]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - drivers/gpu/drm/amd/amdgpu/sdma_v3_0.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
[mirror_ubuntu-eoan-kernel.git] / drivers / gpu / drm / amd / amdgpu / sdma_v3_0.c
1 /*
2 * Copyright 2014 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 * Authors: Alex Deucher
23 */
24 #include <linux/firmware.h>
25 #include <drm/drmP.h>
26 #include "amdgpu.h"
27 #include "amdgpu_ucode.h"
28 #include "amdgpu_trace.h"
29 #include "vi.h"
30 #include "vid.h"
31
32 #include "oss/oss_3_0_d.h"
33 #include "oss/oss_3_0_sh_mask.h"
34
35 #include "gmc/gmc_8_1_d.h"
36 #include "gmc/gmc_8_1_sh_mask.h"
37
38 #include "gca/gfx_8_0_d.h"
39 #include "gca/gfx_8_0_enum.h"
40 #include "gca/gfx_8_0_sh_mask.h"
41
42 #include "bif/bif_5_0_d.h"
43 #include "bif/bif_5_0_sh_mask.h"
44
45 #include "tonga_sdma_pkt_open.h"
46
47 static void sdma_v3_0_set_ring_funcs(struct amdgpu_device *adev);
48 static void sdma_v3_0_set_buffer_funcs(struct amdgpu_device *adev);
49 static void sdma_v3_0_set_vm_pte_funcs(struct amdgpu_device *adev);
50 static void sdma_v3_0_set_irq_funcs(struct amdgpu_device *adev);
51
52 MODULE_FIRMWARE("amdgpu/tonga_sdma.bin");
53 MODULE_FIRMWARE("amdgpu/tonga_sdma1.bin");
54 MODULE_FIRMWARE("amdgpu/carrizo_sdma.bin");
55 MODULE_FIRMWARE("amdgpu/carrizo_sdma1.bin");
56 MODULE_FIRMWARE("amdgpu/fiji_sdma.bin");
57 MODULE_FIRMWARE("amdgpu/fiji_sdma1.bin");
58 MODULE_FIRMWARE("amdgpu/stoney_sdma.bin");
59 MODULE_FIRMWARE("amdgpu/polaris10_sdma.bin");
60 MODULE_FIRMWARE("amdgpu/polaris10_sdma1.bin");
61 MODULE_FIRMWARE("amdgpu/polaris11_sdma.bin");
62 MODULE_FIRMWARE("amdgpu/polaris11_sdma1.bin");
63
64
65 static const u32 sdma_offsets[SDMA_MAX_INSTANCE] =
66 {
67 SDMA0_REGISTER_OFFSET,
68 SDMA1_REGISTER_OFFSET
69 };
70
71 static const u32 golden_settings_tonga_a11[] =
72 {
73 mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
74 mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
75 mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
76 mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
77 mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
78 mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
79 mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
80 mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
81 mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
82 mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
83 };
84
85 static const u32 tonga_mgcg_cgcg_init[] =
86 {
87 mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
88 mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
89 };
90
91 static const u32 golden_settings_fiji_a10[] =
92 {
93 mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
94 mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
95 mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
96 mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
97 mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
98 mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
99 mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
100 mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
101 };
102
103 static const u32 fiji_mgcg_cgcg_init[] =
104 {
105 mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
106 mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
107 };
108
109 static const u32 golden_settings_polaris11_a11[] =
110 {
111 mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
112 mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
113 mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
114 mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
115 mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
116 mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
117 mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
118 mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
119 mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
120 mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
121 };
122
123 static const u32 golden_settings_polaris10_a11[] =
124 {
125 mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
126 mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
127 mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
128 mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
129 mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
130 mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
131 mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
132 mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
133 mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
134 mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
135 };
136
137 static const u32 cz_golden_settings_a11[] =
138 {
139 mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
140 mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
141 mmSDMA0_GFX_IB_CNTL, 0x00000100, 0x00000100,
142 mmSDMA0_POWER_CNTL, 0x00000800, 0x0003c800,
143 mmSDMA0_RLC0_IB_CNTL, 0x00000100, 0x00000100,
144 mmSDMA0_RLC1_IB_CNTL, 0x00000100, 0x00000100,
145 mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
146 mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
147 mmSDMA1_GFX_IB_CNTL, 0x00000100, 0x00000100,
148 mmSDMA1_POWER_CNTL, 0x00000800, 0x0003c800,
149 mmSDMA1_RLC0_IB_CNTL, 0x00000100, 0x00000100,
150 mmSDMA1_RLC1_IB_CNTL, 0x00000100, 0x00000100,
151 };
152
153 static const u32 cz_mgcg_cgcg_init[] =
154 {
155 mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
156 mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
157 };
158
159 static const u32 stoney_golden_settings_a11[] =
160 {
161 mmSDMA0_GFX_IB_CNTL, 0x00000100, 0x00000100,
162 mmSDMA0_POWER_CNTL, 0x00000800, 0x0003c800,
163 mmSDMA0_RLC0_IB_CNTL, 0x00000100, 0x00000100,
164 mmSDMA0_RLC1_IB_CNTL, 0x00000100, 0x00000100,
165 };
166
167 static const u32 stoney_mgcg_cgcg_init[] =
168 {
169 mmSDMA0_CLK_CTRL, 0xffffffff, 0x00000100,
170 };
171
172 /*
173 * sDMA - System DMA
174 * Starting with CIK, the GPU has new asynchronous
175 * DMA engines. These engines are used for compute
176 * and gfx. There are two DMA engines (SDMA0, SDMA1)
177 * and each one supports 1 ring buffer used for gfx
178 * and 2 queues used for compute.
179 *
180 * The programming model is very similar to the CP
181 * (ring buffer, IBs, etc.), but sDMA has it's own
182 * packet format that is different from the PM4 format
183 * used by the CP. sDMA supports copying data, writing
184 * embedded data, solid fills, and a number of other
185 * things. It also has support for tiling/detiling of
186 * buffers.
187 */
188
189 static void sdma_v3_0_init_golden_registers(struct amdgpu_device *adev)
190 {
191 switch (adev->asic_type) {
192 case CHIP_FIJI:
193 amdgpu_program_register_sequence(adev,
194 fiji_mgcg_cgcg_init,
195 (const u32)ARRAY_SIZE(fiji_mgcg_cgcg_init));
196 amdgpu_program_register_sequence(adev,
197 golden_settings_fiji_a10,
198 (const u32)ARRAY_SIZE(golden_settings_fiji_a10));
199 break;
200 case CHIP_TONGA:
201 amdgpu_program_register_sequence(adev,
202 tonga_mgcg_cgcg_init,
203 (const u32)ARRAY_SIZE(tonga_mgcg_cgcg_init));
204 amdgpu_program_register_sequence(adev,
205 golden_settings_tonga_a11,
206 (const u32)ARRAY_SIZE(golden_settings_tonga_a11));
207 break;
208 case CHIP_POLARIS11:
209 amdgpu_program_register_sequence(adev,
210 golden_settings_polaris11_a11,
211 (const u32)ARRAY_SIZE(golden_settings_polaris11_a11));
212 break;
213 case CHIP_POLARIS10:
214 amdgpu_program_register_sequence(adev,
215 golden_settings_polaris10_a11,
216 (const u32)ARRAY_SIZE(golden_settings_polaris10_a11));
217 break;
218 case CHIP_CARRIZO:
219 amdgpu_program_register_sequence(adev,
220 cz_mgcg_cgcg_init,
221 (const u32)ARRAY_SIZE(cz_mgcg_cgcg_init));
222 amdgpu_program_register_sequence(adev,
223 cz_golden_settings_a11,
224 (const u32)ARRAY_SIZE(cz_golden_settings_a11));
225 break;
226 case CHIP_STONEY:
227 amdgpu_program_register_sequence(adev,
228 stoney_mgcg_cgcg_init,
229 (const u32)ARRAY_SIZE(stoney_mgcg_cgcg_init));
230 amdgpu_program_register_sequence(adev,
231 stoney_golden_settings_a11,
232 (const u32)ARRAY_SIZE(stoney_golden_settings_a11));
233 break;
234 default:
235 break;
236 }
237 }
238
239 static void sdma_v3_0_free_microcode(struct amdgpu_device *adev)
240 {
241 int i;
242 for (i = 0; i < adev->sdma.num_instances; i++) {
243 release_firmware(adev->sdma.instance[i].fw);
244 adev->sdma.instance[i].fw = NULL;
245 }
246 }
247
248 /**
249 * sdma_v3_0_init_microcode - load ucode images from disk
250 *
251 * @adev: amdgpu_device pointer
252 *
253 * Use the firmware interface to load the ucode images into
254 * the driver (not loaded into hw).
