]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/gpu/drm/amd/amdgpu/sdma_v3_0.c
Merge tag 'efi-urgent' of git://git.kernel.org/pub/scm/linux/kernel/git/efi/efi into...
[mirror_ubuntu-artful-kernel.git] / drivers / gpu / drm / amd / amdgpu / sdma_v3_0.c
1 /*
2 * Copyright 2014 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 * Authors: Alex Deucher
23 */
24 #include <linux/firmware.h>
25 #include <drm/drmP.h>
26 #include "amdgpu.h"
27 #include "amdgpu_ucode.h"
28 #include "amdgpu_trace.h"
29 #include "vi.h"
30 #include "vid.h"
31
32 #include "oss/oss_3_0_d.h"
33 #include "oss/oss_3_0_sh_mask.h"
34
35 #include "gmc/gmc_8_1_d.h"
36 #include "gmc/gmc_8_1_sh_mask.h"
37
38 #include "gca/gfx_8_0_d.h"
39 #include "gca/gfx_8_0_enum.h"
40 #include "gca/gfx_8_0_sh_mask.h"
41
42 #include "bif/bif_5_0_d.h"
43 #include "bif/bif_5_0_sh_mask.h"
44
45 #include "tonga_sdma_pkt_open.h"
46
47 static void sdma_v3_0_set_ring_funcs(struct amdgpu_device *adev);
48 static void sdma_v3_0_set_buffer_funcs(struct amdgpu_device *adev);
49 static void sdma_v3_0_set_vm_pte_funcs(struct amdgpu_device *adev);
50 static void sdma_v3_0_set_irq_funcs(struct amdgpu_device *adev);
51
52 MODULE_FIRMWARE("amdgpu/tonga_sdma.bin");
53 MODULE_FIRMWARE("amdgpu/tonga_sdma1.bin");
54 MODULE_FIRMWARE("amdgpu/carrizo_sdma.bin");
55 MODULE_FIRMWARE("amdgpu/carrizo_sdma1.bin");
56 MODULE_FIRMWARE("amdgpu/fiji_sdma.bin");
57 MODULE_FIRMWARE("amdgpu/fiji_sdma1.bin");
58 MODULE_FIRMWARE("amdgpu/stoney_sdma.bin");
59 MODULE_FIRMWARE("amdgpu/polaris10_sdma.bin");
60 MODULE_FIRMWARE("amdgpu/polaris10_sdma1.bin");
61 MODULE_FIRMWARE("amdgpu/polaris11_sdma.bin");
62 MODULE_FIRMWARE("amdgpu/polaris11_sdma1.bin");
63 MODULE_FIRMWARE("amdgpu/polaris12_sdma.bin");
64 MODULE_FIRMWARE("amdgpu/polaris12_sdma1.bin");
65
66
67 static const u32 sdma_offsets[SDMA_MAX_INSTANCE] =
68 {
69 SDMA0_REGISTER_OFFSET,
70 SDMA1_REGISTER_OFFSET
71 };
72
73 static const u32 golden_settings_tonga_a11[] =
74 {
75 mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
76 mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
77 mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
78 mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
79 mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
80 mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
81 mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
82 mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
83 mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
84 mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
85 };
86
87 static const u32 tonga_mgcg_cgcg_init[] =
88 {
89 mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
90 mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
91 };
92
93 static const u32 golden_settings_fiji_a10[] =
94 {
95 mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
96 mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
97 mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
98 mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
99 mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
100 mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
101 mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
102 mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
103 };
104
105 static const u32 fiji_mgcg_cgcg_init[] =
106 {
107 mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
108 mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
109 };
110
111 static const u32 golden_settings_polaris11_a11[] =
112 {
113 mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
114 mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
115 mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
116 mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
117 mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
118 mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
119 mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
120 mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
121 mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
122 mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
123 };
124
125 static const u32 golden_settings_polaris10_a11[] =
126 {
127 mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
128 mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
129 mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
130 mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
131 mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
132 mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
133 mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
134 mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
135 mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
136 mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
137 };
138
139 static const u32 cz_golden_settings_a11[] =
140 {
141 mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
142 mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
143 mmSDMA0_GFX_IB_CNTL, 0x00000100, 0x00000100,
144 mmSDMA0_POWER_CNTL, 0x00000800, 0x0003c800,
145 mmSDMA0_RLC0_IB_CNTL, 0x00000100, 0x00000100,
146 mmSDMA0_RLC1_IB_CNTL, 0x00000100, 0x00000100,
147 mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
148 mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
149 mmSDMA1_GFX_IB_CNTL, 0x00000100, 0x00000100,
150 mmSDMA1_POWER_CNTL, 0x00000800, 0x0003c800,
151 mmSDMA1_RLC0_IB_CNTL, 0x00000100, 0x00000100,
152 mmSDMA1_RLC1_IB_CNTL, 0x00000100, 0x00000100,
153 };
154
155 static const u32 cz_mgcg_cgcg_init[] =
156 {
157 mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
158 mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
159 };
160
161 static const u32 stoney_golden_settings_a11[] =
162 {
163 mmSDMA0_GFX_IB_CNTL, 0x00000100, 0x00000100,
164 mmSDMA0_POWER_CNTL, 0x00000800, 0x0003c800,
165 mmSDMA0_RLC0_IB_CNTL, 0x00000100, 0x00000100,
166 mmSDMA0_RLC1_IB_CNTL, 0x00000100, 0x00000100,
167 };
168
169 static const u32 stoney_mgcg_cgcg_init[] =
170 {
171 mmSDMA0_CLK_CTRL, 0xffffffff, 0x00000100,
172 };
173
174 /*
175 * sDMA - System DMA
176 * Starting with CIK, the GPU has new asynchronous
177 * DMA engines. These engines are used for compute
178 * and gfx. There are two DMA engines (SDMA0, SDMA1)
179 * and each one supports 1 ring buffer used for gfx
180 * and 2 queues used for compute.
181 *
182 * The programming model is very similar to the CP
183 * (ring buffer, IBs, etc.), but sDMA has it's own
184 * packet format that is different from the PM4 format
185 * used by the CP. sDMA supports copying data, writing
186 * embedded data, solid fills, and a number of other
187 * things. It also has support for tiling/detiling of
188 * buffers.
189 */
190
191 static void sdma_v3_0_init_golden_registers(struct amdgpu_device *adev)
192 {
193 switch (adev->asic_type) {
194 case CHIP_FIJI:
195 amdgpu_program_register_sequence(adev,
196 fiji_mgcg_cgcg_init,
197 (const u32)ARRAY_SIZE(fiji_mgcg_cgcg_init));
198 amdgpu_program_register_sequence(adev,
199 golden_settings_fiji_a10,
200 (const u32)ARRAY_SIZE(golden_settings_fiji_a10));
201 break;
202 case CHIP_TONGA:
203 amdgpu_program_register_sequence(adev,
204 tonga_mgcg_cgcg_init,
205 (const u32)ARRAY_SIZE(tonga_mgcg_cgcg_init));
206 amdgpu_program_register_sequence(adev,
207 golden_settings_tonga_a11,
208 (const u32)ARRAY_SIZE(golden_settings_tonga_a11));
209 break;
210 case CHIP_POLARIS11:
211 case CHIP_POLARIS12:
212 amdgpu_program_register_sequence(adev,
213 golden_settings_polaris11_a11,
214 (const u32)ARRAY_SIZE(golden_settings_polaris11_a11));
215 break;
216 case CHIP_POLARIS10:
217 amdgpu_program_register_sequence(adev,
218 golden_settings_polaris10_a11,
219 (const u32)ARRAY_SIZE(golden_settings_polaris10_a11));
220 break;
221 case CHIP_CARRIZO:
222 amdgpu_program_register_sequence(adev,
223 cz_mgcg_cgcg_init,
224 (const u32)ARRAY_SIZE(cz_mgcg_cgcg_init));
225 amdgpu_program_register_sequence(adev,
226 cz_golden_settings_a11,
227 (const u32)ARRAY_SIZE(cz_golden_settings_a11));
228 break;
229 case CHIP_STONEY:
230 amdgpu_program_register_sequence(adev,
231 stoney_mgcg_cgcg_init,
232 (const u32)ARRAY_SIZE(stoney_mgcg_cgcg_init));
233 amdgpu_program_register_sequence(adev,
234 stoney_golden_settings_a11,
235 (const u32)ARRAY_SIZE(stoney_golden_settings_a11));
236 break;
237 default:
238 break;
239 }
240 }
241
242 static void sdma_v3_0_free_microcode(struct amdgpu_device *adev)
243 {
244 int i;
245 for (i = 0; i < adev->sdma.num_instances; i++) {
246 release_firmware(adev->sdma.instance[i].fw);
247 adev->sdma.instance[i].fw = NULL;
248 }
249 }
250
251 /**
252 * sdma_v3_0_init_microcode - load ucode images from disk
253 *
254 * @adev: amdgpu_device pointer
255 *
256 * Use the firmware interface to load the ucode images into
257 * the driver (not loaded into hw).
