]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/gpu/drm/amd/amdgpu/gmc_v8_0.c
ARM: at91: remove atmel_nand_data
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / amd / amdgpu / gmc_v8_0.c
1 /*
2 * Copyright 2014 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 */
23 #include <linux/firmware.h>
24 #include "drmP.h"
25 #include "amdgpu.h"
26 #include "gmc_v8_0.h"
27 #include "amdgpu_ucode.h"
28
29 #include "gmc/gmc_8_1_d.h"
30 #include "gmc/gmc_8_1_sh_mask.h"
31
32 #include "bif/bif_5_0_d.h"
33 #include "bif/bif_5_0_sh_mask.h"
34
35 #include "oss/oss_3_0_d.h"
36 #include "oss/oss_3_0_sh_mask.h"
37
38 #include "vid.h"
39 #include "vi.h"
40
41 #include "amdgpu_atombios.h"
42
43
44 static void gmc_v8_0_set_gart_funcs(struct amdgpu_device *adev);
45 static void gmc_v8_0_set_irq_funcs(struct amdgpu_device *adev);
46 static int gmc_v8_0_wait_for_idle(void *handle);
47
48 MODULE_FIRMWARE("amdgpu/tonga_mc.bin");
49 MODULE_FIRMWARE("amdgpu/polaris11_mc.bin");
50 MODULE_FIRMWARE("amdgpu/polaris10_mc.bin");
51 MODULE_FIRMWARE("amdgpu/polaris12_mc.bin");
52
53 static const u32 golden_settings_tonga_a11[] =
54 {
55 mmMC_ARB_WTM_GRPWT_RD, 0x00000003, 0x00000000,
56 mmMC_HUB_RDREQ_DMIF_LIMIT, 0x0000007f, 0x00000028,
57 mmMC_HUB_WDP_UMC, 0x00007fb6, 0x00000991,
58 mmVM_PRT_APERTURE0_LOW_ADDR, 0x0fffffff, 0x0fffffff,
59 mmVM_PRT_APERTURE1_LOW_ADDR, 0x0fffffff, 0x0fffffff,
60 mmVM_PRT_APERTURE2_LOW_ADDR, 0x0fffffff, 0x0fffffff,
61 mmVM_PRT_APERTURE3_LOW_ADDR, 0x0fffffff, 0x0fffffff,
62 };
63
64 static const u32 tonga_mgcg_cgcg_init[] =
65 {
66 mmMC_MEM_POWER_LS, 0xffffffff, 0x00000104
67 };
68
69 static const u32 golden_settings_fiji_a10[] =
70 {
71 mmVM_PRT_APERTURE0_LOW_ADDR, 0x0fffffff, 0x0fffffff,
72 mmVM_PRT_APERTURE1_LOW_ADDR, 0x0fffffff, 0x0fffffff,
73 mmVM_PRT_APERTURE2_LOW_ADDR, 0x0fffffff, 0x0fffffff,
74 mmVM_PRT_APERTURE3_LOW_ADDR, 0x0fffffff, 0x0fffffff,
75 };
76
77 static const u32 fiji_mgcg_cgcg_init[] =
78 {
79 mmMC_MEM_POWER_LS, 0xffffffff, 0x00000104
80 };
81
82 static const u32 golden_settings_polaris11_a11[] =
83 {
84 mmVM_PRT_APERTURE0_LOW_ADDR, 0x0fffffff, 0x0fffffff,
85 mmVM_PRT_APERTURE1_LOW_ADDR, 0x0fffffff, 0x0fffffff,
86 mmVM_PRT_APERTURE2_LOW_ADDR, 0x0fffffff, 0x0fffffff,
87 mmVM_PRT_APERTURE3_LOW_ADDR, 0x0fffffff, 0x0fffffff
88 };
89
90 static const u32 golden_settings_polaris10_a11[] =
91 {
92 mmMC_ARB_WTM_GRPWT_RD, 0x00000003, 0x00000000,
93 mmVM_PRT_APERTURE0_LOW_ADDR, 0x0fffffff, 0x0fffffff,
94 mmVM_PRT_APERTURE1_LOW_ADDR, 0x0fffffff, 0x0fffffff,
95 mmVM_PRT_APERTURE2_LOW_ADDR, 0x0fffffff, 0x0fffffff,
96 mmVM_PRT_APERTURE3_LOW_ADDR, 0x0fffffff, 0x0fffffff
97 };
98
99 static const u32 cz_mgcg_cgcg_init[] =
100 {
101 mmMC_MEM_POWER_LS, 0xffffffff, 0x00000104
102 };
103
104 static const u32 stoney_mgcg_cgcg_init[] =
105 {
106 mmATC_MISC_CG, 0xffffffff, 0x000c0200,
107 mmMC_MEM_POWER_LS, 0xffffffff, 0x00000104
108 };
109
110 static const u32 golden_settings_stoney_common[] =
111 {
112 mmMC_HUB_RDREQ_UVD, MC_HUB_RDREQ_UVD__PRESCALE_MASK, 0x00000004,
113 mmMC_RD_GRP_OTH, MC_RD_GRP_OTH__UVD_MASK, 0x00600000
114 };
115
116 static void gmc_v8_0_init_golden_registers(struct amdgpu_device *adev)
117 {
118 switch (adev->asic_type) {
119 case CHIP_FIJI:
120 amdgpu_program_register_sequence(adev,
121 fiji_mgcg_cgcg_init,
122 (const u32)ARRAY_SIZE(fiji_mgcg_cgcg_init));
123 amdgpu_program_register_sequence(adev,
124 golden_settings_fiji_a10,
125 (const u32)ARRAY_SIZE(golden_settings_fiji_a10));
126 break;
127 case CHIP_TONGA:
128 amdgpu_program_register_sequence(adev,
129 tonga_mgcg_cgcg_init,
130 (const u32)ARRAY_SIZE(tonga_mgcg_cgcg_init));
131 amdgpu_program_register_sequence(adev,
132 golden_settings_tonga_a11,
133 (const u32)ARRAY_SIZE(golden_settings_tonga_a11));
134 break;
135 case CHIP_POLARIS11:
136 case CHIP_POLARIS12:
137 amdgpu_program_register_sequence(adev,
138 golden_settings_polaris11_a11,
139 (const u32)ARRAY_SIZE(golden_settings_polaris11_a11));
140 break;
141 case CHIP_POLARIS10:
142 amdgpu_program_register_sequence(adev,
143 golden_settings_polaris10_a11,
144 (const u32)ARRAY_SIZE(golden_settings_polaris10_a11));
145 break;
146 case CHIP_CARRIZO:
147 amdgpu_program_register_sequence(adev,
148 cz_mgcg_cgcg_init,
149 (const u32)ARRAY_SIZE(cz_mgcg_cgcg_init));
150 break;
151 case CHIP_STONEY:
152 amdgpu_program_register_sequence(adev,
153 stoney_mgcg_cgcg_init,
154 (const u32)ARRAY_SIZE(stoney_mgcg_cgcg_init));
155 amdgpu_program_register_sequence(adev,
156 golden_settings_stoney_common,
157 (const u32)ARRAY_SIZE(golden_settings_stoney_common));
158 break;
159 default:
160 break;
161 }
162 }
163
164 static void gmc_v8_0_mc_stop(struct amdgpu_device *adev,
165 struct amdgpu_mode_mc_save *save)
166 {
167 u32 blackout;
168
169 if (adev->mode_info.num_crtc)
170 amdgpu_display_stop_mc_access(adev, save);
171
172 gmc_v8_0_wait_for_idle(adev);
173
174 blackout = RREG32(mmMC_SHARED_BLACKOUT_CNTL);
175 if (REG_GET_FIELD(blackout, MC_SHARED_BLACKOUT_CNTL, BLACKOUT_MODE) != 1) {
176 /* Block CPU access */
177 WREG32(mmBIF_FB_EN, 0);
178 /* blackout the MC */
179 blackout = REG_SET_FIELD(blackout,
180 MC_SHARED_BLACKOUT_CNTL, BLACKOUT_MODE, 1);
181 WREG32(mmMC_SHARED_BLACKOUT_CNTL, blackout);
182 }
183 /* wait for the MC to settle */
184 udelay(100);
185 }
186
187 static void gmc_v8_0_mc_resume(struct amdgpu_device *adev,
188 struct amdgpu_mode_mc_save *save)
189 {
190 u32 tmp;
191
192 /* unblackout the MC */
193 tmp = RREG32(mmMC_SHARED_BLACKOUT_CNTL);
194 tmp = REG_SET_FIELD(tmp, MC_SHARED_BLACKOUT_CNTL, BLACKOUT_MODE, 0);
195 WREG32(mmMC_SHARED_BLACKOUT_CNTL, tmp);
196 /* allow CPU access */
197 tmp = REG_SET_FIELD(0, BIF_FB_EN, FB_READ_EN, 1);
198 tmp = REG_SET_FIELD(tmp, BIF_FB_EN, FB_WRITE_EN, 1);
199 WREG32(mmBIF_FB_EN, tmp);
200
201 if (adev->mode_info.num_crtc)
202 amdgpu_display_resume_mc_access(adev, save);
203 }
204
205 /**
206 * gmc_v8_0_init_microcode - load ucode images from disk
207 *
208 * @adev: amdgpu_device pointer
209 *
210 * Use the firmware interface to load the ucode images into
211 * the driver (not loaded into hw).
212 * Returns 0 on success, error on failure.