255 * Returns 0 on success, error on failure.
256 */
257 static int sdma_v3_0_init_microcode(struct amdgpu_device *adev)
258 {
259 const char *chip_name;
260 char fw_name[30];
261 int err = 0, i;
262 struct amdgpu_firmware_info *info = NULL;
263 const struct common_firmware_header *header = NULL;
264 const struct sdma_firmware_header_v1_0 *hdr;
265
266 DRM_DEBUG("\n");
267
268 switch (adev->asic_type) {
269 case CHIP_TONGA:
270 chip_name = "tonga";
271 break;
272 case CHIP_FIJI:
273 chip_name = "fiji";
274 break;
275 case CHIP_POLARIS11:
276 chip_name = "polaris11";
277 break;
278 case CHIP_POLARIS10:
279 chip_name = "polaris10";
280 break;
281 case CHIP_CARRIZO:
282 chip_name = "carrizo";
283 break;
284 case CHIP_STONEY:
285 chip_name = "stoney";
286 break;
287 default: BUG();
288 }
289
290 for (i = 0; i < adev->sdma.num_instances; i++) {
291 if (i == 0)
292 snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma.bin", chip_name);
293 else
294 snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma1.bin", chip_name);
295 err = request_firmware(&adev->sdma.instance[i].fw, fw_name, adev->dev);
296 if (err)
297 goto out;
298 err = amdgpu_ucode_validate(adev->sdma.instance[i].fw);
299 if (err)
300 goto out;
301 hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
302 adev->sdma.instance[i].fw_version = le32_to_cpu(hdr->header.ucode_version);
303 adev->sdma.instance[i].feature_version = le32_to_cpu(hdr->ucode_feature_version);
304 if (adev->sdma.instance[i].feature_version >= 20)
305 adev->sdma.instance[i].burst_nop = true;
306
307 if (adev->firmware.smu_load) {
308 info = &adev->firmware.ucode[AMDGPU_UCODE_ID_SDMA0 + i];
309 info->ucode_id = AMDGPU_UCODE_ID_SDMA0 + i;
310 info->fw = adev->sdma.instance[i].fw;
311 header = (const struct common_firmware_header *)info->fw->data;
312 adev->firmware.fw_size +=
313 ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE);
314 }
315 }
316 out:
317 if (err) {
318 printk(KERN_ERR
319 "sdma_v3_0: Failed to load firmware \"%s\"\n",
320 fw_name);
321 for (i = 0; i < adev->sdma.num_instances; i++) {
322 release_firmware(adev->sdma.instance[i].fw);
323 adev->sdma.instance[i].fw = NULL;
324 }
325 }
326 return err;
327 }
328
329 /**
330 * sdma_v3_0_ring_get_rptr - get the current read pointer
331 *
332 * @ring: amdgpu ring pointer
333 *
334 * Get the current rptr from the hardware (VI+).
335 */
336 static uint32_t sdma_v3_0_ring_get_rptr(struct amdgpu_ring *ring)
337 {
338 u32 rptr;
339
340 /* XXX check if swapping is necessary on BE */
341 rptr = ring->adev->wb.wb[ring->rptr_offs] >> 2;
342
343 return rptr;
344 }
345
346 /**
347 * sdma_v3_0_ring_get_wptr - get the current write pointer
348 *
349 * @ring: amdgpu ring pointer
350 *
351 * Get the current wptr from the hardware (VI+).
352 */
353 static uint32_t sdma_v3_0_ring_get_wptr(struct amdgpu_ring *ring)
354 {
355 struct amdgpu_device *adev = ring->adev;
356 u32 wptr;
357
358 if (ring->use_doorbell) {
359 /* XXX check if swapping is necessary on BE */
360 wptr = ring->adev->wb.wb[ring->wptr_offs] >> 2;
361 } else {
362 int me = (ring == &ring->adev->sdma.instance[0].ring) ? 0 : 1;
363
364 wptr = RREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[me]) >> 2;
365 }
366
367 return wptr;
368 }
369
370 /**
371 * sdma_v3_0_ring_set_wptr - commit the write pointer
372 *
373 * @ring: amdgpu ring pointer
374 *
375 * Write the wptr back to the hardware (VI+).
376 */
377 static void sdma_v3_0_ring_set_wptr(struct amdgpu_ring *ring)
378 {
379 struct amdgpu_device *adev = ring->adev;
380
381 if (ring->use_doorbell) {
382 /* XXX check if swapping is necessary on BE */
383 adev->wb.wb[ring->wptr_offs] = ring->wptr << 2;
384 WDOORBELL32(ring->doorbell_index, ring->wptr << 2);
385 } else {
386 int me = (ring == &ring->adev->sdma.instance[0].ring) ? 0 : 1;
387
388 WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[me], ring->wptr << 2);
389 }
390 }
391
392 static void sdma_v3_0_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count)
393 {
394 struct amdgpu_sdma_instance *sdma = amdgpu_get_sdma_instance(ring);
395 int i;
396
397 for (i = 0; i < count; i++)
398 if (sdma && sdma->burst_nop && (i == 0))
399 amdgpu_ring_write(ring, ring->nop |
400 SDMA_PKT_NOP_HEADER_COUNT(count - 1));
401 else
402 amdgpu_ring_write(ring, ring->nop);
403 }
404
405 /**
406 * sdma_v3_0_ring_emit_ib - Schedule an IB on the DMA engine
407 *
408 * @ring: amdgpu ring pointer
409 * @ib: IB object to schedule
410 *
411 * Schedule an IB in the DMA ring (VI).
412 */
413 static void sdma_v3_0_ring_emit_ib(struct amdgpu_ring *ring,
414 struct amdgpu_ib *ib,
415 unsigned vm_id, bool ctx_switch)
416 {
417 u32 vmid = vm_id & 0xf;
418 u32 next_rptr = ring->wptr + 5;
419
420 while ((next_rptr & 7) != 2)
421 next_rptr++;
422 next_rptr += 6;
423
424 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
425 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR));
426 amdgpu_ring_write(ring, lower_32_bits(ring->next_rptr_gpu_addr) & 0xfffffffc);
427 amdgpu_ring_write(ring, upper_32_bits(ring->next_rptr_gpu_addr));
428 amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1));
429 amdgpu_ring_write(ring, next_rptr);
430
431 /* IB packet must end on a 8 DW boundary */
432 sdma_v3_0_ring_insert_nop(ring, (10 - (ring->wptr & 7)) % 8);
433
434 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_INDIRECT) |
435 SDMA_PKT_INDIRECT_HEADER_VMID(vmid));
436 /* base must be 32 byte aligned */
437 amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr) & 0xffffffe0);
438 amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr));
439 amdgpu_ring_write(ring, ib->length_dw);
440 amdgpu_ring_write(ring, 0);
441 amdgpu_ring_write(ring, 0);
442
443 }
444
445 /**
446 * sdma_v3_0_ring_emit_hdp_flush - emit an hdp flush on the DMA ring
447 *
448 * @ring: amdgpu ring pointer
449 *
450 * Emit an hdp flush packet on the requested DMA ring.
