]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/gpu/drm/amd/amdgpu/sdma_v3_0.c
Merge tag 'pm+acpi-4.4-rc1-2' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael...
[mirror_ubuntu-artful-kernel.git] / drivers / gpu / drm / amd / amdgpu / sdma_v3_0.c
1 /*
2 * Copyright 2014 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 * Authors: Alex Deucher
23 */
24 #include <linux/firmware.h>
25 #include <drm/drmP.h>
26 #include "amdgpu.h"
27 #include "amdgpu_ucode.h"
28 #include "amdgpu_trace.h"
29 #include "vi.h"
30 #include "vid.h"
31
32 #include "oss/oss_3_0_d.h"
33 #include "oss/oss_3_0_sh_mask.h"
34
35 #include "gmc/gmc_8_1_d.h"
36 #include "gmc/gmc_8_1_sh_mask.h"
37
38 #include "gca/gfx_8_0_d.h"
39 #include "gca/gfx_8_0_enum.h"
40 #include "gca/gfx_8_0_sh_mask.h"
41
42 #include "bif/bif_5_0_d.h"
43 #include "bif/bif_5_0_sh_mask.h"
44
45 #include "tonga_sdma_pkt_open.h"
46
47 static void sdma_v3_0_set_ring_funcs(struct amdgpu_device *adev);
48 static void sdma_v3_0_set_buffer_funcs(struct amdgpu_device *adev);
49 static void sdma_v3_0_set_vm_pte_funcs(struct amdgpu_device *adev);
50 static void sdma_v3_0_set_irq_funcs(struct amdgpu_device *adev);
51
52 MODULE_FIRMWARE("amdgpu/tonga_sdma.bin");
53 MODULE_FIRMWARE("amdgpu/tonga_sdma1.bin");
54 MODULE_FIRMWARE("amdgpu/carrizo_sdma.bin");
55 MODULE_FIRMWARE("amdgpu/carrizo_sdma1.bin");
56 MODULE_FIRMWARE("amdgpu/fiji_sdma.bin");
57 MODULE_FIRMWARE("amdgpu/fiji_sdma1.bin");
58 MODULE_FIRMWARE("amdgpu/stoney_sdma.bin");
59
60 static const u32 sdma_offsets[SDMA_MAX_INSTANCE] =
61 {
62 SDMA0_REGISTER_OFFSET,
63 SDMA1_REGISTER_OFFSET
64 };
65
66 static const u32 golden_settings_tonga_a11[] =
67 {
68 mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
69 mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
70 mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
71 mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
72 mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
73 mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
74 mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
75 mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
76 mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
77 mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
78 };
79
80 static const u32 tonga_mgcg_cgcg_init[] =
81 {
82 mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
83 mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
84 };
85
86 static const u32 golden_settings_fiji_a10[] =
87 {
88 mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
89 mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
90 mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
91 mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
92 mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
93 mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
94 mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
95 mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
96 };
97
98 static const u32 fiji_mgcg_cgcg_init[] =
99 {
100 mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
101 mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
102 };
103
104 static const u32 cz_golden_settings_a11[] =
105 {
106 mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
107 mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
108 mmSDMA0_GFX_IB_CNTL, 0x00000100, 0x00000100,
109 mmSDMA0_POWER_CNTL, 0x00000800, 0x0003c800,
110 mmSDMA0_RLC0_IB_CNTL, 0x00000100, 0x00000100,
111 mmSDMA0_RLC1_IB_CNTL, 0x00000100, 0x00000100,
112 mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
113 mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
114 mmSDMA1_GFX_IB_CNTL, 0x00000100, 0x00000100,
115 mmSDMA1_POWER_CNTL, 0x00000800, 0x0003c800,
116 mmSDMA1_RLC0_IB_CNTL, 0x00000100, 0x00000100,
117 mmSDMA1_RLC1_IB_CNTL, 0x00000100, 0x00000100,
118 };
119
120 static const u32 cz_mgcg_cgcg_init[] =
121 {
122 mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
123 mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
124 };
125
126 static const u32 stoney_golden_settings_a11[] =
127 {
128 mmSDMA0_GFX_IB_CNTL, 0x00000100, 0x00000100,
129 mmSDMA0_POWER_CNTL, 0x00000800, 0x0003c800,
130 mmSDMA0_RLC0_IB_CNTL, 0x00000100, 0x00000100,
131 mmSDMA0_RLC1_IB_CNTL, 0x00000100, 0x00000100,
132 };
133
134 static const u32 stoney_mgcg_cgcg_init[] =
135 {
136 mmSDMA0_CLK_CTRL, 0xffffffff, 0x00000100,
137 };
138
139 /*
140 * sDMA - System DMA
141 * Starting with CIK, the GPU has new asynchronous
142 * DMA engines. These engines are used for compute
143 * and gfx. There are two DMA engines (SDMA0, SDMA1)
144 * and each one supports 1 ring buffer used for gfx
145 * and 2 queues used for compute.
146 *
147 * The programming model is very similar to the CP
148 * (ring buffer, IBs, etc.), but sDMA has it's own
149 * packet format that is different from the PM4 format
150 * used by the CP. sDMA supports copying data, writing
151 * embedded data, solid fills, and a number of other
152 * things. It also has support for tiling/detiling of
153 * buffers.
