]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/gpu/drm/amd/amdgpu/sdma_v3_0.c
52e6bf2e9e595ad569fa0a01aa5fdd550cfbd983
[mirror_ubuntu-jammy-kernel.git] / drivers / gpu / drm / amd / amdgpu / sdma_v3_0.c
1 /*
2 * Copyright 2014 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 * Authors: Alex Deucher
23 */
24 #include <linux/firmware.h>
25 #include <drm/drmP.h>
26 #include "amdgpu.h"
27 #include "amdgpu_ucode.h"
28 #include "amdgpu_trace.h"
29 #include "vi.h"
30 #include "vid.h"
31
32 #include "oss/oss_3_0_d.h"
33 #include "oss/oss_3_0_sh_mask.h"
34
35 #include "gmc/gmc_8_1_d.h"
36 #include "gmc/gmc_8_1_sh_mask.h"
37
38 #include "gca/gfx_8_0_d.h"
39 #include "gca/gfx_8_0_enum.h"
40 #include "gca/gfx_8_0_sh_mask.h"
41
42 #include "bif/bif_5_0_d.h"
43 #include "bif/bif_5_0_sh_mask.h"
44
45 #include "tonga_sdma_pkt_open.h"
46
47 static void sdma_v3_0_set_ring_funcs(struct amdgpu_device *adev);
48 static void sdma_v3_0_set_buffer_funcs(struct amdgpu_device *adev);
49 static void sdma_v3_0_set_vm_pte_funcs(struct amdgpu_device *adev);
50 static void sdma_v3_0_set_irq_funcs(struct amdgpu_device *adev);
51
52 MODULE_FIRMWARE("amdgpu/tonga_sdma.bin");
53 MODULE_FIRMWARE("amdgpu/tonga_sdma1.bin");
54 MODULE_FIRMWARE("amdgpu/carrizo_sdma.bin");
55 MODULE_FIRMWARE("amdgpu/carrizo_sdma1.bin");
56 MODULE_FIRMWARE("amdgpu/fiji_sdma.bin");
57 MODULE_FIRMWARE("amdgpu/fiji_sdma1.bin");
58 MODULE_FIRMWARE("amdgpu/stoney_sdma.bin");
59 MODULE_FIRMWARE("amdgpu/polaris10_sdma.bin");
60 MODULE_FIRMWARE("amdgpu/polaris10_sdma1.bin");
61 MODULE_FIRMWARE("amdgpu/polaris11_sdma.bin");
62 MODULE_FIRMWARE("amdgpu/polaris11_sdma1.bin");
63 MODULE_FIRMWARE("amdgpu/polaris12_sdma.bin");
64 MODULE_FIRMWARE("amdgpu/polaris12_sdma1.bin");
65
66
67 static const u32 sdma_offsets[SDMA_MAX_INSTANCE] =
68 {
69 SDMA0_REGISTER_OFFSET,
70 SDMA1_REGISTER_OFFSET
71 };
72
73 static const u32 golden_settings_tonga_a11[] =
74 {
75 mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
76 mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
77 mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
78 mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
79 mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
80 mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
81 mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
82 mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
83 mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
84 mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
85 };
86
87 static const u32 tonga_mgcg_cgcg_init[] =
88 {
89 mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
90 mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
91 };
92
93 static const u32 golden_settings_fiji_a10[] =
94 {
95 mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
96 mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
97 mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
98 mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
99 mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
100 mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
101 mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
102 mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
103 };
104
105 static const u32 fiji_mgcg_cgcg_init[] =
106 {
107 mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
108 mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
109 };
110
111 static const u32 golden_settings_polaris11_a11[] =
112 {
113 mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
114 mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
115 mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
116 mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
117 mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
118 mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
119 mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
120 mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
121 mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
122 mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
123 };
124
125 static const u32 golden_settings_polaris10_a11[] =
126 {
127 mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
128 mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
129 mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
130 mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
131 mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
132 mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
133 mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
134 mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
135 mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
136 mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
137 };
138
139 static const u32 cz_golden_settings_a11[] =
140 {
141 mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
142 mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
143 mmSDMA0_GFX_IB_CNTL, 0x00000100, 0x00000100,
144 mmSDMA0_POWER_CNTL, 0x00000800, 0x0003c800,
145 mmSDMA0_RLC0_IB_CNTL, 0x00000100, 0x00000100,
146 mmSDMA0_RLC1_IB_CNTL, 0x00000100, 0x00000100,
147 mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
148 mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
149 mmSDMA1_GFX_IB_CNTL, 0x00000100, 0x00000100,
150 mmSDMA1_POWER_CNTL, 0x00000800, 0x0003c800,
151 mmSDMA1_RLC0_IB_CNTL, 0x00000100, 0x00000100,
152 mmSDMA1_RLC1_IB_CNTL, 0x00000100, 0x00000100,
153 };
154
155 static const u32 cz_mgcg_cgcg_init[] =
156 {
157 mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
158 mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
159 };
160
161 static const u32 stoney_golden_settings_a11[] =
162 {
163 mmSDMA0_GFX_IB_CNTL, 0x00000100, 0x00000100,
164 mmSDMA0_POWER_CNTL, 0x00000800, 0x0003c800,
165 mmSDMA0_RLC0_IB_CNTL, 0x00000100, 0x00000100,
166 mmSDMA0_RLC1_IB_CNTL, 0x00000100, 0x00000100,
167 };
168
169 static const u32 stoney_mgcg_cgcg_init[] =
170 {
171 mmSDMA0_CLK_CTRL, 0xffffffff, 0x00000100,
172 };
173
174 /*
175 * sDMA - System DMA
176 * Starting with CIK, the GPU has new asynchronous
177 * DMA engines. These engines are used for compute
178 * and gfx. There are two DMA engines (SDMA0, SDMA1)
179 * and each one supports 1 ring buffer used for gfx
180 * and 2 queues used for compute.
181 *
182 * The programming model is very similar to the CP
183 * (ring buffer, IBs, etc.), but sDMA has it's own
184 * packet format that is different from the PM4 format
185 * used by the CP. sDMA supports copying data, writing
186 * embedded data, solid fills, and a number of other
187 * things. It also has support for tiling/detiling of
188 * buffers.
189 */
190
191 static void sdma_v3_0_init_golden_registers(struct amdgpu_device *adev)
192 {
193 switch (adev->asic_type) {
194 case CHIP_FIJI:
195 amdgpu_program_register_sequence(adev,
196 fiji_mgcg_cgcg_init,
197 (const u32)ARRAY_SIZE(fiji_mgcg_cgcg_init));
198 amdgpu_program_register_sequence(adev,
199 golden_settings_fiji_a10,
200 (const u32)ARRAY_SIZE(golden_settings_fiji_a10));
201 break;
202 case CHIP_TONGA:
203 amdgpu_program_register_sequence(adev,
204 tonga_mgcg_cgcg_init,
205 (const u32)ARRAY_SIZE(tonga_mgcg_cgcg_init));
206 amdgpu_program_register_sequence(adev,
207 golden_settings_tonga_a11,
208 (const u32)ARRAY_SIZE(golden_settings_tonga_a11));
209 break;
210 case CHIP_POLARIS11:
211 case CHIP_POLARIS12:
212 amdgpu_program_register_sequence(adev,
213 golden_settings_polaris11_a11,
214 (const u32)ARRAY_SIZE(golden_settings_polaris11_a11));
215 break;
216 case CHIP_POLARIS10:
217 amdgpu_program_register_sequence(adev,
218 golden_settings_polaris10_a11,
219 (const u32)ARRAY_SIZE(golden_settings_polaris10_a11));
220 break;
221 case CHIP_CARRIZO:
222 amdgpu_program_register_sequence(adev,
223 cz_mgcg_cgcg_init,
224 (const u32)ARRAY_SIZE(cz_mgcg_cgcg_init));
225 amdgpu_program_register_sequence(adev,
226 cz_golden_settings_a11,
227 (const u32)ARRAY_SIZE(cz_golden_settings_a11));
228 break;
229 case CHIP_STONEY:
230 amdgpu_program_register_sequence(adev,
231 stoney_mgcg_cgcg_init,
232 (const u32)ARRAY_SIZE(stoney_mgcg_cgcg_init));
233 amdgpu_program_register_sequence(adev,
234 stoney_golden_settings_a11,
235 (const u32)ARRAY_SIZE(stoney_golden_settings_a11));
236 break;
237 default:
238 break;
239 }
240 }
241
242 static void sdma_v3_0_free_microcode(struct amdgpu_device *adev)
243 {
244 int i;
245 for (i = 0; i < adev->sdma.num_instances; i++) {
246 release_firmware(adev->sdma.instance[i].fw);
247 adev->sdma.instance[i].fw = NULL;
248 }
249 }
250
251 /**
252 * sdma_v3_0_init_microcode - load ucode images from disk
253 *
254 * @adev: amdgpu_device pointer
255 *
256 * Use the firmware interface to load the ucode images into
257 * the driver (not loaded into hw).