451 */
452 static void sdma_v3_0_ring_emit_hdp_flush(struct amdgpu_ring *ring)
453 {
454 u32 ref_and_mask = 0;
455
456 if (ring == &ring->adev->sdma.instance[0].ring)
457 ref_and_mask = REG_SET_FIELD(ref_and_mask, GPU_HDP_FLUSH_DONE, SDMA0, 1);
458 else
459 ref_and_mask = REG_SET_FIELD(ref_and_mask, GPU_HDP_FLUSH_DONE, SDMA1, 1);
460
461 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
462 SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(1) |
463 SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* == */
464 amdgpu_ring_write(ring, mmGPU_HDP_FLUSH_DONE << 2);
465 amdgpu_ring_write(ring, mmGPU_HDP_FLUSH_REQ << 2);
466 amdgpu_ring_write(ring, ref_and_mask); /* reference */
467 amdgpu_ring_write(ring, ref_and_mask); /* mask */
468 amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
469 SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */
470 }
471
472 static void sdma_v3_0_ring_emit_hdp_invalidate(struct amdgpu_ring *ring)
473 {
474 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
475 SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
476 amdgpu_ring_write(ring, mmHDP_DEBUG0);
477 amdgpu_ring_write(ring, 1);
478 }
479
480 /**
481 * sdma_v3_0_ring_emit_fence - emit a fence on the DMA ring
482 *
483 * @ring: amdgpu ring pointer
484 * @fence: amdgpu fence object
485 *
486 * Add a DMA fence packet to the ring to write
487 * the fence seq number and DMA trap packet to generate
488 * an interrupt if needed (VI).
489 */
490 static void sdma_v3_0_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq,
491 unsigned flags)
492 {
493 bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT;
494 /* write the fence */
495 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
496 amdgpu_ring_write(ring, lower_32_bits(addr));
497 amdgpu_ring_write(ring, upper_32_bits(addr));
498 amdgpu_ring_write(ring, lower_32_bits(seq));
499
500 /* optionally write high bits as well */
501 if (write64bit) {
502 addr += 4;
503 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
504 amdgpu_ring_write(ring, lower_32_bits(addr));
505 amdgpu_ring_write(ring, upper_32_bits(addr));
506 amdgpu_ring_write(ring, upper_32_bits(seq));
507 }
508
509 /* generate an interrupt */
510 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_TRAP));
511 amdgpu_ring_write(ring, SDMA_PKT_TRAP_INT_CONTEXT_INT_CONTEXT(0));
512 }
513
514 unsigned init_cond_exec(struct amdgpu_ring *ring)
515 {
516 unsigned ret;
517 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_COND_EXE));
518 amdgpu_ring_write(ring, lower_32_bits(ring->cond_exe_gpu_addr));
519 amdgpu_ring_write(ring, upper_32_bits(ring->cond_exe_gpu_addr));
520 amdgpu_ring_write(ring, 1);
521 ret = ring->wptr;/* this is the offset we need patch later */
522 amdgpu_ring_write(ring, 0x55aa55aa);/* insert dummy here and patch it later */
523 return ret;
524 }
525
526 void patch_cond_exec(struct amdgpu_ring *ring, unsigned offset)
527 {
528 unsigned cur;
529 BUG_ON(ring->ring[offset] != 0x55aa55aa);
530
531 cur = ring->wptr - 1;
532 if (likely(cur > offset))
533 ring->ring[offset] = cur - offset;
534 else
535 ring->ring[offset] = (ring->ring_size>>2) - offset + cur;
536 }
537
538
539 /**
540 * sdma_v3_0_gfx_stop - stop the gfx async dma engines
541 *
542 * @adev: amdgpu_device pointer
543 *
544 * Stop the gfx async dma ring buffers (VI).
545 */
546 static void sdma_v3_0_gfx_stop(struct amdgpu_device *adev)
547 {
548 struct amdgpu_ring *sdma0 = &adev->sdma.instance[0].ring;
549 struct amdgpu_ring *sdma1 = &adev->sdma.instance[1].ring;
550 u32 rb_cntl, ib_cntl;
551 int i;
552
553 if ((adev->mman.buffer_funcs_ring == sdma0) ||
554 (adev->mman.buffer_funcs_ring == sdma1))
555 amdgpu_ttm_set_active_vram_size(adev, adev->mc.visible_vram_size);
556
557 for (i = 0; i < adev->sdma.num_instances; i++) {
558 rb_cntl = RREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i]);
559 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 0);
560 WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
561 ib_cntl = RREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i]);
562 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 0);
563 WREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i], ib_cntl);
564 }
565 sdma0->ready = false;
566 sdma1->ready = false;
567 }
568
569 /**
570 * sdma_v3_0_rlc_stop - stop the compute async dma engines
571 *
572 * @adev: amdgpu_device pointer
573 *
574 * Stop the compute async dma queues (VI).
575 */
576 static void sdma_v3_0_rlc_stop(struct amdgpu_device *adev)
577 {
578 /* XXX todo */
579 }
580
581 /**
582 * sdma_v3_0_ctx_switch_enable - stop the async dma engines context switch
583 *
584 * @adev: amdgpu_device pointer
585 * @enable: enable/disable the DMA MEs context switch.
586 *
587 * Halt or unhalt the async dma engines context switch (VI).
588 */
589 static void sdma_v3_0_ctx_switch_enable(struct amdgpu_device *adev, bool enable)
590 {
591 u32 f32_cntl;
592 int i;
593
594 for (i = 0; i < adev->sdma.num_instances; i++) {
595 f32_cntl = RREG32(mmSDMA0_CNTL + sdma_offsets[i]);
596 if (enable)
597 f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
598 AUTO_CTXSW_ENABLE, 1);
599 else
600 f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
601 AUTO_CTXSW_ENABLE, 0);
602 WREG32(mmSDMA0_CNTL + sdma_offsets[i], f32_cntl);
603 }
604 }
605
606 /**
607 * sdma_v3_0_enable - stop the async dma engines
608 *
609 * @adev: amdgpu_device pointer
610 * @enable: enable/disable the DMA MEs.
611 *
612 * Halt or unhalt the async dma engines (VI).
613 */
614 static void sdma_v3_0_enable(struct amdgpu_device *adev, bool enable)
615 {
616 u32 f32_cntl;
617 int i;
618
619 if (enable == false) {
620 sdma_v3_0_gfx_stop(adev);
621 sdma_v3_0_rlc_stop(adev);
622 }
623
624 for (i = 0; i < adev->sdma.num_instances; i++) {
625 f32_cntl = RREG32(mmSDMA0_F32_CNTL + sdma_offsets[i]);
626 if (enable)
627 f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, 0);
628 else
629 f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, 1);
630 WREG32(mmSDMA0_F32_CNTL + sdma_offsets[i], f32_cntl);
631 }
632 }
633
634 /**
635 * sdma_v3_0_gfx_resume - setup and start the async dma engines
636 *
637 * @adev: amdgpu_device pointer
638 *
639 * Set up the gfx DMA ring buffers and enable them (VI).
640 * Returns 0 for success, error for failure.
