]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/gpu/drm/amd/amdgpu/sdma_v3_0.c
drm/amdgpu: cleanup unused iterator members for sdma v3
[mirror_ubuntu-artful-kernel.git] / drivers / gpu / drm / amd / amdgpu / sdma_v3_0.c
1 /*
2 * Copyright 2014 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 * Authors: Alex Deucher
23 */
24 #include <linux/firmware.h>
25 #include <drm/drmP.h>
26 #include "amdgpu.h"
27 #include "amdgpu_ucode.h"
28 #include "amdgpu_trace.h"
29 #include "vi.h"
30 #include "vid.h"
31
32 #include "oss/oss_3_0_d.h"
33 #include "oss/oss_3_0_sh_mask.h"
34
35 #include "gmc/gmc_8_1_d.h"
36 #include "gmc/gmc_8_1_sh_mask.h"
37
38 #include "gca/gfx_8_0_d.h"
39 #include "gca/gfx_8_0_enum.h"
40 #include "gca/gfx_8_0_sh_mask.h"
41
42 #include "bif/bif_5_0_d.h"
43 #include "bif/bif_5_0_sh_mask.h"
44
45 #include "tonga_sdma_pkt_open.h"
46
47 static void sdma_v3_0_set_ring_funcs(struct amdgpu_device *adev);
48 static void sdma_v3_0_set_buffer_funcs(struct amdgpu_device *adev);
49 static void sdma_v3_0_set_vm_pte_funcs(struct amdgpu_device *adev);
50 static void sdma_v3_0_set_irq_funcs(struct amdgpu_device *adev);
51
52 MODULE_FIRMWARE("amdgpu/tonga_sdma.bin");
53 MODULE_FIRMWARE("amdgpu/tonga_sdma1.bin");
54 MODULE_FIRMWARE("amdgpu/carrizo_sdma.bin");
55 MODULE_FIRMWARE("amdgpu/carrizo_sdma1.bin");
56 MODULE_FIRMWARE("amdgpu/fiji_sdma.bin");
57 MODULE_FIRMWARE("amdgpu/fiji_sdma1.bin");
58 MODULE_FIRMWARE("amdgpu/stoney_sdma.bin");
59 MODULE_FIRMWARE("amdgpu/polaris10_sdma.bin");
60 MODULE_FIRMWARE("amdgpu/polaris10_sdma1.bin");
61 MODULE_FIRMWARE("amdgpu/polaris11_sdma.bin");
62 MODULE_FIRMWARE("amdgpu/polaris11_sdma1.bin");
63
64
65 static const u32 sdma_offsets[SDMA_MAX_INSTANCE] =
66 {
67 SDMA0_REGISTER_OFFSET,
68 SDMA1_REGISTER_OFFSET
69 };
70
71 static const u32 golden_settings_tonga_a11[] =
72 {
73 mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
74 mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
75 mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
76 mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
77 mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
78 mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
79 mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
80 mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
81 mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
82 mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
83 };
84
85 static const u32 tonga_mgcg_cgcg_init[] =
86 {
87 mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
88 mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
89 };
90
91 static const u32 golden_settings_fiji_a10[] =
92 {
93 mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
94 mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
95 mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
96 mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
97 mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
98 mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
99 mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
100 mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
101 };
102
103 static const u32 fiji_mgcg_cgcg_init[] =
104 {
105 mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
106 mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
107 };
108
109 static const u32 golden_settings_polaris11_a11[] =
110 {
111 mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
112 mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
113 mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
114 mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
115 mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
116 mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
117 mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
118 mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
119 mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
120 mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
121 };
122
123 static const u32 golden_settings_polaris10_a11[] =
124 {
125 mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
126 mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
127 mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
128 mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
129 mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
130 mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
131 mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
132 mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
133 mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
134 mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
135 };
136
137 static const u32 cz_golden_settings_a11[] =
138 {
139 mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
140 mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
141 mmSDMA0_GFX_IB_CNTL, 0x00000100, 0x00000100,
142 mmSDMA0_POWER_CNTL, 0x00000800, 0x0003c800,
143 mmSDMA0_RLC0_IB_CNTL, 0x00000100, 0x00000100,
144 mmSDMA0_RLC1_IB_CNTL, 0x00000100, 0x00000100,
145 mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
146 mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
147 mmSDMA1_GFX_IB_CNTL, 0x00000100, 0x00000100,
148 mmSDMA1_POWER_CNTL, 0x00000800, 0x0003c800,
149 mmSDMA1_RLC0_IB_CNTL, 0x00000100, 0x00000100,
150 mmSDMA1_RLC1_IB_CNTL, 0x00000100, 0x00000100,
151 };
152
153 static const u32 cz_mgcg_cgcg_init[] =
154 {
155 mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
156 mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
157 };
158
159 static const u32 stoney_golden_settings_a11[] =
160 {
161 mmSDMA0_GFX_IB_CNTL, 0x00000100, 0x00000100,
162 mmSDMA0_POWER_CNTL, 0x00000800, 0x0003c800,
163 mmSDMA0_RLC0_IB_CNTL, 0x00000100, 0x00000100,
164 mmSDMA0_RLC1_IB_CNTL, 0x00000100, 0x00000100,
165 };
166
167 static const u32 stoney_mgcg_cgcg_init[] =
168 {
169 mmSDMA0_CLK_CTRL, 0xffffffff, 0x00000100,
170 };
171
172 /*
173 * sDMA - System DMA
174 * Starting with CIK, the GPU has new asynchronous
175 * DMA engines. These engines are used for compute
176 * and gfx. There are two DMA engines (SDMA0, SDMA1)
177 * and each one supports 1 ring buffer used for gfx
178 * and 2 queues used for compute.
179 *
180 * The programming model is very similar to the CP
181 * (ring buffer, IBs, etc.), but sDMA has it's own
182 * packet format that is different from the PM4 format
183 * used by the CP. sDMA supports copying data, writing
184 * embedded data, solid fills, and a number of other
185 * things. It also has support for tiling/detiling of
186 * buffers.
187 */
188
189 static void sdma_v3_0_init_golden_registers(struct amdgpu_device *adev)
190 {
191 switch (adev->asic_type) {
192 case CHIP_FIJI:
193 amdgpu_program_register_sequence(adev,
194 fiji_mgcg_cgcg_init,
195 (const u32)ARRAY_SIZE(fiji_mgcg_cgcg_init));
196 amdgpu_program_register_sequence(adev,
197 golden_settings_fiji_a10,
198 (const u32)ARRAY_SIZE(golden_settings_fiji_a10));
199 break;
200 case CHIP_TONGA:
201 amdgpu_program_register_sequence(adev,
202 tonga_mgcg_cgcg_init,
203 (const u32)ARRAY_SIZE(tonga_mgcg_cgcg_init));
204 amdgpu_program_register_sequence(adev,
205 golden_settings_tonga_a11,
206 (const u32)ARRAY_SIZE(golden_settings_tonga_a11));
207 break;
208 case CHIP_POLARIS11:
209 amdgpu_program_register_sequence(adev,
210 golden_settings_polaris11_a11,
211 (const u32)ARRAY_SIZE(golden_settings_polaris11_a11));
212 break;
213 case CHIP_POLARIS10:
214 amdgpu_program_register_sequence(adev,
215 golden_settings_polaris10_a11,
216 (const u32)ARRAY_SIZE(golden_settings_polaris10_a11));
217 break;
218 case CHIP_CARRIZO:
219 amdgpu_program_register_sequence(adev,
220 cz_mgcg_cgcg_init,
221 (const u32)ARRAY_SIZE(cz_mgcg_cgcg_init));
222 amdgpu_program_register_sequence(adev,
223 cz_golden_settings_a11,
224 (const u32)ARRAY_SIZE(cz_golden_settings_a11));
225 break;
226 case CHIP_STONEY:
227 amdgpu_program_register_sequence(adev,
228 stoney_mgcg_cgcg_init,
229 (const u32)ARRAY_SIZE(stoney_mgcg_cgcg_init));
230 amdgpu_program_register_sequence(adev,
231 stoney_golden_settings_a11,
232 (const u32)ARRAY_SIZE(stoney_golden_settings_a11));
233 break;
234 default:
235 break;
236 }
237 }
238
239 static void sdma_v3_0_free_microcode(struct amdgpu_device *adev)
240 {
241 int i;
242 for (i = 0; i < adev->sdma.num_instances; i++) {
243 release_firmware(adev->sdma.instance[i].fw);
244 adev->sdma.instance[i].fw = NULL;
245 }
246 }
247
248 /**
249 * sdma_v3_0_init_microcode - load ucode images from disk
250 *
251 * @adev: amdgpu_device pointer
252 *
253 * Use the firmware interface to load the ucode images into
254 * the driver (not loaded into hw).
