]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/gpu/drm/amd/amdgpu/sdma_v2_4.c
Merge tag 'armsoc-dt' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc
[mirror_ubuntu-artful-kernel.git] / drivers / gpu / drm / amd / amdgpu / sdma_v2_4.c
1 /*
2 * Copyright 2014 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 * Authors: Alex Deucher
23 */
24 #include <linux/firmware.h>
25 #include <drm/drmP.h>
26 #include "amdgpu.h"
27 #include "amdgpu_ucode.h"
28 #include "amdgpu_trace.h"
29 #include "vi.h"
30 #include "vid.h"
31
32 #include "oss/oss_2_4_d.h"
33 #include "oss/oss_2_4_sh_mask.h"
34
35 #include "gmc/gmc_8_1_d.h"
36 #include "gmc/gmc_8_1_sh_mask.h"
37
38 #include "gca/gfx_8_0_d.h"
39 #include "gca/gfx_8_0_enum.h"
40 #include "gca/gfx_8_0_sh_mask.h"
41
42 #include "bif/bif_5_0_d.h"
43 #include "bif/bif_5_0_sh_mask.h"
44
45 #include "iceland_sdma_pkt_open.h"
46
47 static void sdma_v2_4_set_ring_funcs(struct amdgpu_device *adev);
48 static void sdma_v2_4_set_buffer_funcs(struct amdgpu_device *adev);
49 static void sdma_v2_4_set_vm_pte_funcs(struct amdgpu_device *adev);
50 static void sdma_v2_4_set_irq_funcs(struct amdgpu_device *adev);
51
52 MODULE_FIRMWARE("amdgpu/topaz_sdma.bin");
53 MODULE_FIRMWARE("amdgpu/topaz_sdma1.bin");
54
55 static const u32 sdma_offsets[SDMA_MAX_INSTANCE] =
56 {
57 SDMA0_REGISTER_OFFSET,
58 SDMA1_REGISTER_OFFSET
59 };
60
61 static const u32 golden_settings_iceland_a11[] =
62 {
63 mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
64 mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
65 mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
66 mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
67 };
68
69 static const u32 iceland_mgcg_cgcg_init[] =
70 {
71 mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
72 mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
73 };
74
75 /*
76 * sDMA - System DMA
77 * Starting with CIK, the GPU has new asynchronous
78 * DMA engines. These engines are used for compute
79 * and gfx. There are two DMA engines (SDMA0, SDMA1)
80 * and each one supports 1 ring buffer used for gfx
81 * and 2 queues used for compute.
82 *
83 * The programming model is very similar to the CP
84 * (ring buffer, IBs, etc.), but sDMA has it's own
85 * packet format that is different from the PM4 format
86 * used by the CP. sDMA supports copying data, writing
87 * embedded data, solid fills, and a number of other
88 * things. It also has support for tiling/detiling of
89 * buffers.
90 */
91
92 static void sdma_v2_4_init_golden_registers(struct amdgpu_device *adev)
93 {
94 switch (adev->asic_type) {
95 case CHIP_TOPAZ:
96 amdgpu_program_register_sequence(adev,
97 iceland_mgcg_cgcg_init,
98 (const u32)ARRAY_SIZE(iceland_mgcg_cgcg_init));
99 amdgpu_program_register_sequence(adev,
100 golden_settings_iceland_a11,
101 (const u32)ARRAY_SIZE(golden_settings_iceland_a11));
102 break;
103 default:
104 break;
105 }
106 }
107
108 /**
109 * sdma_v2_4_init_microcode - load ucode images from disk
110 *
111 * @adev: amdgpu_device pointer
112 *
113 * Use the firmware interface to load the ucode images into
114 * the driver (not loaded into hw).
115 * Returns 0 on success, error on failure.
116 */
117 static int sdma_v2_4_init_microcode(struct amdgpu_device *adev)
118 {
119 const char *chip_name;
120 char fw_name[30];
121 int err = 0, i;
122 struct amdgpu_firmware_info *info = NULL;
123 const struct common_firmware_header *header = NULL;
124 const struct sdma_firmware_header_v1_0 *hdr;
125
126 DRM_DEBUG("\n");
127
128 switch (adev->asic_type) {
129 case CHIP_TOPAZ:
130 chip_name = "topaz";
131 break;
132 default: BUG();
133 }
134
135 for (i = 0; i < adev->sdma.num_instances; i++) {
136 if (i == 0)
137 snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma.bin", chip_name);
138 else
139 snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma1.bin", chip_name);
140 err = request_firmware(&adev->sdma.instance[i].fw, fw_name, adev->dev);
141 if (err)
142 goto out;
143 err = amdgpu_ucode_validate(adev->sdma.instance[i].fw);
144 if (err)
145 goto out;
146 hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
147 adev->sdma.instance[i].fw_version = le32_to_cpu(hdr->header.ucode_version);
148 adev->sdma.instance[i].feature_version = le32_to_cpu(hdr->ucode_feature_version);
149 if (adev->sdma.instance[i].feature_version >= 20)
150 adev->sdma.instance[i].burst_nop = true;
151
152 if (adev->firmware.smu_load) {
153 info = &adev->firmware.ucode[AMDGPU_UCODE_ID_SDMA0 + i];
154 info->ucode_id = AMDGPU_UCODE_ID_SDMA0 + i;
155 info->fw = adev->sdma.instance[i].fw;
156 header = (const struct common_firmware_header *)info->fw->data;
157 adev->firmware.fw_size +=
158 ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE);
159 }
160 }
161
162 out:
163 if (err) {
164 printk(KERN_ERR
165 "sdma_v2_4: Failed to load firmware \"%s\"\n",
166 fw_name);
167 for (i = 0; i < adev->sdma.num_instances; i++) {
168 release_firmware(adev->sdma.instance[i].fw);
169 adev->sdma.instance[i].fw = NULL;
170 }
171 }
172 return err;
173 }
174
175 /**
176 * sdma_v2_4_ring_get_rptr - get the current read pointer
177 *
178 * @ring: amdgpu ring pointer
179 *
180 * Get the current rptr from the hardware (VI+).
181 */
182 static uint32_t sdma_v2_4_ring_get_rptr(struct amdgpu_ring *ring)
183 {
184 u32 rptr;
185
186 /* XXX check if swapping is necessary on BE */
187 rptr = ring->adev->wb.wb[ring->rptr_offs] >> 2;
188
189 return rptr;
190 }
191
192 /**
193 * sdma_v2_4_ring_get_wptr - get the current write pointer
194 *
195 * @ring: amdgpu ring pointer
196 *
197 * Get the current wptr from the hardware (VI+).