641 */
642 static int sdma_v3_0_gfx_resume(struct amdgpu_device *adev)
643 {
644 struct amdgpu_ring *ring;
645 u32 rb_cntl, ib_cntl;
646 u32 rb_bufsz;
647 u32 wb_offset;
648 u32 doorbell;
649 int i, j, r;
650
651 for (i = 0; i < adev->sdma.num_instances; i++) {
652 ring = &adev->sdma.instance[i].ring;
653 wb_offset = (ring->rptr_offs * 4);
654
655 mutex_lock(&adev->srbm_mutex);
656 for (j = 0; j < 16; j++) {
657 vi_srbm_select(adev, 0, 0, 0, j);
658 /* SDMA GFX */
659 WREG32(mmSDMA0_GFX_VIRTUAL_ADDR + sdma_offsets[i], 0);
660 WREG32(mmSDMA0_GFX_APE1_CNTL + sdma_offsets[i], 0);
661 }
662 vi_srbm_select(adev, 0, 0, 0, 0);
663 mutex_unlock(&adev->srbm_mutex);
664
665 WREG32(mmSDMA0_TILING_CONFIG + sdma_offsets[i],
666 adev->gfx.config.gb_addr_config & 0x70);
667
668 WREG32(mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL + sdma_offsets[i], 0);
669
670 /* Set ring buffer size in dwords */
671 rb_bufsz = order_base_2(ring->ring_size / 4);
672 rb_cntl = RREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i]);
673 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SIZE, rb_bufsz);
674 #ifdef __BIG_ENDIAN
675 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SWAP_ENABLE, 1);
676 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
677 RPTR_WRITEBACK_SWAP_ENABLE, 1);
678 #endif
679 WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
680
681 /* Initialize the ring buffer's read and write pointers */
682 WREG32(mmSDMA0_GFX_RB_RPTR + sdma_offsets[i], 0);
683 WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[i], 0);
684 WREG32(mmSDMA0_GFX_IB_RPTR + sdma_offsets[i], 0);
685 WREG32(mmSDMA0_GFX_IB_OFFSET + sdma_offsets[i], 0);
686
687 /* set the wb address whether it's enabled or not */
688 WREG32(mmSDMA0_GFX_RB_RPTR_ADDR_HI + sdma_offsets[i],
689 upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF);
690 WREG32(mmSDMA0_GFX_RB_RPTR_ADDR_LO + sdma_offsets[i],
691 lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC);
692
693 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RPTR_WRITEBACK_ENABLE, 1);
694
695 WREG32(mmSDMA0_GFX_RB_BASE + sdma_offsets[i], ring->gpu_addr >> 8);
696 WREG32(mmSDMA0_GFX_RB_BASE_HI + sdma_offsets[i], ring->gpu_addr >> 40);
697
698 ring->wptr = 0;
699 WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[i], ring->wptr << 2);
700
701 doorbell = RREG32(mmSDMA0_GFX_DOORBELL + sdma_offsets[i]);
702
703 if (ring->use_doorbell) {
704 doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL,
705 OFFSET, ring->doorbell_index);
706 doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 1);
707 } else {
708 doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 0);
709 }
710 WREG32(mmSDMA0_GFX_DOORBELL + sdma_offsets[i], doorbell);
711
712 /* enable DMA RB */
713 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 1);
714 WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
715
716 ib_cntl = RREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i]);
717 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 1);
718 #ifdef __BIG_ENDIAN
719 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_SWAP_ENABLE, 1);
720 #endif
721 /* enable DMA IBs */
722 WREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i], ib_cntl);
723
724 ring->ready = true;
725 }
726
727 /* unhalt the MEs */
728 sdma_v3_0_enable(adev, true);
729 /* enable sdma ring preemption */
730 sdma_v3_0_ctx_switch_enable(adev, true);
731
732 for (i = 0; i < adev->sdma.num_instances; i++) {
733 ring = &adev->sdma.instance[i].ring;
734 r = amdgpu_ring_test_ring(ring);
735 if (r) {
736 ring->ready = false;
737 return r;
738 }
739
740 if (adev->mman.buffer_funcs_ring == ring)
741 amdgpu_ttm_set_active_vram_size(adev, adev->mc.real_vram_size);
742 }
743
744 return 0;
745 }
746
747 /**
748 * sdma_v3_0_rlc_resume - setup and start the async dma engines
749 *
750 * @adev: amdgpu_device pointer
751 *
752 * Set up the compute DMA queues and enable them (VI).
753 * Returns 0 for success, error for failure.
754 */
755 static int sdma_v3_0_rlc_resume(struct amdgpu_device *adev)
756 {
757 /* XXX todo */
758 return 0;
759 }
760
761 /**
762 * sdma_v3_0_load_microcode - load the sDMA ME ucode
763 *
764 * @adev: amdgpu_device pointer
765 *
766 * Loads the sDMA0/1 ucode.
767 * Returns 0 for success, -EINVAL if the ucode is not available.
768 */
769 static int sdma_v3_0_load_microcode(struct amdgpu_device *adev)
770 {
771 const struct sdma_firmware_header_v1_0 *hdr;
772 const __le32 *fw_data;
773 u32 fw_size;
774 int i, j;
775
776 /* halt the MEs */
777 sdma_v3_0_enable(adev, false);
778
779 for (i = 0; i < adev->sdma.num_instances; i++) {
780 if (!adev->sdma.instance[i].fw)
781 return -EINVAL;
782 hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
783 amdgpu_ucode_print_sdma_hdr(&hdr->header);
784 fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4;
785 fw_data = (const __le32 *)
786 (adev->sdma.instance[i].fw->data +
787 le32_to_cpu(hdr->header.ucode_array_offset_bytes));
788 WREG32(mmSDMA0_UCODE_ADDR + sdma_offsets[i], 0);
789 for (j = 0; j < fw_size; j++)
790 WREG32(mmSDMA0_UCODE_DATA + sdma_offsets[i], le32_to_cpup(fw_data++));
791 WREG32(mmSDMA0_UCODE_ADDR + sdma_offsets[i], adev->sdma.instance[i].fw_version);
792 }
793
794 return 0;
795 }
796
797 /**
798 * sdma_v3_0_start - setup and start the async dma engines
799 *
800 * @adev: amdgpu_device pointer
801 *
802 * Set up the DMA engines and enable them (VI).
803 * Returns 0 for success, error for failure.
804 */
805 static int sdma_v3_0_start(struct amdgpu_device *adev)
806 {
807 int r, i;
808
809 if (!adev->pp_enabled) {
810 if (!adev->firmware.smu_load) {
811 r = sdma_v3_0_load_microcode(adev);
812 if (r)
813 return r;
814 } else {
815 for (i = 0; i < adev->sdma.num_instances; i++) {
816 r = adev->smu.smumgr_funcs->check_fw_load_finish(adev,
817 (i == 0) ?
818 AMDGPU_UCODE_ID_SDMA0 :
819 AMDGPU_UCODE_ID_SDMA1);
820 if (r)
821 return -EINVAL;
822 }
823 }
824 }
825
826 /* disble sdma engine before programing it */
827 sdma_v3_0_ctx_switch_enable(adev, false);
828 sdma_v3_0_enable(adev, false);
829
830 /* start the gfx rings and rlc compute queues */
831 r = sdma_v3_0_gfx_resume(adev);
832 if (r)
833 return r;
834 r = sdma_v3_0_rlc_resume(adev);
835 if (r)
836 return r;
837
838 return 0;
839 }
840
841 /**
842 * sdma_v3_0_ring_test_ring - simple async dma engine test
843 *
844 * @ring: amdgpu_ring structure holding ring information
845 *
846 * Test the DMA engine by writing using it to write an
847 * value to memory. (VI).
848 * Returns 0 for success, error for failure.