258 * Returns 0 on success, error on failure.
259 */
260 static int sdma_v3_0_init_microcode(struct amdgpu_device *adev)
261 {
262 const char *chip_name;
263 char fw_name[30];
264 int err = 0, i;
265 struct amdgpu_firmware_info *info = NULL;
266 const struct common_firmware_header *header = NULL;
267 const struct sdma_firmware_header_v1_0 *hdr;
268
269 DRM_DEBUG("\n");
270
271 switch (adev->asic_type) {
272 case CHIP_TONGA:
273 chip_name = "tonga";
274 break;
275 case CHIP_FIJI:
276 chip_name = "fiji";
277 break;
278 case CHIP_POLARIS11:
279 chip_name = "polaris11";
280 break;
281 case CHIP_POLARIS10:
282 chip_name = "polaris10";
283 break;
284 case CHIP_POLARIS12:
285 chip_name = "polaris12";
286 break;
287 case CHIP_CARRIZO:
288 chip_name = "carrizo";
289 break;
290 case CHIP_STONEY:
291 chip_name = "stoney";
292 break;
293 default: BUG();
294 }
295
296 for (i = 0; i < adev->sdma.num_instances; i++) {
297 if (i == 0)
298 snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma.bin", chip_name);
299 else
300 snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma1.bin", chip_name);
301 err = request_firmware(&adev->sdma.instance[i].fw, fw_name, adev->dev);
302 if (err)
303 goto out;
304 err = amdgpu_ucode_validate(adev->sdma.instance[i].fw);
305 if (err)
306 goto out;
307 hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
308 adev->sdma.instance[i].fw_version = le32_to_cpu(hdr->header.ucode_version);
309 adev->sdma.instance[i].feature_version = le32_to_cpu(hdr->ucode_feature_version);
310 if (adev->sdma.instance[i].feature_version >= 20)
311 adev->sdma.instance[i].burst_nop = true;
312
313 if (adev->firmware.smu_load) {
314 info = &adev->firmware.ucode[AMDGPU_UCODE_ID_SDMA0 + i];
315 info->ucode_id = AMDGPU_UCODE_ID_SDMA0 + i;
316 info->fw = adev->sdma.instance[i].fw;
317 header = (const struct common_firmware_header *)info->fw->data;
318 adev->firmware.fw_size +=
319 ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE);
320 }
321 }
322 out:
323 if (err) {
324 printk(KERN_ERR
325 "sdma_v3_0: Failed to load firmware \"%s\"\n",
326 fw_name);
327 for (i = 0; i < adev->sdma.num_instances; i++) {
328 release_firmware(adev->sdma.instance[i].fw);
329 adev->sdma.instance[i].fw = NULL;
330 }
331 }
332 return err;
333 }
334
335 /**
336 * sdma_v3_0_ring_get_rptr - get the current read pointer
337 *
338 * @ring: amdgpu ring pointer
339 *
340 * Get the current rptr from the hardware (VI+).
341 */
342 static uint32_t sdma_v3_0_ring_get_rptr(struct amdgpu_ring *ring)
343 {
344 /* XXX check if swapping is necessary on BE */
345 return ring->adev->wb.wb[ring->rptr_offs] >> 2;
346 }
347
348 /**
349 * sdma_v3_0_ring_get_wptr - get the current write pointer
350 *
351 * @ring: amdgpu ring pointer
352 *
353 * Get the current wptr from the hardware (VI+).
354 */
355 static uint32_t sdma_v3_0_ring_get_wptr(struct amdgpu_ring *ring)
356 {
357 struct amdgpu_device *adev = ring->adev;
358 u32 wptr;
359
360 if (ring->use_doorbell) {
361 /* XXX check if swapping is necessary on BE */
362 wptr = ring->adev->wb.wb[ring->wptr_offs] >> 2;
363 } else {
364 int me = (ring == &ring->adev->sdma.instance[0].ring) ? 0 : 1;
365
366 wptr = RREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[me]) >> 2;
367 }
368
369 return wptr;
370 }
371
372 /**
373 * sdma_v3_0_ring_set_wptr - commit the write pointer
374 *
375 * @ring: amdgpu ring pointer
376 *
377 * Write the wptr back to the hardware (VI+).
378 */
379 static void sdma_v3_0_ring_set_wptr(struct amdgpu_ring *ring)
380 {
381 struct amdgpu_device *adev = ring->adev;
382
383 if (ring->use_doorbell) {
384 /* XXX check if swapping is necessary on BE */
385 adev->wb.wb[ring->wptr_offs] = ring->wptr << 2;
386 WDOORBELL32(ring->doorbell_index, ring->wptr << 2);
387 } else {
388 int me = (ring == &ring->adev->sdma.instance[0].ring) ? 0 : 1;
389
390 WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[me], ring->wptr << 2);
391 }
392 }
393
394 static void sdma_v3_0_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count)
395 {
396 struct amdgpu_sdma_instance *sdma = amdgpu_get_sdma_instance(ring);
397 int i;
398
399 for (i = 0; i < count; i++)
400 if (sdma && sdma->burst_nop && (i == 0))
401 amdgpu_ring_write(ring, ring->funcs->nop |
402 SDMA_PKT_NOP_HEADER_COUNT(count - 1));
403 else
404 amdgpu_ring_write(ring, ring->funcs->nop);
405 }
406
407 /**
408 * sdma_v3_0_ring_emit_ib - Schedule an IB on the DMA engine
409 *
410 * @ring: amdgpu ring pointer
411 * @ib: IB object to schedule
412 *
413 * Schedule an IB in the DMA ring (VI).
414 */
415 static void sdma_v3_0_ring_emit_ib(struct amdgpu_ring *ring,
416 struct amdgpu_ib *ib,
417 unsigned vm_id, bool ctx_switch)
418 {
419 u32 vmid = vm_id & 0xf;
420
421 /* IB packet must end on a 8 DW boundary */
422 sdma_v3_0_ring_insert_nop(ring, (10 - (ring->wptr & 7)) % 8);
423
424 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_INDIRECT) |
425 SDMA_PKT_INDIRECT_HEADER_VMID(vmid));
426 /* base must be 32 byte aligned */
427 amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr) & 0xffffffe0);
428 amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr));
429 amdgpu_ring_write(ring, ib->length_dw);
430 amdgpu_ring_write(ring, 0);
431 amdgpu_ring_write(ring, 0);
432
433 }
434
435 /**
436 * sdma_v3_0_ring_emit_hdp_flush - emit an hdp flush on the DMA ring
437 *
438 * @ring: amdgpu ring pointer
439 *
440 * Emit an hdp flush packet on the requested DMA ring.