154 */
155
156 static void sdma_v3_0_init_golden_registers(struct amdgpu_device *adev)
157 {
158 switch (adev->asic_type) {
159 case CHIP_FIJI:
160 amdgpu_program_register_sequence(adev,
161 fiji_mgcg_cgcg_init,
162 (const u32)ARRAY_SIZE(fiji_mgcg_cgcg_init));
163 amdgpu_program_register_sequence(adev,
164 golden_settings_fiji_a10,
165 (const u32)ARRAY_SIZE(golden_settings_fiji_a10));
166 break;
167 case CHIP_TONGA:
168 amdgpu_program_register_sequence(adev,
169 tonga_mgcg_cgcg_init,
170 (const u32)ARRAY_SIZE(tonga_mgcg_cgcg_init));
171 amdgpu_program_register_sequence(adev,
172 golden_settings_tonga_a11,
173 (const u32)ARRAY_SIZE(golden_settings_tonga_a11));
174 break;
175 case CHIP_CARRIZO:
176 amdgpu_program_register_sequence(adev,
177 cz_mgcg_cgcg_init,
178 (const u32)ARRAY_SIZE(cz_mgcg_cgcg_init));
179 amdgpu_program_register_sequence(adev,
180 cz_golden_settings_a11,
181 (const u32)ARRAY_SIZE(cz_golden_settings_a11));
182 break;
183 case CHIP_STONEY:
184 amdgpu_program_register_sequence(adev,
185 stoney_mgcg_cgcg_init,
186 (const u32)ARRAY_SIZE(stoney_mgcg_cgcg_init));
187 amdgpu_program_register_sequence(adev,
188 stoney_golden_settings_a11,
189 (const u32)ARRAY_SIZE(stoney_golden_settings_a11));
190 break;
191 default:
192 break;
193 }
194 }
195
196 /**
197 * sdma_v3_0_init_microcode - load ucode images from disk
198 *
199 * @adev: amdgpu_device pointer
200 *
201 * Use the firmware interface to load the ucode images into
202 * the driver (not loaded into hw).
203 * Returns 0 on success, error on failure.
204 */
205 static int sdma_v3_0_init_microcode(struct amdgpu_device *adev)
206 {
207 const char *chip_name;
208 char fw_name[30];
209 int err = 0, i;
210 struct amdgpu_firmware_info *info = NULL;
211 const struct common_firmware_header *header = NULL;
212 const struct sdma_firmware_header_v1_0 *hdr;
213
214 DRM_DEBUG("\n");
215
216 switch (adev->asic_type) {
217 case CHIP_TONGA:
218 chip_name = "tonga";
219 break;
220 case CHIP_FIJI:
221 chip_name = "fiji";
222 break;
223 case CHIP_CARRIZO:
224 chip_name = "carrizo";
225 break;
226 case CHIP_STONEY:
227 chip_name = "stoney";
228 break;
229 default: BUG();
230 }
231
232 for (i = 0; i < adev->sdma.num_instances; i++) {
233 if (i == 0)
234 snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma.bin", chip_name);
235 else
236 snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma1.bin", chip_name);
237 err = request_firmware(&adev->sdma.instance[i].fw, fw_name, adev->dev);
238 if (err)
239 goto out;
240 err = amdgpu_ucode_validate(adev->sdma.instance[i].fw);
241 if (err)
242 goto out;
243 hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
244 adev->sdma.instance[i].fw_version = le32_to_cpu(hdr->header.ucode_version);
245 adev->sdma.instance[i].feature_version = le32_to_cpu(hdr->ucode_feature_version);
246 if (adev->sdma.instance[i].feature_version >= 20)
247 adev->sdma.instance[i].burst_nop = true;
248
249 if (adev->firmware.smu_load) {
250 info = &adev->firmware.ucode[AMDGPU_UCODE_ID_SDMA0 + i];
251 info->ucode_id = AMDGPU_UCODE_ID_SDMA0 + i;
252 info->fw = adev->sdma.instance[i].fw;
253 header = (const struct common_firmware_header *)info->fw->data;
254 adev->firmware.fw_size +=
255 ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE);
256 }
257 }
258 out:
259 if (err) {
260 printk(KERN_ERR
261 "sdma_v3_0: Failed to load firmware \"%s\"\n",
262 fw_name);
263 for (i = 0; i < adev->sdma.num_instances; i++) {
264 release_firmware(adev->sdma.instance[i].fw);
265 adev->sdma.instance[i].fw = NULL;
266 }
267 }
268 return err;
269 }
270
271 /**
272 * sdma_v3_0_ring_get_rptr - get the current read pointer
273 *
274 * @ring: amdgpu ring pointer
275 *
276 * Get the current rptr from the hardware (VI+).
277 */
278 static uint32_t sdma_v3_0_ring_get_rptr(struct amdgpu_ring *ring)
279 {
280 u32 rptr;
281
282 /* XXX check if swapping is necessary on BE */
283 rptr = ring->adev->wb.wb[ring->rptr_offs] >> 2;
284
285 return rptr;
286 }
287
288 /**
289 * sdma_v3_0_ring_get_wptr - get the current write pointer
290 *
291 * @ring: amdgpu ring pointer
292 *
293 * Get the current wptr from the hardware (VI+).
294 */
295 static uint32_t sdma_v3_0_ring_get_wptr(struct amdgpu_ring *ring)
296 {
297 struct amdgpu_device *adev = ring->adev;
298 u32 wptr;
299
300 if (ring->use_doorbell) {
301 /* XXX check if swapping is necessary on BE */
302 wptr = ring->adev->wb.wb[ring->wptr_offs] >> 2;
303 } else {
304 int me = (ring == &ring->adev->sdma.instance[0].ring) ? 0 : 1;
305
306 wptr = RREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[me]) >> 2;
307 }
308
309 return wptr;
310 }
311
312 /**
313 * sdma_v3_0_ring_set_wptr - commit the write pointer
314 *
315 * @ring: amdgpu ring pointer
316 *
317 * Write the wptr back to the hardware (VI+).
318 */
319 static void sdma_v3_0_ring_set_wptr(struct amdgpu_ring *ring)
320 {
321 struct amdgpu_device *adev = ring->adev;
322
323 if (ring->use_doorbell) {
324 /* XXX check if swapping is necessary on BE */
325 adev->wb.wb[ring->wptr_offs] = ring->wptr << 2;
326 WDOORBELL32(ring->doorbell_index, ring->wptr << 2);
327 } else {
328 int me = (ring == &ring->adev->sdma.instance[0].ring) ? 0 : 1;
329
330 WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[me], ring->wptr << 2);
331 }
332 }
333
334 static void sdma_v3_0_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count)
335 {
336 struct amdgpu_sdma_instance *sdma = amdgpu_get_sdma_instance(ring);
337 int i;
338
339 for (i = 0; i < count; i++)
340 if (sdma && sdma->burst_nop && (i == 0))
341 amdgpu_ring_write(ring, ring->nop |
342 SDMA_PKT_NOP_HEADER_COUNT(count - 1));
343 else
344 amdgpu_ring_write(ring, ring->nop);
345 }
346
347 /**
348 * sdma_v3_0_ring_emit_ib - Schedule an IB on the DMA engine
349 *
350 * @ring: amdgpu ring pointer
351 * @ib: IB object to schedule
352 *
353 * Schedule an IB in the DMA ring (VI).