849 */
850 static int sdma_v3_0_ring_test_ring(struct amdgpu_ring *ring)
851 {
852 struct amdgpu_device *adev = ring->adev;
853 unsigned i;
854 unsigned index;
855 int r;
856 u32 tmp;
857 u64 gpu_addr;
858
859 r = amdgpu_wb_get(adev, &index);
860 if (r) {
861 dev_err(adev->dev, "(%d) failed to allocate wb slot\n", r);
862 return r;
863 }
864
865 gpu_addr = adev->wb.gpu_addr + (index * 4);
866 tmp = 0xCAFEDEAD;
867 adev->wb.wb[index] = cpu_to_le32(tmp);
868
869 r = amdgpu_ring_alloc(ring, 5);
870 if (r) {
871 DRM_ERROR("amdgpu: dma failed to lock ring %d (%d).\n", ring->idx, r);
872 amdgpu_wb_free(adev, index);
873 return r;
874 }
875
876 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
877 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR));
878 amdgpu_ring_write(ring, lower_32_bits(gpu_addr));
879 amdgpu_ring_write(ring, upper_32_bits(gpu_addr));
880 amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1));
881 amdgpu_ring_write(ring, 0xDEADBEEF);
882 amdgpu_ring_commit(ring);
883
884 for (i = 0; i < adev->usec_timeout; i++) {
885 tmp = le32_to_cpu(adev->wb.wb[index]);
886 if (tmp == 0xDEADBEEF)
887 break;
888 DRM_UDELAY(1);
889 }
890
891 if (i < adev->usec_timeout) {
892 DRM_INFO("ring test on %d succeeded in %d usecs\n", ring->idx, i);
893 } else {
894 DRM_ERROR("amdgpu: ring %d test failed (0x%08X)\n",
895 ring->idx, tmp);
896 r = -EINVAL;
897 }
898 amdgpu_wb_free(adev, index);
899
900 return r;
901 }
902
903 /**
904 * sdma_v3_0_ring_test_ib - test an IB on the DMA engine
905 *
906 * @ring: amdgpu_ring structure holding ring information
907 *
908 * Test a simple IB in the DMA ring (VI).
909 * Returns 0 on success, error on failure.
910 */
911 static int sdma_v3_0_ring_test_ib(struct amdgpu_ring *ring)
912 {
913 struct amdgpu_device *adev = ring->adev;
914 struct amdgpu_ib ib;
915 struct fence *f = NULL;
916 unsigned i;
917 unsigned index;
918 int r;
919 u32 tmp = 0;
920 u64 gpu_addr;
921
922 r = amdgpu_wb_get(adev, &index);
923 if (r) {
924 dev_err(adev->dev, "(%d) failed to allocate wb slot\n", r);
925 return r;
926 }
927
928 gpu_addr = adev->wb.gpu_addr + (index * 4);
929 tmp = 0xCAFEDEAD;
930 adev->wb.wb[index] = cpu_to_le32(tmp);
931 memset(&ib, 0, sizeof(ib));
932 r = amdgpu_ib_get(adev, NULL, 256, &ib);
933 if (r) {
934 DRM_ERROR("amdgpu: failed to get ib (%d).\n", r);
935 goto err0;
936 }
937
938 ib.ptr[0] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
939 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
940 ib.ptr[1] = lower_32_bits(gpu_addr);
941 ib.ptr[2] = upper_32_bits(gpu_addr);
942 ib.ptr[3] = SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1);
943 ib.ptr[4] = 0xDEADBEEF;
944 ib.ptr[5] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
945 ib.ptr[6] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
946 ib.ptr[7] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
947 ib.length_dw = 8;
948
949 r = amdgpu_ib_schedule(ring, 1, &ib, NULL, NULL, &f);
950 if (r)
951 goto err1;
952
953 r = fence_wait(f, false);
954 if (r) {
955 DRM_ERROR("amdgpu: fence wait failed (%d).\n", r);
956 goto err1;
957 }
958 for (i = 0; i < adev->usec_timeout; i++) {
959 tmp = le32_to_cpu(adev->wb.wb[index]);
960 if (tmp == 0xDEADBEEF)
961 break;
962 DRM_UDELAY(1);
963 }
964 if (i < adev->usec_timeout) {
965 DRM_INFO("ib test on ring %d succeeded in %u usecs\n",
966 ring->idx, i);
967 goto err1;
968 } else {
969 DRM_ERROR("amdgpu: ib test failed (0x%08X)\n", tmp);
970 r = -EINVAL;
971 }
972 err1:
973 fence_put(f);
974 amdgpu_ib_free(adev, &ib, NULL);
975 fence_put(f);
976 err0:
977 amdgpu_wb_free(adev, index);
978 return r;
979 }
980
981 /**
982 * sdma_v3_0_vm_copy_pte - update PTEs by copying them from the GART
983 *
984 * @ib: indirect buffer to fill with commands
985 * @pe: addr of the page entry
986 * @src: src addr to copy from
987 * @count: number of page entries to update
988 *
989 * Update PTEs by copying them from the GART using sDMA (CIK).
990 */
991 static void sdma_v3_0_vm_copy_pte(struct amdgpu_ib *ib,
992 uint64_t pe, uint64_t src,
993 unsigned count)
994 {
995 while (count) {
996 unsigned bytes = count * 8;
997 if (bytes > 0x1FFFF8)
998 bytes = 0x1FFFF8;
999
1000 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
1001 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
1002 ib->ptr[ib->length_dw++] = bytes;
1003 ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
1004 ib->ptr[ib->length_dw++] = lower_32_bits(src);
1005 ib->ptr[ib->length_dw++] = upper_32_bits(src);
1006 ib->ptr[ib->length_dw++] = lower_32_bits(pe);
1007 ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1008
1009 pe += bytes;
1010 src += bytes;
1011 count -= bytes / 8;
1012 }
1013 }
1014
1015 /**
1016 * sdma_v3_0_vm_write_pte - update PTEs by writing them manually
1017 *
1018 * @ib: indirect buffer to fill with commands
1019 * @pe: addr of the page entry
1020 * @addr: dst addr to write into pe
1021 * @count: number of page entries to update
1022 * @incr: increase next addr by incr bytes
1023 * @flags: access flags
1024 *
1025 * Update PTEs by writing them manually using sDMA (CIK).
1026 */
1027 static void sdma_v3_0_vm_write_pte(struct amdgpu_ib *ib,
1028 const dma_addr_t *pages_addr, uint64_t pe,
1029 uint64_t addr, unsigned count,
1030 uint32_t incr, uint32_t flags)
1031 {
1032 uint64_t value;
1033 unsigned ndw;
1034
1035 while (count) {
1036 ndw = count * 2;
1037 if (ndw > 0xFFFFE)
1038 ndw = 0xFFFFE;
1039
1040 /* for non-physically contiguous pages (system) */
1041 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
1042 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
1043 ib->ptr[ib->length_dw++] = pe;
1044 ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1045 ib->ptr[ib->length_dw++] = ndw;
1046 for (; ndw > 0; ndw -= 2, --count, pe += 8) {
1047 value = amdgpu_vm_map_gart(pages_addr, addr);
1048 addr += incr;
1049 value |= flags;
1050 ib->ptr[ib->length_dw++] = value;
1051 ib->ptr[ib->length_dw++] = upper_32_bits(value);
1052 }
1053 }
1054 }
1055
1056 /**
1057 * sdma_v3_0_vm_set_pte_pde - update the page tables using sDMA
1058 *
1059 * @ib: indirect buffer to fill with commands
1060 * @pe: addr of the page entry
1061 * @addr: dst addr to write into pe
1062 * @count: number of page entries to update
1063 * @incr: increase next addr by incr bytes
1064 * @flags: access flags
1065 *
1066 * Update the page tables using sDMA (CIK).