213 */
214 static int gmc_v8_0_init_microcode(struct amdgpu_device *adev)
215 {
216 const char *chip_name;
217 char fw_name[30];
218 int err;
219
220 DRM_DEBUG("\n");
221
222 switch (adev->asic_type) {
223 case CHIP_TONGA:
224 chip_name = "tonga";
225 break;
226 case CHIP_POLARIS11:
227 chip_name = "polaris11";
228 break;
229 case CHIP_POLARIS10:
230 chip_name = "polaris10";
231 break;
232 case CHIP_POLARIS12:
233 chip_name = "polaris12";
234 break;
235 case CHIP_FIJI:
236 case CHIP_CARRIZO:
237 case CHIP_STONEY:
238 return 0;
239 default: BUG();
240 }
241
242 snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_mc.bin", chip_name);
243 err = request_firmware(&adev->mc.fw, fw_name, adev->dev);
244 if (err)
245 goto out;
246 err = amdgpu_ucode_validate(adev->mc.fw);
247
248 out:
249 if (err) {
250 pr_err("mc: Failed to load firmware \"%s\"\n", fw_name);
251 release_firmware(adev->mc.fw);
252 adev->mc.fw = NULL;
253 }
254 return err;
255 }
256
257 /**
258 * gmc_v8_0_tonga_mc_load_microcode - load tonga MC ucode into the hw
259 *
260 * @adev: amdgpu_device pointer
261 *
262 * Load the GDDR MC ucode into the hw (CIK).
263 * Returns 0 on success, error on failure.
264 */
265 static int gmc_v8_0_tonga_mc_load_microcode(struct amdgpu_device *adev)
266 {
267 const struct mc_firmware_header_v1_0 *hdr;
268 const __le32 *fw_data = NULL;
269 const __le32 *io_mc_regs = NULL;
270 u32 running;
271 int i, ucode_size, regs_size;
272
273 /* Skip MC ucode loading on SR-IOV capable boards.
274 * vbios does this for us in asic_init in that case.
275 * Skip MC ucode loading on VF, because hypervisor will do that
276 * for this adaptor.
277 */
278 if (amdgpu_sriov_bios(adev))
279 return 0;
280
281 if (!adev->mc.fw)
282 return -EINVAL;
283
284 hdr = (const struct mc_firmware_header_v1_0 *)adev->mc.fw->data;
285 amdgpu_ucode_print_mc_hdr(&hdr->header);
286
287 adev->mc.fw_version = le32_to_cpu(hdr->header.ucode_version);
288 regs_size = le32_to_cpu(hdr->io_debug_size_bytes) / (4 * 2);
289 io_mc_regs = (const __le32 *)
290 (adev->mc.fw->data + le32_to_cpu(hdr->io_debug_array_offset_bytes));
291 ucode_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4;
292 fw_data = (const __le32 *)
293 (adev->mc.fw->data + le32_to_cpu(hdr->header.ucode_array_offset_bytes));
294
295 running = REG_GET_FIELD(RREG32(mmMC_SEQ_SUP_CNTL), MC_SEQ_SUP_CNTL, RUN);
296
297 if (running == 0) {
298 /* reset the engine and set to writable */
299 WREG32(mmMC_SEQ_SUP_CNTL, 0x00000008);
300 WREG32(mmMC_SEQ_SUP_CNTL, 0x00000010);
301
302 /* load mc io regs */
303 for (i = 0; i < regs_size; i++) {
304 WREG32(mmMC_SEQ_IO_DEBUG_INDEX, le32_to_cpup(io_mc_regs++));
305 WREG32(mmMC_SEQ_IO_DEBUG_DATA, le32_to_cpup(io_mc_regs++));
306 }
307 /* load the MC ucode */
308 for (i = 0; i < ucode_size; i++)
309 WREG32(mmMC_SEQ_SUP_PGM, le32_to_cpup(fw_data++));
310
311 /* put the engine back into the active state */
312 WREG32(mmMC_SEQ_SUP_CNTL, 0x00000008);
313 WREG32(mmMC_SEQ_SUP_CNTL, 0x00000004);
314 WREG32(mmMC_SEQ_SUP_CNTL, 0x00000001);
315
316 /* wait for training to complete */
317 for (i = 0; i < adev->usec_timeout; i++) {
318 if (REG_GET_FIELD(RREG32(mmMC_SEQ_TRAIN_WAKEUP_CNTL),
319 MC_SEQ_TRAIN_WAKEUP_CNTL, TRAIN_DONE_D0))
320 break;
321 udelay(1);
322 }
323 for (i = 0; i < adev->usec_timeout; i++) {
324 if (REG_GET_FIELD(RREG32(mmMC_SEQ_TRAIN_WAKEUP_CNTL),
325 MC_SEQ_TRAIN_WAKEUP_CNTL, TRAIN_DONE_D1))
326 break;
327 udelay(1);
328 }
329 }
330
331 return 0;
332 }
333
334 static int gmc_v8_0_polaris_mc_load_microcode(struct amdgpu_device *adev)
335 {
336 const struct mc_firmware_header_v1_0 *hdr;
337 const __le32 *fw_data = NULL;
338 const __le32 *io_mc_regs = NULL;
339 u32 data, vbios_version;
340 int i, ucode_size, regs_size;
341
342 /* Skip MC ucode loading on SR-IOV capable boards.
343 * vbios does this for us in asic_init in that case.
344 * Skip MC ucode loading on VF, because hypervisor will do that
345 * for this adaptor.
346 */
347 if (amdgpu_sriov_bios(adev))
348 return 0;
349
350 WREG32(mmMC_SEQ_IO_DEBUG_INDEX, 0x9F);
351 data = RREG32(mmMC_SEQ_IO_DEBUG_DATA);
352 vbios_version = data & 0xf;
353
354 if (vbios_version == 0)
355 return 0;
356
357 if (!adev->mc.fw)
358 return -EINVAL;
359
360 hdr = (const struct mc_firmware_header_v1_0 *)adev->mc.fw->data;
361 amdgpu_ucode_print_mc_hdr(&hdr->header);
362
363 adev->mc.fw_version = le32_to_cpu(hdr->header.ucode_version);
364 regs_size = le32_to_cpu(hdr->io_debug_size_bytes) / (4 * 2);
365 io_mc_regs = (const __le32 *)
366 (adev->mc.fw->data + le32_to_cpu(hdr->io_debug_array_offset_bytes));
367 ucode_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4;
368 fw_data = (const __le32 *)
369 (adev->mc.fw->data + le32_to_cpu(hdr->header.ucode_array_offset_bytes));
370
371 data = RREG32(mmMC_SEQ_MISC0);
372 data &= ~(0x40);
373 WREG32(mmMC_SEQ_MISC0, data);
374
375 /* load mc io regs */
376 for (i = 0; i < regs_size; i++) {
377 WREG32(mmMC_SEQ_IO_DEBUG_INDEX, le32_to_cpup(io_mc_regs++));
378 WREG32(mmMC_SEQ_IO_DEBUG_DATA, le32_to_cpup(io_mc_regs++));
379 }
380
381 WREG32(mmMC_SEQ_SUP_CNTL, 0x00000008);
382 WREG32(mmMC_SEQ_SUP_CNTL, 0x00000010);
383
384 /* load the MC ucode */
385 for (i = 0; i < ucode_size; i++)
386 WREG32(mmMC_SEQ_SUP_PGM, le32_to_cpup(fw_data++));
387
388 /* put the engine back into the active state */
389 WREG32(mmMC_SEQ_SUP_CNTL, 0x00000008);
390 WREG32(mmMC_SEQ_SUP_CNTL, 0x00000004);
391 WREG32(mmMC_SEQ_SUP_CNTL, 0x00000001);
392
393 /* wait for training to complete */
394 for (i = 0; i < adev->usec_timeout; i++) {
395 data = RREG32(mmMC_SEQ_MISC0);
396 if (data & 0x80)
397 break;
398 udelay(1);
399 }
400
401 return 0;
402 }
403
404 static void gmc_v8_0_vram_gtt_location(struct amdgpu_device *adev,
405 struct amdgpu_mc *mc)
406 {
407 if (mc->mc_vram_size > 0xFFC0000000ULL) {
408 /* leave room for at least 1024M GTT */
409 dev_warn(adev->dev, "limiting VRAM\n");
410 mc->real_vram_size = 0xFFC0000000ULL;
411 mc->mc_vram_size = 0xFFC0000000ULL;
412 }
413 amdgpu_vram_location(adev, &adev->mc, 0);
414 adev->mc.gtt_base_align = 0;
415 amdgpu_gtt_location(adev, mc);
416 }
417
418 /**
419 * gmc_v8_0_mc_program - program the GPU memory controller
420 *
421 * @adev: amdgpu_device pointer
422 *
423 * Set the location of vram, gart, and AGP in the GPU's
424 * physical address space (CIK).