441 */
442 static void sdma_v3_0_ring_emit_hdp_flush(struct amdgpu_ring *ring)
443 {
444 u32 ref_and_mask = 0;
445
446 if (ring == &ring->adev->sdma.instance[0].ring)
447 ref_and_mask = REG_SET_FIELD(ref_and_mask, GPU_HDP_FLUSH_DONE, SDMA0, 1);
448 else
449 ref_and_mask = REG_SET_FIELD(ref_and_mask, GPU_HDP_FLUSH_DONE, SDMA1, 1);
450
451 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
452 SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(1) |
453 SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* == */
454 amdgpu_ring_write(ring, mmGPU_HDP_FLUSH_DONE << 2);
455 amdgpu_ring_write(ring, mmGPU_HDP_FLUSH_REQ << 2);
456 amdgpu_ring_write(ring, ref_and_mask); /* reference */
457 amdgpu_ring_write(ring, ref_and_mask); /* mask */
458 amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
459 SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */
460 }
461
462 static void sdma_v3_0_ring_emit_hdp_invalidate(struct amdgpu_ring *ring)
463 {
464 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
465 SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
466 amdgpu_ring_write(ring, mmHDP_DEBUG0);
467 amdgpu_ring_write(ring, 1);
468 }
469
470 /**
471 * sdma_v3_0_ring_emit_fence - emit a fence on the DMA ring
472 *
473 * @ring: amdgpu ring pointer
474 * @fence: amdgpu fence object
475 *
476 * Add a DMA fence packet to the ring to write
477 * the fence seq number and DMA trap packet to generate
478 * an interrupt if needed (VI).
479 */
480 static void sdma_v3_0_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq,
481 unsigned flags)
482 {
483 bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT;
484 /* write the fence */
485 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
486 amdgpu_ring_write(ring, lower_32_bits(addr));
487 amdgpu_ring_write(ring, upper_32_bits(addr));
488 amdgpu_ring_write(ring, lower_32_bits(seq));
489
490 /* optionally write high bits as well */
491 if (write64bit) {
492 addr += 4;
493 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
494 amdgpu_ring_write(ring, lower_32_bits(addr));
495 amdgpu_ring_write(ring, upper_32_bits(addr));
496 amdgpu_ring_write(ring, upper_32_bits(seq));
497 }
498
499 /* generate an interrupt */
500 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_TRAP));
501 amdgpu_ring_write(ring, SDMA_PKT_TRAP_INT_CONTEXT_INT_CONTEXT(0));
502 }
503
504 /**
505 * sdma_v3_0_gfx_stop - stop the gfx async dma engines
506 *
507 * @adev: amdgpu_device pointer
508 *
509 * Stop the gfx async dma ring buffers (VI).
510 */
511 static void sdma_v3_0_gfx_stop(struct amdgpu_device *adev)
512 {
513 struct amdgpu_ring *sdma0 = &adev->sdma.instance[0].ring;
514 struct amdgpu_ring *sdma1 = &adev->sdma.instance[1].ring;
515 u32 rb_cntl, ib_cntl;
516 int i;
517
518 if ((adev->mman.buffer_funcs_ring == sdma0) ||
519 (adev->mman.buffer_funcs_ring == sdma1))
520 amdgpu_ttm_set_active_vram_size(adev, adev->mc.visible_vram_size);
521
522 for (i = 0; i < adev->sdma.num_instances; i++) {
523 rb_cntl = RREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i]);
524 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 0);
525 WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
526 ib_cntl = RREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i]);
527 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 0);
528 WREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i], ib_cntl);
529 }
530 sdma0->ready = false;
531 sdma1->ready = false;
532 }
533
534 /**
535 * sdma_v3_0_rlc_stop - stop the compute async dma engines
536 *
537 * @adev: amdgpu_device pointer
538 *
539 * Stop the compute async dma queues (VI).
540 */
541 static void sdma_v3_0_rlc_stop(struct amdgpu_device *adev)
542 {
543 /* XXX todo */
544 }
545
546 /**
547 * sdma_v3_0_ctx_switch_enable - stop the async dma engines context switch
548 *
549 * @adev: amdgpu_device pointer
550 * @enable: enable/disable the DMA MEs context switch.
551 *
552 * Halt or unhalt the async dma engines context switch (VI).
553 */
554 static void sdma_v3_0_ctx_switch_enable(struct amdgpu_device *adev, bool enable)
555 {
556 u32 f32_cntl;
557 int i;
558
559 for (i = 0; i < adev->sdma.num_instances; i++) {
560 f32_cntl = RREG32(mmSDMA0_CNTL + sdma_offsets[i]);
561 if (enable)
562 f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
563 AUTO_CTXSW_ENABLE, 1);
564 else
565 f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
566 AUTO_CTXSW_ENABLE, 0);
567 WREG32(mmSDMA0_CNTL + sdma_offsets[i], f32_cntl);
568 }
569 }
570
571 /**
572 * sdma_v3_0_enable - stop the async dma engines
573 *
574 * @adev: amdgpu_device pointer
575 * @enable: enable/disable the DMA MEs.
576 *
577 * Halt or unhalt the async dma engines (VI).
578 */
579 static void sdma_v3_0_enable(struct amdgpu_device *adev, bool enable)
580 {
581 u32 f32_cntl;
582 int i;
583
584 if (!enable) {
585 sdma_v3_0_gfx_stop(adev);
586 sdma_v3_0_rlc_stop(adev);
587 }
588
589 for (i = 0; i < adev->sdma.num_instances; i++) {
590 f32_cntl = RREG32(mmSDMA0_F32_CNTL + sdma_offsets[i]);
591 if (enable)
592 f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, 0);
593 else
594 f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, 1);
595 WREG32(mmSDMA0_F32_CNTL + sdma_offsets[i], f32_cntl);
596 }
597 }
598
599 /**
600 * sdma_v3_0_gfx_resume - setup and start the async dma engines
601 *
602 * @adev: amdgpu_device pointer
603 *
604 * Set up the gfx DMA ring buffers and enable them (VI).
605 * Returns 0 for success, error for failure.
606 */
607 static int sdma_v3_0_gfx_resume(struct amdgpu_device *adev)
608 {
609 struct amdgpu_ring *ring;
610 u32 rb_cntl, ib_cntl;
611 u32 rb_bufsz;
612 u32 wb_offset;
613 u32 doorbell;
614 int i, j, r;
615
616 for (i = 0; i < adev->sdma.num_instances; i++) {
617 ring = &adev->sdma.instance[i].ring;
618 wb_offset = (ring->rptr_offs * 4);
619
620 mutex_lock(&adev->srbm_mutex);
621 for (j = 0; j < 16; j++) {
622 vi_srbm_select(adev, 0, 0, 0, j);
623 /* SDMA GFX */
624 WREG32(mmSDMA0_GFX_VIRTUAL_ADDR + sdma_offsets[i], 0);
625 WREG32(mmSDMA0_GFX_APE1_CNTL + sdma_offsets[i], 0);
626 }
627 vi_srbm_select(adev, 0, 0, 0, 0);
628 mutex_unlock(&adev->srbm_mutex);
629
630 WREG32(mmSDMA0_TILING_CONFIG + sdma_offsets[i],
631 adev->gfx.config.gb_addr_config & 0x70);
632
633 WREG32(mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL + sdma_offsets[i], 0);
634
635 /* Set ring buffer size in dwords */
636 rb_bufsz = order_base_2(ring->ring_size / 4);
637 rb_cntl = RREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i]);
638 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SIZE, rb_bufsz);
639 #ifdef __BIG_ENDIAN
640 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SWAP_ENABLE, 1);
641 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
642 RPTR_WRITEBACK_SWAP_ENABLE, 1);
643 #endif
644 WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
645
646 /* Initialize the ring buffer's read and write pointers */
647 WREG32(mmSDMA0_GFX_RB_RPTR + sdma_offsets[i], 0);
648 WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[i], 0);
649 WREG32(mmSDMA0_GFX_IB_RPTR + sdma_offsets[i], 0);
650 WREG32(mmSDMA0_GFX_IB_OFFSET + sdma_offsets[i], 0);
651
652 /* set the wb address whether it's enabled or not */
653 WREG32(mmSDMA0_GFX_RB_RPTR_ADDR_HI + sdma_offsets[i],
654 upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF);
655 WREG32(mmSDMA0_GFX_RB_RPTR_ADDR_LO + sdma_offsets[i],
656 lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC);
657
658 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RPTR_WRITEBACK_ENABLE, 1);
659
660 WREG32(mmSDMA0_GFX_RB_BASE + sdma_offsets[i], ring->gpu_addr >> 8);
661 WREG32(mmSDMA0_GFX_RB_BASE_HI + sdma_offsets[i], ring->gpu_addr >> 40);
662
663 ring->wptr = 0;
664 WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[i], ring->wptr << 2);
665
666 doorbell = RREG32(mmSDMA0_GFX_DOORBELL + sdma_offsets[i]);
667
668 if (ring->use_doorbell) {
669 doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL,
670 OFFSET, ring->doorbell_index);
671 doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 1);
672 } else {
673 doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 0);
674 }
675 WREG32(mmSDMA0_GFX_DOORBELL + sdma_offsets[i], doorbell);
676
677 /* enable DMA RB */
678 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 1);
679 WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
680
681 ib_cntl = RREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i]);
682 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 1);
683 #ifdef __BIG_ENDIAN
684 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_SWAP_ENABLE, 1);
685 #endif
686 /* enable DMA IBs */
687 WREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i], ib_cntl);
688
689 ring->ready = true;
690 }
691
692 /* unhalt the MEs */
693 sdma_v3_0_enable(adev, true);
694 /* enable sdma ring preemption */
695 sdma_v3_0_ctx_switch_enable(adev, true);
696
697 for (i = 0; i < adev->sdma.num_instances; i++) {
698 ring = &adev->sdma.instance[i].ring;
699 r = amdgpu_ring_test_ring(ring);
700 if (r) {
701 ring->ready = false;
702 return r;
703 }
704
705 if (adev->mman.buffer_funcs_ring == ring)
706 amdgpu_ttm_set_active_vram_size(adev, adev->mc.real_vram_size);
707 }
708
709 return 0;
710 }
711
712 /**
713 * sdma_v3_0_rlc_resume - setup and start the async dma engines
714 *
715 * @adev: amdgpu_device pointer
716 *
717 * Set up the compute DMA queues and enable them (VI).