1067 */
1068 static void sdma_v3_0_vm_set_pte_pde(struct amdgpu_ib *ib,
1069 uint64_t pe,
1070 uint64_t addr, unsigned count,
1071 uint32_t incr, uint32_t flags)
1072 {
1073 uint64_t value;
1074 unsigned ndw;
1075
1076 while (count) {
1077 ndw = count;
1078 if (ndw > 0x7FFFF)
1079 ndw = 0x7FFFF;
1080
1081 if (flags & AMDGPU_PTE_VALID)
1082 value = addr;
1083 else
1084 value = 0;
1085
1086 /* for physically contiguous pages (vram) */
1087 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_GEN_PTEPDE);
1088 ib->ptr[ib->length_dw++] = pe; /* dst addr */
1089 ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1090 ib->ptr[ib->length_dw++] = flags; /* mask */
1091 ib->ptr[ib->length_dw++] = 0;
1092 ib->ptr[ib->length_dw++] = value; /* value */
1093 ib->ptr[ib->length_dw++] = upper_32_bits(value);
1094 ib->ptr[ib->length_dw++] = incr; /* increment size */
1095 ib->ptr[ib->length_dw++] = 0;
1096 ib->ptr[ib->length_dw++] = ndw; /* number of entries */
1097
1098 pe += ndw * 8;
1099 addr += ndw * incr;
1100 count -= ndw;
1101 }
1102 }
1103
1104 /**
1105 * sdma_v3_0_ring_pad_ib - pad the IB to the required number of dw
1106 *
1107 * @ib: indirect buffer to fill with padding
1108 *
1109 */
1110 static void sdma_v3_0_ring_pad_ib(struct amdgpu_ring *ring, struct amdgpu_ib *ib)
1111 {
1112 struct amdgpu_sdma_instance *sdma = amdgpu_get_sdma_instance(ring);
1113 u32 pad_count;
1114 int i;
1115
1116 pad_count = (8 - (ib->length_dw & 0x7)) % 8;
1117 for (i = 0; i < pad_count; i++)
1118 if (sdma && sdma->burst_nop && (i == 0))
1119 ib->ptr[ib->length_dw++] =
1120 SDMA_PKT_HEADER_OP(SDMA_OP_NOP) |
1121 SDMA_PKT_NOP_HEADER_COUNT(pad_count - 1);
1122 else
1123 ib->ptr[ib->length_dw++] =
1124 SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
1125 }
1126
1127 /**
1128 * sdma_v3_0_ring_emit_pipeline_sync - sync the pipeline
1129 *
1130 * @ring: amdgpu_ring pointer
1131 *
1132 * Make sure all previous operations are completed (CIK).
1133 */
1134 static void sdma_v3_0_ring_emit_pipeline_sync(struct amdgpu_ring *ring)
1135 {
1136 uint32_t seq = ring->fence_drv.sync_seq;
1137 uint64_t addr = ring->fence_drv.gpu_addr;
1138
1139 /* wait for idle */
1140 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
1141 SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) |
1142 SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3) | /* equal */
1143 SDMA_PKT_POLL_REGMEM_HEADER_MEM_POLL(1));
1144 amdgpu_ring_write(ring, addr & 0xfffffffc);
1145 amdgpu_ring_write(ring, upper_32_bits(addr) & 0xffffffff);
1146 amdgpu_ring_write(ring, seq); /* reference */
1147 amdgpu_ring_write(ring, 0xfffffff); /* mask */
1148 amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
1149 SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(4)); /* retry count, poll interval */
1150 }
1151
1152 /**
1153 * sdma_v3_0_ring_emit_vm_flush - cik vm flush using sDMA
1154 *
1155 * @ring: amdgpu_ring pointer
1156 * @vm: amdgpu_vm pointer
1157 *
1158 * Update the page table base and flush the VM TLB
1159 * using sDMA (VI).
1160 */
1161 static void sdma_v3_0_ring_emit_vm_flush(struct amdgpu_ring *ring,
1162 unsigned vm_id, uint64_t pd_addr)
1163 {
1164 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
1165 SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
1166 if (vm_id < 8) {
1167 amdgpu_ring_write(ring, (mmVM_CONTEXT0_PAGE_TABLE_BASE_ADDR + vm_id));
1168 } else {
1169 amdgpu_ring_write(ring, (mmVM_CONTEXT8_PAGE_TABLE_BASE_ADDR + vm_id - 8));
1170 }
1171 amdgpu_ring_write(ring, pd_addr >> 12);
1172
1173 /* flush TLB */
1174 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
1175 SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
1176 amdgpu_ring_write(ring, mmVM_INVALIDATE_REQUEST);
1177 amdgpu_ring_write(ring, 1 << vm_id);
1178
1179 /* wait for flush */
1180 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
1181 SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) |
1182 SDMA_PKT_POLL_REGMEM_HEADER_FUNC(0)); /* always */
1183 amdgpu_ring_write(ring, mmVM_INVALIDATE_REQUEST << 2);
1184 amdgpu_ring_write(ring, 0);
1185 amdgpu_ring_write(ring, 0); /* reference */
1186 amdgpu_ring_write(ring, 0); /* mask */
1187 amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
1188 SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */
1189 }
1190
1191 static int sdma_v3_0_early_init(void *handle)
1192 {
1193 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1194
1195 switch (adev->asic_type) {
1196 case CHIP_STONEY:
1197 adev->sdma.num_instances = 1;
1198 break;
1199 default:
1200 adev->sdma.num_instances = SDMA_MAX_INSTANCE;
1201 break;
1202 }
1203
1204 sdma_v3_0_set_ring_funcs(adev);
1205 sdma_v3_0_set_buffer_funcs(adev);
1206 sdma_v3_0_set_vm_pte_funcs(adev);
1207 sdma_v3_0_set_irq_funcs(adev);
1208
1209 return 0;
1210 }
1211
1212 static int sdma_v3_0_sw_init(void *handle)
1213 {
1214 struct amdgpu_ring *ring;
1215 int r, i;
1216 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1217
1218 /* SDMA trap event */
1219 r = amdgpu_irq_add_id(adev, 224, &adev->sdma.trap_irq);
1220 if (r)
1221 return r;
1222
1223 /* SDMA Privileged inst */
1224 r = amdgpu_irq_add_id(adev, 241, &adev->sdma.illegal_inst_irq);
1225 if (r)
1226 return r;
1227
1228 /* SDMA Privileged inst */
1229 r = amdgpu_irq_add_id(adev, 247, &adev->sdma.illegal_inst_irq);
1230 if (r)
1231 return r;
1232
1233 r = sdma_v3_0_init_microcode(adev);
1234 if (r) {
1235 DRM_ERROR("Failed to load sdma firmware!\n");
1236 return r;
1237 }
1238
1239 for (i = 0; i < adev->sdma.num_instances; i++) {
1240 ring = &adev->sdma.instance[i].ring;
1241 ring->ring_obj = NULL;
1242 ring->use_doorbell = true;
1243 ring->doorbell_index = (i == 0) ?
1244 AMDGPU_DOORBELL_sDMA_ENGINE0 : AMDGPU_DOORBELL_sDMA_ENGINE1;
1245
1246 sprintf(ring->name, "sdma%d", i);
1247 r = amdgpu_ring_init(adev, ring, 1024,
1248 SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP), 0xf,
1249 &adev->sdma.trap_irq,
1250 (i == 0) ?