354 */
355 static void sdma_v3_0_ring_emit_ib(struct amdgpu_ring *ring,
356 struct amdgpu_ib *ib)
357 {
358 u32 vmid = (ib->vm ? ib->vm->ids[ring->idx].id : 0) & 0xf;
359 u32 next_rptr = ring->wptr + 5;
360
361 while ((next_rptr & 7) != 2)
362 next_rptr++;
363 next_rptr += 6;
364
365 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
366 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR));
367 amdgpu_ring_write(ring, lower_32_bits(ring->next_rptr_gpu_addr) & 0xfffffffc);
368 amdgpu_ring_write(ring, upper_32_bits(ring->next_rptr_gpu_addr));
369 amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1));
370 amdgpu_ring_write(ring, next_rptr);
371
372 /* IB packet must end on a 8 DW boundary */
373 sdma_v3_0_ring_insert_nop(ring, (10 - (ring->wptr & 7)) % 8);
374
375 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_INDIRECT) |
376 SDMA_PKT_INDIRECT_HEADER_VMID(vmid));
377 /* base must be 32 byte aligned */
378 amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr) & 0xffffffe0);
379 amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr));
380 amdgpu_ring_write(ring, ib->length_dw);
381 amdgpu_ring_write(ring, 0);
382 amdgpu_ring_write(ring, 0);
383
384 }
385
386 /**
387 * sdma_v3_0_ring_emit_hdp_flush - emit an hdp flush on the DMA ring
388 *
389 * @ring: amdgpu ring pointer
390 *
391 * Emit an hdp flush packet on the requested DMA ring.
392 */
393 static void sdma_v3_0_ring_emit_hdp_flush(struct amdgpu_ring *ring)
394 {
395 u32 ref_and_mask = 0;
396
397 if (ring == &ring->adev->sdma.instance[0].ring)
398 ref_and_mask = REG_SET_FIELD(ref_and_mask, GPU_HDP_FLUSH_DONE, SDMA0, 1);
399 else
400 ref_and_mask = REG_SET_FIELD(ref_and_mask, GPU_HDP_FLUSH_DONE, SDMA1, 1);
401
402 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
403 SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(1) |
404 SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* == */
405 amdgpu_ring_write(ring, mmGPU_HDP_FLUSH_DONE << 2);
406 amdgpu_ring_write(ring, mmGPU_HDP_FLUSH_REQ << 2);
407 amdgpu_ring_write(ring, ref_and_mask); /* reference */
408 amdgpu_ring_write(ring, ref_and_mask); /* mask */
409 amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
410 SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */
411 }
412
413 /**
414 * sdma_v3_0_ring_emit_fence - emit a fence on the DMA ring
415 *
416 * @ring: amdgpu ring pointer
417 * @fence: amdgpu fence object
418 *
419 * Add a DMA fence packet to the ring to write
420 * the fence seq number and DMA trap packet to generate
421 * an interrupt if needed (VI).
422 */
423 static void sdma_v3_0_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq,
424 unsigned flags)
425 {
426 bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT;
427 /* write the fence */
428 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
429 amdgpu_ring_write(ring, lower_32_bits(addr));
430 amdgpu_ring_write(ring, upper_32_bits(addr));
431 amdgpu_ring_write(ring, lower_32_bits(seq));
432
433 /* optionally write high bits as well */
434 if (write64bit) {
435 addr += 4;
436 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
437 amdgpu_ring_write(ring, lower_32_bits(addr));
438 amdgpu_ring_write(ring, upper_32_bits(addr));
439 amdgpu_ring_write(ring, upper_32_bits(seq));
440 }
441
442 /* generate an interrupt */
443 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_TRAP));
444 amdgpu_ring_write(ring, SDMA_PKT_TRAP_INT_CONTEXT_INT_CONTEXT(0));
445 }
446
447
448 /**
449 * sdma_v3_0_ring_emit_semaphore - emit a semaphore on the dma ring
450 *
451 * @ring: amdgpu_ring structure holding ring information
452 * @semaphore: amdgpu semaphore object
453 * @emit_wait: wait or signal semaphore
454 *
455 * Add a DMA semaphore packet to the ring wait on or signal
456 * other rings (VI).
457 */
458 static bool sdma_v3_0_ring_emit_semaphore(struct amdgpu_ring *ring,
459 struct amdgpu_semaphore *semaphore,
460 bool emit_wait)
461 {
462 u64 addr = semaphore->gpu_addr;
463 u32 sig = emit_wait ? 0 : 1;
464
465 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SEM) |
466 SDMA_PKT_SEMAPHORE_HEADER_SIGNAL(sig));
467 amdgpu_ring_write(ring, lower_32_bits(addr) & 0xfffffff8);
468 amdgpu_ring_write(ring, upper_32_bits(addr));
469
470 return true;
471 }
472
473 /**
474 * sdma_v3_0_gfx_stop - stop the gfx async dma engines
475 *
476 * @adev: amdgpu_device pointer
477 *
478 * Stop the gfx async dma ring buffers (VI).
479 */
480 static void sdma_v3_0_gfx_stop(struct amdgpu_device *adev)
481 {
482 struct amdgpu_ring *sdma0 = &adev->sdma.instance[0].ring;
483 struct amdgpu_ring *sdma1 = &adev->sdma.instance[1].ring;
484 u32 rb_cntl, ib_cntl;
485 int i;
486
487 if ((adev->mman.buffer_funcs_ring == sdma0) ||
488 (adev->mman.buffer_funcs_ring == sdma1))
489 amdgpu_ttm_set_active_vram_size(adev, adev->mc.visible_vram_size);
490
491 for (i = 0; i < adev->sdma.num_instances; i++) {
492 rb_cntl = RREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i]);
493 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 0);
494 WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
495 ib_cntl = RREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i]);
496 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 0);
497 WREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i], ib_cntl);
498 }
499 sdma0->ready = false;
500 sdma1->ready = false;
501 }
502
503 /**
504 * sdma_v3_0_rlc_stop - stop the compute async dma engines
505 *
506 * @adev: amdgpu_device pointer
507 *
508 * Stop the compute async dma queues (VI).