258 * Returns 0 on success, error on failure.
259 */
260 static int sdma_v3_0_init_microcode(struct amdgpu_device *adev)
261 {
262 const char *chip_name;
263 char fw_name[30];
264 int err = 0, i;
265 struct amdgpu_firmware_info *info = NULL;
266 const struct common_firmware_header *header = NULL;
267 const struct sdma_firmware_header_v1_0 *hdr;
268
269 DRM_DEBUG("\n");
270
271 switch (adev->asic_type) {
272 case CHIP_TONGA:
273 chip_name = "tonga";
274 break;
275 case CHIP_FIJI:
276 chip_name = "fiji";
277 break;
278 case CHIP_POLARIS11:
279 chip_name = "polaris11";
280 break;
281 case CHIP_POLARIS10:
282 chip_name = "polaris10";
283 break;
284 case CHIP_POLARIS12:
285 chip_name = "polaris12";
286 break;
287 case CHIP_CARRIZO:
288 chip_name = "carrizo";
289 break;
290 case CHIP_STONEY:
291 chip_name = "stoney";
292 break;
293 default: BUG();
294 }
295
296 for (i = 0; i < adev->sdma.num_instances; i++) {
297 if (i == 0)
298 snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma.bin", chip_name);
299 else
300 snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma1.bin", chip_name);
301 err = request_firmware(&adev->sdma.instance[i].fw, fw_name, adev->dev);
302 if (err)
303 goto out;
304 err = amdgpu_ucode_validate(adev->sdma.instance[i].fw);
305 if (err)
306 goto out;
307 hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
308 adev->sdma.instance[i].fw_version = le32_to_cpu(hdr->header.ucode_version);
309 adev->sdma.instance[i].feature_version = le32_to_cpu(hdr->ucode_feature_version);
310 if (adev->sdma.instance[i].feature_version >= 20)
311 adev->sdma.instance[i].burst_nop = true;
312
313 if (adev->firmware.load_type == AMDGPU_FW_LOAD_SMU) {
314 info = &adev->firmware.ucode[AMDGPU_UCODE_ID_SDMA0 + i];
315 info->ucode_id = AMDGPU_UCODE_ID_SDMA0 + i;
316 info->fw = adev->sdma.instance[i].fw;
317 header = (const struct common_firmware_header *)info->fw->data;
318 adev->firmware.fw_size +=
319 ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE);
320 }
321 }
322 out:
323 if (err) {
324 pr_err("sdma_v3_0: Failed to load firmware \"%s\"\n", fw_name);
325 for (i = 0; i < adev->sdma.num_instances; i++) {
326 release_firmware(adev->sdma.instance[i].fw);
327 adev->sdma.instance[i].fw = NULL;
328 }
329 }
330 return err;
331 }
332
333 /**
334 * sdma_v3_0_ring_get_rptr - get the current read pointer
335 *
336 * @ring: amdgpu ring pointer
337 *
338 * Get the current rptr from the hardware (VI+).
339 */
340 static uint64_t sdma_v3_0_ring_get_rptr(struct amdgpu_ring *ring)
341 {
342 /* XXX check if swapping is necessary on BE */
343 return ring->adev->wb.wb[ring->rptr_offs] >> 2;
344 }
345
346 /**
347 * sdma_v3_0_ring_get_wptr - get the current write pointer
348 *
349 * @ring: amdgpu ring pointer
350 *
351 * Get the current wptr from the hardware (VI+).
352 */
353 static uint64_t sdma_v3_0_ring_get_wptr(struct amdgpu_ring *ring)
354 {
355 struct amdgpu_device *adev = ring->adev;
356 u32 wptr;
357
358 if (ring->use_doorbell) {
359 /* XXX check if swapping is necessary on BE */
360 wptr = ring->adev->wb.wb[ring->wptr_offs] >> 2;
361 } else {
362 int me = (ring == &ring->adev->sdma.instance[0].ring) ? 0 : 1;
363
364 wptr = RREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[me]) >> 2;
365 }
366
367 return wptr;
368 }
369
370 /**
371 * sdma_v3_0_ring_set_wptr - commit the write pointer
372 *
373 * @ring: amdgpu ring pointer
374 *
375 * Write the wptr back to the hardware (VI+).
376 */
377 static void sdma_v3_0_ring_set_wptr(struct amdgpu_ring *ring)
378 {
379 struct amdgpu_device *adev = ring->adev;
380
381 if (ring->use_doorbell) {
382 u32 *wb = (u32 *)&adev->wb.wb[ring->wptr_offs];
383
384 /* XXX check if swapping is necessary on BE */
385 WRITE_ONCE(*wb, (lower_32_bits(ring->wptr) << 2));
386 WDOORBELL32(ring->doorbell_index, lower_32_bits(ring->wptr) << 2);
387 } else {
388 int me = (ring == &ring->adev->sdma.instance[0].ring) ? 0 : 1;
389
390 WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[me], lower_32_bits(ring->wptr) << 2);
391 }
392 }
393
394 static void sdma_v3_0_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count)
395 {
396 struct amdgpu_sdma_instance *sdma = amdgpu_get_sdma_instance(ring);
397 int i;
398
399 for (i = 0; i < count; i++)
400 if (sdma && sdma->burst_nop && (i == 0))
401 amdgpu_ring_write(ring, ring->funcs->nop |
402 SDMA_PKT_NOP_HEADER_COUNT(count - 1));
403 else
404 amdgpu_ring_write(ring, ring->funcs->nop);
405 }
406
407 /**
408 * sdma_v3_0_ring_emit_ib - Schedule an IB on the DMA engine
409 *
410 * @ring: amdgpu ring pointer
411 * @ib: IB object to schedule
412 *
413 * Schedule an IB in the DMA ring (VI).
414 */
415 static void sdma_v3_0_ring_emit_ib(struct amdgpu_ring *ring,
416 struct amdgpu_ib *ib,
417 unsigned vm_id, bool ctx_switch)
418 {
419 u32 vmid = vm_id & 0xf;
420
421 /* IB packet must end on a 8 DW boundary */
422 sdma_v3_0_ring_insert_nop(ring, (10 - (lower_32_bits(ring->wptr) & 7)) % 8);
423
424 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_INDIRECT) |
425 SDMA_PKT_INDIRECT_HEADER_VMID(vmid));
426 /* base must be 32 byte aligned */
427 amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr) & 0xffffffe0);
428 amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr));
429 amdgpu_ring_write(ring, ib->length_dw);
430 amdgpu_ring_write(ring, 0);
431 amdgpu_ring_write(ring, 0);
432
433 }
434
435 /**
436 * sdma_v3_0_ring_emit_hdp_flush - emit an hdp flush on the DMA ring
437 *
438 * @ring: amdgpu ring pointer
439 *
440 * Emit an hdp flush packet on the requested DMA ring.
441 */
442 static void sdma_v3_0_ring_emit_hdp_flush(struct amdgpu_ring *ring)
443 {
444 u32 ref_and_mask = 0;
445
446 if (ring == &ring->adev->sdma.instance[0].ring)
447 ref_and_mask = REG_SET_FIELD(ref_and_mask, GPU_HDP_FLUSH_DONE, SDMA0, 1);
448 else
449 ref_and_mask = REG_SET_FIELD(ref_and_mask, GPU_HDP_FLUSH_DONE, SDMA1, 1);
450
451 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
452 SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(1) |
453 SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* == */
454 amdgpu_ring_write(ring, mmGPU_HDP_FLUSH_DONE << 2);
455 amdgpu_ring_write(ring, mmGPU_HDP_FLUSH_REQ << 2);
456 amdgpu_ring_write(ring, ref_and_mask); /* reference */
457 amdgpu_ring_write(ring, ref_and_mask); /* mask */
458 amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
459 SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */
460 }
461
462 static void sdma_v3_0_ring_emit_hdp_invalidate(struct amdgpu_ring *ring)
463 {
464 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
465 SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
466 amdgpu_ring_write(ring, mmHDP_DEBUG0);
467 amdgpu_ring_write(ring, 1);
468 }
469
470 /**
471 * sdma_v3_0_ring_emit_fence - emit a fence on the DMA ring
472 *
473 * @ring: amdgpu ring pointer
474 * @fence: amdgpu fence object
475 *
476 * Add a DMA fence packet to the ring to write
477 * the fence seq number and DMA trap packet to generate
478 * an interrupt if needed (VI).