255 * Returns 0 on success, error on failure.
256 */
257 static int sdma_v3_0_init_microcode(struct amdgpu_device *adev)
258 {
259 const char *chip_name;
260 char fw_name[30];
261 int err = 0, i;
262 struct amdgpu_firmware_info *info = NULL;
263 const struct common_firmware_header *header = NULL;
264 const struct sdma_firmware_header_v1_0 *hdr;
265
266 DRM_DEBUG("\n");
267
268 switch (adev->asic_type) {
269 case CHIP_TONGA:
270 chip_name = "tonga";
271 break;
272 case CHIP_FIJI:
273 chip_name = "fiji";
274 break;
275 case CHIP_POLARIS11:
276 chip_name = "polaris11";
277 break;
278 case CHIP_POLARIS10:
279 chip_name = "polaris10";
280 break;
281 case CHIP_CARRIZO:
282 chip_name = "carrizo";
283 break;
284 case CHIP_STONEY:
285 chip_name = "stoney";
286 break;
287 default: BUG();
288 }
289
290 for (i = 0; i < adev->sdma.num_instances; i++) {
291 if (i == 0)
292 snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma.bin", chip_name);
293 else
294 snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma1.bin", chip_name);
295 err = request_firmware(&adev->sdma.instance[i].fw, fw_name, adev->dev);
296 if (err)
297 goto out;
298 err = amdgpu_ucode_validate(adev->sdma.instance[i].fw);
299 if (err)
300 goto out;
301 hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
302 adev->sdma.instance[i].fw_version = le32_to_cpu(hdr->header.ucode_version);
303 adev->sdma.instance[i].feature_version = le32_to_cpu(hdr->ucode_feature_version);
304 if (adev->sdma.instance[i].feature_version >= 20)
305 adev->sdma.instance[i].burst_nop = true;
306
307 if (adev->firmware.smu_load) {
308 info = &adev->firmware.ucode[AMDGPU_UCODE_ID_SDMA0 + i];
309 info->ucode_id = AMDGPU_UCODE_ID_SDMA0 + i;
310 info->fw = adev->sdma.instance[i].fw;
311 header = (const struct common_firmware_header *)info->fw->data;
312 adev->firmware.fw_size +=
313 ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE);
314 }
315 }
316 out:
317 if (err) {
318 printk(KERN_ERR
319 "sdma_v3_0: Failed to load firmware \"%s\"\n",
320 fw_name);
321 for (i = 0; i < adev->sdma.num_instances; i++) {
322 release_firmware(adev->sdma.instance[i].fw);
323 adev->sdma.instance[i].fw = NULL;
324 }
325 }
326 return err;
327 }
328
329 /**
330 * sdma_v3_0_ring_get_rptr - get the current read pointer
331 *
332 * @ring: amdgpu ring pointer
333 *
334 * Get the current rptr from the hardware (VI+).
335 */
336 static uint32_t sdma_v3_0_ring_get_rptr(struct amdgpu_ring *ring)
337 {
338 /* XXX check if swapping is necessary on BE */
339 return ring->adev->wb.wb[ring->rptr_offs] >> 2;
340 }
341
342 /**
343 * sdma_v3_0_ring_get_wptr - get the current write pointer
344 *
345 * @ring: amdgpu ring pointer
346 *
347 * Get the current wptr from the hardware (VI+).
348 */
349 static uint32_t sdma_v3_0_ring_get_wptr(struct amdgpu_ring *ring)
350 {
351 struct amdgpu_device *adev = ring->adev;
352 u32 wptr;
353
354 if (ring->use_doorbell) {
355 /* XXX check if swapping is necessary on BE */
356 wptr = ring->adev->wb.wb[ring->wptr_offs] >> 2;
357 } else {
358 int me = (ring == &ring->adev->sdma.instance[0].ring) ? 0 : 1;
359
360 wptr = RREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[me]) >> 2;
361 }
362
363 return wptr;
364 }
365
366 /**
367 * sdma_v3_0_ring_set_wptr - commit the write pointer
368 *
369 * @ring: amdgpu ring pointer
370 *
371 * Write the wptr back to the hardware (VI+).
372 */
373 static void sdma_v3_0_ring_set_wptr(struct amdgpu_ring *ring)
374 {
375 struct amdgpu_device *adev = ring->adev;
376
377 if (ring->use_doorbell) {
378 /* XXX check if swapping is necessary on BE */
379 adev->wb.wb[ring->wptr_offs] = ring->wptr << 2;
380 WDOORBELL32(ring->doorbell_index, ring->wptr << 2);
381 } else {
382 int me = (ring == &ring->adev->sdma.instance[0].ring) ? 0 : 1;
383
384 WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[me], ring->wptr << 2);
385 }
386 }
387
388 static void sdma_v3_0_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count)
389 {
390 struct amdgpu_sdma_instance *sdma = amdgpu_get_sdma_instance(ring);
391 int i;
392
393 for (i = 0; i < count; i++)
394 if (sdma && sdma->burst_nop && (i == 0))
395 amdgpu_ring_write(ring, ring->funcs->nop |
396 SDMA_PKT_NOP_HEADER_COUNT(count - 1));
397 else
398 amdgpu_ring_write(ring, ring->funcs->nop);
399 }
400
401 /**
402 * sdma_v3_0_ring_emit_ib - Schedule an IB on the DMA engine
403 *
404 * @ring: amdgpu ring pointer
405 * @ib: IB object to schedule
406 *
407 * Schedule an IB in the DMA ring (VI).
408 */
409 static void sdma_v3_0_ring_emit_ib(struct amdgpu_ring *ring,
410 struct amdgpu_ib *ib,
411 unsigned vm_id, bool ctx_switch)
412 {
413 u32 vmid = vm_id & 0xf;
414
415 /* IB packet must end on a 8 DW boundary */
416 sdma_v3_0_ring_insert_nop(ring, (10 - (ring->wptr & 7)) % 8);
417
418 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_INDIRECT) |
419 SDMA_PKT_INDIRECT_HEADER_VMID(vmid));
420 /* base must be 32 byte aligned */
421 amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr) & 0xffffffe0);
422 amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr));
423 amdgpu_ring_write(ring, ib->length_dw);
424 amdgpu_ring_write(ring, 0);
425 amdgpu_ring_write(ring, 0);
426
427 }
428
429 /**
430 * sdma_v3_0_ring_emit_hdp_flush - emit an hdp flush on the DMA ring
431 *
432 * @ring: amdgpu ring pointer
433 *
434 * Emit an hdp flush packet on the requested DMA ring.