718 * Returns 0 for success, error for failure.
719 */
720 static int sdma_v3_0_rlc_resume(struct amdgpu_device *adev)
721 {
722 /* XXX todo */
723 return 0;
724 }
725
726 /**
727 * sdma_v3_0_load_microcode - load the sDMA ME ucode
728 *
729 * @adev: amdgpu_device pointer
730 *
731 * Loads the sDMA0/1 ucode.
732 * Returns 0 for success, -EINVAL if the ucode is not available.
733 */
734 static int sdma_v3_0_load_microcode(struct amdgpu_device *adev)
735 {
736 const struct sdma_firmware_header_v1_0 *hdr;
737 const __le32 *fw_data;
738 u32 fw_size;
739 int i, j;
740
741 /* halt the MEs */
742 sdma_v3_0_enable(adev, false);
743
744 for (i = 0; i < adev->sdma.num_instances; i++) {
745 if (!adev->sdma.instance[i].fw)
746 return -EINVAL;
747 hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
748 amdgpu_ucode_print_sdma_hdr(&hdr->header);
749 fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4;
750 fw_data = (const __le32 *)
751 (adev->sdma.instance[i].fw->data +
752 le32_to_cpu(hdr->header.ucode_array_offset_bytes));
753 WREG32(mmSDMA0_UCODE_ADDR + sdma_offsets[i], 0);
754 for (j = 0; j < fw_size; j++)
755 WREG32(mmSDMA0_UCODE_DATA + sdma_offsets[i], le32_to_cpup(fw_data++));
756 WREG32(mmSDMA0_UCODE_ADDR + sdma_offsets[i], adev->sdma.instance[i].fw_version);
757 }
758
759 return 0;
760 }
761
762 /**
763 * sdma_v3_0_start - setup and start the async dma engines
764 *
765 * @adev: amdgpu_device pointer
766 *
767 * Set up the DMA engines and enable them (VI).
768 * Returns 0 for success, error for failure.
769 */
770 static int sdma_v3_0_start(struct amdgpu_device *adev)
771 {
772 int r, i;
773
774 if (!adev->pp_enabled) {
775 if (!adev->firmware.smu_load) {
776 r = sdma_v3_0_load_microcode(adev);
777 if (r)
778 return r;
779 } else {
780 for (i = 0; i < adev->sdma.num_instances; i++) {
781 r = adev->smu.smumgr_funcs->check_fw_load_finish(adev,
782 (i == 0) ?
783 AMDGPU_UCODE_ID_SDMA0 :
784 AMDGPU_UCODE_ID_SDMA1);
785 if (r)
786 return -EINVAL;
787 }
788 }
789 }
790
791 /* disable sdma engine before programing it */
792 sdma_v3_0_ctx_switch_enable(adev, false);
793 sdma_v3_0_enable(adev, false);
794
795 /* start the gfx rings and rlc compute queues */
796 r = sdma_v3_0_gfx_resume(adev);
797 if (r)
798 return r;
799 r = sdma_v3_0_rlc_resume(adev);
800 if (r)
801 return r;
802
803 return 0;
804 }
805
806 /**
807 * sdma_v3_0_ring_test_ring - simple async dma engine test
808 *
809 * @ring: amdgpu_ring structure holding ring information
810 *
811 * Test the DMA engine by writing using it to write an
812 * value to memory. (VI).
813 * Returns 0 for success, error for failure.
814 */
815 static int sdma_v3_0_ring_test_ring(struct amdgpu_ring *ring)
816 {
817 struct amdgpu_device *adev = ring->adev;
818 unsigned i;
819 unsigned index;
820 int r;
821 u32 tmp;
822 u64 gpu_addr;
823
824 r = amdgpu_wb_get(adev, &index);
825 if (r) {
826 dev_err(adev->dev, "(%d) failed to allocate wb slot\n", r);
827 return r;
828 }
829
830 gpu_addr = adev->wb.gpu_addr + (index * 4);
831 tmp = 0xCAFEDEAD;
832 adev->wb.wb[index] = cpu_to_le32(tmp);
833
834 r = amdgpu_ring_alloc(ring, 5);
835 if (r) {
836 DRM_ERROR("amdgpu: dma failed to lock ring %d (%d).\n", ring->idx, r);
837 amdgpu_wb_free(adev, index);
838 return r;
839 }
840
841 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
842 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR));
843 amdgpu_ring_write(ring, lower_32_bits(gpu_addr));
844 amdgpu_ring_write(ring, upper_32_bits(gpu_addr));
845 amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1));
846 amdgpu_ring_write(ring, 0xDEADBEEF);
847 amdgpu_ring_commit(ring);
848
849 for (i = 0; i < adev->usec_timeout; i++) {
850 tmp = le32_to_cpu(adev->wb.wb[index]);
851 if (tmp == 0xDEADBEEF)
852 break;
853 DRM_UDELAY(1);
854 }
855
856 if (i < adev->usec_timeout) {
857 DRM_INFO("ring test on %d succeeded in %d usecs\n", ring->idx, i);
858 } else {
859 DRM_ERROR("amdgpu: ring %d test failed (0x%08X)\n",
860 ring->idx, tmp);
861 r = -EINVAL;
862 }
863 amdgpu_wb_free(adev, index);
864
865 return r;
866 }
867
868 /**
869 * sdma_v3_0_ring_test_ib - test an IB on the DMA engine
870 *
871 * @ring: amdgpu_ring structure holding ring information
872 *
873 * Test a simple IB in the DMA ring (VI).
874 * Returns 0 on success, error on failure.
