]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/gpu/drm/amd/amdgpu/sdma_v2_4.c
ASoC: sti: fix missing clk_disable_unprepare() on error in uni_player_start()
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / amd / amdgpu / sdma_v2_4.c
1 /*
2 * Copyright 2014 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 * Authors: Alex Deucher
23 */
24 #include <linux/firmware.h>
25 #include <drm/drmP.h>
26 #include "amdgpu.h"
27 #include "amdgpu_ucode.h"
28 #include "amdgpu_trace.h"
29 #include "vi.h"
30 #include "vid.h"
31
32 #include "oss/oss_2_4_d.h"
33 #include "oss/oss_2_4_sh_mask.h"
34
35 #include "gmc/gmc_7_1_d.h"
36 #include "gmc/gmc_7_1_sh_mask.h"
37
38 #include "gca/gfx_8_0_d.h"
39 #include "gca/gfx_8_0_enum.h"
40 #include "gca/gfx_8_0_sh_mask.h"
41
42 #include "bif/bif_5_0_d.h"
43 #include "bif/bif_5_0_sh_mask.h"
44
45 #include "iceland_sdma_pkt_open.h"
46
47 static void sdma_v2_4_set_ring_funcs(struct amdgpu_device *adev);
48 static void sdma_v2_4_set_buffer_funcs(struct amdgpu_device *adev);
49 static void sdma_v2_4_set_vm_pte_funcs(struct amdgpu_device *adev);
50 static void sdma_v2_4_set_irq_funcs(struct amdgpu_device *adev);
51
52 MODULE_FIRMWARE("amdgpu/topaz_sdma.bin");
53 MODULE_FIRMWARE("amdgpu/topaz_sdma1.bin");
54
55 static const u32 sdma_offsets[SDMA_MAX_INSTANCE] =
56 {
57 SDMA0_REGISTER_OFFSET,
58 SDMA1_REGISTER_OFFSET
59 };
60
61 static const u32 golden_settings_iceland_a11[] =
62 {
63 mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
64 mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
65 mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
66 mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
67 };
68
69 static const u32 iceland_mgcg_cgcg_init[] =
70 {
71 mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
72 mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
73 };
74
75 /*
76 * sDMA - System DMA
77 * Starting with CIK, the GPU has new asynchronous
78 * DMA engines. These engines are used for compute
79 * and gfx. There are two DMA engines (SDMA0, SDMA1)
80 * and each one supports 1 ring buffer used for gfx
81 * and 2 queues used for compute.
82 *
83 * The programming model is very similar to the CP
84 * (ring buffer, IBs, etc.), but sDMA has it's own
85 * packet format that is different from the PM4 format
86 * used by the CP. sDMA supports copying data, writing
87 * embedded data, solid fills, and a number of other
88 * things. It also has support for tiling/detiling of
89 * buffers.
90 */
91
92 static void sdma_v2_4_init_golden_registers(struct amdgpu_device *adev)
93 {
94 switch (adev->asic_type) {
95 case CHIP_TOPAZ:
96 amdgpu_program_register_sequence(adev,
97 iceland_mgcg_cgcg_init,
98 (const u32)ARRAY_SIZE(iceland_mgcg_cgcg_init));
99 amdgpu_program_register_sequence(adev,
100 golden_settings_iceland_a11,
101 (const u32)ARRAY_SIZE(golden_settings_iceland_a11));
102 break;
103 default:
104 break;
105 }
106 }
107
108 static void sdma_v2_4_free_microcode(struct amdgpu_device *adev)
109 {
110 int i;
111 for (i = 0; i < adev->sdma.num_instances; i++) {
112 release_firmware(adev->sdma.instance[i].fw);
113 adev->sdma.instance[i].fw = NULL;
114 }
115 }
116
117 /**
118 * sdma_v2_4_init_microcode - load ucode images from disk
119 *
120 * @adev: amdgpu_device pointer
121 *
122 * Use the firmware interface to load the ucode images into
123 * the driver (not loaded into hw).
124 * Returns 0 on success, error on failure.
125 */
126 static int sdma_v2_4_init_microcode(struct amdgpu_device *adev)
127 {
128 const char *chip_name;
129 char fw_name[30];
130 int err = 0, i;
131 struct amdgpu_firmware_info *info = NULL;
132 const struct common_firmware_header *header = NULL;
133 const struct sdma_firmware_header_v1_0 *hdr;
134
135 DRM_DEBUG("\n");
136
137 switch (adev->asic_type) {
138 case CHIP_TOPAZ:
139 chip_name = "topaz";
140 break;
141 default: BUG();
142 }
143
144 for (i = 0; i < adev->sdma.num_instances; i++) {
145 if (i == 0)
146 snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma.bin", chip_name);
147 else
148 snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma1.bin", chip_name);
149 err = request_firmware(&adev->sdma.instance[i].fw, fw_name, adev->dev);
150 if (err)
151 goto out;
152 err = amdgpu_ucode_validate(adev->sdma.instance[i].fw);
153 if (err)
154 goto out;
155 hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
156 adev->sdma.instance[i].fw_version = le32_to_cpu(hdr->header.ucode_version);
157 adev->sdma.instance[i].feature_version = le32_to_cpu(hdr->ucode_feature_version);
158 if (adev->sdma.instance[i].feature_version >= 20)
159 adev->sdma.instance[i].burst_nop = true;
160
161 if (adev->firmware.smu_load) {
162 info = &adev->firmware.ucode[AMDGPU_UCODE_ID_SDMA0 + i];
163 info->ucode_id = AMDGPU_UCODE_ID_SDMA0 + i;
164 info->fw = adev->sdma.instance[i].fw;
165 header = (const struct common_firmware_header *)info->fw->data;
166 adev->firmware.fw_size +=
167 ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE);
168 }
169 }
170
171 out:
172 if (err) {
173 printk(KERN_ERR
174 "sdma_v2_4: Failed to load firmware \"%s\"\n",
175 fw_name);
176 for (i = 0; i < adev->sdma.num_instances; i++) {
177 release_firmware(adev->sdma.instance[i].fw);
178 adev->sdma.instance[i].fw = NULL;
179 }
180 }
181 return err;
182 }
183
184 /**
185 * sdma_v2_4_ring_get_rptr - get the current read pointer
186 *
187 * @ring: amdgpu ring pointer
188 *
189 * Get the current rptr from the hardware (VI+).
