]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/gpu/drm/amd/amdgpu/sdma_v3_0.c
drm/amdgpu: use polling mem to set SDMA3 wptr for VF
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / amd / amdgpu / sdma_v3_0.c
1 /*
2 * Copyright 2014 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 * Authors: Alex Deucher
23 */
24 #include <linux/firmware.h>
25 #include <drm/drmP.h>
26 #include "amdgpu.h"
27 #include "amdgpu_ucode.h"
28 #include "amdgpu_trace.h"
29 #include "vi.h"
30 #include "vid.h"
31
32 #include "oss/oss_3_0_d.h"
33 #include "oss/oss_3_0_sh_mask.h"
34
35 #include "gmc/gmc_8_1_d.h"
36 #include "gmc/gmc_8_1_sh_mask.h"
37
38 #include "gca/gfx_8_0_d.h"
39 #include "gca/gfx_8_0_enum.h"
40 #include "gca/gfx_8_0_sh_mask.h"
41
42 #include "bif/bif_5_0_d.h"
43 #include "bif/bif_5_0_sh_mask.h"
44
45 #include "tonga_sdma_pkt_open.h"
46
47 static void sdma_v3_0_set_ring_funcs(struct amdgpu_device *adev);
48 static void sdma_v3_0_set_buffer_funcs(struct amdgpu_device *adev);
49 static void sdma_v3_0_set_vm_pte_funcs(struct amdgpu_device *adev);
50 static void sdma_v3_0_set_irq_funcs(struct amdgpu_device *adev);
51
52 MODULE_FIRMWARE("amdgpu/tonga_sdma.bin");
53 MODULE_FIRMWARE("amdgpu/tonga_sdma1.bin");
54 MODULE_FIRMWARE("amdgpu/carrizo_sdma.bin");
55 MODULE_FIRMWARE("amdgpu/carrizo_sdma1.bin");
56 MODULE_FIRMWARE("amdgpu/fiji_sdma.bin");
57 MODULE_FIRMWARE("amdgpu/fiji_sdma1.bin");
58 MODULE_FIRMWARE("amdgpu/stoney_sdma.bin");
59 MODULE_FIRMWARE("amdgpu/polaris10_sdma.bin");
60 MODULE_FIRMWARE("amdgpu/polaris10_sdma1.bin");
61 MODULE_FIRMWARE("amdgpu/polaris11_sdma.bin");
62 MODULE_FIRMWARE("amdgpu/polaris11_sdma1.bin");
63 MODULE_FIRMWARE("amdgpu/polaris12_sdma.bin");
64 MODULE_FIRMWARE("amdgpu/polaris12_sdma1.bin");
65
66
67 static const u32 sdma_offsets[SDMA_MAX_INSTANCE] =
68 {
69 SDMA0_REGISTER_OFFSET,
70 SDMA1_REGISTER_OFFSET
71 };
72
73 static const u32 golden_settings_tonga_a11[] =
74 {
75 mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
76 mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
77 mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
78 mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
79 mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
80 mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
81 mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
82 mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
83 mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
84 mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
85 };
86
87 static const u32 tonga_mgcg_cgcg_init[] =
88 {
89 mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
90 mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
91 };
92
93 static const u32 golden_settings_fiji_a10[] =
94 {
95 mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
96 mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
97 mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
98 mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
99 mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
100 mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
101 mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
102 mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
103 };
104
105 static const u32 fiji_mgcg_cgcg_init[] =
106 {
107 mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
108 mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
109 };
110
111 static const u32 golden_settings_polaris11_a11[] =
112 {
113 mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
114 mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
115 mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
116 mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
117 mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
118 mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
119 mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
120 mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
121 mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
122 mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
123 };
124
125 static const u32 golden_settings_polaris10_a11[] =
126 {
127 mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
128 mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
129 mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
130 mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
131 mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
132 mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
133 mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
134 mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
135 mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
136 mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
137 };
138
139 static const u32 cz_golden_settings_a11[] =
140 {
141 mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
142 mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
143 mmSDMA0_GFX_IB_CNTL, 0x00000100, 0x00000100,
144 mmSDMA0_POWER_CNTL, 0x00000800, 0x0003c800,
145 mmSDMA0_RLC0_IB_CNTL, 0x00000100, 0x00000100,
146 mmSDMA0_RLC1_IB_CNTL, 0x00000100, 0x00000100,
147 mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
148 mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
149 mmSDMA1_GFX_IB_CNTL, 0x00000100, 0x00000100,
150 mmSDMA1_POWER_CNTL, 0x00000800, 0x0003c800,
151 mmSDMA1_RLC0_IB_CNTL, 0x00000100, 0x00000100,
152 mmSDMA1_RLC1_IB_CNTL, 0x00000100, 0x00000100,
153 };
154
155 static const u32 cz_mgcg_cgcg_init[] =
156 {
157 mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
158 mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
159 };
160
161 static const u32 stoney_golden_settings_a11[] =
162 {
163 mmSDMA0_GFX_IB_CNTL, 0x00000100, 0x00000100,
164 mmSDMA0_POWER_CNTL, 0x00000800, 0x0003c800,
165 mmSDMA0_RLC0_IB_CNTL, 0x00000100, 0x00000100,
166 mmSDMA0_RLC1_IB_CNTL, 0x00000100, 0x00000100,
167 };
168
169 static const u32 stoney_mgcg_cgcg_init[] =
170 {
171 mmSDMA0_CLK_CTRL, 0xffffffff, 0x00000100,
172 };
173
174 /*
175 * sDMA - System DMA
176 * Starting with CIK, the GPU has new asynchronous
177 * DMA engines. These engines are used for compute
178 * and gfx. There are two DMA engines (SDMA0, SDMA1)
179 * and each one supports 1 ring buffer used for gfx
180 * and 2 queues used for compute.
181 *
182 * The programming model is very similar to the CP
183 * (ring buffer, IBs, etc.), but sDMA has it's own
184 * packet format that is different from the PM4 format
185 * used by the CP. sDMA supports copying data, writing
186 * embedded data, solid fills, and a number of other
187 * things. It also has support for tiling/detiling of
188 * buffers.
189 */
190
191 static void sdma_v3_0_init_golden_registers(struct amdgpu_device *adev)
192 {
193 switch (adev->asic_type) {
194 case CHIP_FIJI:
195 amdgpu_program_register_sequence(adev,
196 fiji_mgcg_cgcg_init,
197 (const u32)ARRAY_SIZE(fiji_mgcg_cgcg_init));
198 amdgpu_program_register_sequence(adev,
199 golden_settings_fiji_a10,
200 (const u32)ARRAY_SIZE(golden_settings_fiji_a10));
201 break;
202 case CHIP_TONGA:
203 amdgpu_program_register_sequence(adev,
204 tonga_mgcg_cgcg_init,
205 (const u32)ARRAY_SIZE(tonga_mgcg_cgcg_init));
206 amdgpu_program_register_sequence(adev,
207 golden_settings_tonga_a11,
208 (const u32)ARRAY_SIZE(golden_settings_tonga_a11));
209 break;
210 case CHIP_POLARIS11:
211 case CHIP_POLARIS12:
212 amdgpu_program_register_sequence(adev,
213 golden_settings_polaris11_a11,
214 (const u32)ARRAY_SIZE(golden_settings_polaris11_a11));
215 break;
216 case CHIP_POLARIS10:
217 amdgpu_program_register_sequence(adev,
218 golden_settings_polaris10_a11,
219 (const u32)ARRAY_SIZE(golden_settings_polaris10_a11));
220 break;
221 case CHIP_CARRIZO:
222 amdgpu_program_register_sequence(adev,
223 cz_mgcg_cgcg_init,
224 (const u32)ARRAY_SIZE(cz_mgcg_cgcg_init));
225 amdgpu_program_register_sequence(adev,
226 cz_golden_settings_a11,
227 (const u32)ARRAY_SIZE(cz_golden_settings_a11));
228 break;
229 case CHIP_STONEY:
230 amdgpu_program_register_sequence(adev,
231 stoney_mgcg_cgcg_init,
232 (const u32)ARRAY_SIZE(stoney_mgcg_cgcg_init));
233 amdgpu_program_register_sequence(adev,
234 stoney_golden_settings_a11,
235 (const u32)ARRAY_SIZE(stoney_golden_settings_a11));
236 break;
237 default:
238 break;
239 }
240 }
241
242 static void sdma_v3_0_free_microcode(struct amdgpu_device *adev)
243 {
244 int i;
245 for (i = 0; i < adev->sdma.num_instances; i++) {
246 release_firmware(adev->sdma.instance[i].fw);
247 adev->sdma.instance[i].fw = NULL;
248 }
249 }
250
251 /**
252 * sdma_v3_0_init_microcode - load ucode images from disk
253 *
254 * @adev: amdgpu_device pointer
255 *
256 * Use the firmware interface to load the ucode images into
257 * the driver (not loaded into hw).