875 */
876 static int sdma_v3_0_ring_test_ib(struct amdgpu_ring *ring, long timeout)
877 {
878 struct amdgpu_device *adev = ring->adev;
879 struct amdgpu_ib ib;
880 struct dma_fence *f = NULL;
881 unsigned index;
882 u32 tmp = 0;
883 u64 gpu_addr;
884 long r;
885
886 r = amdgpu_wb_get(adev, &index);
887 if (r) {
888 dev_err(adev->dev, "(%ld) failed to allocate wb slot\n", r);
889 return r;
890 }
891
892 gpu_addr = adev->wb.gpu_addr + (index * 4);
893 tmp = 0xCAFEDEAD;
894 adev->wb.wb[index] = cpu_to_le32(tmp);
895 memset(&ib, 0, sizeof(ib));
896 r = amdgpu_ib_get(adev, NULL, 256, &ib);
897 if (r) {
898 DRM_ERROR("amdgpu: failed to get ib (%ld).\n", r);
899 goto err0;
900 }
901
902 ib.ptr[0] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
903 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
904 ib.ptr[1] = lower_32_bits(gpu_addr);
905 ib.ptr[2] = upper_32_bits(gpu_addr);
906 ib.ptr[3] = SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1);
907 ib.ptr[4] = 0xDEADBEEF;
908 ib.ptr[5] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
909 ib.ptr[6] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
910 ib.ptr[7] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
911 ib.length_dw = 8;
912
913 r = amdgpu_ib_schedule(ring, 1, &ib, NULL, &f);
914 if (r)
915 goto err1;
916
917 r = dma_fence_wait_timeout(f, false, timeout);
918 if (r == 0) {
919 DRM_ERROR("amdgpu: IB test timed out\n");
920 r = -ETIMEDOUT;
921 goto err1;
922 } else if (r < 0) {
923 DRM_ERROR("amdgpu: fence wait failed (%ld).\n", r);
924 goto err1;
925 }
926 tmp = le32_to_cpu(adev->wb.wb[index]);
927 if (tmp == 0xDEADBEEF) {
928 DRM_INFO("ib test on ring %d succeeded\n", ring->idx);
929 r = 0;
930 } else {
931 DRM_ERROR("amdgpu: ib test failed (0x%08X)\n", tmp);
932 r = -EINVAL;
933 }
934 err1:
935 amdgpu_ib_free(adev, &ib, NULL);
936 dma_fence_put(f);
937 err0:
938 amdgpu_wb_free(adev, index);
939 return r;
940 }
941
942 /**
943 * sdma_v3_0_vm_copy_pte - update PTEs by copying them from the GART
944 *
945 * @ib: indirect buffer to fill with commands
946 * @pe: addr of the page entry
947 * @src: src addr to copy from
948 * @count: number of page entries to update
949 *
950 * Update PTEs by copying them from the GART using sDMA (CIK).
951 */
952 static void sdma_v3_0_vm_copy_pte(struct amdgpu_ib *ib,
953 uint64_t pe, uint64_t src,
954 unsigned count)
955 {
956 unsigned bytes = count * 8;
957
958 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
959 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
960 ib->ptr[ib->length_dw++] = bytes;
961 ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
962 ib->ptr[ib->length_dw++] = lower_32_bits(src);
963 ib->ptr[ib->length_dw++] = upper_32_bits(src);
964 ib->ptr[ib->length_dw++] = lower_32_bits(pe);
965 ib->ptr[ib->length_dw++] = upper_32_bits(pe);
966 }
967
968 /**
969 * sdma_v3_0_vm_write_pte - update PTEs by writing them manually
970 *
971 * @ib: indirect buffer to fill with commands
972 * @pe: addr of the page entry
973 * @value: dst addr to write into pe
974 * @count: number of page entries to update
975 * @incr: increase next addr by incr bytes
976 *
977 * Update PTEs by writing them manually using sDMA (CIK).
978 */
979 static void sdma_v3_0_vm_write_pte(struct amdgpu_ib *ib, uint64_t pe,
980 uint64_t value, unsigned count,
981 uint32_t incr)
982 {
983 unsigned ndw = count * 2;
984
985 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
986 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
987 ib->ptr[ib->length_dw++] = lower_32_bits(pe);
988 ib->ptr[ib->length_dw++] = upper_32_bits(pe);
989 ib->ptr[ib->length_dw++] = ndw;
990 for (; ndw > 0; ndw -= 2) {
991 ib->ptr[ib->length_dw++] = lower_32_bits(value);
992 ib->ptr[ib->length_dw++] = upper_32_bits(value);
993 value += incr;
994 }
995 }
996
997 /**
998 * sdma_v3_0_vm_set_pte_pde - update the page tables using sDMA
999 *
1000 * @ib: indirect buffer to fill with commands
1001 * @pe: addr of the page entry
1002 * @addr: dst addr to write into pe
1003 * @count: number of page entries to update
1004 * @incr: increase next addr by incr bytes
1005 * @flags: access flags
1006 *
1007 * Update the page tables using sDMA (CIK).
1008 */
1009 static void sdma_v3_0_vm_set_pte_pde(struct amdgpu_ib *ib, uint64_t pe,
1010 uint64_t addr, unsigned count,
1011 uint32_t incr, uint32_t flags)
1012 {
1013 /* for physically contiguous pages (vram) */
1014 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_GEN_PTEPDE);
1015 ib->ptr[ib->length_dw++] = lower_32_bits(pe); /* dst addr */
1016 ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1017 ib->ptr[ib->length_dw++] = flags; /* mask */
1018 ib->ptr[ib->length_dw++] = 0;
1019 ib->ptr[ib->length_dw++] = lower_32_bits(addr); /* value */
1020 ib->ptr[ib->length_dw++] = upper_32_bits(addr);
1021 ib->ptr[ib->length_dw++] = incr; /* increment size */
1022 ib->ptr[ib->length_dw++] = 0;
1023 ib->ptr[ib->length_dw++] = count; /* number of entries */
1024 }
1025
1026 /**
1027 * sdma_v3_0_ring_pad_ib - pad the IB to the required number of dw
1028 *
1029 * @ib: indirect buffer to fill with padding
1030 *
1031 */
1032 static void sdma_v3_0_ring_pad_ib(struct amdgpu_ring *ring, struct amdgpu_ib *ib)
1033 {
1034 struct amdgpu_sdma_instance *sdma = amdgpu_get_sdma_instance(ring);
1035 u32 pad_count;
1036 int i;
1037
1038 pad_count = (8 - (ib->length_dw & 0x7)) % 8;
1039 for (i = 0; i < pad_count; i++)
1040 if (sdma && sdma->burst_nop && (i == 0))
1041 ib->ptr[ib->length_dw++] =
1042 SDMA_PKT_HEADER_OP(SDMA_OP_NOP) |
1043 SDMA_PKT_NOP_HEADER_COUNT(pad_count - 1);
1044 else
1045 ib->ptr[ib->length_dw++] =
1046 SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
1047 }
1048
1049 /**
1050 * sdma_v3_0_ring_emit_pipeline_sync - sync the pipeline
1051 *
1052 * @ring: amdgpu_ring pointer
1053 *
1054 * Make sure all previous operations are completed (CIK).
1055 */
1056 static void sdma_v3_0_ring_emit_pipeline_sync(struct amdgpu_ring *ring)
1057 {
1058 uint32_t seq = ring->fence_drv.sync_seq;
1059 uint64_t addr = ring->fence_drv.gpu_addr;
1060
1061 /* wait for idle */
1062 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
1063 SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) |
1064 SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3) | /* equal */
1065 SDMA_PKT_POLL_REGMEM_HEADER_MEM_POLL(1));
1066 amdgpu_ring_write(ring, addr & 0xfffffffc);
1067 amdgpu_ring_write(ring, upper_32_bits(addr) & 0xffffffff);
1068 amdgpu_ring_write(ring, seq); /* reference */
1069 amdgpu_ring_write(ring, 0xfffffff); /* mask */
1070 amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
1071 SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(4)); /* retry count, poll interval */
1072 }
1073
1074 /**
1075 * sdma_v3_0_ring_emit_vm_flush - cik vm flush using sDMA
1076 *
1077 * @ring: amdgpu_ring pointer
1078 * @vm: amdgpu_vm pointer
1079 *
1080 * Update the page table base and flush the VM TLB
1081 * using sDMA (VI).
