
569 struct amdgpu_vm *vm)
570 {
571 struct amdgpu_bo *shadow;
572 struct amdgpu_ring *ring;
573 uint64_t pd_addr, shadow_addr;
574 uint32_t incr = AMDGPU_VM_PTE_COUNT * 8;
575 uint64_t last_pde = ~0, last_pt = ~0, last_shadow = ~0;
576 unsigned count = 0, pt_idx, ndw;
577 struct amdgpu_job *job;
578 struct amdgpu_pte_update_params params;
579 struct dma_fence *fence = NULL;
580
581 int r;
582
583 ring = container_of(vm->entity.sched, struct amdgpu_ring, sched);
584 shadow = vm->page_directory->shadow;
585
586 /* padding, etc. */
587 ndw = 64;
588
589 /* assume the worst case */
590 ndw += vm->max_pde_used * 6;
591
592 pd_addr = amdgpu_bo_gpu_offset(vm->page_directory);
593 if (shadow) {
594 r = amdgpu_ttm_bind(&shadow->tbo, &shadow->tbo.mem);
595 if (r)
596 return r;
597 shadow_addr = amdgpu_bo_gpu_offset(shadow);
598 ndw *= 2;
599 } else {
600 shadow_addr = 0;
601 }
602
603 r = amdgpu_job_alloc_with_ib(adev, ndw * 4, &job);
604 if (r)
605 return r;
606
607 memset(&params, 0, sizeof(params));
608 params.adev = adev;
609 params.ib = &job->ibs[0];
610
611 /* walk over the address space and update the page directory */
612 for (pt_idx = 0; pt_idx <= vm->max_pde_used; ++pt_idx) {
613 struct amdgpu_bo *bo = vm->page_tables[pt_idx].bo;
614 uint64_t pde, pt;
615
616 if (bo == NULL)
617 continue;
618
619 if (bo->shadow) {
620 struct amdgpu_bo *pt_shadow = bo->shadow;
621
622 r = amdgpu_ttm_bind(&pt_shadow->tbo,
623 &pt_shadow->tbo.mem);
624 if (r)
625 return r;
626 }
627
628 pt = amdgpu_bo_gpu_offset(bo);
629 if (vm->page_tables[pt_idx].addr == pt)
630 continue;
631
632 vm->page_tables[pt_idx].addr = pt;
633
634 pde = pd_addr + pt_idx * 8;
635 if (((last_pde + 8 * count) != pde) ||
636 ((last_pt + incr * count) != pt) ||
637 (count == AMDGPU_VM_MAX_UPDATE_SIZE)) {
638
639 if (count) {
640 if (shadow)
641 amdgpu_vm_do_set_ptes(&params,
642 last_shadow,
643 last_pt, count,
644 incr,
645 AMDGPU_PTE_VALID);
646
647 amdgpu_vm_do_set_ptes(&params, last_pde,
648 last_pt, count, incr,
649 AMDGPU_PTE_VALID);
650 }
651
652 count = 1;
653 last_pde = pde;
654 last_shadow = shadow_addr + pt_idx * 8;
655 last_pt = pt;
656 } else {
657 ++count;
658 }
659 }
660
661 if (count) {
662 if (vm->page_directory->shadow)
663 amdgpu_vm_do_set_ptes(&params, last_shadow, last_pt,
664 count, incr, AMDGPU_PTE_VALID);
665
666 amdgpu_vm_do_set_ptes(&params, last_pde, last_pt,
667 count, incr, AMDGPU_PTE_VALID);
668 }
669
670 if (params.ib->length_dw == 0) {
671 amdgpu_job_free(job);
672 return 0;
673 }
674
675 amdgpu_ring_pad_ib(ring, params.ib);
676 amdgpu_sync_resv(adev, &job->sync, vm->page_directory->tbo.resv,
677 AMDGPU_FENCE_OWNER_VM);
678 if (shadow)
679 amdgpu_sync_resv(adev, &job->sync, shadow->tbo.resv,
680 AMDGPU_FENCE_OWNER_VM);
681
682 WARN_ON(params.ib->length_dw > ndw);
683 r = amdgpu_job_submit(job, ring, &vm->entity,
684 AMDGPU_FENCE_OWNER_VM, &fence);
685 if (r)
686 goto error_free;
687
688 amdgpu_bo_fence(vm->page_directory, fence, true);
689 dma_fence_put(vm->page_directory_fence);
690 vm->page_directory_fence = dma_fence_get(fence);
691 dma_fence_put(fence);
692
693 return 0;
694
695 error_free:
696 amdgpu_job_free(job);
697 return r;
698 }
699
700 /**
701 * amdgpu_vm_update_ptes - make sure that page tables are valid
702 *
703 * @params: see amdgpu_pte_update_params definition
704 * @vm: requested vm
705 * @start: start of GPU address range
706 * @end: end of GPU address range
707 * @dst: destination address to map to, the next dst inside the function
708 * @flags: mapping flags
709 *
710 * Update the page tables in the range @start - @end.