198 */
199 static uint32_t sdma_v2_4_ring_get_wptr(struct amdgpu_ring *ring)
200 {
201 struct amdgpu_device *adev = ring->adev;
202 int me = (ring == &ring->adev->sdma.instance[0].ring) ? 0 : 1;
203 u32 wptr = RREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[me]) >> 2;
204
205 return wptr;
206 }
207
208 /**
209 * sdma_v2_4_ring_set_wptr - commit the write pointer
210 *
211 * @ring: amdgpu ring pointer
212 *
213 * Write the wptr back to the hardware (VI+).
214 */
215 static void sdma_v2_4_ring_set_wptr(struct amdgpu_ring *ring)
216 {
217 struct amdgpu_device *adev = ring->adev;
218 int me = (ring == &ring->adev->sdma.instance[0].ring) ? 0 : 1;
219
220 WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[me], ring->wptr << 2);
221 }
222
223 static void sdma_v2_4_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count)
224 {
225 struct amdgpu_sdma_instance *sdma = amdgpu_get_sdma_instance(ring);
226 int i;
227
228 for (i = 0; i < count; i++)
229 if (sdma && sdma->burst_nop && (i == 0))
230 amdgpu_ring_write(ring, ring->nop |
231 SDMA_PKT_NOP_HEADER_COUNT(count - 1));
232 else
233 amdgpu_ring_write(ring, ring->nop);
234 }
235
236 /**
237 * sdma_v2_4_ring_emit_ib - Schedule an IB on the DMA engine
238 *
239 * @ring: amdgpu ring pointer
240 * @ib: IB object to schedule
241 *
242 * Schedule an IB in the DMA ring (VI).
243 */
244 static void sdma_v2_4_ring_emit_ib(struct amdgpu_ring *ring,
245 struct amdgpu_ib *ib)
246 {
247 u32 vmid = (ib->vm ? ib->vm->ids[ring->idx].id : 0) & 0xf;
248 u32 next_rptr = ring->wptr + 5;
249
250 while ((next_rptr & 7) != 2)
251 next_rptr++;
252
253 next_rptr += 6;
254
255 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
256 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR));
257 amdgpu_ring_write(ring, lower_32_bits(ring->next_rptr_gpu_addr) & 0xfffffffc);
258 amdgpu_ring_write(ring, upper_32_bits(ring->next_rptr_gpu_addr));
259 amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1));
260 amdgpu_ring_write(ring, next_rptr);
261
262 /* IB packet must end on a 8 DW boundary */
263 sdma_v2_4_ring_insert_nop(ring, (10 - (ring->wptr & 7)) % 8);
264
265 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_INDIRECT) |
266 SDMA_PKT_INDIRECT_HEADER_VMID(vmid));
267 /* base must be 32 byte aligned */
268 amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr) & 0xffffffe0);
269 amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr));
270 amdgpu_ring_write(ring, ib->length_dw);
271 amdgpu_ring_write(ring, 0);
272 amdgpu_ring_write(ring, 0);
273
274 }
275
276 /**
277 * sdma_v2_4_hdp_flush_ring_emit - emit an hdp flush on the DMA ring
278 *
279 * @ring: amdgpu ring pointer
280 *
281 * Emit an hdp flush packet on the requested DMA ring.
282 */
283 static void sdma_v2_4_ring_emit_hdp_flush(struct amdgpu_ring *ring)
284 {
285 u32 ref_and_mask = 0;
286
287 if (ring == &ring->adev->sdma.instance[0].ring)
288 ref_and_mask = REG_SET_FIELD(ref_and_mask, GPU_HDP_FLUSH_DONE, SDMA0, 1);
289 else
290 ref_and_mask = REG_SET_FIELD(ref_and_mask, GPU_HDP_FLUSH_DONE, SDMA1, 1);
291
292 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
293 SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(1) |
294 SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* == */
295 amdgpu_ring_write(ring, mmGPU_HDP_FLUSH_DONE << 2);
296 amdgpu_ring_write(ring, mmGPU_HDP_FLUSH_REQ << 2);
297 amdgpu_ring_write(ring, ref_and_mask); /* reference */
298 amdgpu_ring_write(ring, ref_and_mask); /* mask */
299 amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
300 SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */
301 }
302
303 /**
304 * sdma_v2_4_ring_emit_fence - emit a fence on the DMA ring
305 *
306 * @ring: amdgpu ring pointer
307 * @fence: amdgpu fence object
308 *
309 * Add a DMA fence packet to the ring to write
310 * the fence seq number and DMA trap packet to generate
311 * an interrupt if needed (VI).
312 */
313 static void sdma_v2_4_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq,
314 unsigned flags)
315 {
316 bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT;
317 /* write the fence */
318 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
319 amdgpu_ring_write(ring, lower_32_bits(addr));
320 amdgpu_ring_write(ring, upper_32_bits(addr));
321 amdgpu_ring_write(ring, lower_32_bits(seq));
322
323 /* optionally write high bits as well */
324 if (write64bit) {
325 addr += 4;
326 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
327 amdgpu_ring_write(ring, lower_32_bits(addr));
328 amdgpu_ring_write(ring, upper_32_bits(addr));
329 amdgpu_ring_write(ring, upper_32_bits(seq));
330 }
331
332 /* generate an interrupt */
333 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_TRAP));
334 amdgpu_ring_write(ring, SDMA_PKT_TRAP_INT_CONTEXT_INT_CONTEXT(0));
335 }
336
337 /**
338 * sdma_v2_4_ring_emit_semaphore - emit a semaphore on the dma ring
339 *
340 * @ring: amdgpu_ring structure holding ring information
341 * @semaphore: amdgpu semaphore object
342 * @emit_wait: wait or signal semaphore
343 *
344 * Add a DMA semaphore packet to the ring wait on or signal
345 * other rings (VI).
346 */
347 static bool sdma_v2_4_ring_emit_semaphore(struct amdgpu_ring *ring,
348 struct amdgpu_semaphore *semaphore,
349 bool emit_wait)
350 {
351 u64 addr = semaphore->gpu_addr;
352 u32 sig = emit_wait ? 0 : 1;
353
354 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SEM) |
355 SDMA_PKT_SEMAPHORE_HEADER_SIGNAL(sig));
356 amdgpu_ring_write(ring, lower_32_bits(addr) & 0xfffffff8);
357 amdgpu_ring_write(ring, upper_32_bits(addr));
358
359 return true;
360 }
361
362 /**
363 * sdma_v2_4_gfx_stop - stop the gfx async dma engines
364 *
365 * @adev: amdgpu_device pointer
366 *
367 * Stop the gfx async dma ring buffers (VI).