509 */
510 static void sdma_v3_0_rlc_stop(struct amdgpu_device *adev)
511 {
512 /* XXX todo */
513 }
514
515 /**
516 * sdma_v3_0_ctx_switch_enable - stop the async dma engines context switch
517 *
518 * @adev: amdgpu_device pointer
519 * @enable: enable/disable the DMA MEs context switch.
520 *
521 * Halt or unhalt the async dma engines context switch (VI).
522 */
523 static void sdma_v3_0_ctx_switch_enable(struct amdgpu_device *adev, bool enable)
524 {
525 u32 f32_cntl;
526 int i;
527
528 for (i = 0; i < adev->sdma.num_instances; i++) {
529 f32_cntl = RREG32(mmSDMA0_CNTL + sdma_offsets[i]);
530 if (enable)
531 f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
532 AUTO_CTXSW_ENABLE, 1);
533 else
534 f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
535 AUTO_CTXSW_ENABLE, 0);
536 WREG32(mmSDMA0_CNTL + sdma_offsets[i], f32_cntl);
537 }
538 }
539
540 /**
541 * sdma_v3_0_enable - stop the async dma engines
542 *
543 * @adev: amdgpu_device pointer
544 * @enable: enable/disable the DMA MEs.
545 *
546 * Halt or unhalt the async dma engines (VI).
547 */
548 static void sdma_v3_0_enable(struct amdgpu_device *adev, bool enable)
549 {
550 u32 f32_cntl;
551 int i;
552
553 if (enable == false) {
554 sdma_v3_0_gfx_stop(adev);
555 sdma_v3_0_rlc_stop(adev);
556 }
557
558 for (i = 0; i < adev->sdma.num_instances; i++) {
559 f32_cntl = RREG32(mmSDMA0_F32_CNTL + sdma_offsets[i]);
560 if (enable)
561 f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, 0);
562 else
563 f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, 1);
564 WREG32(mmSDMA0_F32_CNTL + sdma_offsets[i], f32_cntl);
565 }
566 }
567
568 /**
569 * sdma_v3_0_gfx_resume - setup and start the async dma engines
570 *
571 * @adev: amdgpu_device pointer
572 *
573 * Set up the gfx DMA ring buffers and enable them (VI).
574 * Returns 0 for success, error for failure.
575 */
576 static int sdma_v3_0_gfx_resume(struct amdgpu_device *adev)
577 {
578 struct amdgpu_ring *ring;
579 u32 rb_cntl, ib_cntl;
580 u32 rb_bufsz;
581 u32 wb_offset;
582 u32 doorbell;
583 int i, j, r;
584
585 for (i = 0; i < adev->sdma.num_instances; i++) {
586 ring = &adev->sdma.instance[i].ring;
587 wb_offset = (ring->rptr_offs * 4);
588
589 mutex_lock(&adev->srbm_mutex);
590 for (j = 0; j < 16; j++) {
591 vi_srbm_select(adev, 0, 0, 0, j);
592 /* SDMA GFX */
593 WREG32(mmSDMA0_GFX_VIRTUAL_ADDR + sdma_offsets[i], 0);
594 WREG32(mmSDMA0_GFX_APE1_CNTL + sdma_offsets[i], 0);
595 }
596 vi_srbm_select(adev, 0, 0, 0, 0);
597 mutex_unlock(&adev->srbm_mutex);
598
599 WREG32(mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL + sdma_offsets[i], 0);
600
601 /* Set ring buffer size in dwords */
602 rb_bufsz = order_base_2(ring->ring_size / 4);
603 rb_cntl = RREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i]);
604 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SIZE, rb_bufsz);
605 #ifdef __BIG_ENDIAN
606 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SWAP_ENABLE, 1);
607 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
608 RPTR_WRITEBACK_SWAP_ENABLE, 1);
609 #endif
610 WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
611
612 /* Initialize the ring buffer's read and write pointers */
613 WREG32(mmSDMA0_GFX_RB_RPTR + sdma_offsets[i], 0);
614 WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[i], 0);
615
616 /* set the wb address whether it's enabled or not */
617 WREG32(mmSDMA0_GFX_RB_RPTR_ADDR_HI + sdma_offsets[i],
618 upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF);
619 WREG32(mmSDMA0_GFX_RB_RPTR_ADDR_LO + sdma_offsets[i],
620 lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC);
621
622 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RPTR_WRITEBACK_ENABLE, 1);
623
624 WREG32(mmSDMA0_GFX_RB_BASE + sdma_offsets[i], ring->gpu_addr >> 8);
625 WREG32(mmSDMA0_GFX_RB_BASE_HI + sdma_offsets[i], ring->gpu_addr >> 40);
626
627 ring->wptr = 0;
628 WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[i], ring->wptr << 2);
629
630 doorbell = RREG32(mmSDMA0_GFX_DOORBELL + sdma_offsets[i]);
631
632 if (ring->use_doorbell) {
633 doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL,
634 OFFSET, ring->doorbell_index);
635 doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 1);
636 } else {
637 doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 0);
638 }
639 WREG32(mmSDMA0_GFX_DOORBELL + sdma_offsets[i], doorbell);
640
641 /* enable DMA RB */
642 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 1);
643 WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
644
645 ib_cntl = RREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i]);
646 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 1);
647 #ifdef __BIG_ENDIAN
648 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_SWAP_ENABLE, 1);
649 #endif
650 /* enable DMA IBs */
651 WREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i], ib_cntl);
652
653 ring->ready = true;
654
655 r = amdgpu_ring_test_ring(ring);
656 if (r) {
657 ring->ready = false;
658 return r;
659 }
660
661 if (adev->mman.buffer_funcs_ring == ring)
662 amdgpu_ttm_set_active_vram_size(adev, adev->mc.real_vram_size);
663 }
664
665 return 0;
666 }
667
668 /**
669 * sdma_v3_0_rlc_resume - setup and start the async dma engines
670 *
671 * @adev: amdgpu_device pointer
672 *
673 * Set up the compute DMA queues and enable them (VI).