425 */
426 static void gmc_v8_0_mc_program(struct amdgpu_device *adev)
427 {
428 struct amdgpu_mode_mc_save save;
429 u32 tmp;
430 int i, j;
431
432 /* Initialize HDP */
433 for (i = 0, j = 0; i < 32; i++, j += 0x6) {
434 WREG32((0xb05 + j), 0x00000000);
435 WREG32((0xb06 + j), 0x00000000);
436 WREG32((0xb07 + j), 0x00000000);
437 WREG32((0xb08 + j), 0x00000000);
438 WREG32((0xb09 + j), 0x00000000);
439 }
440 WREG32(mmHDP_REG_COHERENCY_FLUSH_CNTL, 0);
441
442 if (adev->mode_info.num_crtc)
443 amdgpu_display_set_vga_render_state(adev, false);
444
445 gmc_v8_0_mc_stop(adev, &save);
446 if (gmc_v8_0_wait_for_idle((void *)adev)) {
447 dev_warn(adev->dev, "Wait for MC idle timedout !\n");
448 }
449 /* Update configuration */
450 WREG32(mmMC_VM_SYSTEM_APERTURE_LOW_ADDR,
451 adev->mc.vram_start >> 12);
452 WREG32(mmMC_VM_SYSTEM_APERTURE_HIGH_ADDR,
453 adev->mc.vram_end >> 12);
454 WREG32(mmMC_VM_SYSTEM_APERTURE_DEFAULT_ADDR,
455 adev->vram_scratch.gpu_addr >> 12);
456 tmp = ((adev->mc.vram_end >> 24) & 0xFFFF) << 16;
457 tmp |= ((adev->mc.vram_start >> 24) & 0xFFFF);
458 WREG32(mmMC_VM_FB_LOCATION, tmp);
459 /* XXX double check these! */
460 WREG32(mmHDP_NONSURFACE_BASE, (adev->mc.vram_start >> 8));
461 WREG32(mmHDP_NONSURFACE_INFO, (2 << 7) | (1 << 30));
462 WREG32(mmHDP_NONSURFACE_SIZE, 0x3FFFFFFF);
463 WREG32(mmMC_VM_AGP_BASE, 0);
464 WREG32(mmMC_VM_AGP_TOP, 0x0FFFFFFF);
465 WREG32(mmMC_VM_AGP_BOT, 0x0FFFFFFF);
466 if (gmc_v8_0_wait_for_idle((void *)adev)) {
467 dev_warn(adev->dev, "Wait for MC idle timedout !\n");
468 }
469 gmc_v8_0_mc_resume(adev, &save);
470
471 WREG32(mmBIF_FB_EN, BIF_FB_EN__FB_READ_EN_MASK | BIF_FB_EN__FB_WRITE_EN_MASK);
472
473 tmp = RREG32(mmHDP_MISC_CNTL);
474 tmp = REG_SET_FIELD(tmp, HDP_MISC_CNTL, FLUSH_INVALIDATE_CACHE, 0);
475 WREG32(mmHDP_MISC_CNTL, tmp);
476
477 tmp = RREG32(mmHDP_HOST_PATH_CNTL);
478 WREG32(mmHDP_HOST_PATH_CNTL, tmp);
479 }
480
481 /**
482 * gmc_v8_0_mc_init - initialize the memory controller driver params
483 *
484 * @adev: amdgpu_device pointer
485 *
486 * Look up the amount of vram, vram width, and decide how to place
487 * vram and gart within the GPU's physical address space (CIK).
488 * Returns 0 for success.
489 */
490 static int gmc_v8_0_mc_init(struct amdgpu_device *adev)
491 {
492 adev->mc.vram_width = amdgpu_atombios_get_vram_width(adev);
493 if (!adev->mc.vram_width) {
494 u32 tmp;
495 int chansize, numchan;
496
497 /* Get VRAM informations */
498 tmp = RREG32(mmMC_ARB_RAMCFG);
499 if (REG_GET_FIELD(tmp, MC_ARB_RAMCFG, CHANSIZE)) {
500 chansize = 64;
501 } else {
502 chansize = 32;
503 }
504 tmp = RREG32(mmMC_SHARED_CHMAP);
505 switch (REG_GET_FIELD(tmp, MC_SHARED_CHMAP, NOOFCHAN)) {
506 case 0:
507 default:
508 numchan = 1;
509 break;
510 case 1:
511 numchan = 2;
512 break;
513 case 2:
514 numchan = 4;
515 break;
516 case 3:
517 numchan = 8;
518 break;
519 case 4:
520 numchan = 3;
521 break;
522 case 5:
523 numchan = 6;
524 break;
525 case 6:
526 numchan = 10;
527 break;
528 case 7:
529 numchan = 12;
530 break;
531 case 8:
532 numchan = 16;
533 break;
534 }
535 adev->mc.vram_width = numchan * chansize;
536 }
537 /* Could aper size report 0 ? */
538 adev->mc.aper_base = pci_resource_start(adev->pdev, 0);
539 adev->mc.aper_size = pci_resource_len(adev->pdev, 0);
540 /* size in MB on si */
541 adev->mc.mc_vram_size = RREG32(mmCONFIG_MEMSIZE) * 1024ULL * 1024ULL;
542 adev->mc.real_vram_size = RREG32(mmCONFIG_MEMSIZE) * 1024ULL * 1024ULL;
543
544 #ifdef CONFIG_X86_64
545 if (adev->flags & AMD_IS_APU) {
546 adev->mc.aper_base = ((u64)RREG32(mmMC_VM_FB_OFFSET)) << 22;
547 adev->mc.aper_size = adev->mc.real_vram_size;
548 }
549 #endif
550
551 /* In case the PCI BAR is larger than the actual amount of vram */
552 adev->mc.visible_vram_size = adev->mc.aper_size;
553 if (adev->mc.visible_vram_size > adev->mc.real_vram_size)
554 adev->mc.visible_vram_size = adev->mc.real_vram_size;
555
556 /* unless the user had overridden it, set the gart
557 * size equal to the 1024 or vram, whichever is larger.
558 */
559 if (amdgpu_gart_size == -1)
560 adev->mc.gtt_size = max((AMDGPU_DEFAULT_GTT_SIZE_MB << 20),
561 adev->mc.mc_vram_size);
562 else
563 adev->mc.gtt_size = (uint64_t)amdgpu_gart_size << 20;
564
565 gmc_v8_0_vram_gtt_location(adev, &adev->mc);
566
567 return 0;
568 }
569
570 /*
571 * GART
572 * VMID 0 is the physical GPU addresses as used by the kernel.
573 * VMIDs 1-15 are used for userspace clients and are handled
574 * by the amdgpu vm/hsa code.
575 */
576
577 /**
578 * gmc_v8_0_gart_flush_gpu_tlb - gart tlb flush callback
579 *
580 * @adev: amdgpu_device pointer
581 * @vmid: vm instance to flush
582 *
583 * Flush the TLB for the requested page table (CIK).
584 */
585 static void gmc_v8_0_gart_flush_gpu_tlb(struct amdgpu_device *adev,
586 uint32_t vmid)
587 {
588 /* flush hdp cache */
589 WREG32(mmHDP_MEM_COHERENCY_FLUSH_CNTL, 0);
590
591 /* bits 0-15 are the VM contexts0-15 */
592 WREG32(mmVM_INVALIDATE_REQUEST, 1 << vmid);
593 }
594
595 /**
596 * gmc_v8_0_gart_set_pte_pde - update the page tables using MMIO
597 *
598 * @adev: amdgpu_device pointer
599 * @cpu_pt_addr: cpu address of the page table
600 * @gpu_page_idx: entry in the page table to update
601 * @addr: dst addr to write into pte/pde
602 * @flags: access flags
603 *
604 * Update the page tables using the CPU.
605 */
606 static int gmc_v8_0_gart_set_pte_pde(struct amdgpu_device *adev,
607 void *cpu_pt_addr,
608 uint32_t gpu_page_idx,
609 uint64_t addr,
610 uint64_t flags)
611 {
612 void __iomem *ptr = (void *)cpu_pt_addr;
613 uint64_t value;
614
615 /*
616 * PTE format on VI:
617 * 63:40 reserved
618 * 39:12 4k physical page base address
619 * 11:7 fragment
620 * 6 write
621 * 5 read
622 * 4 exe
623 * 3 reserved
624 * 2 snooped
625 * 1 system
626 * 0 valid
627 *
628 * PDE format on VI:
629 * 63:59 block fragment size
630 * 58:40 reserved
631 * 39:1 physical base address of PTE
632 * bits 5:1 must be 0.
633 * 0 valid
634 */
635 value = addr & 0x000000FFFFFFF000ULL;
636 value |= flags;
637 writeq(value, ptr + (gpu_page_idx * 8));
638
639 return 0;
640 }
641
642 static uint64_t gmc_v8_0_get_vm_pte_flags(struct amdgpu_device *adev,
643 uint32_t flags)
644 {
645 uint64_t pte_flag = 0;
646
647 if (flags & AMDGPU_VM_PAGE_EXECUTABLE)
648 pte_flag |= AMDGPU_PTE_EXECUTABLE;
649 if (flags & AMDGPU_VM_PAGE_READABLE)
650 pte_flag |= AMDGPU_PTE_READABLE;
651 if (flags & AMDGPU_VM_PAGE_WRITEABLE)
652 pte_flag |= AMDGPU_PTE_WRITEABLE;
653 if (flags & AMDGPU_VM_PAGE_PRT)
654 pte_flag |= AMDGPU_PTE_PRT;
655
656 return pte_flag;
657 }
658
659 /**
660 * gmc_v8_0_set_fault_enable_default - update VM fault handling
661 *
662 * @adev: amdgpu_device pointer
663 * @value: true redirects VM faults to the default page
664 */
665 static void gmc_v8_0_set_fault_enable_default(struct amdgpu_device *adev,
666 bool value)
667 {
668 u32 tmp;
669
670 tmp = RREG32(mmVM_CONTEXT1_CNTL);
671 tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL,
672 RANGE_PROTECTION_FAULT_ENABLE_DEFAULT, value);
673 tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL,
674 DUMMY_PAGE_PROTECTION_FAULT_ENABLE_DEFAULT, value);
675 tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL,
676 PDE0_PROTECTION_FAULT_ENABLE_DEFAULT, value);
677 tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL,
678 VALID_PROTECTION_FAULT_ENABLE_DEFAULT, value);
679 tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL,
680 READ_PROTECTION_FAULT_ENABLE_DEFAULT, value);
681 tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL,
682 WRITE_PROTECTION_FAULT_ENABLE_DEFAULT, value);