479 */
480 static void sdma_v3_0_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq,
481 unsigned flags)
482 {
483 bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT;
484 /* write the fence */
485 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
486 amdgpu_ring_write(ring, lower_32_bits(addr));
487 amdgpu_ring_write(ring, upper_32_bits(addr));
488 amdgpu_ring_write(ring, lower_32_bits(seq));
489
490 /* optionally write high bits as well */
491 if (write64bit) {
492 addr += 4;
493 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
494 amdgpu_ring_write(ring, lower_32_bits(addr));
495 amdgpu_ring_write(ring, upper_32_bits(addr));
496 amdgpu_ring_write(ring, upper_32_bits(seq));
497 }
498
499 /* generate an interrupt */
500 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_TRAP));
501 amdgpu_ring_write(ring, SDMA_PKT_TRAP_INT_CONTEXT_INT_CONTEXT(0));
502 }
503
504 /**
505 * sdma_v3_0_gfx_stop - stop the gfx async dma engines
506 *
507 * @adev: amdgpu_device pointer
508 *
509 * Stop the gfx async dma ring buffers (VI).
510 */
511 static void sdma_v3_0_gfx_stop(struct amdgpu_device *adev)
512 {
513 struct amdgpu_ring *sdma0 = &adev->sdma.instance[0].ring;
514 struct amdgpu_ring *sdma1 = &adev->sdma.instance[1].ring;
515 u32 rb_cntl, ib_cntl;
516 int i;
517
518 if ((adev->mman.buffer_funcs_ring == sdma0) ||
519 (adev->mman.buffer_funcs_ring == sdma1))
520 amdgpu_ttm_set_active_vram_size(adev, adev->mc.visible_vram_size);
521
522 for (i = 0; i < adev->sdma.num_instances; i++) {
523 rb_cntl = RREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i]);
524 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 0);
525 WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
526 ib_cntl = RREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i]);
527 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 0);
528 WREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i], ib_cntl);
529 }
530 sdma0->ready = false;
531 sdma1->ready = false;
532 }
533
534 /**
535 * sdma_v3_0_rlc_stop - stop the compute async dma engines
536 *
537 * @adev: amdgpu_device pointer
538 *
539 * Stop the compute async dma queues (VI).
540 */
541 static void sdma_v3_0_rlc_stop(struct amdgpu_device *adev)
542 {
543 /* XXX todo */
544 }
545
546 /**
547 * sdma_v3_0_ctx_switch_enable - stop the async dma engines context switch
548 *
549 * @adev: amdgpu_device pointer
550 * @enable: enable/disable the DMA MEs context switch.
551 *
552 * Halt or unhalt the async dma engines context switch (VI).
553 */
554 static void sdma_v3_0_ctx_switch_enable(struct amdgpu_device *adev, bool enable)
555 {
556 u32 f32_cntl, phase_quantum = 0;
557 int i;
558
559 if (amdgpu_sdma_phase_quantum) {
560 unsigned value = amdgpu_sdma_phase_quantum;
561 unsigned unit = 0;
562
563 while (value > (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
564 SDMA0_PHASE0_QUANTUM__VALUE__SHIFT)) {
565 value = (value + 1) >> 1;
566 unit++;
567 }
568 if (unit > (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
569 SDMA0_PHASE0_QUANTUM__UNIT__SHIFT)) {
570 value = (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
571 SDMA0_PHASE0_QUANTUM__VALUE__SHIFT);
572 unit = (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
573 SDMA0_PHASE0_QUANTUM__UNIT__SHIFT);
574 WARN_ONCE(1,
575 "clamping sdma_phase_quantum to %uK clock cycles\n",
576 value << unit);
577 }
578 phase_quantum =
579 value << SDMA0_PHASE0_QUANTUM__VALUE__SHIFT |
580 unit << SDMA0_PHASE0_QUANTUM__UNIT__SHIFT;
581 }
582
583 for (i = 0; i < adev->sdma.num_instances; i++) {
584 f32_cntl = RREG32(mmSDMA0_CNTL + sdma_offsets[i]);
585 if (enable) {
586 f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
587 AUTO_CTXSW_ENABLE, 1);
588 f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
589 ATC_L1_ENABLE, 1);
590 if (amdgpu_sdma_phase_quantum) {
591 WREG32(mmSDMA0_PHASE0_QUANTUM + sdma_offsets[i],
592 phase_quantum);
593 WREG32(mmSDMA0_PHASE1_QUANTUM + sdma_offsets[i],
594 phase_quantum);
595 }
596 } else {
597 f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
598 AUTO_CTXSW_ENABLE, 0);
599 f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
600 ATC_L1_ENABLE, 1);
601 }
602
603 WREG32(mmSDMA0_CNTL + sdma_offsets[i], f32_cntl);
604 }
605 }
606
607 /**
608 * sdma_v3_0_enable - stop the async dma engines
609 *
610 * @adev: amdgpu_device pointer
611 * @enable: enable/disable the DMA MEs.
612 *
613 * Halt or unhalt the async dma engines (VI).
614 */
615 static void sdma_v3_0_enable(struct amdgpu_device *adev, bool enable)
616 {
617 u32 f32_cntl;
618 int i;
619
620 if (!enable) {
621 sdma_v3_0_gfx_stop(adev);
622 sdma_v3_0_rlc_stop(adev);
623 }
624
625 for (i = 0; i < adev->sdma.num_instances; i++) {
626 f32_cntl = RREG32(mmSDMA0_F32_CNTL + sdma_offsets[i]);
627 if (enable)
628 f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, 0);
629 else
630 f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, 1);
631 WREG32(mmSDMA0_F32_CNTL + sdma_offsets[i], f32_cntl);
632 }
633 }
634
635 /**
636 * sdma_v3_0_gfx_resume - setup and start the async dma engines
637 *
638 * @adev: amdgpu_device pointer
639 *
640 * Set up the gfx DMA ring buffers and enable them (VI).
641 * Returns 0 for success, error for failure.