674 * Returns 0 for success, error for failure.
675 */
676 static int sdma_v3_0_rlc_resume(struct amdgpu_device *adev)
677 {
678 /* XXX todo */
679 return 0;
680 }
681
682 /**
683 * sdma_v3_0_load_microcode - load the sDMA ME ucode
684 *
685 * @adev: amdgpu_device pointer
686 *
687 * Loads the sDMA0/1 ucode.
688 * Returns 0 for success, -EINVAL if the ucode is not available.
689 */
690 static int sdma_v3_0_load_microcode(struct amdgpu_device *adev)
691 {
692 const struct sdma_firmware_header_v1_0 *hdr;
693 const __le32 *fw_data;
694 u32 fw_size;
695 int i, j;
696
697 /* halt the MEs */
698 sdma_v3_0_enable(adev, false);
699
700 for (i = 0; i < adev->sdma.num_instances; i++) {
701 if (!adev->sdma.instance[i].fw)
702 return -EINVAL;
703 hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
704 amdgpu_ucode_print_sdma_hdr(&hdr->header);
705 fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4;
706 fw_data = (const __le32 *)
707 (adev->sdma.instance[i].fw->data +
708 le32_to_cpu(hdr->header.ucode_array_offset_bytes));
709 WREG32(mmSDMA0_UCODE_ADDR + sdma_offsets[i], 0);
710 for (j = 0; j < fw_size; j++)
711 WREG32(mmSDMA0_UCODE_DATA + sdma_offsets[i], le32_to_cpup(fw_data++));
712 WREG32(mmSDMA0_UCODE_ADDR + sdma_offsets[i], adev->sdma.instance[i].fw_version);
713 }
714
715 return 0;
716 }
717
718 /**
719 * sdma_v3_0_start - setup and start the async dma engines
720 *
721 * @adev: amdgpu_device pointer
722 *
723 * Set up the DMA engines and enable them (VI).
724 * Returns 0 for success, error for failure.
725 */
726 static int sdma_v3_0_start(struct amdgpu_device *adev)
727 {
728 int r, i;
729
730 if (!adev->firmware.smu_load) {
731 r = sdma_v3_0_load_microcode(adev);
732 if (r)
733 return r;
734 } else {
735 for (i = 0; i < adev->sdma.num_instances; i++) {
736 r = adev->smu.smumgr_funcs->check_fw_load_finish(adev,
737 (i == 0) ?
738 AMDGPU_UCODE_ID_SDMA0 :
739 AMDGPU_UCODE_ID_SDMA1);
740 if (r)
741 return -EINVAL;
742 }
743 }
744
745 /* unhalt the MEs */
746 sdma_v3_0_enable(adev, true);
747 /* enable sdma ring preemption */
748 sdma_v3_0_ctx_switch_enable(adev, true);
749
750 /* start the gfx rings and rlc compute queues */
751 r = sdma_v3_0_gfx_resume(adev);
752 if (r)
753 return r;
754 r = sdma_v3_0_rlc_resume(adev);
755 if (r)
756 return r;
757
758 return 0;
759 }
760
761 /**
762 * sdma_v3_0_ring_test_ring - simple async dma engine test
763 *
764 * @ring: amdgpu_ring structure holding ring information
765 *
766 * Test the DMA engine by writing using it to write an
767 * value to memory. (VI).
768 * Returns 0 for success, error for failure.
769 */
770 static int sdma_v3_0_ring_test_ring(struct amdgpu_ring *ring)
771 {
772 struct amdgpu_device *adev = ring->adev;
773 unsigned i;
774 unsigned index;
775 int r;
776 u32 tmp;
777 u64 gpu_addr;
778
779 r = amdgpu_wb_get(adev, &index);
780 if (r) {
781 dev_err(adev->dev, "(%d) failed to allocate wb slot\n", r);
782 return r;
783 }
784
785 gpu_addr = adev->wb.gpu_addr + (index * 4);
786 tmp = 0xCAFEDEAD;
787 adev->wb.wb[index] = cpu_to_le32(tmp);
788
789 r = amdgpu_ring_lock(ring, 5);
790 if (r) {
791 DRM_ERROR("amdgpu: dma failed to lock ring %d (%d).\n", ring->idx, r);
792 amdgpu_wb_free(adev, index);
793 return r;
794 }
795
796 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
797 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR));
798 amdgpu_ring_write(ring, lower_32_bits(gpu_addr));
799 amdgpu_ring_write(ring, upper_32_bits(gpu_addr));
800 amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1));
801 amdgpu_ring_write(ring, 0xDEADBEEF);
802 amdgpu_ring_unlock_commit(ring);
803
804 for (i = 0; i < adev->usec_timeout; i++) {
805 tmp = le32_to_cpu(adev->wb.wb[index]);
806 if (tmp == 0xDEADBEEF)
807 break;
808 DRM_UDELAY(1);
809 }
810
811 if (i < adev->usec_timeout) {
812 DRM_INFO("ring test on %d succeeded in %d usecs\n", ring->idx, i);
813 } else {
814 DRM_ERROR("amdgpu: ring %d test failed (0x%08X)\n",
815 ring->idx, tmp);
816 r = -EINVAL;
817 }
818 amdgpu_wb_free(adev, index);
819
820 return r;
821 }
822
823 /**
824 * sdma_v3_0_ring_test_ib - test an IB on the DMA engine
825 *
826 * @ring: amdgpu_ring structure holding ring information
827 *
828 * Test a simple IB in the DMA ring (VI).
829 * Returns 0 on success, error on failure.