368 */
369 static void sdma_v2_4_gfx_stop(struct amdgpu_device *adev)
370 {
371 struct amdgpu_ring *sdma0 = &adev->sdma.instance[0].ring;
372 struct amdgpu_ring *sdma1 = &adev->sdma.instance[1].ring;
373 u32 rb_cntl, ib_cntl;
374 int i;
375
376 if ((adev->mman.buffer_funcs_ring == sdma0) ||
377 (adev->mman.buffer_funcs_ring == sdma1))
378 amdgpu_ttm_set_active_vram_size(adev, adev->mc.visible_vram_size);
379
380 for (i = 0; i < adev->sdma.num_instances; i++) {
381 rb_cntl = RREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i]);
382 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 0);
383 WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
384 ib_cntl = RREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i]);
385 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 0);
386 WREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i], ib_cntl);
387 }
388 sdma0->ready = false;
389 sdma1->ready = false;
390 }
391
392 /**
393 * sdma_v2_4_rlc_stop - stop the compute async dma engines
394 *
395 * @adev: amdgpu_device pointer
396 *
397 * Stop the compute async dma queues (VI).
398 */
399 static void sdma_v2_4_rlc_stop(struct amdgpu_device *adev)
400 {
401 /* XXX todo */
402 }
403
404 /**
405 * sdma_v2_4_enable - stop the async dma engines
406 *
407 * @adev: amdgpu_device pointer
408 * @enable: enable/disable the DMA MEs.
409 *
410 * Halt or unhalt the async dma engines (VI).
411 */
412 static void sdma_v2_4_enable(struct amdgpu_device *adev, bool enable)
413 {
414 u32 f32_cntl;
415 int i;
416
417 if (enable == false) {
418 sdma_v2_4_gfx_stop(adev);
419 sdma_v2_4_rlc_stop(adev);
420 }
421
422 for (i = 0; i < adev->sdma.num_instances; i++) {
423 f32_cntl = RREG32(mmSDMA0_F32_CNTL + sdma_offsets[i]);
424 if (enable)
425 f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, 0);
426 else
427 f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, 1);
428 WREG32(mmSDMA0_F32_CNTL + sdma_offsets[i], f32_cntl);
429 }
430 }
431
432 /**
433 * sdma_v2_4_gfx_resume - setup and start the async dma engines
434 *
435 * @adev: amdgpu_device pointer
436 *
437 * Set up the gfx DMA ring buffers and enable them (VI).
438 * Returns 0 for success, error for failure.
439 */
440 static int sdma_v2_4_gfx_resume(struct amdgpu_device *adev)
441 {
442 struct amdgpu_ring *ring;
443 u32 rb_cntl, ib_cntl;
444 u32 rb_bufsz;
445 u32 wb_offset;
446 int i, j, r;
447
448 for (i = 0; i < adev->sdma.num_instances; i++) {
449 ring = &adev->sdma.instance[i].ring;
450 wb_offset = (ring->rptr_offs * 4);
451
452 mutex_lock(&adev->srbm_mutex);
453 for (j = 0; j < 16; j++) {
454 vi_srbm_select(adev, 0, 0, 0, j);
455 /* SDMA GFX */
456 WREG32(mmSDMA0_GFX_VIRTUAL_ADDR + sdma_offsets[i], 0);
457 WREG32(mmSDMA0_GFX_APE1_CNTL + sdma_offsets[i], 0);
458 }
459 vi_srbm_select(adev, 0, 0, 0, 0);
460 mutex_unlock(&adev->srbm_mutex);
461
462 WREG32(mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL + sdma_offsets[i], 0);
463
464 /* Set ring buffer size in dwords */
465 rb_bufsz = order_base_2(ring->ring_size / 4);
466 rb_cntl = RREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i]);
467 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SIZE, rb_bufsz);
468 #ifdef __BIG_ENDIAN
469 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SWAP_ENABLE, 1);
470 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
471 RPTR_WRITEBACK_SWAP_ENABLE, 1);
472 #endif
473 WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
474
475 /* Initialize the ring buffer's read and write pointers */
476 WREG32(mmSDMA0_GFX_RB_RPTR + sdma_offsets[i], 0);
477 WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[i], 0);
478
479 /* set the wb address whether it's enabled or not */
480 WREG32(mmSDMA0_GFX_RB_RPTR_ADDR_HI + sdma_offsets[i],
481 upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF);
482 WREG32(mmSDMA0_GFX_RB_RPTR_ADDR_LO + sdma_offsets[i],
483 lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC);
484
485 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RPTR_WRITEBACK_ENABLE, 1);
486
487 WREG32(mmSDMA0_GFX_RB_BASE + sdma_offsets[i], ring->gpu_addr >> 8);
488 WREG32(mmSDMA0_GFX_RB_BASE_HI + sdma_offsets[i], ring->gpu_addr >> 40);
489
490 ring->wptr = 0;
491 WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[i], ring->wptr << 2);
492
493 /* enable DMA RB */
494 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 1);
495 WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
496
497 ib_cntl = RREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i]);
498 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 1);
499 #ifdef __BIG_ENDIAN
500 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_SWAP_ENABLE, 1);
501 #endif
502 /* enable DMA IBs */
503 WREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i], ib_cntl);
504
505 ring->ready = true;
506
507 r = amdgpu_ring_test_ring(ring);
508 if (r) {
509 ring->ready = false;
510 return r;
511 }
512
513 if (adev->mman.buffer_funcs_ring == ring)
514 amdgpu_ttm_set_active_vram_size(adev, adev->mc.real_vram_size);
515 }
516
517 return 0;
518 }
519
520 /**
521 * sdma_v2_4_rlc_resume - setup and start the async dma engines
522 *
523 * @adev: amdgpu_device pointer
524 *
525 * Set up the compute DMA queues and enable them (VI).
526 * Returns 0 for success, error for failure.
527 */
528 static int sdma_v2_4_rlc_resume(struct amdgpu_device *adev)
529 {
530 /* XXX todo */
531 return 0;
532 }
533
534 /**
535 * sdma_v2_4_load_microcode - load the sDMA ME ucode
536 *
537 * @adev: amdgpu_device pointer
538 *
539 * Loads the sDMA0/1 ucode.
540 * Returns 0 for success, -EINVAL if the ucode is not available.
541 */
542 static int sdma_v2_4_load_microcode(struct amdgpu_device *adev)
543 {
544 const struct sdma_firmware_header_v1_0 *hdr;
545 const __le32 *fw_data;
546 u32 fw_size;
547 int i, j;
548
549 /* halt the MEs */
550 sdma_v2_4_enable(adev, false);
551
552 for (i = 0; i < adev->sdma.num_instances; i++) {
553 if (!adev->sdma.instance[i].fw)
554 return -EINVAL;
555 hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
556 amdgpu_ucode_print_sdma_hdr(&hdr->header);
557 fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4;
558 fw_data = (const __le32 *)
559 (adev->sdma.instance[i].fw->data +
560 le32_to_cpu(hdr->header.ucode_array_offset_bytes));
561 WREG32(mmSDMA0_UCODE_ADDR + sdma_offsets[i], 0);
562 for (j = 0; j < fw_size; j++)
563 WREG32(mmSDMA0_UCODE_DATA + sdma_offsets[i], le32_to_cpup(fw_data++));
564 WREG32(mmSDMA0_UCODE_ADDR + sdma_offsets[i], adev->sdma.instance[i].fw_version);
565 }
566
567 return 0;
568 }
569
570 /**
571 * sdma_v2_4_start - setup and start the async dma engines
572 *
573 * @adev: amdgpu_device pointer
574 *
575 * Set up the DMA engines and enable them (VI).