258 * Returns 0 on success, error on failure.
259 */
260 static int sdma_v3_0_init_microcode(struct amdgpu_device *adev)
261 {
262 const char *chip_name;
263 char fw_name[30];
264 int err = 0, i;
265 struct amdgpu_firmware_info *info = NULL;
266 const struct common_firmware_header *header = NULL;
267 const struct sdma_firmware_header_v1_0 *hdr;
268
269 DRM_DEBUG("\n");
270
271 switch (adev->asic_type) {
272 case CHIP_TONGA:
273 chip_name = "tonga";
274 break;
275 case CHIP_FIJI:
276 chip_name = "fiji";
277 break;
278 case CHIP_POLARIS11:
279 chip_name = "polaris11";
280 break;
281 case CHIP_POLARIS10:
282 chip_name = "polaris10";
283 break;
284 case CHIP_POLARIS12:
285 chip_name = "polaris12";
286 break;
287 case CHIP_CARRIZO:
288 chip_name = "carrizo";
289 break;
290 case CHIP_STONEY:
291 chip_name = "stoney";
292 break;
293 default: BUG();
294 }
295
296 for (i = 0; i < adev->sdma.num_instances; i++) {
297 if (i == 0)
298 snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma.bin", chip_name);
299 else
300 snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma1.bin", chip_name);
301 err = request_firmware(&adev->sdma.instance[i].fw, fw_name, adev->dev);
302 if (err)
303 goto out;
304 err = amdgpu_ucode_validate(adev->sdma.instance[i].fw);
305 if (err)
306 goto out;
307 hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
308 adev->sdma.instance[i].fw_version = le32_to_cpu(hdr->header.ucode_version);
309 adev->sdma.instance[i].feature_version = le32_to_cpu(hdr->ucode_feature_version);
310 if (adev->sdma.instance[i].feature_version >= 20)
311 adev->sdma.instance[i].burst_nop = true;
312
313 if (adev->firmware.load_type == AMDGPU_FW_LOAD_SMU) {
314 info = &adev->firmware.ucode[AMDGPU_UCODE_ID_SDMA0 + i];
315 info->ucode_id = AMDGPU_UCODE_ID_SDMA0 + i;
316 info->fw = adev->sdma.instance[i].fw;
317 header = (const struct common_firmware_header *)info->fw->data;
318 adev->firmware.fw_size +=
319 ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE);
320 }
321 }
322 out:
323 if (err) {
324 pr_err("sdma_v3_0: Failed to load firmware \"%s\"\n", fw_name);
325 for (i = 0; i < adev->sdma.num_instances; i++) {
326 release_firmware(adev->sdma.instance[i].fw);
327 adev->sdma.instance[i].fw = NULL;
328 }
329 }
330 return err;
331 }
332
333 /**
334 * sdma_v3_0_ring_get_rptr - get the current read pointer
335 *
336 * @ring: amdgpu ring pointer
337 *
338 * Get the current rptr from the hardware (VI+).
339 */
340 static uint64_t sdma_v3_0_ring_get_rptr(struct amdgpu_ring *ring)
341 {
342 /* XXX check if swapping is necessary on BE */
343 return ring->adev->wb.wb[ring->rptr_offs] >> 2;
344 }
345
346 /**
347 * sdma_v3_0_ring_get_wptr - get the current write pointer
348 *
349 * @ring: amdgpu ring pointer
350 *
351 * Get the current wptr from the hardware (VI+).
352 */
353 static uint64_t sdma_v3_0_ring_get_wptr(struct amdgpu_ring *ring)
354 {
355 struct amdgpu_device *adev = ring->adev;
356 u32 wptr;
357
358 if (ring->use_doorbell || ring->use_pollmem) {
359 /* XXX check if swapping is necessary on BE */
360 wptr = ring->adev->wb.wb[ring->wptr_offs] >> 2;
361 } else {
362 int me = (ring == &ring->adev->sdma.instance[0].ring) ? 0 : 1;
363
364 wptr = RREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[me]) >> 2;
365 }
366
367 return wptr;
368 }
369
370 /**
371 * sdma_v3_0_ring_set_wptr - commit the write pointer
372 *
373 * @ring: amdgpu ring pointer
374 *
375 * Write the wptr back to the hardware (VI+).
376 */
377 static void sdma_v3_0_ring_set_wptr(struct amdgpu_ring *ring)
378 {
379 struct amdgpu_device *adev = ring->adev;
380
381 if (ring->use_doorbell) {
382 u32 *wb = (u32 *)&adev->wb.wb[ring->wptr_offs];
383 /* XXX check if swapping is necessary on BE */
384 WRITE_ONCE(*wb, (lower_32_bits(ring->wptr) << 2));
385 WDOORBELL32(ring->doorbell_index, lower_32_bits(ring->wptr) << 2);
386 } else if (ring->use_pollmem) {
387 u32 *wb = (u32 *)&adev->wb.wb[ring->wptr_offs];
388
389 WRITE_ONCE(*wb, (lower_32_bits(ring->wptr) << 2));
390 } else {
391 int me = (ring == &ring->adev->sdma.instance[0].ring) ? 0 : 1;
392
393 WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[me], lower_32_bits(ring->wptr) << 2);
394 }
395 }
396
397 static void sdma_v3_0_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count)
398 {
399 struct amdgpu_sdma_instance *sdma = amdgpu_get_sdma_instance(ring);
400 int i;
401
402 for (i = 0; i < count; i++)
403 if (sdma && sdma->burst_nop && (i == 0))
404 amdgpu_ring_write(ring, ring->funcs->nop |
405 SDMA_PKT_NOP_HEADER_COUNT(count - 1));
406 else
407 amdgpu_ring_write(ring, ring->funcs->nop);
408 }
409
410 /**
411 * sdma_v3_0_ring_emit_ib - Schedule an IB on the DMA engine
412 *
413 * @ring: amdgpu ring pointer
414 * @ib: IB object to schedule
415 *
416 * Schedule an IB in the DMA ring (VI).
417 */
418 static void sdma_v3_0_ring_emit_ib(struct amdgpu_ring *ring,
419 struct amdgpu_ib *ib,
420 unsigned vm_id, bool ctx_switch)
421 {
422 u32 vmid = vm_id & 0xf;
423
424 /* IB packet must end on a 8 DW boundary */
425 sdma_v3_0_ring_insert_nop(ring, (10 - (lower_32_bits(ring->wptr) & 7)) % 8);
426
427 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_INDIRECT) |
428 SDMA_PKT_INDIRECT_HEADER_VMID(vmid));
429 /* base must be 32 byte aligned */
430 amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr) & 0xffffffe0);
431 amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr));
432 amdgpu_ring_write(ring, ib->length_dw);
433 amdgpu_ring_write(ring, 0);
434 amdgpu_ring_write(ring, 0);
435
436 }
437
438 /**
439 * sdma_v3_0_ring_emit_hdp_flush - emit an hdp flush on the DMA ring
440 *
441 * @ring: amdgpu ring pointer
442 *
443 * Emit an hdp flush packet on the requested DMA ring.
444 */
445 static void sdma_v3_0_ring_emit_hdp_flush(struct amdgpu_ring *ring)
446 {
447 u32 ref_and_mask = 0;
448
449 if (ring == &ring->adev->sdma.instance[0].ring)
450 ref_and_mask = REG_SET_FIELD(ref_and_mask, GPU_HDP_FLUSH_DONE, SDMA0, 1);
451 else
452 ref_and_mask = REG_SET_FIELD(ref_and_mask, GPU_HDP_FLUSH_DONE, SDMA1, 1);
453
454 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
455 SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(1) |
456 SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* == */
457 amdgpu_ring_write(ring, mmGPU_HDP_FLUSH_DONE << 2);
458 amdgpu_ring_write(ring, mmGPU_HDP_FLUSH_REQ << 2);
459 amdgpu_ring_write(ring, ref_and_mask); /* reference */
460 amdgpu_ring_write(ring, ref_and_mask); /* mask */
461 amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
462 SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */
463 }
464
465 static void sdma_v3_0_ring_emit_hdp_invalidate(struct amdgpu_ring *ring)
466 {
467 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
468 SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
469 amdgpu_ring_write(ring, mmHDP_DEBUG0);
470 amdgpu_ring_write(ring, 1);
471 }
472
473 /**
474 * sdma_v3_0_ring_emit_fence - emit a fence on the DMA ring
475 *
476 * @ring: amdgpu ring pointer
477 * @fence: amdgpu fence object
478 *
479 * Add a DMA fence packet to the ring to write
480 * the fence seq number and DMA trap packet to generate
481 * an interrupt if needed (VI).
