]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/gpu/drm/amd/amdgpu/dce_v8_0.c
iio: imu: inv_mpu6050: test whoami first and against all known values
[mirror_ubuntu-artful-kernel.git] / drivers / gpu / drm / amd / amdgpu / dce_v8_0.c
1 /*
2 * Copyright 2014 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 */
23 #include "drmP.h"
24 #include "amdgpu.h"
25 #include "amdgpu_pm.h"
26 #include "amdgpu_i2c.h"
27 #include "cikd.h"
28 #include "atom.h"
29 #include "amdgpu_atombios.h"
30 #include "atombios_crtc.h"
31 #include "atombios_encoders.h"
32 #include "amdgpu_pll.h"
33 #include "amdgpu_connectors.h"
34 #include "dce_v8_0.h"
35
36 #include "dce/dce_8_0_d.h"
37 #include "dce/dce_8_0_sh_mask.h"
38
39 #include "gca/gfx_7_2_enum.h"
40
41 #include "gmc/gmc_7_1_d.h"
42 #include "gmc/gmc_7_1_sh_mask.h"
43
44 #include "oss/oss_2_0_d.h"
45 #include "oss/oss_2_0_sh_mask.h"
46
47 static void dce_v8_0_set_display_funcs(struct amdgpu_device *adev);
48 static void dce_v8_0_set_irq_funcs(struct amdgpu_device *adev);
49
50 static const u32 crtc_offsets[6] =
51 {
52 CRTC0_REGISTER_OFFSET,
53 CRTC1_REGISTER_OFFSET,
54 CRTC2_REGISTER_OFFSET,
55 CRTC3_REGISTER_OFFSET,
56 CRTC4_REGISTER_OFFSET,
57 CRTC5_REGISTER_OFFSET
58 };
59
60 static const u32 hpd_offsets[] =
61 {
62 HPD0_REGISTER_OFFSET,
63 HPD1_REGISTER_OFFSET,
64 HPD2_REGISTER_OFFSET,
65 HPD3_REGISTER_OFFSET,
66 HPD4_REGISTER_OFFSET,
67 HPD5_REGISTER_OFFSET
68 };
69
70 static const uint32_t dig_offsets[] = {
71 CRTC0_REGISTER_OFFSET,
72 CRTC1_REGISTER_OFFSET,
73 CRTC2_REGISTER_OFFSET,
74 CRTC3_REGISTER_OFFSET,
75 CRTC4_REGISTER_OFFSET,
76 CRTC5_REGISTER_OFFSET,
77 (0x13830 - 0x7030) >> 2,
78 };
79
80 static const struct {
81 uint32_t reg;
82 uint32_t vblank;
83 uint32_t vline;
84 uint32_t hpd;
85
86 } interrupt_status_offsets[6] = { {
87 .reg = mmDISP_INTERRUPT_STATUS,
88 .vblank = DISP_INTERRUPT_STATUS__LB_D1_VBLANK_INTERRUPT_MASK,
89 .vline = DISP_INTERRUPT_STATUS__LB_D1_VLINE_INTERRUPT_MASK,
90 .hpd = DISP_INTERRUPT_STATUS__DC_HPD1_INTERRUPT_MASK
91 }, {
92 .reg = mmDISP_INTERRUPT_STATUS_CONTINUE,
93 .vblank = DISP_INTERRUPT_STATUS_CONTINUE__LB_D2_VBLANK_INTERRUPT_MASK,
94 .vline = DISP_INTERRUPT_STATUS_CONTINUE__LB_D2_VLINE_INTERRUPT_MASK,
95 .hpd = DISP_INTERRUPT_STATUS_CONTINUE__DC_HPD2_INTERRUPT_MASK
96 }, {
97 .reg = mmDISP_INTERRUPT_STATUS_CONTINUE2,
98 .vblank = DISP_INTERRUPT_STATUS_CONTINUE2__LB_D3_VBLANK_INTERRUPT_MASK,
99 .vline = DISP_INTERRUPT_STATUS_CONTINUE2__LB_D3_VLINE_INTERRUPT_MASK,
100 .hpd = DISP_INTERRUPT_STATUS_CONTINUE2__DC_HPD3_INTERRUPT_MASK
101 }, {
102 .reg = mmDISP_INTERRUPT_STATUS_CONTINUE3,
103 .vblank = DISP_INTERRUPT_STATUS_CONTINUE3__LB_D4_VBLANK_INTERRUPT_MASK,
104 .vline = DISP_INTERRUPT_STATUS_CONTINUE3__LB_D4_VLINE_INTERRUPT_MASK,
105 .hpd = DISP_INTERRUPT_STATUS_CONTINUE3__DC_HPD4_INTERRUPT_MASK
106 }, {
107 .reg = mmDISP_INTERRUPT_STATUS_CONTINUE4,
108 .vblank = DISP_INTERRUPT_STATUS_CONTINUE4__LB_D5_VBLANK_INTERRUPT_MASK,
109 .vline = DISP_INTERRUPT_STATUS_CONTINUE4__LB_D5_VLINE_INTERRUPT_MASK,
110 .hpd = DISP_INTERRUPT_STATUS_CONTINUE4__DC_HPD5_INTERRUPT_MASK
111 }, {
112 .reg = mmDISP_INTERRUPT_STATUS_CONTINUE5,
113 .vblank = DISP_INTERRUPT_STATUS_CONTINUE5__LB_D6_VBLANK_INTERRUPT_MASK,
114 .vline = DISP_INTERRUPT_STATUS_CONTINUE5__LB_D6_VLINE_INTERRUPT_MASK,
115 .hpd = DISP_INTERRUPT_STATUS_CONTINUE5__DC_HPD6_INTERRUPT_MASK
116 } };
117
118 static u32 dce_v8_0_audio_endpt_rreg(struct amdgpu_device *adev,
119 u32 block_offset, u32 reg)
120 {
121 unsigned long flags;
122 u32 r;
123
124 spin_lock_irqsave(&adev->audio_endpt_idx_lock, flags);
125 WREG32(mmAZALIA_F0_CODEC_ENDPOINT_INDEX + block_offset, reg);
126 r = RREG32(mmAZALIA_F0_CODEC_ENDPOINT_DATA + block_offset);
127 spin_unlock_irqrestore(&adev->audio_endpt_idx_lock, flags);
128
129 return r;
130 }
131
132 static void dce_v8_0_audio_endpt_wreg(struct amdgpu_device *adev,
133 u32 block_offset, u32 reg, u32 v)
134 {
135 unsigned long flags;
136
137 spin_lock_irqsave(&adev->audio_endpt_idx_lock, flags);
138 WREG32(mmAZALIA_F0_CODEC_ENDPOINT_INDEX + block_offset, reg);
139 WREG32(mmAZALIA_F0_CODEC_ENDPOINT_DATA + block_offset, v);
140 spin_unlock_irqrestore(&adev->audio_endpt_idx_lock, flags);
141 }
142
143 static bool dce_v8_0_is_in_vblank(struct amdgpu_device *adev, int crtc)
144 {
145 if (RREG32(mmCRTC_STATUS + crtc_offsets[crtc]) &
146 CRTC_V_BLANK_START_END__CRTC_V_BLANK_START_MASK)
147 return true;
148 else
149 return false;
150 }
151
152 static bool dce_v8_0_is_counter_moving(struct amdgpu_device *adev, int crtc)
153 {
154 u32 pos1, pos2;
155
156 pos1 = RREG32(mmCRTC_STATUS_POSITION + crtc_offsets[crtc]);
157 pos2 = RREG32(mmCRTC_STATUS_POSITION + crtc_offsets[crtc]);
158
159 if (pos1 != pos2)
160 return true;
161 else
162 return false;
163 }
164
165 /**
166 * dce_v8_0_vblank_wait - vblank wait asic callback.
167 *
168 * @adev: amdgpu_device pointer
169 * @crtc: crtc to wait for vblank on
170 *
171 * Wait for vblank on the requested crtc (evergreen+).
172 */
173 static void dce_v8_0_vblank_wait(struct amdgpu_device *adev, int crtc)
174 {
175 unsigned i = 100;
176
177 if (crtc >= adev->mode_info.num_crtc)
178 return;
179
180 if (!(RREG32(mmCRTC_CONTROL + crtc_offsets[crtc]) & CRTC_CONTROL__CRTC_MASTER_EN_MASK))
181 return;
182
183 /* depending on when we hit vblank, we may be close to active; if so,
184 * wait for another frame.
185 */
186 while (dce_v8_0_is_in_vblank(adev, crtc)) {
187 if (i++ == 100) {
188 i = 0;
189 if (!dce_v8_0_is_counter_moving(adev, crtc))
190 break;
191 }
192 }
193
194 while (!dce_v8_0_is_in_vblank(adev, crtc)) {
195 if (i++ == 100) {
196 i = 0;
197 if (!dce_v8_0_is_counter_moving(adev, crtc))
198 break;
199 }
200 }
201 }
202
203 static u32 dce_v8_0_vblank_get_counter(struct amdgpu_device *adev, int crtc)
204 {
205 if (crtc >= adev->mode_info.num_crtc)
206 return 0;
207 else
208 return RREG32(mmCRTC_STATUS_FRAME_COUNT + crtc_offsets[crtc]);
209 }
210
211 static void dce_v8_0_pageflip_interrupt_init(struct amdgpu_device *adev)
212 {
213 unsigned i;
214
215 /* Enable pflip interrupts */
216 for (i = 0; i < adev->mode_info.num_crtc; i++)
217 amdgpu_irq_get(adev, &adev->pageflip_irq, i);
218 }
219
220 static void dce_v8_0_pageflip_interrupt_fini(struct amdgpu_device *adev)
221 {
222 unsigned i;
223
224 /* Disable pflip interrupts */
225 for (i = 0; i < adev->mode_info.num_crtc; i++)
226 amdgpu_irq_put(adev, &adev->pageflip_irq, i);
227 }
228
229 /**
230 * dce_v8_0_page_flip - pageflip callback.
231 *
232 * @adev: amdgpu_device pointer
233 * @crtc_id: crtc to cleanup pageflip on
234 * @crtc_base: new address of the crtc (GPU MC address)
235 *
236 * Triggers the actual pageflip by updating the primary
237 * surface base address.
238 */
239 static void dce_v8_0_page_flip(struct amdgpu_device *adev,
240 int crtc_id, u64 crtc_base, bool async)
241 {
242 struct amdgpu_crtc *amdgpu_crtc = adev->mode_info.crtcs[crtc_id];
243
244 /* flip at hsync for async, default is vsync */
245 WREG32(mmGRPH_FLIP_CONTROL + amdgpu_crtc->crtc_offset, async ?
246 GRPH_FLIP_CONTROL__GRPH_SURFACE_UPDATE_H_RETRACE_EN_MASK : 0);
247 /* update the primary scanout addresses */
248 WREG32(mmGRPH_PRIMARY_SURFACE_ADDRESS_HIGH + amdgpu_crtc->crtc_offset,
249 upper_32_bits(crtc_base));
250 /* writing to the low address triggers the update */
251 WREG32(mmGRPH_PRIMARY_SURFACE_ADDRESS + amdgpu_crtc->crtc_offset,
252 lower_32_bits(crtc_base));
253 /* post the write */
254 RREG32(mmGRPH_PRIMARY_SURFACE_ADDRESS + amdgpu_crtc->crtc_offset);
255 }
256
257 static int dce_v8_0_crtc_get_scanoutpos(struct amdgpu_device *adev, int crtc,
258 u32 *vbl, u32 *position)
259 {
260 if ((crtc < 0) || (crtc >= adev->mode_info.num_crtc))
261 return -EINVAL;
262
263 *vbl = RREG32(mmCRTC_V_BLANK_START_END + crtc_offsets[crtc]);
264 *position = RREG32(mmCRTC_STATUS_POSITION + crtc_offsets[crtc]);
265
266 return 0;
267 }
268
269 /**
270 * dce_v8_0_hpd_sense - hpd sense callback.
271 *
272 * @adev: amdgpu_device pointer
273 * @hpd: hpd (hotplug detect) pin
274 *
275 * Checks if a digital monitor is connected (evergreen+).
276 * Returns true if connected, false if not connected.
277 */
278 static bool dce_v8_0_hpd_sense(struct amdgpu_device *adev,
279 enum amdgpu_hpd_id hpd)
280 {
281 bool connected = false;
282
283 if (hpd >= adev->mode_info.num_hpd)
284 return connected;
285
286 if (RREG32(mmDC_HPD1_INT_STATUS + hpd_offsets[hpd]) &
287 DC_HPD1_INT_STATUS__DC_HPD1_SENSE_MASK)
288 connected = true;
289
290 return connected;
291 }
292
293 /**
294 * dce_v8_0_hpd_set_polarity - hpd set polarity callback.
295 *
296 * @adev: amdgpu_device pointer
297 * @hpd: hpd (hotplug detect) pin
298 *
299 * Set the polarity of the hpd pin (evergreen+).
300 */
301 static void dce_v8_0_hpd_set_polarity(struct amdgpu_device *adev,
302 enum amdgpu_hpd_id hpd)
303 {
304 u32 tmp;
305 bool connected = dce_v8_0_hpd_sense(adev, hpd);
306
307 if (hpd >= adev->mode_info.num_hpd)
308 return;
309
310 tmp = RREG32(mmDC_HPD1_INT_CONTROL + hpd_offsets[hpd]);
311 if (connected)
312 tmp &= ~DC_HPD1_INT_CONTROL__DC_HPD1_INT_POLARITY_MASK;
313 else
314 tmp |= DC_HPD1_INT_CONTROL__DC_HPD1_INT_POLARITY_MASK;
315 WREG32(mmDC_HPD1_INT_CONTROL + hpd_offsets[hpd], tmp);
316 }
317
318 /**
319 * dce_v8_0_hpd_init - hpd setup callback.
320 *
321 * @adev: amdgpu_device pointer
322 *
323 * Setup the hpd pins used by the card (evergreen+).
324 * Enable the pin, set the polarity, and enable the hpd interrupts.
325 */
326 static void dce_v8_0_hpd_init(struct amdgpu_device *adev)
327 {
328 struct drm_device *dev = adev->ddev;
329 struct drm_connector *connector;
330 u32 tmp;
331
332 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
333 struct amdgpu_connector *amdgpu_connector = to_amdgpu_connector(connector);
334
335 if (amdgpu_connector->hpd.hpd >= adev->mode_info.num_hpd)
336 continue;
337
338 tmp = RREG32(mmDC_HPD1_CONTROL + hpd_offsets[amdgpu_connector->hpd.hpd]);
339 tmp |= DC_HPD1_CONTROL__DC_HPD1_EN_MASK;
340 WREG32(mmDC_HPD1_CONTROL + hpd_offsets[amdgpu_connector->hpd.hpd], tmp);
341
342 if (connector->connector_type == DRM_MODE_CONNECTOR_eDP ||
343 connector->connector_type == DRM_MODE_CONNECTOR_LVDS) {
344 /* don't try to enable hpd on eDP or LVDS avoid breaking the
345 * aux dp channel on imac and help (but not completely fix)
346 * https://bugzilla.redhat.com/show_bug.cgi?id=726143
347 * also avoid interrupt storms during dpms.
348 */
349 tmp = RREG32(mmDC_HPD1_INT_CONTROL + hpd_offsets[amdgpu_connector->hpd.hpd]);
350 tmp &= ~DC_HPD1_INT_CONTROL__DC_HPD1_INT_EN_MASK;
351 WREG32(mmDC_HPD1_INT_CONTROL + hpd_offsets[amdgpu_connector->hpd.hpd], tmp);
352 continue;
353 }
354
355 dce_v8_0_hpd_set_polarity(adev, amdgpu_connector->hpd.hpd);
356 amdgpu_irq_get(adev, &adev->hpd_irq, amdgpu_connector->hpd.hpd);
357 }
358 }
359
360 /**
361 * dce_v8_0_hpd_fini - hpd tear down callback.
362 *
363 * @adev: amdgpu_device pointer
364 *
365 * Tear down the hpd pins used by the card (evergreen+).
366 * Disable the hpd interrupts.