190 */
191 static uint32_t sdma_v2_4_ring_get_rptr(struct amdgpu_ring *ring)
192 {
193 u32 rptr;
194
195 /* XXX check if swapping is necessary on BE */
196 rptr = ring->adev->wb.wb[ring->rptr_offs] >> 2;
197
198 return rptr;
199 }
200
201 /**
202 * sdma_v2_4_ring_get_wptr - get the current write pointer
203 *
204 * @ring: amdgpu ring pointer
205 *
206 * Get the current wptr from the hardware (VI+).
207 */
208 static uint32_t sdma_v2_4_ring_get_wptr(struct amdgpu_ring *ring)
209 {
210 struct amdgpu_device *adev = ring->adev;
211 int me = (ring == &ring->adev->sdma.instance[0].ring) ? 0 : 1;
212 u32 wptr = RREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[me]) >> 2;
213
214 return wptr;
215 }
216
217 /**
218 * sdma_v2_4_ring_set_wptr - commit the write pointer
219 *
220 * @ring: amdgpu ring pointer
221 *
222 * Write the wptr back to the hardware (VI+).
223 */
224 static void sdma_v2_4_ring_set_wptr(struct amdgpu_ring *ring)
225 {
226 struct amdgpu_device *adev = ring->adev;
227 int me = (ring == &ring->adev->sdma.instance[0].ring) ? 0 : 1;
228
229 WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[me], ring->wptr << 2);
230 }
231
232 static void sdma_v2_4_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count)
233 {
234 struct amdgpu_sdma_instance *sdma = amdgpu_get_sdma_instance(ring);
235 int i;
236
237 for (i = 0; i < count; i++)
238 if (sdma && sdma->burst_nop && (i == 0))
239 amdgpu_ring_write(ring, ring->nop |
240 SDMA_PKT_NOP_HEADER_COUNT(count - 1));
241 else
242 amdgpu_ring_write(ring, ring->nop);
243 }
244
245 /**
246 * sdma_v2_4_ring_emit_ib - Schedule an IB on the DMA engine
247 *
248 * @ring: amdgpu ring pointer
249 * @ib: IB object to schedule
250 *
251 * Schedule an IB in the DMA ring (VI).
252 */
253 static void sdma_v2_4_ring_emit_ib(struct amdgpu_ring *ring,
254 struct amdgpu_ib *ib,
255 unsigned vm_id, bool ctx_switch)
256 {
257 u32 vmid = vm_id & 0xf;
258
259 /* IB packet must end on a 8 DW boundary */
260 sdma_v2_4_ring_insert_nop(ring, (10 - (ring->wptr & 7)) % 8);
261
262 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_INDIRECT) |
263 SDMA_PKT_INDIRECT_HEADER_VMID(vmid));
264 /* base must be 32 byte aligned */
265 amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr) & 0xffffffe0);
266 amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr));
267 amdgpu_ring_write(ring, ib->length_dw);
268 amdgpu_ring_write(ring, 0);
269 amdgpu_ring_write(ring, 0);
270
271 }
272
273 /**
274 * sdma_v2_4_hdp_flush_ring_emit - emit an hdp flush on the DMA ring
275 *
276 * @ring: amdgpu ring pointer
277 *
278 * Emit an hdp flush packet on the requested DMA ring.
279 */
280 static void sdma_v2_4_ring_emit_hdp_flush(struct amdgpu_ring *ring)
281 {
282 u32 ref_and_mask = 0;
283
284 if (ring == &ring->adev->sdma.instance[0].ring)
285 ref_and_mask = REG_SET_FIELD(ref_and_mask, GPU_HDP_FLUSH_DONE, SDMA0, 1);
286 else
287 ref_and_mask = REG_SET_FIELD(ref_and_mask, GPU_HDP_FLUSH_DONE, SDMA1, 1);
288
289 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
290 SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(1) |
291 SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* == */
292 amdgpu_ring_write(ring, mmGPU_HDP_FLUSH_DONE << 2);
293 amdgpu_ring_write(ring, mmGPU_HDP_FLUSH_REQ << 2);
294 amdgpu_ring_write(ring, ref_and_mask); /* reference */
295 amdgpu_ring_write(ring, ref_and_mask); /* mask */
296 amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
297 SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */
298 }
299
300 static void sdma_v2_4_ring_emit_hdp_invalidate(struct amdgpu_ring *ring)
301 {
302 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
303 SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
304 amdgpu_ring_write(ring, mmHDP_DEBUG0);
305 amdgpu_ring_write(ring, 1);
306 }
307 /**
308 * sdma_v2_4_ring_emit_fence - emit a fence on the DMA ring
309 *
310 * @ring: amdgpu ring pointer
311 * @fence: amdgpu fence object
312 *
313 * Add a DMA fence packet to the ring to write
314 * the fence seq number and DMA trap packet to generate
315 * an interrupt if needed (VI).
316 */
317 static void sdma_v2_4_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq,
318 unsigned flags)
319 {
320 bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT;
321 /* write the fence */
322 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
323 amdgpu_ring_write(ring, lower_32_bits(addr));
324 amdgpu_ring_write(ring, upper_32_bits(addr));
325 amdgpu_ring_write(ring, lower_32_bits(seq));
326
327 /* optionally write high bits as well */
328 if (write64bit) {
329 addr += 4;
330 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
331 amdgpu_ring_write(ring, lower_32_bits(addr));
332 amdgpu_ring_write(ring, upper_32_bits(addr));
333 amdgpu_ring_write(ring, upper_32_bits(seq));
334 }
335
336 /* generate an interrupt */
337 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_TRAP));
338 amdgpu_ring_write(ring, SDMA_PKT_TRAP_INT_CONTEXT_INT_CONTEXT(0));
339 }
340
341 /**
342 * sdma_v2_4_gfx_stop - stop the gfx async dma engines
343 *
344 * @adev: amdgpu_device pointer
345 *
346 * Stop the gfx async dma ring buffers (VI).