482 */
483 static void sdma_v3_0_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq,
484 unsigned flags)
485 {
486 bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT;
487 /* write the fence */
488 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
489 amdgpu_ring_write(ring, lower_32_bits(addr));
490 amdgpu_ring_write(ring, upper_32_bits(addr));
491 amdgpu_ring_write(ring, lower_32_bits(seq));
492
493 /* optionally write high bits as well */
494 if (write64bit) {
495 addr += 4;
496 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
497 amdgpu_ring_write(ring, lower_32_bits(addr));
498 amdgpu_ring_write(ring, upper_32_bits(addr));
499 amdgpu_ring_write(ring, upper_32_bits(seq));
500 }
501
502 /* generate an interrupt */
503 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_TRAP));
504 amdgpu_ring_write(ring, SDMA_PKT_TRAP_INT_CONTEXT_INT_CONTEXT(0));
505 }
506
507 /**
508 * sdma_v3_0_gfx_stop - stop the gfx async dma engines
509 *
510 * @adev: amdgpu_device pointer
511 *
512 * Stop the gfx async dma ring buffers (VI).
513 */
514 static void sdma_v3_0_gfx_stop(struct amdgpu_device *adev)
515 {
516 struct amdgpu_ring *sdma0 = &adev->sdma.instance[0].ring;
517 struct amdgpu_ring *sdma1 = &adev->sdma.instance[1].ring;
518 u32 rb_cntl, ib_cntl;
519 int i;
520
521 if ((adev->mman.buffer_funcs_ring == sdma0) ||
522 (adev->mman.buffer_funcs_ring == sdma1))
523 amdgpu_ttm_set_active_vram_size(adev, adev->mc.visible_vram_size);
524
525 for (i = 0; i < adev->sdma.num_instances; i++) {
526 rb_cntl = RREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i]);
527 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 0);
528 WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
529 ib_cntl = RREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i]);
530 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 0);
531 WREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i], ib_cntl);
532 }
533 sdma0->ready = false;
534 sdma1->ready = false;
535 }
536
537 /**
538 * sdma_v3_0_rlc_stop - stop the compute async dma engines
539 *
540 * @adev: amdgpu_device pointer
541 *
542 * Stop the compute async dma queues (VI).
543 */
544 static void sdma_v3_0_rlc_stop(struct amdgpu_device *adev)
545 {
546 /* XXX todo */
547 }
548
549 /**
550 * sdma_v3_0_ctx_switch_enable - stop the async dma engines context switch
551 *
552 * @adev: amdgpu_device pointer
553 * @enable: enable/disable the DMA MEs context switch.
554 *
555 * Halt or unhalt the async dma engines context switch (VI).
556 */
557 static void sdma_v3_0_ctx_switch_enable(struct amdgpu_device *adev, bool enable)
558 {
559 u32 f32_cntl, phase_quantum = 0;
560 int i;
561
562 if (amdgpu_sdma_phase_quantum) {
563 unsigned value = amdgpu_sdma_phase_quantum;
564 unsigned unit = 0;
565
566 while (value > (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
567 SDMA0_PHASE0_QUANTUM__VALUE__SHIFT)) {
568 value = (value + 1) >> 1;
569 unit++;
570 }
571 if (unit > (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
572 SDMA0_PHASE0_QUANTUM__UNIT__SHIFT)) {
573 value = (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
574 SDMA0_PHASE0_QUANTUM__VALUE__SHIFT);
575 unit = (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
576 SDMA0_PHASE0_QUANTUM__UNIT__SHIFT);
577 WARN_ONCE(1,
578 "clamping sdma_phase_quantum to %uK clock cycles\n",
579 value << unit);
580 }
581 phase_quantum =
582 value << SDMA0_PHASE0_QUANTUM__VALUE__SHIFT |
583 unit << SDMA0_PHASE0_QUANTUM__UNIT__SHIFT;
584 }
585
586 for (i = 0; i < adev->sdma.num_instances; i++) {
587 f32_cntl = RREG32(mmSDMA0_CNTL + sdma_offsets[i]);
588 if (enable) {
589 f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
590 AUTO_CTXSW_ENABLE, 1);
591 f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
592 ATC_L1_ENABLE, 1);
593 if (amdgpu_sdma_phase_quantum) {
594 WREG32(mmSDMA0_PHASE0_QUANTUM + sdma_offsets[i],
595 phase_quantum);
596 WREG32(mmSDMA0_PHASE1_QUANTUM + sdma_offsets[i],
597 phase_quantum);
598 }
599 } else {
600 f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
601 AUTO_CTXSW_ENABLE, 0);
602 f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
603 ATC_L1_ENABLE, 1);
604 }
605
606 WREG32(mmSDMA0_CNTL + sdma_offsets[i], f32_cntl);
607 }
608 }
609
610 /**
611 * sdma_v3_0_enable - stop the async dma engines
612 *
613 * @adev: amdgpu_device pointer
614 * @enable: enable/disable the DMA MEs.
615 *
616 * Halt or unhalt the async dma engines (VI).
617 */
618 static void sdma_v3_0_enable(struct amdgpu_device *adev, bool enable)
619 {
620 u32 f32_cntl;
621 int i;
622
623 if (!enable) {
624 sdma_v3_0_gfx_stop(adev);
625 sdma_v3_0_rlc_stop(adev);
626 }
627
628 for (i = 0; i < adev->sdma.num_instances; i++) {
629 f32_cntl = RREG32(mmSDMA0_F32_CNTL + sdma_offsets[i]);
630 if (enable)
631 f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, 0);
632 else
633 f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, 1);
634 WREG32(mmSDMA0_F32_CNTL + sdma_offsets[i], f32_cntl);
635 }
636 }
637
638 /**
639 * sdma_v3_0_gfx_resume - setup and start the async dma engines
640 *
641 * @adev: amdgpu_device pointer
642 *
643 * Set up the gfx DMA ring buffers and enable them (VI).
644 * Returns 0 for success, error for failure.