711 */
712 static void amdgpu_vm_update_ptes(struct amdgpu_pte_update_params *params,
713 struct amdgpu_vm *vm,
714 uint64_t start, uint64_t end,
715 uint64_t dst, uint32_t flags)
716 {
717 const uint64_t mask = AMDGPU_VM_PTE_COUNT - 1;
718
719 uint64_t cur_pe_start, cur_nptes, cur_dst;
720 uint64_t addr; /* next GPU address to be updated */
721 uint64_t pt_idx;
722 struct amdgpu_bo *pt;
723 unsigned nptes; /* next number of ptes to be updated */
724 uint64_t next_pe_start;
725
726 /* initialize the variables */
727 addr = start;
728 pt_idx = addr >> amdgpu_vm_block_size;
729 pt = vm->page_tables[pt_idx].bo;
730 if (params->shadow) {
731 if (!pt->shadow)
732 return;
733 pt = pt->shadow;
734 }
735 if ((addr & ~mask) == (end & ~mask))
736 nptes = end - addr;
737 else
738 nptes = AMDGPU_VM_PTE_COUNT - (addr & mask);
739
740 cur_pe_start = amdgpu_bo_gpu_offset(pt);
741 cur_pe_start += (addr & mask) * 8;
742 cur_nptes = nptes;
743 cur_dst = dst;
744
745 /* for next ptb*/
746 addr += nptes;
747 dst += nptes * AMDGPU_GPU_PAGE_SIZE;
748
749 /* walk over the address space and update the page tables */
750 while (addr < end) {
751 pt_idx = addr >> amdgpu_vm_block_size;
752 pt = vm->page_tables[pt_idx].bo;
753 if (params->shadow) {
754 if (!pt->shadow)
755 return;
756 pt = pt->shadow;
757 }
758
759 if ((addr & ~mask) == (end & ~mask))
760 nptes = end - addr;
761 else
762 nptes = AMDGPU_VM_PTE_COUNT - (addr & mask);
763
764 next_pe_start = amdgpu_bo_gpu_offset(pt);
765 next_pe_start += (addr & mask) * 8;
766
767 if ((cur_pe_start + 8 * cur_nptes) == next_pe_start &&
768 ((cur_nptes + nptes) <= AMDGPU_VM_MAX_UPDATE_SIZE)) {
769 /* The next ptb is consecutive to current ptb.
770 * Don't call the update function now.
771 * Will update two ptbs together in future.
772 */
773 cur_nptes += nptes;
774 } else {
775 params->func(params, cur_pe_start, cur_dst, cur_nptes,
776 AMDGPU_GPU_PAGE_SIZE, flags);
777
778 cur_pe_start = next_pe_start;
779 cur_nptes = nptes;
780 cur_dst = dst;
781 }
782
783 /* for next ptb*/
784 addr += nptes;
785 dst += nptes * AMDGPU_GPU_PAGE_SIZE;
786 }
787
788 params->func(params, cur_pe_start, cur_dst, cur_nptes,
789 AMDGPU_GPU_PAGE_SIZE, flags);
790 }
791
792 /*
793 * amdgpu_vm_frag_ptes - add fragment information to PTEs
794 *
795 * @params: see amdgpu_pte_update_params definition
796 * @vm: requested vm
797 * @start: first PTE to handle
798 * @end: last PTE to handle
799 * @dst: addr those PTEs should point to
800 * @flags: hw mapping flags
801 */
802 static void amdgpu_vm_frag_ptes(struct amdgpu_pte_update_params *params,
803 struct amdgpu_vm *vm,
804 uint64_t start, uint64_t end,
805 uint64_t dst, uint32_t flags)
806 {
807 /**
808 * The MC L1 TLB supports variable sized pages, based on a fragment
809 * field in the PTE. When this field is set to a non-zero value, page
810 * granularity is increased from 4KB to (1 << (12 + frag)). The PTE
811 * flags are considered valid for all PTEs within the fragment range
812 * and corresponding mappings are assumed to be physically contiguous.
813 *
814 * The L1 TLB can store a single PTE for the whole fragment,
815 * significantly increasing the space available for translation
816 * caching. This leads to large improvements in throughput when the
817 * TLB is under pressure.
818 *
819 * The L2 TLB distributes small and large fragments into two
820 * asymmetric partitions. The large fragment cache is significantly
821 * larger. Thus, we try to use large fragments wherever possible.
822 * Userspace can support this by aligning virtual base address and
823 * allocation size to the fragment size.
824 */
825
826 /* SI and newer are optimized for 64KB */
827 uint64_t frag_flags = AMDGPU_PTE_FRAG(AMDGPU_LOG2_PAGES_PER_FRAG);
828 uint64_t frag_align = 1 << AMDGPU_LOG2_PAGES_PER_FRAG;
829
830 uint64_t frag_start = ALIGN(start, frag_align);
831 uint64_t frag_end = end & ~(frag_align - 1);
832
833 /* system pages are non continuously */
834 if (params->src || !(flags & AMDGPU_PTE_VALID) ||
835 (frag_start >= frag_end)) {
836
837 amdgpu_vm_update_ptes(params, vm, start, end, dst, flags);
838 return;
839 }
840
841 /* handle the 4K area at the beginning */
842 if (start != frag_start) {
843 amdgpu_vm_update_ptes(params, vm, start, frag_start,
844 dst, flags);
845 dst += (frag_start - start) * AMDGPU_GPU_PAGE_SIZE;
846 }
847
848 /* handle the area in the middle */
849 amdgpu_vm_update_ptes(params, vm, frag_start, frag_end, dst,
850 flags | frag_flags);
851
852 /* handle the 4K area at the end */
853 if (frag_end != end) {
854 dst += (frag_end - frag_start) * AMDGPU_GPU_PAGE_SIZE;
855 amdgpu_vm_update_ptes(params, vm, frag_end, end, dst, flags);
856 }
857 }
858
859 /**
860 * amdgpu_vm_bo_update_mapping - update a mapping in the vm page table
861 *
862 * @adev: amdgpu_device pointer
863 * @exclusive: fence we need to sync to
864 * @src: address where to copy page table entries from
865 * @pages_addr: DMA addresses to use for mapping
866 * @vm: requested vm
867 * @start: start of mapped range
868 * @last: last mapped entry
869 * @flags: flags for the entries
870 * @addr: addr to set the area to
871 * @fence: optional resulting fence
872 *
873 * Fill in the page table entries between @start and @last.