642 */
643 static int sdma_v3_0_gfx_resume(struct amdgpu_device *adev)
644 {
645 struct amdgpu_ring *ring;
646 u32 rb_cntl, ib_cntl, wptr_poll_cntl;
647 u32 rb_bufsz;
648 u32 wb_offset;
649 u32 doorbell;
650 u64 wptr_gpu_addr;
651 int i, j, r;
652
653 for (i = 0; i < adev->sdma.num_instances; i++) {
654 ring = &adev->sdma.instance[i].ring;
655 amdgpu_ring_clear_ring(ring);
656 wb_offset = (ring->rptr_offs * 4);
657
658 mutex_lock(&adev->srbm_mutex);
659 for (j = 0; j < 16; j++) {
660 vi_srbm_select(adev, 0, 0, 0, j);
661 /* SDMA GFX */
662 WREG32(mmSDMA0_GFX_VIRTUAL_ADDR + sdma_offsets[i], 0);
663 WREG32(mmSDMA0_GFX_APE1_CNTL + sdma_offsets[i], 0);
664 }
665 vi_srbm_select(adev, 0, 0, 0, 0);
666 mutex_unlock(&adev->srbm_mutex);
667
668 WREG32(mmSDMA0_TILING_CONFIG + sdma_offsets[i],
669 adev->gfx.config.gb_addr_config & 0x70);
670
671 WREG32(mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL + sdma_offsets[i], 0);
672
673 /* Set ring buffer size in dwords */
674 rb_bufsz = order_base_2(ring->ring_size / 4);
675 rb_cntl = RREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i]);
676 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SIZE, rb_bufsz);
677 #ifdef __BIG_ENDIAN
678 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SWAP_ENABLE, 1);
679 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
680 RPTR_WRITEBACK_SWAP_ENABLE, 1);
681 #endif
682 WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
683
684 /* Initialize the ring buffer's read and write pointers */
685 ring->wptr = 0;
686 WREG32(mmSDMA0_GFX_RB_RPTR + sdma_offsets[i], 0);
687 sdma_v3_0_ring_set_wptr(ring);
688 WREG32(mmSDMA0_GFX_IB_RPTR + sdma_offsets[i], 0);
689 WREG32(mmSDMA0_GFX_IB_OFFSET + sdma_offsets[i], 0);
690
691 /* set the wb address whether it's enabled or not */
692 WREG32(mmSDMA0_GFX_RB_RPTR_ADDR_HI + sdma_offsets[i],
693 upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF);
694 WREG32(mmSDMA0_GFX_RB_RPTR_ADDR_LO + sdma_offsets[i],
695 lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC);
696
697 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RPTR_WRITEBACK_ENABLE, 1);
698
699 WREG32(mmSDMA0_GFX_RB_BASE + sdma_offsets[i], ring->gpu_addr >> 8);
700 WREG32(mmSDMA0_GFX_RB_BASE_HI + sdma_offsets[i], ring->gpu_addr >> 40);
701
702 doorbell = RREG32(mmSDMA0_GFX_DOORBELL + sdma_offsets[i]);
703
704 if (ring->use_doorbell) {
705 doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL,
706 OFFSET, ring->doorbell_index);
707 doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 1);
708 } else {
709 doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 0);
710 }
711 WREG32(mmSDMA0_GFX_DOORBELL + sdma_offsets[i], doorbell);
712
713 /* setup the wptr shadow polling */
714 wptr_gpu_addr = adev->wb.gpu_addr + (ring->wptr_offs * 4);
715
716 WREG32(mmSDMA0_GFX_RB_WPTR_POLL_ADDR_LO + sdma_offsets[i],
717 lower_32_bits(wptr_gpu_addr));
718 WREG32(mmSDMA0_GFX_RB_WPTR_POLL_ADDR_HI + sdma_offsets[i],
719 upper_32_bits(wptr_gpu_addr));
720 wptr_poll_cntl = RREG32(mmSDMA0_GFX_RB_WPTR_POLL_CNTL + sdma_offsets[i]);
721 if (amdgpu_sriov_vf(adev))
722 wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl, SDMA0_GFX_RB_WPTR_POLL_CNTL, F32_POLL_ENABLE, 1);
723 else
724 wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl, SDMA0_GFX_RB_WPTR_POLL_CNTL, F32_POLL_ENABLE, 0);
725 WREG32(mmSDMA0_GFX_RB_WPTR_POLL_CNTL + sdma_offsets[i], wptr_poll_cntl);
726
727 /* enable DMA RB */
728 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 1);
729 WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
730
731 ib_cntl = RREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i]);
732 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 1);
733 #ifdef __BIG_ENDIAN
734 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_SWAP_ENABLE, 1);
735 #endif
736 /* enable DMA IBs */
737 WREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i], ib_cntl);
738
739 ring->ready = true;
740 }
741
742 /* unhalt the MEs */
743 sdma_v3_0_enable(adev, true);
744 /* enable sdma ring preemption */
745 sdma_v3_0_ctx_switch_enable(adev, true);
746
747 for (i = 0; i < adev->sdma.num_instances; i++) {
748 ring = &adev->sdma.instance[i].ring;
749 r = amdgpu_ring_test_ring(ring);
750 if (r) {
751 ring->ready = false;
752 return r;
753 }
754
755 if (adev->mman.buffer_funcs_ring == ring)
756 amdgpu_ttm_set_active_vram_size(adev, adev->mc.real_vram_size);
757 }
758
759 return 0;
760 }
761
762 /**
763 * sdma_v3_0_rlc_resume - setup and start the async dma engines
764 *
765 * @adev: amdgpu_device pointer
766 *
767 * Set up the compute DMA queues and enable them (VI).
768 * Returns 0 for success, error for failure.
769 */
770 static int sdma_v3_0_rlc_resume(struct amdgpu_device *adev)
771 {
772 /* XXX todo */
773 return 0;
774 }
775
776 /**
777 * sdma_v3_0_load_microcode - load the sDMA ME ucode
778 *
779 * @adev: amdgpu_device pointer
780 *
781 * Loads the sDMA0/1 ucode.
782 * Returns 0 for success, -EINVAL if the ucode is not available.
783 */
784 static int sdma_v3_0_load_microcode(struct amdgpu_device *adev)
785 {
786 const struct sdma_firmware_header_v1_0 *hdr;
787 const __le32 *fw_data;
788 u32 fw_size;
789 int i, j;
790
791 /* halt the MEs */
792 sdma_v3_0_enable(adev, false);
793
794 for (i = 0; i < adev->sdma.num_instances; i++) {
795 if (!adev->sdma.instance[i].fw)
796 return -EINVAL;
797 hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
798 amdgpu_ucode_print_sdma_hdr(&hdr->header);
799 fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4;
800 fw_data = (const __le32 *)
801 (adev->sdma.instance[i].fw->data +
802 le32_to_cpu(hdr->header.ucode_array_offset_bytes));
803 WREG32(mmSDMA0_UCODE_ADDR + sdma_offsets[i], 0);
804 for (j = 0; j < fw_size; j++)
805 WREG32(mmSDMA0_UCODE_DATA + sdma_offsets[i], le32_to_cpup(fw_data++));
806 WREG32(mmSDMA0_UCODE_ADDR + sdma_offsets[i], adev->sdma.instance[i].fw_version);
807 }
808
809 return 0;
810 }
811
812 /**
813 * sdma_v3_0_start - setup and start the async dma engines
814 *
815 * @adev: amdgpu_device pointer
816 *
817 * Set up the DMA engines and enable them (VI).
818 * Returns 0 for success, error for failure.
819 */
820 static int sdma_v3_0_start(struct amdgpu_device *adev)
821 {
822 int r;
823
824 if (adev->firmware.load_type == AMDGPU_FW_LOAD_DIRECT) {
825 r = sdma_v3_0_load_microcode(adev);
826 if (r)
827 return r;
828 }
829
830 /* disable sdma engine before programing it */
831 sdma_v3_0_ctx_switch_enable(adev, false);
832 sdma_v3_0_enable(adev, false);
833
834 /* start the gfx rings and rlc compute queues */
835 r = sdma_v3_0_gfx_resume(adev);
836 if (r)
837 return r;
838 r = sdma_v3_0_rlc_resume(adev);
839 if (r)
840 return r;
841
842 return 0;
843 }
844
845 /**
846 * sdma_v3_0_ring_test_ring - simple async dma engine test
847 *
848 * @ring: amdgpu_ring structure holding ring information
849 *
850 * Test the DMA engine by writing using it to write an
851 * value to memory. (VI).
852 * Returns 0 for success, error for failure.
853 */
854 static int sdma_v3_0_ring_test_ring(struct amdgpu_ring *ring)
855 {
856 struct amdgpu_device *adev = ring->adev;
857 unsigned i;
858 unsigned index;
859 int r;
860 u32 tmp;
861 u64 gpu_addr;
862
863 r = amdgpu_wb_get(adev, &index);
864 if (r) {
865 dev_err(adev->dev, "(%d) failed to allocate wb slot\n", r);
866 return r;
867 }
868
869 gpu_addr = adev->wb.gpu_addr + (index * 4);
870 tmp = 0xCAFEDEAD;
871 adev->wb.wb[index] = cpu_to_le32(tmp);
872
873 r = amdgpu_ring_alloc(ring, 5);
874 if (r) {
875 DRM_ERROR("amdgpu: dma failed to lock ring %d (%d).\n", ring->idx, r);
876 amdgpu_wb_free(adev, index);
877 return r;
878 }
879
880 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
881 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR));
882 amdgpu_ring_write(ring, lower_32_bits(gpu_addr));
883 amdgpu_ring_write(ring, upper_32_bits(gpu_addr));
884 amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1));
885 amdgpu_ring_write(ring, 0xDEADBEEF);
886 amdgpu_ring_commit(ring);
887
888 for (i = 0; i < adev->usec_timeout; i++) {
889 tmp = le32_to_cpu(adev->wb.wb[index]);
890 if (tmp == 0xDEADBEEF)
891 break;
892 DRM_UDELAY(1);
893 }
894
895 if (i < adev->usec_timeout) {
896 DRM_DEBUG("ring test on %d succeeded in %d usecs\n", ring->idx, i);
897 } else {
898 DRM_ERROR("amdgpu: ring %d test failed (0x%08X)\n",
899 ring->idx, tmp);
900 r = -EINVAL;
901 }
902 amdgpu_wb_free(adev, index);
903
904 return r;
905 }
906
907 /**
908 * sdma_v3_0_ring_test_ib - test an IB on the DMA engine
909 *
910 * @ring: amdgpu_ring structure holding ring information
911 *
912 * Test a simple IB in the DMA ring (VI).