645 */
646 static int sdma_v3_0_gfx_resume(struct amdgpu_device *adev)
647 {
648 struct amdgpu_ring *ring;
649 u32 rb_cntl, ib_cntl, wptr_poll_cntl;
650 u32 rb_bufsz;
651 u32 wb_offset;
652 u32 doorbell;
653 u64 wptr_gpu_addr;
654 int i, j, r;
655
656 for (i = 0; i < adev->sdma.num_instances; i++) {
657 ring = &adev->sdma.instance[i].ring;
658 amdgpu_ring_clear_ring(ring);
659 wb_offset = (ring->rptr_offs * 4);
660
661 mutex_lock(&adev->srbm_mutex);
662 for (j = 0; j < 16; j++) {
663 vi_srbm_select(adev, 0, 0, 0, j);
664 /* SDMA GFX */
665 WREG32(mmSDMA0_GFX_VIRTUAL_ADDR + sdma_offsets[i], 0);
666 WREG32(mmSDMA0_GFX_APE1_CNTL + sdma_offsets[i], 0);
667 }
668 vi_srbm_select(adev, 0, 0, 0, 0);
669 mutex_unlock(&adev->srbm_mutex);
670
671 WREG32(mmSDMA0_TILING_CONFIG + sdma_offsets[i],
672 adev->gfx.config.gb_addr_config & 0x70);
673
674 WREG32(mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL + sdma_offsets[i], 0);
675
676 /* Set ring buffer size in dwords */
677 rb_bufsz = order_base_2(ring->ring_size / 4);
678 rb_cntl = RREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i]);
679 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SIZE, rb_bufsz);
680 #ifdef __BIG_ENDIAN
681 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SWAP_ENABLE, 1);
682 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
683 RPTR_WRITEBACK_SWAP_ENABLE, 1);
684 #endif
685 WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
686
687 /* Initialize the ring buffer's read and write pointers */
688 ring->wptr = 0;
689 WREG32(mmSDMA0_GFX_RB_RPTR + sdma_offsets[i], 0);
690 sdma_v3_0_ring_set_wptr(ring);
691 WREG32(mmSDMA0_GFX_IB_RPTR + sdma_offsets[i], 0);
692 WREG32(mmSDMA0_GFX_IB_OFFSET + sdma_offsets[i], 0);
693
694 /* set the wb address whether it's enabled or not */
695 WREG32(mmSDMA0_GFX_RB_RPTR_ADDR_HI + sdma_offsets[i],
696 upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF);
697 WREG32(mmSDMA0_GFX_RB_RPTR_ADDR_LO + sdma_offsets[i],
698 lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC);
699
700 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RPTR_WRITEBACK_ENABLE, 1);
701
702 WREG32(mmSDMA0_GFX_RB_BASE + sdma_offsets[i], ring->gpu_addr >> 8);
703 WREG32(mmSDMA0_GFX_RB_BASE_HI + sdma_offsets[i], ring->gpu_addr >> 40);
704
705 doorbell = RREG32(mmSDMA0_GFX_DOORBELL + sdma_offsets[i]);
706
707 if (ring->use_doorbell) {
708 doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL,
709 OFFSET, ring->doorbell_index);
710 doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 1);
711 } else {
712 doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 0);
713 }
714 WREG32(mmSDMA0_GFX_DOORBELL + sdma_offsets[i], doorbell);
715
716 /* setup the wptr shadow polling */
717 wptr_gpu_addr = adev->wb.gpu_addr + (ring->wptr_offs * 4);
718
719 WREG32(mmSDMA0_GFX_RB_WPTR_POLL_ADDR_LO + sdma_offsets[i],
720 lower_32_bits(wptr_gpu_addr));
721 WREG32(mmSDMA0_GFX_RB_WPTR_POLL_ADDR_HI + sdma_offsets[i],
722 upper_32_bits(wptr_gpu_addr));
723 wptr_poll_cntl = RREG32(mmSDMA0_GFX_RB_WPTR_POLL_CNTL + sdma_offsets[i]);
724 if (ring->use_pollmem)
725 wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl,
726 SDMA0_GFX_RB_WPTR_POLL_CNTL,
727 ENABLE, 1);
728 else
729 wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl,
730 SDMA0_GFX_RB_WPTR_POLL_CNTL,
731 ENABLE, 0);
732 WREG32(mmSDMA0_GFX_RB_WPTR_POLL_CNTL + sdma_offsets[i], wptr_poll_cntl);
733
734 /* enable DMA RB */
735 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 1);
736 WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
737
738 ib_cntl = RREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i]);
739 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 1);
740 #ifdef __BIG_ENDIAN
741 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_SWAP_ENABLE, 1);
742 #endif
743 /* enable DMA IBs */
744 WREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i], ib_cntl);
745
746 ring->ready = true;
747 }
748
749 /* unhalt the MEs */
750 sdma_v3_0_enable(adev, true);
751 /* enable sdma ring preemption */
752 sdma_v3_0_ctx_switch_enable(adev, true);
753
754 for (i = 0; i < adev->sdma.num_instances; i++) {
755 ring = &adev->sdma.instance[i].ring;
756 r = amdgpu_ring_test_ring(ring);
757 if (r) {
758 ring->ready = false;
759 return r;
760 }
761
762 if (adev->mman.buffer_funcs_ring == ring)
763 amdgpu_ttm_set_active_vram_size(adev, adev->mc.real_vram_size);
764 }
765
766 return 0;
767 }
768
769 /**
770 * sdma_v3_0_rlc_resume - setup and start the async dma engines
771 *
772 * @adev: amdgpu_device pointer
773 *
774 * Set up the compute DMA queues and enable them (VI).
775 * Returns 0 for success, error for failure.
776 */
777 static int sdma_v3_0_rlc_resume(struct amdgpu_device *adev)
778 {
779 /* XXX todo */
780 return 0;
781 }
782
783 /**
784 * sdma_v3_0_load_microcode - load the sDMA ME ucode
785 *
786 * @adev: amdgpu_device pointer
787 *
788 * Loads the sDMA0/1 ucode.
789 * Returns 0 for success, -EINVAL if the ucode is not available.
790 */
791 static int sdma_v3_0_load_microcode(struct amdgpu_device *adev)
792 {
793 const struct sdma_firmware_header_v1_0 *hdr;
794 const __le32 *fw_data;
795 u32 fw_size;
796 int i, j;
797
798 /* halt the MEs */
799 sdma_v3_0_enable(adev, false);
800
801 for (i = 0; i < adev->sdma.num_instances; i++) {
802 if (!adev->sdma.instance[i].fw)
803 return -EINVAL;
804 hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
805 amdgpu_ucode_print_sdma_hdr(&hdr->header);
806 fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4;
807 fw_data = (const __le32 *)
808 (adev->sdma.instance[i].fw->data +
809 le32_to_cpu(hdr->header.ucode_array_offset_bytes));
810 WREG32(mmSDMA0_UCODE_ADDR + sdma_offsets[i], 0);
811 for (j = 0; j < fw_size; j++)
812 WREG32(mmSDMA0_UCODE_DATA + sdma_offsets[i], le32_to_cpup(fw_data++));
813 WREG32(mmSDMA0_UCODE_ADDR + sdma_offsets[i], adev->sdma.instance[i].fw_version);
814 }
815
816 return 0;
817 }
818
819 /**
820 * sdma_v3_0_start - setup and start the async dma engines
821 *
822 * @adev: amdgpu_device pointer
823 *
824 * Set up the DMA engines and enable them (VI).
825 * Returns 0 for success, error for failure.
826 */
827 static int sdma_v3_0_start(struct amdgpu_device *adev)
828 {
829 int r;
830
831 if (adev->firmware.load_type == AMDGPU_FW_LOAD_DIRECT) {
832 r = sdma_v3_0_load_microcode(adev);
833 if (r)
834 return r;
835 }
836
837 /* disable sdma engine before programing it */
838 sdma_v3_0_ctx_switch_enable(adev, false);
839 sdma_v3_0_enable(adev, false);
840
841 /* start the gfx rings and rlc compute queues */
842 r = sdma_v3_0_gfx_resume(adev);
843 if (r)
844 return r;
845 r = sdma_v3_0_rlc_resume(adev);
846 if (r)
847 return r;
848
849 return 0;
850 }
851
852 /**
853 * sdma_v3_0_ring_test_ring - simple async dma engine test
854 *
855 * @ring: amdgpu_ring structure holding ring information
856 *
857 * Test the DMA engine by writing using it to write an
858 * value to memory. (VI).
859 * Returns 0 for success, error for failure.
860 */
861 static int sdma_v3_0_ring_test_ring(struct amdgpu_ring *ring)
862 {
863 struct amdgpu_device *adev = ring->adev;
864 unsigned i;
865 unsigned index;
866 int r;
867 u32 tmp;
868 u64 gpu_addr;
869
870 r = amdgpu_wb_get(adev, &index);
871 if (r) {
872 dev_err(adev->dev, "(%d) failed to allocate wb slot\n", r);
873 return r;
874 }
875
876 gpu_addr = adev->wb.gpu_addr + (index * 4);
877 tmp = 0xCAFEDEAD;
878 adev->wb.wb[index] = cpu_to_le32(tmp);
879
880 r = amdgpu_ring_alloc(ring, 5);
881 if (r) {
882 DRM_ERROR("amdgpu: dma failed to lock ring %d (%d).\n", ring->idx, r);
883 amdgpu_wb_free(adev, index);
884 return r;
885 }
886
887 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
888 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR));
889 amdgpu_ring_write(ring, lower_32_bits(gpu_addr));
890 amdgpu_ring_write(ring, upper_32_bits(gpu_addr));
891 amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1));
892 amdgpu_ring_write(ring, 0xDEADBEEF);
893 amdgpu_ring_commit(ring);
894
895 for (i = 0; i < adev->usec_timeout; i++) {
896 tmp = le32_to_cpu(adev->wb.wb[index]);
897 if (tmp == 0xDEADBEEF)
898 break;
899 DRM_UDELAY(1);
900 }
901
902 if (i < adev->usec_timeout) {
903 DRM_INFO("ring test on %d succeeded in %d usecs\n", ring->idx, i);
904 } else {
905 DRM_ERROR("amdgpu: ring %d test failed (0x%08X)\n",
906 ring->idx, tmp);
907 r = -EINVAL;
908 }
909 amdgpu_wb_free(adev, index);
910
911 return r;
912 }
913
914 /**
915 * sdma_v3_0_ring_test_ib - test an IB on the DMA engine
916 *
917 * @ring: amdgpu_ring structure holding ring information
918 *
919 * Test a simple IB in the DMA ring (VI).