683 tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL,
684 EXECUTE_PROTECTION_FAULT_ENABLE_DEFAULT, value);
685 WREG32(mmVM_CONTEXT1_CNTL, tmp);
686 }
687
688 /**
689 * gmc_v8_0_set_prt - set PRT VM fault
690 *
691 * @adev: amdgpu_device pointer
692 * @enable: enable/disable VM fault handling for PRT
693 */
694 static void gmc_v8_0_set_prt(struct amdgpu_device *adev, bool enable)
695 {
696 u32 tmp;
697
698 if (enable && !adev->mc.prt_warning) {
699 dev_warn(adev->dev, "Disabling VM faults because of PRT request!\n");
700 adev->mc.prt_warning = true;
701 }
702
703 tmp = RREG32(mmVM_PRT_CNTL);
704 tmp = REG_SET_FIELD(tmp, VM_PRT_CNTL,
705 CB_DISABLE_READ_FAULT_ON_UNMAPPED_ACCESS, enable);
706 tmp = REG_SET_FIELD(tmp, VM_PRT_CNTL,
707 CB_DISABLE_WRITE_FAULT_ON_UNMAPPED_ACCESS, enable);
708 tmp = REG_SET_FIELD(tmp, VM_PRT_CNTL,
709 TC_DISABLE_READ_FAULT_ON_UNMAPPED_ACCESS, enable);
710 tmp = REG_SET_FIELD(tmp, VM_PRT_CNTL,
711 TC_DISABLE_WRITE_FAULT_ON_UNMAPPED_ACCESS, enable);
712 tmp = REG_SET_FIELD(tmp, VM_PRT_CNTL,
713 L2_CACHE_STORE_INVALID_ENTRIES, enable);
714 tmp = REG_SET_FIELD(tmp, VM_PRT_CNTL,
715 L1_TLB_STORE_INVALID_ENTRIES, enable);
716 tmp = REG_SET_FIELD(tmp, VM_PRT_CNTL,
717 MASK_PDE0_FAULT, enable);
718 WREG32(mmVM_PRT_CNTL, tmp);
719
720 if (enable) {
721 uint32_t low = AMDGPU_VA_RESERVED_SIZE >> AMDGPU_GPU_PAGE_SHIFT;
722 uint32_t high = adev->vm_manager.max_pfn;
723
724 WREG32(mmVM_PRT_APERTURE0_LOW_ADDR, low);
725 WREG32(mmVM_PRT_APERTURE1_LOW_ADDR, low);
726 WREG32(mmVM_PRT_APERTURE2_LOW_ADDR, low);
727 WREG32(mmVM_PRT_APERTURE3_LOW_ADDR, low);
728 WREG32(mmVM_PRT_APERTURE0_HIGH_ADDR, high);
729 WREG32(mmVM_PRT_APERTURE1_HIGH_ADDR, high);
730 WREG32(mmVM_PRT_APERTURE2_HIGH_ADDR, high);
731 WREG32(mmVM_PRT_APERTURE3_HIGH_ADDR, high);
732 } else {
733 WREG32(mmVM_PRT_APERTURE0_LOW_ADDR, 0xfffffff);
734 WREG32(mmVM_PRT_APERTURE1_LOW_ADDR, 0xfffffff);
735 WREG32(mmVM_PRT_APERTURE2_LOW_ADDR, 0xfffffff);
736 WREG32(mmVM_PRT_APERTURE3_LOW_ADDR, 0xfffffff);
737 WREG32(mmVM_PRT_APERTURE0_HIGH_ADDR, 0x0);
738 WREG32(mmVM_PRT_APERTURE1_HIGH_ADDR, 0x0);
739 WREG32(mmVM_PRT_APERTURE2_HIGH_ADDR, 0x0);
740 WREG32(mmVM_PRT_APERTURE3_HIGH_ADDR, 0x0);
741 }
742 }
743
744 /**
745 * gmc_v8_0_gart_enable - gart enable
746 *
747 * @adev: amdgpu_device pointer
748 *
749 * This sets up the TLBs, programs the page tables for VMID0,
750 * sets up the hw for VMIDs 1-15 which are allocated on
751 * demand, and sets up the global locations for the LDS, GDS,
752 * and GPUVM for FSA64 clients (CIK).
753 * Returns 0 for success, errors for failure.
754 */
755 static int gmc_v8_0_gart_enable(struct amdgpu_device *adev)
756 {
757 int r, i;
758 u32 tmp;
759
760 if (adev->gart.robj == NULL) {
761 dev_err(adev->dev, "No VRAM object for PCIE GART.\n");
762 return -EINVAL;
763 }
764 r = amdgpu_gart_table_vram_pin(adev);
765 if (r)
766 return r;
767 /* Setup TLB control */
768 tmp = RREG32(mmMC_VM_MX_L1_TLB_CNTL);
769 tmp = REG_SET_FIELD(tmp, MC_VM_MX_L1_TLB_CNTL, ENABLE_L1_TLB, 1);
770 tmp = REG_SET_FIELD(tmp, MC_VM_MX_L1_TLB_CNTL, ENABLE_L1_FRAGMENT_PROCESSING, 1);
771 tmp = REG_SET_FIELD(tmp, MC_VM_MX_L1_TLB_CNTL, SYSTEM_ACCESS_MODE, 3);
772 tmp = REG_SET_FIELD(tmp, MC_VM_MX_L1_TLB_CNTL, ENABLE_ADVANCED_DRIVER_MODEL, 1);
773 tmp = REG_SET_FIELD(tmp, MC_VM_MX_L1_TLB_CNTL, SYSTEM_APERTURE_UNMAPPED_ACCESS, 0);
774 WREG32(mmMC_VM_MX_L1_TLB_CNTL, tmp);
775 /* Setup L2 cache */
776 tmp = RREG32(mmVM_L2_CNTL);
777 tmp = REG_SET_FIELD(tmp, VM_L2_CNTL, ENABLE_L2_CACHE, 1);
778 tmp = REG_SET_FIELD(tmp, VM_L2_CNTL, ENABLE_L2_FRAGMENT_PROCESSING, 1);
779 tmp = REG_SET_FIELD(tmp, VM_L2_CNTL, ENABLE_L2_PTE_CACHE_LRU_UPDATE_BY_WRITE, 1);
780 tmp = REG_SET_FIELD(tmp, VM_L2_CNTL, ENABLE_L2_PDE0_CACHE_LRU_UPDATE_BY_WRITE, 1);
781 tmp = REG_SET_FIELD(tmp, VM_L2_CNTL, EFFECTIVE_L2_QUEUE_SIZE, 7);
782 tmp = REG_SET_FIELD(tmp, VM_L2_CNTL, CONTEXT1_IDENTITY_ACCESS_MODE, 1);
783 tmp = REG_SET_FIELD(tmp, VM_L2_CNTL, ENABLE_DEFAULT_PAGE_OUT_TO_SYSTEM_MEMORY, 1);
784 WREG32(mmVM_L2_CNTL, tmp);
785 tmp = RREG32(mmVM_L2_CNTL2);
786 tmp = REG_SET_FIELD(tmp, VM_L2_CNTL2, INVALIDATE_ALL_L1_TLBS, 1);
787 tmp = REG_SET_FIELD(tmp, VM_L2_CNTL2, INVALIDATE_L2_CACHE, 1);
788 WREG32(mmVM_L2_CNTL2, tmp);
789 tmp = RREG32(mmVM_L2_CNTL3);
790 tmp = REG_SET_FIELD(tmp, VM_L2_CNTL3, L2_CACHE_BIGK_ASSOCIATIVITY, 1);
791 tmp = REG_SET_FIELD(tmp, VM_L2_CNTL3, BANK_SELECT, 4);
792 tmp = REG_SET_FIELD(tmp, VM_L2_CNTL3, L2_CACHE_BIGK_FRAGMENT_SIZE, 4);
793 WREG32(mmVM_L2_CNTL3, tmp);
794 /* XXX: set to enable PTE/PDE in system memory */
795 tmp = RREG32(mmVM_L2_CNTL4);
796 tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT0_PDE_REQUEST_PHYSICAL, 0);
797 tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT0_PDE_REQUEST_SHARED, 0);
798 tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT0_PDE_REQUEST_SNOOP, 0);
799 tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT0_PTE_REQUEST_PHYSICAL, 0);
800 tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT0_PTE_REQUEST_SHARED, 0);
801 tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT0_PTE_REQUEST_SNOOP, 0);
802 tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT1_PDE_REQUEST_PHYSICAL, 0);
803 tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT1_PDE_REQUEST_SHARED, 0);
804 tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT1_PDE_REQUEST_SNOOP, 0);
805 tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT1_PTE_REQUEST_PHYSICAL, 0);
806 tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT1_PTE_REQUEST_SHARED, 0);
807 tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT1_PTE_REQUEST_SNOOP, 0);
808 WREG32(mmVM_L2_CNTL4, tmp);
809 /* setup context0 */
810 WREG32(mmVM_CONTEXT0_PAGE_TABLE_START_ADDR, adev->mc.gtt_start >> 12);
811 WREG32(mmVM_CONTEXT0_PAGE_TABLE_END_ADDR, adev->mc.gtt_end >> 12);
812 WREG32(mmVM_CONTEXT0_PAGE_TABLE_BASE_ADDR, adev->gart.table_addr >> 12);
813 WREG32(mmVM_CONTEXT0_PROTECTION_FAULT_DEFAULT_ADDR,
814 (u32)(adev->dummy_page.addr >> 12));
815 WREG32(mmVM_CONTEXT0_CNTL2, 0);
816 tmp = RREG32(mmVM_CONTEXT0_CNTL);
817 tmp = REG_SET_FIELD(tmp, VM_CONTEXT0_CNTL, ENABLE_CONTEXT, 1);
818 tmp = REG_SET_FIELD(tmp, VM_CONTEXT0_CNTL, PAGE_TABLE_DEPTH, 0);
819 tmp = REG_SET_FIELD(tmp, VM_CONTEXT0_CNTL, RANGE_PROTECTION_FAULT_ENABLE_DEFAULT, 1);
820 WREG32(mmVM_CONTEXT0_CNTL, tmp);
821
822 WREG32(mmVM_L2_CONTEXT1_IDENTITY_APERTURE_LOW_ADDR, 0);
823 WREG32(mmVM_L2_CONTEXT1_IDENTITY_APERTURE_HIGH_ADDR, 0);
824 WREG32(mmVM_L2_CONTEXT_IDENTITY_PHYSICAL_OFFSET, 0);
825
826 /* empty context1-15 */
827 /* FIXME start with 4G, once using 2 level pt switch to full
828 * vm size space
829 */
830 /* set vm size, must be a multiple of 4 */
831 WREG32(mmVM_CONTEXT1_PAGE_TABLE_START_ADDR, 0);
832 WREG32(mmVM_CONTEXT1_PAGE_TABLE_END_ADDR, adev->vm_manager.max_pfn - 1);
833 for (i = 1; i < 16; i++) {
834 if (i < 8)
835 WREG32(mmVM_CONTEXT0_PAGE_TABLE_BASE_ADDR + i,
836 adev->gart.table_addr >> 12);
837 else
838 WREG32(mmVM_CONTEXT8_PAGE_TABLE_BASE_ADDR + i - 8,
839 adev->gart.table_addr >> 12);
840 }
841
842 /* enable context1-15 */
843 WREG32(mmVM_CONTEXT1_PROTECTION_FAULT_DEFAULT_ADDR,
844 (u32)(adev->dummy_page.addr >> 12));
845 WREG32(mmVM_CONTEXT1_CNTL2, 4);
846 tmp = RREG32(mmVM_CONTEXT1_CNTL);
847 tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, ENABLE_CONTEXT, 1);
848 tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, PAGE_TABLE_DEPTH, 1);
849 tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, RANGE_PROTECTION_FAULT_ENABLE_DEFAULT, 1);