913 * Returns 0 on success, error on failure.
914 */
915 static int sdma_v3_0_ring_test_ib(struct amdgpu_ring *ring, long timeout)
916 {
917 struct amdgpu_device *adev = ring->adev;
918 struct amdgpu_ib ib;
919 struct dma_fence *f = NULL;
920 unsigned index;
921 u32 tmp = 0;
922 u64 gpu_addr;
923 long r;
924
925 r = amdgpu_wb_get(adev, &index);
926 if (r) {
927 dev_err(adev->dev, "(%ld) failed to allocate wb slot\n", r);
928 return r;
929 }
930
931 gpu_addr = adev->wb.gpu_addr + (index * 4);
932 tmp = 0xCAFEDEAD;
933 adev->wb.wb[index] = cpu_to_le32(tmp);
934 memset(&ib, 0, sizeof(ib));
935 r = amdgpu_ib_get(adev, NULL, 256, &ib);
936 if (r) {
937 DRM_ERROR("amdgpu: failed to get ib (%ld).\n", r);
938 goto err0;
939 }
940
941 ib.ptr[0] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
942 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
943 ib.ptr[1] = lower_32_bits(gpu_addr);
944 ib.ptr[2] = upper_32_bits(gpu_addr);
945 ib.ptr[3] = SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1);
946 ib.ptr[4] = 0xDEADBEEF;
947 ib.ptr[5] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
948 ib.ptr[6] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
949 ib.ptr[7] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
950 ib.length_dw = 8;
951
952 r = amdgpu_ib_schedule(ring, 1, &ib, NULL, &f);
953 if (r)
954 goto err1;
955
956 r = dma_fence_wait_timeout(f, false, timeout);
957 if (r == 0) {
958 DRM_ERROR("amdgpu: IB test timed out\n");
959 r = -ETIMEDOUT;
960 goto err1;
961 } else if (r < 0) {
962 DRM_ERROR("amdgpu: fence wait failed (%ld).\n", r);
963 goto err1;
964 }
965 tmp = le32_to_cpu(adev->wb.wb[index]);
966 if (tmp == 0xDEADBEEF) {
967 DRM_DEBUG("ib test on ring %d succeeded\n", ring->idx);
968 r = 0;
969 } else {
970 DRM_ERROR("amdgpu: ib test failed (0x%08X)\n", tmp);
971 r = -EINVAL;
972 }
973 err1:
974 amdgpu_ib_free(adev, &ib, NULL);
975 dma_fence_put(f);
976 err0:
977 amdgpu_wb_free(adev, index);
978 return r;
979 }
980
981 /**
982 * sdma_v3_0_vm_copy_pte - update PTEs by copying them from the GART
983 *
984 * @ib: indirect buffer to fill with commands
985 * @pe: addr of the page entry
986 * @src: src addr to copy from
987 * @count: number of page entries to update
988 *
989 * Update PTEs by copying them from the GART using sDMA (CIK).
990 */
991 static void sdma_v3_0_vm_copy_pte(struct amdgpu_ib *ib,
992 uint64_t pe, uint64_t src,
993 unsigned count)
994 {
995 unsigned bytes = count * 8;
996
997 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
998 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
999 ib->ptr[ib->length_dw++] = bytes;
1000 ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
1001 ib->ptr[ib->length_dw++] = lower_32_bits(src);
1002 ib->ptr[ib->length_dw++] = upper_32_bits(src);
1003 ib->ptr[ib->length_dw++] = lower_32_bits(pe);
1004 ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1005 }
1006
1007 /**
1008 * sdma_v3_0_vm_write_pte - update PTEs by writing them manually
1009 *
1010 * @ib: indirect buffer to fill with commands
1011 * @pe: addr of the page entry
1012 * @value: dst addr to write into pe
1013 * @count: number of page entries to update
1014 * @incr: increase next addr by incr bytes
1015 *
1016 * Update PTEs by writing them manually using sDMA (CIK).
1017 */
1018 static void sdma_v3_0_vm_write_pte(struct amdgpu_ib *ib, uint64_t pe,
1019 uint64_t value, unsigned count,
1020 uint32_t incr)
1021 {
1022 unsigned ndw = count * 2;
1023
1024 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
1025 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
1026 ib->ptr[ib->length_dw++] = lower_32_bits(pe);
1027 ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1028 ib->ptr[ib->length_dw++] = ndw;
1029 for (; ndw > 0; ndw -= 2) {
1030 ib->ptr[ib->length_dw++] = lower_32_bits(value);
1031 ib->ptr[ib->length_dw++] = upper_32_bits(value);
1032 value += incr;
1033 }
1034 }
1035
1036 /**
1037 * sdma_v3_0_vm_set_pte_pde - update the page tables using sDMA
1038 *
1039 * @ib: indirect buffer to fill with commands
1040 * @pe: addr of the page entry
1041 * @addr: dst addr to write into pe
1042 * @count: number of page entries to update
1043 * @incr: increase next addr by incr bytes
1044 * @flags: access flags
1045 *
1046 * Update the page tables using sDMA (CIK).
1047 */
1048 static void sdma_v3_0_vm_set_pte_pde(struct amdgpu_ib *ib, uint64_t pe,
1049 uint64_t addr, unsigned count,
1050 uint32_t incr, uint64_t flags)
1051 {
1052 /* for physically contiguous pages (vram) */
1053 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_GEN_PTEPDE);
1054 ib->ptr[ib->length_dw++] = lower_32_bits(pe); /* dst addr */
1055 ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1056 ib->ptr[ib->length_dw++] = lower_32_bits(flags); /* mask */
1057 ib->ptr[ib->length_dw++] = upper_32_bits(flags);
1058 ib->ptr[ib->length_dw++] = lower_32_bits(addr); /* value */
1059 ib->ptr[ib->length_dw++] = upper_32_bits(addr);
1060 ib->ptr[ib->length_dw++] = incr; /* increment size */
1061 ib->ptr[ib->length_dw++] = 0;
1062 ib->ptr[ib->length_dw++] = count; /* number of entries */
1063 }
1064
1065 /**
1066 * sdma_v3_0_ring_pad_ib - pad the IB to the required number of dw
1067 *
1068 * @ib: indirect buffer to fill with padding
1069 *
1070 */
1071 static void sdma_v3_0_ring_pad_ib(struct amdgpu_ring *ring, struct amdgpu_ib *ib)
1072 {
1073 struct amdgpu_sdma_instance *sdma = amdgpu_get_sdma_instance(ring);
1074 u32 pad_count;
1075 int i;
1076
1077 pad_count = (8 - (ib->length_dw & 0x7)) % 8;
1078 for (i = 0; i < pad_count; i++)
1079 if (sdma && sdma->burst_nop && (i == 0))
1080 ib->ptr[ib->length_dw++] =
1081 SDMA_PKT_HEADER_OP(SDMA_OP_NOP) |
1082 SDMA_PKT_NOP_HEADER_COUNT(pad_count - 1);
1083 else
1084 ib->ptr[ib->length_dw++] =
1085 SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
1086 }
1087
1088 /**
1089 * sdma_v3_0_ring_emit_pipeline_sync - sync the pipeline
1090 *
1091 * @ring: amdgpu_ring pointer
1092 *
1093 * Make sure all previous operations are completed (CIK).
1094 */
1095 static void sdma_v3_0_ring_emit_pipeline_sync(struct amdgpu_ring *ring)
1096 {
1097 uint32_t seq = ring->fence_drv.sync_seq;
1098 uint64_t addr = ring->fence_drv.gpu_addr;
1099
1100 /* wait for idle */
1101 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
1102 SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) |
1103 SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3) | /* equal */
1104 SDMA_PKT_POLL_REGMEM_HEADER_MEM_POLL(1));
1105 amdgpu_ring_write(ring, addr & 0xfffffffc);
1106 amdgpu_ring_write(ring, upper_32_bits(addr) & 0xffffffff);
1107 amdgpu_ring_write(ring, seq); /* reference */
1108 amdgpu_ring_write(ring, 0xfffffff); /* mask */
1109 amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
1110 SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(4)); /* retry count, poll interval */
1111 }
1112
1113 /**
1114 * sdma_v3_0_ring_emit_vm_flush - cik vm flush using sDMA
1115 *
1116 * @ring: amdgpu_ring pointer
1117 * @vm: amdgpu_vm pointer
1118 *
1119 * Update the page table base and flush the VM TLB
1120 * using sDMA (VI).