920 * Returns 0 on success, error on failure.
921 */
922 static int sdma_v3_0_ring_test_ib(struct amdgpu_ring *ring, long timeout)
923 {
924 struct amdgpu_device *adev = ring->adev;
925 struct amdgpu_ib ib;
926 struct dma_fence *f = NULL;
927 unsigned index;
928 u32 tmp = 0;
929 u64 gpu_addr;
930 long r;
931
932 r = amdgpu_wb_get(adev, &index);
933 if (r) {
934 dev_err(adev->dev, "(%ld) failed to allocate wb slot\n", r);
935 return r;
936 }
937
938 gpu_addr = adev->wb.gpu_addr + (index * 4);
939 tmp = 0xCAFEDEAD;
940 adev->wb.wb[index] = cpu_to_le32(tmp);
941 memset(&ib, 0, sizeof(ib));
942 r = amdgpu_ib_get(adev, NULL, 256, &ib);
943 if (r) {
944 DRM_ERROR("amdgpu: failed to get ib (%ld).\n", r);
945 goto err0;
946 }
947
948 ib.ptr[0] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
949 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
950 ib.ptr[1] = lower_32_bits(gpu_addr);
951 ib.ptr[2] = upper_32_bits(gpu_addr);
952 ib.ptr[3] = SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1);
953 ib.ptr[4] = 0xDEADBEEF;
954 ib.ptr[5] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
955 ib.ptr[6] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
956 ib.ptr[7] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
957 ib.length_dw = 8;
958
959 r = amdgpu_ib_schedule(ring, 1, &ib, NULL, &f);
960 if (r)
961 goto err1;
962
963 r = dma_fence_wait_timeout(f, false, timeout);
964 if (r == 0) {
965 DRM_ERROR("amdgpu: IB test timed out\n");
966 r = -ETIMEDOUT;
967 goto err1;
968 } else if (r < 0) {
969 DRM_ERROR("amdgpu: fence wait failed (%ld).\n", r);
970 goto err1;
971 }
972 tmp = le32_to_cpu(adev->wb.wb[index]);
973 if (tmp == 0xDEADBEEF) {
974 DRM_INFO("ib test on ring %d succeeded\n", ring->idx);
975 r = 0;
976 } else {
977 DRM_ERROR("amdgpu: ib test failed (0x%08X)\n", tmp);
978 r = -EINVAL;
979 }
980 err1:
981 amdgpu_ib_free(adev, &ib, NULL);
982 dma_fence_put(f);
983 err0:
984 amdgpu_wb_free(adev, index);
985 return r;
986 }
987
988 /**
989 * sdma_v3_0_vm_copy_pte - update PTEs by copying them from the GART
990 *
991 * @ib: indirect buffer to fill with commands
992 * @pe: addr of the page entry
993 * @src: src addr to copy from
994 * @count: number of page entries to update
995 *
996 * Update PTEs by copying them from the GART using sDMA (CIK).
997 */
998 static void sdma_v3_0_vm_copy_pte(struct amdgpu_ib *ib,
999 uint64_t pe, uint64_t src,
1000 unsigned count)
1001 {
1002 unsigned bytes = count * 8;
1003
1004 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
1005 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
1006 ib->ptr[ib->length_dw++] = bytes;
1007 ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
1008 ib->ptr[ib->length_dw++] = lower_32_bits(src);
1009 ib->ptr[ib->length_dw++] = upper_32_bits(src);
1010 ib->ptr[ib->length_dw++] = lower_32_bits(pe);
1011 ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1012 }
1013
1014 /**
1015 * sdma_v3_0_vm_write_pte - update PTEs by writing them manually
1016 *
1017 * @ib: indirect buffer to fill with commands
1018 * @pe: addr of the page entry
1019 * @value: dst addr to write into pe
1020 * @count: number of page entries to update
1021 * @incr: increase next addr by incr bytes
1022 *
1023 * Update PTEs by writing them manually using sDMA (CIK).
1024 */
1025 static void sdma_v3_0_vm_write_pte(struct amdgpu_ib *ib, uint64_t pe,
1026 uint64_t value, unsigned count,
1027 uint32_t incr)
1028 {
1029 unsigned ndw = count * 2;
1030
1031 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
1032 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
1033 ib->ptr[ib->length_dw++] = lower_32_bits(pe);
1034 ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1035 ib->ptr[ib->length_dw++] = ndw;
1036 for (; ndw > 0; ndw -= 2) {
1037 ib->ptr[ib->length_dw++] = lower_32_bits(value);
1038 ib->ptr[ib->length_dw++] = upper_32_bits(value);
1039 value += incr;
1040 }
1041 }
1042
1043 /**
1044 * sdma_v3_0_vm_set_pte_pde - update the page tables using sDMA
1045 *
1046 * @ib: indirect buffer to fill with commands
1047 * @pe: addr of the page entry
1048 * @addr: dst addr to write into pe
1049 * @count: number of page entries to update
1050 * @incr: increase next addr by incr bytes
1051 * @flags: access flags
1052 *
1053 * Update the page tables using sDMA (CIK).
1054 */
1055 static void sdma_v3_0_vm_set_pte_pde(struct amdgpu_ib *ib, uint64_t pe,
1056 uint64_t addr, unsigned count,
1057 uint32_t incr, uint64_t flags)
1058 {
1059 /* for physically contiguous pages (vram) */
1060 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_GEN_PTEPDE);
1061 ib->ptr[ib->length_dw++] = lower_32_bits(pe); /* dst addr */
1062 ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1063 ib->ptr[ib->length_dw++] = lower_32_bits(flags); /* mask */
1064 ib->ptr[ib->length_dw++] = upper_32_bits(flags);
1065 ib->ptr[ib->length_dw++] = lower_32_bits(addr); /* value */
1066 ib->ptr[ib->length_dw++] = upper_32_bits(addr);
1067 ib->ptr[ib->length_dw++] = incr; /* increment size */
1068 ib->ptr[ib->length_dw++] = 0;
1069 ib->ptr[ib->length_dw++] = count; /* number of entries */
1070 }
1071
1072 /**
1073 * sdma_v3_0_ring_pad_ib - pad the IB to the required number of dw
1074 *
1075 * @ib: indirect buffer to fill with padding
1076 *
1077 */
1078 static void sdma_v3_0_ring_pad_ib(struct amdgpu_ring *ring, struct amdgpu_ib *ib)
1079 {
1080 struct amdgpu_sdma_instance *sdma = amdgpu_get_sdma_instance(ring);
1081 u32 pad_count;
1082 int i;
1083
1084 pad_count = (8 - (ib->length_dw & 0x7)) % 8;
1085 for (i = 0; i < pad_count; i++)
1086 if (sdma && sdma->burst_nop && (i == 0))
1087 ib->ptr[ib->length_dw++] =
1088 SDMA_PKT_HEADER_OP(SDMA_OP_NOP) |
1089 SDMA_PKT_NOP_HEADER_COUNT(pad_count - 1);
1090 else
1091 ib->ptr[ib->length_dw++] =
1092 SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
1093 }
1094
1095 /**
1096 * sdma_v3_0_ring_emit_pipeline_sync - sync the pipeline
1097 *
1098 * @ring: amdgpu_ring pointer
1099 *
1100 * Make sure all previous operations are completed (CIK).
1101 */
1102 static void sdma_v3_0_ring_emit_pipeline_sync(struct amdgpu_ring *ring)
1103 {
1104 uint32_t seq = ring->fence_drv.sync_seq;
1105 uint64_t addr = ring->fence_drv.gpu_addr;
1106
1107 /* wait for idle */
1108 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
1109 SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) |
1110 SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3) | /* equal */
1111 SDMA_PKT_POLL_REGMEM_HEADER_MEM_POLL(1));
1112 amdgpu_ring_write(ring, addr & 0xfffffffc);
1113 amdgpu_ring_write(ring, upper_32_bits(addr) & 0xffffffff);
1114 amdgpu_ring_write(ring, seq); /* reference */
1115 amdgpu_ring_write(ring, 0xfffffff); /* mask */
1116 amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
1117 SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(4)); /* retry count, poll interval */
1118 }
1119
1120 /**
1121 * sdma_v3_0_ring_emit_vm_flush - cik vm flush using sDMA
1122 *
1123 * @ring: amdgpu_ring pointer
1124 * @vm: amdgpu_vm pointer
1125 *
1126 * Update the page table base and flush the VM TLB
1127 * using sDMA (VI).