435 */
436 static void sdma_v3_0_ring_emit_hdp_flush(struct amdgpu_ring *ring)
437 {
438 u32 ref_and_mask = 0;
439
440 if (ring == &ring->adev->sdma.instance[0].ring)
441 ref_and_mask = REG_SET_FIELD(ref_and_mask, GPU_HDP_FLUSH_DONE, SDMA0, 1);
442 else
443 ref_and_mask = REG_SET_FIELD(ref_and_mask, GPU_HDP_FLUSH_DONE, SDMA1, 1);
444
445 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
446 SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(1) |
447 SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* == */
448 amdgpu_ring_write(ring, mmGPU_HDP_FLUSH_DONE << 2);
449 amdgpu_ring_write(ring, mmGPU_HDP_FLUSH_REQ << 2);
450 amdgpu_ring_write(ring, ref_and_mask); /* reference */
451 amdgpu_ring_write(ring, ref_and_mask); /* mask */
452 amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
453 SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */
454 }
455
456 static void sdma_v3_0_ring_emit_hdp_invalidate(struct amdgpu_ring *ring)
457 {
458 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
459 SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
460 amdgpu_ring_write(ring, mmHDP_DEBUG0);
461 amdgpu_ring_write(ring, 1);
462 }
463
464 /**
465 * sdma_v3_0_ring_emit_fence - emit a fence on the DMA ring
466 *
467 * @ring: amdgpu ring pointer
468 * @fence: amdgpu fence object
469 *
470 * Add a DMA fence packet to the ring to write
471 * the fence seq number and DMA trap packet to generate
472 * an interrupt if needed (VI).
473 */
474 static void sdma_v3_0_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq,
475 unsigned flags)
476 {
477 bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT;
478 /* write the fence */
479 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
480 amdgpu_ring_write(ring, lower_32_bits(addr));
481 amdgpu_ring_write(ring, upper_32_bits(addr));
482 amdgpu_ring_write(ring, lower_32_bits(seq));
483
484 /* optionally write high bits as well */
485 if (write64bit) {
486 addr += 4;
487 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
488 amdgpu_ring_write(ring, lower_32_bits(addr));
489 amdgpu_ring_write(ring, upper_32_bits(addr));
490 amdgpu_ring_write(ring, upper_32_bits(seq));
491 }
492
493 /* generate an interrupt */
494 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_TRAP));
495 amdgpu_ring_write(ring, SDMA_PKT_TRAP_INT_CONTEXT_INT_CONTEXT(0));
496 }
497
498 /**
499 * sdma_v3_0_gfx_stop - stop the gfx async dma engines
500 *
501 * @adev: amdgpu_device pointer
502 *
503 * Stop the gfx async dma ring buffers (VI).
504 */
505 static void sdma_v3_0_gfx_stop(struct amdgpu_device *adev)
506 {
507 struct amdgpu_ring *sdma0 = &adev->sdma.instance[0].ring;
508 struct amdgpu_ring *sdma1 = &adev->sdma.instance[1].ring;
509 u32 rb_cntl, ib_cntl;
510 int i;
511
512 if ((adev->mman.buffer_funcs_ring == sdma0) ||
513 (adev->mman.buffer_funcs_ring == sdma1))
514 amdgpu_ttm_set_active_vram_size(adev, adev->mc.visible_vram_size);
515
516 for (i = 0; i < adev->sdma.num_instances; i++) {
517 rb_cntl = RREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i]);
518 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 0);
519 WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
520 ib_cntl = RREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i]);
521 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 0);
522 WREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i], ib_cntl);
523 }
524 sdma0->ready = false;
525 sdma1->ready = false;
526 }
527
528 /**
529 * sdma_v3_0_rlc_stop - stop the compute async dma engines
530 *
531 * @adev: amdgpu_device pointer
532 *
533 * Stop the compute async dma queues (VI).
534 */
535 static void sdma_v3_0_rlc_stop(struct amdgpu_device *adev)
536 {
537 /* XXX todo */
538 }
539
540 /**
541 * sdma_v3_0_ctx_switch_enable - stop the async dma engines context switch
542 *
543 * @adev: amdgpu_device pointer
544 * @enable: enable/disable the DMA MEs context switch.
545 *
546 * Halt or unhalt the async dma engines context switch (VI).
547 */
548 static void sdma_v3_0_ctx_switch_enable(struct amdgpu_device *adev, bool enable)
549 {
550 u32 f32_cntl;
551 int i;
552
553 for (i = 0; i < adev->sdma.num_instances; i++) {
554 f32_cntl = RREG32(mmSDMA0_CNTL + sdma_offsets[i]);
555 if (enable)
556 f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
557 AUTO_CTXSW_ENABLE, 1);
558 else
559 f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
560 AUTO_CTXSW_ENABLE, 0);
561 WREG32(mmSDMA0_CNTL + sdma_offsets[i], f32_cntl);
562 }
563 }
564
565 /**
566 * sdma_v3_0_enable - stop the async dma engines
567 *
568 * @adev: amdgpu_device pointer
569 * @enable: enable/disable the DMA MEs.
570 *
571 * Halt or unhalt the async dma engines (VI).
572 */
573 static void sdma_v3_0_enable(struct amdgpu_device *adev, bool enable)
574 {
575 u32 f32_cntl;
576 int i;
577
578 if (!enable) {
579 sdma_v3_0_gfx_stop(adev);
580 sdma_v3_0_rlc_stop(adev);
581 }
582
583 for (i = 0; i < adev->sdma.num_instances; i++) {
584 f32_cntl = RREG32(mmSDMA0_F32_CNTL + sdma_offsets[i]);
585 if (enable)
586 f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, 0);
587 else
588 f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, 1);
589 WREG32(mmSDMA0_F32_CNTL + sdma_offsets[i], f32_cntl);
590 }
591 }
592
593 /**
594 * sdma_v3_0_gfx_resume - setup and start the async dma engines
595 *
596 * @adev: amdgpu_device pointer
597 *
598 * Set up the gfx DMA ring buffers and enable them (VI).
599 * Returns 0 for success, error for failure.
600 */
601 static int sdma_v3_0_gfx_resume(struct amdgpu_device *adev)
602 {
603 struct amdgpu_ring *ring;
604 u32 rb_cntl, ib_cntl;
605 u32 rb_bufsz;
606 u32 wb_offset;
607 u32 doorbell;
608 int i, j, r;
609
610 for (i = 0; i < adev->sdma.num_instances; i++) {
611 ring = &adev->sdma.instance[i].ring;
612 wb_offset = (ring->rptr_offs * 4);
613
614 mutex_lock(&adev->srbm_mutex);
615 for (j = 0; j < 16; j++) {
616 vi_srbm_select(adev, 0, 0, 0, j);
617 /* SDMA GFX */
618 WREG32(mmSDMA0_GFX_VIRTUAL_ADDR + sdma_offsets[i], 0);
619 WREG32(mmSDMA0_GFX_APE1_CNTL + sdma_offsets[i], 0);
620 }
621 vi_srbm_select(adev, 0, 0, 0, 0);
622 mutex_unlock(&adev->srbm_mutex);
623
624 WREG32(mmSDMA0_TILING_CONFIG + sdma_offsets[i],
625 adev->gfx.config.gb_addr_config & 0x70);
626
627 WREG32(mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL + sdma_offsets[i], 0);
628
629 /* Set ring buffer size in dwords */
630 rb_bufsz = order_base_2(ring->ring_size / 4);
631 rb_cntl = RREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i]);
632 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SIZE, rb_bufsz);
633 #ifdef __BIG_ENDIAN
634 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SWAP_ENABLE, 1);
635 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
636 RPTR_WRITEBACK_SWAP_ENABLE, 1);
637 #endif
638 WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
639
640 /* Initialize the ring buffer's read and write pointers */
641 WREG32(mmSDMA0_GFX_RB_RPTR + sdma_offsets[i], 0);
642 WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[i], 0);
643 WREG32(mmSDMA0_GFX_IB_RPTR + sdma_offsets[i], 0);
644 WREG32(mmSDMA0_GFX_IB_OFFSET + sdma_offsets[i], 0);
645
646 /* set the wb address whether it's enabled or not */
647 WREG32(mmSDMA0_GFX_RB_RPTR_ADDR_HI + sdma_offsets[i],
648 upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF);
649 WREG32(mmSDMA0_GFX_RB_RPTR_ADDR_LO + sdma_offsets[i],
650 lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC);
651
652 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RPTR_WRITEBACK_ENABLE, 1);
653
654 WREG32(mmSDMA0_GFX_RB_BASE + sdma_offsets[i], ring->gpu_addr >> 8);
655 WREG32(mmSDMA0_GFX_RB_BASE_HI + sdma_offsets[i], ring->gpu_addr >> 40);
656
657 ring->wptr = 0;
658 WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[i], ring->wptr << 2);
659
660 doorbell = RREG32(mmSDMA0_GFX_DOORBELL + sdma_offsets[i]);
661
662 if (ring->use_doorbell) {
663 doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL,
664 OFFSET, ring->doorbell_index);
665 doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 1);
666 } else {
667 doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 0);
668 }
669 WREG32(mmSDMA0_GFX_DOORBELL + sdma_offsets[i], doorbell);
670
671 /* enable DMA RB */
672 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 1);
673 WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
674
675 ib_cntl = RREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i]);
676 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 1);
677 #ifdef __BIG_ENDIAN
678 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_SWAP_ENABLE, 1);
679 #endif
680 /* enable DMA IBs */
681 WREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i], ib_cntl);
682
683 ring->ready = true;
684 }
685
686 /* unhalt the MEs */
687 sdma_v3_0_enable(adev, true);
688 /* enable sdma ring preemption */
689 sdma_v3_0_ctx_switch_enable(adev, true);
690
691 for (i = 0; i < adev->sdma.num_instances; i++) {
692 ring = &adev->sdma.instance[i].ring;
693 r = amdgpu_ring_test_ring(ring);
694 if (r) {
695 ring->ready = false;
696 return r;
697 }
698
699 if (adev->mman.buffer_funcs_ring == ring)
700 amdgpu_ttm_set_active_vram_size(adev, adev->mc.real_vram_size);
701 }
702
703 return 0;
704 }
705
706 /**
707 * sdma_v3_0_rlc_resume - setup and start the async dma engines
708 *
709 * @adev: amdgpu_device pointer
710 *
711 * Set up the compute DMA queues and enable them (VI).