1121 */
1122 static void sdma_v3_0_ring_emit_vm_flush(struct amdgpu_ring *ring,
1123 unsigned vm_id, uint64_t pd_addr)
1124 {
1125 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
1126 SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
1127 if (vm_id < 8) {
1128 amdgpu_ring_write(ring, (mmVM_CONTEXT0_PAGE_TABLE_BASE_ADDR + vm_id));
1129 } else {
1130 amdgpu_ring_write(ring, (mmVM_CONTEXT8_PAGE_TABLE_BASE_ADDR + vm_id - 8));
1131 }
1132 amdgpu_ring_write(ring, pd_addr >> 12);
1133
1134 /* flush TLB */
1135 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
1136 SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
1137 amdgpu_ring_write(ring, mmVM_INVALIDATE_REQUEST);
1138 amdgpu_ring_write(ring, 1 << vm_id);
1139
1140 /* wait for flush */
1141 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
1142 SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) |
1143 SDMA_PKT_POLL_REGMEM_HEADER_FUNC(0)); /* always */
1144 amdgpu_ring_write(ring, mmVM_INVALIDATE_REQUEST << 2);
1145 amdgpu_ring_write(ring, 0);
1146 amdgpu_ring_write(ring, 0); /* reference */
1147 amdgpu_ring_write(ring, 0); /* mask */
1148 amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
1149 SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */
1150 }
1151
1152 static int sdma_v3_0_early_init(void *handle)
1153 {
1154 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1155
1156 switch (adev->asic_type) {
1157 case CHIP_STONEY:
1158 adev->sdma.num_instances = 1;
1159 break;
1160 default:
1161 adev->sdma.num_instances = SDMA_MAX_INSTANCE;
1162 break;
1163 }
1164
1165 sdma_v3_0_set_ring_funcs(adev);
1166 sdma_v3_0_set_buffer_funcs(adev);
1167 sdma_v3_0_set_vm_pte_funcs(adev);
1168 sdma_v3_0_set_irq_funcs(adev);
1169
1170 return 0;
1171 }
1172
1173 static int sdma_v3_0_sw_init(void *handle)
1174 {
1175 struct amdgpu_ring *ring;
1176 int r, i;
1177 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1178
1179 /* SDMA trap event */
1180 r = amdgpu_irq_add_id(adev, AMDGPU_IH_CLIENTID_LEGACY, 224,
1181 &adev->sdma.trap_irq);
1182 if (r)
1183 return r;
1184
1185 /* SDMA Privileged inst */
1186 r = amdgpu_irq_add_id(adev, AMDGPU_IH_CLIENTID_LEGACY, 241,
1187 &adev->sdma.illegal_inst_irq);
1188 if (r)
1189 return r;
1190
1191 /* SDMA Privileged inst */
1192 r = amdgpu_irq_add_id(adev, AMDGPU_IH_CLIENTID_LEGACY, 247,
1193 &adev->sdma.illegal_inst_irq);
1194 if (r)
1195 return r;
1196
1197 r = sdma_v3_0_init_microcode(adev);
1198 if (r) {
1199 DRM_ERROR("Failed to load sdma firmware!\n");
1200 return r;
1201 }
1202
1203 for (i = 0; i < adev->sdma.num_instances; i++) {
1204 ring = &adev->sdma.instance[i].ring;
1205 ring->ring_obj = NULL;
1206 ring->use_doorbell = true;
1207 ring->doorbell_index = (i == 0) ?
1208 AMDGPU_DOORBELL_sDMA_ENGINE0 : AMDGPU_DOORBELL_sDMA_ENGINE1;
1209
1210 sprintf(ring->name, "sdma%d", i);
1211 r = amdgpu_ring_init(adev, ring, 1024,
1212 &adev->sdma.trap_irq,
1213 (i == 0) ?
1214 AMDGPU_SDMA_IRQ_TRAP0 :
1215 AMDGPU_SDMA_IRQ_TRAP1);
1216 if (r)
1217 return r;
1218 }
1219
1220 return r;
1221 }
1222
1223 static int sdma_v3_0_sw_fini(void *handle)
1224 {
1225 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1226 int i;
1227
1228 for (i = 0; i < adev->sdma.num_instances; i++)
1229 amdgpu_ring_fini(&adev->sdma.instance[i].ring);
1230
1231 sdma_v3_0_free_microcode(adev);
1232 return 0;
1233 }
1234
1235 static int sdma_v3_0_hw_init(void *handle)
1236 {
1237 int r;
1238 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1239
1240 sdma_v3_0_init_golden_registers(adev);
1241
1242 r = sdma_v3_0_start(adev);
1243 if (r)
1244 return r;
1245
1246 return r;
1247 }
1248
1249 static int sdma_v3_0_hw_fini(void *handle)
1250 {
1251 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1252
1253 sdma_v3_0_ctx_switch_enable(adev, false);
1254 sdma_v3_0_enable(adev, false);
1255
1256 return 0;
1257 }
1258
1259 static int sdma_v3_0_suspend(void *handle)
1260 {
1261 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1262
1263 return sdma_v3_0_hw_fini(adev);
1264 }
1265
1266 static int sdma_v3_0_resume(void *handle)
1267 {
1268 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1269
1270 return sdma_v3_0_hw_init(adev);
1271 }
1272
1273 static bool sdma_v3_0_is_idle(void *handle)
1274 {
1275 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1276 u32 tmp = RREG32(mmSRBM_STATUS2);
1277
1278 if (tmp & (SRBM_STATUS2__SDMA_BUSY_MASK |
1279 SRBM_STATUS2__SDMA1_BUSY_MASK))
1280 return false;
1281
1282 return true;
1283 }
1284
1285 static int sdma_v3_0_wait_for_idle(void *handle)
1286 {
1287 unsigned i;
1288 u32 tmp;
1289 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1290
1291 for (i = 0; i < adev->usec_timeout; i++) {
1292 tmp = RREG32(mmSRBM_STATUS2) & (SRBM_STATUS2__SDMA_BUSY_MASK |
1293 SRBM_STATUS2__SDMA1_BUSY_MASK);
1294
1295 if (!tmp)
1296 return 0;
1297 udelay(1);
1298 }
1299 return -ETIMEDOUT;
1300 }
1301
1302 static bool sdma_v3_0_check_soft_reset(void *handle)
1303 {
1304 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1305 u32 srbm_soft_reset = 0;
1306 u32 tmp = RREG32(mmSRBM_STATUS2);
1307
1308 if ((tmp & SRBM_STATUS2__SDMA_BUSY_MASK) ||
1309 (tmp & SRBM_STATUS2__SDMA1_BUSY_MASK)) {
1310 srbm_soft_reset |= SRBM_SOFT_RESET__SOFT_RESET_SDMA_MASK;
1311 srbm_soft_reset |= SRBM_SOFT_RESET__SOFT_RESET_SDMA1_MASK;
1312 }
1313
1314 if (srbm_soft_reset) {
1315 adev->sdma.srbm_soft_reset = srbm_soft_reset;
1316 return true;
1317 } else {
1318 adev->sdma.srbm_soft_reset = 0;
1319 return false;
1320 }
1321 }
1322
1323 static int sdma_v3_0_pre_soft_reset(void *handle)
1324 {
1325 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1326 u32 srbm_soft_reset = 0;
1327
1328 if (!adev->sdma.srbm_soft_reset)
1329 return 0;
1330
1331 srbm_soft_reset = adev->sdma.srbm_soft_reset;
1332
1333 if (REG_GET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET, SOFT_RESET_SDMA) ||
1334 REG_GET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET, SOFT_RESET_SDMA1)) {
1335 sdma_v3_0_ctx_switch_enable(adev, false);
1336 sdma_v3_0_enable(adev, false);
1337 }
1338
1339 return 0;
1340 }
1341
1342 static int sdma_v3_0_post_soft_reset(void *handle)
1343 {
1344 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1345 u32 srbm_soft_reset = 0;
1346
1347 if (!adev->sdma.srbm_soft_reset)
1348 return 0;
1349
1350 srbm_soft_reset = adev->sdma.srbm_soft_reset;
1351
1352 if (REG_GET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET, SOFT_RESET_SDMA) ||
1353 REG_GET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET, SOFT_RESET_SDMA1)) {
1354 sdma_v3_0_gfx_resume(adev);
1355 sdma_v3_0_rlc_resume(adev);
1356 }
1357
1358 return 0;
1359 }
1360
1361 static int sdma_v3_0_soft_reset(void *handle)
1362 {
1363 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1364 u32 srbm_soft_reset = 0;
1365 u32 tmp;
1366
1367 if (!adev->sdma.srbm_soft_reset)
1368 return 0;