576 * Returns 0 for success, error for failure.
577 */
578 static int sdma_v2_4_start(struct amdgpu_device *adev)
579 {
580 int r;
581
582 if (!adev->firmware.smu_load) {
583 r = sdma_v2_4_load_microcode(adev);
584 if (r)
585 return r;
586 } else {
587 r = adev->smu.smumgr_funcs->check_fw_load_finish(adev,
588 AMDGPU_UCODE_ID_SDMA0);
589 if (r)
590 return -EINVAL;
591 r = adev->smu.smumgr_funcs->check_fw_load_finish(adev,
592 AMDGPU_UCODE_ID_SDMA1);
593 if (r)
594 return -EINVAL;
595 }
596
597 /* unhalt the MEs */
598 sdma_v2_4_enable(adev, true);
599
600 /* start the gfx rings and rlc compute queues */
601 r = sdma_v2_4_gfx_resume(adev);
602 if (r)
603 return r;
604 r = sdma_v2_4_rlc_resume(adev);
605 if (r)
606 return r;
607
608 return 0;
609 }
610
611 /**
612 * sdma_v2_4_ring_test_ring - simple async dma engine test
613 *
614 * @ring: amdgpu_ring structure holding ring information
615 *
616 * Test the DMA engine by writing using it to write an
617 * value to memory. (VI).
618 * Returns 0 for success, error for failure.
619 */
620 static int sdma_v2_4_ring_test_ring(struct amdgpu_ring *ring)
621 {
622 struct amdgpu_device *adev = ring->adev;
623 unsigned i;
624 unsigned index;
625 int r;
626 u32 tmp;
627 u64 gpu_addr;
628
629 r = amdgpu_wb_get(adev, &index);
630 if (r) {
631 dev_err(adev->dev, "(%d) failed to allocate wb slot\n", r);
632 return r;
633 }
634
635 gpu_addr = adev->wb.gpu_addr + (index * 4);
636 tmp = 0xCAFEDEAD;
637 adev->wb.wb[index] = cpu_to_le32(tmp);
638
639 r = amdgpu_ring_lock(ring, 5);
640 if (r) {
641 DRM_ERROR("amdgpu: dma failed to lock ring %d (%d).\n", ring->idx, r);
642 amdgpu_wb_free(adev, index);
643 return r;
644 }
645
646 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
647 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR));
648 amdgpu_ring_write(ring, lower_32_bits(gpu_addr));
649 amdgpu_ring_write(ring, upper_32_bits(gpu_addr));
650 amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1));
651 amdgpu_ring_write(ring, 0xDEADBEEF);
652 amdgpu_ring_unlock_commit(ring);
653
654 for (i = 0; i < adev->usec_timeout; i++) {
655 tmp = le32_to_cpu(adev->wb.wb[index]);
656 if (tmp == 0xDEADBEEF)
657 break;
658 DRM_UDELAY(1);
659 }
660
661 if (i < adev->usec_timeout) {
662 DRM_INFO("ring test on %d succeeded in %d usecs\n", ring->idx, i);
663 } else {
664 DRM_ERROR("amdgpu: ring %d test failed (0x%08X)\n",
665 ring->idx, tmp);
666 r = -EINVAL;
667 }
668 amdgpu_wb_free(adev, index);
669
670 return r;
671 }
672
673 /**
674 * sdma_v2_4_ring_test_ib - test an IB on the DMA engine
675 *
676 * @ring: amdgpu_ring structure holding ring information
677 *
678 * Test a simple IB in the DMA ring (VI).
679 * Returns 0 on success, error on failure.
680 */
681 static int sdma_v2_4_ring_test_ib(struct amdgpu_ring *ring)
682 {
683 struct amdgpu_device *adev = ring->adev;
684 struct amdgpu_ib ib;
685 struct fence *f = NULL;
686 unsigned i;
687 unsigned index;
688 int r;
689 u32 tmp = 0;
690 u64 gpu_addr;
691
692 r = amdgpu_wb_get(adev, &index);
693 if (r) {
694 dev_err(adev->dev, "(%d) failed to allocate wb slot\n", r);
695 return r;
696 }
697
698 gpu_addr = adev->wb.gpu_addr + (index * 4);
699 tmp = 0xCAFEDEAD;
700 adev->wb.wb[index] = cpu_to_le32(tmp);
701 memset(&ib, 0, sizeof(ib));
702 r = amdgpu_ib_get(ring, NULL, 256, &ib);
703 if (r) {
704 DRM_ERROR("amdgpu: failed to get ib (%d).\n", r);
705 goto err0;
706 }
707
708 ib.ptr[0] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
709 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
710 ib.ptr[1] = lower_32_bits(gpu_addr);
711 ib.ptr[2] = upper_32_bits(gpu_addr);
712 ib.ptr[3] = SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1);
713 ib.ptr[4] = 0xDEADBEEF;
714 ib.ptr[5] = SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
715 ib.ptr[6] = SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
716 ib.ptr[7] = SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
717 ib.length_dw = 8;
718
719 r = amdgpu_sched_ib_submit_kernel_helper(adev, ring, &ib, 1, NULL,
720 AMDGPU_FENCE_OWNER_UNDEFINED,
721 &f);
722 if (r)
723 goto err1;
724
725 r = fence_wait(f, false);
726 if (r) {
727 DRM_ERROR("amdgpu: fence wait failed (%d).\n", r);
728 goto err1;
729 }
730 for (i = 0; i < adev->usec_timeout; i++) {
731 tmp = le32_to_cpu(adev->wb.wb[index]);
732 if (tmp == 0xDEADBEEF)
733 break;
734 DRM_UDELAY(1);
735 }
736 if (i < adev->usec_timeout) {
737 DRM_INFO("ib test on ring %d succeeded in %u usecs\n",
738 ring->idx, i);
739 goto err1;
740 } else {
741 DRM_ERROR("amdgpu: ib test failed (0x%08X)\n", tmp);
742 r = -EINVAL;
743 }
744
745 err1:
746 fence_put(f);
747 amdgpu_ib_free(adev, &ib);
748 err0:
749 amdgpu_wb_free(adev, index);
750 return r;
751 }
752
753 /**
754 * sdma_v2_4_vm_copy_pte - update PTEs by copying them from the GART
755 *
756 * @ib: indirect buffer to fill with commands
757 * @pe: addr of the page entry
758 * @src: src addr to copy from
759 * @count: number of page entries to update
760 *
761 * Update PTEs by copying them from the GART using sDMA (CIK).