347 */
348 static void sdma_v2_4_gfx_stop(struct amdgpu_device *adev)
349 {
350 struct amdgpu_ring *sdma0 = &adev->sdma.instance[0].ring;
351 struct amdgpu_ring *sdma1 = &adev->sdma.instance[1].ring;
352 u32 rb_cntl, ib_cntl;
353 int i;
354
355 if ((adev->mman.buffer_funcs_ring == sdma0) ||
356 (adev->mman.buffer_funcs_ring == sdma1))
357 amdgpu_ttm_set_active_vram_size(adev, adev->mc.visible_vram_size);
358
359 for (i = 0; i < adev->sdma.num_instances; i++) {
360 rb_cntl = RREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i]);
361 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 0);
362 WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
363 ib_cntl = RREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i]);
364 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 0);
365 WREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i], ib_cntl);
366 }
367 sdma0->ready = false;
368 sdma1->ready = false;
369 }
370
371 /**
372 * sdma_v2_4_rlc_stop - stop the compute async dma engines
373 *
374 * @adev: amdgpu_device pointer
375 *
376 * Stop the compute async dma queues (VI).
377 */
378 static void sdma_v2_4_rlc_stop(struct amdgpu_device *adev)
379 {
380 /* XXX todo */
381 }
382
383 /**
384 * sdma_v2_4_enable - stop the async dma engines
385 *
386 * @adev: amdgpu_device pointer
387 * @enable: enable/disable the DMA MEs.
388 *
389 * Halt or unhalt the async dma engines (VI).
390 */
391 static void sdma_v2_4_enable(struct amdgpu_device *adev, bool enable)
392 {
393 u32 f32_cntl;
394 int i;
395
396 if (!enable) {
397 sdma_v2_4_gfx_stop(adev);
398 sdma_v2_4_rlc_stop(adev);
399 }
400
401 for (i = 0; i < adev->sdma.num_instances; i++) {
402 f32_cntl = RREG32(mmSDMA0_F32_CNTL + sdma_offsets[i]);
403 if (enable)
404 f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, 0);
405 else
406 f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, 1);
407 WREG32(mmSDMA0_F32_CNTL + sdma_offsets[i], f32_cntl);
408 }
409 }
410
411 /**
412 * sdma_v2_4_gfx_resume - setup and start the async dma engines
413 *
414 * @adev: amdgpu_device pointer
415 *
416 * Set up the gfx DMA ring buffers and enable them (VI).
417 * Returns 0 for success, error for failure.
418 */
419 static int sdma_v2_4_gfx_resume(struct amdgpu_device *adev)
420 {
421 struct amdgpu_ring *ring;
422 u32 rb_cntl, ib_cntl;
423 u32 rb_bufsz;
424 u32 wb_offset;
425 int i, j, r;
426
427 for (i = 0; i < adev->sdma.num_instances; i++) {
428 ring = &adev->sdma.instance[i].ring;
429 wb_offset = (ring->rptr_offs * 4);
430
431 mutex_lock(&adev->srbm_mutex);
432 for (j = 0; j < 16; j++) {
433 vi_srbm_select(adev, 0, 0, 0, j);
434 /* SDMA GFX */
435 WREG32(mmSDMA0_GFX_VIRTUAL_ADDR + sdma_offsets[i], 0);
436 WREG32(mmSDMA0_GFX_APE1_CNTL + sdma_offsets[i], 0);
437 }
438 vi_srbm_select(adev, 0, 0, 0, 0);
439 mutex_unlock(&adev->srbm_mutex);
440
441 WREG32(mmSDMA0_TILING_CONFIG + sdma_offsets[i],
442 adev->gfx.config.gb_addr_config & 0x70);
443
444 WREG32(mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL + sdma_offsets[i], 0);
445
446 /* Set ring buffer size in dwords */
447 rb_bufsz = order_base_2(ring->ring_size / 4);
448 rb_cntl = RREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i]);
449 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SIZE, rb_bufsz);
450 #ifdef __BIG_ENDIAN
451 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SWAP_ENABLE, 1);
452 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
453 RPTR_WRITEBACK_SWAP_ENABLE, 1);
454 #endif
455 WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
456
457 /* Initialize the ring buffer's read and write pointers */
458 WREG32(mmSDMA0_GFX_RB_RPTR + sdma_offsets[i], 0);
459 WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[i], 0);
460 WREG32(mmSDMA0_GFX_IB_RPTR + sdma_offsets[i], 0);
461 WREG32(mmSDMA0_GFX_IB_OFFSET + sdma_offsets[i], 0);
462
463 /* set the wb address whether it's enabled or not */
464 WREG32(mmSDMA0_GFX_RB_RPTR_ADDR_HI + sdma_offsets[i],
465 upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF);
466 WREG32(mmSDMA0_GFX_RB_RPTR_ADDR_LO + sdma_offsets[i],
467 lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC);
468
469 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RPTR_WRITEBACK_ENABLE, 1);
470
471 WREG32(mmSDMA0_GFX_RB_BASE + sdma_offsets[i], ring->gpu_addr >> 8);
472 WREG32(mmSDMA0_GFX_RB_BASE_HI + sdma_offsets[i], ring->gpu_addr >> 40);
473
474 ring->wptr = 0;
475 WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[i], ring->wptr << 2);
476
477 /* enable DMA RB */
478 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 1);
479 WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
480
481 ib_cntl = RREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i]);
482 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 1);
483 #ifdef __BIG_ENDIAN
484 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_SWAP_ENABLE, 1);
485 #endif
486 /* enable DMA IBs */
487 WREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i], ib_cntl);
488
489 ring->ready = true;
490 }
491
492 sdma_v2_4_enable(adev, true);
493 for (i = 0; i < adev->sdma.num_instances; i++) {
494 ring = &adev->sdma.instance[i].ring;
495 r = amdgpu_ring_test_ring(ring);
496 if (r) {
497 ring->ready = false;
498 return r;
499 }
500
501 if (adev->mman.buffer_funcs_ring == ring)
502 amdgpu_ttm_set_active_vram_size(adev, adev->mc.real_vram_size);
503 }
504
505 return 0;
506 }
507
508 /**
509 * sdma_v2_4_rlc_resume - setup and start the async dma engines
510 *
511 * @adev: amdgpu_device pointer
512 *
513 * Set up the compute DMA queues and enable them (VI).
514 * Returns 0 for success, error for failure.
515 */
516 static int sdma_v2_4_rlc_resume(struct amdgpu_device *adev)
517 {
518 /* XXX todo */
519 return 0;
520 }
521
522 /**
523 * sdma_v2_4_load_microcode - load the sDMA ME ucode
524 *
525 * @adev: amdgpu_device pointer
526 *
527 * Loads the sDMA0/1 ucode.
528 * Returns 0 for success, -EINVAL if the ucode is not available.