1369
1370 srbm_soft_reset = adev->sdma.srbm_soft_reset;
1371
1372 if (srbm_soft_reset) {
1373 tmp = RREG32(mmSRBM_SOFT_RESET);
1374 tmp |= srbm_soft_reset;
1375 dev_info(adev->dev, "SRBM_SOFT_RESET=0x%08X\n", tmp);
1376 WREG32(mmSRBM_SOFT_RESET, tmp);
1377 tmp = RREG32(mmSRBM_SOFT_RESET);
1378
1379 udelay(50);
1380
1381 tmp &= ~srbm_soft_reset;
1382 WREG32(mmSRBM_SOFT_RESET, tmp);
1383 tmp = RREG32(mmSRBM_SOFT_RESET);
1384
1385 /* Wait a little for things to settle down */
1386 udelay(50);
1387 }
1388
1389 return 0;
1390 }
1391
1392 static int sdma_v3_0_set_trap_irq_state(struct amdgpu_device *adev,
1393 struct amdgpu_irq_src *source,
1394 unsigned type,
1395 enum amdgpu_interrupt_state state)
1396 {
1397 u32 sdma_cntl;
1398
1399 switch (type) {
1400 case AMDGPU_SDMA_IRQ_TRAP0:
1401 switch (state) {
1402 case AMDGPU_IRQ_STATE_DISABLE:
1403 sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET);
1404 sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 0);
1405 WREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET, sdma_cntl);
1406 break;
1407 case AMDGPU_IRQ_STATE_ENABLE:
1408 sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET);
1409 sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 1);
1410 WREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET, sdma_cntl);
1411 break;
1412 default:
1413 break;
1414 }
1415 break;
1416 case AMDGPU_SDMA_IRQ_TRAP1:
1417 switch (state) {
1418 case AMDGPU_IRQ_STATE_DISABLE:
1419 sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET);
1420 sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 0);
1421 WREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET, sdma_cntl);
1422 break;
1423 case AMDGPU_IRQ_STATE_ENABLE:
1424 sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET);
1425 sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 1);
1426 WREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET, sdma_cntl);
1427 break;
1428 default:
1429 break;
1430 }
1431 break;
1432 default:
1433 break;
1434 }
1435 return 0;
1436 }
1437
1438 static int sdma_v3_0_process_trap_irq(struct amdgpu_device *adev,
1439 struct amdgpu_irq_src *source,
1440 struct amdgpu_iv_entry *entry)
1441 {
1442 u8 instance_id, queue_id;
1443
1444 instance_id = (entry->ring_id & 0x3) >> 0;
1445 queue_id = (entry->ring_id & 0xc) >> 2;
1446 DRM_DEBUG("IH: SDMA trap\n");
1447 switch (instance_id) {
1448 case 0:
1449 switch (queue_id) {
1450 case 0:
1451 amdgpu_fence_process(&adev->sdma.instance[0].ring);
1452 break;
1453 case 1:
1454 /* XXX compute */
1455 break;
1456 case 2:
1457 /* XXX compute */
1458 break;
1459 }
1460 break;
1461 case 1:
1462 switch (queue_id) {
1463 case 0:
1464 amdgpu_fence_process(&adev->sdma.instance[1].ring);
1465 break;
1466 case 1:
1467 /* XXX compute */
1468 break;
1469 case 2:
1470 /* XXX compute */
1471 break;
1472 }
1473 break;
1474 }
1475 return 0;
1476 }
1477
1478 static int sdma_v3_0_process_illegal_inst_irq(struct amdgpu_device *adev,
1479 struct amdgpu_irq_src *source,
1480 struct amdgpu_iv_entry *entry)
1481 {
1482 DRM_ERROR("Illegal instruction in SDMA command stream\n");
1483 schedule_work(&adev->reset_work);
1484 return 0;
1485 }
1486
1487 static void sdma_v3_0_update_sdma_medium_grain_clock_gating(
1488 struct amdgpu_device *adev,
1489 bool enable)
1490 {
1491 uint32_t temp, data;
1492 int i;
1493
1494 if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_MGCG)) {
1495 for (i = 0; i < adev->sdma.num_instances; i++) {
1496 temp = data = RREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i]);
1497 data &= ~(SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
1498 SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
1499 SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
1500 SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
1501 SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
1502 SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
1503 SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
1504 SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);
1505 if (data != temp)
1506 WREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i], data);
1507 }
1508 } else {
1509 for (i = 0; i < adev->sdma.num_instances; i++) {
1510 temp = data = RREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i]);
1511 data |= SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
1512 SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
1513 SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
1514 SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
1515 SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
1516 SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
1517 SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
1518 SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK;
1519
1520 if (data != temp)
1521 WREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i], data);
1522 }
1523 }
1524 }
1525
1526 static void sdma_v3_0_update_sdma_medium_grain_light_sleep(
1527 struct amdgpu_device *adev,
1528 bool enable)
1529 {
1530 uint32_t temp, data;
1531 int i;
1532
1533 if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_LS)) {
1534 for (i = 0; i < adev->sdma.num_instances; i++) {
1535 temp = data = RREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i]);
1536 data |= SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
1537
1538 if (temp != data)
1539 WREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i], data);
1540 }
1541 } else {
1542 for (i = 0; i < adev->sdma.num_instances; i++) {
1543 temp = data = RREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i]);
1544 data &= ~SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
1545
1546 if (temp != data)
1547 WREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i], data);
1548 }
1549 }
1550 }
1551
1552 static int sdma_v3_0_set_clockgating_state(void *handle,
1553 enum amd_clockgating_state state)
1554 {
1555 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1556
1557 if (amdgpu_sriov_vf(adev))
1558 return 0;
1559
1560 switch (adev->asic_type) {
1561 case CHIP_FIJI:
1562 case CHIP_CARRIZO:
1563 case CHIP_STONEY:
1564 sdma_v3_0_update_sdma_medium_grain_clock_gating(adev,
1565 state == AMD_CG_STATE_GATE);
1566 sdma_v3_0_update_sdma_medium_grain_light_sleep(adev,
1567 state == AMD_CG_STATE_GATE);
1568 break;
1569 default:
1570 break;
1571 }
1572 return 0;
1573 }
1574
1575 static int sdma_v3_0_set_powergating_state(void *handle,
1576 enum amd_powergating_state state)
1577 {
1578 return 0;
1579 }
1580
1581 static void sdma_v3_0_get_clockgating_state(void *handle, u32 *flags)
1582 {
1583 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1584 int data;
1585
1586 if (amdgpu_sriov_vf(adev))
1587 *flags = 0;
1588
1589 /* AMD_CG_SUPPORT_SDMA_MGCG */
1590 data = RREG32(mmSDMA0_CLK_CTRL + sdma_offsets[0]);
1591 if (!(data & SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK))