850 tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, DUMMY_PAGE_PROTECTION_FAULT_ENABLE_DEFAULT, 1);
851 tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, PDE0_PROTECTION_FAULT_ENABLE_DEFAULT, 1);
852 tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, VALID_PROTECTION_FAULT_ENABLE_DEFAULT, 1);
853 tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, READ_PROTECTION_FAULT_ENABLE_DEFAULT, 1);
854 tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, WRITE_PROTECTION_FAULT_ENABLE_DEFAULT, 1);
855 tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, EXECUTE_PROTECTION_FAULT_ENABLE_DEFAULT, 1);
856 tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, PAGE_TABLE_BLOCK_SIZE,
857 adev->vm_manager.block_size - 9);
858 WREG32(mmVM_CONTEXT1_CNTL, tmp);
859 if (amdgpu_vm_fault_stop == AMDGPU_VM_FAULT_STOP_ALWAYS)
860 gmc_v8_0_set_fault_enable_default(adev, false);
861 else
862 gmc_v8_0_set_fault_enable_default(adev, true);
863
864 gmc_v8_0_gart_flush_gpu_tlb(adev, 0);
865 DRM_INFO("PCIE GART of %uM enabled (table at 0x%016llX).\n",
866 (unsigned)(adev->mc.gtt_size >> 20),
867 (unsigned long long)adev->gart.table_addr);
868 adev->gart.ready = true;
869 return 0;
870 }
871
872 static int gmc_v8_0_gart_init(struct amdgpu_device *adev)
873 {
874 int r;
875
876 if (adev->gart.robj) {
877 WARN(1, "R600 PCIE GART already initialized\n");
878 return 0;
879 }
880 /* Initialize common gart structure */
881 r = amdgpu_gart_init(adev);
882 if (r)
883 return r;
884 adev->gart.table_size = adev->gart.num_gpu_pages * 8;
885 adev->gart.gart_pte_flags = AMDGPU_PTE_EXECUTABLE;
886 return amdgpu_gart_table_vram_alloc(adev);
887 }
888
889 /**
890 * gmc_v8_0_gart_disable - gart disable
891 *
892 * @adev: amdgpu_device pointer
893 *
894 * This disables all VM page table (CIK).
895 */
896 static void gmc_v8_0_gart_disable(struct amdgpu_device *adev)
897 {
898 u32 tmp;
899
900 /* Disable all tables */
901 WREG32(mmVM_CONTEXT0_CNTL, 0);
902 WREG32(mmVM_CONTEXT1_CNTL, 0);
903 /* Setup TLB control */
904 tmp = RREG32(mmMC_VM_MX_L1_TLB_CNTL);
905 tmp = REG_SET_FIELD(tmp, MC_VM_MX_L1_TLB_CNTL, ENABLE_L1_TLB, 0);
906 tmp = REG_SET_FIELD(tmp, MC_VM_MX_L1_TLB_CNTL, ENABLE_L1_FRAGMENT_PROCESSING, 0);
907 tmp = REG_SET_FIELD(tmp, MC_VM_MX_L1_TLB_CNTL, ENABLE_ADVANCED_DRIVER_MODEL, 0);
908 WREG32(mmMC_VM_MX_L1_TLB_CNTL, tmp);
909 /* Setup L2 cache */
910 tmp = RREG32(mmVM_L2_CNTL);
911 tmp = REG_SET_FIELD(tmp, VM_L2_CNTL, ENABLE_L2_CACHE, 0);
912 WREG32(mmVM_L2_CNTL, tmp);
913 WREG32(mmVM_L2_CNTL2, 0);
914 amdgpu_gart_table_vram_unpin(adev);
915 }
916
917 /**
918 * gmc_v8_0_gart_fini - vm fini callback
919 *
920 * @adev: amdgpu_device pointer
921 *
922 * Tears down the driver GART/VM setup (CIK).
923 */
924 static void gmc_v8_0_gart_fini(struct amdgpu_device *adev)
925 {
926 amdgpu_gart_table_vram_free(adev);
927 amdgpu_gart_fini(adev);
928 }
929
930 /*
931 * vm
932 * VMID 0 is the physical GPU addresses as used by the kernel.
933 * VMIDs 1-15 are used for userspace clients and are handled
934 * by the amdgpu vm/hsa code.
935 */
936 /**
937 * gmc_v8_0_vm_init - cik vm init callback
938 *
939 * @adev: amdgpu_device pointer
940 *
941 * Inits cik specific vm parameters (number of VMs, base of vram for
942 * VMIDs 1-15) (CIK).
943 * Returns 0 for success.
944 */
945 static int gmc_v8_0_vm_init(struct amdgpu_device *adev)
946 {
947 /*
948 * number of VMs
949 * VMID 0 is reserved for System
950 * amdgpu graphics/compute will use VMIDs 1-7
951 * amdkfd will use VMIDs 8-15
952 */
953 adev->vm_manager.id_mgr[0].num_ids = AMDGPU_NUM_OF_VMIDS;
954 adev->vm_manager.num_level = 1;
955 amdgpu_vm_manager_init(adev);
956
957 /* base offset of vram pages */
958 if (adev->flags & AMD_IS_APU) {
959 u64 tmp = RREG32(mmMC_VM_FB_OFFSET);
960 tmp <<= 22;
961 adev->vm_manager.vram_base_offset = tmp;
962 } else
963 adev->vm_manager.vram_base_offset = 0;
964
965 return 0;
966 }
967
968 /**
969 * gmc_v8_0_vm_fini - cik vm fini callback
970 *
971 * @adev: amdgpu_device pointer
972 *
973 * Tear down any asic specific VM setup (CIK).
974 */
975 static void gmc_v8_0_vm_fini(struct amdgpu_device *adev)
976 {
977 }
978
979 /**
980 * gmc_v8_0_vm_decode_fault - print human readable fault info
981 *
982 * @adev: amdgpu_device pointer
983 * @status: VM_CONTEXT1_PROTECTION_FAULT_STATUS register value
984 * @addr: VM_CONTEXT1_PROTECTION_FAULT_ADDR register value
985 *
986 * Print human readable fault information (CIK).
987 */
988 static void gmc_v8_0_vm_decode_fault(struct amdgpu_device *adev,
989 u32 status, u32 addr, u32 mc_client)
990 {
991 u32 mc_id;
992 u32 vmid = REG_GET_FIELD(status, VM_CONTEXT1_PROTECTION_FAULT_STATUS, VMID);
993 u32 protections = REG_GET_FIELD(status, VM_CONTEXT1_PROTECTION_FAULT_STATUS,
994 PROTECTIONS);
995 char block[5] = { mc_client >> 24, (mc_client >> 16) & 0xff,
996 (mc_client >> 8) & 0xff, mc_client & 0xff, 0 };
997
998 mc_id = REG_GET_FIELD(status, VM_CONTEXT1_PROTECTION_FAULT_STATUS,
999 MEMORY_CLIENT_ID);
1000
1001 dev_err(adev->dev, "VM fault (0x%02x, vmid %d) at page %u, %s from '%s' (0x%08x) (%d)\n",
1002 protections, vmid, addr,
1003 REG_GET_FIELD(status, VM_CONTEXT1_PROTECTION_FAULT_STATUS,
1004 MEMORY_CLIENT_RW) ?
1005 "write" : "read", block, mc_client, mc_id);
1006 }
1007
1008 static int gmc_v8_0_convert_vram_type(int mc_seq_vram_type)
1009 {
1010 switch (mc_seq_vram_type) {
1011 case MC_SEQ_MISC0__MT__GDDR1:
1012 return AMDGPU_VRAM_TYPE_GDDR1;
1013 case MC_SEQ_MISC0__MT__DDR2:
1014 return AMDGPU_VRAM_TYPE_DDR2;
1015 case MC_SEQ_MISC0__MT__GDDR3:
1016 return AMDGPU_VRAM_TYPE_GDDR3;
1017 case MC_SEQ_MISC0__MT__GDDR4:
1018 return AMDGPU_VRAM_TYPE_GDDR4;
1019 case MC_SEQ_MISC0__MT__GDDR5:
1020 return AMDGPU_VRAM_TYPE_GDDR5;
1021 case MC_SEQ_MISC0__MT__HBM:
1022 return AMDGPU_VRAM_TYPE_HBM;
1023 case MC_SEQ_MISC0__MT__DDR3:
1024 return AMDGPU_VRAM_TYPE_DDR3;
1025 default:
1026 return AMDGPU_VRAM_TYPE_UNKNOWN;
1027 }
1028 }
1029
1030 static int gmc_v8_0_early_init(void *handle)
1031 {
1032 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1033
1034 gmc_v8_0_set_gart_funcs(adev);
1035 gmc_v8_0_set_irq_funcs(adev);
1036
1037 adev->mc.shared_aperture_start = 0x2000000000000000ULL;
1038 adev->mc.shared_aperture_end =
1039 adev->mc.shared_aperture_start + (4ULL << 30) - 1;
1040 adev->mc.private_aperture_start =
1041 adev->mc.shared_aperture_end + 1;
1042 adev->mc.private_aperture_end =
1043 adev->mc.private_aperture_start + (4ULL << 30) - 1;
1044
1045 return 0;
1046 }
1047
1048 static int gmc_v8_0_late_init(void *handle)
1049 {
1050 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1051
1052 if (amdgpu_vm_fault_stop != AMDGPU_VM_FAULT_STOP_ALWAYS)
1053 return amdgpu_irq_get(adev, &adev->mc.vm_fault, 0);
1054 else
1055 return 0;
1056 }
1057
1058 #define mmMC_SEQ_MISC0_FIJI 0xA71
1059
1060 static int gmc_v8_0_sw_init(void *handle)
1061 {
1062 int r;
1063 int dma_bits;
1064 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1065
1066 if (adev->flags & AMD_IS_APU) {
1067 adev->mc.vram_type = AMDGPU_VRAM_TYPE_UNKNOWN;
1068 } else {
1069 u32 tmp;
1070
1071 if (adev->asic_type == CHIP_FIJI)
1072 tmp = RREG32(mmMC_SEQ_MISC0_FIJI);
1073 else
1074 tmp = RREG32(mmMC_SEQ_MISC0);
1075 tmp &= MC_SEQ_MISC0__MT__MASK;
1076 adev->mc.vram_type = gmc_v8_0_convert_vram_type(tmp);
1077 }
1078
1079 r = amdgpu_irq_add_id(adev, AMDGPU_IH_CLIENTID_LEGACY, 146, &adev->mc.vm_fault);
1080 if (r)
1081 return r;
1082
1083 r = amdgpu_irq_add_id(adev, AMDGPU_IH_CLIENTID_LEGACY, 147, &adev->mc.vm_fault);
1084 if (r)
1085 return r;
1086
1087 /* Adjust VM size here.