529 */
530 static int sdma_v2_4_load_microcode(struct amdgpu_device *adev)
531 {
532 const struct sdma_firmware_header_v1_0 *hdr;
533 const __le32 *fw_data;
534 u32 fw_size;
535 int i, j;
536
537 /* halt the MEs */
538 sdma_v2_4_enable(adev, false);
539
540 for (i = 0; i < adev->sdma.num_instances; i++) {
541 if (!adev->sdma.instance[i].fw)
542 return -EINVAL;
543 hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
544 amdgpu_ucode_print_sdma_hdr(&hdr->header);
545 fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4;
546 fw_data = (const __le32 *)
547 (adev->sdma.instance[i].fw->data +
548 le32_to_cpu(hdr->header.ucode_array_offset_bytes));
549 WREG32(mmSDMA0_UCODE_ADDR + sdma_offsets[i], 0);
550 for (j = 0; j < fw_size; j++)
551 WREG32(mmSDMA0_UCODE_DATA + sdma_offsets[i], le32_to_cpup(fw_data++));
552 WREG32(mmSDMA0_UCODE_ADDR + sdma_offsets[i], adev->sdma.instance[i].fw_version);
553 }
554
555 return 0;
556 }
557
558 /**
559 * sdma_v2_4_start - setup and start the async dma engines
560 *
561 * @adev: amdgpu_device pointer
562 *
563 * Set up the DMA engines and enable them (VI).
564 * Returns 0 for success, error for failure.
565 */
566 static int sdma_v2_4_start(struct amdgpu_device *adev)
567 {
568 int r;
569
570 if (!adev->pp_enabled) {
571 if (!adev->firmware.smu_load) {
572 r = sdma_v2_4_load_microcode(adev);
573 if (r)
574 return r;
575 } else {
576 r = adev->smu.smumgr_funcs->check_fw_load_finish(adev,
577 AMDGPU_UCODE_ID_SDMA0);
578 if (r)
579 return -EINVAL;
580 r = adev->smu.smumgr_funcs->check_fw_load_finish(adev,
581 AMDGPU_UCODE_ID_SDMA1);
582 if (r)
583 return -EINVAL;
584 }
585 }
586
587 /* halt the engine before programing */
588 sdma_v2_4_enable(adev, false);
589
590 /* start the gfx rings and rlc compute queues */
591 r = sdma_v2_4_gfx_resume(adev);
592 if (r)
593 return r;
594 r = sdma_v2_4_rlc_resume(adev);
595 if (r)
596 return r;
597
598 return 0;
599 }
600
601 /**
602 * sdma_v2_4_ring_test_ring - simple async dma engine test
603 *
604 * @ring: amdgpu_ring structure holding ring information
605 *
606 * Test the DMA engine by writing using it to write an
607 * value to memory. (VI).
608 * Returns 0 for success, error for failure.
609 */
610 static int sdma_v2_4_ring_test_ring(struct amdgpu_ring *ring)
611 {
612 struct amdgpu_device *adev = ring->adev;
613 unsigned i;
614 unsigned index;
615 int r;
616 u32 tmp;
617 u64 gpu_addr;
618
619 r = amdgpu_wb_get(adev, &index);
620 if (r) {
621 dev_err(adev->dev, "(%d) failed to allocate wb slot\n", r);
622 return r;
623 }
624
625 gpu_addr = adev->wb.gpu_addr + (index * 4);
626 tmp = 0xCAFEDEAD;
627 adev->wb.wb[index] = cpu_to_le32(tmp);
628
629 r = amdgpu_ring_alloc(ring, 5);
630 if (r) {
631 DRM_ERROR("amdgpu: dma failed to lock ring %d (%d).\n", ring->idx, r);
632 amdgpu_wb_free(adev, index);
633 return r;
634 }
635
636 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
637 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR));
638 amdgpu_ring_write(ring, lower_32_bits(gpu_addr));
639 amdgpu_ring_write(ring, upper_32_bits(gpu_addr));
640 amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1));
641 amdgpu_ring_write(ring, 0xDEADBEEF);
642 amdgpu_ring_commit(ring);
643
644 for (i = 0; i < adev->usec_timeout; i++) {
645 tmp = le32_to_cpu(adev->wb.wb[index]);
646 if (tmp == 0xDEADBEEF)
647 break;
648 DRM_UDELAY(1);
649 }
650
651 if (i < adev->usec_timeout) {
652 DRM_INFO("ring test on %d succeeded in %d usecs\n", ring->idx, i);
653 } else {
654 DRM_ERROR("amdgpu: ring %d test failed (0x%08X)\n",
655 ring->idx, tmp);
656 r = -EINVAL;
657 }
658 amdgpu_wb_free(adev, index);
659
660 return r;
661 }
662
663 /**
664 * sdma_v2_4_ring_test_ib - test an IB on the DMA engine
665 *
666 * @ring: amdgpu_ring structure holding ring information
667 *
668 * Test a simple IB in the DMA ring (VI).
669 * Returns 0 on success, error on failure.
670 */
671 static int sdma_v2_4_ring_test_ib(struct amdgpu_ring *ring, long timeout)
672 {
673 struct amdgpu_device *adev = ring->adev;
674 struct amdgpu_ib ib;
675 struct fence *f = NULL;
676 unsigned index;
677 u32 tmp = 0;
678 u64 gpu_addr;
679 long r;
680
681 r = amdgpu_wb_get(adev, &index);
682 if (r) {
683 dev_err(adev->dev, "(%ld) failed to allocate wb slot\n", r);
684 return r;
685 }
686
687 gpu_addr = adev->wb.gpu_addr + (index * 4);
688 tmp = 0xCAFEDEAD;
689 adev->wb.wb[index] = cpu_to_le32(tmp);
690 memset(&ib, 0, sizeof(ib));
691 r = amdgpu_ib_get(adev, NULL, 256, &ib);
692 if (r) {
693 DRM_ERROR("amdgpu: failed to get ib (%ld).\n", r);
694 goto err0;
695 }
696
697 ib.ptr[0] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
698 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
699 ib.ptr[1] = lower_32_bits(gpu_addr);
700 ib.ptr[2] = upper_32_bits(gpu_addr);
701 ib.ptr[3] = SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1);
702 ib.ptr[4] = 0xDEADBEEF;
703 ib.ptr[5] = SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
704 ib.ptr[6] = SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
705 ib.ptr[7] = SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
706 ib.length_dw = 8;
707
708 r = amdgpu_ib_schedule(ring, 1, &ib, NULL, NULL, &f);
709 if (r)
710 goto err1;
711
712 r = fence_wait_timeout(f, false, timeout);
713 if (r == 0) {
714 DRM_ERROR("amdgpu: IB test timed out\n");
715 r = -ETIMEDOUT;
716 goto err1;
717 } else if (r) {
718 DRM_ERROR("amdgpu: fence wait failed (%ld).\n", r);
719 goto err1;
720 }
721 tmp = le32_to_cpu(adev->wb.wb[index]);
722 if (tmp == 0xDEADBEEF) {
723 DRM_INFO("ib test on ring %d succeeded\n", ring->idx);
724 r = 0;
725 } else {
726 DRM_ERROR("amdgpu: ib test failed (0x%08X)\n", tmp);
727 r = -EINVAL;
728 }
729
730 err1:
731 amdgpu_ib_free(adev, &ib, NULL);
732 fence_put(f);
733 err0:
734 amdgpu_wb_free(adev, index);
735 return r;
736 }
737
738 /**
739 * sdma_v2_4_vm_copy_pte - update PTEs by copying them from the GART
740 *
741 * @ib: indirect buffer to fill with commands
742 * @pe: addr of the page entry
743 * @src: src addr to copy from
744 * @count: number of page entries to update
745 *
746 * Update PTEs by copying them from the GART using sDMA (CIK).