367 */
368 static void dce_v8_0_hpd_fini(struct amdgpu_device *adev)
369 {
370 struct drm_device *dev = adev->ddev;
371 struct drm_connector *connector;
372 u32 tmp;
373
374 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
375 struct amdgpu_connector *amdgpu_connector = to_amdgpu_connector(connector);
376
377 if (amdgpu_connector->hpd.hpd >= adev->mode_info.num_hpd)
378 continue;
379
380 tmp = RREG32(mmDC_HPD1_CONTROL + hpd_offsets[amdgpu_connector->hpd.hpd]);
381 tmp &= ~DC_HPD1_CONTROL__DC_HPD1_EN_MASK;
382 WREG32(mmDC_HPD1_CONTROL + hpd_offsets[amdgpu_connector->hpd.hpd], 0);
383
384 amdgpu_irq_put(adev, &adev->hpd_irq, amdgpu_connector->hpd.hpd);
385 }
386 }
387
388 static u32 dce_v8_0_hpd_get_gpio_reg(struct amdgpu_device *adev)
389 {
390 return mmDC_GPIO_HPD_A;
391 }
392
393 static bool dce_v8_0_is_display_hung(struct amdgpu_device *adev)
394 {
395 u32 crtc_hung = 0;
396 u32 crtc_status[6];
397 u32 i, j, tmp;
398
399 for (i = 0; i < adev->mode_info.num_crtc; i++) {
400 if (RREG32(mmCRTC_CONTROL + crtc_offsets[i]) & CRTC_CONTROL__CRTC_MASTER_EN_MASK) {
401 crtc_status[i] = RREG32(mmCRTC_STATUS_HV_COUNT + crtc_offsets[i]);
402 crtc_hung |= (1 << i);
403 }
404 }
405
406 for (j = 0; j < 10; j++) {
407 for (i = 0; i < adev->mode_info.num_crtc; i++) {
408 if (crtc_hung & (1 << i)) {
409 tmp = RREG32(mmCRTC_STATUS_HV_COUNT + crtc_offsets[i]);
410 if (tmp != crtc_status[i])
411 crtc_hung &= ~(1 << i);
412 }
413 }
414 if (crtc_hung == 0)
415 return false;
416 udelay(100);
417 }
418
419 return true;
420 }
421
422 static void dce_v8_0_stop_mc_access(struct amdgpu_device *adev,
423 struct amdgpu_mode_mc_save *save)
424 {
425 u32 crtc_enabled, tmp;
426 int i;
427
428 save->vga_render_control = RREG32(mmVGA_RENDER_CONTROL);
429 save->vga_hdp_control = RREG32(mmVGA_HDP_CONTROL);
430
431 /* disable VGA render */
432 tmp = RREG32(mmVGA_RENDER_CONTROL);
433 tmp = REG_SET_FIELD(tmp, VGA_RENDER_CONTROL, VGA_VSTATUS_CNTL, 0);
434 WREG32(mmVGA_RENDER_CONTROL, tmp);
435
436 /* blank the display controllers */
437 for (i = 0; i < adev->mode_info.num_crtc; i++) {
438 crtc_enabled = REG_GET_FIELD(RREG32(mmCRTC_CONTROL + crtc_offsets[i]),
439 CRTC_CONTROL, CRTC_MASTER_EN);
440 if (crtc_enabled) {
441 #if 1
442 save->crtc_enabled[i] = true;
443 tmp = RREG32(mmCRTC_BLANK_CONTROL + crtc_offsets[i]);
444 if (REG_GET_FIELD(tmp, CRTC_BLANK_CONTROL, CRTC_BLANK_DATA_EN) == 0) {
445 /*it is correct only for RGB ; black is 0*/
446 WREG32(mmCRTC_BLANK_DATA_COLOR + crtc_offsets[i], 0);
447 tmp = REG_SET_FIELD(tmp, CRTC_BLANK_CONTROL, CRTC_BLANK_DATA_EN, 1);
448 WREG32(mmCRTC_BLANK_CONTROL + crtc_offsets[i], tmp);
449 }
450 mdelay(20);
451 #else
452 /* XXX this is a hack to avoid strange behavior with EFI on certain systems */
453 WREG32(mmCRTC_UPDATE_LOCK + crtc_offsets[i], 1);
454 tmp = RREG32(mmCRTC_CONTROL + crtc_offsets[i]);
455 tmp = REG_SET_FIELD(tmp, CRTC_CONTROL, CRTC_MASTER_EN, 0);
456 WREG32(mmCRTC_CONTROL + crtc_offsets[i], tmp);
457 WREG32(mmCRTC_UPDATE_LOCK + crtc_offsets[i], 0);
458 save->crtc_enabled[i] = false;
459 /* ***** */
460 #endif
461 } else {
462 save->crtc_enabled[i] = false;
463 }
464 }
465 }
466
467 static void dce_v8_0_resume_mc_access(struct amdgpu_device *adev,
468 struct amdgpu_mode_mc_save *save)
469 {
470 u32 tmp;
471 int i;
472
473 /* update crtc base addresses */
474 for (i = 0; i < adev->mode_info.num_crtc; i++) {
475 WREG32(mmGRPH_PRIMARY_SURFACE_ADDRESS_HIGH + crtc_offsets[i],
476 upper_32_bits(adev->mc.vram_start));
477 WREG32(mmGRPH_PRIMARY_SURFACE_ADDRESS + crtc_offsets[i],
478 (u32)adev->mc.vram_start);
479
480 if (save->crtc_enabled[i]) {
481 tmp = RREG32(mmCRTC_BLANK_CONTROL + crtc_offsets[i]);
482 tmp = REG_SET_FIELD(tmp, CRTC_BLANK_CONTROL, CRTC_BLANK_DATA_EN, 0);
483 WREG32(mmCRTC_BLANK_CONTROL + crtc_offsets[i], tmp);
484 }
485 mdelay(20);
486 }
487
488 WREG32(mmVGA_MEMORY_BASE_ADDRESS_HIGH, upper_32_bits(adev->mc.vram_start));
489 WREG32(mmVGA_MEMORY_BASE_ADDRESS, lower_32_bits(adev->mc.vram_start));
490
491 /* Unlock vga access */
492 WREG32(mmVGA_HDP_CONTROL, save->vga_hdp_control);
493 mdelay(1);
494 WREG32(mmVGA_RENDER_CONTROL, save->vga_render_control);
495 }
496
497 static void dce_v8_0_set_vga_render_state(struct amdgpu_device *adev,
498 bool render)
499 {
500 u32 tmp;
501
502 /* Lockout access through VGA aperture*/
503 tmp = RREG32(mmVGA_HDP_CONTROL);
504 if (render)
505 tmp = REG_SET_FIELD(tmp, VGA_HDP_CONTROL, VGA_MEMORY_DISABLE, 0);
506 else
507 tmp = REG_SET_FIELD(tmp, VGA_HDP_CONTROL, VGA_MEMORY_DISABLE, 1);
508 WREG32(mmVGA_HDP_CONTROL, tmp);
509
510 /* disable VGA render */
511 tmp = RREG32(mmVGA_RENDER_CONTROL);
512 if (render)
513 tmp = REG_SET_FIELD(tmp, VGA_RENDER_CONTROL, VGA_VSTATUS_CNTL, 1);
514 else
515 tmp = REG_SET_FIELD(tmp, VGA_RENDER_CONTROL, VGA_VSTATUS_CNTL, 0);
516 WREG32(mmVGA_RENDER_CONTROL, tmp);
517 }
518
519 static int dce_v8_0_get_num_crtc(struct amdgpu_device *adev)
520 {
521 int num_crtc = 0;
522
523 switch (adev->asic_type) {
524 case CHIP_BONAIRE:
525 case CHIP_HAWAII:
526 num_crtc = 6;
527 break;
528 case CHIP_KAVERI:
529 num_crtc = 4;
530 break;
531 case CHIP_KABINI:
532 case CHIP_MULLINS:
533 num_crtc = 2;
534 break;
535 default:
536 num_crtc = 0;
537 }
538 return num_crtc;
539 }
540
541 void dce_v8_0_disable_dce(struct amdgpu_device *adev)
542 {
543 /*Disable VGA render and enabled crtc, if has DCE engine*/
544 if (amdgpu_atombios_has_dce_engine_info(adev)) {
545 u32 tmp;
546 int crtc_enabled, i;
547
548 dce_v8_0_set_vga_render_state(adev, false);
549
550 /*Disable crtc*/
551 for (i = 0; i < dce_v8_0_get_num_crtc(adev); i++) {
552 crtc_enabled = REG_GET_FIELD(RREG32(mmCRTC_CONTROL + crtc_offsets[i]),
553 CRTC_CONTROL, CRTC_MASTER_EN);
554 if (crtc_enabled) {
555 WREG32(mmCRTC_UPDATE_LOCK + crtc_offsets[i], 1);
556 tmp = RREG32(mmCRTC_CONTROL + crtc_offsets[i]);
557 tmp = REG_SET_FIELD(tmp, CRTC_CONTROL, CRTC_MASTER_EN, 0);
558 WREG32(mmCRTC_CONTROL + crtc_offsets[i], tmp);
559 WREG32(mmCRTC_UPDATE_LOCK + crtc_offsets[i], 0);
560 }
561 }
562 }
563 }
564
565 static void dce_v8_0_program_fmt(struct drm_encoder *encoder)
566 {
567 struct drm_device *dev = encoder->dev;
568 struct amdgpu_device *adev = dev->dev_private;
569 struct amdgpu_encoder *amdgpu_encoder = to_amdgpu_encoder(encoder);
570 struct amdgpu_crtc *amdgpu_crtc = to_amdgpu_crtc(encoder->crtc);
571 struct drm_connector *connector = amdgpu_get_connector_for_encoder(encoder);
572 int bpc = 0;
573 u32 tmp = 0;
574 enum amdgpu_connector_dither dither = AMDGPU_FMT_DITHER_DISABLE;
575
576 if (connector) {
577 struct amdgpu_connector *amdgpu_connector = to_amdgpu_connector(connector);
578 bpc = amdgpu_connector_get_monitor_bpc(connector);
579 dither = amdgpu_connector->dither;
580 }
581
582 /* LVDS/eDP FMT is set up by atom */
583 if (amdgpu_encoder->devices & ATOM_DEVICE_LCD_SUPPORT)
584 return;
585
586 /* not needed for analog */
587 if ((amdgpu_encoder->encoder_id == ENCODER_OBJECT_ID_INTERNAL_KLDSCP_DAC1) ||
588 (amdgpu_encoder->encoder_id == ENCODER_OBJECT_ID_INTERNAL_KLDSCP_DAC2))
589 return;
590
591 if (bpc == 0)
592 return;
593
594 switch (bpc) {
595 case 6:
596 if (dither == AMDGPU_FMT_DITHER_ENABLE)
597 /* XXX sort out optimal dither settings */
598 tmp |= (FMT_BIT_DEPTH_CONTROL__FMT_FRAME_RANDOM_ENABLE_MASK |
599 FMT_BIT_DEPTH_CONTROL__FMT_HIGHPASS_RANDOM_ENABLE_MASK |
600 FMT_BIT_DEPTH_CONTROL__FMT_SPATIAL_DITHER_EN_MASK |
601 (0 << FMT_BIT_DEPTH_CONTROL__FMT_SPATIAL_DITHER_DEPTH__SHIFT));
602 else
603 tmp |= (FMT_BIT_DEPTH_CONTROL__FMT_TRUNCATE_EN_MASK |
604 (0 << FMT_BIT_DEPTH_CONTROL__FMT_TRUNCATE_DEPTH__SHIFT));
605 break;
606 case 8:
607 if (dither == AMDGPU_FMT_DITHER_ENABLE)
608 /* XXX sort out optimal dither settings */
609 tmp |= (FMT_BIT_DEPTH_CONTROL__FMT_FRAME_RANDOM_ENABLE_MASK |
610 FMT_BIT_DEPTH_CONTROL__FMT_HIGHPASS_RANDOM_ENABLE_MASK |
611 FMT_BIT_DEPTH_CONTROL__FMT_RGB_RANDOM_ENABLE_MASK |
612 FMT_BIT_DEPTH_CONTROL__FMT_SPATIAL_DITHER_EN_MASK |
613 (1 << FMT_BIT_DEPTH_CONTROL__FMT_SPATIAL_DITHER_DEPTH__SHIFT));
614 else
615 tmp |= (FMT_BIT_DEPTH_CONTROL__FMT_TRUNCATE_EN_MASK |
616 (1 << FMT_BIT_DEPTH_CONTROL__FMT_TRUNCATE_DEPTH__SHIFT));
617 break;
618 case 10:
619 if (dither == AMDGPU_FMT_DITHER_ENABLE)
620 /* XXX sort out optimal dither settings */
621 tmp |= (FMT_BIT_DEPTH_CONTROL__FMT_FRAME_RANDOM_ENABLE_MASK |
622 FMT_BIT_DEPTH_CONTROL__FMT_HIGHPASS_RANDOM_ENABLE_MASK |
623 FMT_BIT_DEPTH_CONTROL__FMT_RGB_RANDOM_ENABLE_MASK |
624 FMT_BIT_DEPTH_CONTROL__FMT_SPATIAL_DITHER_EN_MASK |
625 (2 << FMT_BIT_DEPTH_CONTROL__FMT_SPATIAL_DITHER_DEPTH__SHIFT));
626 else
627 tmp |= (FMT_BIT_DEPTH_CONTROL__FMT_TRUNCATE_EN_MASK |
628 (2 << FMT_BIT_DEPTH_CONTROL__FMT_TRUNCATE_DEPTH__SHIFT));
629 break;
630 default:
631 /* not needed */
632 break;
633 }
634
635 WREG32(mmFMT_BIT_DEPTH_CONTROL + amdgpu_crtc->crtc_offset, tmp);
636 }
637
638
639 /* display watermark setup */
640 /**
641 * dce_v8_0_line_buffer_adjust - Set up the line buffer
642 *
643 * @adev: amdgpu_device pointer
644 * @amdgpu_crtc: the selected display controller
645 * @mode: the current display mode on the selected display
646 * controller
647 *
648 * Setup up the line buffer allocation for
649 * the selected display controller (CIK).
650 * Returns the line buffer size in pixels.
651 */
652 static u32 dce_v8_0_line_buffer_adjust(struct amdgpu_device *adev,
653 struct amdgpu_crtc *amdgpu_crtc,
654 struct drm_display_mode *mode)
655 {
656 u32 tmp, buffer_alloc, i;
657 u32 pipe_offset = amdgpu_crtc->crtc_id * 0x8;
658 /*
659 * Line Buffer Setup
660 * There are 6 line buffers, one for each display controllers.
661 * There are 3 partitions per LB. Select the number of partitions
662 * to enable based on the display width. For display widths larger
663 * than 4096, you need use to use 2 display controllers and combine
664 * them using the stereo blender.
665 */
666 if (amdgpu_crtc->base.enabled && mode) {
667 if (mode->crtc_hdisplay < 1920) {
668 tmp = 1;
669 buffer_alloc = 2;
670 } else if (mode->crtc_hdisplay < 2560) {
671 tmp = 2;
672 buffer_alloc = 2;
673 } else if (mode->crtc_hdisplay < 4096) {
674 tmp = 0;
675 buffer_alloc = (adev->flags & AMD_IS_APU) ? 2 : 4;
676 } else {
677 DRM_DEBUG_KMS("Mode too big for LB!\n");
678 tmp = 0;
679 buffer_alloc = (adev->flags & AMD_IS_APU) ? 2 : 4;
680 }
681 } else {
682 tmp = 1;
683 buffer_alloc = 0;
684 }
685
686 WREG32(mmLB_MEMORY_CTRL + amdgpu_crtc->crtc_offset,
687 (tmp << LB_MEMORY_CTRL__LB_MEMORY_CONFIG__SHIFT) |
688 (0x6B0 << LB_MEMORY_CTRL__LB_MEMORY_SIZE__SHIFT));
689
690 WREG32(mmPIPE0_DMIF_BUFFER_CONTROL + pipe_offset,
691 (buffer_alloc << PIPE0_DMIF_BUFFER_CONTROL__DMIF_BUFFERS_ALLOCATED__SHIFT));
692 for (i = 0; i < adev->usec_timeout; i++) {
693 if (RREG32(mmPIPE0_DMIF_BUFFER_CONTROL + pipe_offset) &
694 PIPE0_DMIF_BUFFER_CONTROL__DMIF_BUFFERS_ALLOCATION_COMPLETED_MASK)
695 break;
696 udelay(1);
697 }
698
699 if (amdgpu_crtc->base.enabled && mode) {
700 switch (tmp) {
701 case 0:
702 default:
703 return 4096 * 2;
704 case 1:
705 return 1920 * 2;
706 case 2:
707 return 2560 * 2;
708 }
709 }
710
711 /* controller not enabled, so no lb used */
712 return 0;
713 }
714
715 /**
716 * cik_get_number_of_dram_channels - get the number of dram channels
717 *
718 * @adev: amdgpu_device pointer
719 *
720 * Look up the number of video ram channels (CIK).
721 * Used for display watermark bandwidth calculations
722 * Returns the number of dram channels
723 */
724 static u32 cik_get_number_of_dram_channels(struct amdgpu_device *adev)
725 {
726 u32 tmp = RREG32(mmMC_SHARED_CHMAP);
727
728 switch ((tmp & MC_SHARED_CHMAP__NOOFCHAN_MASK) >> MC_SHARED_CHMAP__NOOFCHAN__SHIFT) {
729 case 0:
730 default:
731 return 1;
732 case 1:
733 return 2;
734 case 2:
735 return 4;
736 case 3:
737 return 8;
738 case 4:
739 return 3;
740 case 5:
741 return 6;
742 case 6:
743 return 10;
744 case 7:
745 return 12;
746 case 8:
747 return 16;
748 }
749 }
750
751 struct dce8_wm_params {
752 u32 dram_channels; /* number of dram channels */
753 u32 yclk; /* bandwidth per dram data pin in kHz */
754 u32 sclk; /* engine clock in kHz */
755 u32 disp_clk; /* display clock in kHz */
756 u32 src_width; /* viewport width */
757 u32 active_time; /* active display time in ns */
758 u32 blank_time; /* blank time in ns */
759 bool interlaced; /* mode is interlaced */
760 fixed20_12 vsc; /* vertical scale ratio */
761 u32 num_heads; /* number of active crtcs */
762 u32 bytes_per_pixel; /* bytes per pixel display + overlay */
763 u32 lb_size; /* line buffer allocated to pipe */
764 u32 vtaps; /* vertical scaler taps */
765 };
766
767 /**
768 * dce_v8_0_dram_bandwidth - get the dram bandwidth
769 *
770 * @wm: watermark calculation data
771 *
772 * Calculate the raw dram bandwidth (CIK).
773 * Used for display watermark bandwidth calculations
774 * Returns the dram bandwidth in MBytes/s
775 */
776 static u32 dce_v8_0_dram_bandwidth(struct dce8_wm_params *wm)
777 {
778 /* Calculate raw DRAM Bandwidth */
779 fixed20_12 dram_efficiency; /* 0.7 */
780 fixed20_12 yclk, dram_channels, bandwidth;
781 fixed20_12 a;
782
783 a.full = dfixed_const(1000);
784 yclk.full = dfixed_const(wm->yclk);
785 yclk.full = dfixed_div(yclk, a);
786 dram_channels.full = dfixed_const(wm->dram_channels * 4);
787 a.full = dfixed_const(10);
788 dram_efficiency.full = dfixed_const(7);
789 dram_efficiency.full = dfixed_div(dram_efficiency, a);
790 bandwidth.full = dfixed_mul(dram_channels, yclk);
791 bandwidth.full = dfixed_mul(bandwidth, dram_efficiency);
792
793 return dfixed_trunc(bandwidth);
794 }
795
796 /**
797 * dce_v8_0_dram_bandwidth_for_display - get the dram bandwidth for display
798 *
799 * @wm: watermark calculation data
800 *
801 * Calculate the dram bandwidth used for display (CIK).
802 * Used for display watermark bandwidth calculations
803 * Returns the dram bandwidth for display in MBytes/s
804 */
805 static u32 dce_v8_0_dram_bandwidth_for_display(struct dce8_wm_params *wm)
806 {
807 /* Calculate DRAM Bandwidth and the part allocated to display. */
808 fixed20_12 disp_dram_allocation; /* 0.3 to 0.7 */
809 fixed20_12 yclk, dram_channels, bandwidth;
810 fixed20_12 a;
811
812 a.full = dfixed_const(1000);
813 yclk.full = dfixed_const(wm->yclk);
814 yclk.full = dfixed_div(yclk, a);
815 dram_channels.full = dfixed_const(wm->dram_channels * 4);
816 a.full = dfixed_const(10);
817 disp_dram_allocation.full = dfixed_const(3); /* XXX worse case value 0.3 */
818 disp_dram_allocation.full = dfixed_div(disp_dram_allocation, a);
819 bandwidth.full = dfixed_mul(dram_channels, yclk);
820 bandwidth.full = dfixed_mul(bandwidth, disp_dram_allocation);
821
822 return dfixed_trunc(bandwidth);
823 }
824
825 /**
826 * dce_v8_0_data_return_bandwidth - get the data return bandwidth
827 *
828 * @wm: watermark calculation data
829 *
830 * Calculate the data return bandwidth used for display (CIK).
831 * Used for display watermark bandwidth calculations
832 * Returns the data return bandwidth in MBytes/s
833 */
834 static u32 dce_v8_0_data_return_bandwidth(struct dce8_wm_params *wm)
835 {
836 /* Calculate the display Data return Bandwidth */
837 fixed20_12 return_efficiency; /* 0.8 */
838 fixed20_12 sclk, bandwidth;
839 fixed20_12 a;
840
841 a.full = dfixed_const(1000);
842 sclk.full = dfixed_const(wm->sclk);
843 sclk.full = dfixed_div(sclk, a);
844 a.full = dfixed_const(10);
845 return_efficiency.full = dfixed_const(8);
846 return_efficiency.full = dfixed_div(return_efficiency, a);
847 a.full = dfixed_const(32);
848 bandwidth.full = dfixed_mul(a, sclk);
849 bandwidth.full = dfixed_mul(bandwidth, return_efficiency);
850
851 return dfixed_trunc(bandwidth);
852 }
853
854 /**
855 * dce_v8_0_dmif_request_bandwidth - get the dmif bandwidth
856 *
857 * @wm: watermark calculation data
858 *
859 * Calculate the dmif bandwidth used for display (CIK).
860 * Used for display watermark bandwidth calculations
861 * Returns the dmif bandwidth in MBytes/s
862 */
863 static u32 dce_v8_0_dmif_request_bandwidth(struct dce8_wm_params *wm)
864 {
865 /* Calculate the DMIF Request Bandwidth */
866 fixed20_12 disp_clk_request_efficiency; /* 0.8 */
867 fixed20_12 disp_clk, bandwidth;
868 fixed20_12 a, b;
869
870 a.full = dfixed_const(1000);
871 disp_clk.full = dfixed_const(wm->disp_clk);
872 disp_clk.full = dfixed_div(disp_clk, a);
873 a.full = dfixed_const(32);
874 b.full = dfixed_mul(a, disp_clk);
875
876 a.full = dfixed_const(10);
877 disp_clk_request_efficiency.full = dfixed_const(8);
878 disp_clk_request_efficiency.full = dfixed_div(disp_clk_request_efficiency, a);
879
880 bandwidth.full = dfixed_mul(b, disp_clk_request_efficiency);
881
882 return dfixed_trunc(bandwidth);
883 }
884
885 /**
886 * dce_v8_0_available_bandwidth - get the min available bandwidth
887 *
888 * @wm: watermark calculation data
889 *
890 * Calculate the min available bandwidth used for display (CIK).
891 * Used for display watermark bandwidth calculations
892 * Returns the min available bandwidth in MBytes/s
893 */
894 static u32 dce_v8_0_available_bandwidth(struct dce8_wm_params *wm)
895 {
896 /* Calculate the Available bandwidth. Display can use this temporarily but not in average. */
897 u32 dram_bandwidth = dce_v8_0_dram_bandwidth(wm);
898 u32 data_return_bandwidth = dce_v8_0_data_return_bandwidth(wm);
899 u32 dmif_req_bandwidth = dce_v8_0_dmif_request_bandwidth(wm);
900
901 return min(dram_bandwidth, min(data_return_bandwidth, dmif_req_bandwidth));
902 }
903
904 /**
905 * dce_v8_0_average_bandwidth - get the average available bandwidth
906 *
907 * @wm: watermark calculation data
908 *
909 * Calculate the average available bandwidth used for display (CIK).
910 * Used for display watermark bandwidth calculations
911 * Returns the average available bandwidth in MBytes/s
912 */
913 static u32 dce_v8_0_average_bandwidth(struct dce8_wm_params *wm)
914 {
915 /* Calculate the display mode Average Bandwidth
916 * DisplayMode should contain the source and destination dimensions,
917 * timing, etc.
918 */
919 fixed20_12 bpp;
920 fixed20_12 line_time;
921 fixed20_12 src_width;
922 fixed20_12 bandwidth;
923 fixed20_12 a;
924
925 a.full = dfixed_const(1000);
926 line_time.full = dfixed_const(wm->active_time + wm->blank_time);
927 line_time.full = dfixed_div(line_time, a);
928 bpp.full = dfixed_const(wm->bytes_per_pixel);
929 src_width.full = dfixed_const(wm->src_width);
930 bandwidth.full = dfixed_mul(src_width, bpp);
931 bandwidth.full = dfixed_mul(bandwidth, wm->vsc);
932 bandwidth.full = dfixed_div(bandwidth, line_time);
933
934 return dfixed_trunc(bandwidth);
935 }
936
937 /**
938 * dce_v8_0_latency_watermark - get the latency watermark
939 *
940 * @wm: watermark calculation data
941 *
942 * Calculate the latency watermark (CIK).
943 * Used for display watermark bandwidth calculations
944 * Returns the latency watermark in ns
945 */
946 static u32 dce_v8_0_latency_watermark(struct dce8_wm_params *wm)
947 {
948 /* First calculate the latency in ns */
949 u32 mc_latency = 2000; /* 2000 ns. */
950 u32 available_bandwidth = dce_v8_0_available_bandwidth(wm);
951 u32 worst_chunk_return_time = (512 * 8 * 1000) / available_bandwidth;
952 u32 cursor_line_pair_return_time = (128 * 4 * 1000) / available_bandwidth;
953 u32 dc_latency = 40000000 / wm->disp_clk; /* dc pipe latency */
954 u32 other_heads_data_return_time = ((wm->num_heads + 1) * worst_chunk_return_time) +
955 (wm->num_heads * cursor_line_pair_return_time);
956 u32 latency = mc_latency + other_heads_data_return_time + dc_latency;
957 u32 max_src_lines_per_dst_line, lb_fill_bw, line_fill_time;
958 u32 tmp, dmif_size = 12288;
959 fixed20_12 a, b, c;
960
961 if (wm->num_heads == 0)
962 return 0;
963
964 a.full = dfixed_const(2);
965 b.full = dfixed_const(1);
966 if ((wm->vsc.full > a.full) ||
967 ((wm->vsc.full > b.full) && (wm->vtaps >= 3)) ||
968 (wm->vtaps >= 5) ||
969 ((wm->vsc.full >= a.full) && wm->interlaced))
970 max_src_lines_per_dst_line = 4;
971 else
972 max_src_lines_per_dst_line = 2;
973
974 a.full = dfixed_const(available_bandwidth);
975 b.full = dfixed_const(wm->num_heads);
976 a.full = dfixed_div(a, b);
977 tmp = div_u64((u64) dmif_size * (u64) wm->disp_clk, mc_latency + 512);
978 tmp = min(dfixed_trunc(a), tmp);
979
980 lb_fill_bw = min(tmp, wm->disp_clk * wm->bytes_per_pixel / 1000);
981
982 a.full = dfixed_const(max_src_lines_per_dst_line * wm->src_width * wm->bytes_per_pixel);
983 b.full = dfixed_const(1000);
984 c.full = dfixed_const(lb_fill_bw);
985 b.full = dfixed_div(c, b);
986 a.full = dfixed_div(a, b);
987 line_fill_time = dfixed_trunc(a);
988
989 if (line_fill_time < wm->active_time)
990 return latency;
991 else
992 return latency + (line_fill_time - wm->active_time);
993
994 }
995
996 /**
997 * dce_v8_0_average_bandwidth_vs_dram_bandwidth_for_display - check
998 * average and available dram bandwidth
999 *
1000 * @wm: watermark calculation data
1001 *
1002 * Check if the display average bandwidth fits in the display
1003 * dram bandwidth (CIK).
1004 * Used for display watermark bandwidth calculations
1005 * Returns true if the display fits, false if not.