712 * Returns 0 for success, error for failure.
713 */
714 static int sdma_v3_0_rlc_resume(struct amdgpu_device *adev)
715 {
716 /* XXX todo */
717 return 0;
718 }
719
720 /**
721 * sdma_v3_0_load_microcode - load the sDMA ME ucode
722 *
723 * @adev: amdgpu_device pointer
724 *
725 * Loads the sDMA0/1 ucode.
726 * Returns 0 for success, -EINVAL if the ucode is not available.
727 */
728 static int sdma_v3_0_load_microcode(struct amdgpu_device *adev)
729 {
730 const struct sdma_firmware_header_v1_0 *hdr;
731 const __le32 *fw_data;
732 u32 fw_size;
733 int i, j;
734
735 /* halt the MEs */
736 sdma_v3_0_enable(adev, false);
737
738 for (i = 0; i < adev->sdma.num_instances; i++) {
739 if (!adev->sdma.instance[i].fw)
740 return -EINVAL;
741 hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
742 amdgpu_ucode_print_sdma_hdr(&hdr->header);
743 fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4;
744 fw_data = (const __le32 *)
745 (adev->sdma.instance[i].fw->data +
746 le32_to_cpu(hdr->header.ucode_array_offset_bytes));
747 WREG32(mmSDMA0_UCODE_ADDR + sdma_offsets[i], 0);
748 for (j = 0; j < fw_size; j++)
749 WREG32(mmSDMA0_UCODE_DATA + sdma_offsets[i], le32_to_cpup(fw_data++));
750 WREG32(mmSDMA0_UCODE_ADDR + sdma_offsets[i], adev->sdma.instance[i].fw_version);
751 }
752
753 return 0;
754 }
755
756 /**
757 * sdma_v3_0_start - setup and start the async dma engines
758 *
759 * @adev: amdgpu_device pointer
760 *
761 * Set up the DMA engines and enable them (VI).
762 * Returns 0 for success, error for failure.
763 */
764 static int sdma_v3_0_start(struct amdgpu_device *adev)
765 {
766 int r, i;
767
768 if (!adev->pp_enabled) {
769 if (!adev->firmware.smu_load) {
770 r = sdma_v3_0_load_microcode(adev);
771 if (r)
772 return r;
773 } else {
774 for (i = 0; i < adev->sdma.num_instances; i++) {
775 r = adev->smu.smumgr_funcs->check_fw_load_finish(adev,
776 (i == 0) ?
777 AMDGPU_UCODE_ID_SDMA0 :
778 AMDGPU_UCODE_ID_SDMA1);
779 if (r)
780 return -EINVAL;
781 }
782 }
783 }
784
785 /* disble sdma engine before programing it */
786 sdma_v3_0_ctx_switch_enable(adev, false);
787 sdma_v3_0_enable(adev, false);
788
789 /* start the gfx rings and rlc compute queues */
790 r = sdma_v3_0_gfx_resume(adev);
791 if (r)
792 return r;
793 r = sdma_v3_0_rlc_resume(adev);
794 if (r)
795 return r;
796
797 return 0;
798 }
799
800 /**
801 * sdma_v3_0_ring_test_ring - simple async dma engine test
802 *
803 * @ring: amdgpu_ring structure holding ring information
804 *
805 * Test the DMA engine by writing using it to write an
806 * value to memory. (VI).
807 * Returns 0 for success, error for failure.
808 */
809 static int sdma_v3_0_ring_test_ring(struct amdgpu_ring *ring)
810 {
811 struct amdgpu_device *adev = ring->adev;
812 unsigned i;
813 unsigned index;
814 int r;
815 u32 tmp;
816 u64 gpu_addr;
817
818 r = amdgpu_wb_get(adev, &index);
819 if (r) {
820 dev_err(adev->dev, "(%d) failed to allocate wb slot\n", r);
821 return r;
822 }
823
824 gpu_addr = adev->wb.gpu_addr + (index * 4);
825 tmp = 0xCAFEDEAD;
826 adev->wb.wb[index] = cpu_to_le32(tmp);
827
828 r = amdgpu_ring_alloc(ring, 5);
829 if (r) {
830 DRM_ERROR("amdgpu: dma failed to lock ring %d (%d).\n", ring->idx, r);
831 amdgpu_wb_free(adev, index);
832 return r;
833 }
834
835 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
836 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR));
837 amdgpu_ring_write(ring, lower_32_bits(gpu_addr));
838 amdgpu_ring_write(ring, upper_32_bits(gpu_addr));
839 amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1));
840 amdgpu_ring_write(ring, 0xDEADBEEF);
841 amdgpu_ring_commit(ring);
842
843 for (i = 0; i < adev->usec_timeout; i++) {
844 tmp = le32_to_cpu(adev->wb.wb[index]);
845 if (tmp == 0xDEADBEEF)
846 break;
847 DRM_UDELAY(1);
848 }
849
850 if (i < adev->usec_timeout) {
851 DRM_INFO("ring test on %d succeeded in %d usecs\n", ring->idx, i);
852 } else {
853 DRM_ERROR("amdgpu: ring %d test failed (0x%08X)\n",
854 ring->idx, tmp);
855 r = -EINVAL;
856 }
857 amdgpu_wb_free(adev, index);
858
859 return r;
860 }
861
862 /**
863 * sdma_v3_0_ring_test_ib - test an IB on the DMA engine
864 *
865 * @ring: amdgpu_ring structure holding ring information
866 *
867 * Test a simple IB in the DMA ring (VI).
868 * Returns 0 on success, error on failure.