830 */
831 static int sdma_v3_0_ring_test_ib(struct amdgpu_ring *ring)
832 {
833 struct amdgpu_device *adev = ring->adev;
834 struct amdgpu_ib ib;
835 struct fence *f = NULL;
836 unsigned i;
837 unsigned index;
838 int r;
839 u32 tmp = 0;
840 u64 gpu_addr;
841
842 r = amdgpu_wb_get(adev, &index);
843 if (r) {
844 dev_err(adev->dev, "(%d) failed to allocate wb slot\n", r);
845 return r;
846 }
847
848 gpu_addr = adev->wb.gpu_addr + (index * 4);
849 tmp = 0xCAFEDEAD;
850 adev->wb.wb[index] = cpu_to_le32(tmp);
851 memset(&ib, 0, sizeof(ib));
852 r = amdgpu_ib_get(ring, NULL, 256, &ib);
853 if (r) {
854 DRM_ERROR("amdgpu: failed to get ib (%d).\n", r);
855 goto err0;
856 }
857
858 ib.ptr[0] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
859 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
860 ib.ptr[1] = lower_32_bits(gpu_addr);
861 ib.ptr[2] = upper_32_bits(gpu_addr);
862 ib.ptr[3] = SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1);
863 ib.ptr[4] = 0xDEADBEEF;
864 ib.ptr[5] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
865 ib.ptr[6] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
866 ib.ptr[7] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
867 ib.length_dw = 8;
868
869 r = amdgpu_sched_ib_submit_kernel_helper(adev, ring, &ib, 1, NULL,
870 AMDGPU_FENCE_OWNER_UNDEFINED,
871 &f);
872 if (r)
873 goto err1;
874
875 r = fence_wait(f, false);
876 if (r) {
877 DRM_ERROR("amdgpu: fence wait failed (%d).\n", r);
878 goto err1;
879 }
880 for (i = 0; i < adev->usec_timeout; i++) {
881 tmp = le32_to_cpu(adev->wb.wb[index]);
882 if (tmp == 0xDEADBEEF)
883 break;
884 DRM_UDELAY(1);
885 }
886 if (i < adev->usec_timeout) {
887 DRM_INFO("ib test on ring %d succeeded in %u usecs\n",
888 ring->idx, i);
889 goto err1;
890 } else {
891 DRM_ERROR("amdgpu: ib test failed (0x%08X)\n", tmp);
892 r = -EINVAL;
893 }
894 err1:
895 fence_put(f);
896 amdgpu_ib_free(adev, &ib);
897 err0:
898 amdgpu_wb_free(adev, index);
899 return r;
900 }
901
902 /**
903 * sdma_v3_0_vm_copy_pte - update PTEs by copying them from the GART
904 *
905 * @ib: indirect buffer to fill with commands
906 * @pe: addr of the page entry
907 * @src: src addr to copy from
908 * @count: number of page entries to update
909 *
910 * Update PTEs by copying them from the GART using sDMA (CIK).
911 */
912 static void sdma_v3_0_vm_copy_pte(struct amdgpu_ib *ib,
913 uint64_t pe, uint64_t src,
914 unsigned count)
915 {
916 while (count) {
917 unsigned bytes = count * 8;
918 if (bytes > 0x1FFFF8)
919 bytes = 0x1FFFF8;
920
921 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
922 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
923 ib->ptr[ib->length_dw++] = bytes;
924 ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
925 ib->ptr[ib->length_dw++] = lower_32_bits(src);
926 ib->ptr[ib->length_dw++] = upper_32_bits(src);
927 ib->ptr[ib->length_dw++] = lower_32_bits(pe);
928 ib->ptr[ib->length_dw++] = upper_32_bits(pe);
929
930 pe += bytes;
931 src += bytes;
932 count -= bytes / 8;
933 }
934 }
935
936 /**
937 * sdma_v3_0_vm_write_pte - update PTEs by writing them manually
938 *
939 * @ib: indirect buffer to fill with commands
940 * @pe: addr of the page entry
941 * @addr: dst addr to write into pe
942 * @count: number of page entries to update
943 * @incr: increase next addr by incr bytes
944 * @flags: access flags
945 *
946 * Update PTEs by writing them manually using sDMA (CIK).
947 */
948 static void sdma_v3_0_vm_write_pte(struct amdgpu_ib *ib,
949 uint64_t pe,
950 uint64_t addr, unsigned count,
951 uint32_t incr, uint32_t flags)
952 {
953 uint64_t value;
954 unsigned ndw;
955
956 while (count) {
957 ndw = count * 2;
958 if (ndw > 0xFFFFE)
959 ndw = 0xFFFFE;
960
961 /* for non-physically contiguous pages (system) */
962 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
963 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
964 ib->ptr[ib->length_dw++] = pe;
965 ib->ptr[ib->length_dw++] = upper_32_bits(pe);
966 ib->ptr[ib->length_dw++] = ndw;
967 for (; ndw > 0; ndw -= 2, --count, pe += 8) {
968 if (flags & AMDGPU_PTE_SYSTEM) {
969 value = amdgpu_vm_map_gart(ib->ring->adev, addr);
970 value &= 0xFFFFFFFFFFFFF000ULL;
971 } else if (flags & AMDGPU_PTE_VALID) {
972 value = addr;
973 } else {
974 value = 0;
975 }
976 addr += incr;
977 value |= flags;
978 ib->ptr[ib->length_dw++] = value;
979 ib->ptr[ib->length_dw++] = upper_32_bits(value);
980 }
981 }
982 }
983
984 /**
985 * sdma_v3_0_vm_set_pte_pde - update the page tables using sDMA
986 *
987 * @ib: indirect buffer to fill with commands
988 * @pe: addr of the page entry
989 * @addr: dst addr to write into pe
990 * @count: number of page entries to update
991 * @incr: increase next addr by incr bytes
992 * @flags: access flags
993 *
994 * Update the page tables using sDMA (CIK).