747 */
748 static void sdma_v2_4_vm_copy_pte(struct amdgpu_ib *ib,
749 uint64_t pe, uint64_t src,
750 unsigned count)
751 {
752 while (count) {
753 unsigned bytes = count * 8;
754 if (bytes > 0x1FFFF8)
755 bytes = 0x1FFFF8;
756
757 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
758 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
759 ib->ptr[ib->length_dw++] = bytes;
760 ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
761 ib->ptr[ib->length_dw++] = lower_32_bits(src);
762 ib->ptr[ib->length_dw++] = upper_32_bits(src);
763 ib->ptr[ib->length_dw++] = lower_32_bits(pe);
764 ib->ptr[ib->length_dw++] = upper_32_bits(pe);
765
766 pe += bytes;
767 src += bytes;
768 count -= bytes / 8;
769 }
770 }
771
772 /**
773 * sdma_v2_4_vm_write_pte - update PTEs by writing them manually
774 *
775 * @ib: indirect buffer to fill with commands
776 * @pe: addr of the page entry
777 * @addr: dst addr to write into pe
778 * @count: number of page entries to update
779 * @incr: increase next addr by incr bytes
780 * @flags: access flags
781 *
782 * Update PTEs by writing them manually using sDMA (CIK).
783 */
784 static void sdma_v2_4_vm_write_pte(struct amdgpu_ib *ib,
785 const dma_addr_t *pages_addr, uint64_t pe,
786 uint64_t addr, unsigned count,
787 uint32_t incr, uint32_t flags)
788 {
789 uint64_t value;
790 unsigned ndw;
791
792 while (count) {
793 ndw = count * 2;
794 if (ndw > 0xFFFFE)
795 ndw = 0xFFFFE;
796
797 /* for non-physically contiguous pages (system) */
798 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
799 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
800 ib->ptr[ib->length_dw++] = pe;
801 ib->ptr[ib->length_dw++] = upper_32_bits(pe);
802 ib->ptr[ib->length_dw++] = ndw;
803 for (; ndw > 0; ndw -= 2, --count, pe += 8) {
804 value = amdgpu_vm_map_gart(pages_addr, addr);
805 addr += incr;
806 value |= flags;
807 ib->ptr[ib->length_dw++] = value;
808 ib->ptr[ib->length_dw++] = upper_32_bits(value);
809 }
810 }
811 }
812
813 /**
814 * sdma_v2_4_vm_set_pte_pde - update the page tables using sDMA
815 *
816 * @ib: indirect buffer to fill with commands
817 * @pe: addr of the page entry
818 * @addr: dst addr to write into pe
819 * @count: number of page entries to update
820 * @incr: increase next addr by incr bytes
821 * @flags: access flags
822 *
823 * Update the page tables using sDMA (CIK).
824 */
825 static void sdma_v2_4_vm_set_pte_pde(struct amdgpu_ib *ib,
826 uint64_t pe,
827 uint64_t addr, unsigned count,
828 uint32_t incr, uint32_t flags)
829 {
830 uint64_t value;
831 unsigned ndw;
832
833 while (count) {
834 ndw = count;
835 if (ndw > 0x7FFFF)
836 ndw = 0x7FFFF;
837
838 if (flags & AMDGPU_PTE_VALID)
839 value = addr;
840 else
841 value = 0;
842
843 /* for physically contiguous pages (vram) */
844 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_GEN_PTEPDE);
845 ib->ptr[ib->length_dw++] = pe; /* dst addr */
846 ib->ptr[ib->length_dw++] = upper_32_bits(pe);
847 ib->ptr[ib->length_dw++] = flags; /* mask */
848 ib->ptr[ib->length_dw++] = 0;
849 ib->ptr[ib->length_dw++] = value; /* value */
850 ib->ptr[ib->length_dw++] = upper_32_bits(value);
851 ib->ptr[ib->length_dw++] = incr; /* increment size */
852 ib->ptr[ib->length_dw++] = 0;
853 ib->ptr[ib->length_dw++] = ndw; /* number of entries */
854
855 pe += ndw * 8;
856 addr += ndw * incr;
857 count -= ndw;
858 }
859 }
860
861 /**
862 * sdma_v2_4_ring_pad_ib - pad the IB to the required number of dw
863 *
864 * @ib: indirect buffer to fill with padding
865 *
866 */
867 static void sdma_v2_4_ring_pad_ib(struct amdgpu_ring *ring, struct amdgpu_ib *ib)
868 {
869 struct amdgpu_sdma_instance *sdma = amdgpu_get_sdma_instance(ring);
870 u32 pad_count;
871 int i;
872
873 pad_count = (8 - (ib->length_dw & 0x7)) % 8;
874 for (i = 0; i < pad_count; i++)
875 if (sdma && sdma->burst_nop && (i == 0))
876 ib->ptr[ib->length_dw++] =
877 SDMA_PKT_HEADER_OP(SDMA_OP_NOP) |
878 SDMA_PKT_NOP_HEADER_COUNT(pad_count - 1);
879 else
880 ib->ptr[ib->length_dw++] =
881 SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
882 }
883
884 /**
885 * sdma_v2_4_ring_emit_pipeline_sync - sync the pipeline
886 *
887 * @ring: amdgpu_ring pointer
888 *
889 * Make sure all previous operations are completed (CIK).