1088 * Currently set to 4GB ((1 << 20) 4k pages).
1089 * Max GPUVM size for cayman and SI is 40 bits.
1090 */
1091 amdgpu_vm_adjust_size(adev, 64);
1092 adev->vm_manager.max_pfn = adev->vm_manager.vm_size << 18;
1093
1094 /* Set the internal MC address mask
1095 * This is the max address of the GPU's
1096 * internal address space.
1097 */
1098 adev->mc.mc_mask = 0xffffffffffULL; /* 40 bit MC */
1099
1100 /* set DMA mask + need_dma32 flags.
1101 * PCIE - can handle 40-bits.
1102 * IGP - can handle 40-bits
1103 * PCI - dma32 for legacy pci gart, 40 bits on newer asics
1104 */
1105 adev->need_dma32 = false;
1106 dma_bits = adev->need_dma32 ? 32 : 40;
1107 r = pci_set_dma_mask(adev->pdev, DMA_BIT_MASK(dma_bits));
1108 if (r) {
1109 adev->need_dma32 = true;
1110 dma_bits = 32;
1111 pr_warn("amdgpu: No suitable DMA available\n");
1112 }
1113 r = pci_set_consistent_dma_mask(adev->pdev, DMA_BIT_MASK(dma_bits));
1114 if (r) {
1115 pci_set_consistent_dma_mask(adev->pdev, DMA_BIT_MASK(32));
1116 pr_warn("amdgpu: No coherent DMA available\n");
1117 }
1118
1119 r = gmc_v8_0_init_microcode(adev);
1120 if (r) {
1121 DRM_ERROR("Failed to load mc firmware!\n");
1122 return r;
1123 }
1124
1125 r = gmc_v8_0_mc_init(adev);
1126 if (r)
1127 return r;
1128
1129 /* Memory manager */
1130 r = amdgpu_bo_init(adev);
1131 if (r)
1132 return r;
1133
1134 r = gmc_v8_0_gart_init(adev);
1135 if (r)
1136 return r;
1137
1138 if (!adev->vm_manager.enabled) {
1139 r = gmc_v8_0_vm_init(adev);
1140 if (r) {
1141 dev_err(adev->dev, "vm manager initialization failed (%d).\n", r);
1142 return r;
1143 }
1144 adev->vm_manager.enabled = true;
1145 }
1146
1147 return r;
1148 }
1149
1150 static int gmc_v8_0_sw_fini(void *handle)
1151 {
1152 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1153
1154 if (adev->vm_manager.enabled) {
1155 amdgpu_vm_manager_fini(adev);
1156 gmc_v8_0_vm_fini(adev);
1157 adev->vm_manager.enabled = false;
1158 }
1159 gmc_v8_0_gart_fini(adev);
1160 amdgpu_gem_force_release(adev);
1161 amdgpu_bo_fini(adev);
1162
1163 return 0;
1164 }
1165
1166 static int gmc_v8_0_hw_init(void *handle)
1167 {
1168 int r;
1169 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1170
1171 gmc_v8_0_init_golden_registers(adev);
1172
1173 gmc_v8_0_mc_program(adev);
1174
1175 if (adev->asic_type == CHIP_TONGA) {
1176 r = gmc_v8_0_tonga_mc_load_microcode(adev);
1177 if (r) {
1178 DRM_ERROR("Failed to load MC firmware!\n");
1179 return r;
1180 }
1181 } else if (adev->asic_type == CHIP_POLARIS11 ||
1182 adev->asic_type == CHIP_POLARIS10 ||
1183 adev->asic_type == CHIP_POLARIS12) {
1184 r = gmc_v8_0_polaris_mc_load_microcode(adev);
1185 if (r) {
1186 DRM_ERROR("Failed to load MC firmware!\n");
1187 return r;
1188 }
1189 }
1190
1191 r = gmc_v8_0_gart_enable(adev);
1192 if (r)
1193 return r;
1194
1195 return r;
1196 }
1197
1198 static int gmc_v8_0_hw_fini(void *handle)
1199 {
1200 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1201
1202 amdgpu_irq_put(adev, &adev->mc.vm_fault, 0);
1203 gmc_v8_0_gart_disable(adev);
1204
1205 return 0;
1206 }
1207
1208 static int gmc_v8_0_suspend(void *handle)
1209 {
1210 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1211
1212 if (adev->vm_manager.enabled) {
1213 gmc_v8_0_vm_fini(adev);
1214 adev->vm_manager.enabled = false;
1215 }
1216 gmc_v8_0_hw_fini(adev);
1217
1218 return 0;
1219 }
1220
1221 static int gmc_v8_0_resume(void *handle)
1222 {
1223 int r;
1224 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1225
1226 r = gmc_v8_0_hw_init(adev);
1227 if (r)
1228 return r;
1229
1230 if (!adev->vm_manager.enabled) {
1231 r = gmc_v8_0_vm_init(adev);
1232 if (r) {
1233 dev_err(adev->dev, "vm manager initialization failed (%d).\n", r);
1234 return r;
1235 }
1236 adev->vm_manager.enabled = true;
1237 }
1238
1239 return r;
1240 }
1241
1242 static bool gmc_v8_0_is_idle(void *handle)
1243 {
1244 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1245 u32 tmp = RREG32(mmSRBM_STATUS);
1246
1247 if (tmp & (SRBM_STATUS__MCB_BUSY_MASK | SRBM_STATUS__MCB_NON_DISPLAY_BUSY_MASK |
1248 SRBM_STATUS__MCC_BUSY_MASK | SRBM_STATUS__MCD_BUSY_MASK | SRBM_STATUS__VMC_BUSY_MASK))
1249 return false;
1250
1251 return true;
1252 }
1253
1254 static int gmc_v8_0_wait_for_idle(void *handle)
1255 {
1256 unsigned i;
1257 u32 tmp;
1258 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1259
1260 for (i = 0; i < adev->usec_timeout; i++) {
1261 /* read MC_STATUS */
1262 tmp = RREG32(mmSRBM_STATUS) & (SRBM_STATUS__MCB_BUSY_MASK |
1263 SRBM_STATUS__MCB_NON_DISPLAY_BUSY_MASK |
1264 SRBM_STATUS__MCC_BUSY_MASK |
1265 SRBM_STATUS__MCD_BUSY_MASK |
1266 SRBM_STATUS__VMC_BUSY_MASK |
1267 SRBM_STATUS__VMC1_BUSY_MASK);
1268 if (!tmp)
1269 return 0;
1270 udelay(1);
1271 }
1272 return -ETIMEDOUT;
1273
1274 }
1275
1276 static bool gmc_v8_0_check_soft_reset(void *handle)
1277 {
1278 u32 srbm_soft_reset = 0;
1279 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1280 u32 tmp = RREG32(mmSRBM_STATUS);
1281
1282 if (tmp & SRBM_STATUS__VMC_BUSY_MASK)
1283 srbm_soft_reset = REG_SET_FIELD(srbm_soft_reset,
1284 SRBM_SOFT_RESET, SOFT_RESET_VMC, 1);
1285
1286 if (tmp & (SRBM_STATUS__MCB_BUSY_MASK | SRBM_STATUS__MCB_NON_DISPLAY_BUSY_MASK |
1287 SRBM_STATUS__MCC_BUSY_MASK | SRBM_STATUS__MCD_BUSY_MASK)) {
1288 if (!(adev->flags & AMD_IS_APU))
1289 srbm_soft_reset = REG_SET_FIELD(srbm_soft_reset,
1290 SRBM_SOFT_RESET, SOFT_RESET_MC, 1);
1291 }
1292 if (srbm_soft_reset) {
1293 adev->mc.srbm_soft_reset = srbm_soft_reset;
1294 return true;
1295 } else {
1296 adev->mc.srbm_soft_reset = 0;
1297 return false;
1298 }
1299 }
1300
1301 static int gmc_v8_0_pre_soft_reset(void *handle)
1302 {
1303 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1304
1305 if (!adev->mc.srbm_soft_reset)
1306 return 0;
1307
1308 gmc_v8_0_mc_stop(adev, &adev->mc.save);
1309 if (gmc_v8_0_wait_for_idle(adev)) {
1310 dev_warn(adev->dev, "Wait for GMC idle timed out !\n");
1311 }
1312
1313 return 0;
1314 }
1315
1316 static int gmc_v8_0_soft_reset(void *handle)
1317 {