1592 *flags |= AMD_CG_SUPPORT_SDMA_MGCG;
1593
1594 /* AMD_CG_SUPPORT_SDMA_LS */
1595 data = RREG32(mmSDMA0_POWER_CNTL + sdma_offsets[0]);
1596 if (data & SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK)
1597 *flags |= AMD_CG_SUPPORT_SDMA_LS;
1598 }
1599
1600 static const struct amd_ip_funcs sdma_v3_0_ip_funcs = {
1601 .name = "sdma_v3_0",
1602 .early_init = sdma_v3_0_early_init,
1603 .late_init = NULL,
1604 .sw_init = sdma_v3_0_sw_init,
1605 .sw_fini = sdma_v3_0_sw_fini,
1606 .hw_init = sdma_v3_0_hw_init,
1607 .hw_fini = sdma_v3_0_hw_fini,
1608 .suspend = sdma_v3_0_suspend,
1609 .resume = sdma_v3_0_resume,
1610 .is_idle = sdma_v3_0_is_idle,
1611 .wait_for_idle = sdma_v3_0_wait_for_idle,
1612 .check_soft_reset = sdma_v3_0_check_soft_reset,
1613 .pre_soft_reset = sdma_v3_0_pre_soft_reset,
1614 .post_soft_reset = sdma_v3_0_post_soft_reset,
1615 .soft_reset = sdma_v3_0_soft_reset,
1616 .set_clockgating_state = sdma_v3_0_set_clockgating_state,
1617 .set_powergating_state = sdma_v3_0_set_powergating_state,
1618 .get_clockgating_state = sdma_v3_0_get_clockgating_state,
1619 };
1620
1621 static const struct amdgpu_ring_funcs sdma_v3_0_ring_funcs = {
1622 .type = AMDGPU_RING_TYPE_SDMA,
1623 .align_mask = 0xf,
1624 .nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
1625 .support_64bit_ptrs = false,
1626 .get_rptr = sdma_v3_0_ring_get_rptr,
1627 .get_wptr = sdma_v3_0_ring_get_wptr,
1628 .set_wptr = sdma_v3_0_ring_set_wptr,
1629 .emit_frame_size =
1630 6 + /* sdma_v3_0_ring_emit_hdp_flush */
1631 3 + /* sdma_v3_0_ring_emit_hdp_invalidate */
1632 6 + /* sdma_v3_0_ring_emit_pipeline_sync */
1633 12 + /* sdma_v3_0_ring_emit_vm_flush */
1634 10 + 10 + 10, /* sdma_v3_0_ring_emit_fence x3 for user fence, vm fence */
1635 .emit_ib_size = 7 + 6, /* sdma_v3_0_ring_emit_ib */
1636 .emit_ib = sdma_v3_0_ring_emit_ib,
1637 .emit_fence = sdma_v3_0_ring_emit_fence,
1638 .emit_pipeline_sync = sdma_v3_0_ring_emit_pipeline_sync,
1639 .emit_vm_flush = sdma_v3_0_ring_emit_vm_flush,
1640 .emit_hdp_flush = sdma_v3_0_ring_emit_hdp_flush,
1641 .emit_hdp_invalidate = sdma_v3_0_ring_emit_hdp_invalidate,
1642 .test_ring = sdma_v3_0_ring_test_ring,
1643 .test_ib = sdma_v3_0_ring_test_ib,
1644 .insert_nop = sdma_v3_0_ring_insert_nop,
1645 .pad_ib = sdma_v3_0_ring_pad_ib,
1646 };
1647
1648 static void sdma_v3_0_set_ring_funcs(struct amdgpu_device *adev)
1649 {
1650 int i;
1651
1652 for (i = 0; i < adev->sdma.num_instances; i++)
1653 adev->sdma.instance[i].ring.funcs = &sdma_v3_0_ring_funcs;
1654 }
1655
1656 static const struct amdgpu_irq_src_funcs sdma_v3_0_trap_irq_funcs = {
1657 .set = sdma_v3_0_set_trap_irq_state,
1658 .process = sdma_v3_0_process_trap_irq,
1659 };
1660
1661 static const struct amdgpu_irq_src_funcs sdma_v3_0_illegal_inst_irq_funcs = {
1662 .process = sdma_v3_0_process_illegal_inst_irq,
1663 };
1664
1665 static void sdma_v3_0_set_irq_funcs(struct amdgpu_device *adev)
1666 {
1667 adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_LAST;
1668 adev->sdma.trap_irq.funcs = &sdma_v3_0_trap_irq_funcs;
1669 adev->sdma.illegal_inst_irq.funcs = &sdma_v3_0_illegal_inst_irq_funcs;
1670 }
1671
1672 /**
1673 * sdma_v3_0_emit_copy_buffer - copy buffer using the sDMA engine
1674 *
1675 * @ring: amdgpu_ring structure holding ring information
1676 * @src_offset: src GPU address
1677 * @dst_offset: dst GPU address
1678 * @byte_count: number of bytes to xfer
1679 *
1680 * Copy GPU buffers using the DMA engine (VI).
1681 * Used by the amdgpu ttm implementation to move pages if
1682 * registered as the asic copy callback.
1683 */
1684 static void sdma_v3_0_emit_copy_buffer(struct amdgpu_ib *ib,
1685 uint64_t src_offset,
1686 uint64_t dst_offset,
1687 uint32_t byte_count)
1688 {
1689 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
1690 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
1691 ib->ptr[ib->length_dw++] = byte_count;
1692 ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
1693 ib->ptr[ib->length_dw++] = lower_32_bits(src_offset);
1694 ib->ptr[ib->length_dw++] = upper_32_bits(src_offset);
1695 ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
1696 ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
1697 }
1698
1699 /**
1700 * sdma_v3_0_emit_fill_buffer - fill buffer using the sDMA engine
1701 *
1702 * @ring: amdgpu_ring structure holding ring information
1703 * @src_data: value to write to buffer
1704 * @dst_offset: dst GPU address
1705 * @byte_count: number of bytes to xfer
1706 *
1707 * Fill GPU buffers using the DMA engine (VI).
1708 */
1709 static void sdma_v3_0_emit_fill_buffer(struct amdgpu_ib *ib,
1710 uint32_t src_data,
1711 uint64_t dst_offset,
1712 uint32_t byte_count)
1713 {
1714 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_CONST_FILL);
1715 ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
1716 ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
1717 ib->ptr[ib->length_dw++] = src_data;
1718 ib->ptr[ib->length_dw++] = byte_count;
1719 }
1720
1721 static const struct amdgpu_buffer_funcs sdma_v3_0_buffer_funcs = {
1722 .copy_max_bytes = 0x3fffe0, /* not 0x3fffff due to HW limitation */
1723 .copy_num_dw = 7,
1724 .emit_copy_buffer = sdma_v3_0_emit_copy_buffer,
1725
1726 .fill_max_bytes = 0x3fffe0, /* not 0x3fffff due to HW limitation */
1727 .fill_num_dw = 5,
1728 .emit_fill_buffer = sdma_v3_0_emit_fill_buffer,
1729 };
1730
1731 static void sdma_v3_0_set_buffer_funcs(struct amdgpu_device *adev)
1732 {
1733 if (adev->mman.buffer_funcs == NULL) {
1734 adev->mman.buffer_funcs = &sdma_v3_0_buffer_funcs;
1735 adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].ring;
1736 }
1737 }
1738
1739 static const struct amdgpu_vm_pte_funcs sdma_v3_0_vm_pte_funcs = {
1740 .copy_pte_num_dw = 7,
1741 .copy_pte = sdma_v3_0_vm_copy_pte,
1742
1743 .write_pte = sdma_v3_0_vm_write_pte,
1744
1745 /* not 0x3fffff due to HW limitation */
1746 .set_max_nums_pte_pde = 0x3fffe0 >> 3,
1747 .set_pte_pde_num_dw = 10,
1748 .set_pte_pde = sdma_v3_0_vm_set_pte_pde,
1749 };
1750
1751 static void sdma_v3_0_set_vm_pte_funcs(struct amdgpu_device *adev)
1752 {
1753 unsigned i;
1754
1755 if (adev->vm_manager.vm_pte_funcs == NULL) {
1756 adev->vm_manager.vm_pte_funcs = &sdma_v3_0_vm_pte_funcs;
1757 for (i = 0; i < adev->sdma.num_instances; i++)
1758 adev->vm_manager.vm_pte_rings[i] =
1759 &adev->sdma.instance[i].ring;
1760
1761 adev->vm_manager.vm_pte_num_rings = adev->sdma.num_instances;
1762 }
1763 }
1764
1765 const struct amdgpu_ip_block_version sdma_v3_0_ip_block =
1766 {
1767 .type = AMD_IP_BLOCK_TYPE_SDMA,
1768 .major = 3,
1769 .minor = 0,
1770 .rev = 0,
1771 .funcs = &sdma_v3_0_ip_funcs,
1772 };
1773
1774 const struct amdgpu_ip_block_version sdma_v3_1_ip_block =
1775 {
1776 .type = AMD_IP_BLOCK_TYPE_SDMA,
1777 .major = 3,
1778 .minor = 1,
1779 .rev = 0,
1780 .funcs = &sdma_v3_0_ip_funcs,
1781 };