995 */
996 static void sdma_v3_0_vm_set_pte_pde(struct amdgpu_ib *ib,
997 uint64_t pe,
998 uint64_t addr, unsigned count,
999 uint32_t incr, uint32_t flags)
1000 {
1001 uint64_t value;
1002 unsigned ndw;
1003
1004 while (count) {
1005 ndw = count;
1006 if (ndw > 0x7FFFF)
1007 ndw = 0x7FFFF;
1008
1009 if (flags & AMDGPU_PTE_VALID)
1010 value = addr;
1011 else
1012 value = 0;
1013
1014 /* for physically contiguous pages (vram) */
1015 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_GEN_PTEPDE);
1016 ib->ptr[ib->length_dw++] = pe; /* dst addr */
1017 ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1018 ib->ptr[ib->length_dw++] = flags; /* mask */
1019 ib->ptr[ib->length_dw++] = 0;
1020 ib->ptr[ib->length_dw++] = value; /* value */
1021 ib->ptr[ib->length_dw++] = upper_32_bits(value);
1022 ib->ptr[ib->length_dw++] = incr; /* increment size */
1023 ib->ptr[ib->length_dw++] = 0;
1024 ib->ptr[ib->length_dw++] = ndw; /* number of entries */
1025
1026 pe += ndw * 8;
1027 addr += ndw * incr;
1028 count -= ndw;
1029 }
1030 }
1031
1032 /**
1033 * sdma_v3_0_vm_pad_ib - pad the IB to the required number of dw
1034 *
1035 * @ib: indirect buffer to fill with padding
1036 *
1037 */
1038 static void sdma_v3_0_vm_pad_ib(struct amdgpu_ib *ib)
1039 {
1040 struct amdgpu_sdma_instance *sdma = amdgpu_get_sdma_instance(ib->ring);
1041 u32 pad_count;
1042 int i;
1043
1044 pad_count = (8 - (ib->length_dw & 0x7)) % 8;
1045 for (i = 0; i < pad_count; i++)
1046 if (sdma && sdma->burst_nop && (i == 0))
1047 ib->ptr[ib->length_dw++] =
1048 SDMA_PKT_HEADER_OP(SDMA_OP_NOP) |
1049 SDMA_PKT_NOP_HEADER_COUNT(pad_count - 1);
1050 else
1051 ib->ptr[ib->length_dw++] =
1052 SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
1053 }
1054
1055 /**
1056 * sdma_v3_0_ring_emit_vm_flush - cik vm flush using sDMA
1057 *
1058 * @ring: amdgpu_ring pointer
1059 * @vm: amdgpu_vm pointer
1060 *
1061 * Update the page table base and flush the VM TLB
1062 * using sDMA (VI).
1063 */
1064 static void sdma_v3_0_ring_emit_vm_flush(struct amdgpu_ring *ring,
1065 unsigned vm_id, uint64_t pd_addr)
1066 {
1067 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
1068 SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
1069 if (vm_id < 8) {
1070 amdgpu_ring_write(ring, (mmVM_CONTEXT0_PAGE_TABLE_BASE_ADDR + vm_id));
1071 } else {
1072 amdgpu_ring_write(ring, (mmVM_CONTEXT8_PAGE_TABLE_BASE_ADDR + vm_id - 8));
1073 }
1074 amdgpu_ring_write(ring, pd_addr >> 12);
1075
1076 /* flush TLB */
1077 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
1078 SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
1079 amdgpu_ring_write(ring, mmVM_INVALIDATE_REQUEST);
1080 amdgpu_ring_write(ring, 1 << vm_id);
1081
1082 /* wait for flush */
1083 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
1084 SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) |
1085 SDMA_PKT_POLL_REGMEM_HEADER_FUNC(0)); /* always */
1086 amdgpu_ring_write(ring, mmVM_INVALIDATE_REQUEST << 2);
1087 amdgpu_ring_write(ring, 0);
1088 amdgpu_ring_write(ring, 0); /* reference */
1089 amdgpu_ring_write(ring, 0); /* mask */
1090 amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
1091 SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */
1092 }
1093
1094 static int sdma_v3_0_early_init(void *handle)
1095 {
1096 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1097
1098 switch (adev->asic_type) {
1099 case CHIP_STONEY:
1100 adev->sdma.num_instances = 1;
1101 break;
1102 default:
1103 adev->sdma.num_instances = SDMA_MAX_INSTANCE;
1104 break;
1105 }
1106
1107 sdma_v3_0_set_ring_funcs(adev);
1108 sdma_v3_0_set_buffer_funcs(adev);
1109 sdma_v3_0_set_vm_pte_funcs(adev);
1110 sdma_v3_0_set_irq_funcs(adev);
1111
1112 return 0;
1113 }
1114
1115 static int sdma_v3_0_sw_init(void *handle)
1116 {
1117 struct amdgpu_ring *ring;
1118 int r, i;
1119 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1120
1121 /* SDMA trap event */
1122 r = amdgpu_irq_add_id(adev, 224, &adev->sdma.trap_irq);
1123 if (r)
1124 return r;
1125
1126 /* SDMA Privileged inst */
1127 r = amdgpu_irq_add_id(adev, 241, &adev->sdma.illegal_inst_irq);
1128 if (r)
1129 return r;
1130
1131 /* SDMA Privileged inst */
1132 r = amdgpu_irq_add_id(adev, 247, &adev->sdma.illegal_inst_irq);
1133 if (r)
1134 return r;
1135
1136 r = sdma_v3_0_init_microcode(adev);
1137 if (r) {
1138 DRM_ERROR("Failed to load sdma firmware!\n");
1139 return r;
1140 }
1141
1142 for (i = 0; i < adev->sdma.num_instances; i++) {
1143 ring = &adev->sdma.instance[i].ring;
1144 ring->ring_obj = NULL;
1145 ring->use_doorbell = true;
1146 ring->doorbell_index = (i == 0) ?
1147 AMDGPU_DOORBELL_sDMA_ENGINE0 : AMDGPU_DOORBELL_sDMA_ENGINE1;
1148
1149 sprintf(ring->name, "sdma%d", i);
1150 r = amdgpu_ring_init(adev, ring, 256 * 1024,
1151 SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP), 0xf,
1152 &adev->sdma.trap_irq,
1153 (i == 0) ?