1006 */
1007 static bool dce_v8_0_average_bandwidth_vs_dram_bandwidth_for_display(struct dce8_wm_params *wm)
1008 {
1009 if (dce_v8_0_average_bandwidth(wm) <=
1010 (dce_v8_0_dram_bandwidth_for_display(wm) / wm->num_heads))
1011 return true;
1012 else
1013 return false;
1014 }
1015
1016 /**
1017 * dce_v8_0_average_bandwidth_vs_available_bandwidth - check
1018 * average and available bandwidth
1019 *
1020 * @wm: watermark calculation data
1021 *
1022 * Check if the display average bandwidth fits in the display
1023 * available bandwidth (CIK).
1024 * Used for display watermark bandwidth calculations
1025 * Returns true if the display fits, false if not.
1026 */
1027 static bool dce_v8_0_average_bandwidth_vs_available_bandwidth(struct dce8_wm_params *wm)
1028 {
1029 if (dce_v8_0_average_bandwidth(wm) <=
1030 (dce_v8_0_available_bandwidth(wm) / wm->num_heads))
1031 return true;
1032 else
1033 return false;
1034 }
1035
1036 /**
1037 * dce_v8_0_check_latency_hiding - check latency hiding
1038 *
1039 * @wm: watermark calculation data
1040 *
1041 * Check latency hiding (CIK).
1042 * Used for display watermark bandwidth calculations
1043 * Returns true if the display fits, false if not.
1044 */
1045 static bool dce_v8_0_check_latency_hiding(struct dce8_wm_params *wm)
1046 {
1047 u32 lb_partitions = wm->lb_size / wm->src_width;
1048 u32 line_time = wm->active_time + wm->blank_time;
1049 u32 latency_tolerant_lines;
1050 u32 latency_hiding;
1051 fixed20_12 a;
1052
1053 a.full = dfixed_const(1);
1054 if (wm->vsc.full > a.full)
1055 latency_tolerant_lines = 1;
1056 else {
1057 if (lb_partitions <= (wm->vtaps + 1))
1058 latency_tolerant_lines = 1;
1059 else
1060 latency_tolerant_lines = 2;
1061 }
1062
1063 latency_hiding = (latency_tolerant_lines * line_time + wm->blank_time);
1064
1065 if (dce_v8_0_latency_watermark(wm) <= latency_hiding)
1066 return true;
1067 else
1068 return false;
1069 }
1070
1071 /**
1072 * dce_v8_0_program_watermarks - program display watermarks
1073 *
1074 * @adev: amdgpu_device pointer
1075 * @amdgpu_crtc: the selected display controller
1076 * @lb_size: line buffer size
1077 * @num_heads: number of display controllers in use
1078 *
1079 * Calculate and program the display watermarks for the
1080 * selected display controller (CIK).
1081 */
1082 static void dce_v8_0_program_watermarks(struct amdgpu_device *adev,
1083 struct amdgpu_crtc *amdgpu_crtc,
1084 u32 lb_size, u32 num_heads)
1085 {
1086 struct drm_display_mode *mode = &amdgpu_crtc->base.mode;
1087 struct dce8_wm_params wm_low, wm_high;
1088 u32 active_time;
1089 u32 line_time = 0;
1090 u32 latency_watermark_a = 0, latency_watermark_b = 0;
1091 u32 tmp, wm_mask, lb_vblank_lead_lines = 0;
1092
1093 if (amdgpu_crtc->base.enabled && num_heads && mode) {
1094 active_time = 1000000UL * (u32)mode->crtc_hdisplay / (u32)mode->clock;
1095 line_time = min((u32) (1000000UL * (u32)mode->crtc_htotal / (u32)mode->clock), (u32)65535);
1096
1097 /* watermark for high clocks */
1098 if (adev->pm.dpm_enabled) {
1099 wm_high.yclk =
1100 amdgpu_dpm_get_mclk(adev, false) * 10;
1101 wm_high.sclk =
1102 amdgpu_dpm_get_sclk(adev, false) * 10;
1103 } else {
1104 wm_high.yclk = adev->pm.current_mclk * 10;
1105 wm_high.sclk = adev->pm.current_sclk * 10;
1106 }
1107
1108 wm_high.disp_clk = mode->clock;
1109 wm_high.src_width = mode->crtc_hdisplay;
1110 wm_high.active_time = active_time;
1111 wm_high.blank_time = line_time - wm_high.active_time;
1112 wm_high.interlaced = false;
1113 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
1114 wm_high.interlaced = true;
1115 wm_high.vsc = amdgpu_crtc->vsc;
1116 wm_high.vtaps = 1;
1117 if (amdgpu_crtc->rmx_type != RMX_OFF)
1118 wm_high.vtaps = 2;
1119 wm_high.bytes_per_pixel = 4; /* XXX: get this from fb config */
1120 wm_high.lb_size = lb_size;
1121 wm_high.dram_channels = cik_get_number_of_dram_channels(adev);
1122 wm_high.num_heads = num_heads;
1123
1124 /* set for high clocks */
1125 latency_watermark_a = min(dce_v8_0_latency_watermark(&wm_high), (u32)65535);
1126
1127 /* possibly force display priority to high */
1128 /* should really do this at mode validation time... */
1129 if (!dce_v8_0_average_bandwidth_vs_dram_bandwidth_for_display(&wm_high) ||
1130 !dce_v8_0_average_bandwidth_vs_available_bandwidth(&wm_high) ||
1131 !dce_v8_0_check_latency_hiding(&wm_high) ||
1132 (adev->mode_info.disp_priority == 2)) {
1133 DRM_DEBUG_KMS("force priority to high\n");
1134 }
1135
1136 /* watermark for low clocks */
1137 if (adev->pm.dpm_enabled) {
1138 wm_low.yclk =
1139 amdgpu_dpm_get_mclk(adev, true) * 10;
1140 wm_low.sclk =
1141 amdgpu_dpm_get_sclk(adev, true) * 10;
1142 } else {
1143 wm_low.yclk = adev->pm.current_mclk * 10;
1144 wm_low.sclk = adev->pm.current_sclk * 10;
1145 }
1146
1147 wm_low.disp_clk = mode->clock;
1148 wm_low.src_width = mode->crtc_hdisplay;
1149 wm_low.active_time = active_time;
1150 wm_low.blank_time = line_time - wm_low.active_time;
1151 wm_low.interlaced = false;
1152 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
1153 wm_low.interlaced = true;
1154 wm_low.vsc = amdgpu_crtc->vsc;
1155 wm_low.vtaps = 1;
1156 if (amdgpu_crtc->rmx_type != RMX_OFF)
1157 wm_low.vtaps = 2;
1158 wm_low.bytes_per_pixel = 4; /* XXX: get this from fb config */
1159 wm_low.lb_size = lb_size;
1160 wm_low.dram_channels = cik_get_number_of_dram_channels(adev);
1161 wm_low.num_heads = num_heads;
1162
1163 /* set for low clocks */
1164 latency_watermark_b = min(dce_v8_0_latency_watermark(&wm_low), (u32)65535);
1165
1166 /* possibly force display priority to high */
1167 /* should really do this at mode validation time... */
1168 if (!dce_v8_0_average_bandwidth_vs_dram_bandwidth_for_display(&wm_low) ||
1169 !dce_v8_0_average_bandwidth_vs_available_bandwidth(&wm_low) ||
1170 !dce_v8_0_check_latency_hiding(&wm_low) ||
1171 (adev->mode_info.disp_priority == 2)) {
1172 DRM_DEBUG_KMS("force priority to high\n");
1173 }
1174 lb_vblank_lead_lines = DIV_ROUND_UP(lb_size, mode->crtc_hdisplay);
1175 }
1176
1177 /* select wm A */
1178 wm_mask = RREG32(mmDPG_WATERMARK_MASK_CONTROL + amdgpu_crtc->crtc_offset);
1179 tmp = wm_mask;
1180 tmp &= ~(3 << DPG_WATERMARK_MASK_CONTROL__URGENCY_WATERMARK_MASK__SHIFT);
1181 tmp |= (1 << DPG_WATERMARK_MASK_CONTROL__URGENCY_WATERMARK_MASK__SHIFT);
1182 WREG32(mmDPG_WATERMARK_MASK_CONTROL + amdgpu_crtc->crtc_offset, tmp);
1183 WREG32(mmDPG_PIPE_URGENCY_CONTROL + amdgpu_crtc->crtc_offset,
1184 ((latency_watermark_a << DPG_PIPE_URGENCY_CONTROL__URGENCY_LOW_WATERMARK__SHIFT) |
1185 (line_time << DPG_PIPE_URGENCY_CONTROL__URGENCY_HIGH_WATERMARK__SHIFT)));
1186 /* select wm B */
1187 tmp = RREG32(mmDPG_WATERMARK_MASK_CONTROL + amdgpu_crtc->crtc_offset);
1188 tmp &= ~(3 << DPG_WATERMARK_MASK_CONTROL__URGENCY_WATERMARK_MASK__SHIFT);
1189 tmp |= (2 << DPG_WATERMARK_MASK_CONTROL__URGENCY_WATERMARK_MASK__SHIFT);
1190 WREG32(mmDPG_WATERMARK_MASK_CONTROL + amdgpu_crtc->crtc_offset, tmp);
1191 WREG32(mmDPG_PIPE_URGENCY_CONTROL + amdgpu_crtc->crtc_offset,
1192 ((latency_watermark_b << DPG_PIPE_URGENCY_CONTROL__URGENCY_LOW_WATERMARK__SHIFT) |
1193 (line_time << DPG_PIPE_URGENCY_CONTROL__URGENCY_HIGH_WATERMARK__SHIFT)));
1194 /* restore original selection */
1195 WREG32(mmDPG_WATERMARK_MASK_CONTROL + amdgpu_crtc->crtc_offset, wm_mask);
1196
1197 /* save values for DPM */
1198 amdgpu_crtc->line_time = line_time;
1199 amdgpu_crtc->wm_high = latency_watermark_a;
1200 amdgpu_crtc->wm_low = latency_watermark_b;
1201 /* Save number of lines the linebuffer leads before the scanout */
1202 amdgpu_crtc->lb_vblank_lead_lines = lb_vblank_lead_lines;
1203 }
1204
1205 /**
1206 * dce_v8_0_bandwidth_update - program display watermarks
1207 *
1208 * @adev: amdgpu_device pointer
1209 *
1210 * Calculate and program the display watermarks and line
1211 * buffer allocation (CIK).
1212 */
1213 static void dce_v8_0_bandwidth_update(struct amdgpu_device *adev)
1214 {
1215 struct drm_display_mode *mode = NULL;
1216 u32 num_heads = 0, lb_size;
1217 int i;
1218
1219 amdgpu_update_display_priority(adev);
1220
1221 for (i = 0; i < adev->mode_info.num_crtc; i++) {
1222 if (adev->mode_info.crtcs[i]->base.enabled)
1223 num_heads++;
1224 }
1225 for (i = 0; i < adev->mode_info.num_crtc; i++) {
1226 mode = &adev->mode_info.crtcs[i]->base.mode;
1227 lb_size = dce_v8_0_line_buffer_adjust(adev, adev->mode_info.crtcs[i], mode);
1228 dce_v8_0_program_watermarks(adev, adev->mode_info.crtcs[i],
1229 lb_size, num_heads);
1230 }
1231 }
1232
1233 static void dce_v8_0_audio_get_connected_pins(struct amdgpu_device *adev)
1234 {
1235 int i;
1236 u32 offset, tmp;
1237
1238 for (i = 0; i < adev->mode_info.audio.num_pins; i++) {
1239 offset = adev->mode_info.audio.pin[i].offset;
1240 tmp = RREG32_AUDIO_ENDPT(offset,
1241 ixAZALIA_F0_CODEC_PIN_CONTROL_RESPONSE_CONFIGURATION_DEFAULT);
1242 if (((tmp &
1243 AZALIA_F0_CODEC_PIN_CONTROL_RESPONSE_CONFIGURATION_DEFAULT__PORT_CONNECTIVITY_MASK) >>
1244 AZALIA_F0_CODEC_PIN_CONTROL_RESPONSE_CONFIGURATION_DEFAULT__PORT_CONNECTIVITY__SHIFT) == 1)
1245 adev->mode_info.audio.pin[i].connected = false;
1246 else
1247 adev->mode_info.audio.pin[i].connected = true;
1248 }
1249 }
1250
1251 static struct amdgpu_audio_pin *dce_v8_0_audio_get_pin(struct amdgpu_device *adev)
1252 {
1253 int i;
1254
1255 dce_v8_0_audio_get_connected_pins(adev);
1256
1257 for (i = 0; i < adev->mode_info.audio.num_pins; i++) {
1258 if (adev->mode_info.audio.pin[i].connected)
1259 return &adev->mode_info.audio.pin[i];
1260 }
1261 DRM_ERROR("No connected audio pins found!\n");
1262 return NULL;
1263 }
1264
1265 static void dce_v8_0_afmt_audio_select_pin(struct drm_encoder *encoder)
1266 {
1267 struct amdgpu_device *adev = encoder->dev->dev_private;
1268 struct amdgpu_encoder *amdgpu_encoder = to_amdgpu_encoder(encoder);
1269 struct amdgpu_encoder_atom_dig *dig = amdgpu_encoder->enc_priv;
1270 u32 offset;
1271
1272 if (!dig || !dig->afmt || !dig->afmt->pin)
1273 return;
1274
1275 offset = dig->afmt->offset;
1276
1277 WREG32(mmAFMT_AUDIO_SRC_CONTROL + offset,
1278 (dig->afmt->pin->id << AFMT_AUDIO_SRC_CONTROL__AFMT_AUDIO_SRC_SELECT__SHIFT));
1279 }
1280
1281 static void dce_v8_0_audio_write_latency_fields(struct drm_encoder *encoder,
1282 struct drm_display_mode *mode)
1283 {
1284 struct amdgpu_device *adev = encoder->dev->dev_private;
1285 struct amdgpu_encoder *amdgpu_encoder = to_amdgpu_encoder(encoder);
1286 struct amdgpu_encoder_atom_dig *dig = amdgpu_encoder->enc_priv;
1287 struct drm_connector *connector;
1288 struct amdgpu_connector *amdgpu_connector = NULL;
1289 u32 tmp = 0, offset;
1290
1291 if (!dig || !dig->afmt || !dig->afmt->pin)
1292 return;
1293
1294 offset = dig->afmt->pin->offset;
1295
1296 list_for_each_entry(connector, &encoder->dev->mode_config.connector_list, head) {
1297 if (connector->encoder == encoder) {
1298 amdgpu_connector = to_amdgpu_connector(connector);
1299 break;
1300 }
1301 }
1302
1303 if (!amdgpu_connector) {
1304 DRM_ERROR("Couldn't find encoder's connector\n");
1305 return;
1306 }
1307
1308 if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
1309 if (connector->latency_present[1])
1310 tmp =
1311 (connector->video_latency[1] <<
1312 AZALIA_F0_CODEC_PIN_CONTROL_RESPONSE_LIPSYNC__VIDEO_LIPSYNC__SHIFT) |
1313 (connector->audio_latency[1] <<
1314 AZALIA_F0_CODEC_PIN_CONTROL_RESPONSE_LIPSYNC__AUDIO_LIPSYNC__SHIFT);
1315 else
1316 tmp =
1317 (0 <<
1318 AZALIA_F0_CODEC_PIN_CONTROL_RESPONSE_LIPSYNC__VIDEO_LIPSYNC__SHIFT) |
1319 (0 <<
1320 AZALIA_F0_CODEC_PIN_CONTROL_RESPONSE_LIPSYNC__AUDIO_LIPSYNC__SHIFT);
1321 } else {
1322 if (connector->latency_present[0])
1323 tmp =
1324 (connector->video_latency[0] <<
1325 AZALIA_F0_CODEC_PIN_CONTROL_RESPONSE_LIPSYNC__VIDEO_LIPSYNC__SHIFT) |
1326 (connector->audio_latency[0] <<
1327 AZALIA_F0_CODEC_PIN_CONTROL_RESPONSE_LIPSYNC__AUDIO_LIPSYNC__SHIFT);
1328 else
1329 tmp =
1330 (0 <<
1331 AZALIA_F0_CODEC_PIN_CONTROL_RESPONSE_LIPSYNC__VIDEO_LIPSYNC__SHIFT) |
1332 (0 <<
1333 AZALIA_F0_CODEC_PIN_CONTROL_RESPONSE_LIPSYNC__AUDIO_LIPSYNC__SHIFT);
1334
1335 }
1336 WREG32_AUDIO_ENDPT(offset, ixAZALIA_F0_CODEC_PIN_CONTROL_RESPONSE_LIPSYNC, tmp);
1337 }
1338
1339 static void dce_v8_0_audio_write_speaker_allocation(struct drm_encoder *encoder)
1340 {
1341 struct amdgpu_device *adev = encoder->dev->dev_private;
1342 struct amdgpu_encoder *amdgpu_encoder = to_amdgpu_encoder(encoder);
1343 struct amdgpu_encoder_atom_dig *dig = amdgpu_encoder->enc_priv;
1344 struct drm_connector *connector;
1345 struct amdgpu_connector *amdgpu_connector = NULL;
1346 u32 offset, tmp;
1347 u8 *sadb = NULL;
1348 int sad_count;
1349
1350 if (!dig || !dig->afmt || !dig->afmt->pin)
1351 return;
1352
1353 offset = dig->afmt->pin->offset;
1354
1355 list_for_each_entry(connector, &encoder->dev->mode_config.connector_list, head) {
1356 if (connector->encoder == encoder) {
1357 amdgpu_connector = to_amdgpu_connector(connector);
1358 break;
1359 }
1360 }
1361
1362 if (!amdgpu_connector) {
1363 DRM_ERROR("Couldn't find encoder's connector\n");
1364 return;
1365 }
1366
1367 sad_count = drm_edid_to_speaker_allocation(amdgpu_connector_edid(connector), &sadb);
1368 if (sad_count < 0) {
1369 DRM_ERROR("Couldn't read Speaker Allocation Data Block: %d\n", sad_count);
1370 sad_count = 0;
1371 }
1372
1373 /* program the speaker allocation */
1374 tmp = RREG32_AUDIO_ENDPT(offset, ixAZALIA_F0_CODEC_PIN_CONTROL_CHANNEL_SPEAKER);
1375 tmp &= ~(AZALIA_F0_CODEC_PIN_CONTROL_CHANNEL_SPEAKER__DP_CONNECTION_MASK |
1376 AZALIA_F0_CODEC_PIN_CONTROL_CHANNEL_SPEAKER__SPEAKER_ALLOCATION_MASK);
1377 /* set HDMI mode */
1378 tmp |= AZALIA_F0_CODEC_PIN_CONTROL_CHANNEL_SPEAKER__HDMI_CONNECTION_MASK;
1379 if (sad_count)
1380 tmp |= (sadb[0] << AZALIA_F0_CODEC_PIN_CONTROL_CHANNEL_SPEAKER__SPEAKER_ALLOCATION__SHIFT);
1381 else
1382 tmp |= (5 << AZALIA_F0_CODEC_PIN_CONTROL_CHANNEL_SPEAKER__SPEAKER_ALLOCATION__SHIFT); /* stereo */
1383 WREG32_AUDIO_ENDPT(offset, ixAZALIA_F0_CODEC_PIN_CONTROL_CHANNEL_SPEAKER, tmp);
1384
1385 kfree(sadb);
1386 }
1387
1388 static void dce_v8_0_audio_write_sad_regs(struct drm_encoder *encoder)
1389 {
1390 struct amdgpu_device *adev = encoder->dev->dev_private;
1391 struct amdgpu_encoder *amdgpu_encoder = to_amdgpu_encoder(encoder);
1392 struct amdgpu_encoder_atom_dig *dig = amdgpu_encoder->enc_priv;
1393 u32 offset;
1394 struct drm_connector *connector;
1395 struct amdgpu_connector *amdgpu_connector = NULL;
1396 struct cea_sad *sads;
1397 int i, sad_count;
1398
1399 static const u16 eld_reg_to_type[][2] = {
1400 { ixAZALIA_F0_CODEC_PIN_CONTROL_AUDIO_DESCRIPTOR0, HDMI_AUDIO_CODING_TYPE_PCM },
1401 { ixAZALIA_F0_CODEC_PIN_CONTROL_AUDIO_DESCRIPTOR1, HDMI_AUDIO_CODING_TYPE_AC3 },
1402 { ixAZALIA_F0_CODEC_PIN_CONTROL_AUDIO_DESCRIPTOR2, HDMI_AUDIO_CODING_TYPE_MPEG1 },
1403 { ixAZALIA_F0_CODEC_PIN_CONTROL_AUDIO_DESCRIPTOR3, HDMI_AUDIO_CODING_TYPE_MP3 },
1404 { ixAZALIA_F0_CODEC_PIN_CONTROL_AUDIO_DESCRIPTOR4, HDMI_AUDIO_CODING_TYPE_MPEG2 },
1405 { ixAZALIA_F0_CODEC_PIN_CONTROL_AUDIO_DESCRIPTOR5, HDMI_AUDIO_CODING_TYPE_AAC_LC },
1406 { ixAZALIA_F0_CODEC_PIN_CONTROL_AUDIO_DESCRIPTOR6, HDMI_AUDIO_CODING_TYPE_DTS },
1407 { ixAZALIA_F0_CODEC_PIN_CONTROL_AUDIO_DESCRIPTOR7, HDMI_AUDIO_CODING_TYPE_ATRAC },