762 */
763 static void sdma_v2_4_vm_copy_pte(struct amdgpu_ib *ib,
764 uint64_t pe, uint64_t src,
765 unsigned count)
766 {
767 while (count) {
768 unsigned bytes = count * 8;
769 if (bytes > 0x1FFFF8)
770 bytes = 0x1FFFF8;
771
772 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
773 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
774 ib->ptr[ib->length_dw++] = bytes;
775 ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
776 ib->ptr[ib->length_dw++] = lower_32_bits(src);
777 ib->ptr[ib->length_dw++] = upper_32_bits(src);
778 ib->ptr[ib->length_dw++] = lower_32_bits(pe);
779 ib->ptr[ib->length_dw++] = upper_32_bits(pe);
780
781 pe += bytes;
782 src += bytes;
783 count -= bytes / 8;
784 }
785 }
786
787 /**
788 * sdma_v2_4_vm_write_pte - update PTEs by writing them manually
789 *
790 * @ib: indirect buffer to fill with commands
791 * @pe: addr of the page entry
792 * @addr: dst addr to write into pe
793 * @count: number of page entries to update
794 * @incr: increase next addr by incr bytes
795 * @flags: access flags
796 *
797 * Update PTEs by writing them manually using sDMA (CIK).
798 */
799 static void sdma_v2_4_vm_write_pte(struct amdgpu_ib *ib,
800 uint64_t pe,
801 uint64_t addr, unsigned count,
802 uint32_t incr, uint32_t flags)
803 {
804 uint64_t value;
805 unsigned ndw;
806
807 while (count) {
808 ndw = count * 2;
809 if (ndw > 0xFFFFE)
810 ndw = 0xFFFFE;
811
812 /* for non-physically contiguous pages (system) */
813 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
814 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
815 ib->ptr[ib->length_dw++] = pe;
816 ib->ptr[ib->length_dw++] = upper_32_bits(pe);
817 ib->ptr[ib->length_dw++] = ndw;
818 for (; ndw > 0; ndw -= 2, --count, pe += 8) {
819 if (flags & AMDGPU_PTE_SYSTEM) {
820 value = amdgpu_vm_map_gart(ib->ring->adev, addr);
821 value &= 0xFFFFFFFFFFFFF000ULL;
822 } else if (flags & AMDGPU_PTE_VALID) {
823 value = addr;
824 } else {
825 value = 0;
826 }
827 addr += incr;
828 value |= flags;
829 ib->ptr[ib->length_dw++] = value;
830 ib->ptr[ib->length_dw++] = upper_32_bits(value);
831 }
832 }
833 }
834
835 /**
836 * sdma_v2_4_vm_set_pte_pde - update the page tables using sDMA
837 *
838 * @ib: indirect buffer to fill with commands
839 * @pe: addr of the page entry
840 * @addr: dst addr to write into pe
841 * @count: number of page entries to update
842 * @incr: increase next addr by incr bytes
843 * @flags: access flags
844 *
845 * Update the page tables using sDMA (CIK).
846 */
847 static void sdma_v2_4_vm_set_pte_pde(struct amdgpu_ib *ib,
848 uint64_t pe,
849 uint64_t addr, unsigned count,
850 uint32_t incr, uint32_t flags)
851 {
852 uint64_t value;
853 unsigned ndw;
854
855 while (count) {
856 ndw = count;
857 if (ndw > 0x7FFFF)
858 ndw = 0x7FFFF;
859
860 if (flags & AMDGPU_PTE_VALID)
861 value = addr;
862 else
863 value = 0;
864
865 /* for physically contiguous pages (vram) */
866 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_GEN_PTEPDE);
867 ib->ptr[ib->length_dw++] = pe; /* dst addr */
868 ib->ptr[ib->length_dw++] = upper_32_bits(pe);
869 ib->ptr[ib->length_dw++] = flags; /* mask */
870 ib->ptr[ib->length_dw++] = 0;
871 ib->ptr[ib->length_dw++] = value; /* value */
872 ib->ptr[ib->length_dw++] = upper_32_bits(value);
873 ib->ptr[ib->length_dw++] = incr; /* increment size */
874 ib->ptr[ib->length_dw++] = 0;
875 ib->ptr[ib->length_dw++] = ndw; /* number of entries */
876
877 pe += ndw * 8;
878 addr += ndw * incr;
879 count -= ndw;
880 }
881 }
882
883 /**
884 * sdma_v2_4_vm_pad_ib - pad the IB to the required number of dw
885 *
886 * @ib: indirect buffer to fill with padding
887 *
888 */
889 static void sdma_v2_4_vm_pad_ib(struct amdgpu_ib *ib)
890 {
891 struct amdgpu_sdma_instance *sdma = amdgpu_get_sdma_instance(ib->ring);
892 u32 pad_count;
893 int i;
894
895 pad_count = (8 - (ib->length_dw & 0x7)) % 8;
896 for (i = 0; i < pad_count; i++)
897 if (sdma && sdma->burst_nop && (i == 0))
898 ib->ptr[ib->length_dw++] =
899 SDMA_PKT_HEADER_OP(SDMA_OP_NOP) |
900 SDMA_PKT_NOP_HEADER_COUNT(pad_count - 1);
901 else
902 ib->ptr[ib->length_dw++] =
903 SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
904 }
905
906 /**
907 * sdma_v2_4_ring_emit_vm_flush - cik vm flush using sDMA
908 *
909 * @ring: amdgpu_ring pointer
910 * @vm: amdgpu_vm pointer
911 *
912 * Update the page table base and flush the VM TLB
913 * using sDMA (VI).