874 * Returns 0 for success, -EINVAL for failure.
875 */
876 static int amdgpu_vm_bo_update_mapping(struct amdgpu_device *adev,
877 struct dma_fence *exclusive,
878 uint64_t src,
879 dma_addr_t *pages_addr,
880 struct amdgpu_vm *vm,
881 uint64_t start, uint64_t last,
882 uint32_t flags, uint64_t addr,
883 struct dma_fence **fence)
884 {
885 struct amdgpu_ring *ring;
886 void *owner = AMDGPU_FENCE_OWNER_VM;
887 unsigned nptes, ncmds, ndw;
888 struct amdgpu_job *job;
889 struct amdgpu_pte_update_params params;
890 struct dma_fence *f = NULL;
891 int r;
892
893 memset(&params, 0, sizeof(params));
894 params.adev = adev;
895 params.src = src;
896
897 ring = container_of(vm->entity.sched, struct amdgpu_ring, sched);
898
899 memset(&params, 0, sizeof(params));
900 params.adev = adev;
901 params.src = src;
902
903 /* sync to everything on unmapping */
904 if (!(flags & AMDGPU_PTE_VALID))
905 owner = AMDGPU_FENCE_OWNER_UNDEFINED;
906
907 nptes = last - start + 1;
908
909 /*
910 * reserve space for one command every (1 << BLOCK_SIZE)
911 * entries or 2k dwords (whatever is smaller)
912 */
913 ncmds = (nptes >> min(amdgpu_vm_block_size, 11)) + 1;
914
915 /* padding, etc. */
916 ndw = 64;
917
918 if (src) {
919 /* only copy commands needed */
920 ndw += ncmds * 7;
921
922 params.func = amdgpu_vm_do_copy_ptes;
923
924 } else if (pages_addr) {
925 /* copy commands needed */
926 ndw += ncmds * 7;
927
928 /* and also PTEs */
929 ndw += nptes * 2;
930
931 params.func = amdgpu_vm_do_copy_ptes;
932
933 } else {
934 /* set page commands needed */
935 ndw += ncmds * 10;
936
937 /* two extra commands for begin/end of fragment */
938 ndw += 2 * 10;
939
940 params.func = amdgpu_vm_do_set_ptes;
941 }
942
943 r = amdgpu_job_alloc_with_ib(adev, ndw * 4, &job);
944 if (r)
945 return r;
946
947 params.ib = &job->ibs[0];
948
949 if (!src && pages_addr) {
950 uint64_t *pte;
951 unsigned i;
952
953 /* Put the PTEs at the end of the IB. */
954 i = ndw - nptes * 2;
955 pte= (uint64_t *)&(job->ibs->ptr[i]);
956 params.src = job->ibs->gpu_addr + i * 4;
957
958 for (i = 0; i < nptes; ++i) {
959 pte[i] = amdgpu_vm_map_gart(pages_addr, addr + i *
960 AMDGPU_GPU_PAGE_SIZE);
961 pte[i] |= flags;
962 }
963 addr = 0;
964 }
965
966 r = amdgpu_sync_fence(adev, &job->sync, exclusive);
967 if (r)
968 goto error_free;
969
970 r = amdgpu_sync_resv(adev, &job->sync, vm->page_directory->tbo.resv,
971 owner);
972 if (r)
973 goto error_free;
974
975 r = reservation_object_reserve_shared(vm->page_directory->tbo.resv);
976 if (r)
977 goto error_free;
978
979 params.shadow = true;
980 amdgpu_vm_frag_ptes(&params, vm, start, last + 1, addr, flags);
981 params.shadow = false;
982 amdgpu_vm_frag_ptes(&params, vm, start, last + 1, addr, flags);
983
984 amdgpu_ring_pad_ib(ring, params.ib);
985 WARN_ON(params.ib->length_dw > ndw);
986 r = amdgpu_job_submit(job, ring, &vm->entity,
987 AMDGPU_FENCE_OWNER_VM, &f);
988 if (r)
989 goto error_free;
990
991 amdgpu_bo_fence(vm->page_directory, f, true);
992 if (fence) {
993 dma_fence_put(*fence);
994 *fence = dma_fence_get(f);
995 }
996 dma_fence_put(f);
997 return 0;
998
999 error_free:
1000 amdgpu_job_free(job);
1001 return r;
1002 }
1003
1004 /**
1005 * amdgpu_vm_bo_split_mapping - split a mapping into smaller chunks
1006 *
1007 * @adev: amdgpu_device pointer
1008 * @exclusive: fence we need to sync to
1009 * @gtt_flags: flags as they are used for GTT
1010 * @pages_addr: DMA addresses to use for mapping
1011 * @vm: requested vm
1012 * @mapping: mapped range and flags to use for the update
1013 * @flags: HW flags for the mapping
1014 * @nodes: array of drm_mm_nodes with the MC addresses
1015 * @fence: optional resulting fence
1016 *
1017 * Split the mapping into smaller chunks so that each update fits
1018 * into a SDMA IB.