1408 { ixAZALIA_F0_CODEC_PIN_CONTROL_AUDIO_DESCRIPTOR9, HDMI_AUDIO_CODING_TYPE_EAC3 },
1409 { ixAZALIA_F0_CODEC_PIN_CONTROL_AUDIO_DESCRIPTOR10, HDMI_AUDIO_CODING_TYPE_DTS_HD },
1410 { ixAZALIA_F0_CODEC_PIN_CONTROL_AUDIO_DESCRIPTOR11, HDMI_AUDIO_CODING_TYPE_MLP },
1411 { ixAZALIA_F0_CODEC_PIN_CONTROL_AUDIO_DESCRIPTOR13, HDMI_AUDIO_CODING_TYPE_WMA_PRO },
1412 };
1413
1414 if (!dig || !dig->afmt || !dig->afmt->pin)
1415 return;
1416
1417 offset = dig->afmt->pin->offset;
1418
1419 list_for_each_entry(connector, &encoder->dev->mode_config.connector_list, head) {
1420 if (connector->encoder == encoder) {
1421 amdgpu_connector = to_amdgpu_connector(connector);
1422 break;
1423 }
1424 }
1425
1426 if (!amdgpu_connector) {
1427 DRM_ERROR("Couldn't find encoder's connector\n");
1428 return;
1429 }
1430
1431 sad_count = drm_edid_to_sad(amdgpu_connector_edid(connector), &sads);
1432 if (sad_count <= 0) {
1433 DRM_ERROR("Couldn't read SADs: %d\n", sad_count);
1434 return;
1435 }
1436 BUG_ON(!sads);
1437
1438 for (i = 0; i < ARRAY_SIZE(eld_reg_to_type); i++) {
1439 u32 value = 0;
1440 u8 stereo_freqs = 0;
1441 int max_channels = -1;
1442 int j;
1443
1444 for (j = 0; j < sad_count; j++) {
1445 struct cea_sad *sad = &sads[j];
1446
1447 if (sad->format == eld_reg_to_type[i][1]) {
1448 if (sad->channels > max_channels) {
1449 value = (sad->channels <<
1450 AZALIA_F0_CODEC_PIN_CONTROL_AUDIO_DESCRIPTOR0__MAX_CHANNELS__SHIFT) |
1451 (sad->byte2 <<
1452 AZALIA_F0_CODEC_PIN_CONTROL_AUDIO_DESCRIPTOR0__DESCRIPTOR_BYTE_2__SHIFT) |
1453 (sad->freq <<
1454 AZALIA_F0_CODEC_PIN_CONTROL_AUDIO_DESCRIPTOR0__SUPPORTED_FREQUENCIES__SHIFT);
1455 max_channels = sad->channels;
1456 }
1457
1458 if (sad->format == HDMI_AUDIO_CODING_TYPE_PCM)
1459 stereo_freqs |= sad->freq;
1460 else
1461 break;
1462 }
1463 }
1464
1465 value |= (stereo_freqs <<
1466 AZALIA_F0_CODEC_PIN_CONTROL_AUDIO_DESCRIPTOR0__SUPPORTED_FREQUENCIES_STEREO__SHIFT);
1467
1468 WREG32_AUDIO_ENDPT(offset, eld_reg_to_type[i][0], value);
1469 }
1470
1471 kfree(sads);
1472 }
1473
1474 static void dce_v8_0_audio_enable(struct amdgpu_device *adev,
1475 struct amdgpu_audio_pin *pin,
1476 bool enable)
1477 {
1478 if (!pin)
1479 return;
1480
1481 WREG32_AUDIO_ENDPT(pin->offset, ixAZALIA_F0_CODEC_PIN_CONTROL_HOT_PLUG_CONTROL,
1482 enable ? AZALIA_F0_CODEC_PIN_CONTROL_HOT_PLUG_CONTROL__AUDIO_ENABLED_MASK : 0);
1483 }
1484
1485 static const u32 pin_offsets[7] =
1486 {
1487 (0x1780 - 0x1780),
1488 (0x1786 - 0x1780),
1489 (0x178c - 0x1780),
1490 (0x1792 - 0x1780),
1491 (0x1798 - 0x1780),
1492 (0x179d - 0x1780),
1493 (0x17a4 - 0x1780),
1494 };
1495
1496 static int dce_v8_0_audio_init(struct amdgpu_device *adev)
1497 {
1498 int i;
1499
1500 if (!amdgpu_audio)
1501 return 0;
1502
1503 adev->mode_info.audio.enabled = true;
1504
1505 if (adev->asic_type == CHIP_KAVERI) /* KV: 4 streams, 7 endpoints */
1506 adev->mode_info.audio.num_pins = 7;
1507 else if ((adev->asic_type == CHIP_KABINI) ||
1508 (adev->asic_type == CHIP_MULLINS)) /* KB/ML: 2 streams, 3 endpoints */
1509 adev->mode_info.audio.num_pins = 3;
1510 else if ((adev->asic_type == CHIP_BONAIRE) ||
1511 (adev->asic_type == CHIP_HAWAII))/* BN/HW: 6 streams, 7 endpoints */
1512 adev->mode_info.audio.num_pins = 7;
1513 else
1514 adev->mode_info.audio.num_pins = 3;
1515
1516 for (i = 0; i < adev->mode_info.audio.num_pins; i++) {
1517 adev->mode_info.audio.pin[i].channels = -1;
1518 adev->mode_info.audio.pin[i].rate = -1;
1519 adev->mode_info.audio.pin[i].bits_per_sample = -1;
1520 adev->mode_info.audio.pin[i].status_bits = 0;
1521 adev->mode_info.audio.pin[i].category_code = 0;
1522 adev->mode_info.audio.pin[i].connected = false;
1523 adev->mode_info.audio.pin[i].offset = pin_offsets[i];
1524 adev->mode_info.audio.pin[i].id = i;
1525 /* disable audio. it will be set up later */
1526 /* XXX remove once we switch to ip funcs */
1527 dce_v8_0_audio_enable(adev, &adev->mode_info.audio.pin[i], false);
1528 }
1529
1530 return 0;
1531 }
1532
1533 static void dce_v8_0_audio_fini(struct amdgpu_device *adev)
1534 {
1535 int i;
1536
1537 if (!amdgpu_audio)
1538 return;
1539
1540 if (!adev->mode_info.audio.enabled)
1541 return;
1542
1543 for (i = 0; i < adev->mode_info.audio.num_pins; i++)
1544 dce_v8_0_audio_enable(adev, &adev->mode_info.audio.pin[i], false);
1545
1546 adev->mode_info.audio.enabled = false;
1547 }
1548
1549 /*
1550 * update the N and CTS parameters for a given pixel clock rate
1551 */
1552 static void dce_v8_0_afmt_update_ACR(struct drm_encoder *encoder, uint32_t clock)
1553 {
1554 struct drm_device *dev = encoder->dev;
1555 struct amdgpu_device *adev = dev->dev_private;
1556 struct amdgpu_afmt_acr acr = amdgpu_afmt_acr(clock);
1557 struct amdgpu_encoder *amdgpu_encoder = to_amdgpu_encoder(encoder);
1558 struct amdgpu_encoder_atom_dig *dig = amdgpu_encoder->enc_priv;
1559 uint32_t offset = dig->afmt->offset;
1560
1561 WREG32(mmHDMI_ACR_32_0 + offset, (acr.cts_32khz << HDMI_ACR_32_0__HDMI_ACR_CTS_32__SHIFT));
1562 WREG32(mmHDMI_ACR_32_1 + offset, acr.n_32khz);
1563
1564 WREG32(mmHDMI_ACR_44_0 + offset, (acr.cts_44_1khz << HDMI_ACR_44_0__HDMI_ACR_CTS_44__SHIFT));
1565 WREG32(mmHDMI_ACR_44_1 + offset, acr.n_44_1khz);
1566
1567 WREG32(mmHDMI_ACR_48_0 + offset, (acr.cts_48khz << HDMI_ACR_48_0__HDMI_ACR_CTS_48__SHIFT));
1568 WREG32(mmHDMI_ACR_48_1 + offset, acr.n_48khz);
1569 }
1570
1571 /*
1572 * build a HDMI Video Info Frame
1573 */
1574 static void dce_v8_0_afmt_update_avi_infoframe(struct drm_encoder *encoder,
1575 void *buffer, size_t size)
1576 {
1577 struct drm_device *dev = encoder->dev;
1578 struct amdgpu_device *adev = dev->dev_private;
1579 struct amdgpu_encoder *amdgpu_encoder = to_amdgpu_encoder(encoder);
1580 struct amdgpu_encoder_atom_dig *dig = amdgpu_encoder->enc_priv;
1581 uint32_t offset = dig->afmt->offset;
1582 uint8_t *frame = buffer + 3;
1583 uint8_t *header = buffer;
1584
1585 WREG32(mmAFMT_AVI_INFO0 + offset,
1586 frame[0x0] | (frame[0x1] << 8) | (frame[0x2] << 16) | (frame[0x3] << 24));
1587 WREG32(mmAFMT_AVI_INFO1 + offset,
1588 frame[0x4] | (frame[0x5] << 8) | (frame[0x6] << 16) | (frame[0x7] << 24));
1589 WREG32(mmAFMT_AVI_INFO2 + offset,
1590 frame[0x8] | (frame[0x9] << 8) | (frame[0xA] << 16) | (frame[0xB] << 24));
1591 WREG32(mmAFMT_AVI_INFO3 + offset,
1592 frame[0xC] | (frame[0xD] << 8) | (header[1] << 24));
1593 }
1594
1595 static void dce_v8_0_audio_set_dto(struct drm_encoder *encoder, u32 clock)
1596 {
1597 struct drm_device *dev = encoder->dev;
1598 struct amdgpu_device *adev = dev->dev_private;
1599 struct amdgpu_encoder *amdgpu_encoder = to_amdgpu_encoder(encoder);
1600 struct amdgpu_encoder_atom_dig *dig = amdgpu_encoder->enc_priv;
1601 struct amdgpu_crtc *amdgpu_crtc = to_amdgpu_crtc(encoder->crtc);
1602 u32 dto_phase = 24 * 1000;
1603 u32 dto_modulo = clock;
1604
1605 if (!dig || !dig->afmt)
1606 return;
1607
1608 /* XXX two dtos; generally use dto0 for hdmi */
1609 /* Express [24MHz / target pixel clock] as an exact rational
1610 * number (coefficient of two integer numbers. DCCG_AUDIO_DTOx_PHASE
1611 * is the numerator, DCCG_AUDIO_DTOx_MODULE is the denominator
1612 */
1613 WREG32(mmDCCG_AUDIO_DTO_SOURCE, (amdgpu_crtc->crtc_id << DCCG_AUDIO_DTO_SOURCE__DCCG_AUDIO_DTO0_SOURCE_SEL__SHIFT));
1614 WREG32(mmDCCG_AUDIO_DTO0_PHASE, dto_phase);
1615 WREG32(mmDCCG_AUDIO_DTO0_MODULE, dto_modulo);
1616 }
1617
1618 /*
1619 * update the info frames with the data from the current display mode
1620 */
1621 static void dce_v8_0_afmt_setmode(struct drm_encoder *encoder,
1622 struct drm_display_mode *mode)
1623 {
1624 struct drm_device *dev = encoder->dev;
1625 struct amdgpu_device *adev = dev->dev_private;
1626 struct amdgpu_encoder *amdgpu_encoder = to_amdgpu_encoder(encoder);
1627 struct amdgpu_encoder_atom_dig *dig = amdgpu_encoder->enc_priv;
1628 struct drm_connector *connector = amdgpu_get_connector_for_encoder(encoder);
1629 u8 buffer[HDMI_INFOFRAME_HEADER_SIZE + HDMI_AVI_INFOFRAME_SIZE];
1630 struct hdmi_avi_infoframe frame;
1631 uint32_t offset, val;
1632 ssize_t err;
1633 int bpc = 8;
1634
1635 if (!dig || !dig->afmt)
1636 return;
1637
1638 /* Silent, r600_hdmi_enable will raise WARN for us */
1639 if (!dig->afmt->enabled)
1640 return;
1641
1642 offset = dig->afmt->offset;
1643
1644 /* hdmi deep color mode general control packets setup, if bpc > 8 */
1645 if (encoder->crtc) {
1646 struct amdgpu_crtc *amdgpu_crtc = to_amdgpu_crtc(encoder->crtc);
1647 bpc = amdgpu_crtc->bpc;
1648 }
1649
1650 /* disable audio prior to setting up hw */
1651 dig->afmt->pin = dce_v8_0_audio_get_pin(adev);
1652 dce_v8_0_audio_enable(adev, dig->afmt->pin, false);
1653
1654 dce_v8_0_audio_set_dto(encoder, mode->clock);
1655
1656 WREG32(mmHDMI_VBI_PACKET_CONTROL + offset,
1657 HDMI_VBI_PACKET_CONTROL__HDMI_NULL_SEND_MASK); /* send null packets when required */
1658
1659 WREG32(mmAFMT_AUDIO_CRC_CONTROL + offset, 0x1000);
1660
1661 val = RREG32(mmHDMI_CONTROL + offset);
1662 val &= ~HDMI_CONTROL__HDMI_DEEP_COLOR_ENABLE_MASK;
1663 val &= ~HDMI_CONTROL__HDMI_DEEP_COLOR_DEPTH_MASK;
1664
1665 switch (bpc) {
1666 case 0:
1667 case 6:
1668 case 8:
1669 case 16:
1670 default:
1671 DRM_DEBUG("%s: Disabling hdmi deep color for %d bpc.\n",
1672 connector->name, bpc);
1673 break;
1674 case 10:
1675 val |= HDMI_CONTROL__HDMI_DEEP_COLOR_ENABLE_MASK;
1676 val |= 1 << HDMI_CONTROL__HDMI_DEEP_COLOR_DEPTH__SHIFT;
1677 DRM_DEBUG("%s: Enabling hdmi deep color 30 for 10 bpc.\n",
1678 connector->name);
1679 break;
1680 case 12:
1681 val |= HDMI_CONTROL__HDMI_DEEP_COLOR_ENABLE_MASK;
1682 val |= 2 << HDMI_CONTROL__HDMI_DEEP_COLOR_DEPTH__SHIFT;
1683 DRM_DEBUG("%s: Enabling hdmi deep color 36 for 12 bpc.\n",
1684 connector->name);
1685 break;
1686 }
1687
1688 WREG32(mmHDMI_CONTROL + offset, val);
1689
1690 WREG32(mmHDMI_VBI_PACKET_CONTROL + offset,
1691 HDMI_VBI_PACKET_CONTROL__HDMI_NULL_SEND_MASK | /* send null packets when required */
1692 HDMI_VBI_PACKET_CONTROL__HDMI_GC_SEND_MASK | /* send general control packets */
1693 HDMI_VBI_PACKET_CONTROL__HDMI_GC_CONT_MASK); /* send general control packets every frame */
1694
1695 WREG32(mmHDMI_INFOFRAME_CONTROL0 + offset,
1696 HDMI_INFOFRAME_CONTROL0__HDMI_AUDIO_INFO_SEND_MASK | /* enable audio info frames (frames won't be set until audio is enabled) */
1697 HDMI_INFOFRAME_CONTROL0__HDMI_AUDIO_INFO_CONT_MASK); /* required for audio info values to be updated */
1698
1699 WREG32(mmAFMT_INFOFRAME_CONTROL0 + offset,
1700 AFMT_INFOFRAME_CONTROL0__AFMT_AUDIO_INFO_UPDATE_MASK); /* required for audio info values to be updated */
1701
1702 WREG32(mmHDMI_INFOFRAME_CONTROL1 + offset,
1703 (2 << HDMI_INFOFRAME_CONTROL1__HDMI_AUDIO_INFO_LINE__SHIFT)); /* anything other than 0 */
1704
1705 WREG32(mmHDMI_GC + offset, 0); /* unset HDMI_GC_AVMUTE */
1706
1707 WREG32(mmHDMI_AUDIO_PACKET_CONTROL + offset,
1708 (1 << HDMI_AUDIO_PACKET_CONTROL__HDMI_AUDIO_DELAY_EN__SHIFT) | /* set the default audio delay */
1709 (3 << HDMI_AUDIO_PACKET_CONTROL__HDMI_AUDIO_PACKETS_PER_LINE__SHIFT)); /* should be suffient for all audio modes and small enough for all hblanks */
1710
1711 WREG32(mmAFMT_AUDIO_PACKET_CONTROL + offset,
1712 AFMT_AUDIO_PACKET_CONTROL__AFMT_60958_CS_UPDATE_MASK); /* allow 60958 channel status fields to be updated */
1713
1714 /* fglrx clears sth in AFMT_AUDIO_PACKET_CONTROL2 here */
1715
1716 if (bpc > 8)
1717 WREG32(mmHDMI_ACR_PACKET_CONTROL + offset,
1718 HDMI_ACR_PACKET_CONTROL__HDMI_ACR_AUTO_SEND_MASK); /* allow hw to sent ACR packets when required */
1719 else
1720 WREG32(mmHDMI_ACR_PACKET_CONTROL + offset,
1721 HDMI_ACR_PACKET_CONTROL__HDMI_ACR_SOURCE_MASK | /* select SW CTS value */
1722 HDMI_ACR_PACKET_CONTROL__HDMI_ACR_AUTO_SEND_MASK); /* allow hw to sent ACR packets when required */
1723
1724 dce_v8_0_afmt_update_ACR(encoder, mode->clock);
1725
1726 WREG32(mmAFMT_60958_0 + offset,
1727 (1 << AFMT_60958_0__AFMT_60958_CS_CHANNEL_NUMBER_L__SHIFT));
1728
1729 WREG32(mmAFMT_60958_1 + offset,
1730 (2 << AFMT_60958_1__AFMT_60958_CS_CHANNEL_NUMBER_R__SHIFT));
1731
1732 WREG32(mmAFMT_60958_2 + offset,
1733 (3 << AFMT_60958_2__AFMT_60958_CS_CHANNEL_NUMBER_2__SHIFT) |
1734 (4 << AFMT_60958_2__AFMT_60958_CS_CHANNEL_NUMBER_3__SHIFT) |
1735 (5 << AFMT_60958_2__AFMT_60958_CS_CHANNEL_NUMBER_4__SHIFT) |
1736 (6 << AFMT_60958_2__AFMT_60958_CS_CHANNEL_NUMBER_5__SHIFT) |
1737 (7 << AFMT_60958_2__AFMT_60958_CS_CHANNEL_NUMBER_6__SHIFT) |
1738 (8 << AFMT_60958_2__AFMT_60958_CS_CHANNEL_NUMBER_7__SHIFT));
1739
1740 dce_v8_0_audio_write_speaker_allocation(encoder);
1741
1742
1743 WREG32(mmAFMT_AUDIO_PACKET_CONTROL2 + offset,
1744 (0xff << AFMT_AUDIO_PACKET_CONTROL2__AFMT_AUDIO_CHANNEL_ENABLE__SHIFT));
1745
1746 dce_v8_0_afmt_audio_select_pin(encoder);
1747 dce_v8_0_audio_write_sad_regs(encoder);
1748 dce_v8_0_audio_write_latency_fields(encoder, mode);
1749
1750 err = drm_hdmi_avi_infoframe_from_display_mode(&frame, mode);
1751 if (err < 0) {
1752 DRM_ERROR("failed to setup AVI infoframe: %zd\n", err);
1753 return;
1754 }
1755
1756 err = hdmi_avi_infoframe_pack(&frame, buffer, sizeof(buffer));
1757 if (err < 0) {
1758 DRM_ERROR("failed to pack AVI infoframe: %zd\n", err);
1759 return;
1760 }
1761
1762 dce_v8_0_afmt_update_avi_infoframe(encoder, buffer, sizeof(buffer));
1763
1764 WREG32_OR(mmHDMI_INFOFRAME_CONTROL0 + offset,
1765 HDMI_INFOFRAME_CONTROL0__HDMI_AVI_INFO_SEND_MASK | /* enable AVI info frames */
1766 HDMI_INFOFRAME_CONTROL0__HDMI_AVI_INFO_CONT_MASK); /* required for audio info values to be updated */
1767
1768 WREG32_P(mmHDMI_INFOFRAME_CONTROL1 + offset,
1769 (2 << HDMI_INFOFRAME_CONTROL1__HDMI_AVI_INFO_LINE__SHIFT), /* anything other than 0 */
1770 ~HDMI_INFOFRAME_CONTROL1__HDMI_AVI_INFO_LINE_MASK);
1771
1772 WREG32_OR(mmAFMT_AUDIO_PACKET_CONTROL + offset,
1773 AFMT_AUDIO_PACKET_CONTROL__AFMT_AUDIO_SAMPLE_SEND_MASK); /* send audio packets */
1774
1775 WREG32(mmAFMT_RAMP_CONTROL0 + offset, 0x00FFFFFF);
1776 WREG32(mmAFMT_RAMP_CONTROL1 + offset, 0x007FFFFF);
1777 WREG32(mmAFMT_RAMP_CONTROL2 + offset, 0x00000001);
1778 WREG32(mmAFMT_RAMP_CONTROL3 + offset, 0x00000001);
1779
1780 /* enable audio after setting up hw */
1781 dce_v8_0_audio_enable(adev, dig->afmt->pin, true);
1782 }
1783
1784 static void dce_v8_0_afmt_enable(struct drm_encoder *encoder, bool enable)
1785 {
1786 struct drm_device *dev = encoder->dev;
1787 struct amdgpu_device *adev = dev->dev_private;
1788 struct amdgpu_encoder *amdgpu_encoder = to_amdgpu_encoder(encoder);
1789 struct amdgpu_encoder_atom_dig *dig = amdgpu_encoder->enc_priv;
1790
1791 if (!dig || !dig->afmt)
1792 return;
1793
1794 /* Silent, r600_hdmi_enable will raise WARN for us */
1795 if (enable && dig->afmt->enabled)
1796 return;
1797 if (!enable && !dig->afmt->enabled)
1798 return;
1799
1800 if (!enable && dig->afmt->pin) {
1801 dce_v8_0_audio_enable(adev, dig->afmt->pin, false);
1802 dig->afmt->pin = NULL;
1803 }
1804
1805 dig->afmt->enabled = enable;
1806
1807 DRM_DEBUG("%sabling AFMT interface @ 0x%04X for encoder 0x%x\n",
1808 enable ? "En" : "Dis", dig->afmt->offset, amdgpu_encoder->encoder_id);
1809 }
1810
1811 static int dce_v8_0_afmt_init(struct amdgpu_device *adev)
1812 {
1813 int i;
1814
1815 for (i = 0; i < adev->mode_info.num_dig; i++)
1816 adev->mode_info.afmt[i] = NULL;
1817
1818 /* DCE8 has audio blocks tied to DIG encoders */