1128 */
1129 static void sdma_v3_0_ring_emit_vm_flush(struct amdgpu_ring *ring,
1130 unsigned vm_id, uint64_t pd_addr)
1131 {
1132 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
1133 SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
1134 if (vm_id < 8) {
1135 amdgpu_ring_write(ring, (mmVM_CONTEXT0_PAGE_TABLE_BASE_ADDR + vm_id));
1136 } else {
1137 amdgpu_ring_write(ring, (mmVM_CONTEXT8_PAGE_TABLE_BASE_ADDR + vm_id - 8));
1138 }
1139 amdgpu_ring_write(ring, pd_addr >> 12);
1140
1141 /* flush TLB */
1142 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
1143 SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
1144 amdgpu_ring_write(ring, mmVM_INVALIDATE_REQUEST);
1145 amdgpu_ring_write(ring, 1 << vm_id);
1146
1147 /* wait for flush */
1148 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
1149 SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) |
1150 SDMA_PKT_POLL_REGMEM_HEADER_FUNC(0)); /* always */
1151 amdgpu_ring_write(ring, mmVM_INVALIDATE_REQUEST << 2);
1152 amdgpu_ring_write(ring, 0);
1153 amdgpu_ring_write(ring, 0); /* reference */
1154 amdgpu_ring_write(ring, 0); /* mask */
1155 amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
1156 SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */
1157 }
1158
1159 static int sdma_v3_0_early_init(void *handle)
1160 {
1161 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1162
1163 switch (adev->asic_type) {
1164 case CHIP_STONEY:
1165 adev->sdma.num_instances = 1;
1166 break;
1167 default:
1168 adev->sdma.num_instances = SDMA_MAX_INSTANCE;
1169 break;
1170 }
1171
1172 sdma_v3_0_set_ring_funcs(adev);
1173 sdma_v3_0_set_buffer_funcs(adev);
1174 sdma_v3_0_set_vm_pte_funcs(adev);
1175 sdma_v3_0_set_irq_funcs(adev);
1176
1177 return 0;
1178 }
1179
1180 static int sdma_v3_0_sw_init(void *handle)
1181 {
1182 struct amdgpu_ring *ring;
1183 int r, i;
1184 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1185
1186 /* SDMA trap event */
1187 r = amdgpu_irq_add_id(adev, AMDGPU_IH_CLIENTID_LEGACY, 224,
1188 &adev->sdma.trap_irq);
1189 if (r)
1190 return r;
1191
1192 /* SDMA Privileged inst */
1193 r = amdgpu_irq_add_id(adev, AMDGPU_IH_CLIENTID_LEGACY, 241,
1194 &adev->sdma.illegal_inst_irq);
1195 if (r)
1196 return r;
1197
1198 /* SDMA Privileged inst */
1199 r = amdgpu_irq_add_id(adev, AMDGPU_IH_CLIENTID_LEGACY, 247,
1200 &adev->sdma.illegal_inst_irq);
1201 if (r)
1202 return r;
1203
1204 r = sdma_v3_0_init_microcode(adev);
1205 if (r) {
1206 DRM_ERROR("Failed to load sdma firmware!\n");
1207 return r;
1208 }
1209
1210 for (i = 0; i < adev->sdma.num_instances; i++) {
1211 ring = &adev->sdma.instance[i].ring;
1212 ring->ring_obj = NULL;
1213 if (!amdgpu_sriov_vf(adev)) {
1214 ring->use_doorbell = true;
1215 ring->doorbell_index = (i == 0) ?
1216 AMDGPU_DOORBELL_sDMA_ENGINE0 : AMDGPU_DOORBELL_sDMA_ENGINE1;
1217 } else {
1218 ring->use_pollmem = true;
1219 }
1220
1221 sprintf(ring->name, "sdma%d", i);
1222 r = amdgpu_ring_init(adev, ring, 1024,
1223 &adev->sdma.trap_irq,
1224 (i == 0) ?
1225 AMDGPU_SDMA_IRQ_TRAP0 :
1226 AMDGPU_SDMA_IRQ_TRAP1);
1227 if (r)
1228 return r;
1229 }
1230
1231 return r;
1232 }
1233
1234 static int sdma_v3_0_sw_fini(void *handle)
1235 {
1236 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1237 int i;
1238
1239 for (i = 0; i < adev->sdma.num_instances; i++)
1240 amdgpu_ring_fini(&adev->sdma.instance[i].ring);
1241
1242 sdma_v3_0_free_microcode(adev);
1243 return 0;
1244 }
1245
1246 static int sdma_v3_0_hw_init(void *handle)
1247 {
1248 int r;
1249 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1250
1251 sdma_v3_0_init_golden_registers(adev);
1252
1253 r = sdma_v3_0_start(adev);
1254 if (r)
1255 return r;
1256
1257 return r;
1258 }
1259
1260 static int sdma_v3_0_hw_fini(void *handle)
1261 {
1262 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1263
1264 sdma_v3_0_ctx_switch_enable(adev, false);
1265 sdma_v3_0_enable(adev, false);
1266
1267 return 0;
1268 }
1269
1270 static int sdma_v3_0_suspend(void *handle)
1271 {
1272 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1273
1274 return sdma_v3_0_hw_fini(adev);
1275 }
1276
1277 static int sdma_v3_0_resume(void *handle)
1278 {
1279 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1280
1281 return sdma_v3_0_hw_init(adev);
1282 }
1283
1284 static bool sdma_v3_0_is_idle(void *handle)
1285 {
1286 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1287 u32 tmp = RREG32(mmSRBM_STATUS2);
1288
1289 if (tmp & (SRBM_STATUS2__SDMA_BUSY_MASK |
1290 SRBM_STATUS2__SDMA1_BUSY_MASK))
1291 return false;
1292
1293 return true;
1294 }
1295
1296 static int sdma_v3_0_wait_for_idle(void *handle)
1297 {
1298 unsigned i;
1299 u32 tmp;
1300 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1301
1302 for (i = 0; i < adev->usec_timeout; i++) {
1303 tmp = RREG32(mmSRBM_STATUS2) & (SRBM_STATUS2__SDMA_BUSY_MASK |
1304 SRBM_STATUS2__SDMA1_BUSY_MASK);
1305
1306 if (!tmp)
1307 return 0;
1308 udelay(1);
1309 }
1310 return -ETIMEDOUT;
1311 }
1312
1313 static bool sdma_v3_0_check_soft_reset(void *handle)
1314 {
1315 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1316 u32 srbm_soft_reset = 0;
1317 u32 tmp = RREG32(mmSRBM_STATUS2);
1318
1319 if ((tmp & SRBM_STATUS2__SDMA_BUSY_MASK) ||
1320 (tmp & SRBM_STATUS2__SDMA1_BUSY_MASK)) {
1321 srbm_soft_reset |= SRBM_SOFT_RESET__SOFT_RESET_SDMA_MASK;
1322 srbm_soft_reset |= SRBM_SOFT_RESET__SOFT_RESET_SDMA1_MASK;
1323 }
1324
1325 if (srbm_soft_reset) {
1326 adev->sdma.srbm_soft_reset = srbm_soft_reset;
1327 return true;
1328 } else {
1329 adev->sdma.srbm_soft_reset = 0;
1330 return false;
1331 }
1332 }
1333
1334 static int sdma_v3_0_pre_soft_reset(void *handle)
1335 {
1336 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1337 u32 srbm_soft_reset = 0;
1338
1339 if (!adev->sdma.srbm_soft_reset)
1340 return 0;
1341
1342 srbm_soft_reset = adev->sdma.srbm_soft_reset;
1343
1344 if (REG_GET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET, SOFT_RESET_SDMA) ||
1345 REG_GET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET, SOFT_RESET_SDMA1)) {
1346 sdma_v3_0_ctx_switch_enable(adev, false);
1347 sdma_v3_0_enable(adev, false);
1348 }
1349
1350 return 0;
1351 }
1352
1353 static int sdma_v3_0_post_soft_reset(void *handle)
1354 {
1355 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1356 u32 srbm_soft_reset = 0;
1357
1358 if (!adev->sdma.srbm_soft_reset)
1359 return 0;
1360
1361 srbm_soft_reset = adev->sdma.srbm_soft_reset;
1362
1363 if (REG_GET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET, SOFT_RESET_SDMA) ||
1364 REG_GET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET, SOFT_RESET_SDMA1)) {
1365 sdma_v3_0_gfx_resume(adev);
1366 sdma_v3_0_rlc_resume(adev);
1367 }
1368
1369 return 0;
1370 }
1371
1372 static int sdma_v3_0_soft_reset(void *handle)
1373 {
1374 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1375 u32 srbm_soft_reset = 0;