1019 * Returns 0 for success, -EINVAL for failure.
1020 */
1021 static int amdgpu_vm_bo_split_mapping(struct amdgpu_device *adev,
1022 struct dma_fence *exclusive,
1023 uint32_t gtt_flags,
1024 dma_addr_t *pages_addr,
1025 struct amdgpu_vm *vm,
1026 struct amdgpu_bo_va_mapping *mapping,
1027 uint32_t flags,
1028 struct drm_mm_node *nodes,
1029 struct dma_fence **fence)
1030 {
1031 uint64_t pfn, src = 0, start = mapping->it.start;
1032 int r;
1033
1034 /* normally,bo_va->flags only contians READABLE and WIRTEABLE bit go here
1035 * but in case of something, we filter the flags in first place
1036 */
1037 if (!(mapping->flags & AMDGPU_PTE_READABLE))
1038 flags &= ~AMDGPU_PTE_READABLE;
1039 if (!(mapping->flags & AMDGPU_PTE_WRITEABLE))
1040 flags &= ~AMDGPU_PTE_WRITEABLE;
1041
1042 trace_amdgpu_vm_bo_update(mapping);
1043
1044 pfn = mapping->offset >> PAGE_SHIFT;
1045 if (nodes) {
1046 while (pfn >= nodes->size) {
1047 pfn -= nodes->size;
1048 ++nodes;
1049 }
1050 }
1051
1052 do {
1053 uint64_t max_entries;
1054 uint64_t addr, last;
1055
1056 if (nodes) {
1057 addr = nodes->start << PAGE_SHIFT;
1058 max_entries = (nodes->size - pfn) *
1059 (PAGE_SIZE / AMDGPU_GPU_PAGE_SIZE);
1060 } else {
1061 addr = 0;
1062 max_entries = S64_MAX;
1063 }
1064
1065 if (pages_addr) {
1066 if (flags == gtt_flags)
1067 src = adev->gart.table_addr +
1068 (addr >> AMDGPU_GPU_PAGE_SHIFT) * 8;
1069 else
1070 max_entries = min(max_entries, 16ull * 1024ull);
1071 addr = 0;
1072 } else if (flags & AMDGPU_PTE_VALID) {
1073 addr += adev->vm_manager.vram_base_offset;
1074 }
1075 addr += pfn << PAGE_SHIFT;
1076
1077 last = min((uint64_t)mapping->it.last, start + max_entries - 1);
1078 r = amdgpu_vm_bo_update_mapping(adev, exclusive,
1079 src, pages_addr, vm,
1080 start, last, flags, addr,
1081 fence);
1082 if (r)
1083 return r;
1084
1085 pfn += last - start + 1;
1086 if (nodes && nodes->size == pfn) {
1087 pfn = 0;
1088 ++nodes;
1089 }
1090 start = last + 1;
1091
1092 } while (unlikely(start != mapping->it.last + 1));
1093
1094 return 0;
1095 }
1096
1097 /**
1098 * amdgpu_vm_bo_update - update all BO mappings in the vm page table
1099 *
1100 * @adev: amdgpu_device pointer
1101 * @bo_va: requested BO and VM object
1102 * @clear: if true clear the entries
1103 *
1104 * Fill in the page table entries for @bo_va.
1105 * Returns 0 for success, -EINVAL for failure.
1106 */
1107 int amdgpu_vm_bo_update(struct amdgpu_device *adev,
1108 struct amdgpu_bo_va *bo_va,
1109 bool clear)
1110 {
1111 struct amdgpu_vm *vm = bo_va->vm;
1112 struct amdgpu_bo_va_mapping *mapping;
1113 dma_addr_t *pages_addr = NULL;
1114 uint32_t gtt_flags, flags;
1115 struct ttm_mem_reg *mem;
1116 struct drm_mm_node *nodes;
1117 struct dma_fence *exclusive;
1118 int r;
1119
1120 if (clear) {
1121 mem = NULL;
1122 nodes = NULL;
1123 exclusive = NULL;
1124 } else {
1125 struct ttm_dma_tt *ttm;
1126
1127 mem = &bo_va->bo->tbo.mem;
1128 nodes = mem->mm_node;
1129 if (mem->mem_type == TTM_PL_TT) {
1130 ttm = container_of(bo_va->bo->tbo.ttm, struct
1131 ttm_dma_tt, ttm);
1132 pages_addr = ttm->dma_address;
1133 }
1134 exclusive = reservation_object_get_excl(bo_va->bo->tbo.resv);
1135 }
1136
1137 flags = amdgpu_ttm_tt_pte_flags(adev, bo_va->bo->tbo.ttm, mem);
1138 gtt_flags = (amdgpu_ttm_is_bound(bo_va->bo->tbo.ttm) &&
1139 adev == amdgpu_ttm_adev(bo_va->bo->tbo.bdev)) ? flags : 0;
1140
1141 spin_lock(&vm->status_lock);
1142 if (!list_empty(&bo_va->vm_status))
1143 list_splice_init(&bo_va->valids, &bo_va->invalids);
1144 spin_unlock(&vm->status_lock);
1145
1146 list_for_each_entry(mapping, &bo_va->invalids, list) {
1147 r = amdgpu_vm_bo_split_mapping(adev, exclusive,
1148 gtt_flags, pages_addr, vm,
1149 mapping, flags, nodes,
1150 &bo_va->last_pt_update);
1151 if (r)
1152 return r;
1153 }
1154
1155 if (trace_amdgpu_vm_bo_mapping_enabled()) {
1156 list_for_each_entry(mapping, &bo_va->valids, list)
1157 trace_amdgpu_vm_bo_mapping(mapping);
1158
1159 list_for_each_entry(mapping, &bo_va->invalids, list)
1160 trace_amdgpu_vm_bo_mapping(mapping);
1161 }
1162
1163 spin_lock(&vm->status_lock);
1164 list_splice_init(&bo_va->invalids, &bo_va->valids);
1165 list_del_init(&bo_va->vm_status);
1166 if (clear)
1167 list_add(&bo_va->vm_status, &vm->cleared);
1168 spin_unlock(&vm->status_lock);
1169
1170 return 0;
1171 }
1172
1173 /**
1174 * amdgpu_vm_clear_freed - clear freed BOs in the PT
1175 *
1176 * @adev: amdgpu_device pointer
1177 * @vm: requested vm
1178 *
1179 * Make sure all freed BOs are cleared in the PT.