1819 for (i = 0; i < adev->mode_info.num_dig; i++) {
1820 adev->mode_info.afmt[i] = kzalloc(sizeof(struct amdgpu_afmt), GFP_KERNEL);
1821 if (adev->mode_info.afmt[i]) {
1822 adev->mode_info.afmt[i]->offset = dig_offsets[i];
1823 adev->mode_info.afmt[i]->id = i;
1824 } else {
1825 int j;
1826 for (j = 0; j < i; j++) {
1827 kfree(adev->mode_info.afmt[j]);
1828 adev->mode_info.afmt[j] = NULL;
1829 }
1830 return -ENOMEM;
1831 }
1832 }
1833 return 0;
1834 }
1835
1836 static void dce_v8_0_afmt_fini(struct amdgpu_device *adev)
1837 {
1838 int i;
1839
1840 for (i = 0; i < adev->mode_info.num_dig; i++) {
1841 kfree(adev->mode_info.afmt[i]);
1842 adev->mode_info.afmt[i] = NULL;
1843 }
1844 }
1845
1846 static const u32 vga_control_regs[6] =
1847 {
1848 mmD1VGA_CONTROL,
1849 mmD2VGA_CONTROL,
1850 mmD3VGA_CONTROL,
1851 mmD4VGA_CONTROL,
1852 mmD5VGA_CONTROL,
1853 mmD6VGA_CONTROL,
1854 };
1855
1856 static void dce_v8_0_vga_enable(struct drm_crtc *crtc, bool enable)
1857 {
1858 struct amdgpu_crtc *amdgpu_crtc = to_amdgpu_crtc(crtc);
1859 struct drm_device *dev = crtc->dev;
1860 struct amdgpu_device *adev = dev->dev_private;
1861 u32 vga_control;
1862
1863 vga_control = RREG32(vga_control_regs[amdgpu_crtc->crtc_id]) & ~1;
1864 if (enable)
1865 WREG32(vga_control_regs[amdgpu_crtc->crtc_id], vga_control | 1);
1866 else
1867 WREG32(vga_control_regs[amdgpu_crtc->crtc_id], vga_control);
1868 }
1869
1870 static void dce_v8_0_grph_enable(struct drm_crtc *crtc, bool enable)
1871 {
1872 struct amdgpu_crtc *amdgpu_crtc = to_amdgpu_crtc(crtc);
1873 struct drm_device *dev = crtc->dev;
1874 struct amdgpu_device *adev = dev->dev_private;
1875
1876 if (enable)
1877 WREG32(mmGRPH_ENABLE + amdgpu_crtc->crtc_offset, 1);
1878 else
1879 WREG32(mmGRPH_ENABLE + amdgpu_crtc->crtc_offset, 0);
1880 }
1881
1882 static int dce_v8_0_crtc_do_set_base(struct drm_crtc *crtc,
1883 struct drm_framebuffer *fb,
1884 int x, int y, int atomic)
1885 {
1886 struct amdgpu_crtc *amdgpu_crtc = to_amdgpu_crtc(crtc);
1887 struct drm_device *dev = crtc->dev;
1888 struct amdgpu_device *adev = dev->dev_private;
1889 struct amdgpu_framebuffer *amdgpu_fb;
1890 struct drm_framebuffer *target_fb;
1891 struct drm_gem_object *obj;
1892 struct amdgpu_bo *abo;
1893 uint64_t fb_location, tiling_flags;
1894 uint32_t fb_format, fb_pitch_pixels;
1895 u32 fb_swap = (GRPH_ENDIAN_NONE << GRPH_SWAP_CNTL__GRPH_ENDIAN_SWAP__SHIFT);
1896 u32 pipe_config;
1897 u32 viewport_w, viewport_h;
1898 int r;
1899 bool bypass_lut = false;
1900 struct drm_format_name_buf format_name;
1901
1902 /* no fb bound */
1903 if (!atomic && !crtc->primary->fb) {
1904 DRM_DEBUG_KMS("No FB bound\n");
1905 return 0;
1906 }
1907
1908 if (atomic) {
1909 amdgpu_fb = to_amdgpu_framebuffer(fb);
1910 target_fb = fb;
1911 } else {
1912 amdgpu_fb = to_amdgpu_framebuffer(crtc->primary->fb);
1913 target_fb = crtc->primary->fb;
1914 }
1915
1916 /* If atomic, assume fb object is pinned & idle & fenced and
1917 * just update base pointers
1918 */
1919 obj = amdgpu_fb->obj;
1920 abo = gem_to_amdgpu_bo(obj);
1921 r = amdgpu_bo_reserve(abo, false);
1922 if (unlikely(r != 0))
1923 return r;
1924
1925 if (atomic) {
1926 fb_location = amdgpu_bo_gpu_offset(abo);
1927 } else {
1928 r = amdgpu_bo_pin(abo, AMDGPU_GEM_DOMAIN_VRAM, &fb_location);
1929 if (unlikely(r != 0)) {
1930 amdgpu_bo_unreserve(abo);
1931 return -EINVAL;
1932 }
1933 }
1934
1935 amdgpu_bo_get_tiling_flags(abo, &tiling_flags);
1936 amdgpu_bo_unreserve(abo);
1937
1938 pipe_config = AMDGPU_TILING_GET(tiling_flags, PIPE_CONFIG);
1939
1940 switch (target_fb->format->format) {
1941 case DRM_FORMAT_C8:
1942 fb_format = ((GRPH_DEPTH_8BPP << GRPH_CONTROL__GRPH_DEPTH__SHIFT) |
1943 (GRPH_FORMAT_INDEXED << GRPH_CONTROL__GRPH_FORMAT__SHIFT));
1944 break;
1945 case DRM_FORMAT_XRGB4444:
1946 case DRM_FORMAT_ARGB4444:
1947 fb_format = ((GRPH_DEPTH_16BPP << GRPH_CONTROL__GRPH_DEPTH__SHIFT) |
1948 (GRPH_FORMAT_ARGB4444 << GRPH_CONTROL__GRPH_FORMAT__SHIFT));
1949 #ifdef __BIG_ENDIAN
1950 fb_swap = (GRPH_ENDIAN_8IN16 << GRPH_SWAP_CNTL__GRPH_ENDIAN_SWAP__SHIFT);
1951 #endif
1952 break;
1953 case DRM_FORMAT_XRGB1555:
1954 case DRM_FORMAT_ARGB1555:
1955 fb_format = ((GRPH_DEPTH_16BPP << GRPH_CONTROL__GRPH_DEPTH__SHIFT) |
1956 (GRPH_FORMAT_ARGB1555 << GRPH_CONTROL__GRPH_FORMAT__SHIFT));
1957 #ifdef __BIG_ENDIAN
1958 fb_swap = (GRPH_ENDIAN_8IN16 << GRPH_SWAP_CNTL__GRPH_ENDIAN_SWAP__SHIFT);
1959 #endif
1960 break;
1961 case DRM_FORMAT_BGRX5551:
1962 case DRM_FORMAT_BGRA5551:
1963 fb_format = ((GRPH_DEPTH_16BPP << GRPH_CONTROL__GRPH_DEPTH__SHIFT) |
1964 (GRPH_FORMAT_BGRA5551 << GRPH_CONTROL__GRPH_FORMAT__SHIFT));
1965 #ifdef __BIG_ENDIAN
1966 fb_swap = (GRPH_ENDIAN_8IN16 << GRPH_SWAP_CNTL__GRPH_ENDIAN_SWAP__SHIFT);
1967 #endif
1968 break;
1969 case DRM_FORMAT_RGB565:
1970 fb_format = ((GRPH_DEPTH_16BPP << GRPH_CONTROL__GRPH_DEPTH__SHIFT) |
1971 (GRPH_FORMAT_ARGB565 << GRPH_CONTROL__GRPH_FORMAT__SHIFT));
1972 #ifdef __BIG_ENDIAN
1973 fb_swap = (GRPH_ENDIAN_8IN16 << GRPH_SWAP_CNTL__GRPH_ENDIAN_SWAP__SHIFT);
1974 #endif
1975 break;
1976 case DRM_FORMAT_XRGB8888:
1977 case DRM_FORMAT_ARGB8888:
1978 fb_format = ((GRPH_DEPTH_32BPP << GRPH_CONTROL__GRPH_DEPTH__SHIFT) |
1979 (GRPH_FORMAT_ARGB8888 << GRPH_CONTROL__GRPH_FORMAT__SHIFT));
1980 #ifdef __BIG_ENDIAN
1981 fb_swap = (GRPH_ENDIAN_8IN32 << GRPH_SWAP_CNTL__GRPH_ENDIAN_SWAP__SHIFT);
1982 #endif
1983 break;
1984 case DRM_FORMAT_XRGB2101010:
1985 case DRM_FORMAT_ARGB2101010:
1986 fb_format = ((GRPH_DEPTH_32BPP << GRPH_CONTROL__GRPH_DEPTH__SHIFT) |
1987 (GRPH_FORMAT_ARGB2101010 << GRPH_CONTROL__GRPH_FORMAT__SHIFT));
1988 #ifdef __BIG_ENDIAN
1989 fb_swap = (GRPH_ENDIAN_8IN32 << GRPH_SWAP_CNTL__GRPH_ENDIAN_SWAP__SHIFT);
1990 #endif
1991 /* Greater 8 bpc fb needs to bypass hw-lut to retain precision */
1992 bypass_lut = true;
1993 break;
1994 case DRM_FORMAT_BGRX1010102:
1995 case DRM_FORMAT_BGRA1010102:
1996 fb_format = ((GRPH_DEPTH_32BPP << GRPH_CONTROL__GRPH_DEPTH__SHIFT) |
1997 (GRPH_FORMAT_BGRA1010102 << GRPH_CONTROL__GRPH_FORMAT__SHIFT));
1998 #ifdef __BIG_ENDIAN
1999 fb_swap = (GRPH_ENDIAN_8IN32 << GRPH_SWAP_CNTL__GRPH_ENDIAN_SWAP__SHIFT);
2000 #endif
2001 /* Greater 8 bpc fb needs to bypass hw-lut to retain precision */
2002 bypass_lut = true;
2003 break;
2004 default:
2005 DRM_ERROR("Unsupported screen format %s\n",
2006 drm_get_format_name(target_fb->format->format, &format_name));
2007 return -EINVAL;
2008 }
2009
2010 if (AMDGPU_TILING_GET(tiling_flags, ARRAY_MODE) == ARRAY_2D_TILED_THIN1) {
2011 unsigned bankw, bankh, mtaspect, tile_split, num_banks;
2012
2013 bankw = AMDGPU_TILING_GET(tiling_flags, BANK_WIDTH);
2014 bankh = AMDGPU_TILING_GET(tiling_flags, BANK_HEIGHT);
2015 mtaspect = AMDGPU_TILING_GET(tiling_flags, MACRO_TILE_ASPECT);
2016 tile_split = AMDGPU_TILING_GET(tiling_flags, TILE_SPLIT);
2017 num_banks = AMDGPU_TILING_GET(tiling_flags, NUM_BANKS);
2018
2019 fb_format |= (num_banks << GRPH_CONTROL__GRPH_NUM_BANKS__SHIFT);
2020 fb_format |= (GRPH_ARRAY_2D_TILED_THIN1 << GRPH_CONTROL__GRPH_ARRAY_MODE__SHIFT);
2021 fb_format |= (tile_split << GRPH_CONTROL__GRPH_TILE_SPLIT__SHIFT);
2022 fb_format |= (bankw << GRPH_CONTROL__GRPH_BANK_WIDTH__SHIFT);
2023 fb_format |= (bankh << GRPH_CONTROL__GRPH_BANK_HEIGHT__SHIFT);
2024 fb_format |= (mtaspect << GRPH_CONTROL__GRPH_MACRO_TILE_ASPECT__SHIFT);
2025 fb_format |= (DISPLAY_MICRO_TILING << GRPH_CONTROL__GRPH_MICRO_TILE_MODE__SHIFT);
2026 } else if (AMDGPU_TILING_GET(tiling_flags, ARRAY_MODE) == ARRAY_1D_TILED_THIN1) {
2027 fb_format |= (GRPH_ARRAY_1D_TILED_THIN1 << GRPH_CONTROL__GRPH_ARRAY_MODE__SHIFT);
2028 }
2029
2030 fb_format |= (pipe_config << GRPH_CONTROL__GRPH_PIPE_CONFIG__SHIFT);
2031
2032 dce_v8_0_vga_enable(crtc, false);
2033
2034 /* Make sure surface address is updated at vertical blank rather than
2035 * horizontal blank
2036 */
2037 WREG32(mmGRPH_FLIP_CONTROL + amdgpu_crtc->crtc_offset, 0);
2038
2039 WREG32(mmGRPH_PRIMARY_SURFACE_ADDRESS_HIGH + amdgpu_crtc->crtc_offset,
2040 upper_32_bits(fb_location));
2041 WREG32(mmGRPH_SECONDARY_SURFACE_ADDRESS_HIGH + amdgpu_crtc->crtc_offset,
2042 upper_32_bits(fb_location));
2043 WREG32(mmGRPH_PRIMARY_SURFACE_ADDRESS + amdgpu_crtc->crtc_offset,
2044 (u32)fb_location & GRPH_PRIMARY_SURFACE_ADDRESS__GRPH_PRIMARY_SURFACE_ADDRESS_MASK);
2045 WREG32(mmGRPH_SECONDARY_SURFACE_ADDRESS + amdgpu_crtc->crtc_offset,
2046 (u32) fb_location & GRPH_SECONDARY_SURFACE_ADDRESS__GRPH_SECONDARY_SURFACE_ADDRESS_MASK);
2047 WREG32(mmGRPH_CONTROL + amdgpu_crtc->crtc_offset, fb_format);
2048 WREG32(mmGRPH_SWAP_CNTL + amdgpu_crtc->crtc_offset, fb_swap);
2049
2050 /*
2051 * The LUT only has 256 slots for indexing by a 8 bpc fb. Bypass the LUT
2052 * for > 8 bpc scanout to avoid truncation of fb indices to 8 msb's, to
2053 * retain the full precision throughout the pipeline.
2054 */
2055 WREG32_P(mmGRPH_LUT_10BIT_BYPASS_CONTROL + amdgpu_crtc->crtc_offset,
2056 (bypass_lut ? LUT_10BIT_BYPASS_EN : 0),
2057 ~LUT_10BIT_BYPASS_EN);
2058
2059 if (bypass_lut)
2060 DRM_DEBUG_KMS("Bypassing hardware LUT due to 10 bit fb scanout.\n");
2061
2062 WREG32(mmGRPH_SURFACE_OFFSET_X + amdgpu_crtc->crtc_offset, 0);
2063 WREG32(mmGRPH_SURFACE_OFFSET_Y + amdgpu_crtc->crtc_offset, 0);
2064 WREG32(mmGRPH_X_START + amdgpu_crtc->crtc_offset, 0);
2065 WREG32(mmGRPH_Y_START + amdgpu_crtc->crtc_offset, 0);
2066 WREG32(mmGRPH_X_END + amdgpu_crtc->crtc_offset, target_fb->width);
2067 WREG32(mmGRPH_Y_END + amdgpu_crtc->crtc_offset, target_fb->height);
2068
2069 fb_pitch_pixels = target_fb->pitches[0] / target_fb->format->cpp[0];
2070 WREG32(mmGRPH_PITCH + amdgpu_crtc->crtc_offset, fb_pitch_pixels);
2071
2072 dce_v8_0_grph_enable(crtc, true);
2073
2074 WREG32(mmLB_DESKTOP_HEIGHT + amdgpu_crtc->crtc_offset,
2075 target_fb->height);
2076
2077 x &= ~3;
2078 y &= ~1;
2079 WREG32(mmVIEWPORT_START + amdgpu_crtc->crtc_offset,
2080 (x << 16) | y);
2081 viewport_w = crtc->mode.hdisplay;
2082 viewport_h = (crtc->mode.vdisplay + 1) & ~1;
2083 WREG32(mmVIEWPORT_SIZE + amdgpu_crtc->crtc_offset,
2084 (viewport_w << 16) | viewport_h);
2085
2086 /* set pageflip to happen anywhere in vblank interval */
2087 WREG32(mmMASTER_UPDATE_MODE + amdgpu_crtc->crtc_offset, 0);
2088
2089 if (!atomic && fb && fb != crtc->primary->fb) {
2090 amdgpu_fb = to_amdgpu_framebuffer(fb);
2091 abo = gem_to_amdgpu_bo(amdgpu_fb->obj);
2092 r = amdgpu_bo_reserve(abo, true);
2093 if (unlikely(r != 0))
2094 return r;
2095 amdgpu_bo_unpin(abo);
2096 amdgpu_bo_unreserve(abo);
2097 }
2098
2099 /* Bytes per pixel may have changed */
2100 dce_v8_0_bandwidth_update(adev);
2101
2102 return 0;
2103 }
2104
2105 static void dce_v8_0_set_interleave(struct drm_crtc *crtc,
2106 struct drm_display_mode *mode)
2107 {
2108 struct drm_device *dev = crtc->dev;
2109 struct amdgpu_device *adev = dev->dev_private;
2110 struct amdgpu_crtc *amdgpu_crtc = to_amdgpu_crtc(crtc);
2111
2112 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
2113 WREG32(mmLB_DATA_FORMAT + amdgpu_crtc->crtc_offset,
2114 LB_DATA_FORMAT__INTERLEAVE_EN__SHIFT);
2115 else
2116 WREG32(mmLB_DATA_FORMAT + amdgpu_crtc->crtc_offset, 0);
2117 }
2118
2119 static void dce_v8_0_crtc_load_lut(struct drm_crtc *crtc)
2120 {
2121 struct amdgpu_crtc *amdgpu_crtc = to_amdgpu_crtc(crtc);
2122 struct drm_device *dev = crtc->dev;
2123 struct amdgpu_device *adev = dev->dev_private;
2124 int i;
2125
2126 DRM_DEBUG_KMS("%d\n", amdgpu_crtc->crtc_id);
2127
2128 WREG32(mmINPUT_CSC_CONTROL + amdgpu_crtc->crtc_offset,
2129 ((INPUT_CSC_BYPASS << INPUT_CSC_CONTROL__INPUT_CSC_GRPH_MODE__SHIFT) |
2130 (INPUT_CSC_BYPASS << INPUT_CSC_CONTROL__INPUT_CSC_OVL_MODE__SHIFT)));
2131 WREG32(mmPRESCALE_GRPH_CONTROL + amdgpu_crtc->crtc_offset,
2132 PRESCALE_GRPH_CONTROL__GRPH_PRESCALE_BYPASS_MASK);
2133 WREG32(mmPRESCALE_OVL_CONTROL + amdgpu_crtc->crtc_offset,
2134 PRESCALE_OVL_CONTROL__OVL_PRESCALE_BYPASS_MASK);
2135 WREG32(mmINPUT_GAMMA_CONTROL + amdgpu_crtc->crtc_offset,
2136 ((INPUT_GAMMA_USE_LUT << INPUT_GAMMA_CONTROL__GRPH_INPUT_GAMMA_MODE__SHIFT) |
2137 (INPUT_GAMMA_USE_LUT << INPUT_GAMMA_CONTROL__OVL_INPUT_GAMMA_MODE__SHIFT)));
2138
2139 WREG32(mmDC_LUT_CONTROL + amdgpu_crtc->crtc_offset, 0);
2140
2141 WREG32(mmDC_LUT_BLACK_OFFSET_BLUE + amdgpu_crtc->crtc_offset, 0);
2142 WREG32(mmDC_LUT_BLACK_OFFSET_GREEN + amdgpu_crtc->crtc_offset, 0);
2143 WREG32(mmDC_LUT_BLACK_OFFSET_RED + amdgpu_crtc->crtc_offset, 0);
2144
2145 WREG32(mmDC_LUT_WHITE_OFFSET_BLUE + amdgpu_crtc->crtc_offset, 0xffff);
2146 WREG32(mmDC_LUT_WHITE_OFFSET_GREEN + amdgpu_crtc->crtc_offset, 0xffff);
2147 WREG32(mmDC_LUT_WHITE_OFFSET_RED + amdgpu_crtc->crtc_offset, 0xffff);
2148
2149 WREG32(mmDC_LUT_RW_MODE + amdgpu_crtc->crtc_offset, 0);
2150 WREG32(mmDC_LUT_WRITE_EN_MASK + amdgpu_crtc->crtc_offset, 0x00000007);
2151
2152 WREG32(mmDC_LUT_RW_INDEX + amdgpu_crtc->crtc_offset, 0);
2153 for (i = 0; i < 256; i++) {
2154 WREG32(mmDC_LUT_30_COLOR + amdgpu_crtc->crtc_offset,
2155 (amdgpu_crtc->lut_r[i] << 20) |
2156 (amdgpu_crtc->lut_g[i] << 10) |
2157 (amdgpu_crtc->lut_b[i] << 0));
2158 }
2159
2160 WREG32(mmDEGAMMA_CONTROL + amdgpu_crtc->crtc_offset,
2161 ((DEGAMMA_BYPASS << DEGAMMA_CONTROL__GRPH_DEGAMMA_MODE__SHIFT) |
2162 (DEGAMMA_BYPASS << DEGAMMA_CONTROL__OVL_DEGAMMA_MODE__SHIFT) |
2163 (DEGAMMA_BYPASS << DEGAMMA_CONTROL__CURSOR_DEGAMMA_MODE__SHIFT)));
2164 WREG32(mmGAMUT_REMAP_CONTROL + amdgpu_crtc->crtc_offset,
2165 ((GAMUT_REMAP_BYPASS << GAMUT_REMAP_CONTROL__GRPH_GAMUT_REMAP_MODE__SHIFT) |
2166 (GAMUT_REMAP_BYPASS << GAMUT_REMAP_CONTROL__OVL_GAMUT_REMAP_MODE__SHIFT)));
2167 WREG32(mmREGAMMA_CONTROL + amdgpu_crtc->crtc_offset,
2168 ((REGAMMA_BYPASS << REGAMMA_CONTROL__GRPH_REGAMMA_MODE__SHIFT) |
2169 (REGAMMA_BYPASS << REGAMMA_CONTROL__OVL_REGAMMA_MODE__SHIFT)));
2170 WREG32(mmOUTPUT_CSC_CONTROL + amdgpu_crtc->crtc_offset,
2171 ((OUTPUT_CSC_BYPASS << OUTPUT_CSC_CONTROL__OUTPUT_CSC_GRPH_MODE__SHIFT) |
2172 (OUTPUT_CSC_BYPASS << OUTPUT_CSC_CONTROL__OUTPUT_CSC_OVL_MODE__SHIFT)));
2173 /* XXX match this to the depth of the crtc fmt block, move to modeset? */
2174 WREG32(0x1a50 + amdgpu_crtc->crtc_offset, 0);
2175 /* XXX this only needs to be programmed once per crtc at startup,
2176 * not sure where the best place for it is
2177 */
2178 WREG32(mmALPHA_CONTROL + amdgpu_crtc->crtc_offset,
2179 ALPHA_CONTROL__CURSOR_ALPHA_BLND_ENA_MASK);
2180 }
2181
2182 static int dce_v8_0_pick_dig_encoder(struct drm_encoder *encoder)
2183 {
2184 struct amdgpu_encoder *amdgpu_encoder = to_amdgpu_encoder(encoder);
2185 struct amdgpu_encoder_atom_dig *dig = amdgpu_encoder->enc_priv;
2186
2187 switch (amdgpu_encoder->encoder_id) {
2188 case ENCODER_OBJECT_ID_INTERNAL_UNIPHY:
2189 if (dig->linkb)
2190 return 1;
2191 else
2192 return 0;
2193 break;
2194 case ENCODER_OBJECT_ID_INTERNAL_UNIPHY1:
2195 if (dig->linkb)
2196 return 3;
2197 else
2198 return 2;
2199 break;
2200 case ENCODER_OBJECT_ID_INTERNAL_UNIPHY2:
2201 if (dig->linkb)
2202 return 5;
2203 else
2204 return 4;
2205 break;
2206 case ENCODER_OBJECT_ID_INTERNAL_UNIPHY3:
2207 return 6;
2208 break;
2209 default:
2210 DRM_ERROR("invalid encoder_id: 0x%x\n", amdgpu_encoder->encoder_id);
2211 return 0;
2212 }
2213 }
2214
2215 /**
2216 * dce_v8_0_pick_pll - Allocate a PPLL for use by the crtc.