1318 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1319 u32 srbm_soft_reset;
1320
1321 if (!adev->mc.srbm_soft_reset)
1322 return 0;
1323 srbm_soft_reset = adev->mc.srbm_soft_reset;
1324
1325 if (srbm_soft_reset) {
1326 u32 tmp;
1327
1328 tmp = RREG32(mmSRBM_SOFT_RESET);
1329 tmp |= srbm_soft_reset;
1330 dev_info(adev->dev, "SRBM_SOFT_RESET=0x%08X\n", tmp);
1331 WREG32(mmSRBM_SOFT_RESET, tmp);
1332 tmp = RREG32(mmSRBM_SOFT_RESET);
1333
1334 udelay(50);
1335
1336 tmp &= ~srbm_soft_reset;
1337 WREG32(mmSRBM_SOFT_RESET, tmp);
1338 tmp = RREG32(mmSRBM_SOFT_RESET);
1339
1340 /* Wait a little for things to settle down */
1341 udelay(50);
1342 }
1343
1344 return 0;
1345 }
1346
1347 static int gmc_v8_0_post_soft_reset(void *handle)
1348 {
1349 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1350
1351 if (!adev->mc.srbm_soft_reset)
1352 return 0;
1353
1354 gmc_v8_0_mc_resume(adev, &adev->mc.save);
1355 return 0;
1356 }
1357
1358 static int gmc_v8_0_vm_fault_interrupt_state(struct amdgpu_device *adev,
1359 struct amdgpu_irq_src *src,
1360 unsigned type,
1361 enum amdgpu_interrupt_state state)
1362 {
1363 u32 tmp;
1364 u32 bits = (VM_CONTEXT1_CNTL__RANGE_PROTECTION_FAULT_ENABLE_INTERRUPT_MASK |
1365 VM_CONTEXT1_CNTL__DUMMY_PAGE_PROTECTION_FAULT_ENABLE_INTERRUPT_MASK |
1366 VM_CONTEXT1_CNTL__PDE0_PROTECTION_FAULT_ENABLE_INTERRUPT_MASK |
1367 VM_CONTEXT1_CNTL__VALID_PROTECTION_FAULT_ENABLE_INTERRUPT_MASK |
1368 VM_CONTEXT1_CNTL__READ_PROTECTION_FAULT_ENABLE_INTERRUPT_MASK |
1369 VM_CONTEXT1_CNTL__WRITE_PROTECTION_FAULT_ENABLE_INTERRUPT_MASK |
1370 VM_CONTEXT1_CNTL__EXECUTE_PROTECTION_FAULT_ENABLE_INTERRUPT_MASK);
1371
1372 switch (state) {
1373 case AMDGPU_IRQ_STATE_DISABLE:
1374 /* system context */
1375 tmp = RREG32(mmVM_CONTEXT0_CNTL);
1376 tmp &= ~bits;
1377 WREG32(mmVM_CONTEXT0_CNTL, tmp);
1378 /* VMs */
1379 tmp = RREG32(mmVM_CONTEXT1_CNTL);
1380 tmp &= ~bits;
1381 WREG32(mmVM_CONTEXT1_CNTL, tmp);
1382 break;
1383 case AMDGPU_IRQ_STATE_ENABLE:
1384 /* system context */
1385 tmp = RREG32(mmVM_CONTEXT0_CNTL);
1386 tmp |= bits;
1387 WREG32(mmVM_CONTEXT0_CNTL, tmp);
1388 /* VMs */
1389 tmp = RREG32(mmVM_CONTEXT1_CNTL);
1390 tmp |= bits;
1391 WREG32(mmVM_CONTEXT1_CNTL, tmp);
1392 break;
1393 default:
1394 break;
1395 }
1396
1397 return 0;
1398 }
1399
1400 static int gmc_v8_0_process_interrupt(struct amdgpu_device *adev,
1401 struct amdgpu_irq_src *source,
1402 struct amdgpu_iv_entry *entry)
1403 {
1404 u32 addr, status, mc_client;
1405
1406 if (amdgpu_sriov_vf(adev)) {
1407 dev_err(adev->dev, "GPU fault detected: %d 0x%08x\n",
1408 entry->src_id, entry->src_data[0]);
1409 dev_err(adev->dev, " Can't decode VM fault info here on SRIOV VF\n");
1410 return 0;
1411 }
1412
1413 addr = RREG32(mmVM_CONTEXT1_PROTECTION_FAULT_ADDR);
1414 status = RREG32(mmVM_CONTEXT1_PROTECTION_FAULT_STATUS);
1415 mc_client = RREG32(mmVM_CONTEXT1_PROTECTION_FAULT_MCCLIENT);
1416 /* reset addr and status */
1417 WREG32_P(mmVM_CONTEXT1_CNTL2, 1, ~1);
1418
1419 if (!addr && !status)
1420 return 0;
1421
1422 if (amdgpu_vm_fault_stop == AMDGPU_VM_FAULT_STOP_FIRST)
1423 gmc_v8_0_set_fault_enable_default(adev, false);
1424
1425 if (printk_ratelimit()) {
1426 dev_err(adev->dev, "GPU fault detected: %d 0x%08x\n",
1427 entry->src_id, entry->src_data[0]);
1428 dev_err(adev->dev, " VM_CONTEXT1_PROTECTION_FAULT_ADDR 0x%08X\n",
1429 addr);
1430 dev_err(adev->dev, " VM_CONTEXT1_PROTECTION_FAULT_STATUS 0x%08X\n",
1431 status);
1432 gmc_v8_0_vm_decode_fault(adev, status, addr, mc_client);
1433 }
1434
1435 return 0;
1436 }
1437
1438 static void fiji_update_mc_medium_grain_clock_gating(struct amdgpu_device *adev,
1439 bool enable)
1440 {
1441 uint32_t data;
1442
1443 if (enable && (adev->cg_flags & AMD_CG_SUPPORT_MC_MGCG)) {
1444 data = RREG32(mmMC_HUB_MISC_HUB_CG);
1445 data |= MC_HUB_MISC_HUB_CG__ENABLE_MASK;
1446 WREG32(mmMC_HUB_MISC_HUB_CG, data);
1447
1448 data = RREG32(mmMC_HUB_MISC_SIP_CG);
1449 data |= MC_HUB_MISC_SIP_CG__ENABLE_MASK;
1450 WREG32(mmMC_HUB_MISC_SIP_CG, data);
1451
1452 data = RREG32(mmMC_HUB_MISC_VM_CG);
1453 data |= MC_HUB_MISC_VM_CG__ENABLE_MASK;
1454 WREG32(mmMC_HUB_MISC_VM_CG, data);
1455
1456 data = RREG32(mmMC_XPB_CLK_GAT);
1457 data |= MC_XPB_CLK_GAT__ENABLE_MASK;
1458 WREG32(mmMC_XPB_CLK_GAT, data);
1459
1460 data = RREG32(mmATC_MISC_CG);
1461 data |= ATC_MISC_CG__ENABLE_MASK;
1462 WREG32(mmATC_MISC_CG, data);
1463
1464 data = RREG32(mmMC_CITF_MISC_WR_CG);
1465 data |= MC_CITF_MISC_WR_CG__ENABLE_MASK;
1466 WREG32(mmMC_CITF_MISC_WR_CG, data);
1467
1468 data = RREG32(mmMC_CITF_MISC_RD_CG);
1469 data |= MC_CITF_MISC_RD_CG__ENABLE_MASK;
1470 WREG32(mmMC_CITF_MISC_RD_CG, data);
1471
1472 data = RREG32(mmMC_CITF_MISC_VM_CG);
1473 data |= MC_CITF_MISC_VM_CG__ENABLE_MASK;
1474 WREG32(mmMC_CITF_MISC_VM_CG, data);
1475
1476 data = RREG32(mmVM_L2_CG);
1477 data |= VM_L2_CG__ENABLE_MASK;
1478 WREG32(mmVM_L2_CG, data);
1479 } else {
1480 data = RREG32(mmMC_HUB_MISC_HUB_CG);
1481 data &= ~MC_HUB_MISC_HUB_CG__ENABLE_MASK;
1482 WREG32(mmMC_HUB_MISC_HUB_CG, data);
1483
1484 data = RREG32(mmMC_HUB_MISC_SIP_CG);
1485 data &= ~MC_HUB_MISC_SIP_CG__ENABLE_MASK;
1486 WREG32(mmMC_HUB_MISC_SIP_CG, data);
1487
1488 data = RREG32(mmMC_HUB_MISC_VM_CG);
1489 data &= ~MC_HUB_MISC_VM_CG__ENABLE_MASK;
1490 WREG32(mmMC_HUB_MISC_VM_CG, data);
1491
1492 data = RREG32(mmMC_XPB_CLK_GAT);
1493 data &= ~MC_XPB_CLK_GAT__ENABLE_MASK;
1494 WREG32(mmMC_XPB_CLK_GAT, data);
1495
1496 data = RREG32(mmATC_MISC_CG);
1497 data &= ~ATC_MISC_CG__ENABLE_MASK;
1498 WREG32(mmATC_MISC_CG, data);
1499
1500 data = RREG32(mmMC_CITF_MISC_WR_CG);
1501 data &= ~MC_CITF_MISC_WR_CG__ENABLE_MASK;
1502 WREG32(mmMC_CITF_MISC_WR_CG, data);
1503
1504 data = RREG32(mmMC_CITF_MISC_RD_CG);
1505 data &= ~MC_CITF_MISC_RD_CG__ENABLE_MASK;
1506 WREG32(mmMC_CITF_MISC_RD_CG, data);
1507
1508 data = RREG32(mmMC_CITF_MISC_VM_CG);
1509 data &= ~MC_CITF_MISC_VM_CG__ENABLE_MASK;
1510 WREG32(mmMC_CITF_MISC_VM_CG, data);
1511
1512 data = RREG32(mmVM_L2_CG);
1513 data &= ~VM_L2_CG__ENABLE_MASK;
1514 WREG32(mmVM_L2_CG, data);