1251 AMDGPU_SDMA_IRQ_TRAP0 : AMDGPU_SDMA_IRQ_TRAP1,
1252 AMDGPU_RING_TYPE_SDMA);
1253 if (r)
1254 return r;
1255 }
1256
1257 return r;
1258 }
1259
1260 static int sdma_v3_0_sw_fini(void *handle)
1261 {
1262 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1263 int i;
1264
1265 for (i = 0; i < adev->sdma.num_instances; i++)
1266 amdgpu_ring_fini(&adev->sdma.instance[i].ring);
1267
1268 sdma_v3_0_free_microcode(adev);
1269 return 0;
1270 }
1271
1272 static int sdma_v3_0_hw_init(void *handle)
1273 {
1274 int r;
1275 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1276
1277 sdma_v3_0_init_golden_registers(adev);
1278
1279 r = sdma_v3_0_start(adev);
1280 if (r)
1281 return r;
1282
1283 return r;
1284 }
1285
1286 static int sdma_v3_0_hw_fini(void *handle)
1287 {
1288 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1289
1290 sdma_v3_0_ctx_switch_enable(adev, false);
1291 sdma_v3_0_enable(adev, false);
1292
1293 return 0;
1294 }
1295
1296 static int sdma_v3_0_suspend(void *handle)
1297 {
1298 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1299
1300 return sdma_v3_0_hw_fini(adev);
1301 }
1302
1303 static int sdma_v3_0_resume(void *handle)
1304 {
1305 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1306
1307 return sdma_v3_0_hw_init(adev);
1308 }
1309
1310 static bool sdma_v3_0_is_idle(void *handle)
1311 {
1312 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1313 u32 tmp = RREG32(mmSRBM_STATUS2);
1314
1315 if (tmp & (SRBM_STATUS2__SDMA_BUSY_MASK |
1316 SRBM_STATUS2__SDMA1_BUSY_MASK))
1317 return false;
1318
1319 return true;
1320 }
1321
1322 static int sdma_v3_0_wait_for_idle(void *handle)
1323 {
1324 unsigned i;
1325 u32 tmp;
1326 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1327
1328 for (i = 0; i < adev->usec_timeout; i++) {
1329 tmp = RREG32(mmSRBM_STATUS2) & (SRBM_STATUS2__SDMA_BUSY_MASK |
1330 SRBM_STATUS2__SDMA1_BUSY_MASK);
1331
1332 if (!tmp)
1333 return 0;
1334 udelay(1);
1335 }
1336 return -ETIMEDOUT;
1337 }
1338
1339 static int sdma_v3_0_soft_reset(void *handle)
1340 {
1341 u32 srbm_soft_reset = 0;
1342 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1343 u32 tmp = RREG32(mmSRBM_STATUS2);
1344
1345 if (tmp & SRBM_STATUS2__SDMA_BUSY_MASK) {
1346 /* sdma0 */
1347 tmp = RREG32(mmSDMA0_F32_CNTL + SDMA0_REGISTER_OFFSET);
1348 tmp = REG_SET_FIELD(tmp, SDMA0_F32_CNTL, HALT, 0);
1349 WREG32(mmSDMA0_F32_CNTL + SDMA0_REGISTER_OFFSET, tmp);
1350 srbm_soft_reset |= SRBM_SOFT_RESET__SOFT_RESET_SDMA_MASK;
1351 }
1352 if (tmp & SRBM_STATUS2__SDMA1_BUSY_MASK) {
1353 /* sdma1 */
1354 tmp = RREG32(mmSDMA0_F32_CNTL + SDMA1_REGISTER_OFFSET);
1355 tmp = REG_SET_FIELD(tmp, SDMA0_F32_CNTL, HALT, 0);
1356 WREG32(mmSDMA0_F32_CNTL + SDMA1_REGISTER_OFFSET, tmp);
1357 srbm_soft_reset |= SRBM_SOFT_RESET__SOFT_RESET_SDMA1_MASK;
1358 }
1359
1360 if (srbm_soft_reset) {
1361 tmp = RREG32(mmSRBM_SOFT_RESET);
1362 tmp |= srbm_soft_reset;
1363 dev_info(adev->dev, "SRBM_SOFT_RESET=0x%08X\n", tmp);
1364 WREG32(mmSRBM_SOFT_RESET, tmp);
1365 tmp = RREG32(mmSRBM_SOFT_RESET);
1366
1367 udelay(50);
1368
1369 tmp &= ~srbm_soft_reset;
1370 WREG32(mmSRBM_SOFT_RESET, tmp);
1371 tmp = RREG32(mmSRBM_SOFT_RESET);
1372
1373 /* Wait a little for things to settle down */
1374 udelay(50);
1375 }
1376
1377 return 0;
1378 }
1379
1380 static int sdma_v3_0_set_trap_irq_state(struct amdgpu_device *adev,
1381 struct amdgpu_irq_src *source,
1382 unsigned type,
1383 enum amdgpu_interrupt_state state)
1384 {
1385 u32 sdma_cntl;
1386
1387 switch (type) {
1388 case AMDGPU_SDMA_IRQ_TRAP0:
1389 switch (state) {
1390 case AMDGPU_IRQ_STATE_DISABLE:
1391 sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET);
1392 sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 0);
1393 WREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET, sdma_cntl);
1394 break;
1395 case AMDGPU_IRQ_STATE_ENABLE:
1396 sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET);
1397 sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 1);
1398 WREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET, sdma_cntl);
1399 break;
1400 default:
1401 break;
1402 }
1403 break;
1404 case AMDGPU_SDMA_IRQ_TRAP1:
1405 switch (state) {
1406 case AMDGPU_IRQ_STATE_DISABLE:
1407 sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET);
1408 sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 0);
1409 WREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET, sdma_cntl);
1410 break;
1411 case AMDGPU_IRQ_STATE_ENABLE:
1412 sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET);
1413 sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 1);
1414 WREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET, sdma_cntl);
1415 break;
1416 default:
1417 break;
1418 }
1419 break;
1420 default:
1421 break;
1422 }
1423 return 0;
1424 }
1425
1426 static int sdma_v3_0_process_trap_irq(struct amdgpu_device *adev,
1427 struct amdgpu_irq_src *source,
1428 struct amdgpu_iv_entry *entry)
1429 {
1430 u8 instance_id, queue_id;
1431
1432 instance_id = (entry->ring_id & 0x3) >> 0;
1433 queue_id = (entry->ring_id & 0xc) >> 2;
1434 DRM_DEBUG("IH: SDMA trap\n");
1435 switch (instance_id) {
1436 case 0:
1437 switch (queue_id) {
1438 case 0:
1439 amdgpu_fence_process(&adev->sdma.instance[0].ring);
1440 break;
1441 case 1:
1442 /* XXX compute */
1443 break;
1444 case 2:
1445 /* XXX compute */
1446 break;
1447 }
1448 break;
1449 case 1:
1450 switch (queue_id) {
1451 case 0:
1452 amdgpu_fence_process(&adev->sdma.instance[1].ring);
1453 break;
1454 case 1:
1455 /* XXX compute */
1456 break;
1457 case 2:
1458 /* XXX compute */
1459 break;
1460 }
1461 break;
1462 }
1463 return 0;
1464 }
1465
1466 static int sdma_v3_0_process_illegal_inst_irq(struct amdgpu_device *adev,
1467 struct amdgpu_irq_src *source,
1468 struct amdgpu_iv_entry *entry)
1469 {
1470 DRM_ERROR("Illegal instruction in SDMA command stream\n");
1471 schedule_work(&adev->reset_work);
1472 return 0;
1473 }
1474
1475 static void sdma_v3_0_update_sdma_medium_grain_clock_gating(
1476 struct amdgpu_device *adev,
1477 bool enable)
1478 {
1479 uint32_t temp, data;
1480 int i;
1481
1482 if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_MGCG)) {
1483 for (i = 0; i < adev->sdma.num_instances; i++) {
1484 temp = data = RREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i]);
1485 data &= ~(SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
1486 SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
1487 SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
1488 SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
1489 SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
1490 SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
1491 SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
1492 SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);
1493 if (data != temp)
1494 WREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i], data);
1495 }
1496 } else {
1497 for (i = 0; i < adev->sdma.num_instances; i++) {
1498 temp = data = RREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i]);
1499 data |= SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
1500 SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
1501 SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