2217 *
2218 * @crtc: drm crtc
2219 *
2220 * Returns the PPLL (Pixel PLL) to be used by the crtc. For DP monitors
2221 * a single PPLL can be used for all DP crtcs/encoders. For non-DP
2222 * monitors a dedicated PPLL must be used. If a particular board has
2223 * an external DP PLL, return ATOM_PPLL_INVALID to skip PLL programming
2224 * as there is no need to program the PLL itself. If we are not able to
2225 * allocate a PLL, return ATOM_PPLL_INVALID to skip PLL programming to
2226 * avoid messing up an existing monitor.
2227 *
2228 * Asic specific PLL information
2229 *
2230 * DCE 8.x
2231 * KB/KV
2232 * - PPLL1, PPLL2 are available for all UNIPHY (both DP and non-DP)
2233 * CI
2234 * - PPLL0, PPLL1, PPLL2 are available for all UNIPHY (both DP and non-DP) and DAC
2235 *
2236 */
2237 static u32 dce_v8_0_pick_pll(struct drm_crtc *crtc)
2238 {
2239 struct amdgpu_crtc *amdgpu_crtc = to_amdgpu_crtc(crtc);
2240 struct drm_device *dev = crtc->dev;
2241 struct amdgpu_device *adev = dev->dev_private;
2242 u32 pll_in_use;
2243 int pll;
2244
2245 if (ENCODER_MODE_IS_DP(amdgpu_atombios_encoder_get_encoder_mode(amdgpu_crtc->encoder))) {
2246 if (adev->clock.dp_extclk)
2247 /* skip PPLL programming if using ext clock */
2248 return ATOM_PPLL_INVALID;
2249 else {
2250 /* use the same PPLL for all DP monitors */
2251 pll = amdgpu_pll_get_shared_dp_ppll(crtc);
2252 if (pll != ATOM_PPLL_INVALID)
2253 return pll;
2254 }
2255 } else {
2256 /* use the same PPLL for all monitors with the same clock */
2257 pll = amdgpu_pll_get_shared_nondp_ppll(crtc);
2258 if (pll != ATOM_PPLL_INVALID)
2259 return pll;
2260 }
2261 /* otherwise, pick one of the plls */
2262 if ((adev->asic_type == CHIP_KABINI) ||
2263 (adev->asic_type == CHIP_MULLINS)) {
2264 /* KB/ML has PPLL1 and PPLL2 */
2265 pll_in_use = amdgpu_pll_get_use_mask(crtc);
2266 if (!(pll_in_use & (1 << ATOM_PPLL2)))
2267 return ATOM_PPLL2;
2268 if (!(pll_in_use & (1 << ATOM_PPLL1)))
2269 return ATOM_PPLL1;
2270 DRM_ERROR("unable to allocate a PPLL\n");
2271 return ATOM_PPLL_INVALID;
2272 } else {
2273 /* CI/KV has PPLL0, PPLL1, and PPLL2 */
2274 pll_in_use = amdgpu_pll_get_use_mask(crtc);
2275 if (!(pll_in_use & (1 << ATOM_PPLL2)))
2276 return ATOM_PPLL2;
2277 if (!(pll_in_use & (1 << ATOM_PPLL1)))
2278 return ATOM_PPLL1;
2279 if (!(pll_in_use & (1 << ATOM_PPLL0)))
2280 return ATOM_PPLL0;
2281 DRM_ERROR("unable to allocate a PPLL\n");
2282 return ATOM_PPLL_INVALID;
2283 }
2284 return ATOM_PPLL_INVALID;
2285 }
2286
2287 static void dce_v8_0_lock_cursor(struct drm_crtc *crtc, bool lock)
2288 {
2289 struct amdgpu_device *adev = crtc->dev->dev_private;
2290 struct amdgpu_crtc *amdgpu_crtc = to_amdgpu_crtc(crtc);
2291 uint32_t cur_lock;
2292
2293 cur_lock = RREG32(mmCUR_UPDATE + amdgpu_crtc->crtc_offset);
2294 if (lock)
2295 cur_lock |= CUR_UPDATE__CURSOR_UPDATE_LOCK_MASK;
2296 else
2297 cur_lock &= ~CUR_UPDATE__CURSOR_UPDATE_LOCK_MASK;
2298 WREG32(mmCUR_UPDATE + amdgpu_crtc->crtc_offset, cur_lock);
2299 }
2300
2301 static void dce_v8_0_hide_cursor(struct drm_crtc *crtc)
2302 {
2303 struct amdgpu_crtc *amdgpu_crtc = to_amdgpu_crtc(crtc);
2304 struct amdgpu_device *adev = crtc->dev->dev_private;
2305
2306 WREG32_IDX(mmCUR_CONTROL + amdgpu_crtc->crtc_offset,
2307 (CURSOR_24_8_PRE_MULT << CUR_CONTROL__CURSOR_MODE__SHIFT) |
2308 (CURSOR_URGENT_1_2 << CUR_CONTROL__CURSOR_URGENT_CONTROL__SHIFT));
2309 }
2310
2311 static void dce_v8_0_show_cursor(struct drm_crtc *crtc)
2312 {
2313 struct amdgpu_crtc *amdgpu_crtc = to_amdgpu_crtc(crtc);
2314 struct amdgpu_device *adev = crtc->dev->dev_private;
2315
2316 WREG32(mmCUR_SURFACE_ADDRESS_HIGH + amdgpu_crtc->crtc_offset,
2317 upper_32_bits(amdgpu_crtc->cursor_addr));
2318 WREG32(mmCUR_SURFACE_ADDRESS + amdgpu_crtc->crtc_offset,
2319 lower_32_bits(amdgpu_crtc->cursor_addr));
2320
2321 WREG32_IDX(mmCUR_CONTROL + amdgpu_crtc->crtc_offset,
2322 CUR_CONTROL__CURSOR_EN_MASK |
2323 (CURSOR_24_8_PRE_MULT << CUR_CONTROL__CURSOR_MODE__SHIFT) |
2324 (CURSOR_URGENT_1_2 << CUR_CONTROL__CURSOR_URGENT_CONTROL__SHIFT));
2325 }
2326
2327 static int dce_v8_0_cursor_move_locked(struct drm_crtc *crtc,
2328 int x, int y)
2329 {
2330 struct amdgpu_crtc *amdgpu_crtc = to_amdgpu_crtc(crtc);
2331 struct amdgpu_device *adev = crtc->dev->dev_private;
2332 int xorigin = 0, yorigin = 0;
2333
2334 amdgpu_crtc->cursor_x = x;
2335 amdgpu_crtc->cursor_y = y;
2336
2337 /* avivo cursor are offset into the total surface */
2338 x += crtc->x;
2339 y += crtc->y;
2340 DRM_DEBUG("x %d y %d c->x %d c->y %d\n", x, y, crtc->x, crtc->y);
2341
2342 if (x < 0) {
2343 xorigin = min(-x, amdgpu_crtc->max_cursor_width - 1);
2344 x = 0;
2345 }
2346 if (y < 0) {
2347 yorigin = min(-y, amdgpu_crtc->max_cursor_height - 1);
2348 y = 0;
2349 }
2350
2351 WREG32(mmCUR_POSITION + amdgpu_crtc->crtc_offset, (x << 16) | y);
2352 WREG32(mmCUR_HOT_SPOT + amdgpu_crtc->crtc_offset, (xorigin << 16) | yorigin);
2353 WREG32(mmCUR_SIZE + amdgpu_crtc->crtc_offset,
2354 ((amdgpu_crtc->cursor_width - 1) << 16) | (amdgpu_crtc->cursor_height - 1));
2355
2356 return 0;
2357 }
2358
2359 static int dce_v8_0_crtc_cursor_move(struct drm_crtc *crtc,
2360 int x, int y)
2361 {
2362 int ret;
2363
2364 dce_v8_0_lock_cursor(crtc, true);
2365 ret = dce_v8_0_cursor_move_locked(crtc, x, y);
2366 dce_v8_0_lock_cursor(crtc, false);
2367
2368 return ret;
2369 }
2370
2371 static int dce_v8_0_crtc_cursor_set2(struct drm_crtc *crtc,
2372 struct drm_file *file_priv,
2373 uint32_t handle,
2374 uint32_t width,
2375 uint32_t height,
2376 int32_t hot_x,
2377 int32_t hot_y)
2378 {
2379 struct amdgpu_crtc *amdgpu_crtc = to_amdgpu_crtc(crtc);
2380 struct drm_gem_object *obj;
2381 struct amdgpu_bo *aobj;
2382 int ret;
2383
2384 if (!handle) {
2385 /* turn off cursor */
2386 dce_v8_0_hide_cursor(crtc);
2387 obj = NULL;
2388 goto unpin;
2389 }
2390
2391 if ((width > amdgpu_crtc->max_cursor_width) ||
2392 (height > amdgpu_crtc->max_cursor_height)) {
2393 DRM_ERROR("bad cursor width or height %d x %d\n", width, height);
2394 return -EINVAL;
2395 }
2396
2397 obj = drm_gem_object_lookup(file_priv, handle);
2398 if (!obj) {
2399 DRM_ERROR("Cannot find cursor object %x for crtc %d\n", handle, amdgpu_crtc->crtc_id);
2400 return -ENOENT;
2401 }
2402
2403 aobj = gem_to_amdgpu_bo(obj);
2404 ret = amdgpu_bo_reserve(aobj, false);
2405 if (ret != 0) {
2406 drm_gem_object_unreference_unlocked(obj);
2407 return ret;
2408 }
2409
2410 ret = amdgpu_bo_pin(aobj, AMDGPU_GEM_DOMAIN_VRAM, &amdgpu_crtc->cursor_addr);
2411 amdgpu_bo_unreserve(aobj);
2412 if (ret) {
2413 DRM_ERROR("Failed to pin new cursor BO (%d)\n", ret);
2414 drm_gem_object_unreference_unlocked(obj);
2415 return ret;
2416 }
2417
2418 dce_v8_0_lock_cursor(crtc, true);
2419
2420 if (width != amdgpu_crtc->cursor_width ||
2421 height != amdgpu_crtc->cursor_height ||
2422 hot_x != amdgpu_crtc->cursor_hot_x ||
2423 hot_y != amdgpu_crtc->cursor_hot_y) {
2424 int x, y;
2425
2426 x = amdgpu_crtc->cursor_x + amdgpu_crtc->cursor_hot_x - hot_x;
2427 y = amdgpu_crtc->cursor_y + amdgpu_crtc->cursor_hot_y - hot_y;
2428
2429 dce_v8_0_cursor_move_locked(crtc, x, y);
2430
2431 amdgpu_crtc->cursor_width = width;
2432 amdgpu_crtc->cursor_height = height;
2433 amdgpu_crtc->cursor_hot_x = hot_x;
2434 amdgpu_crtc->cursor_hot_y = hot_y;
2435 }
2436
2437 dce_v8_0_show_cursor(crtc);
2438 dce_v8_0_lock_cursor(crtc, false);
2439
2440 unpin:
2441 if (amdgpu_crtc->cursor_bo) {
2442 struct amdgpu_bo *aobj = gem_to_amdgpu_bo(amdgpu_crtc->cursor_bo);
2443 ret = amdgpu_bo_reserve(aobj, true);
2444 if (likely(ret == 0)) {
2445 amdgpu_bo_unpin(aobj);
2446 amdgpu_bo_unreserve(aobj);
2447 }
2448 drm_gem_object_unreference_unlocked(amdgpu_crtc->cursor_bo);
2449 }
2450
2451 amdgpu_crtc->cursor_bo = obj;
2452 return 0;
2453 }
2454
2455 static void dce_v8_0_cursor_reset(struct drm_crtc *crtc)
2456 {
2457 struct amdgpu_crtc *amdgpu_crtc = to_amdgpu_crtc(crtc);
2458
2459 if (amdgpu_crtc->cursor_bo) {
2460 dce_v8_0_lock_cursor(crtc, true);
2461
2462 dce_v8_0_cursor_move_locked(crtc, amdgpu_crtc->cursor_x,
2463 amdgpu_crtc->cursor_y);
2464
2465 dce_v8_0_show_cursor(crtc);
2466
2467 dce_v8_0_lock_cursor(crtc, false);
2468 }
2469 }
2470
2471 static int dce_v8_0_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
2472 u16 *blue, uint32_t size,
2473 struct drm_modeset_acquire_ctx *ctx)
2474 {
2475 struct amdgpu_crtc *amdgpu_crtc = to_amdgpu_crtc(crtc);
2476 int i;
2477
2478 /* userspace palettes are always correct as is */
2479 for (i = 0; i < size; i++) {
2480 amdgpu_crtc->lut_r[i] = red[i] >> 6;
2481 amdgpu_crtc->lut_g[i] = green[i] >> 6;
2482 amdgpu_crtc->lut_b[i] = blue[i] >> 6;
2483 }
2484 dce_v8_0_crtc_load_lut(crtc);
2485
2486 return 0;
2487 }
2488
2489 static void dce_v8_0_crtc_destroy(struct drm_crtc *crtc)
2490 {
2491 struct amdgpu_crtc *amdgpu_crtc = to_amdgpu_crtc(crtc);
2492
2493 drm_crtc_cleanup(crtc);
2494 kfree(amdgpu_crtc);
2495 }
2496
2497 static const struct drm_crtc_funcs dce_v8_0_crtc_funcs = {
2498 .cursor_set2 = dce_v8_0_crtc_cursor_set2,
2499 .cursor_move = dce_v8_0_crtc_cursor_move,
2500 .gamma_set = dce_v8_0_crtc_gamma_set,
2501 .set_config = amdgpu_crtc_set_config,
2502 .destroy = dce_v8_0_crtc_destroy,
2503 .page_flip_target = amdgpu_crtc_page_flip_target,
2504 };
2505
2506 static void dce_v8_0_crtc_dpms(struct drm_crtc *crtc, int mode)
2507 {
2508 struct drm_device *dev = crtc->dev;
2509 struct amdgpu_device *adev = dev->dev_private;
2510 struct amdgpu_crtc *amdgpu_crtc = to_amdgpu_crtc(crtc);
2511 unsigned type;
2512
2513 switch (mode) {
2514 case DRM_MODE_DPMS_ON:
2515 amdgpu_crtc->enabled = true;
2516 amdgpu_atombios_crtc_enable(crtc, ATOM_ENABLE);
2517 dce_v8_0_vga_enable(crtc, true);
2518 amdgpu_atombios_crtc_blank(crtc, ATOM_DISABLE);
2519 dce_v8_0_vga_enable(crtc, false);
2520 /* Make sure VBLANK and PFLIP interrupts are still enabled */
2521 type = amdgpu_crtc_idx_to_irq_type(adev, amdgpu_crtc->crtc_id);
2522 amdgpu_irq_update(adev, &adev->crtc_irq, type);
2523 amdgpu_irq_update(adev, &adev->pageflip_irq, type);
2524 drm_crtc_vblank_on(crtc);
2525 dce_v8_0_crtc_load_lut(crtc);
2526 break;
2527 case DRM_MODE_DPMS_STANDBY:
2528 case DRM_MODE_DPMS_SUSPEND:
2529 case DRM_MODE_DPMS_OFF:
2530 drm_crtc_vblank_off(crtc);
2531 if (amdgpu_crtc->enabled) {
2532 dce_v8_0_vga_enable(crtc, true);
2533 amdgpu_atombios_crtc_blank(crtc, ATOM_ENABLE);
2534 dce_v8_0_vga_enable(crtc, false);
2535 }
2536 amdgpu_atombios_crtc_enable(crtc, ATOM_DISABLE);
2537 amdgpu_crtc->enabled = false;
2538 break;
2539 }
2540 /* adjust pm to dpms */
2541 amdgpu_pm_compute_clocks(adev);
2542 }
2543
2544 static void dce_v8_0_crtc_prepare(struct drm_crtc *crtc)
2545 {
2546 /* disable crtc pair power gating before programming */
2547 amdgpu_atombios_crtc_powergate(crtc, ATOM_DISABLE);
2548 amdgpu_atombios_crtc_lock(crtc, ATOM_ENABLE);
2549 dce_v8_0_crtc_dpms(crtc, DRM_MODE_DPMS_OFF);
2550 }
2551
2552 static void dce_v8_0_crtc_commit(struct drm_crtc *crtc)
2553 {
2554 dce_v8_0_crtc_dpms(crtc, DRM_MODE_DPMS_ON);
2555 amdgpu_atombios_crtc_lock(crtc, ATOM_DISABLE);
2556 }
2557
2558 static void dce_v8_0_crtc_disable(struct drm_crtc *crtc)
2559 {
2560 struct amdgpu_crtc *amdgpu_crtc = to_amdgpu_crtc(crtc);
2561 struct drm_device *dev = crtc->dev;
2562 struct amdgpu_device *adev = dev->dev_private;
2563 struct amdgpu_atom_ss ss;
2564 int i;
2565
2566 dce_v8_0_crtc_dpms(crtc, DRM_MODE_DPMS_OFF);
2567 if (crtc->primary->fb) {
2568 int r;
2569 struct amdgpu_framebuffer *amdgpu_fb;
2570 struct amdgpu_bo *abo;
2571
2572 amdgpu_fb = to_amdgpu_framebuffer(crtc->primary->fb);
2573 abo = gem_to_amdgpu_bo(amdgpu_fb->obj);
2574 r = amdgpu_bo_reserve(abo, true);
2575 if (unlikely(r))
2576 DRM_ERROR("failed to reserve abo before unpin\n");
2577 else {
2578 amdgpu_bo_unpin(abo);
2579 amdgpu_bo_unreserve(abo);
2580 }
2581 }
2582 /* disable the GRPH */
2583 dce_v8_0_grph_enable(crtc, false);
2584
2585 amdgpu_atombios_crtc_powergate(crtc, ATOM_ENABLE);
2586
2587 for (i = 0; i < adev->mode_info.num_crtc; i++) {
2588 if (adev->mode_info.crtcs[i] &&
2589 adev->mode_info.crtcs[i]->enabled &&
2590 i != amdgpu_crtc->crtc_id &&
2591 amdgpu_crtc->pll_id == adev->mode_info.crtcs[i]->pll_id) {
2592 /* one other crtc is using this pll don't turn
2593 * off the pll
2594 */
2595 goto done;
2596 }
2597 }
2598
2599 switch (amdgpu_crtc->pll_id) {
2600 case ATOM_PPLL1:
2601 case ATOM_PPLL2:
2602 /* disable the ppll */
2603 amdgpu_atombios_crtc_program_pll(crtc, amdgpu_crtc->crtc_id, amdgpu_crtc->pll_id,
2604 0, 0, ATOM_DISABLE, 0, 0, 0, 0, 0, false, &ss);
2605 break;
2606 case ATOM_PPLL0:
2607 /* disable the ppll */
2608 if ((adev->asic_type == CHIP_KAVERI) ||
2609 (adev->asic_type == CHIP_BONAIRE) ||
2610 (adev->asic_type == CHIP_HAWAII))
2611 amdgpu_atombios_crtc_program_pll(crtc, amdgpu_crtc->crtc_id, amdgpu_crtc->pll_id,
2612 0, 0, ATOM_DISABLE, 0, 0, 0, 0, 0, false, &ss);
2613 break;
2614 default:
2615 break;
2616 }
2617 done:
2618 amdgpu_crtc->pll_id = ATOM_PPLL_INVALID;
2619 amdgpu_crtc->adjusted_clock = 0;
2620 amdgpu_crtc->encoder = NULL;
2621 amdgpu_crtc->connector = NULL;
2622 }
2623
2624 static int dce_v8_0_crtc_mode_set(struct drm_crtc *crtc,
2625 struct drm_display_mode *mode,
2626 struct drm_display_mode *adjusted_mode,
2627 int x, int y, struct drm_framebuffer *old_fb)
2628 {
2629 struct amdgpu_crtc *amdgpu_crtc = to_amdgpu_crtc(crtc);
2630
2631 if (!amdgpu_crtc->adjusted_clock)
2632 return -EINVAL;
2633
2634 amdgpu_atombios_crtc_set_pll(crtc, adjusted_mode);
2635 amdgpu_atombios_crtc_set_dtd_timing(crtc, adjusted_mode);
2636 dce_v8_0_crtc_do_set_base(crtc, old_fb, x, y, 0);
2637 amdgpu_atombios_crtc_overscan_setup(crtc, mode, adjusted_mode);
2638 amdgpu_atombios_crtc_scaler_setup(crtc);
2639 dce_v8_0_cursor_reset(crtc);
2640 /* update the hw version fpr dpm */
2641 amdgpu_crtc->hw_mode = *adjusted_mode;
2642
2643 return 0;
2644 }
2645
2646 static bool dce_v8_0_crtc_mode_fixup(struct drm_crtc *crtc,
2647 const struct drm_display_mode *mode,
2648 struct drm_display_mode *adjusted_mode)
2649 {
2650 struct amdgpu_crtc *amdgpu_crtc = to_amdgpu_crtc(crtc);
2651 struct drm_device *dev = crtc->dev;
2652 struct drm_encoder *encoder;
2653
2654 /* assign the encoder to the amdgpu crtc to avoid repeated lookups later */
2655 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
2656 if (encoder->crtc == crtc) {
2657 amdgpu_crtc->encoder = encoder;
2658 amdgpu_crtc->connector = amdgpu_get_connector_for_encoder(encoder);
2659 break;
2660 }
2661 }
2662 if ((amdgpu_crtc->encoder == NULL) || (amdgpu_crtc->connector == NULL)) {
2663 amdgpu_crtc->encoder = NULL;
2664 amdgpu_crtc->connector = NULL;
2665 return false;
2666 }
2667 if (!amdgpu_crtc_scaling_mode_fixup(crtc, mode, adjusted_mode))
2668 return false;
2669 if (amdgpu_atombios_crtc_prepare_pll(crtc, adjusted_mode))
2670 return false;
2671 /* pick pll */
2672 amdgpu_crtc->pll_id = dce_v8_0_pick_pll(crtc);
2673 /* if we can't get a PPLL for a non-DP encoder, fail */
2674 if ((amdgpu_crtc->pll_id == ATOM_PPLL_INVALID) &&
2675 !ENCODER_MODE_IS_DP(amdgpu_atombios_encoder_get_encoder_mode(amdgpu_crtc->encoder)))
2676 return false;
2677
2678 return true;
2679 }
2680
2681 static int dce_v8_0_crtc_set_base(struct drm_crtc *crtc, int x, int y,
2682 struct drm_framebuffer *old_fb)