1515 }
1516 }
1517
1518 static void fiji_update_mc_light_sleep(struct amdgpu_device *adev,
1519 bool enable)
1520 {
1521 uint32_t data;
1522
1523 if (enable && (adev->cg_flags & AMD_CG_SUPPORT_MC_LS)) {
1524 data = RREG32(mmMC_HUB_MISC_HUB_CG);
1525 data |= MC_HUB_MISC_HUB_CG__MEM_LS_ENABLE_MASK;
1526 WREG32(mmMC_HUB_MISC_HUB_CG, data);
1527
1528 data = RREG32(mmMC_HUB_MISC_SIP_CG);
1529 data |= MC_HUB_MISC_SIP_CG__MEM_LS_ENABLE_MASK;
1530 WREG32(mmMC_HUB_MISC_SIP_CG, data);
1531
1532 data = RREG32(mmMC_HUB_MISC_VM_CG);
1533 data |= MC_HUB_MISC_VM_CG__MEM_LS_ENABLE_MASK;
1534 WREG32(mmMC_HUB_MISC_VM_CG, data);
1535
1536 data = RREG32(mmMC_XPB_CLK_GAT);
1537 data |= MC_XPB_CLK_GAT__MEM_LS_ENABLE_MASK;
1538 WREG32(mmMC_XPB_CLK_GAT, data);
1539
1540 data = RREG32(mmATC_MISC_CG);
1541 data |= ATC_MISC_CG__MEM_LS_ENABLE_MASK;
1542 WREG32(mmATC_MISC_CG, data);
1543
1544 data = RREG32(mmMC_CITF_MISC_WR_CG);
1545 data |= MC_CITF_MISC_WR_CG__MEM_LS_ENABLE_MASK;
1546 WREG32(mmMC_CITF_MISC_WR_CG, data);
1547
1548 data = RREG32(mmMC_CITF_MISC_RD_CG);
1549 data |= MC_CITF_MISC_RD_CG__MEM_LS_ENABLE_MASK;
1550 WREG32(mmMC_CITF_MISC_RD_CG, data);
1551
1552 data = RREG32(mmMC_CITF_MISC_VM_CG);
1553 data |= MC_CITF_MISC_VM_CG__MEM_LS_ENABLE_MASK;
1554 WREG32(mmMC_CITF_MISC_VM_CG, data);
1555
1556 data = RREG32(mmVM_L2_CG);
1557 data |= VM_L2_CG__MEM_LS_ENABLE_MASK;
1558 WREG32(mmVM_L2_CG, data);
1559 } else {
1560 data = RREG32(mmMC_HUB_MISC_HUB_CG);
1561 data &= ~MC_HUB_MISC_HUB_CG__MEM_LS_ENABLE_MASK;
1562 WREG32(mmMC_HUB_MISC_HUB_CG, data);
1563
1564 data = RREG32(mmMC_HUB_MISC_SIP_CG);
1565 data &= ~MC_HUB_MISC_SIP_CG__MEM_LS_ENABLE_MASK;
1566 WREG32(mmMC_HUB_MISC_SIP_CG, data);
1567
1568 data = RREG32(mmMC_HUB_MISC_VM_CG);
1569 data &= ~MC_HUB_MISC_VM_CG__MEM_LS_ENABLE_MASK;
1570 WREG32(mmMC_HUB_MISC_VM_CG, data);
1571
1572 data = RREG32(mmMC_XPB_CLK_GAT);
1573 data &= ~MC_XPB_CLK_GAT__MEM_LS_ENABLE_MASK;
1574 WREG32(mmMC_XPB_CLK_GAT, data);
1575
1576 data = RREG32(mmATC_MISC_CG);
1577 data &= ~ATC_MISC_CG__MEM_LS_ENABLE_MASK;
1578 WREG32(mmATC_MISC_CG, data);
1579
1580 data = RREG32(mmMC_CITF_MISC_WR_CG);
1581 data &= ~MC_CITF_MISC_WR_CG__MEM_LS_ENABLE_MASK;
1582 WREG32(mmMC_CITF_MISC_WR_CG, data);
1583
1584 data = RREG32(mmMC_CITF_MISC_RD_CG);
1585 data &= ~MC_CITF_MISC_RD_CG__MEM_LS_ENABLE_MASK;
1586 WREG32(mmMC_CITF_MISC_RD_CG, data);
1587
1588 data = RREG32(mmMC_CITF_MISC_VM_CG);
1589 data &= ~MC_CITF_MISC_VM_CG__MEM_LS_ENABLE_MASK;
1590 WREG32(mmMC_CITF_MISC_VM_CG, data);
1591
1592 data = RREG32(mmVM_L2_CG);
1593 data &= ~VM_L2_CG__MEM_LS_ENABLE_MASK;
1594 WREG32(mmVM_L2_CG, data);
1595 }
1596 }
1597
1598 static int gmc_v8_0_set_clockgating_state(void *handle,
1599 enum amd_clockgating_state state)
1600 {
1601 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1602
1603 if (amdgpu_sriov_vf(adev))
1604 return 0;
1605
1606 switch (adev->asic_type) {
1607 case CHIP_FIJI:
1608 fiji_update_mc_medium_grain_clock_gating(adev,
1609 state == AMD_CG_STATE_GATE);
1610 fiji_update_mc_light_sleep(adev,
1611 state == AMD_CG_STATE_GATE);
1612 break;
1613 default:
1614 break;
1615 }
1616 return 0;
1617 }
1618
1619 static int gmc_v8_0_set_powergating_state(void *handle,
1620 enum amd_powergating_state state)
1621 {
1622 return 0;
1623 }
1624
1625 static void gmc_v8_0_get_clockgating_state(void *handle, u32 *flags)
1626 {
1627 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1628 int data;
1629
1630 if (amdgpu_sriov_vf(adev))
1631 *flags = 0;
1632
1633 /* AMD_CG_SUPPORT_MC_MGCG */
1634 data = RREG32(mmMC_HUB_MISC_HUB_CG);
1635 if (data & MC_HUB_MISC_HUB_CG__ENABLE_MASK)
1636 *flags |= AMD_CG_SUPPORT_MC_MGCG;
1637
1638 /* AMD_CG_SUPPORT_MC_LS */
1639 if (data & MC_HUB_MISC_HUB_CG__MEM_LS_ENABLE_MASK)
1640 *flags |= AMD_CG_SUPPORT_MC_LS;
1641 }
1642
1643 static const struct amd_ip_funcs gmc_v8_0_ip_funcs = {
1644 .name = "gmc_v8_0",
1645 .early_init = gmc_v8_0_early_init,
1646 .late_init = gmc_v8_0_late_init,
1647 .sw_init = gmc_v8_0_sw_init,
1648 .sw_fini = gmc_v8_0_sw_fini,
1649 .hw_init = gmc_v8_0_hw_init,
1650 .hw_fini = gmc_v8_0_hw_fini,
1651 .suspend = gmc_v8_0_suspend,
1652 .resume = gmc_v8_0_resume,
1653 .is_idle = gmc_v8_0_is_idle,
1654 .wait_for_idle = gmc_v8_0_wait_for_idle,
1655 .check_soft_reset = gmc_v8_0_check_soft_reset,
1656 .pre_soft_reset = gmc_v8_0_pre_soft_reset,
1657 .soft_reset = gmc_v8_0_soft_reset,
1658 .post_soft_reset = gmc_v8_0_post_soft_reset,
1659 .set_clockgating_state = gmc_v8_0_set_clockgating_state,
1660 .set_powergating_state = gmc_v8_0_set_powergating_state,
1661 .get_clockgating_state = gmc_v8_0_get_clockgating_state,
1662 };
1663
1664 static const struct amdgpu_gart_funcs gmc_v8_0_gart_funcs = {
1665 .flush_gpu_tlb = gmc_v8_0_gart_flush_gpu_tlb,
1666 .set_pte_pde = gmc_v8_0_gart_set_pte_pde,
1667 .set_prt = gmc_v8_0_set_prt,
1668 .get_vm_pte_flags = gmc_v8_0_get_vm_pte_flags
1669 };
1670
1671 static const struct amdgpu_irq_src_funcs gmc_v8_0_irq_funcs = {
1672 .set = gmc_v8_0_vm_fault_interrupt_state,
1673 .process = gmc_v8_0_process_interrupt,
1674 };
1675
1676 static void gmc_v8_0_set_gart_funcs(struct amdgpu_device *adev)
1677 {
1678 if (adev->gart.gart_funcs == NULL)
1679 adev->gart.gart_funcs = &gmc_v8_0_gart_funcs;
1680 }
1681
1682 static void gmc_v8_0_set_irq_funcs(struct amdgpu_device *adev)
1683 {
1684 adev->mc.vm_fault.num_types = 1;
1685 adev->mc.vm_fault.funcs = &gmc_v8_0_irq_funcs;
1686 }
1687
1688 const struct amdgpu_ip_block_version gmc_v8_0_ip_block =
1689 {
1690 .type = AMD_IP_BLOCK_TYPE_GMC,
1691 .major = 8,
1692 .minor = 0,
1693 .rev = 0,
1694 .funcs = &gmc_v8_0_ip_funcs,
1695 };
1696
1697 const struct amdgpu_ip_block_version gmc_v8_1_ip_block =
1698 {
1699 .type = AMD_IP_BLOCK_TYPE_GMC,
1700 .major = 8,
1701 .minor = 1,
1702 .rev = 0,
1703 .funcs = &gmc_v8_0_ip_funcs,
1704 };
1705
1706 const struct amdgpu_ip_block_version gmc_v8_5_ip_block =
1707 {
1708 .type = AMD_IP_BLOCK_TYPE_GMC,
1709 .major = 8,
1710 .minor = 5,
1711 .rev = 0,
1712 .funcs = &gmc_v8_0_ip_funcs,
1713 };