1082 */
1083 static void sdma_v3_0_ring_emit_vm_flush(struct amdgpu_ring *ring,
1084 unsigned vm_id, uint64_t pd_addr)
1085 {
1086 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
1087 SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
1088 if (vm_id < 8) {
1089 amdgpu_ring_write(ring, (mmVM_CONTEXT0_PAGE_TABLE_BASE_ADDR + vm_id));
1090 } else {
1091 amdgpu_ring_write(ring, (mmVM_CONTEXT8_PAGE_TABLE_BASE_ADDR + vm_id - 8));
1092 }
1093 amdgpu_ring_write(ring, pd_addr >> 12);
1094
1095 /* flush TLB */
1096 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
1097 SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
1098 amdgpu_ring_write(ring, mmVM_INVALIDATE_REQUEST);
1099 amdgpu_ring_write(ring, 1 << vm_id);
1100
1101 /* wait for flush */
1102 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
1103 SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) |
1104 SDMA_PKT_POLL_REGMEM_HEADER_FUNC(0)); /* always */
1105 amdgpu_ring_write(ring, mmVM_INVALIDATE_REQUEST << 2);
1106 amdgpu_ring_write(ring, 0);
1107 amdgpu_ring_write(ring, 0); /* reference */
1108 amdgpu_ring_write(ring, 0); /* mask */
1109 amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
1110 SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */
1111 }
1112
1113 static int sdma_v3_0_early_init(void *handle)
1114 {
1115 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1116
1117 switch (adev->asic_type) {
1118 case CHIP_STONEY:
1119 adev->sdma.num_instances = 1;
1120 break;
1121 default:
1122 adev->sdma.num_instances = SDMA_MAX_INSTANCE;
1123 break;
1124 }
1125
1126 sdma_v3_0_set_ring_funcs(adev);
1127 sdma_v3_0_set_buffer_funcs(adev);
1128 sdma_v3_0_set_vm_pte_funcs(adev);
1129 sdma_v3_0_set_irq_funcs(adev);
1130
1131 return 0;
1132 }
1133
1134 static int sdma_v3_0_sw_init(void *handle)
1135 {
1136 struct amdgpu_ring *ring;
1137 int r, i;
1138 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1139
1140 /* SDMA trap event */
1141 r = amdgpu_irq_add_id(adev, 224, &adev->sdma.trap_irq);
1142 if (r)
1143 return r;
1144
1145 /* SDMA Privileged inst */
1146 r = amdgpu_irq_add_id(adev, 241, &adev->sdma.illegal_inst_irq);
1147 if (r)
1148 return r;
1149
1150 /* SDMA Privileged inst */
1151 r = amdgpu_irq_add_id(adev, 247, &adev->sdma.illegal_inst_irq);
1152 if (r)
1153 return r;
1154
1155 r = sdma_v3_0_init_microcode(adev);
1156 if (r) {
1157 DRM_ERROR("Failed to load sdma firmware!\n");
1158 return r;
1159 }
1160
1161 for (i = 0; i < adev->sdma.num_instances; i++) {
1162 ring = &adev->sdma.instance[i].ring;
1163 ring->ring_obj = NULL;
1164 ring->use_doorbell = true;
1165 ring->doorbell_index = (i == 0) ?
1166 AMDGPU_DOORBELL_sDMA_ENGINE0 : AMDGPU_DOORBELL_sDMA_ENGINE1;
1167
1168 sprintf(ring->name, "sdma%d", i);
1169 r = amdgpu_ring_init(adev, ring, 1024,
1170 &adev->sdma.trap_irq,
1171 (i == 0) ?
1172 AMDGPU_SDMA_IRQ_TRAP0 :
1173 AMDGPU_SDMA_IRQ_TRAP1);
1174 if (r)
1175 return r;
1176 }
1177
1178 return r;
1179 }
1180
1181 static int sdma_v3_0_sw_fini(void *handle)
1182 {
1183 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1184 int i;
1185
1186 for (i = 0; i < adev->sdma.num_instances; i++)
1187 amdgpu_ring_fini(&adev->sdma.instance[i].ring);
1188
1189 sdma_v3_0_free_microcode(adev);
1190 return 0;
1191 }
1192
1193 static int sdma_v3_0_hw_init(void *handle)
1194 {
1195 int r;
1196 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1197
1198 sdma_v3_0_init_golden_registers(adev);
1199
1200 r = sdma_v3_0_start(adev);
1201 if (r)
1202 return r;
1203
1204 return r;
1205 }
1206
1207 static int sdma_v3_0_hw_fini(void *handle)
1208 {
1209 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1210
1211 sdma_v3_0_ctx_switch_enable(adev, false);
1212 sdma_v3_0_enable(adev, false);
1213
1214 return 0;
1215 }
1216
1217 static int sdma_v3_0_suspend(void *handle)
1218 {
1219 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1220
1221 return sdma_v3_0_hw_fini(adev);
1222 }
1223
1224 static int sdma_v3_0_resume(void *handle)
1225 {
1226 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1227
1228 return sdma_v3_0_hw_init(adev);
1229 }
1230
1231 static bool sdma_v3_0_is_idle(void *handle)
1232 {
1233 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1234 u32 tmp = RREG32(mmSRBM_STATUS2);
1235
1236 if (tmp & (SRBM_STATUS2__SDMA_BUSY_MASK |
1237 SRBM_STATUS2__SDMA1_BUSY_MASK))
1238 return false;
1239
1240 return true;
1241 }
1242
1243 static int sdma_v3_0_wait_for_idle(void *handle)
1244 {
1245 unsigned i;
1246 u32 tmp;
1247 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1248
1249 for (i = 0; i < adev->usec_timeout; i++) {
1250 tmp = RREG32(mmSRBM_STATUS2) & (SRBM_STATUS2__SDMA_BUSY_MASK |
1251 SRBM_STATUS2__SDMA1_BUSY_MASK);
1252
1253 if (!tmp)
1254 return 0;
1255 udelay(1);
1256 }
1257 return -ETIMEDOUT;
1258 }
1259
1260 static bool sdma_v3_0_check_soft_reset(void *handle)
1261 {
1262 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1263 u32 srbm_soft_reset = 0;
1264 u32 tmp = RREG32(mmSRBM_STATUS2);
1265
1266 if ((tmp & SRBM_STATUS2__SDMA_BUSY_MASK) ||
1267 (tmp & SRBM_STATUS2__SDMA1_BUSY_MASK)) {
1268 srbm_soft_reset |= SRBM_SOFT_RESET__SOFT_RESET_SDMA_MASK;
1269 srbm_soft_reset |= SRBM_SOFT_RESET__SOFT_RESET_SDMA1_MASK;
1270 }
1271
1272 if (srbm_soft_reset) {
1273 adev->sdma.srbm_soft_reset = srbm_soft_reset;
1274 return true;
1275 } else {
1276 adev->sdma.srbm_soft_reset = 0;
1277 return false;
1278 }
1279 }
1280
1281 static int sdma_v3_0_pre_soft_reset(void *handle)
1282 {
1283 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1284 u32 srbm_soft_reset = 0;
1285
1286 if (!adev->sdma.srbm_soft_reset)
1287 return 0;
1288
1289 srbm_soft_reset = adev->sdma.srbm_soft_reset;
1290
1291 if (REG_GET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET, SOFT_RESET_SDMA) ||
1292 REG_GET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET, SOFT_RESET_SDMA1)) {
1293 sdma_v3_0_ctx_switch_enable(adev, false);
1294 sdma_v3_0_enable(adev, false);
1295 }
1296
1297 return 0;
1298 }
1299
1300 static int sdma_v3_0_post_soft_reset(void *handle)
1301 {
1302 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1303 u32 srbm_soft_reset = 0;
1304
1305 if (!adev->sdma.srbm_soft_reset)
1306 return 0;
1307
1308 srbm_soft_reset = adev->sdma.srbm_soft_reset;
1309
1310 if (REG_GET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET, SOFT_RESET_SDMA) ||
1311 REG_GET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET, SOFT_RESET_SDMA1)) {
1312 sdma_v3_0_gfx_resume(adev);
1313 sdma_v3_0_rlc_resume(adev);
1314 }
1315
1316 return 0;
1317 }
1318
1319 static int sdma_v3_0_soft_reset(void *handle)
1320 {
1321 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1322 u32 srbm_soft_reset = 0;
1323 u32 tmp;