869 */
870 static int sdma_v3_0_ring_test_ib(struct amdgpu_ring *ring, long timeout)
871 {
872 struct amdgpu_device *adev = ring->adev;
873 struct amdgpu_ib ib;
874 struct dma_fence *f = NULL;
875 unsigned index;
876 u32 tmp = 0;
877 u64 gpu_addr;
878 long r;
879
880 r = amdgpu_wb_get(adev, &index);
881 if (r) {
882 dev_err(adev->dev, "(%ld) failed to allocate wb slot\n", r);
883 return r;
884 }
885
886 gpu_addr = adev->wb.gpu_addr + (index * 4);
887 tmp = 0xCAFEDEAD;
888 adev->wb.wb[index] = cpu_to_le32(tmp);
889 memset(&ib, 0, sizeof(ib));
890 r = amdgpu_ib_get(adev, NULL, 256, &ib);
891 if (r) {
892 DRM_ERROR("amdgpu: failed to get ib (%ld).\n", r);
893 goto err0;
894 }
895
896 ib.ptr[0] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
897 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
898 ib.ptr[1] = lower_32_bits(gpu_addr);
899 ib.ptr[2] = upper_32_bits(gpu_addr);
900 ib.ptr[3] = SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1);
901 ib.ptr[4] = 0xDEADBEEF;
902 ib.ptr[5] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
903 ib.ptr[6] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
904 ib.ptr[7] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
905 ib.length_dw = 8;
906
907 r = amdgpu_ib_schedule(ring, 1, &ib, NULL, NULL, &f);
908 if (r)
909 goto err1;
910
911 r = dma_fence_wait_timeout(f, false, timeout);
912 if (r == 0) {
913 DRM_ERROR("amdgpu: IB test timed out\n");
914 r = -ETIMEDOUT;
915 goto err1;
916 } else if (r < 0) {
917 DRM_ERROR("amdgpu: fence wait failed (%ld).\n", r);
918 goto err1;
919 }
920 tmp = le32_to_cpu(adev->wb.wb[index]);
921 if (tmp == 0xDEADBEEF) {
922 DRM_INFO("ib test on ring %d succeeded\n", ring->idx);
923 r = 0;
924 } else {
925 DRM_ERROR("amdgpu: ib test failed (0x%08X)\n", tmp);
926 r = -EINVAL;
927 }
928 err1:
929 amdgpu_ib_free(adev, &ib, NULL);
930 dma_fence_put(f);
931 err0:
932 amdgpu_wb_free(adev, index);
933 return r;
934 }
935
936 /**
937 * sdma_v3_0_vm_copy_pte - update PTEs by copying them from the GART
938 *
939 * @ib: indirect buffer to fill with commands
940 * @pe: addr of the page entry
941 * @src: src addr to copy from
942 * @count: number of page entries to update
943 *
944 * Update PTEs by copying them from the GART using sDMA (CIK).
945 */
946 static void sdma_v3_0_vm_copy_pte(struct amdgpu_ib *ib,
947 uint64_t pe, uint64_t src,
948 unsigned count)
949 {
950 unsigned bytes = count * 8;
951
952 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
953 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
954 ib->ptr[ib->length_dw++] = bytes;
955 ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
956 ib->ptr[ib->length_dw++] = lower_32_bits(src);
957 ib->ptr[ib->length_dw++] = upper_32_bits(src);
958 ib->ptr[ib->length_dw++] = lower_32_bits(pe);
959 ib->ptr[ib->length_dw++] = upper_32_bits(pe);
960 }
961
962 /**
963 * sdma_v3_0_vm_write_pte - update PTEs by writing them manually
964 *
965 * @ib: indirect buffer to fill with commands
966 * @pe: addr of the page entry
967 * @value: dst addr to write into pe
968 * @count: number of page entries to update
969 * @incr: increase next addr by incr bytes
970 *
971 * Update PTEs by writing them manually using sDMA (CIK).
972 */
973 static void sdma_v3_0_vm_write_pte(struct amdgpu_ib *ib, uint64_t pe,
974 uint64_t value, unsigned count,
975 uint32_t incr)
976 {
977 unsigned ndw = count * 2;
978
979 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
980 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
981 ib->ptr[ib->length_dw++] = lower_32_bits(pe);
982 ib->ptr[ib->length_dw++] = upper_32_bits(pe);
983 ib->ptr[ib->length_dw++] = ndw;
984 for (; ndw > 0; ndw -= 2) {
985 ib->ptr[ib->length_dw++] = lower_32_bits(value);
986 ib->ptr[ib->length_dw++] = upper_32_bits(value);
987 value += incr;
988 }
989 }
990
991 /**
992 * sdma_v3_0_vm_set_pte_pde - update the page tables using sDMA
993 *
994 * @ib: indirect buffer to fill with commands
995 * @pe: addr of the page entry
996 * @addr: dst addr to write into pe
997 * @count: number of page entries to update
998 * @incr: increase next addr by incr bytes
999 * @flags: access flags
1000 *
1001 * Update the page tables using sDMA (CIK).
1002 */
1003 static void sdma_v3_0_vm_set_pte_pde(struct amdgpu_ib *ib, uint64_t pe,
1004 uint64_t addr, unsigned count,
1005 uint32_t incr, uint32_t flags)
1006 {
1007 /* for physically contiguous pages (vram) */
1008 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_GEN_PTEPDE);
1009 ib->ptr[ib->length_dw++] = lower_32_bits(pe); /* dst addr */
1010 ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1011 ib->ptr[ib->length_dw++] = flags; /* mask */
1012 ib->ptr[ib->length_dw++] = 0;
1013 ib->ptr[ib->length_dw++] = lower_32_bits(addr); /* value */
1014 ib->ptr[ib->length_dw++] = upper_32_bits(addr);
1015 ib->ptr[ib->length_dw++] = incr; /* increment size */
1016 ib->ptr[ib->length_dw++] = 0;
1017 ib->ptr[ib->length_dw++] = count; /* number of entries */
1018 }
1019
1020 /**
1021 * sdma_v3_0_ring_pad_ib - pad the IB to the required number of dw
1022 *
1023 * @ib: indirect buffer to fill with padding
1024 *
1025 */
1026 static void sdma_v3_0_ring_pad_ib(struct amdgpu_ring *ring, struct amdgpu_ib *ib)
1027 {
1028 struct amdgpu_sdma_instance *sdma = amdgpu_get_sdma_instance(ring);
1029 u32 pad_count;
1030 int i;
1031
1032 pad_count = (8 - (ib->length_dw & 0x7)) % 8;
1033 for (i = 0; i < pad_count; i++)
1034 if (sdma && sdma->burst_nop && (i == 0))
1035 ib->ptr[ib->length_dw++] =
1036 SDMA_PKT_HEADER_OP(SDMA_OP_NOP) |
1037 SDMA_PKT_NOP_HEADER_COUNT(pad_count - 1);
1038 else
1039 ib->ptr[ib->length_dw++] =
1040 SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
1041 }
1042
1043 /**
1044 * sdma_v3_0_ring_emit_pipeline_sync - sync the pipeline
1045 *
1046 * @ring: amdgpu_ring pointer
1047 *
1048 * Make sure all previous operations are completed (CIK).
1049 */
1050 static void sdma_v3_0_ring_emit_pipeline_sync(struct amdgpu_ring *ring)
1051 {
1052 uint32_t seq = ring->fence_drv.sync_seq;
1053 uint64_t addr = ring->fence_drv.gpu_addr;
1054
1055 /* wait for idle */
1056 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
1057 SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) |
1058 SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3) | /* equal */
1059 SDMA_PKT_POLL_REGMEM_HEADER_MEM_POLL(1));
1060 amdgpu_ring_write(ring, addr & 0xfffffffc);
1061 amdgpu_ring_write(ring, upper_32_bits(addr) & 0xffffffff);
1062 amdgpu_ring_write(ring, seq); /* reference */
1063 amdgpu_ring_write(ring, 0xfffffff); /* mask */
1064 amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
1065 SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(4)); /* retry count, poll interval */
1066 }
1067
1068 /**
1069 * sdma_v3_0_ring_emit_vm_flush - cik vm flush using sDMA
1070 *
1071 * @ring: amdgpu_ring pointer
1072 * @vm: amdgpu_vm pointer
1073 *
1074 * Update the page table base and flush the VM TLB
1075 * using sDMA (VI).