2683 {
2684 return dce_v8_0_crtc_do_set_base(crtc, old_fb, x, y, 0);
2685 }
2686
2687 static int dce_v8_0_crtc_set_base_atomic(struct drm_crtc *crtc,
2688 struct drm_framebuffer *fb,
2689 int x, int y, enum mode_set_atomic state)
2690 {
2691 return dce_v8_0_crtc_do_set_base(crtc, fb, x, y, 1);
2692 }
2693
2694 static const struct drm_crtc_helper_funcs dce_v8_0_crtc_helper_funcs = {
2695 .dpms = dce_v8_0_crtc_dpms,
2696 .mode_fixup = dce_v8_0_crtc_mode_fixup,
2697 .mode_set = dce_v8_0_crtc_mode_set,
2698 .mode_set_base = dce_v8_0_crtc_set_base,
2699 .mode_set_base_atomic = dce_v8_0_crtc_set_base_atomic,
2700 .prepare = dce_v8_0_crtc_prepare,
2701 .commit = dce_v8_0_crtc_commit,
2702 .load_lut = dce_v8_0_crtc_load_lut,
2703 .disable = dce_v8_0_crtc_disable,
2704 };
2705
2706 static int dce_v8_0_crtc_init(struct amdgpu_device *adev, int index)
2707 {
2708 struct amdgpu_crtc *amdgpu_crtc;
2709 int i;
2710
2711 amdgpu_crtc = kzalloc(sizeof(struct amdgpu_crtc) +
2712 (AMDGPUFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
2713 if (amdgpu_crtc == NULL)
2714 return -ENOMEM;
2715
2716 drm_crtc_init(adev->ddev, &amdgpu_crtc->base, &dce_v8_0_crtc_funcs);
2717
2718 drm_mode_crtc_set_gamma_size(&amdgpu_crtc->base, 256);
2719 amdgpu_crtc->crtc_id = index;
2720 adev->mode_info.crtcs[index] = amdgpu_crtc;
2721
2722 amdgpu_crtc->max_cursor_width = CIK_CURSOR_WIDTH;
2723 amdgpu_crtc->max_cursor_height = CIK_CURSOR_HEIGHT;
2724 adev->ddev->mode_config.cursor_width = amdgpu_crtc->max_cursor_width;
2725 adev->ddev->mode_config.cursor_height = amdgpu_crtc->max_cursor_height;
2726
2727 for (i = 0; i < 256; i++) {
2728 amdgpu_crtc->lut_r[i] = i << 2;
2729 amdgpu_crtc->lut_g[i] = i << 2;
2730 amdgpu_crtc->lut_b[i] = i << 2;
2731 }
2732
2733 amdgpu_crtc->crtc_offset = crtc_offsets[amdgpu_crtc->crtc_id];
2734
2735 amdgpu_crtc->pll_id = ATOM_PPLL_INVALID;
2736 amdgpu_crtc->adjusted_clock = 0;
2737 amdgpu_crtc->encoder = NULL;
2738 amdgpu_crtc->connector = NULL;
2739 drm_crtc_helper_add(&amdgpu_crtc->base, &dce_v8_0_crtc_helper_funcs);
2740
2741 return 0;
2742 }
2743
2744 static int dce_v8_0_early_init(void *handle)
2745 {
2746 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
2747
2748 adev->audio_endpt_rreg = &dce_v8_0_audio_endpt_rreg;
2749 adev->audio_endpt_wreg = &dce_v8_0_audio_endpt_wreg;
2750
2751 dce_v8_0_set_display_funcs(adev);
2752 dce_v8_0_set_irq_funcs(adev);
2753
2754 adev->mode_info.num_crtc = dce_v8_0_get_num_crtc(adev);
2755
2756 switch (adev->asic_type) {
2757 case CHIP_BONAIRE:
2758 case CHIP_HAWAII:
2759 adev->mode_info.num_hpd = 6;
2760 adev->mode_info.num_dig = 6;
2761 break;
2762 case CHIP_KAVERI:
2763 adev->mode_info.num_hpd = 6;
2764 adev->mode_info.num_dig = 7;
2765 break;
2766 case CHIP_KABINI:
2767 case CHIP_MULLINS:
2768 adev->mode_info.num_hpd = 6;
2769 adev->mode_info.num_dig = 6; /* ? */
2770 break;
2771 default:
2772 /* FIXME: not supported yet */
2773 return -EINVAL;
2774 }
2775
2776 return 0;
2777 }
2778
2779 static int dce_v8_0_sw_init(void *handle)
2780 {
2781 int r, i;
2782 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
2783
2784 for (i = 0; i < adev->mode_info.num_crtc; i++) {
2785 r = amdgpu_irq_add_id(adev, AMDGPU_IH_CLIENTID_LEGACY, i + 1, &adev->crtc_irq);
2786 if (r)
2787 return r;
2788 }
2789
2790 for (i = 8; i < 20; i += 2) {
2791 r = amdgpu_irq_add_id(adev, AMDGPU_IH_CLIENTID_LEGACY, i, &adev->pageflip_irq);
2792 if (r)
2793 return r;
2794 }
2795
2796 /* HPD hotplug */
2797 r = amdgpu_irq_add_id(adev, AMDGPU_IH_CLIENTID_LEGACY, 42, &adev->hpd_irq);
2798 if (r)
2799 return r;
2800
2801 adev->ddev->mode_config.funcs = &amdgpu_mode_funcs;
2802
2803 adev->ddev->mode_config.async_page_flip = true;
2804
2805 adev->ddev->mode_config.max_width = 16384;
2806 adev->ddev->mode_config.max_height = 16384;
2807
2808 adev->ddev->mode_config.preferred_depth = 24;
2809 adev->ddev->mode_config.prefer_shadow = 1;
2810
2811 adev->ddev->mode_config.fb_base = adev->mc.aper_base;
2812
2813 r = amdgpu_modeset_create_props(adev);
2814 if (r)
2815 return r;
2816
2817 adev->ddev->mode_config.max_width = 16384;
2818 adev->ddev->mode_config.max_height = 16384;
2819
2820 /* allocate crtcs */
2821 for (i = 0; i < adev->mode_info.num_crtc; i++) {
2822 r = dce_v8_0_crtc_init(adev, i);
2823 if (r)
2824 return r;
2825 }
2826
2827 if (amdgpu_atombios_get_connector_info_from_object_table(adev))
2828 amdgpu_print_display_setup(adev->ddev);
2829 else
2830 return -EINVAL;
2831
2832 /* setup afmt */
2833 r = dce_v8_0_afmt_init(adev);
2834 if (r)
2835 return r;
2836
2837 r = dce_v8_0_audio_init(adev);
2838 if (r)
2839 return r;
2840
2841 drm_kms_helper_poll_init(adev->ddev);
2842
2843 adev->mode_info.mode_config_initialized = true;
2844 return 0;
2845 }
2846
2847 static int dce_v8_0_sw_fini(void *handle)
2848 {
2849 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
2850
2851 kfree(adev->mode_info.bios_hardcoded_edid);
2852
2853 drm_kms_helper_poll_fini(adev->ddev);
2854
2855 dce_v8_0_audio_fini(adev);
2856
2857 dce_v8_0_afmt_fini(adev);
2858
2859 drm_mode_config_cleanup(adev->ddev);
2860 adev->mode_info.mode_config_initialized = false;
2861
2862 return 0;
2863 }
2864
2865 static int dce_v8_0_hw_init(void *handle)
2866 {
2867 int i;
2868 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
2869
2870 /* init dig PHYs, disp eng pll */
2871 amdgpu_atombios_encoder_init_dig(adev);
2872 amdgpu_atombios_crtc_set_disp_eng_pll(adev, adev->clock.default_dispclk);
2873
2874 /* initialize hpd */
2875 dce_v8_0_hpd_init(adev);
2876
2877 for (i = 0; i < adev->mode_info.audio.num_pins; i++) {
2878 dce_v8_0_audio_enable(adev, &adev->mode_info.audio.pin[i], false);
2879 }
2880
2881 dce_v8_0_pageflip_interrupt_init(adev);
2882
2883 return 0;
2884 }
2885
2886 static int dce_v8_0_hw_fini(void *handle)
2887 {
2888 int i;
2889 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
2890
2891 dce_v8_0_hpd_fini(adev);
2892
2893 for (i = 0; i < adev->mode_info.audio.num_pins; i++) {
2894 dce_v8_0_audio_enable(adev, &adev->mode_info.audio.pin[i], false);
2895 }
2896
2897 dce_v8_0_pageflip_interrupt_fini(adev);
2898
2899 return 0;
2900 }
2901
2902 static int dce_v8_0_suspend(void *handle)
2903 {
2904 return dce_v8_0_hw_fini(handle);
2905 }
2906
2907 static int dce_v8_0_resume(void *handle)
2908 {
2909 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
2910 int ret;
2911
2912 ret = dce_v8_0_hw_init(handle);
2913
2914 /* turn on the BL */
2915 if (adev->mode_info.bl_encoder) {
2916 u8 bl_level = amdgpu_display_backlight_get_level(adev,
2917 adev->mode_info.bl_encoder);
2918 amdgpu_display_backlight_set_level(adev, adev->mode_info.bl_encoder,
2919 bl_level);
2920 }
2921
2922 return ret;
2923 }
2924
2925 static bool dce_v8_0_is_idle(void *handle)
2926 {
2927 return true;
2928 }
2929
2930 static int dce_v8_0_wait_for_idle(void *handle)
2931 {
2932 return 0;
2933 }
2934
2935 static int dce_v8_0_soft_reset(void *handle)
2936 {
2937 u32 srbm_soft_reset = 0, tmp;
2938 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
2939
2940 if (dce_v8_0_is_display_hung(adev))
2941 srbm_soft_reset |= SRBM_SOFT_RESET__SOFT_RESET_DC_MASK;
2942
2943 if (srbm_soft_reset) {
2944 tmp = RREG32(mmSRBM_SOFT_RESET);
2945 tmp |= srbm_soft_reset;
2946 dev_info(adev->dev, "SRBM_SOFT_RESET=0x%08X\n", tmp);
2947 WREG32(mmSRBM_SOFT_RESET, tmp);
2948 tmp = RREG32(mmSRBM_SOFT_RESET);
2949
2950 udelay(50);
2951
2952 tmp &= ~srbm_soft_reset;
2953 WREG32(mmSRBM_SOFT_RESET, tmp);
2954 tmp = RREG32(mmSRBM_SOFT_RESET);
2955
2956 /* Wait a little for things to settle down */
2957 udelay(50);
2958 }
2959 return 0;
2960 }
2961
2962 static void dce_v8_0_set_crtc_vblank_interrupt_state(struct amdgpu_device *adev,
2963 int crtc,
2964 enum amdgpu_interrupt_state state)
2965 {
2966 u32 reg_block, lb_interrupt_mask;
2967
2968 if (crtc >= adev->mode_info.num_crtc) {
2969 DRM_DEBUG("invalid crtc %d\n", crtc);
2970 return;
2971 }
2972
2973 switch (crtc) {
2974 case 0:
2975 reg_block = CRTC0_REGISTER_OFFSET;
2976 break;
2977 case 1:
2978 reg_block = CRTC1_REGISTER_OFFSET;
2979 break;
2980 case 2:
2981 reg_block = CRTC2_REGISTER_OFFSET;
2982 break;
2983 case 3:
2984 reg_block = CRTC3_REGISTER_OFFSET;
2985 break;
2986 case 4:
2987 reg_block = CRTC4_REGISTER_OFFSET;
2988 break;
2989 case 5:
2990 reg_block = CRTC5_REGISTER_OFFSET;
2991 break;
2992 default:
2993 DRM_DEBUG("invalid crtc %d\n", crtc);
2994 return;
2995 }
2996
2997 switch (state) {
2998 case AMDGPU_IRQ_STATE_DISABLE:
2999 lb_interrupt_mask = RREG32(mmLB_INTERRUPT_MASK + reg_block);
3000 lb_interrupt_mask &= ~LB_INTERRUPT_MASK__VBLANK_INTERRUPT_MASK_MASK;
3001 WREG32(mmLB_INTERRUPT_MASK + reg_block, lb_interrupt_mask);
3002 break;
3003 case AMDGPU_IRQ_STATE_ENABLE:
3004 lb_interrupt_mask = RREG32(mmLB_INTERRUPT_MASK + reg_block);
3005 lb_interrupt_mask |= LB_INTERRUPT_MASK__VBLANK_INTERRUPT_MASK_MASK;
3006 WREG32(mmLB_INTERRUPT_MASK + reg_block, lb_interrupt_mask);
3007 break;
3008 default:
3009 break;
3010 }
3011 }
3012
3013 static void dce_v8_0_set_crtc_vline_interrupt_state(struct amdgpu_device *adev,
3014 int crtc,
3015 enum amdgpu_interrupt_state state)
3016 {
3017 u32 reg_block, lb_interrupt_mask;
3018
3019 if (crtc >= adev->mode_info.num_crtc) {
3020 DRM_DEBUG("invalid crtc %d\n", crtc);
3021 return;
3022 }
3023
3024 switch (crtc) {
3025 case 0:
3026 reg_block = CRTC0_REGISTER_OFFSET;
3027 break;
3028 case 1:
3029 reg_block = CRTC1_REGISTER_OFFSET;
3030 break;
3031 case 2:
3032 reg_block = CRTC2_REGISTER_OFFSET;
3033 break;
3034 case 3:
3035 reg_block = CRTC3_REGISTER_OFFSET;
3036 break;
3037 case 4:
3038 reg_block = CRTC4_REGISTER_OFFSET;
3039 break;
3040 case 5:
3041 reg_block = CRTC5_REGISTER_OFFSET;
3042 break;
3043 default:
3044 DRM_DEBUG("invalid crtc %d\n", crtc);
3045 return;
3046 }
3047
3048 switch (state) {
3049 case AMDGPU_IRQ_STATE_DISABLE:
3050 lb_interrupt_mask = RREG32(mmLB_INTERRUPT_MASK + reg_block);
3051 lb_interrupt_mask &= ~LB_INTERRUPT_MASK__VLINE_INTERRUPT_MASK_MASK;
3052 WREG32(mmLB_INTERRUPT_MASK + reg_block, lb_interrupt_mask);
3053 break;
3054 case AMDGPU_IRQ_STATE_ENABLE:
3055 lb_interrupt_mask = RREG32(mmLB_INTERRUPT_MASK + reg_block);
3056 lb_interrupt_mask |= LB_INTERRUPT_MASK__VLINE_INTERRUPT_MASK_MASK;
3057 WREG32(mmLB_INTERRUPT_MASK + reg_block, lb_interrupt_mask);
3058 break;
3059 default:
3060 break;
3061 }
3062 }
3063
3064 static int dce_v8_0_set_hpd_interrupt_state(struct amdgpu_device *adev,
3065 struct amdgpu_irq_src *src,
3066 unsigned type,
3067 enum amdgpu_interrupt_state state)
3068 {
3069 u32 dc_hpd_int_cntl;
3070
3071 if (type >= adev->mode_info.num_hpd) {
3072 DRM_DEBUG("invalid hdp %d\n", type);
3073 return 0;
3074 }
3075
3076 switch (state) {
3077 case AMDGPU_IRQ_STATE_DISABLE:
3078 dc_hpd_int_cntl = RREG32(mmDC_HPD1_INT_CONTROL + hpd_offsets[type]);
3079 dc_hpd_int_cntl &= ~DC_HPD1_INT_CONTROL__DC_HPD1_INT_EN_MASK;
3080 WREG32(mmDC_HPD1_INT_CONTROL + hpd_offsets[type], dc_hpd_int_cntl);
3081 break;
3082 case AMDGPU_IRQ_STATE_ENABLE:
3083 dc_hpd_int_cntl = RREG32(mmDC_HPD1_INT_CONTROL + hpd_offsets[type]);
3084 dc_hpd_int_cntl |= DC_HPD1_INT_CONTROL__DC_HPD1_INT_EN_MASK;
3085 WREG32(mmDC_HPD1_INT_CONTROL + hpd_offsets[type], dc_hpd_int_cntl);
3086 break;
3087 default:
3088 break;
3089 }
3090
3091 return 0;
3092 }
3093
3094 static int dce_v8_0_set_crtc_interrupt_state(struct amdgpu_device *adev,
3095 struct amdgpu_irq_src *src,
3096 unsigned type,
3097 enum amdgpu_interrupt_state state)
3098 {
3099 switch (type) {
3100 case AMDGPU_CRTC_IRQ_VBLANK1:
3101 dce_v8_0_set_crtc_vblank_interrupt_state(adev, 0, state);
3102 break;
3103 case AMDGPU_CRTC_IRQ_VBLANK2:
3104 dce_v8_0_set_crtc_vblank_interrupt_state(adev, 1, state);
3105 break;
3106 case AMDGPU_CRTC_IRQ_VBLANK3:
3107 dce_v8_0_set_crtc_vblank_interrupt_state(adev, 2, state);
3108 break;
3109 case AMDGPU_CRTC_IRQ_VBLANK4:
3110 dce_v8_0_set_crtc_vblank_interrupt_state(adev, 3, state);
3111 break;
3112 case AMDGPU_CRTC_IRQ_VBLANK5:
3113 dce_v8_0_set_crtc_vblank_interrupt_state(adev, 4, state);
3114 break;
3115 case AMDGPU_CRTC_IRQ_VBLANK6:
3116 dce_v8_0_set_crtc_vblank_interrupt_state(adev, 5, state);
3117 break;
3118 case AMDGPU_CRTC_IRQ_VLINE1:
3119 dce_v8_0_set_crtc_vline_interrupt_state(adev, 0, state);
3120 break;
3121 case AMDGPU_CRTC_IRQ_VLINE2:
3122 dce_v8_0_set_crtc_vline_interrupt_state(adev, 1, state);
3123 break;
3124 case AMDGPU_CRTC_IRQ_VLINE3:
3125 dce_v8_0_set_crtc_vline_interrupt_state(adev, 2, state);
3126 break;
3127 case AMDGPU_CRTC_IRQ_VLINE4:
3128 dce_v8_0_set_crtc_vline_interrupt_state(adev, 3, state);
3129 break;
3130 case AMDGPU_CRTC_IRQ_VLINE5:
3131 dce_v8_0_set_crtc_vline_interrupt_state(adev, 4, state);
3132 break;
3133 case AMDGPU_CRTC_IRQ_VLINE6:
3134 dce_v8_0_set_crtc_vline_interrupt_state(adev, 5, state);
3135 break;
3136 default:
3137 break;
3138 }
3139 return 0;
3140 }
3141
3142 static int dce_v8_0_crtc_irq(struct amdgpu_device *adev,
3143 struct amdgpu_irq_src *source,
3144 struct amdgpu_iv_entry *entry)
3145 {
3146 unsigned crtc = entry->src_id - 1;
3147 uint32_t disp_int = RREG32(interrupt_status_offsets[crtc].reg);
3148 unsigned irq_type = amdgpu_crtc_idx_to_irq_type(adev, crtc);
3149
3150 switch (entry->src_data[0]) {
3151 case 0: /* vblank */
3152 if (disp_int & interrupt_status_offsets[crtc].vblank)
3153 WREG32(mmLB_VBLANK_STATUS + crtc_offsets[crtc], LB_VBLANK_STATUS__VBLANK_ACK_MASK);
3154 else
3155 DRM_DEBUG("IH: IH event w/o asserted irq bit?\n");
3156
3157 if (amdgpu_irq_enabled(adev, source, irq_type)) {
3158 drm_handle_vblank(adev->ddev, crtc);
3159 }
3160 DRM_DEBUG("IH: D%d vblank\n", crtc + 1);
3161 break;
3162 case 1: /* vline */
3163 if (disp_int & interrupt_status_offsets[crtc].vline)
3164 WREG32(mmLB_VLINE_STATUS + crtc_offsets[crtc], LB_VLINE_STATUS__VLINE_ACK_MASK);
3165 else
3166 DRM_DEBUG("IH: IH event w/o asserted irq bit?\n");
3167
3168 DRM_DEBUG("IH: D%d vline\n", crtc + 1);
3169 break;
3170 default:
3171 DRM_DEBUG("Unhandled interrupt: %d %d\n", entry->src_id, entry->src_data[0]);
3172 break;
3173 }
3174
3175 return 0;
3176 }
3177
3178 static int dce_v8_0_set_pageflip_interrupt_state(struct amdgpu_device *adev,
3179 struct amdgpu_irq_src *src,
3180 unsigned type,
3181 enum amdgpu_interrupt_state state)
3182 {
3183 u32 reg;
3184
3185 if (type >= adev->mode_info.num_crtc) {
3186 DRM_ERROR("invalid pageflip crtc %d\n", type);
3187 return -EINVAL;
3188 }
3189
3190 reg = RREG32(mmGRPH_INTERRUPT_CONTROL + crtc_offsets[type]);
3191 if (state == AMDGPU_IRQ_STATE_DISABLE)
3192 WREG32(mmGRPH_INTERRUPT_CONTROL + crtc_offsets[type],
3193 reg & ~GRPH_INTERRUPT_CONTROL__GRPH_PFLIP_INT_MASK_MASK);
3194 else
3195 WREG32(mmGRPH_INTERRUPT_CONTROL + crtc_offsets[type],
3196 reg | GRPH_INTERRUPT_CONTROL__GRPH_PFLIP_INT_MASK_MASK);
3197
3198 return 0;
3199 }
3200
3201 static int dce_v8_0_pageflip_irq(struct amdgpu_device *adev,
3202 struct amdgpu_irq_src *source,
3203 struct amdgpu_iv_entry *entry)
3204 {
3205 unsigned long flags;
3206 unsigned crtc_id;
3207 struct amdgpu_crtc *amdgpu_crtc;
3208 struct amdgpu_flip_work *works;
3209
3210 crtc_id = (entry->src_id - 8) >> 1;
3211 amdgpu_crtc = adev->mode_info.crtcs[crtc_id];
3212
3213 if (crtc_id >= adev->mode_info.num_crtc) {
3214 DRM_ERROR("invalid pageflip crtc %d\n", crtc_id);