914 */
915 static void sdma_v2_4_ring_emit_vm_flush(struct amdgpu_ring *ring,
916 unsigned vm_id, uint64_t pd_addr)
917 {
918 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
919 SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
920 if (vm_id < 8) {
921 amdgpu_ring_write(ring, (mmVM_CONTEXT0_PAGE_TABLE_BASE_ADDR + vm_id));
922 } else {
923 amdgpu_ring_write(ring, (mmVM_CONTEXT8_PAGE_TABLE_BASE_ADDR + vm_id - 8));
924 }
925 amdgpu_ring_write(ring, pd_addr >> 12);
926
927 /* flush TLB */
928 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
929 SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
930 amdgpu_ring_write(ring, mmVM_INVALIDATE_REQUEST);
931 amdgpu_ring_write(ring, 1 << vm_id);
932
933 /* wait for flush */
934 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
935 SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) |
936 SDMA_PKT_POLL_REGMEM_HEADER_FUNC(0)); /* always */
937 amdgpu_ring_write(ring, mmVM_INVALIDATE_REQUEST << 2);
938 amdgpu_ring_write(ring, 0);
939 amdgpu_ring_write(ring, 0); /* reference */
940 amdgpu_ring_write(ring, 0); /* mask */
941 amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
942 SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */
943 }
944
945 static int sdma_v2_4_early_init(void *handle)
946 {
947 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
948
949 adev->sdma.num_instances = SDMA_MAX_INSTANCE;
950
951 sdma_v2_4_set_ring_funcs(adev);
952 sdma_v2_4_set_buffer_funcs(adev);
953 sdma_v2_4_set_vm_pte_funcs(adev);
954 sdma_v2_4_set_irq_funcs(adev);
955
956 return 0;
957 }
958
959 static int sdma_v2_4_sw_init(void *handle)
960 {
961 struct amdgpu_ring *ring;
962 int r, i;
963 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
964
965 /* SDMA trap event */
966 r = amdgpu_irq_add_id(adev, 224, &adev->sdma.trap_irq);
967 if (r)
968 return r;
969
970 /* SDMA Privileged inst */
971 r = amdgpu_irq_add_id(adev, 241, &adev->sdma.illegal_inst_irq);
972 if (r)
973 return r;
974
975 /* SDMA Privileged inst */
976 r = amdgpu_irq_add_id(adev, 247, &adev->sdma.illegal_inst_irq);
977 if (r)
978 return r;
979
980 r = sdma_v2_4_init_microcode(adev);
981 if (r) {
982 DRM_ERROR("Failed to load sdma firmware!\n");
983 return r;
984 }
985
986 for (i = 0; i < adev->sdma.num_instances; i++) {
987 ring = &adev->sdma.instance[i].ring;
988 ring->ring_obj = NULL;
989 ring->use_doorbell = false;
990 sprintf(ring->name, "sdma%d", i);
991 r = amdgpu_ring_init(adev, ring, 256 * 1024,
992 SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP), 0xf,
993 &adev->sdma.trap_irq,
994 (i == 0) ?
995 AMDGPU_SDMA_IRQ_TRAP0 : AMDGPU_SDMA_IRQ_TRAP1,
996 AMDGPU_RING_TYPE_SDMA);
997 if (r)
998 return r;
999 }
1000
1001 return r;
1002 }
1003
1004 static int sdma_v2_4_sw_fini(void *handle)
1005 {
1006 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1007 int i;
1008
1009 for (i = 0; i < adev->sdma.num_instances; i++)
1010 amdgpu_ring_fini(&adev->sdma.instance[i].ring);
1011
1012 return 0;
1013 }
1014
1015 static int sdma_v2_4_hw_init(void *handle)
1016 {
1017 int r;
1018 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1019
1020 sdma_v2_4_init_golden_registers(adev);
1021
1022 r = sdma_v2_4_start(adev);
1023 if (r)
1024 return r;
1025
1026 return r;
1027 }
1028
1029 static int sdma_v2_4_hw_fini(void *handle)
1030 {
1031 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1032
1033 sdma_v2_4_enable(adev, false);
1034
1035 return 0;
1036 }
1037
1038 static int sdma_v2_4_suspend(void *handle)
1039 {
1040 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1041
1042 return sdma_v2_4_hw_fini(adev);
1043 }
1044
1045 static int sdma_v2_4_resume(void *handle)
1046 {
1047 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1048
1049 return sdma_v2_4_hw_init(adev);
1050 }
1051
1052 static bool sdma_v2_4_is_idle(void *handle)
1053 {
1054 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1055 u32 tmp = RREG32(mmSRBM_STATUS2);
1056
1057 if (tmp & (SRBM_STATUS2__SDMA_BUSY_MASK |
1058 SRBM_STATUS2__SDMA1_BUSY_MASK))
1059 return false;
1060
1061 return true;
1062 }
1063
1064 static int sdma_v2_4_wait_for_idle(void *handle)
1065 {
1066 unsigned i;
1067 u32 tmp;
1068 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1069
1070 for (i = 0; i < adev->usec_timeout; i++) {
1071 tmp = RREG32(mmSRBM_STATUS2) & (SRBM_STATUS2__SDMA_BUSY_MASK |
1072 SRBM_STATUS2__SDMA1_BUSY_MASK);
1073
1074 if (!tmp)
1075 return 0;
1076 udelay(1);
1077 }
1078 return -ETIMEDOUT;
1079 }
1080
1081 static void sdma_v2_4_print_status(void *handle)
1082 {
1083 int i, j;
1084 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1085
1086 dev_info(adev->dev, "VI SDMA registers\n");
1087 dev_info(adev->dev, " SRBM_STATUS2=0x%08X\n",
1088 RREG32(mmSRBM_STATUS2));
1089 for (i = 0; i < adev->sdma.num_instances; i++) {
1090 dev_info(adev->dev, " SDMA%d_STATUS_REG=0x%08X\n",
1091 i, RREG32(mmSDMA0_STATUS_REG + sdma_offsets[i]));
1092 dev_info(adev->dev, " SDMA%d_F32_CNTL=0x%08X\n",
1093 i, RREG32(mmSDMA0_F32_CNTL + sdma_offsets[i]));
1094 dev_info(adev->dev, " SDMA%d_CNTL=0x%08X\n",
1095 i, RREG32(mmSDMA0_CNTL + sdma_offsets[i]));
1096 dev_info(adev->dev, " SDMA%d_SEM_WAIT_FAIL_TIMER_CNTL=0x%08X\n",
1097 i, RREG32(mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL + sdma_offsets[i]));
1098 dev_info(adev->dev, " SDMA%d_GFX_IB_CNTL=0x%08X\n",
1099 i, RREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i]));