1376 u32 tmp;
1377
1378 if (!adev->sdma.srbm_soft_reset)
1379 return 0;
1380
1381 srbm_soft_reset = adev->sdma.srbm_soft_reset;
1382
1383 if (srbm_soft_reset) {
1384 tmp = RREG32(mmSRBM_SOFT_RESET);
1385 tmp |= srbm_soft_reset;
1386 dev_info(adev->dev, "SRBM_SOFT_RESET=0x%08X\n", tmp);
1387 WREG32(mmSRBM_SOFT_RESET, tmp);
1388 tmp = RREG32(mmSRBM_SOFT_RESET);
1389
1390 udelay(50);
1391
1392 tmp &= ~srbm_soft_reset;
1393 WREG32(mmSRBM_SOFT_RESET, tmp);
1394 tmp = RREG32(mmSRBM_SOFT_RESET);
1395
1396 /* Wait a little for things to settle down */
1397 udelay(50);
1398 }
1399
1400 return 0;
1401 }
1402
1403 static int sdma_v3_0_set_trap_irq_state(struct amdgpu_device *adev,
1404 struct amdgpu_irq_src *source,
1405 unsigned type,
1406 enum amdgpu_interrupt_state state)
1407 {
1408 u32 sdma_cntl;
1409
1410 switch (type) {
1411 case AMDGPU_SDMA_IRQ_TRAP0:
1412 switch (state) {
1413 case AMDGPU_IRQ_STATE_DISABLE:
1414 sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET);
1415 sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 0);
1416 WREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET, sdma_cntl);
1417 break;
1418 case AMDGPU_IRQ_STATE_ENABLE:
1419 sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET);
1420 sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 1);
1421 WREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET, sdma_cntl);
1422 break;
1423 default:
1424 break;
1425 }
1426 break;
1427 case AMDGPU_SDMA_IRQ_TRAP1:
1428 switch (state) {
1429 case AMDGPU_IRQ_STATE_DISABLE:
1430 sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET);
1431 sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 0);
1432 WREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET, sdma_cntl);
1433 break;
1434 case AMDGPU_IRQ_STATE_ENABLE:
1435 sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET);
1436 sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 1);
1437 WREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET, sdma_cntl);
1438 break;
1439 default:
1440 break;
1441 }
1442 break;
1443 default:
1444 break;
1445 }
1446 return 0;
1447 }
1448
1449 static int sdma_v3_0_process_trap_irq(struct amdgpu_device *adev,
1450 struct amdgpu_irq_src *source,
1451 struct amdgpu_iv_entry *entry)
1452 {
1453 u8 instance_id, queue_id;
1454
1455 instance_id = (entry->ring_id & 0x3) >> 0;
1456 queue_id = (entry->ring_id & 0xc) >> 2;
1457 DRM_DEBUG("IH: SDMA trap\n");
1458 switch (instance_id) {
1459 case 0:
1460 switch (queue_id) {
1461 case 0:
1462 amdgpu_fence_process(&adev->sdma.instance[0].ring);
1463 break;
1464 case 1:
1465 /* XXX compute */
1466 break;
1467 case 2:
1468 /* XXX compute */
1469 break;
1470 }
1471 break;
1472 case 1:
1473 switch (queue_id) {
1474 case 0:
1475 amdgpu_fence_process(&adev->sdma.instance[1].ring);
1476 break;
1477 case 1:
1478 /* XXX compute */
1479 break;
1480 case 2:
1481 /* XXX compute */
1482 break;
1483 }
1484 break;
1485 }
1486 return 0;
1487 }
1488
1489 static int sdma_v3_0_process_illegal_inst_irq(struct amdgpu_device *adev,
1490 struct amdgpu_irq_src *source,
1491 struct amdgpu_iv_entry *entry)
1492 {
1493 DRM_ERROR("Illegal instruction in SDMA command stream\n");
1494 schedule_work(&adev->reset_work);
1495 return 0;
1496 }
1497
1498 static void sdma_v3_0_update_sdma_medium_grain_clock_gating(
1499 struct amdgpu_device *adev,
1500 bool enable)
1501 {
1502 uint32_t temp, data;
1503 int i;
1504
1505 if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_MGCG)) {
1506 for (i = 0; i < adev->sdma.num_instances; i++) {
1507 temp = data = RREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i]);
1508 data &= ~(SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
1509 SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
1510 SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
1511 SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
1512 SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
1513 SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
1514 SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
1515 SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);
1516 if (data != temp)
1517 WREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i], data);
1518 }
1519 } else {
1520 for (i = 0; i < adev->sdma.num_instances; i++) {
1521 temp = data = RREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i]);
1522 data |= SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
1523 SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
1524 SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
1525 SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
1526 SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
1527 SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
1528 SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
1529 SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK;
1530
1531 if (data != temp)
1532 WREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i], data);
1533 }
1534 }
1535 }
1536
1537 static void sdma_v3_0_update_sdma_medium_grain_light_sleep(
1538 struct amdgpu_device *adev,
1539 bool enable)
1540 {
1541 uint32_t temp, data;
1542 int i;
1543
1544 if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_LS)) {
1545 for (i = 0; i < adev->sdma.num_instances; i++) {
1546 temp = data = RREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i]);
1547 data |= SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
1548
1549 if (temp != data)
1550 WREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i], data);
1551 }
1552 } else {
1553 for (i = 0; i < adev->sdma.num_instances; i++) {
1554 temp = data = RREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i]);
1555 data &= ~SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
1556
1557 if (temp != data)
1558 WREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i], data);
1559 }
1560 }
1561 }
1562
1563 static int sdma_v3_0_set_clockgating_state(void *handle,
1564 enum amd_clockgating_state state)
1565 {
1566 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1567
1568 if (amdgpu_sriov_vf(adev))
1569 return 0;
1570
1571 switch (adev->asic_type) {
1572 case CHIP_FIJI:
1573 case CHIP_CARRIZO:
1574 case CHIP_STONEY:
1575 sdma_v3_0_update_sdma_medium_grain_clock_gating(adev,
1576 state == AMD_CG_STATE_GATE);
1577 sdma_v3_0_update_sdma_medium_grain_light_sleep(adev,
1578 state == AMD_CG_STATE_GATE);
1579 break;
1580 default:
1581 break;
1582 }
1583 return 0;
1584 }
1585
1586 static int sdma_v3_0_set_powergating_state(void *handle,
1587 enum amd_powergating_state state)
1588 {
1589 return 0;
1590 }
1591
1592 static void sdma_v3_0_get_clockgating_state(void *handle, u32 *flags)
1593 {
1594 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1595 int data;
1596
1597 if (amdgpu_sriov_vf(adev))
1598 *flags = 0;
1599
1600 /* AMD_CG_SUPPORT_SDMA_MGCG */
1601 data = RREG32(mmSDMA0_CLK_CTRL + sdma_offsets[0]);