1076 */
1077 static void sdma_v3_0_ring_emit_vm_flush(struct amdgpu_ring *ring,
1078 unsigned vm_id, uint64_t pd_addr)
1079 {
1080 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
1081 SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
1082 if (vm_id < 8) {
1083 amdgpu_ring_write(ring, (mmVM_CONTEXT0_PAGE_TABLE_BASE_ADDR + vm_id));
1084 } else {
1085 amdgpu_ring_write(ring, (mmVM_CONTEXT8_PAGE_TABLE_BASE_ADDR + vm_id - 8));
1086 }
1087 amdgpu_ring_write(ring, pd_addr >> 12);
1088
1089 /* flush TLB */
1090 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
1091 SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
1092 amdgpu_ring_write(ring, mmVM_INVALIDATE_REQUEST);
1093 amdgpu_ring_write(ring, 1 << vm_id);
1094
1095 /* wait for flush */
1096 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
1097 SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) |
1098 SDMA_PKT_POLL_REGMEM_HEADER_FUNC(0)); /* always */
1099 amdgpu_ring_write(ring, mmVM_INVALIDATE_REQUEST << 2);
1100 amdgpu_ring_write(ring, 0);
1101 amdgpu_ring_write(ring, 0); /* reference */
1102 amdgpu_ring_write(ring, 0); /* mask */
1103 amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
1104 SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */
1105 }
1106
1107 static int sdma_v3_0_early_init(void *handle)
1108 {
1109 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1110
1111 switch (adev->asic_type) {
1112 case CHIP_STONEY:
1113 adev->sdma.num_instances = 1;
1114 break;
1115 default:
1116 adev->sdma.num_instances = SDMA_MAX_INSTANCE;
1117 break;
1118 }
1119
1120 sdma_v3_0_set_ring_funcs(adev);
1121 sdma_v3_0_set_buffer_funcs(adev);
1122 sdma_v3_0_set_vm_pte_funcs(adev);
1123 sdma_v3_0_set_irq_funcs(adev);
1124
1125 return 0;
1126 }
1127
1128 static int sdma_v3_0_sw_init(void *handle)
1129 {
1130 struct amdgpu_ring *ring;
1131 int r, i;
1132 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1133
1134 /* SDMA trap event */
1135 r = amdgpu_irq_add_id(adev, 224, &adev->sdma.trap_irq);
1136 if (r)
1137 return r;
1138
1139 /* SDMA Privileged inst */
1140 r = amdgpu_irq_add_id(adev, 241, &adev->sdma.illegal_inst_irq);
1141 if (r)
1142 return r;
1143
1144 /* SDMA Privileged inst */
1145 r = amdgpu_irq_add_id(adev, 247, &adev->sdma.illegal_inst_irq);
1146 if (r)
1147 return r;
1148
1149 r = sdma_v3_0_init_microcode(adev);
1150 if (r) {
1151 DRM_ERROR("Failed to load sdma firmware!\n");
1152 return r;
1153 }
1154
1155 for (i = 0; i < adev->sdma.num_instances; i++) {
1156 ring = &adev->sdma.instance[i].ring;
1157 ring->ring_obj = NULL;
1158 ring->use_doorbell = true;
1159 ring->doorbell_index = (i == 0) ?
1160 AMDGPU_DOORBELL_sDMA_ENGINE0 : AMDGPU_DOORBELL_sDMA_ENGINE1;
1161
1162 sprintf(ring->name, "sdma%d", i);
1163 r = amdgpu_ring_init(adev, ring, 1024,
1164 &adev->sdma.trap_irq,
1165 (i == 0) ?
1166 AMDGPU_SDMA_IRQ_TRAP0 :
1167 AMDGPU_SDMA_IRQ_TRAP1);
1168 if (r)
1169 return r;
1170 }
1171
1172 return r;
1173 }
1174
1175 static int sdma_v3_0_sw_fini(void *handle)
1176 {
1177 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1178 int i;
1179
1180 for (i = 0; i < adev->sdma.num_instances; i++)
1181 amdgpu_ring_fini(&adev->sdma.instance[i].ring);
1182
1183 sdma_v3_0_free_microcode(adev);
1184 return 0;
1185 }
1186
1187 static int sdma_v3_0_hw_init(void *handle)
1188 {
1189 int r;
1190 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1191
1192 sdma_v3_0_init_golden_registers(adev);
1193
1194 r = sdma_v3_0_start(adev);
1195 if (r)
1196 return r;
1197
1198 return r;
1199 }
1200
1201 static int sdma_v3_0_hw_fini(void *handle)
1202 {
1203 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1204
1205 sdma_v3_0_ctx_switch_enable(adev, false);
1206 sdma_v3_0_enable(adev, false);
1207
1208 return 0;
1209 }
1210
1211 static int sdma_v3_0_suspend(void *handle)
1212 {
1213 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1214
1215 return sdma_v3_0_hw_fini(adev);
1216 }
1217
1218 static int sdma_v3_0_resume(void *handle)
1219 {
1220 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1221
1222 return sdma_v3_0_hw_init(adev);
1223 }
1224
1225 static bool sdma_v3_0_is_idle(void *handle)
1226 {
1227 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1228 u32 tmp = RREG32(mmSRBM_STATUS2);
1229
1230 if (tmp & (SRBM_STATUS2__SDMA_BUSY_MASK |
1231 SRBM_STATUS2__SDMA1_BUSY_MASK))
1232 return false;
1233
1234 return true;
1235 }
1236
1237 static int sdma_v3_0_wait_for_idle(void *handle)
1238 {
1239 unsigned i;
1240 u32 tmp;
1241 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1242
1243 for (i = 0; i < adev->usec_timeout; i++) {
1244 tmp = RREG32(mmSRBM_STATUS2) & (SRBM_STATUS2__SDMA_BUSY_MASK |
1245 SRBM_STATUS2__SDMA1_BUSY_MASK);
1246
1247 if (!tmp)
1248 return 0;
1249 udelay(1);
1250 }
1251 return -ETIMEDOUT;
1252 }
1253
1254 static bool sdma_v3_0_check_soft_reset(void *handle)
1255 {
1256 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1257 u32 srbm_soft_reset = 0;
1258 u32 tmp = RREG32(mmSRBM_STATUS2);
1259
1260 if ((tmp & SRBM_STATUS2__SDMA_BUSY_MASK) ||
1261 (tmp & SRBM_STATUS2__SDMA1_BUSY_MASK)) {
1262 srbm_soft_reset |= SRBM_SOFT_RESET__SOFT_RESET_SDMA_MASK;
1263 srbm_soft_reset |= SRBM_SOFT_RESET__SOFT_RESET_SDMA1_MASK;
1264 }
1265
1266 if (srbm_soft_reset) {
1267 adev->sdma.srbm_soft_reset = srbm_soft_reset;
1268 return true;
1269 } else {
1270 adev->sdma.srbm_soft_reset = 0;
1271 return false;
1272 }
1273 }
1274
1275 static int sdma_v3_0_pre_soft_reset(void *handle)
1276 {
1277 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1278 u32 srbm_soft_reset = 0;
1279
1280 if (!adev->sdma.srbm_soft_reset)
1281 return 0;
1282
1283 srbm_soft_reset = adev->sdma.srbm_soft_reset;
1284
1285 if (REG_GET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET, SOFT_RESET_SDMA) ||
1286 REG_GET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET, SOFT_RESET_SDMA1)) {
1287 sdma_v3_0_ctx_switch_enable(adev, false);
1288 sdma_v3_0_enable(adev, false);
1289 }
1290
1291 return 0;
1292 }
1293
1294 static int sdma_v3_0_post_soft_reset(void *handle)
1295 {
1296 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1297 u32 srbm_soft_reset = 0;
1298
1299 if (!adev->sdma.srbm_soft_reset)
1300 return 0;
1301
1302 srbm_soft_reset = adev->sdma.srbm_soft_reset;
1303
1304 if (REG_GET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET, SOFT_RESET_SDMA) ||
1305 REG_GET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET, SOFT_RESET_SDMA1)) {
1306 sdma_v3_0_gfx_resume(adev);