1100 dev_info(adev->dev, " SDMA%d_GFX_RB_CNTL=0x%08X\n",
1101 i, RREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i]));
1102 dev_info(adev->dev, " SDMA%d_GFX_RB_RPTR=0x%08X\n",
1103 i, RREG32(mmSDMA0_GFX_RB_RPTR + sdma_offsets[i]));
1104 dev_info(adev->dev, " SDMA%d_GFX_RB_WPTR=0x%08X\n",
1105 i, RREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[i]));
1106 dev_info(adev->dev, " SDMA%d_GFX_RB_RPTR_ADDR_HI=0x%08X\n",
1107 i, RREG32(mmSDMA0_GFX_RB_RPTR_ADDR_HI + sdma_offsets[i]));
1108 dev_info(adev->dev, " SDMA%d_GFX_RB_RPTR_ADDR_LO=0x%08X\n",
1109 i, RREG32(mmSDMA0_GFX_RB_RPTR_ADDR_LO + sdma_offsets[i]));
1110 dev_info(adev->dev, " SDMA%d_GFX_RB_BASE=0x%08X\n",
1111 i, RREG32(mmSDMA0_GFX_RB_BASE + sdma_offsets[i]));
1112 dev_info(adev->dev, " SDMA%d_GFX_RB_BASE_HI=0x%08X\n",
1113 i, RREG32(mmSDMA0_GFX_RB_BASE_HI + sdma_offsets[i]));
1114 mutex_lock(&adev->srbm_mutex);
1115 for (j = 0; j < 16; j++) {
1116 vi_srbm_select(adev, 0, 0, 0, j);
1117 dev_info(adev->dev, " VM %d:\n", j);
1118 dev_info(adev->dev, " SDMA%d_GFX_VIRTUAL_ADDR=0x%08X\n",
1119 i, RREG32(mmSDMA0_GFX_VIRTUAL_ADDR + sdma_offsets[i]));
1120 dev_info(adev->dev, " SDMA%d_GFX_APE1_CNTL=0x%08X\n",
1121 i, RREG32(mmSDMA0_GFX_APE1_CNTL + sdma_offsets[i]));
1122 }
1123 vi_srbm_select(adev, 0, 0, 0, 0);
1124 mutex_unlock(&adev->srbm_mutex);
1125 }
1126 }
1127
1128 static int sdma_v2_4_soft_reset(void *handle)
1129 {
1130 u32 srbm_soft_reset = 0;
1131 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1132 u32 tmp = RREG32(mmSRBM_STATUS2);
1133
1134 if (tmp & SRBM_STATUS2__SDMA_BUSY_MASK) {
1135 /* sdma0 */
1136 tmp = RREG32(mmSDMA0_F32_CNTL + SDMA0_REGISTER_OFFSET);
1137 tmp = REG_SET_FIELD(tmp, SDMA0_F32_CNTL, HALT, 0);
1138 WREG32(mmSDMA0_F32_CNTL + SDMA0_REGISTER_OFFSET, tmp);
1139 srbm_soft_reset |= SRBM_SOFT_RESET__SOFT_RESET_SDMA_MASK;
1140 }
1141 if (tmp & SRBM_STATUS2__SDMA1_BUSY_MASK) {
1142 /* sdma1 */
1143 tmp = RREG32(mmSDMA0_F32_CNTL + SDMA1_REGISTER_OFFSET);
1144 tmp = REG_SET_FIELD(tmp, SDMA0_F32_CNTL, HALT, 0);
1145 WREG32(mmSDMA0_F32_CNTL + SDMA1_REGISTER_OFFSET, tmp);
1146 srbm_soft_reset |= SRBM_SOFT_RESET__SOFT_RESET_SDMA1_MASK;
1147 }
1148
1149 if (srbm_soft_reset) {
1150 sdma_v2_4_print_status((void *)adev);
1151
1152 tmp = RREG32(mmSRBM_SOFT_RESET);
1153 tmp |= srbm_soft_reset;
1154 dev_info(adev->dev, "SRBM_SOFT_RESET=0x%08X\n", tmp);
1155 WREG32(mmSRBM_SOFT_RESET, tmp);
1156 tmp = RREG32(mmSRBM_SOFT_RESET);
1157
1158 udelay(50);
1159
1160 tmp &= ~srbm_soft_reset;
1161 WREG32(mmSRBM_SOFT_RESET, tmp);
1162 tmp = RREG32(mmSRBM_SOFT_RESET);
1163
1164 /* Wait a little for things to settle down */
1165 udelay(50);
1166
1167 sdma_v2_4_print_status((void *)adev);
1168 }
1169
1170 return 0;
1171 }
1172
1173 static int sdma_v2_4_set_trap_irq_state(struct amdgpu_device *adev,
1174 struct amdgpu_irq_src *src,
1175 unsigned type,
1176 enum amdgpu_interrupt_state state)
1177 {
1178 u32 sdma_cntl;
1179
1180 switch (type) {
1181 case AMDGPU_SDMA_IRQ_TRAP0:
1182 switch (state) {
1183 case AMDGPU_IRQ_STATE_DISABLE:
1184 sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET);
1185 sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 0);
1186 WREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET, sdma_cntl);
1187 break;
1188 case AMDGPU_IRQ_STATE_ENABLE:
1189 sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET);
1190 sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 1);
1191 WREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET, sdma_cntl);
1192 break;
1193 default:
1194 break;
1195 }
1196 break;
1197 case AMDGPU_SDMA_IRQ_TRAP1:
1198 switch (state) {
1199 case AMDGPU_IRQ_STATE_DISABLE:
1200 sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET);
1201 sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 0);
1202 WREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET, sdma_cntl);
1203 break;
1204 case AMDGPU_IRQ_STATE_ENABLE:
1205 sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET);
1206 sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 1);
1207 WREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET, sdma_cntl);
1208 break;
1209 default:
1210 break;
1211 }
1212 break;
1213 default:
1214 break;
1215 }
1216 return 0;
1217 }
1218
1219 static int sdma_v2_4_process_trap_irq(struct amdgpu_device *adev,
1220 struct amdgpu_irq_src *source,
1221 struct amdgpu_iv_entry *entry)
1222 {
1223 u8 instance_id, queue_id;
1224
1225 instance_id = (entry->ring_id & 0x3) >> 0;
1226 queue_id = (entry->ring_id & 0xc) >> 2;
1227 DRM_DEBUG("IH: SDMA trap\n");
1228 switch (instance_id) {
1229 case 0:
1230 switch (queue_id) {
1231 case 0:
1232 amdgpu_fence_process(&adev->sdma.instance[0].ring);
1233 break;
1234 case 1:
1235 /* XXX compute */
1236 break;
1237 case 2:
1238 /* XXX compute */
1239 break;
1240 }
1241 break;
1242 case 1:
1243 switch (queue_id) {
1244 case 0:
1245 amdgpu_fence_process(&adev->sdma.instance[1].ring);
1246 break;
1247 case 1:
1248 /* XXX compute */
1249 break;
1250 case 2:
1251 /* XXX compute */
1252 break;
1253 }
1254 break;
1255 }
1256 return 0;
1257 }
1258
1259 static int sdma_v2_4_process_illegal_inst_irq(struct amdgpu_device *adev,
1260 struct amdgpu_irq_src *source,
1261 struct amdgpu_iv_entry *entry)
1262 {
1263 DRM_ERROR("Illegal instruction in SDMA command stream\n");
1264 schedule_work(&adev->reset_work);
1265 return 0;
1266 }