1602 if (!(data & SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK))
1603 *flags |= AMD_CG_SUPPORT_SDMA_MGCG;
1604
1605 /* AMD_CG_SUPPORT_SDMA_LS */
1606 data = RREG32(mmSDMA0_POWER_CNTL + sdma_offsets[0]);
1607 if (data & SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK)
1608 *flags |= AMD_CG_SUPPORT_SDMA_LS;
1609 }
1610
1611 static const struct amd_ip_funcs sdma_v3_0_ip_funcs = {
1612 .name = "sdma_v3_0",
1613 .early_init = sdma_v3_0_early_init,
1614 .late_init = NULL,
1615 .sw_init = sdma_v3_0_sw_init,
1616 .sw_fini = sdma_v3_0_sw_fini,
1617 .hw_init = sdma_v3_0_hw_init,
1618 .hw_fini = sdma_v3_0_hw_fini,
1619 .suspend = sdma_v3_0_suspend,
1620 .resume = sdma_v3_0_resume,
1621 .is_idle = sdma_v3_0_is_idle,
1622 .wait_for_idle = sdma_v3_0_wait_for_idle,
1623 .check_soft_reset = sdma_v3_0_check_soft_reset,
1624 .pre_soft_reset = sdma_v3_0_pre_soft_reset,
1625 .post_soft_reset = sdma_v3_0_post_soft_reset,
1626 .soft_reset = sdma_v3_0_soft_reset,
1627 .set_clockgating_state = sdma_v3_0_set_clockgating_state,
1628 .set_powergating_state = sdma_v3_0_set_powergating_state,
1629 .get_clockgating_state = sdma_v3_0_get_clockgating_state,
1630 };
1631
1632 static const struct amdgpu_ring_funcs sdma_v3_0_ring_funcs = {
1633 .type = AMDGPU_RING_TYPE_SDMA,
1634 .align_mask = 0xf,
1635 .nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
1636 .support_64bit_ptrs = false,
1637 .get_rptr = sdma_v3_0_ring_get_rptr,
1638 .get_wptr = sdma_v3_0_ring_get_wptr,
1639 .set_wptr = sdma_v3_0_ring_set_wptr,
1640 .emit_frame_size =
1641 6 + /* sdma_v3_0_ring_emit_hdp_flush */
1642 3 + /* sdma_v3_0_ring_emit_hdp_invalidate */
1643 6 + /* sdma_v3_0_ring_emit_pipeline_sync */
1644 12 + /* sdma_v3_0_ring_emit_vm_flush */
1645 10 + 10 + 10, /* sdma_v3_0_ring_emit_fence x3 for user fence, vm fence */
1646 .emit_ib_size = 7 + 6, /* sdma_v3_0_ring_emit_ib */
1647 .emit_ib = sdma_v3_0_ring_emit_ib,
1648 .emit_fence = sdma_v3_0_ring_emit_fence,
1649 .emit_pipeline_sync = sdma_v3_0_ring_emit_pipeline_sync,
1650 .emit_vm_flush = sdma_v3_0_ring_emit_vm_flush,
1651 .emit_hdp_flush = sdma_v3_0_ring_emit_hdp_flush,
1652 .emit_hdp_invalidate = sdma_v3_0_ring_emit_hdp_invalidate,
1653 .test_ring = sdma_v3_0_ring_test_ring,
1654 .test_ib = sdma_v3_0_ring_test_ib,
1655 .insert_nop = sdma_v3_0_ring_insert_nop,
1656 .pad_ib = sdma_v3_0_ring_pad_ib,
1657 };
1658
1659 static void sdma_v3_0_set_ring_funcs(struct amdgpu_device *adev)
1660 {
1661 int i;
1662
1663 for (i = 0; i < adev->sdma.num_instances; i++)
1664 adev->sdma.instance[i].ring.funcs = &sdma_v3_0_ring_funcs;
1665 }
1666
1667 static const struct amdgpu_irq_src_funcs sdma_v3_0_trap_irq_funcs = {
1668 .set = sdma_v3_0_set_trap_irq_state,
1669 .process = sdma_v3_0_process_trap_irq,
1670 };
1671
1672 static const struct amdgpu_irq_src_funcs sdma_v3_0_illegal_inst_irq_funcs = {
1673 .process = sdma_v3_0_process_illegal_inst_irq,
1674 };
1675
1676 static void sdma_v3_0_set_irq_funcs(struct amdgpu_device *adev)
1677 {
1678 adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_LAST;
1679 adev->sdma.trap_irq.funcs = &sdma_v3_0_trap_irq_funcs;
1680 adev->sdma.illegal_inst_irq.funcs = &sdma_v3_0_illegal_inst_irq_funcs;
1681 }
1682
1683 /**
1684 * sdma_v3_0_emit_copy_buffer - copy buffer using the sDMA engine
1685 *
1686 * @ring: amdgpu_ring structure holding ring information
1687 * @src_offset: src GPU address
1688 * @dst_offset: dst GPU address
1689 * @byte_count: number of bytes to xfer
1690 *
1691 * Copy GPU buffers using the DMA engine (VI).
1692 * Used by the amdgpu ttm implementation to move pages if
1693 * registered as the asic copy callback.
1694 */
1695 static void sdma_v3_0_emit_copy_buffer(struct amdgpu_ib *ib,
1696 uint64_t src_offset,
1697 uint64_t dst_offset,
1698 uint32_t byte_count)
1699 {
1700 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
1701 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
1702 ib->ptr[ib->length_dw++] = byte_count;
1703 ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
1704 ib->ptr[ib->length_dw++] = lower_32_bits(src_offset);
1705 ib->ptr[ib->length_dw++] = upper_32_bits(src_offset);
1706 ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
1707 ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
1708 }
1709
1710 /**
1711 * sdma_v3_0_emit_fill_buffer - fill buffer using the sDMA engine
1712 *
1713 * @ring: amdgpu_ring structure holding ring information
1714 * @src_data: value to write to buffer
1715 * @dst_offset: dst GPU address
1716 * @byte_count: number of bytes to xfer
1717 *
1718 * Fill GPU buffers using the DMA engine (VI).
1719 */
1720 static void sdma_v3_0_emit_fill_buffer(struct amdgpu_ib *ib,
1721 uint32_t src_data,
1722 uint64_t dst_offset,
1723 uint32_t byte_count)
1724 {
1725 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_CONST_FILL);
1726 ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
1727 ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
1728 ib->ptr[ib->length_dw++] = src_data;
1729 ib->ptr[ib->length_dw++] = byte_count;
1730 }
1731
1732 static const struct amdgpu_buffer_funcs sdma_v3_0_buffer_funcs = {
1733 .copy_max_bytes = 0x3fffe0, /* not 0x3fffff due to HW limitation */
1734 .copy_num_dw = 7,
1735 .emit_copy_buffer = sdma_v3_0_emit_copy_buffer,
1736
1737 .fill_max_bytes = 0x3fffe0, /* not 0x3fffff due to HW limitation */
1738 .fill_num_dw = 5,
1739 .emit_fill_buffer = sdma_v3_0_emit_fill_buffer,
1740 };
1741
1742 static void sdma_v3_0_set_buffer_funcs(struct amdgpu_device *adev)
1743 {
1744 if (adev->mman.buffer_funcs == NULL) {
1745 adev->mman.buffer_funcs = &sdma_v3_0_buffer_funcs;
1746 adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].ring;
1747 }
1748 }
1749
1750 static const struct amdgpu_vm_pte_funcs sdma_v3_0_vm_pte_funcs = {
1751 .copy_pte_num_dw = 7,
1752 .copy_pte = sdma_v3_0_vm_copy_pte,
1753
1754 .write_pte = sdma_v3_0_vm_write_pte,
1755
1756 /* not 0x3fffff due to HW limitation */
1757 .set_max_nums_pte_pde = 0x3fffe0 >> 3,
1758 .set_pte_pde_num_dw = 10,
1759 .set_pte_pde = sdma_v3_0_vm_set_pte_pde,
1760 };
1761
1762 static void sdma_v3_0_set_vm_pte_funcs(struct amdgpu_device *adev)
1763 {
1764 unsigned i;
1765
1766 if (adev->vm_manager.vm_pte_funcs == NULL) {
1767 adev->vm_manager.vm_pte_funcs = &sdma_v3_0_vm_pte_funcs;
1768 for (i = 0; i < adev->sdma.num_instances; i++)
1769 adev->vm_manager.vm_pte_rings[i] =
1770 &adev->sdma.instance[i].ring;
1771
1772 adev->vm_manager.vm_pte_num_rings = adev->sdma.num_instances;
1773 }
1774 }
1775
1776 const struct amdgpu_ip_block_version sdma_v3_0_ip_block =
1777 {
1778 .type = AMD_IP_BLOCK_TYPE_SDMA,
1779 .major = 3,
1780 .minor = 0,
1781 .rev = 0,
1782 .funcs = &sdma_v3_0_ip_funcs,
1783 };
1784
1785 const struct amdgpu_ip_block_version sdma_v3_1_ip_block =
1786 {
1787 .type = AMD_IP_BLOCK_TYPE_SDMA,
1788 .major = 3,
1789 .minor = 1,
1790 .rev = 0,
1791 .funcs = &sdma_v3_0_ip_funcs,
1792 };