890 */
891 static void sdma_v2_4_ring_emit_pipeline_sync(struct amdgpu_ring *ring)
892 {
893 uint32_t seq = ring->fence_drv.sync_seq;
894 uint64_t addr = ring->fence_drv.gpu_addr;
895
896 /* wait for idle */
897 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
898 SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) |
899 SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3) | /* equal */
900 SDMA_PKT_POLL_REGMEM_HEADER_MEM_POLL(1));
901 amdgpu_ring_write(ring, addr & 0xfffffffc);
902 amdgpu_ring_write(ring, upper_32_bits(addr) & 0xffffffff);
903 amdgpu_ring_write(ring, seq); /* reference */
904 amdgpu_ring_write(ring, 0xfffffff); /* mask */
905 amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
906 SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(4)); /* retry count, poll interval */
907 }
908
909 /**
910 * sdma_v2_4_ring_emit_vm_flush - cik vm flush using sDMA
911 *
912 * @ring: amdgpu_ring pointer
913 * @vm: amdgpu_vm pointer
914 *
915 * Update the page table base and flush the VM TLB
916 * using sDMA (VI).
917 */
918 static void sdma_v2_4_ring_emit_vm_flush(struct amdgpu_ring *ring,
919 unsigned vm_id, uint64_t pd_addr)
920 {
921 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
922 SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
923 if (vm_id < 8) {
924 amdgpu_ring_write(ring, (mmVM_CONTEXT0_PAGE_TABLE_BASE_ADDR + vm_id));
925 } else {
926 amdgpu_ring_write(ring, (mmVM_CONTEXT8_PAGE_TABLE_BASE_ADDR + vm_id - 8));
927 }
928 amdgpu_ring_write(ring, pd_addr >> 12);
929
930 /* flush TLB */
931 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
932 SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
933 amdgpu_ring_write(ring, mmVM_INVALIDATE_REQUEST);
934 amdgpu_ring_write(ring, 1 << vm_id);
935
936 /* wait for flush */
937 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
938 SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) |
939 SDMA_PKT_POLL_REGMEM_HEADER_FUNC(0)); /* always */
940 amdgpu_ring_write(ring, mmVM_INVALIDATE_REQUEST << 2);
941 amdgpu_ring_write(ring, 0);
942 amdgpu_ring_write(ring, 0); /* reference */
943 amdgpu_ring_write(ring, 0); /* mask */
944 amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
945 SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */
946 }
947
948 static int sdma_v2_4_early_init(void *handle)
949 {
950 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
951
952 adev->sdma.num_instances = SDMA_MAX_INSTANCE;
953
954 sdma_v2_4_set_ring_funcs(adev);
955 sdma_v2_4_set_buffer_funcs(adev);
956 sdma_v2_4_set_vm_pte_funcs(adev);
957 sdma_v2_4_set_irq_funcs(adev);
958
959 return 0;
960 }
961
962 static int sdma_v2_4_sw_init(void *handle)
963 {
964 struct amdgpu_ring *ring;
965 int r, i;
966 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
967
968 /* SDMA trap event */
969 r = amdgpu_irq_add_id(adev, 224, &adev->sdma.trap_irq);
970 if (r)
971 return r;
972
973 /* SDMA Privileged inst */
974 r = amdgpu_irq_add_id(adev, 241, &adev->sdma.illegal_inst_irq);
975 if (r)
976 return r;
977
978 /* SDMA Privileged inst */
979 r = amdgpu_irq_add_id(adev, 247, &adev->sdma.illegal_inst_irq);
980 if (r)
981 return r;
982
983 r = sdma_v2_4_init_microcode(adev);
984 if (r) {
985 DRM_ERROR("Failed to load sdma firmware!\n");
986 return r;
987 }
988
989 for (i = 0; i < adev->sdma.num_instances; i++) {
990 ring = &adev->sdma.instance[i].ring;
991 ring->ring_obj = NULL;
992 ring->use_doorbell = false;
993 sprintf(ring->name, "sdma%d", i);
994 r = amdgpu_ring_init(adev, ring, 1024,
995 SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP), 0xf,
996 &adev->sdma.trap_irq,
997 (i == 0) ?
998 AMDGPU_SDMA_IRQ_TRAP0 : AMDGPU_SDMA_IRQ_TRAP1,
999 AMDGPU_RING_TYPE_SDMA);
1000 if (r)
1001 return r;
1002 }
1003
1004 return r;
1005 }
1006
1007 static int sdma_v2_4_sw_fini(void *handle)
1008 {
1009 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1010 int i;
1011
1012 for (i = 0; i < adev->sdma.num_instances; i++)
1013 amdgpu_ring_fini(&adev->sdma.instance[i].ring);
1014
1015 sdma_v2_4_free_microcode(adev);
1016 return 0;
1017 }
1018
1019 static int sdma_v2_4_hw_init(void *handle)
1020 {
1021 int r;
1022 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1023
1024 sdma_v2_4_init_golden_registers(adev);
1025
1026 r = sdma_v2_4_start(adev);
1027 if (r)
1028 return r;
1029
1030 return r;
1031 }
1032
1033 static int sdma_v2_4_hw_fini(void *handle)
1034 {
1035 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1036
1037 sdma_v2_4_enable(adev, false);
1038
1039 return 0;
1040 }
1041
1042 static int sdma_v2_4_suspend(void *handle)
1043 {
1044 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1045
1046 return sdma_v2_4_hw_fini(adev);
1047 }
1048
1049 static int sdma_v2_4_resume(void *handle)
1050 {
1051 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1052
1053 return sdma_v2_4_hw_init(adev);
1054 }
1055
1056 static bool sdma_v2_4_is_idle(void *handle)
1057 {
1058 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1059 u32 tmp = RREG32(mmSRBM_STATUS2);