1267
1268 static int sdma_v2_4_set_clockgating_state(void *handle,
1269 enum amd_clockgating_state state)
1270 {
1271 /* XXX handled via the smc on VI */
1272 return 0;
1273 }
1274
1275 static int sdma_v2_4_set_powergating_state(void *handle,
1276 enum amd_powergating_state state)
1277 {
1278 return 0;
1279 }
1280
1281 const struct amd_ip_funcs sdma_v2_4_ip_funcs = {
1282 .early_init = sdma_v2_4_early_init,
1283 .late_init = NULL,
1284 .sw_init = sdma_v2_4_sw_init,
1285 .sw_fini = sdma_v2_4_sw_fini,
1286 .hw_init = sdma_v2_4_hw_init,
1287 .hw_fini = sdma_v2_4_hw_fini,
1288 .suspend = sdma_v2_4_suspend,
1289 .resume = sdma_v2_4_resume,
1290 .is_idle = sdma_v2_4_is_idle,
1291 .wait_for_idle = sdma_v2_4_wait_for_idle,
1292 .soft_reset = sdma_v2_4_soft_reset,
1293 .print_status = sdma_v2_4_print_status,
1294 .set_clockgating_state = sdma_v2_4_set_clockgating_state,
1295 .set_powergating_state = sdma_v2_4_set_powergating_state,
1296 };
1297
1298 static const struct amdgpu_ring_funcs sdma_v2_4_ring_funcs = {
1299 .get_rptr = sdma_v2_4_ring_get_rptr,
1300 .get_wptr = sdma_v2_4_ring_get_wptr,
1301 .set_wptr = sdma_v2_4_ring_set_wptr,
1302 .parse_cs = NULL,
1303 .emit_ib = sdma_v2_4_ring_emit_ib,
1304 .emit_fence = sdma_v2_4_ring_emit_fence,
1305 .emit_semaphore = sdma_v2_4_ring_emit_semaphore,
1306 .emit_vm_flush = sdma_v2_4_ring_emit_vm_flush,
1307 .emit_hdp_flush = sdma_v2_4_ring_emit_hdp_flush,
1308 .test_ring = sdma_v2_4_ring_test_ring,
1309 .test_ib = sdma_v2_4_ring_test_ib,
1310 .insert_nop = sdma_v2_4_ring_insert_nop,
1311 };
1312
1313 static void sdma_v2_4_set_ring_funcs(struct amdgpu_device *adev)
1314 {
1315 int i;
1316
1317 for (i = 0; i < adev->sdma.num_instances; i++)
1318 adev->sdma.instance[i].ring.funcs = &sdma_v2_4_ring_funcs;
1319 }
1320
1321 static const struct amdgpu_irq_src_funcs sdma_v2_4_trap_irq_funcs = {
1322 .set = sdma_v2_4_set_trap_irq_state,
1323 .process = sdma_v2_4_process_trap_irq,
1324 };
1325
1326 static const struct amdgpu_irq_src_funcs sdma_v2_4_illegal_inst_irq_funcs = {
1327 .process = sdma_v2_4_process_illegal_inst_irq,
1328 };
1329
1330 static void sdma_v2_4_set_irq_funcs(struct amdgpu_device *adev)
1331 {
1332 adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_LAST;
1333 adev->sdma.trap_irq.funcs = &sdma_v2_4_trap_irq_funcs;
1334 adev->sdma.illegal_inst_irq.funcs = &sdma_v2_4_illegal_inst_irq_funcs;
1335 }
1336
1337 /**
1338 * sdma_v2_4_emit_copy_buffer - copy buffer using the sDMA engine
1339 *
1340 * @ring: amdgpu_ring structure holding ring information
1341 * @src_offset: src GPU address
1342 * @dst_offset: dst GPU address
1343 * @byte_count: number of bytes to xfer
1344 *
1345 * Copy GPU buffers using the DMA engine (VI).
1346 * Used by the amdgpu ttm implementation to move pages if
1347 * registered as the asic copy callback.
1348 */
1349 static void sdma_v2_4_emit_copy_buffer(struct amdgpu_ib *ib,
1350 uint64_t src_offset,
1351 uint64_t dst_offset,
1352 uint32_t byte_count)
1353 {
1354 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
1355 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
1356 ib->ptr[ib->length_dw++] = byte_count;
1357 ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
1358 ib->ptr[ib->length_dw++] = lower_32_bits(src_offset);
1359 ib->ptr[ib->length_dw++] = upper_32_bits(src_offset);
1360 ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
1361 ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
1362 }
1363
1364 /**
1365 * sdma_v2_4_emit_fill_buffer - fill buffer using the sDMA engine
1366 *
1367 * @ring: amdgpu_ring structure holding ring information
1368 * @src_data: value to write to buffer
1369 * @dst_offset: dst GPU address
1370 * @byte_count: number of bytes to xfer
1371 *
1372 * Fill GPU buffers using the DMA engine (VI).
1373 */
1374 static void sdma_v2_4_emit_fill_buffer(struct amdgpu_ib *ib,
1375 uint32_t src_data,
1376 uint64_t dst_offset,
1377 uint32_t byte_count)
1378 {
1379 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_CONST_FILL);
1380 ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
1381 ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
1382 ib->ptr[ib->length_dw++] = src_data;
1383 ib->ptr[ib->length_dw++] = byte_count;
1384 }
1385
1386 static const struct amdgpu_buffer_funcs sdma_v2_4_buffer_funcs = {
1387 .copy_max_bytes = 0x1fffff,
1388 .copy_num_dw = 7,
1389 .emit_copy_buffer = sdma_v2_4_emit_copy_buffer,
1390
1391 .fill_max_bytes = 0x1fffff,
1392 .fill_num_dw = 7,
1393 .emit_fill_buffer = sdma_v2_4_emit_fill_buffer,
1394 };
1395
1396 static void sdma_v2_4_set_buffer_funcs(struct amdgpu_device *adev)
1397 {
1398 if (adev->mman.buffer_funcs == NULL) {
1399 adev->mman.buffer_funcs = &sdma_v2_4_buffer_funcs;
1400 adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].ring;
1401 }
1402 }
1403
1404 static const struct amdgpu_vm_pte_funcs sdma_v2_4_vm_pte_funcs = {
1405 .copy_pte = sdma_v2_4_vm_copy_pte,
1406 .write_pte = sdma_v2_4_vm_write_pte,
1407 .set_pte_pde = sdma_v2_4_vm_set_pte_pde,
1408 .pad_ib = sdma_v2_4_vm_pad_ib,
1409 };
1410
1411 static void sdma_v2_4_set_vm_pte_funcs(struct amdgpu_device *adev)
1412 {
1413 if (adev->vm_manager.vm_pte_funcs == NULL) {
1414 adev->vm_manager.vm_pte_funcs = &sdma_v2_4_vm_pte_funcs;
1415 adev->vm_manager.vm_pte_funcs_ring = &adev->sdma.instance[0].ring;
1416 adev->vm_manager.vm_pte_funcs_ring->is_pte_ring = true;
1417 }
1418 }