1180 * Returns 0 for success.
1181 *
1182 * PTs have to be reserved and mutex must be locked!
1183 */
1184 int amdgpu_vm_clear_freed(struct amdgpu_device *adev,
1185 struct amdgpu_vm *vm)
1186 {
1187 struct amdgpu_bo_va_mapping *mapping;
1188 int r;
1189
1190 while (!list_empty(&vm->freed)) {
1191 mapping = list_first_entry(&vm->freed,
1192 struct amdgpu_bo_va_mapping, list);
1193 list_del(&mapping->list);
1194
1195 r = amdgpu_vm_bo_split_mapping(adev, NULL, 0, NULL, vm, mapping,
1196 0, 0, NULL);
1197 kfree(mapping);
1198 if (r)
1199 return r;
1200
1201 }
1202 return 0;
1203
1204 }
1205
1206 /**
1207 * amdgpu_vm_clear_invalids - clear invalidated BOs in the PT
1208 *
1209 * @adev: amdgpu_device pointer
1210 * @vm: requested vm
1211 *
1212 * Make sure all invalidated BOs are cleared in the PT.
1213 * Returns 0 for success.
1214 *
1215 * PTs have to be reserved and mutex must be locked!
1216 */
1217 int amdgpu_vm_clear_invalids(struct amdgpu_device *adev,
1218 struct amdgpu_vm *vm, struct amdgpu_sync *sync)
1219 {
1220 struct amdgpu_bo_va *bo_va = NULL;
1221 int r = 0;
1222
1223 spin_lock(&vm->status_lock);
1224 while (!list_empty(&vm->invalidated)) {
1225 bo_va = list_first_entry(&vm->invalidated,
1226 struct amdgpu_bo_va, vm_status);
1227 spin_unlock(&vm->status_lock);
1228
1229 r = amdgpu_vm_bo_update(adev, bo_va, true);
1230 if (r)
1231 return r;
1232
1233 spin_lock(&vm->status_lock);
1234 }
1235 spin_unlock(&vm->status_lock);
1236
1237 if (bo_va)
1238 r = amdgpu_sync_fence(adev, sync, bo_va->last_pt_update);
1239
1240 return r;
1241 }
1242
1243 /**
1244 * amdgpu_vm_bo_add - add a bo to a specific vm
1245 *
1246 * @adev: amdgpu_device pointer
1247 * @vm: requested vm
1248 * @bo: amdgpu buffer object
1249 *
1250 * Add @bo into the requested vm.
1251 * Add @bo to the list of bos associated with the vm
1252 * Returns newly added bo_va or NULL for failure
1253 *
1254 * Object has to be reserved!
1255 */
1256 struct amdgpu_bo_va *amdgpu_vm_bo_add(struct amdgpu_device *adev,
1257 struct amdgpu_vm *vm,
1258 struct amdgpu_bo *bo)
1259 {
1260 struct amdgpu_bo_va *bo_va;
1261
1262 bo_va = kzalloc(sizeof(struct amdgpu_bo_va), GFP_KERNEL);
1263 if (bo_va == NULL) {
1264 return NULL;
1265 }
1266 bo_va->vm = vm;
1267 bo_va->bo = bo;
1268 bo_va->ref_count = 1;
1269 INIT_LIST_HEAD(&bo_va->bo_list);
1270 INIT_LIST_HEAD(&bo_va->valids);
1271 INIT_LIST_HEAD(&bo_va->invalids);
1272 INIT_LIST_HEAD(&bo_va->vm_status);
1273
1274 list_add_tail(&bo_va->bo_list, &bo->va);
1275
1276 return bo_va;
1277 }
1278
1279 /**
1280 * amdgpu_vm_bo_map - map bo inside a vm
1281 *
1282 * @adev: amdgpu_device pointer
1283 * @bo_va: bo_va to store the address
1284 * @saddr: where to map the BO
1285 * @offset: requested offset in the BO
1286 * @flags: attributes of pages (read/write/valid/etc.)
1287 *
1288 * Add a mapping of the BO at the specefied addr into the VM.
1289 * Returns 0 for success, error for failure.
1290 *
1291 * Object has to be reserved and unreserved outside!