1324
1325 if (!adev->sdma.srbm_soft_reset)
1326 return 0;
1327
1328 srbm_soft_reset = adev->sdma.srbm_soft_reset;
1329
1330 if (srbm_soft_reset) {
1331 tmp = RREG32(mmSRBM_SOFT_RESET);
1332 tmp |= srbm_soft_reset;
1333 dev_info(adev->dev, "SRBM_SOFT_RESET=0x%08X\n", tmp);
1334 WREG32(mmSRBM_SOFT_RESET, tmp);
1335 tmp = RREG32(mmSRBM_SOFT_RESET);
1336
1337 udelay(50);
1338
1339 tmp &= ~srbm_soft_reset;
1340 WREG32(mmSRBM_SOFT_RESET, tmp);
1341 tmp = RREG32(mmSRBM_SOFT_RESET);
1342
1343 /* Wait a little for things to settle down */
1344 udelay(50);
1345 }
1346
1347 return 0;
1348 }
1349
1350 static int sdma_v3_0_set_trap_irq_state(struct amdgpu_device *adev,
1351 struct amdgpu_irq_src *source,
1352 unsigned type,
1353 enum amdgpu_interrupt_state state)
1354 {
1355 u32 sdma_cntl;
1356
1357 switch (type) {
1358 case AMDGPU_SDMA_IRQ_TRAP0:
1359 switch (state) {
1360 case AMDGPU_IRQ_STATE_DISABLE:
1361 sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET);
1362 sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 0);
1363 WREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET, sdma_cntl);
1364 break;
1365 case AMDGPU_IRQ_STATE_ENABLE:
1366 sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET);
1367 sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 1);
1368 WREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET, sdma_cntl);
1369 break;
1370 default:
1371 break;
1372 }
1373 break;
1374 case AMDGPU_SDMA_IRQ_TRAP1:
1375 switch (state) {
1376 case AMDGPU_IRQ_STATE_DISABLE:
1377 sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET);
1378 sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 0);
1379 WREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET, sdma_cntl);
1380 break;
1381 case AMDGPU_IRQ_STATE_ENABLE:
1382 sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET);
1383 sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 1);
1384 WREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET, sdma_cntl);
1385 break;
1386 default:
1387 break;
1388 }
1389 break;
1390 default:
1391 break;
1392 }
1393 return 0;
1394 }
1395
1396 static int sdma_v3_0_process_trap_irq(struct amdgpu_device *adev,
1397 struct amdgpu_irq_src *source,
1398 struct amdgpu_iv_entry *entry)
1399 {
1400 u8 instance_id, queue_id;
1401
1402 instance_id = (entry->ring_id & 0x3) >> 0;
1403 queue_id = (entry->ring_id & 0xc) >> 2;
1404 DRM_DEBUG("IH: SDMA trap\n");
1405 switch (instance_id) {
1406 case 0:
1407 switch (queue_id) {
1408 case 0:
1409 amdgpu_fence_process(&adev->sdma.instance[0].ring);
1410 break;
1411 case 1:
1412 /* XXX compute */
1413 break;
1414 case 2:
1415 /* XXX compute */
1416 break;
1417 }
1418 break;
1419 case 1:
1420 switch (queue_id) {
1421 case 0:
1422 amdgpu_fence_process(&adev->sdma.instance[1].ring);
1423 break;
1424 case 1:
1425 /* XXX compute */
1426 break;
1427 case 2:
1428 /* XXX compute */
1429 break;
1430 }
1431 break;
1432 }
1433 return 0;
1434 }
1435
1436 static int sdma_v3_0_process_illegal_inst_irq(struct amdgpu_device *adev,
1437 struct amdgpu_irq_src *source,
1438 struct amdgpu_iv_entry *entry)
1439 {
1440 DRM_ERROR("Illegal instruction in SDMA command stream\n");
1441 schedule_work(&adev->reset_work);
1442 return 0;
1443 }
1444
1445 static void sdma_v3_0_update_sdma_medium_grain_clock_gating(
1446 struct amdgpu_device *adev,
1447 bool enable)
1448 {
1449 uint32_t temp, data;
1450 int i;
1451
1452 if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_MGCG)) {
1453 for (i = 0; i < adev->sdma.num_instances; i++) {
1454 temp = data = RREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i]);
1455 data &= ~(SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
1456 SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
1457 SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
1458 SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
1459 SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
1460 SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
1461 SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
1462 SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);
1463 if (data != temp)
1464 WREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i], data);
1465 }
1466 } else {
1467 for (i = 0; i < adev->sdma.num_instances; i++) {
1468 temp = data = RREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i]);
1469 data |= SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
1470 SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
1471 SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
1472 SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
1473 SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
1474 SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
1475 SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
1476 SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK;
1477
1478 if (data != temp)
1479 WREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i], data);
1480 }
1481 }
1482 }
1483
1484 static void sdma_v3_0_update_sdma_medium_grain_light_sleep(
1485 struct amdgpu_device *adev,
1486 bool enable)
1487 {
1488 uint32_t temp, data;
1489 int i;
1490
1491 if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_LS)) {
1492 for (i = 0; i < adev->sdma.num_instances; i++) {
1493 temp = data = RREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i]);
1494 data |= SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
1495
1496 if (temp != data)
1497 WREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i], data);
1498 }
1499 } else {
1500 for (i = 0; i < adev->sdma.num_instances; i++) {
1501 temp = data = RREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i]);
1502 data &= ~SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
1503
1504 if (temp != data)
1505 WREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i], data);
1506 }
1507 }
1508 }
1509
1510 static int sdma_v3_0_set_clockgating_state(void *handle,
1511 enum amd_clockgating_state state)
1512 {
1513 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1514
1515 switch (adev->asic_type) {
1516 case CHIP_FIJI:
1517 case CHIP_CARRIZO:
1518 case CHIP_STONEY:
1519 sdma_v3_0_update_sdma_medium_grain_clock_gating(adev,
1520 state == AMD_CG_STATE_GATE ? true : false);
1521 sdma_v3_0_update_sdma_medium_grain_light_sleep(adev,
1522 state == AMD_CG_STATE_GATE ? true : false);
1523 break;
1524 default:
1525 break;
1526 }
1527 return 0;
1528 }
1529
1530 static int sdma_v3_0_set_powergating_state(void *handle,
1531 enum amd_powergating_state state)
1532 {
1533 return 0;
1534 }
1535
1536 static void sdma_v3_0_get_clockgating_state(void *handle, u32 *flags)
1537 {
1538 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1539 int data;
1540