1502 SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
1503 SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
1504 SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
1505 SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
1506 SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK;
1507
1508 if (data != temp)
1509 WREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i], data);
1510 }
1511 }
1512 }
1513
1514 static void sdma_v3_0_update_sdma_medium_grain_light_sleep(
1515 struct amdgpu_device *adev,
1516 bool enable)
1517 {
1518 uint32_t temp, data;
1519 int i;
1520
1521 if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_LS)) {
1522 for (i = 0; i < adev->sdma.num_instances; i++) {
1523 temp = data = RREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i]);
1524 data |= SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
1525
1526 if (temp != data)
1527 WREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i], data);
1528 }
1529 } else {
1530 for (i = 0; i < adev->sdma.num_instances; i++) {
1531 temp = data = RREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i]);
1532 data &= ~SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
1533
1534 if (temp != data)
1535 WREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i], data);
1536 }
1537 }
1538 }
1539
1540 static int sdma_v3_0_set_clockgating_state(void *handle,
1541 enum amd_clockgating_state state)
1542 {
1543 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1544
1545 switch (adev->asic_type) {
1546 case CHIP_FIJI:
1547 case CHIP_CARRIZO:
1548 case CHIP_STONEY:
1549 sdma_v3_0_update_sdma_medium_grain_clock_gating(adev,
1550 state == AMD_CG_STATE_GATE ? true : false);
1551 sdma_v3_0_update_sdma_medium_grain_light_sleep(adev,
1552 state == AMD_CG_STATE_GATE ? true : false);
1553 break;
1554 default:
1555 break;
1556 }
1557 return 0;
1558 }
1559
1560 static int sdma_v3_0_set_powergating_state(void *handle,
1561 enum amd_powergating_state state)
1562 {
1563 return 0;
1564 }
1565
1566 const struct amd_ip_funcs sdma_v3_0_ip_funcs = {
1567 .name = "sdma_v3_0",
1568 .early_init = sdma_v3_0_early_init,
1569 .late_init = NULL,
1570 .sw_init = sdma_v3_0_sw_init,
1571 .sw_fini = sdma_v3_0_sw_fini,
1572 .hw_init = sdma_v3_0_hw_init,
1573 .hw_fini = sdma_v3_0_hw_fini,
1574 .suspend = sdma_v3_0_suspend,
1575 .resume = sdma_v3_0_resume,
1576 .is_idle = sdma_v3_0_is_idle,
1577 .wait_for_idle = sdma_v3_0_wait_for_idle,
1578 .soft_reset = sdma_v3_0_soft_reset,
1579 .set_clockgating_state = sdma_v3_0_set_clockgating_state,
1580 .set_powergating_state = sdma_v3_0_set_powergating_state,
1581 };
1582
1583 static const struct amdgpu_ring_funcs sdma_v3_0_ring_funcs = {
1584 .get_rptr = sdma_v3_0_ring_get_rptr,
1585 .get_wptr = sdma_v3_0_ring_get_wptr,
1586 .set_wptr = sdma_v3_0_ring_set_wptr,
1587 .parse_cs = NULL,
1588 .emit_ib = sdma_v3_0_ring_emit_ib,
1589 .emit_fence = sdma_v3_0_ring_emit_fence,
1590 .emit_pipeline_sync = sdma_v3_0_ring_emit_pipeline_sync,
1591 .emit_vm_flush = sdma_v3_0_ring_emit_vm_flush,
1592 .emit_hdp_flush = sdma_v3_0_ring_emit_hdp_flush,
1593 .emit_hdp_invalidate = sdma_v3_0_ring_emit_hdp_invalidate,
1594 .test_ring = sdma_v3_0_ring_test_ring,
1595 .test_ib = sdma_v3_0_ring_test_ib,
1596 .insert_nop = sdma_v3_0_ring_insert_nop,
1597 .pad_ib = sdma_v3_0_ring_pad_ib,
1598 };
1599
1600 static void sdma_v3_0_set_ring_funcs(struct amdgpu_device *adev)
1601 {
1602 int i;
1603
1604 for (i = 0; i < adev->sdma.num_instances; i++)
1605 adev->sdma.instance[i].ring.funcs = &sdma_v3_0_ring_funcs;
1606 }
1607
1608 static const struct amdgpu_irq_src_funcs sdma_v3_0_trap_irq_funcs = {
1609 .set = sdma_v3_0_set_trap_irq_state,
1610 .process = sdma_v3_0_process_trap_irq,
1611 };
1612
1613 static const struct amdgpu_irq_src_funcs sdma_v3_0_illegal_inst_irq_funcs = {
1614 .process = sdma_v3_0_process_illegal_inst_irq,
1615 };
1616
1617 static void sdma_v3_0_set_irq_funcs(struct amdgpu_device *adev)
1618 {
1619 adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_LAST;
1620 adev->sdma.trap_irq.funcs = &sdma_v3_0_trap_irq_funcs;
1621 adev->sdma.illegal_inst_irq.funcs = &sdma_v3_0_illegal_inst_irq_funcs;
1622 }
1623
1624 /**
1625 * sdma_v3_0_emit_copy_buffer - copy buffer using the sDMA engine
1626 *
1627 * @ring: amdgpu_ring structure holding ring information
1628 * @src_offset: src GPU address
1629 * @dst_offset: dst GPU address
1630 * @byte_count: number of bytes to xfer
1631 *
1632 * Copy GPU buffers using the DMA engine (VI).
1633 * Used by the amdgpu ttm implementation to move pages if
1634 * registered as the asic copy callback.
1635 */
1636 static void sdma_v3_0_emit_copy_buffer(struct amdgpu_ib *ib,
1637 uint64_t src_offset,
1638 uint64_t dst_offset,
1639 uint32_t byte_count)
1640 {
1641 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
1642 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
1643 ib->ptr[ib->length_dw++] = byte_count;
1644 ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
1645 ib->ptr[ib->length_dw++] = lower_32_bits(src_offset);
1646 ib->ptr[ib->length_dw++] = upper_32_bits(src_offset);
1647 ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
1648 ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
1649 }
1650
1651 /**
1652 * sdma_v3_0_emit_fill_buffer - fill buffer using the sDMA engine
1653 *
1654 * @ring: amdgpu_ring structure holding ring information
1655 * @src_data: value to write to buffer
1656 * @dst_offset: dst GPU address
1657 * @byte_count: number of bytes to xfer
1658 *
1659 * Fill GPU buffers using the DMA engine (VI).
1660 */
1661 static void sdma_v3_0_emit_fill_buffer(struct amdgpu_ib *ib,
1662 uint32_t src_data,
1663 uint64_t dst_offset,
1664 uint32_t byte_count)
1665 {
1666 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_CONST_FILL);
1667 ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
1668 ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
1669 ib->ptr[ib->length_dw++] = src_data;
1670 ib->ptr[ib->length_dw++] = byte_count;
1671 }
1672
1673 static const struct amdgpu_buffer_funcs sdma_v3_0_buffer_funcs = {
1674 .copy_max_bytes = 0x1fffff,
1675 .copy_num_dw = 7,
1676 .emit_copy_buffer = sdma_v3_0_emit_copy_buffer,
1677
1678 .fill_max_bytes = 0x1fffff,
1679 .fill_num_dw = 5,
1680 .emit_fill_buffer = sdma_v3_0_emit_fill_buffer,
1681 };
1682
1683 static void sdma_v3_0_set_buffer_funcs(struct amdgpu_device *adev)
1684 {
1685 if (adev->mman.buffer_funcs == NULL) {
1686 adev->mman.buffer_funcs = &sdma_v3_0_buffer_funcs;
1687 adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].ring;
1688 }
1689 }
1690
1691 static const struct amdgpu_vm_pte_funcs sdma_v3_0_vm_pte_funcs = {
1692 .copy_pte = sdma_v3_0_vm_copy_pte,
1693 .write_pte = sdma_v3_0_vm_write_pte,
1694 .set_pte_pde = sdma_v3_0_vm_set_pte_pde,
1695 };
1696
1697 static void sdma_v3_0_set_vm_pte_funcs(struct amdgpu_device *adev)
1698 {
1699 unsigned i;
1700
1701 if (adev->vm_manager.vm_pte_funcs == NULL) {
1702 adev->vm_manager.vm_pte_funcs = &sdma_v3_0_vm_pte_funcs;
1703 for (i = 0; i < adev->sdma.num_instances; i++)
1704 adev->vm_manager.vm_pte_rings[i] =
1705 &adev->sdma.instance[i].ring;
1706
1707 adev->vm_manager.vm_pte_num_rings = adev->sdma.num_instances;
1708 }
1709 }