1292 */
1293 int amdgpu_vm_bo_map(struct amdgpu_device *adev,
1294 struct amdgpu_bo_va *bo_va,
1295 uint64_t saddr, uint64_t offset,
1296 uint64_t size, uint32_t flags)
1297 {
1298 struct amdgpu_bo_va_mapping *mapping;
1299 struct amdgpu_vm *vm = bo_va->vm;
1300 struct interval_tree_node *it;
1301 unsigned last_pfn, pt_idx;
1302 uint64_t eaddr;
1303 int r;
1304
1305 /* validate the parameters */
1306 if (saddr & AMDGPU_GPU_PAGE_MASK || offset & AMDGPU_GPU_PAGE_MASK ||
1307 size == 0 || size & AMDGPU_GPU_PAGE_MASK)
1308 return -EINVAL;
1309
1310 /* make sure object fit at this offset */
1311 eaddr = saddr + size - 1;
1312 if ((saddr >= eaddr) || (offset + size > amdgpu_bo_size(bo_va->bo)))
1313 return -EINVAL;
1314
1315 last_pfn = eaddr / AMDGPU_GPU_PAGE_SIZE;
1316 if (last_pfn >= adev->vm_manager.max_pfn) {
1317 dev_err(adev->dev, "va above limit (0x%08X >= 0x%08X)\n",
1318 last_pfn, adev->vm_manager.max_pfn);
1319 return -EINVAL;
1320 }
1321
1322 saddr /= AMDGPU_GPU_PAGE_SIZE;
1323 eaddr /= AMDGPU_GPU_PAGE_SIZE;
1324
1325 it = interval_tree_iter_first(&vm->va, saddr, eaddr);
1326 if (it) {
1327 struct amdgpu_bo_va_mapping *tmp;
1328 tmp = container_of(it, struct amdgpu_bo_va_mapping, it);
1329 /* bo and tmp overlap, invalid addr */
1330 dev_err(adev->dev, "bo %p va 0x%010Lx-0x%010Lx conflict with "
1331 "0x%010lx-0x%010lx\n", bo_va->bo, saddr, eaddr,
1332 tmp->it.start, tmp->it.last + 1);
1333 r = -EINVAL;
1334 goto error;
1335 }
1336
1337 mapping = kmalloc(sizeof(*mapping), GFP_KERNEL);
1338 if (!mapping) {
1339 r = -ENOMEM;
1340 goto error;
1341 }
1342
1343 INIT_LIST_HEAD(&mapping->list);
1344 mapping->it.start = saddr;
1345 mapping->it.last = eaddr;
1346 mapping->offset = offset;
1347 mapping->flags = flags;
1348
1349 list_add(&mapping->list, &bo_va->invalids);
1350 interval_tree_insert(&mapping->it, &vm->va);
1351
1352 /* Make sure the page tables are allocated */
1353 saddr >>= amdgpu_vm_block_size;
1354 eaddr >>= amdgpu_vm_block_size;
1355
1356 BUG_ON(eaddr >= amdgpu_vm_num_pdes(adev));
1357
1358 if (eaddr > vm->max_pde_used)
1359 vm->max_pde_used = eaddr;
1360
1361 /* walk over the address space and allocate the page tables */
1362 for (pt_idx = saddr; pt_idx <= eaddr; ++pt_idx) {
1363 struct reservation_object *resv = vm->page_directory->tbo.resv;
1364 struct amdgpu_bo *pt;
1365
1366 if (vm->page_tables[pt_idx].bo)
1367 continue;
1368
1369 r = amdgpu_bo_create(adev, AMDGPU_VM_PTE_COUNT * 8,
1370 AMDGPU_GPU_PAGE_SIZE, true,
1371 AMDGPU_GEM_DOMAIN_VRAM,
1372 AMDGPU_GEM_CREATE_NO_CPU_ACCESS |
1373 AMDGPU_GEM_CREATE_SHADOW |
1374 AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS |
1375 AMDGPU_GEM_CREATE_VRAM_CLEARED,
1376 NULL, resv, &pt);
1377 if (r)
1378 goto error_free;
1379
1380 /* Keep a reference to the page table to avoid freeing
1381 * them up in the wrong order.
1382 */
1383 pt->parent = amdgpu_bo_ref(vm->page_directory);
1384
1385 vm->page_tables[pt_idx].bo = pt;
1386 vm->page_tables[pt_idx].addr = 0;
1387 }
1388
1389 return 0;
1390
1391 error_free:
1392 list_del(&mapping->list);
1393 interval_tree_remove(&mapping->it, &vm->va);
1394 trace_amdgpu_vm_bo_unmap(bo_va, mapping);
1395 kfree(mapping);
1396
1397 error:
1398 return r;
1399 }
1400
1401 /**
1402 * amdgpu_vm_bo_unmap - remove bo mapping from vm
1403 *
1404 * @adev: amdgpu_device pointer
1405 * @bo_va: bo_va to remove the address from
1406 * @saddr: where to the BO is mapped
1407 *
1408 * Remove a mapping of the BO at the specefied addr from the VM.
1409 * Returns 0 for success, error for failure.
1410 *
1411 * Object has to be reserved and unreserved outside!