1541 /* AMD_CG_SUPPORT_SDMA_MGCG */
1542 data = RREG32(mmSDMA0_CLK_CTRL + sdma_offsets[0]);
1543 if (!(data & SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK))
1544 *flags |= AMD_CG_SUPPORT_SDMA_MGCG;
1545
1546 /* AMD_CG_SUPPORT_SDMA_LS */
1547 data = RREG32(mmSDMA0_POWER_CNTL + sdma_offsets[0]);
1548 if (data & SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK)
1549 *flags |= AMD_CG_SUPPORT_SDMA_LS;
1550 }
1551
1552 static const struct amd_ip_funcs sdma_v3_0_ip_funcs = {
1553 .name = "sdma_v3_0",
1554 .early_init = sdma_v3_0_early_init,
1555 .late_init = NULL,
1556 .sw_init = sdma_v3_0_sw_init,
1557 .sw_fini = sdma_v3_0_sw_fini,
1558 .hw_init = sdma_v3_0_hw_init,
1559 .hw_fini = sdma_v3_0_hw_fini,
1560 .suspend = sdma_v3_0_suspend,
1561 .resume = sdma_v3_0_resume,
1562 .is_idle = sdma_v3_0_is_idle,
1563 .wait_for_idle = sdma_v3_0_wait_for_idle,
1564 .check_soft_reset = sdma_v3_0_check_soft_reset,
1565 .pre_soft_reset = sdma_v3_0_pre_soft_reset,
1566 .post_soft_reset = sdma_v3_0_post_soft_reset,
1567 .soft_reset = sdma_v3_0_soft_reset,
1568 .set_clockgating_state = sdma_v3_0_set_clockgating_state,
1569 .set_powergating_state = sdma_v3_0_set_powergating_state,
1570 .get_clockgating_state = sdma_v3_0_get_clockgating_state,
1571 };
1572
1573 static const struct amdgpu_ring_funcs sdma_v3_0_ring_funcs = {
1574 .type = AMDGPU_RING_TYPE_SDMA,
1575 .align_mask = 0xf,
1576 .nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
1577 .get_rptr = sdma_v3_0_ring_get_rptr,
1578 .get_wptr = sdma_v3_0_ring_get_wptr,
1579 .set_wptr = sdma_v3_0_ring_set_wptr,
1580 .emit_frame_size =
1581 6 + /* sdma_v3_0_ring_emit_hdp_flush */
1582 3 + /* sdma_v3_0_ring_emit_hdp_invalidate */
1583 6 + /* sdma_v3_0_ring_emit_pipeline_sync */
1584 12 + /* sdma_v3_0_ring_emit_vm_flush */
1585 10 + 10 + 10, /* sdma_v3_0_ring_emit_fence x3 for user fence, vm fence */
1586 .emit_ib_size = 7 + 6, /* sdma_v3_0_ring_emit_ib */
1587 .emit_ib = sdma_v3_0_ring_emit_ib,
1588 .emit_fence = sdma_v3_0_ring_emit_fence,
1589 .emit_pipeline_sync = sdma_v3_0_ring_emit_pipeline_sync,
1590 .emit_vm_flush = sdma_v3_0_ring_emit_vm_flush,
1591 .emit_hdp_flush = sdma_v3_0_ring_emit_hdp_flush,
1592 .emit_hdp_invalidate = sdma_v3_0_ring_emit_hdp_invalidate,
1593 .test_ring = sdma_v3_0_ring_test_ring,
1594 .test_ib = sdma_v3_0_ring_test_ib,
1595 .insert_nop = sdma_v3_0_ring_insert_nop,
1596 .pad_ib = sdma_v3_0_ring_pad_ib,
1597 };
1598
1599 static void sdma_v3_0_set_ring_funcs(struct amdgpu_device *adev)
1600 {
1601 int i;
1602
1603 for (i = 0; i < adev->sdma.num_instances; i++)
1604 adev->sdma.instance[i].ring.funcs = &sdma_v3_0_ring_funcs;
1605 }
1606
1607 static const struct amdgpu_irq_src_funcs sdma_v3_0_trap_irq_funcs = {
1608 .set = sdma_v3_0_set_trap_irq_state,
1609 .process = sdma_v3_0_process_trap_irq,
1610 };
1611
1612 static const struct amdgpu_irq_src_funcs sdma_v3_0_illegal_inst_irq_funcs = {
1613 .process = sdma_v3_0_process_illegal_inst_irq,
1614 };
1615
1616 static void sdma_v3_0_set_irq_funcs(struct amdgpu_device *adev)
1617 {
1618 adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_LAST;
1619 adev->sdma.trap_irq.funcs = &sdma_v3_0_trap_irq_funcs;
1620 adev->sdma.illegal_inst_irq.funcs = &sdma_v3_0_illegal_inst_irq_funcs;
1621 }
1622
1623 /**
1624 * sdma_v3_0_emit_copy_buffer - copy buffer using the sDMA engine
1625 *
1626 * @ring: amdgpu_ring structure holding ring information
1627 * @src_offset: src GPU address
1628 * @dst_offset: dst GPU address
1629 * @byte_count: number of bytes to xfer
1630 *
1631 * Copy GPU buffers using the DMA engine (VI).
1632 * Used by the amdgpu ttm implementation to move pages if
1633 * registered as the asic copy callback.
1634 */
1635 static void sdma_v3_0_emit_copy_buffer(struct amdgpu_ib *ib,
1636 uint64_t src_offset,
1637 uint64_t dst_offset,
1638 uint32_t byte_count)
1639 {
1640 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
1641 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
1642 ib->ptr[ib->length_dw++] = byte_count;
1643 ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
1644 ib->ptr[ib->length_dw++] = lower_32_bits(src_offset);
1645 ib->ptr[ib->length_dw++] = upper_32_bits(src_offset);
1646 ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
1647 ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
1648 }
1649
1650 /**
1651 * sdma_v3_0_emit_fill_buffer - fill buffer using the sDMA engine
1652 *
1653 * @ring: amdgpu_ring structure holding ring information
1654 * @src_data: value to write to buffer
1655 * @dst_offset: dst GPU address
1656 * @byte_count: number of bytes to xfer
1657 *
1658 * Fill GPU buffers using the DMA engine (VI).
1659 */
1660 static void sdma_v3_0_emit_fill_buffer(struct amdgpu_ib *ib,
1661 uint32_t src_data,
1662 uint64_t dst_offset,
1663 uint32_t byte_count)
1664 {
1665 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_CONST_FILL);
1666 ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
1667 ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
1668 ib->ptr[ib->length_dw++] = src_data;
1669 ib->ptr[ib->length_dw++] = byte_count;
1670 }
1671
1672 static const struct amdgpu_buffer_funcs sdma_v3_0_buffer_funcs = {
1673 .copy_max_bytes = 0x1fffff,
1674 .copy_num_dw = 7,
1675 .emit_copy_buffer = sdma_v3_0_emit_copy_buffer,
1676
1677 .fill_max_bytes = 0x1fffff,
1678 .fill_num_dw = 5,
1679 .emit_fill_buffer = sdma_v3_0_emit_fill_buffer,
1680 };
1681
1682 static void sdma_v3_0_set_buffer_funcs(struct amdgpu_device *adev)
1683 {
1684 if (adev->mman.buffer_funcs == NULL) {
1685 adev->mman.buffer_funcs = &sdma_v3_0_buffer_funcs;
1686 adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].ring;
1687 }
1688 }
1689
1690 static const struct amdgpu_vm_pte_funcs sdma_v3_0_vm_pte_funcs = {
1691 .copy_pte = sdma_v3_0_vm_copy_pte,
1692 .write_pte = sdma_v3_0_vm_write_pte,
1693 .set_pte_pde = sdma_v3_0_vm_set_pte_pde,
1694 };
1695
1696 static void sdma_v3_0_set_vm_pte_funcs(struct amdgpu_device *adev)
1697 {
1698 unsigned i;
1699
1700 if (adev->vm_manager.vm_pte_funcs == NULL) {
1701 adev->vm_manager.vm_pte_funcs = &sdma_v3_0_vm_pte_funcs;
1702 for (i = 0; i < adev->sdma.num_instances; i++)
1703 adev->vm_manager.vm_pte_rings[i] =
1704 &adev->sdma.instance[i].ring;
1705
1706 adev->vm_manager.vm_pte_num_rings = adev->sdma.num_instances;
1707 }
1708 }
1709
1710 const struct amdgpu_ip_block_version sdma_v3_0_ip_block =
1711 {
1712 .type = AMD_IP_BLOCK_TYPE_SDMA,
1713 .major = 3,
1714 .minor = 0,
1715 .rev = 0,
1716 .funcs = &sdma_v3_0_ip_funcs,
1717 };
1718
1719 const struct amdgpu_ip_block_version sdma_v3_1_ip_block =
1720 {
1721 .type = AMD_IP_BLOCK_TYPE_SDMA,
1722 .major = 3,
1723 .minor = 1,
1724 .rev = 0,
1725 .funcs = &sdma_v3_0_ip_funcs,
1726 };