1060
1061 if (tmp & (SRBM_STATUS2__SDMA_BUSY_MASK |
1062 SRBM_STATUS2__SDMA1_BUSY_MASK))
1063 return false;
1064
1065 return true;
1066 }
1067
1068 static int sdma_v2_4_wait_for_idle(void *handle)
1069 {
1070 unsigned i;
1071 u32 tmp;
1072 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1073
1074 for (i = 0; i < adev->usec_timeout; i++) {
1075 tmp = RREG32(mmSRBM_STATUS2) & (SRBM_STATUS2__SDMA_BUSY_MASK |
1076 SRBM_STATUS2__SDMA1_BUSY_MASK);
1077
1078 if (!tmp)
1079 return 0;
1080 udelay(1);
1081 }
1082 return -ETIMEDOUT;
1083 }
1084
1085 static int sdma_v2_4_soft_reset(void *handle)
1086 {
1087 u32 srbm_soft_reset = 0;
1088 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1089 u32 tmp = RREG32(mmSRBM_STATUS2);
1090
1091 if (tmp & SRBM_STATUS2__SDMA_BUSY_MASK) {
1092 /* sdma0 */
1093 tmp = RREG32(mmSDMA0_F32_CNTL + SDMA0_REGISTER_OFFSET);
1094 tmp = REG_SET_FIELD(tmp, SDMA0_F32_CNTL, HALT, 0);
1095 WREG32(mmSDMA0_F32_CNTL + SDMA0_REGISTER_OFFSET, tmp);
1096 srbm_soft_reset |= SRBM_SOFT_RESET__SOFT_RESET_SDMA_MASK;
1097 }
1098 if (tmp & SRBM_STATUS2__SDMA1_BUSY_MASK) {
1099 /* sdma1 */
1100 tmp = RREG32(mmSDMA0_F32_CNTL + SDMA1_REGISTER_OFFSET);
1101 tmp = REG_SET_FIELD(tmp, SDMA0_F32_CNTL, HALT, 0);
1102 WREG32(mmSDMA0_F32_CNTL + SDMA1_REGISTER_OFFSET, tmp);
1103 srbm_soft_reset |= SRBM_SOFT_RESET__SOFT_RESET_SDMA1_MASK;
1104 }
1105
1106 if (srbm_soft_reset) {
1107 tmp = RREG32(mmSRBM_SOFT_RESET);
1108 tmp |= srbm_soft_reset;
1109 dev_info(adev->dev, "SRBM_SOFT_RESET=0x%08X\n", tmp);
1110 WREG32(mmSRBM_SOFT_RESET, tmp);
1111 tmp = RREG32(mmSRBM_SOFT_RESET);
1112
1113 udelay(50);
1114
1115 tmp &= ~srbm_soft_reset;
1116 WREG32(mmSRBM_SOFT_RESET, tmp);
1117 tmp = RREG32(mmSRBM_SOFT_RESET);
1118
1119 /* Wait a little for things to settle down */
1120 udelay(50);
1121 }
1122
1123 return 0;
1124 }
1125
1126 static int sdma_v2_4_set_trap_irq_state(struct amdgpu_device *adev,
1127 struct amdgpu_irq_src *src,
1128 unsigned type,
1129 enum amdgpu_interrupt_state state)
1130 {
1131 u32 sdma_cntl;
1132
1133 switch (type) {
1134 case AMDGPU_SDMA_IRQ_TRAP0:
1135 switch (state) {
1136 case AMDGPU_IRQ_STATE_DISABLE:
1137 sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET);
1138 sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 0);
1139 WREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET, sdma_cntl);
1140 break;
1141 case AMDGPU_IRQ_STATE_ENABLE:
1142 sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET);
1143 sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 1);
1144 WREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET, sdma_cntl);
1145 break;
1146 default:
1147 break;
1148 }
1149 break;
1150 case AMDGPU_SDMA_IRQ_TRAP1:
1151 switch (state) {
1152 case AMDGPU_IRQ_STATE_DISABLE:
1153 sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET);
1154 sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 0);
1155 WREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET, sdma_cntl);
1156 break;
1157 case AMDGPU_IRQ_STATE_ENABLE:
1158 sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET);
1159 sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 1);
1160 WREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET, sdma_cntl);
1161 break;
1162 default:
1163 break;
1164 }
1165 break;
1166 default:
1167 break;
1168 }
1169 return 0;
1170 }
1171
1172 static int sdma_v2_4_process_trap_irq(struct amdgpu_device *adev,
1173 struct amdgpu_irq_src *source,
1174 struct amdgpu_iv_entry *entry)
1175 {
1176 u8 instance_id, queue_id;
1177
1178 instance_id = (entry->ring_id & 0x3) >> 0;
1179 queue_id = (entry->ring_id & 0xc) >> 2;
1180 DRM_DEBUG("IH: SDMA trap\n");
1181 switch (instance_id) {
1182 case 0:
1183 switch (queue_id) {
1184 case 0:
1185 amdgpu_fence_process(&adev->sdma.instance[0].ring);
1186 break;
1187 case 1:
1188 /* XXX compute */
1189 break;
1190 case 2:
1191 /* XXX compute */
1192 break;
1193 }
1194 break;
1195 case 1:
1196 switch (queue_id) {
1197 case 0:
1198 amdgpu_fence_process(&adev->sdma.instance[1].ring);
1199 break;
1200 case 1:
1201 /* XXX compute */
1202 break;
1203 case 2:
1204 /* XXX compute */
1205 break;
1206 }
1207 break;
1208 }
1209 return 0;
1210 }
1211
1212 static int sdma_v2_4_process_illegal_inst_irq(struct amdgpu_device *adev,
1213 struct amdgpu_irq_src *source,
1214 struct amdgpu_iv_entry *entry)
1215 {
1216 DRM_ERROR("Illegal instruction in SDMA command stream\n");
1217 schedule_work(&adev->reset_work);
1218 return 0;
1219 }
1220
1221 static int sdma_v2_4_set_clockgating_state(void *handle,
1222 enum amd_clockgating_state state)
1223 {
1224 /* XXX handled via the smc on VI */
1225 return 0;
1226 }
1227
1228 static int sdma_v2_4_set_powergating_state(void *handle,
1229 enum amd_powergating_state state)
1230 {
1231 return 0;
1232 }
1233
1234 const struct amd_ip_funcs sdma_v2_4_ip_funcs = {
1235 .name = "sdma_v2_4",
1236 .early_init = sdma_v2_4_early_init,
1237 .late_init = NULL,
1238 .sw_init = sdma_v2_4_sw_init,
1239 .sw_fini = sdma_v2_4_sw_fini,