1307 sdma_v3_0_rlc_resume(adev);
1308 }
1309
1310 return 0;
1311 }
1312
1313 static int sdma_v3_0_soft_reset(void *handle)
1314 {
1315 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1316 u32 srbm_soft_reset = 0;
1317 u32 tmp;
1318
1319 if (!adev->sdma.srbm_soft_reset)
1320 return 0;
1321
1322 srbm_soft_reset = adev->sdma.srbm_soft_reset;
1323
1324 if (srbm_soft_reset) {
1325 tmp = RREG32(mmSRBM_SOFT_RESET);
1326 tmp |= srbm_soft_reset;
1327 dev_info(adev->dev, "SRBM_SOFT_RESET=0x%08X\n", tmp);
1328 WREG32(mmSRBM_SOFT_RESET, tmp);
1329 tmp = RREG32(mmSRBM_SOFT_RESET);
1330
1331 udelay(50);
1332
1333 tmp &= ~srbm_soft_reset;
1334 WREG32(mmSRBM_SOFT_RESET, tmp);
1335 tmp = RREG32(mmSRBM_SOFT_RESET);
1336
1337 /* Wait a little for things to settle down */
1338 udelay(50);
1339 }
1340
1341 return 0;
1342 }
1343
1344 static int sdma_v3_0_set_trap_irq_state(struct amdgpu_device *adev,
1345 struct amdgpu_irq_src *source,
1346 unsigned type,
1347 enum amdgpu_interrupt_state state)
1348 {
1349 u32 sdma_cntl;
1350
1351 switch (type) {
1352 case AMDGPU_SDMA_IRQ_TRAP0:
1353 switch (state) {
1354 case AMDGPU_IRQ_STATE_DISABLE:
1355 sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET);
1356 sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 0);
1357 WREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET, sdma_cntl);
1358 break;
1359 case AMDGPU_IRQ_STATE_ENABLE:
1360 sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET);
1361 sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 1);
1362 WREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET, sdma_cntl);
1363 break;
1364 default:
1365 break;
1366 }
1367 break;
1368 case AMDGPU_SDMA_IRQ_TRAP1:
1369 switch (state) {
1370 case AMDGPU_IRQ_STATE_DISABLE:
1371 sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET);
1372 sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 0);
1373 WREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET, sdma_cntl);
1374 break;
1375 case AMDGPU_IRQ_STATE_ENABLE:
1376 sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET);
1377 sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 1);
1378 WREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET, sdma_cntl);
1379 break;
1380 default:
1381 break;
1382 }
1383 break;
1384 default:
1385 break;
1386 }
1387 return 0;
1388 }
1389
1390 static int sdma_v3_0_process_trap_irq(struct amdgpu_device *adev,
1391 struct amdgpu_irq_src *source,
1392 struct amdgpu_iv_entry *entry)
1393 {
1394 u8 instance_id, queue_id;
1395
1396 instance_id = (entry->ring_id & 0x3) >> 0;
1397 queue_id = (entry->ring_id & 0xc) >> 2;
1398 DRM_DEBUG("IH: SDMA trap\n");
1399 switch (instance_id) {
1400 case 0:
1401 switch (queue_id) {
1402 case 0:
1403 amdgpu_fence_process(&adev->sdma.instance[0].ring);
1404 break;
1405 case 1:
1406 /* XXX compute */
1407 break;
1408 case 2:
1409 /* XXX compute */
1410 break;
1411 }
1412 break;
1413 case 1:
1414 switch (queue_id) {
1415 case 0:
1416 amdgpu_fence_process(&adev->sdma.instance[1].ring);
1417 break;
1418 case 1:
1419 /* XXX compute */
1420 break;
1421 case 2:
1422 /* XXX compute */
1423 break;
1424 }
1425 break;
1426 }
1427 return 0;
1428 }
1429
1430 static int sdma_v3_0_process_illegal_inst_irq(struct amdgpu_device *adev,
1431 struct amdgpu_irq_src *source,
1432 struct amdgpu_iv_entry *entry)
1433 {
1434 DRM_ERROR("Illegal instruction in SDMA command stream\n");
1435 schedule_work(&adev->reset_work);
1436 return 0;
1437 }
1438
1439 static void sdma_v3_0_update_sdma_medium_grain_clock_gating(
1440 struct amdgpu_device *adev,
1441 bool enable)
1442 {
1443 uint32_t temp, data;
1444 int i;
1445
1446 if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_MGCG)) {
1447 for (i = 0; i < adev->sdma.num_instances; i++) {
1448 temp = data = RREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i]);
1449 data &= ~(SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
1450 SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
1451 SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
1452 SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
1453 SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
1454 SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
1455 SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
1456 SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);
1457 if (data != temp)
1458 WREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i], data);
1459 }
1460 } else {
1461 for (i = 0; i < adev->sdma.num_instances; i++) {
1462 temp = data = RREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i]);
1463 data |= SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
1464 SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
1465 SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
1466 SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
1467 SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
1468 SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
1469 SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
1470 SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK;
1471
1472 if (data != temp)
1473 WREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i], data);
1474 }
1475 }
1476 }
1477
1478 static void sdma_v3_0_update_sdma_medium_grain_light_sleep(
1479 struct amdgpu_device *adev,
1480 bool enable)
1481 {
1482 uint32_t temp, data;
1483 int i;
1484
1485 if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_LS)) {
1486 for (i = 0; i < adev->sdma.num_instances; i++) {
1487 temp = data = RREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i]);
1488 data |= SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
1489
1490 if (temp != data)
1491 WREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i], data);
1492 }
1493 } else {
1494 for (i = 0; i < adev->sdma.num_instances; i++) {
1495 temp = data = RREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i]);
1496 data &= ~SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
1497
1498 if (temp != data)
1499 WREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i], data);
1500 }
1501 }
1502 }
1503
1504 static int sdma_v3_0_set_clockgating_state(void *handle,
1505 enum amd_clockgating_state state)
1506 {
1507 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1508
1509 switch (adev->asic_type) {
1510 case CHIP_FIJI:
1511 case CHIP_CARRIZO:
1512 case CHIP_STONEY:
1513 sdma_v3_0_update_sdma_medium_grain_clock_gating(adev,
1514 state == AMD_CG_STATE_GATE ? true : false);
1515 sdma_v3_0_update_sdma_medium_grain_light_sleep(adev,