1412 */
1413 int amdgpu_vm_bo_unmap(struct amdgpu_device *adev,
1414 struct amdgpu_bo_va *bo_va,
1415 uint64_t saddr)
1416 {
1417 struct amdgpu_bo_va_mapping *mapping;
1418 struct amdgpu_vm *vm = bo_va->vm;
1419 bool valid = true;
1420
1421 saddr /= AMDGPU_GPU_PAGE_SIZE;
1422
1423 list_for_each_entry(mapping, &bo_va->valids, list) {
1424 if (mapping->it.start == saddr)
1425 break;
1426 }
1427
1428 if (&mapping->list == &bo_va->valids) {
1429 valid = false;
1430
1431 list_for_each_entry(mapping, &bo_va->invalids, list) {
1432 if (mapping->it.start == saddr)
1433 break;
1434 }
1435
1436 if (&mapping->list == &bo_va->invalids)
1437 return -ENOENT;
1438 }
1439
1440 list_del(&mapping->list);
1441 interval_tree_remove(&mapping->it, &vm->va);
1442 trace_amdgpu_vm_bo_unmap(bo_va, mapping);
1443
1444 if (valid)
1445 list_add(&mapping->list, &vm->freed);
1446 else
1447 kfree(mapping);
1448
1449 return 0;
1450 }
1451
1452 /**
1453 * amdgpu_vm_bo_rmv - remove a bo to a specific vm
1454 *
1455 * @adev: amdgpu_device pointer
1456 * @bo_va: requested bo_va
1457 *
1458 * Remove @bo_va->bo from the requested vm.
1459 *
1460 * Object have to be reserved!
1461 */
1462 void amdgpu_vm_bo_rmv(struct amdgpu_device *adev,
1463 struct amdgpu_bo_va *bo_va)
1464 {
1465 struct amdgpu_bo_va_mapping *mapping, *next;
1466 struct amdgpu_vm *vm = bo_va->vm;
1467
1468 list_del(&bo_va->bo_list);
1469
1470 spin_lock(&vm->status_lock);
1471 list_del(&bo_va->vm_status);
1472 spin_unlock(&vm->status_lock);
1473
1474 list_for_each_entry_safe(mapping, next, &bo_va->valids, list) {
1475 list_del(&mapping->list);
1476 interval_tree_remove(&mapping->it, &vm->va);
1477 trace_amdgpu_vm_bo_unmap(bo_va, mapping);
1478 list_add(&mapping->list, &vm->freed);
1479 }
1480 list_for_each_entry_safe(mapping, next, &bo_va->invalids, list) {
1481 list_del(&mapping->list);
1482 interval_tree_remove(&mapping->it, &vm->va);
1483 kfree(mapping);
1484 }
1485
1486 dma_fence_put(bo_va->last_pt_update);
1487 kfree(bo_va);
1488 }
1489
1490 /**
1491 * amdgpu_vm_bo_invalidate - mark the bo as invalid
1492 *
1493 * @adev: amdgpu_device pointer
1494 * @vm: requested vm
1495 * @bo: amdgpu buffer object
1496 *
1497 * Mark @bo as invalid.
1498 */
1499 void amdgpu_vm_bo_invalidate(struct amdgpu_device *adev,
1500 struct amdgpu_bo *bo)
1501 {
1502 struct amdgpu_bo_va *bo_va;
1503
1504 list_for_each_entry(bo_va, &bo->va, bo_list) {
1505 spin_lock(&bo_va->vm->status_lock);
1506 if (list_empty(&bo_va->vm_status))
1507 list_add(&bo_va->vm_status, &bo_va->vm->invalidated);
1508 spin_unlock(&bo_va->vm->status_lock);
1509 }
1510 }
1511
1512 /**
1513 * amdgpu_vm_init - initialize a vm instance
1514 *
1515 * @adev: amdgpu_device pointer
1516 * @vm: requested vm
1517 *
1518 * Init @vm fields.
1519 */
1520 int amdgpu_vm_init(struct amdgpu_device *adev, struct amdgpu_vm *vm)
1521 {
1522 const unsigned align = min(AMDGPU_VM_PTB_ALIGN_SIZE,
1523 AMDGPU_VM_PTE_COUNT * 8);
1524 unsigned pd_size, pd_entries;
1525 unsigned ring_instance;
1526 struct amdgpu_ring *ring;
1527 struct amd_sched_rq *rq;
1528 int i, r;
1529
1530 for (i = 0; i < AMDGPU_MAX_RINGS; ++i)
1531 vm->ids[i] = NULL;
1532 vm->va = RB_ROOT;
1533 vm->client_id = atomic64_inc_return(&adev->vm_manager.client_counter);
1534 spin_lock_init(&vm->status_lock);
1535 INIT_LIST_HEAD(&vm->invalidated);
1536 INIT_LIST_HEAD(&vm->cleared);
1537 INIT_LIST_HEAD(&vm->freed);
1538
1539 pd_size = amdgpu_vm_directory_size(adev);
1540 pd_entries = amdgpu_vm_num_pdes(adev);
1541
1542 /* allocate page table array */
1543 vm->page_tables = drm_calloc_large(pd_entries, sizeof(struct amdgpu_vm_pt));
1544 if (vm->page_tables == NULL) {
1545 DRM_ERROR("Cannot allocate memory for page table array\n");
1546 return -ENOMEM;
1547 }
1548
1549 /* create scheduler entity for page table updates */
1550
1551 ring_instance = atomic_inc_return(&adev->vm_manager.vm_pte_next_ring);
1552 ring_instance %= adev->vm_manager.vm_pte_num_rings;