3215 return -EINVAL;
3216 }
3217
3218 if (RREG32(mmGRPH_INTERRUPT_STATUS + crtc_offsets[crtc_id]) &
3219 GRPH_INTERRUPT_STATUS__GRPH_PFLIP_INT_OCCURRED_MASK)
3220 WREG32(mmGRPH_INTERRUPT_STATUS + crtc_offsets[crtc_id],
3221 GRPH_INTERRUPT_STATUS__GRPH_PFLIP_INT_CLEAR_MASK);
3222
3223 /* IRQ could occur when in initial stage */
3224 if (amdgpu_crtc == NULL)
3225 return 0;
3226
3227 spin_lock_irqsave(&adev->ddev->event_lock, flags);
3228 works = amdgpu_crtc->pflip_works;
3229 if (amdgpu_crtc->pflip_status != AMDGPU_FLIP_SUBMITTED){
3230 DRM_DEBUG_DRIVER("amdgpu_crtc->pflip_status = %d != "
3231 "AMDGPU_FLIP_SUBMITTED(%d)\n",
3232 amdgpu_crtc->pflip_status,
3233 AMDGPU_FLIP_SUBMITTED);
3234 spin_unlock_irqrestore(&adev->ddev->event_lock, flags);
3235 return 0;
3236 }
3237
3238 /* page flip completed. clean up */
3239 amdgpu_crtc->pflip_status = AMDGPU_FLIP_NONE;
3240 amdgpu_crtc->pflip_works = NULL;
3241
3242 /* wakeup usersapce */
3243 if (works->event)
3244 drm_crtc_send_vblank_event(&amdgpu_crtc->base, works->event);
3245
3246 spin_unlock_irqrestore(&adev->ddev->event_lock, flags);
3247
3248 drm_crtc_vblank_put(&amdgpu_crtc->base);
3249 schedule_work(&works->unpin_work);
3250
3251 return 0;
3252 }
3253
3254 static int dce_v8_0_hpd_irq(struct amdgpu_device *adev,
3255 struct amdgpu_irq_src *source,
3256 struct amdgpu_iv_entry *entry)
3257 {
3258 uint32_t disp_int, mask, tmp;
3259 unsigned hpd;
3260
3261 if (entry->src_data[0] >= adev->mode_info.num_hpd) {
3262 DRM_DEBUG("Unhandled interrupt: %d %d\n", entry->src_id, entry->src_data[0]);
3263 return 0;
3264 }
3265
3266 hpd = entry->src_data[0];
3267 disp_int = RREG32(interrupt_status_offsets[hpd].reg);
3268 mask = interrupt_status_offsets[hpd].hpd;
3269
3270 if (disp_int & mask) {
3271 tmp = RREG32(mmDC_HPD1_INT_CONTROL + hpd_offsets[hpd]);
3272 tmp |= DC_HPD1_INT_CONTROL__DC_HPD1_INT_ACK_MASK;
3273 WREG32(mmDC_HPD1_INT_CONTROL + hpd_offsets[hpd], tmp);
3274 schedule_work(&adev->hotplug_work);
3275 DRM_DEBUG("IH: HPD%d\n", hpd + 1);
3276 }
3277
3278 return 0;
3279
3280 }
3281
3282 static int dce_v8_0_set_clockgating_state(void *handle,
3283 enum amd_clockgating_state state)
3284 {
3285 return 0;
3286 }
3287
3288 static int dce_v8_0_set_powergating_state(void *handle,
3289 enum amd_powergating_state state)
3290 {
3291 return 0;
3292 }
3293
3294 static const struct amd_ip_funcs dce_v8_0_ip_funcs = {
3295 .name = "dce_v8_0",
3296 .early_init = dce_v8_0_early_init,
3297 .late_init = NULL,
3298 .sw_init = dce_v8_0_sw_init,
3299 .sw_fini = dce_v8_0_sw_fini,
3300 .hw_init = dce_v8_0_hw_init,
3301 .hw_fini = dce_v8_0_hw_fini,
3302 .suspend = dce_v8_0_suspend,
3303 .resume = dce_v8_0_resume,
3304 .is_idle = dce_v8_0_is_idle,
3305 .wait_for_idle = dce_v8_0_wait_for_idle,
3306 .soft_reset = dce_v8_0_soft_reset,
3307 .set_clockgating_state = dce_v8_0_set_clockgating_state,
3308 .set_powergating_state = dce_v8_0_set_powergating_state,
3309 };
3310
3311 static void
3312 dce_v8_0_encoder_mode_set(struct drm_encoder *encoder,
3313 struct drm_display_mode *mode,
3314 struct drm_display_mode *adjusted_mode)
3315 {
3316 struct amdgpu_encoder *amdgpu_encoder = to_amdgpu_encoder(encoder);
3317
3318 amdgpu_encoder->pixel_clock = adjusted_mode->clock;
3319
3320 /* need to call this here rather than in prepare() since we need some crtc info */
3321 amdgpu_atombios_encoder_dpms(encoder, DRM_MODE_DPMS_OFF);
3322
3323 /* set scaler clears this on some chips */
3324 dce_v8_0_set_interleave(encoder->crtc, mode);
3325
3326 if (amdgpu_atombios_encoder_get_encoder_mode(encoder) == ATOM_ENCODER_MODE_HDMI) {
3327 dce_v8_0_afmt_enable(encoder, true);
3328 dce_v8_0_afmt_setmode(encoder, adjusted_mode);
3329 }
3330 }
3331
3332 static void dce_v8_0_encoder_prepare(struct drm_encoder *encoder)
3333 {
3334 struct amdgpu_device *adev = encoder->dev->dev_private;
3335 struct amdgpu_encoder *amdgpu_encoder = to_amdgpu_encoder(encoder);
3336 struct drm_connector *connector = amdgpu_get_connector_for_encoder(encoder);
3337
3338 if ((amdgpu_encoder->active_device &
3339 (ATOM_DEVICE_DFP_SUPPORT | ATOM_DEVICE_LCD_SUPPORT)) ||
3340 (amdgpu_encoder_get_dp_bridge_encoder_id(encoder) !=
3341 ENCODER_OBJECT_ID_NONE)) {
3342 struct amdgpu_encoder_atom_dig *dig = amdgpu_encoder->enc_priv;
3343 if (dig) {
3344 dig->dig_encoder = dce_v8_0_pick_dig_encoder(encoder);
3345 if (amdgpu_encoder->active_device & ATOM_DEVICE_DFP_SUPPORT)
3346 dig->afmt = adev->mode_info.afmt[dig->dig_encoder];
3347 }
3348 }
3349
3350 amdgpu_atombios_scratch_regs_lock(adev, true);
3351
3352 if (connector) {
3353 struct amdgpu_connector *amdgpu_connector = to_amdgpu_connector(connector);
3354
3355 /* select the clock/data port if it uses a router */
3356 if (amdgpu_connector->router.cd_valid)
3357 amdgpu_i2c_router_select_cd_port(amdgpu_connector);
3358
3359 /* turn eDP panel on for mode set */
3360 if (connector->connector_type == DRM_MODE_CONNECTOR_eDP)
3361 amdgpu_atombios_encoder_set_edp_panel_power(connector,
3362 ATOM_TRANSMITTER_ACTION_POWER_ON);
3363 }
3364
3365 /* this is needed for the pll/ss setup to work correctly in some cases */
3366 amdgpu_atombios_encoder_set_crtc_source(encoder);
3367 /* set up the FMT blocks */
3368 dce_v8_0_program_fmt(encoder);
3369 }
3370
3371 static void dce_v8_0_encoder_commit(struct drm_encoder *encoder)
3372 {
3373 struct drm_device *dev = encoder->dev;
3374 struct amdgpu_device *adev = dev->dev_private;
3375
3376 /* need to call this here as we need the crtc set up */
3377 amdgpu_atombios_encoder_dpms(encoder, DRM_MODE_DPMS_ON);
3378 amdgpu_atombios_scratch_regs_lock(adev, false);
3379 }
3380
3381 static void dce_v8_0_encoder_disable(struct drm_encoder *encoder)
3382 {
3383 struct amdgpu_encoder *amdgpu_encoder = to_amdgpu_encoder(encoder);
3384 struct amdgpu_encoder_atom_dig *dig;
3385
3386 amdgpu_atombios_encoder_dpms(encoder, DRM_MODE_DPMS_OFF);
3387
3388 if (amdgpu_atombios_encoder_is_digital(encoder)) {
3389 if (amdgpu_atombios_encoder_get_encoder_mode(encoder) == ATOM_ENCODER_MODE_HDMI)
3390 dce_v8_0_afmt_enable(encoder, false);
3391 dig = amdgpu_encoder->enc_priv;
3392 dig->dig_encoder = -1;
3393 }
3394 amdgpu_encoder->active_device = 0;
3395 }
3396
3397 /* these are handled by the primary encoders */
3398 static void dce_v8_0_ext_prepare(struct drm_encoder *encoder)
3399 {
3400
3401 }
3402
3403 static void dce_v8_0_ext_commit(struct drm_encoder *encoder)
3404 {
3405
3406 }
3407
3408 static void
3409 dce_v8_0_ext_mode_set(struct drm_encoder *encoder,
3410 struct drm_display_mode *mode,
3411 struct drm_display_mode *adjusted_mode)
3412 {
3413
3414 }
3415
3416 static void dce_v8_0_ext_disable(struct drm_encoder *encoder)
3417 {
3418
3419 }
3420
3421 static void
3422 dce_v8_0_ext_dpms(struct drm_encoder *encoder, int mode)
3423 {
3424
3425 }
3426
3427 static const struct drm_encoder_helper_funcs dce_v8_0_ext_helper_funcs = {
3428 .dpms = dce_v8_0_ext_dpms,
3429 .prepare = dce_v8_0_ext_prepare,
3430 .mode_set = dce_v8_0_ext_mode_set,
3431 .commit = dce_v8_0_ext_commit,
3432 .disable = dce_v8_0_ext_disable,
3433 /* no detect for TMDS/LVDS yet */
3434 };
3435
3436 static const struct drm_encoder_helper_funcs dce_v8_0_dig_helper_funcs = {
3437 .dpms = amdgpu_atombios_encoder_dpms,
3438 .mode_fixup = amdgpu_atombios_encoder_mode_fixup,
3439 .prepare = dce_v8_0_encoder_prepare,
3440 .mode_set = dce_v8_0_encoder_mode_set,
3441 .commit = dce_v8_0_encoder_commit,
3442 .disable = dce_v8_0_encoder_disable,
3443 .detect = amdgpu_atombios_encoder_dig_detect,
3444 };
3445
3446 static const struct drm_encoder_helper_funcs dce_v8_0_dac_helper_funcs = {
3447 .dpms = amdgpu_atombios_encoder_dpms,
3448 .mode_fixup = amdgpu_atombios_encoder_mode_fixup,
3449 .prepare = dce_v8_0_encoder_prepare,
3450 .mode_set = dce_v8_0_encoder_mode_set,
3451 .commit = dce_v8_0_encoder_commit,
3452 .detect = amdgpu_atombios_encoder_dac_detect,
3453 };
3454
3455 static void dce_v8_0_encoder_destroy(struct drm_encoder *encoder)
3456 {
3457 struct amdgpu_encoder *amdgpu_encoder = to_amdgpu_encoder(encoder);
3458 if (amdgpu_encoder->devices & (ATOM_DEVICE_LCD_SUPPORT))
3459 amdgpu_atombios_encoder_fini_backlight(amdgpu_encoder);
3460 kfree(amdgpu_encoder->enc_priv);
3461 drm_encoder_cleanup(encoder);
3462 kfree(amdgpu_encoder);
3463 }
3464
3465 static const struct drm_encoder_funcs dce_v8_0_encoder_funcs = {
3466 .destroy = dce_v8_0_encoder_destroy,
3467 };
3468
3469 static void dce_v8_0_encoder_add(struct amdgpu_device *adev,
3470 uint32_t encoder_enum,
3471 uint32_t supported_device,
3472 u16 caps)
3473 {
3474 struct drm_device *dev = adev->ddev;
3475 struct drm_encoder *encoder;
3476 struct amdgpu_encoder *amdgpu_encoder;
3477
3478 /* see if we already added it */
3479 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
3480 amdgpu_encoder = to_amdgpu_encoder(encoder);
3481 if (amdgpu_encoder->encoder_enum == encoder_enum) {
3482 amdgpu_encoder->devices |= supported_device;
3483 return;
3484 }
3485
3486 }
3487
3488 /* add a new one */
3489 amdgpu_encoder = kzalloc(sizeof(struct amdgpu_encoder), GFP_KERNEL);
3490 if (!amdgpu_encoder)
3491 return;
3492
3493 encoder = &amdgpu_encoder->base;
3494 switch (adev->mode_info.num_crtc) {
3495 case 1:
3496 encoder->possible_crtcs = 0x1;
3497 break;
3498 case 2:
3499 default:
3500 encoder->possible_crtcs = 0x3;
3501 break;
3502 case 4:
3503 encoder->possible_crtcs = 0xf;
3504 break;
3505 case 6:
3506 encoder->possible_crtcs = 0x3f;
3507 break;
3508 }
3509
3510 amdgpu_encoder->enc_priv = NULL;
3511
3512 amdgpu_encoder->encoder_enum = encoder_enum;
3513 amdgpu_encoder->encoder_id = (encoder_enum & OBJECT_ID_MASK) >> OBJECT_ID_SHIFT;
3514 amdgpu_encoder->devices = supported_device;
3515 amdgpu_encoder->rmx_type = RMX_OFF;
3516 amdgpu_encoder->underscan_type = UNDERSCAN_OFF;
3517 amdgpu_encoder->is_ext_encoder = false;
3518 amdgpu_encoder->caps = caps;
3519
3520 switch (amdgpu_encoder->encoder_id) {
3521 case ENCODER_OBJECT_ID_INTERNAL_KLDSCP_DAC1:
3522 case ENCODER_OBJECT_ID_INTERNAL_KLDSCP_DAC2:
3523 drm_encoder_init(dev, encoder, &dce_v8_0_encoder_funcs,
3524 DRM_MODE_ENCODER_DAC, NULL);
3525 drm_encoder_helper_add(encoder, &dce_v8_0_dac_helper_funcs);
3526 break;
3527 case ENCODER_OBJECT_ID_INTERNAL_KLDSCP_DVO1:
3528 case ENCODER_OBJECT_ID_INTERNAL_UNIPHY:
3529 case ENCODER_OBJECT_ID_INTERNAL_UNIPHY1:
3530 case ENCODER_OBJECT_ID_INTERNAL_UNIPHY2:
3531 case ENCODER_OBJECT_ID_INTERNAL_UNIPHY3:
3532 if (amdgpu_encoder->devices & (ATOM_DEVICE_LCD_SUPPORT)) {
3533 amdgpu_encoder->rmx_type = RMX_FULL;
3534 drm_encoder_init(dev, encoder, &dce_v8_0_encoder_funcs,
3535 DRM_MODE_ENCODER_LVDS, NULL);
3536 amdgpu_encoder->enc_priv = amdgpu_atombios_encoder_get_lcd_info(amdgpu_encoder);
3537 } else if (amdgpu_encoder->devices & (ATOM_DEVICE_CRT_SUPPORT)) {
3538 drm_encoder_init(dev, encoder, &dce_v8_0_encoder_funcs,
3539 DRM_MODE_ENCODER_DAC, NULL);
3540 amdgpu_encoder->enc_priv = amdgpu_atombios_encoder_get_dig_info(amdgpu_encoder);
3541 } else {
3542 drm_encoder_init(dev, encoder, &dce_v8_0_encoder_funcs,
3543 DRM_MODE_ENCODER_TMDS, NULL);
3544 amdgpu_encoder->enc_priv = amdgpu_atombios_encoder_get_dig_info(amdgpu_encoder);
3545 }
3546 drm_encoder_helper_add(encoder, &dce_v8_0_dig_helper_funcs);
3547 break;
3548 case ENCODER_OBJECT_ID_SI170B:
3549 case ENCODER_OBJECT_ID_CH7303:
3550 case ENCODER_OBJECT_ID_EXTERNAL_SDVOA:
3551 case ENCODER_OBJECT_ID_EXTERNAL_SDVOB:
3552 case ENCODER_OBJECT_ID_TITFP513:
3553 case ENCODER_OBJECT_ID_VT1623:
3554 case ENCODER_OBJECT_ID_HDMI_SI1930:
3555 case ENCODER_OBJECT_ID_TRAVIS:
3556 case ENCODER_OBJECT_ID_NUTMEG:
3557 /* these are handled by the primary encoders */
3558 amdgpu_encoder->is_ext_encoder = true;
3559 if (amdgpu_encoder->devices & (ATOM_DEVICE_LCD_SUPPORT))
3560 drm_encoder_init(dev, encoder, &dce_v8_0_encoder_funcs,
3561 DRM_MODE_ENCODER_LVDS, NULL);
3562 else if (amdgpu_encoder->devices & (ATOM_DEVICE_CRT_SUPPORT))
3563 drm_encoder_init(dev, encoder, &dce_v8_0_encoder_funcs,
3564 DRM_MODE_ENCODER_DAC, NULL);
3565 else
3566 drm_encoder_init(dev, encoder, &dce_v8_0_encoder_funcs,
3567 DRM_MODE_ENCODER_TMDS, NULL);
3568 drm_encoder_helper_add(encoder, &dce_v8_0_ext_helper_funcs);
3569 break;
3570 }
3571 }
3572
3573 static const struct amdgpu_display_funcs dce_v8_0_display_funcs = {
3574 .set_vga_render_state = &dce_v8_0_set_vga_render_state,
3575 .bandwidth_update = &dce_v8_0_bandwidth_update,
3576 .vblank_get_counter = &dce_v8_0_vblank_get_counter,
3577 .vblank_wait = &dce_v8_0_vblank_wait,
3578 .backlight_set_level = &amdgpu_atombios_encoder_set_backlight_level,
3579 .backlight_get_level = &amdgpu_atombios_encoder_get_backlight_level,
3580 .hpd_sense = &dce_v8_0_hpd_sense,
3581 .hpd_set_polarity = &dce_v8_0_hpd_set_polarity,
3582 .hpd_get_gpio_reg = &dce_v8_0_hpd_get_gpio_reg,
3583 .page_flip = &dce_v8_0_page_flip,
3584 .page_flip_get_scanoutpos = &dce_v8_0_crtc_get_scanoutpos,
3585 .add_encoder = &dce_v8_0_encoder_add,
3586 .add_connector = &amdgpu_connector_add,
3587 .stop_mc_access = &dce_v8_0_stop_mc_access,
3588 .resume_mc_access = &dce_v8_0_resume_mc_access,
3589 };
3590
3591 static void dce_v8_0_set_display_funcs(struct amdgpu_device *adev)
3592 {
3593 if (adev->mode_info.funcs == NULL)
3594 adev->mode_info.funcs = &dce_v8_0_display_funcs;
3595 }
3596
3597 static const struct amdgpu_irq_src_funcs dce_v8_0_crtc_irq_funcs = {
3598 .set = dce_v8_0_set_crtc_interrupt_state,
3599 .process = dce_v8_0_crtc_irq,
3600 };
3601
3602 static const struct amdgpu_irq_src_funcs dce_v8_0_pageflip_irq_funcs = {
3603 .set = dce_v8_0_set_pageflip_interrupt_state,
3604 .process = dce_v8_0_pageflip_irq,
3605 };
3606
3607 static const struct amdgpu_irq_src_funcs dce_v8_0_hpd_irq_funcs = {
3608 .set = dce_v8_0_set_hpd_interrupt_state,
3609 .process = dce_v8_0_hpd_irq,
3610 };
3611
3612 static void dce_v8_0_set_irq_funcs(struct amdgpu_device *adev)
3613 {
3614 adev->crtc_irq.num_types = AMDGPU_CRTC_IRQ_LAST;
3615 adev->crtc_irq.funcs = &dce_v8_0_crtc_irq_funcs;
3616
3617 adev->pageflip_irq.num_types = AMDGPU_PAGEFLIP_IRQ_LAST;
3618 adev->pageflip_irq.funcs = &dce_v8_0_pageflip_irq_funcs;
3619
3620 adev->hpd_irq.num_types = AMDGPU_HPD_LAST;
3621 adev->hpd_irq.funcs = &dce_v8_0_hpd_irq_funcs;
3622 }
3623
3624 const struct amdgpu_ip_block_version dce_v8_0_ip_block =
3625 {
3626 .type = AMD_IP_BLOCK_TYPE_DCE,
3627 .major = 8,
3628 .minor = 0,
3629 .rev = 0,
3630 .funcs = &dce_v8_0_ip_funcs,
3631 };
3632
3633 const struct amdgpu_ip_block_version dce_v8_1_ip_block =
3634 {
3635 .type = AMD_IP_BLOCK_TYPE_DCE,
3636 .major = 8,
3637 .minor = 1,
3638 .rev = 0,
3639 .funcs = &dce_v8_0_ip_funcs,
3640 };
3641
3642 const struct amdgpu_ip_block_version dce_v8_2_ip_block =
3643 {
3644 .type = AMD_IP_BLOCK_TYPE_DCE,
3645 .major = 8,
3646 .minor = 2,
3647 .rev = 0,
3648 .funcs = &dce_v8_0_ip_funcs,
3649 };
3650
3651 const struct amdgpu_ip_block_version dce_v8_3_ip_block =
3652 {
3653 .type = AMD_IP_BLOCK_TYPE_DCE,
3654 .major = 8,
3655 .minor = 3,
3656 .rev = 0,
3657 .funcs = &dce_v8_0_ip_funcs,
3658 };
3659
3660 const struct amdgpu_ip_block_version dce_v8_5_ip_block =
3661 {
3662 .type = AMD_IP_BLOCK_TYPE_DCE,
3663 .major = 8,
3664 .minor = 5,
3665 .rev = 0,
3666 .funcs = &dce_v8_0_ip_funcs,
3667 };