1516 state == AMD_CG_STATE_GATE ? true : false);
1517 break;
1518 default:
1519 break;
1520 }
1521 return 0;
1522 }
1523
1524 static int sdma_v3_0_set_powergating_state(void *handle,
1525 enum amd_powergating_state state)
1526 {
1527 return 0;
1528 }
1529
1530 static const struct amd_ip_funcs sdma_v3_0_ip_funcs = {
1531 .name = "sdma_v3_0",
1532 .early_init = sdma_v3_0_early_init,
1533 .late_init = NULL,
1534 .sw_init = sdma_v3_0_sw_init,
1535 .sw_fini = sdma_v3_0_sw_fini,
1536 .hw_init = sdma_v3_0_hw_init,
1537 .hw_fini = sdma_v3_0_hw_fini,
1538 .suspend = sdma_v3_0_suspend,
1539 .resume = sdma_v3_0_resume,
1540 .is_idle = sdma_v3_0_is_idle,
1541 .wait_for_idle = sdma_v3_0_wait_for_idle,
1542 .check_soft_reset = sdma_v3_0_check_soft_reset,
1543 .pre_soft_reset = sdma_v3_0_pre_soft_reset,
1544 .post_soft_reset = sdma_v3_0_post_soft_reset,
1545 .soft_reset = sdma_v3_0_soft_reset,
1546 .set_clockgating_state = sdma_v3_0_set_clockgating_state,
1547 .set_powergating_state = sdma_v3_0_set_powergating_state,
1548 };
1549
1550 static const struct amdgpu_ring_funcs sdma_v3_0_ring_funcs = {
1551 .type = AMDGPU_RING_TYPE_SDMA,
1552 .align_mask = 0xf,
1553 .nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
1554 .get_rptr = sdma_v3_0_ring_get_rptr,
1555 .get_wptr = sdma_v3_0_ring_get_wptr,
1556 .set_wptr = sdma_v3_0_ring_set_wptr,
1557 .emit_frame_size =
1558 6 + /* sdma_v3_0_ring_emit_hdp_flush */
1559 3 + /* sdma_v3_0_ring_emit_hdp_invalidate */
1560 6 + /* sdma_v3_0_ring_emit_pipeline_sync */
1561 12 + /* sdma_v3_0_ring_emit_vm_flush */
1562 10 + 10 + 10, /* sdma_v3_0_ring_emit_fence x3 for user fence, vm fence */
1563 .emit_ib_size = 7 + 6, /* sdma_v3_0_ring_emit_ib */
1564 .emit_ib = sdma_v3_0_ring_emit_ib,
1565 .emit_fence = sdma_v3_0_ring_emit_fence,
1566 .emit_pipeline_sync = sdma_v3_0_ring_emit_pipeline_sync,
1567 .emit_vm_flush = sdma_v3_0_ring_emit_vm_flush,
1568 .emit_hdp_flush = sdma_v3_0_ring_emit_hdp_flush,
1569 .emit_hdp_invalidate = sdma_v3_0_ring_emit_hdp_invalidate,
1570 .test_ring = sdma_v3_0_ring_test_ring,
1571 .test_ib = sdma_v3_0_ring_test_ib,
1572 .insert_nop = sdma_v3_0_ring_insert_nop,
1573 .pad_ib = sdma_v3_0_ring_pad_ib,
1574 };
1575
1576 static void sdma_v3_0_set_ring_funcs(struct amdgpu_device *adev)
1577 {
1578 int i;
1579
1580 for (i = 0; i < adev->sdma.num_instances; i++)
1581 adev->sdma.instance[i].ring.funcs = &sdma_v3_0_ring_funcs;
1582 }
1583
1584 static const struct amdgpu_irq_src_funcs sdma_v3_0_trap_irq_funcs = {
1585 .set = sdma_v3_0_set_trap_irq_state,
1586 .process = sdma_v3_0_process_trap_irq,
1587 };
1588
1589 static const struct amdgpu_irq_src_funcs sdma_v3_0_illegal_inst_irq_funcs = {
1590 .process = sdma_v3_0_process_illegal_inst_irq,
1591 };
1592
1593 static void sdma_v3_0_set_irq_funcs(struct amdgpu_device *adev)
1594 {
1595 adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_LAST;
1596 adev->sdma.trap_irq.funcs = &sdma_v3_0_trap_irq_funcs;
1597 adev->sdma.illegal_inst_irq.funcs = &sdma_v3_0_illegal_inst_irq_funcs;
1598 }
1599
1600 /**
1601 * sdma_v3_0_emit_copy_buffer - copy buffer using the sDMA engine
1602 *
1603 * @ring: amdgpu_ring structure holding ring information
1604 * @src_offset: src GPU address
1605 * @dst_offset: dst GPU address
1606 * @byte_count: number of bytes to xfer
1607 *
1608 * Copy GPU buffers using the DMA engine (VI).
1609 * Used by the amdgpu ttm implementation to move pages if
1610 * registered as the asic copy callback.
1611 */
1612 static void sdma_v3_0_emit_copy_buffer(struct amdgpu_ib *ib,
1613 uint64_t src_offset,
1614 uint64_t dst_offset,
1615 uint32_t byte_count)
1616 {
1617 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
1618 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
1619 ib->ptr[ib->length_dw++] = byte_count;
1620 ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
1621 ib->ptr[ib->length_dw++] = lower_32_bits(src_offset);
1622 ib->ptr[ib->length_dw++] = upper_32_bits(src_offset);
1623 ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
1624 ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
1625 }
1626
1627 /**
1628 * sdma_v3_0_emit_fill_buffer - fill buffer using the sDMA engine
1629 *
1630 * @ring: amdgpu_ring structure holding ring information
1631 * @src_data: value to write to buffer
1632 * @dst_offset: dst GPU address
1633 * @byte_count: number of bytes to xfer
1634 *
1635 * Fill GPU buffers using the DMA engine (VI).
1636 */
1637 static void sdma_v3_0_emit_fill_buffer(struct amdgpu_ib *ib,
1638 uint32_t src_data,
1639 uint64_t dst_offset,
1640 uint32_t byte_count)
1641 {
1642 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_CONST_FILL);
1643 ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
1644 ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
1645 ib->ptr[ib->length_dw++] = src_data;
1646 ib->ptr[ib->length_dw++] = byte_count;
1647 }
1648
1649 static const struct amdgpu_buffer_funcs sdma_v3_0_buffer_funcs = {
1650 .copy_max_bytes = 0x1fffff,
1651 .copy_num_dw = 7,
1652 .emit_copy_buffer = sdma_v3_0_emit_copy_buffer,
1653
1654 .fill_max_bytes = 0x1fffff,
1655 .fill_num_dw = 5,
1656 .emit_fill_buffer = sdma_v3_0_emit_fill_buffer,
1657 };
1658
1659 static void sdma_v3_0_set_buffer_funcs(struct amdgpu_device *adev)
1660 {
1661 if (adev->mman.buffer_funcs == NULL) {
1662 adev->mman.buffer_funcs = &sdma_v3_0_buffer_funcs;
1663 adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].ring;
1664 }
1665 }
1666
1667 static const struct amdgpu_vm_pte_funcs sdma_v3_0_vm_pte_funcs = {
1668 .copy_pte = sdma_v3_0_vm_copy_pte,
1669 .write_pte = sdma_v3_0_vm_write_pte,
1670 .set_pte_pde = sdma_v3_0_vm_set_pte_pde,
1671 };
1672
1673 static void sdma_v3_0_set_vm_pte_funcs(struct amdgpu_device *adev)
1674 {
1675 unsigned i;
1676
1677 if (adev->vm_manager.vm_pte_funcs == NULL) {
1678 adev->vm_manager.vm_pte_funcs = &sdma_v3_0_vm_pte_funcs;
1679 for (i = 0; i < adev->sdma.num_instances; i++)
1680 adev->vm_manager.vm_pte_rings[i] =
1681 &adev->sdma.instance[i].ring;
1682
1683 adev->vm_manager.vm_pte_num_rings = adev->sdma.num_instances;
1684 }
1685 }
1686
1687 const struct amdgpu_ip_block_version sdma_v3_0_ip_block =
1688 {
1689 .type = AMD_IP_BLOCK_TYPE_SDMA,
1690 .major = 3,
1691 .minor = 0,
1692 .rev = 0,
1693 .funcs = &sdma_v3_0_ip_funcs,
1694 };
1695
1696 const struct amdgpu_ip_block_version sdma_v3_1_ip_block =
1697 {
1698 .type = AMD_IP_BLOCK_TYPE_SDMA,
1699 .major = 3,
1700 .minor = 1,
1701 .rev = 0,
1702 .funcs = &sdma_v3_0_ip_funcs,
1703 };