1553 ring = adev->vm_manager.vm_pte_rings[ring_instance];
1554 rq = &ring->sched.sched_rq[AMD_SCHED_PRIORITY_KERNEL];
1555 r = amd_sched_entity_init(&ring->sched, &vm->entity,
1556 rq, amdgpu_sched_jobs);
1557 if (r)
1558 goto err;
1559
1560 vm->page_directory_fence = NULL;
1561
1562 r = amdgpu_bo_create(adev, pd_size, align, true,
1563 AMDGPU_GEM_DOMAIN_VRAM,
1564 AMDGPU_GEM_CREATE_NO_CPU_ACCESS |
1565 AMDGPU_GEM_CREATE_SHADOW |
1566 AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS |
1567 AMDGPU_GEM_CREATE_VRAM_CLEARED,
1568 NULL, NULL, &vm->page_directory);
1569 if (r)
1570 goto error_free_sched_entity;
1571
1572 r = amdgpu_bo_reserve(vm->page_directory, false);
1573 if (r)
1574 goto error_free_page_directory;
1575
1576 vm->last_eviction_counter = atomic64_read(&adev->num_evictions);
1577 amdgpu_bo_unreserve(vm->page_directory);
1578
1579 return 0;
1580
1581 error_free_page_directory:
1582 amdgpu_bo_unref(&vm->page_directory->shadow);
1583 amdgpu_bo_unref(&vm->page_directory);
1584 vm->page_directory = NULL;
1585
1586 error_free_sched_entity:
1587 amd_sched_entity_fini(&ring->sched, &vm->entity);
1588
1589 err:
1590 drm_free_large(vm->page_tables);
1591
1592 return r;
1593 }
1594
1595 /**
1596 * amdgpu_vm_fini - tear down a vm instance
1597 *
1598 * @adev: amdgpu_device pointer
1599 * @vm: requested vm
1600 *
1601 * Tear down @vm.
1602 * Unbind the VM and remove all bos from the vm bo list
1603 */
1604 void amdgpu_vm_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm)
1605 {
1606 struct amdgpu_bo_va_mapping *mapping, *tmp;
1607 int i;
1608
1609 amd_sched_entity_fini(vm->entity.sched, &vm->entity);
1610
1611 if (!RB_EMPTY_ROOT(&vm->va)) {
1612 dev_err(adev->dev, "still active bo inside vm\n");
1613 }
1614 rbtree_postorder_for_each_entry_safe(mapping, tmp, &vm->va, it.rb) {
1615 list_del(&mapping->list);
1616 interval_tree_remove(&mapping->it, &vm->va);
1617 kfree(mapping);
1618 }
1619 list_for_each_entry_safe(mapping, tmp, &vm->freed, list) {
1620 list_del(&mapping->list);
1621 kfree(mapping);
1622 }
1623
1624 for (i = 0; i < amdgpu_vm_num_pdes(adev); i++) {
1625 struct amdgpu_bo *pt = vm->page_tables[i].bo;
1626
1627 if (!pt)
1628 continue;
1629
1630 amdgpu_bo_unref(&pt->shadow);
1631 amdgpu_bo_unref(&pt);
1632 }
1633 drm_free_large(vm->page_tables);
1634
1635 amdgpu_bo_unref(&vm->page_directory->shadow);
1636 amdgpu_bo_unref(&vm->page_directory);
1637 dma_fence_put(vm->page_directory_fence);
1638 }
1639
1640 /**
1641 * amdgpu_vm_manager_init - init the VM manager
1642 *
1643 * @adev: amdgpu_device pointer
1644 *
1645 * Initialize the VM manager structures
1646 */
1647 void amdgpu_vm_manager_init(struct amdgpu_device *adev)
1648 {
1649 unsigned i;
1650
1651 INIT_LIST_HEAD(&adev->vm_manager.ids_lru);
1652
1653 /* skip over VMID 0, since it is the system VM */
1654 for (i = 1; i < adev->vm_manager.num_ids; ++i) {
1655 amdgpu_vm_reset_id(adev, i);
1656 amdgpu_sync_create(&adev->vm_manager.ids[i].active);
1657 list_add_tail(&adev->vm_manager.ids[i].list,
1658 &adev->vm_manager.ids_lru);
1659 }
1660
1661 adev->vm_manager.fence_context =
1662 dma_fence_context_alloc(AMDGPU_MAX_RINGS);
1663 for (i = 0; i < AMDGPU_MAX_RINGS; ++i)
1664 adev->vm_manager.seqno[i] = 0;
1665
1666 atomic_set(&adev->vm_manager.vm_pte_next_ring, 0);
1667 atomic64_set(&adev->vm_manager.client_counter, 0);
1668 }
1669
1670 /**
1671 * amdgpu_vm_manager_fini - cleanup VM manager
1672 *
1673 * @adev: amdgpu_device pointer
1674 *
1675 * Cleanup the VM manager and free resources.
1676 */
1677 void amdgpu_vm_manager_fini(struct amdgpu_device *adev)
1678 {
1679 unsigned i;
1680
1681 for (i = 0; i < AMDGPU_NUM_VM; ++i) {
1682 struct amdgpu_vm_id *id = &adev->vm_manager.ids[i];
1683
1684 dma_fence_put(adev->vm_manager.ids[i].first);
1685 amdgpu_sync_free(&adev->vm_manager.ids[i].active);
1686 dma_fence_put(id->flushed_updates);
1687 dma_fence_put(id->last_flush);
1688 }
1689 }