1240 .hw_init = sdma_v2_4_hw_init,
1241 .hw_fini = sdma_v2_4_hw_fini,
1242 .suspend = sdma_v2_4_suspend,
1243 .resume = sdma_v2_4_resume,
1244 .is_idle = sdma_v2_4_is_idle,
1245 .wait_for_idle = sdma_v2_4_wait_for_idle,
1246 .soft_reset = sdma_v2_4_soft_reset,
1247 .set_clockgating_state = sdma_v2_4_set_clockgating_state,
1248 .set_powergating_state = sdma_v2_4_set_powergating_state,
1249 };
1250
1251 static const struct amdgpu_ring_funcs sdma_v2_4_ring_funcs = {
1252 .get_rptr = sdma_v2_4_ring_get_rptr,
1253 .get_wptr = sdma_v2_4_ring_get_wptr,
1254 .set_wptr = sdma_v2_4_ring_set_wptr,
1255 .parse_cs = NULL,
1256 .emit_ib = sdma_v2_4_ring_emit_ib,
1257 .emit_fence = sdma_v2_4_ring_emit_fence,
1258 .emit_pipeline_sync = sdma_v2_4_ring_emit_pipeline_sync,
1259 .emit_vm_flush = sdma_v2_4_ring_emit_vm_flush,
1260 .emit_hdp_flush = sdma_v2_4_ring_emit_hdp_flush,
1261 .emit_hdp_invalidate = sdma_v2_4_ring_emit_hdp_invalidate,
1262 .test_ring = sdma_v2_4_ring_test_ring,
1263 .test_ib = sdma_v2_4_ring_test_ib,
1264 .insert_nop = sdma_v2_4_ring_insert_nop,
1265 .pad_ib = sdma_v2_4_ring_pad_ib,
1266 };
1267
1268 static void sdma_v2_4_set_ring_funcs(struct amdgpu_device *adev)
1269 {
1270 int i;
1271
1272 for (i = 0; i < adev->sdma.num_instances; i++)
1273 adev->sdma.instance[i].ring.funcs = &sdma_v2_4_ring_funcs;
1274 }
1275
1276 static const struct amdgpu_irq_src_funcs sdma_v2_4_trap_irq_funcs = {
1277 .set = sdma_v2_4_set_trap_irq_state,
1278 .process = sdma_v2_4_process_trap_irq,
1279 };
1280
1281 static const struct amdgpu_irq_src_funcs sdma_v2_4_illegal_inst_irq_funcs = {
1282 .process = sdma_v2_4_process_illegal_inst_irq,
1283 };
1284
1285 static void sdma_v2_4_set_irq_funcs(struct amdgpu_device *adev)
1286 {
1287 adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_LAST;
1288 adev->sdma.trap_irq.funcs = &sdma_v2_4_trap_irq_funcs;
1289 adev->sdma.illegal_inst_irq.funcs = &sdma_v2_4_illegal_inst_irq_funcs;
1290 }
1291
1292 /**
1293 * sdma_v2_4_emit_copy_buffer - copy buffer using the sDMA engine
1294 *
1295 * @ring: amdgpu_ring structure holding ring information
1296 * @src_offset: src GPU address
1297 * @dst_offset: dst GPU address
1298 * @byte_count: number of bytes to xfer
1299 *
1300 * Copy GPU buffers using the DMA engine (VI).
1301 * Used by the amdgpu ttm implementation to move pages if
1302 * registered as the asic copy callback.
1303 */
1304 static void sdma_v2_4_emit_copy_buffer(struct amdgpu_ib *ib,
1305 uint64_t src_offset,
1306 uint64_t dst_offset,
1307 uint32_t byte_count)
1308 {
1309 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
1310 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
1311 ib->ptr[ib->length_dw++] = byte_count;
1312 ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
1313 ib->ptr[ib->length_dw++] = lower_32_bits(src_offset);
1314 ib->ptr[ib->length_dw++] = upper_32_bits(src_offset);
1315 ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
1316 ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
1317 }
1318
1319 /**
1320 * sdma_v2_4_emit_fill_buffer - fill buffer using the sDMA engine
1321 *
1322 * @ring: amdgpu_ring structure holding ring information
1323 * @src_data: value to write to buffer
1324 * @dst_offset: dst GPU address
1325 * @byte_count: number of bytes to xfer
1326 *
1327 * Fill GPU buffers using the DMA engine (VI).
1328 */
1329 static void sdma_v2_4_emit_fill_buffer(struct amdgpu_ib *ib,
1330 uint32_t src_data,
1331 uint64_t dst_offset,
1332 uint32_t byte_count)
1333 {
1334 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_CONST_FILL);
1335 ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
1336 ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
1337 ib->ptr[ib->length_dw++] = src_data;
1338 ib->ptr[ib->length_dw++] = byte_count;
1339 }
1340
1341 static const struct amdgpu_buffer_funcs sdma_v2_4_buffer_funcs = {
1342 .copy_max_bytes = 0x1fffff,
1343 .copy_num_dw = 7,
1344 .emit_copy_buffer = sdma_v2_4_emit_copy_buffer,
1345
1346 .fill_max_bytes = 0x1fffff,
1347 .fill_num_dw = 7,
1348 .emit_fill_buffer = sdma_v2_4_emit_fill_buffer,
1349 };
1350
1351 static void sdma_v2_4_set_buffer_funcs(struct amdgpu_device *adev)
1352 {
1353 if (adev->mman.buffer_funcs == NULL) {
1354 adev->mman.buffer_funcs = &sdma_v2_4_buffer_funcs;
1355 adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].ring;
1356 }
1357 }
1358
1359 static const struct amdgpu_vm_pte_funcs sdma_v2_4_vm_pte_funcs = {
1360 .copy_pte = sdma_v2_4_vm_copy_pte,
1361 .write_pte = sdma_v2_4_vm_write_pte,
1362 .set_pte_pde = sdma_v2_4_vm_set_pte_pde,
1363 };
1364
1365 static void sdma_v2_4_set_vm_pte_funcs(struct amdgpu_device *adev)
1366 {
1367 unsigned i;
1368
1369 if (adev->vm_manager.vm_pte_funcs == NULL) {
1370 adev->vm_manager.vm_pte_funcs = &sdma_v2_4_vm_pte_funcs;
1371 for (i = 0; i < adev->sdma.num_instances; i++)
1372 adev->vm_manager.vm_pte_rings[i] =
1373 &adev->sdma.instance[i].ring;
1374
1375 adev->vm_manager.vm_pte_num_rings = adev->sdma.num_instances;
1376 }
1377 }