1154 AMDGPU_SDMA_IRQ_TRAP0 : AMDGPU_SDMA_IRQ_TRAP1,
1155 AMDGPU_RING_TYPE_SDMA);
1156 if (r)
1157 return r;
1158 }
1159
1160 return r;
1161 }
1162
1163 static int sdma_v3_0_sw_fini(void *handle)
1164 {
1165 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1166 int i;
1167
1168 for (i = 0; i < adev->sdma.num_instances; i++)
1169 amdgpu_ring_fini(&adev->sdma.instance[i].ring);
1170
1171 return 0;
1172 }
1173
1174 static int sdma_v3_0_hw_init(void *handle)
1175 {
1176 int r;
1177 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1178
1179 sdma_v3_0_init_golden_registers(adev);
1180
1181 r = sdma_v3_0_start(adev);
1182 if (r)
1183 return r;
1184
1185 return r;
1186 }
1187
1188 static int sdma_v3_0_hw_fini(void *handle)
1189 {
1190 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1191
1192 sdma_v3_0_ctx_switch_enable(adev, false);
1193 sdma_v3_0_enable(adev, false);
1194
1195 return 0;
1196 }
1197
1198 static int sdma_v3_0_suspend(void *handle)
1199 {
1200 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1201
1202 return sdma_v3_0_hw_fini(adev);
1203 }
1204
1205 static int sdma_v3_0_resume(void *handle)
1206 {
1207 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1208
1209 return sdma_v3_0_hw_init(adev);
1210 }
1211
1212 static bool sdma_v3_0_is_idle(void *handle)
1213 {
1214 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1215 u32 tmp = RREG32(mmSRBM_STATUS2);
1216
1217 if (tmp & (SRBM_STATUS2__SDMA_BUSY_MASK |
1218 SRBM_STATUS2__SDMA1_BUSY_MASK))
1219 return false;
1220
1221 return true;
1222 }
1223
1224 static int sdma_v3_0_wait_for_idle(void *handle)
1225 {
1226 unsigned i;
1227 u32 tmp;
1228 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1229
1230 for (i = 0; i < adev->usec_timeout; i++) {
1231 tmp = RREG32(mmSRBM_STATUS2) & (SRBM_STATUS2__SDMA_BUSY_MASK |
1232 SRBM_STATUS2__SDMA1_BUSY_MASK);
1233
1234 if (!tmp)
1235 return 0;
1236 udelay(1);
1237 }
1238 return -ETIMEDOUT;
1239 }
1240
1241 static void sdma_v3_0_print_status(void *handle)
1242 {
1243 int i, j;
1244 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1245
1246 dev_info(adev->dev, "VI SDMA registers\n");
1247 dev_info(adev->dev, " SRBM_STATUS2=0x%08X\n",
1248 RREG32(mmSRBM_STATUS2));
1249 for (i = 0; i < adev->sdma.num_instances; i++) {
1250 dev_info(adev->dev, " SDMA%d_STATUS_REG=0x%08X\n",
1251 i, RREG32(mmSDMA0_STATUS_REG + sdma_offsets[i]));
1252 dev_info(adev->dev, " SDMA%d_F32_CNTL=0x%08X\n",
1253 i, RREG32(mmSDMA0_F32_CNTL + sdma_offsets[i]));
1254 dev_info(adev->dev, " SDMA%d_CNTL=0x%08X\n",
1255 i, RREG32(mmSDMA0_CNTL + sdma_offsets[i]));
1256 dev_info(adev->dev, " SDMA%d_SEM_WAIT_FAIL_TIMER_CNTL=0x%08X\n",
1257 i, RREG32(mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL + sdma_offsets[i]));
1258 dev_info(adev->dev, " SDMA%d_GFX_IB_CNTL=0x%08X\n",
1259 i, RREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i]));
1260 dev_info(adev->dev, " SDMA%d_GFX_RB_CNTL=0x%08X\n",
1261 i, RREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i]));
1262 dev_info(adev->dev, " SDMA%d_GFX_RB_RPTR=0x%08X\n",
1263 i, RREG32(mmSDMA0_GFX_RB_RPTR + sdma_offsets[i]));
1264 dev_info(adev->dev, " SDMA%d_GFX_RB_WPTR=0x%08X\n",
1265 i, RREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[i]));
1266 dev_info(adev->dev, " SDMA%d_GFX_RB_RPTR_ADDR_HI=0x%08X\n",
1267 i, RREG32(mmSDMA0_GFX_RB_RPTR_ADDR_HI + sdma_offsets[i]));
1268 dev_info(adev->dev, " SDMA%d_GFX_RB_RPTR_ADDR_LO=0x%08X\n",
1269 i, RREG32(mmSDMA0_GFX_RB_RPTR_ADDR_LO + sdma_offsets[i]));
1270 dev_info(adev->dev, " SDMA%d_GFX_RB_BASE=0x%08X\n",
1271 i, RREG32(mmSDMA0_GFX_RB_BASE + sdma_offsets[i]));
1272 dev_info(adev->dev, " SDMA%d_GFX_RB_BASE_HI=0x%08X\n",
1273 i, RREG32(mmSDMA0_GFX_RB_BASE_HI + sdma_offsets[i]));
1274 dev_info(adev->dev, " SDMA%d_GFX_DOORBELL=0x%08X\n",
1275 i, RREG32(mmSDMA0_GFX_DOORBELL + sdma_offsets[i]));
1276 mutex_lock(&adev->srbm_mutex);
1277 for (j = 0; j < 16; j++) {
1278 vi_srbm_select(adev, 0, 0, 0, j);
1279 dev_info(adev->dev, " VM %d:\n", j);
1280 dev_info(adev->dev, " SDMA%d_GFX_VIRTUAL_ADDR=0x%08X\n",
1281 i, RREG32(mmSDMA0_GFX_VIRTUAL_ADDR + sdma_offsets[i]));
1282 dev_info(adev->dev, " SDMA%d_GFX_APE1_CNTL=0x%08X\n",
1283 i, RREG32(mmSDMA0_GFX_APE1_CNTL + sdma_offsets[i]));
1284 }
1285 vi_srbm_select(adev, 0, 0, 0, 0);
1286 mutex_unlock(&adev->srbm_mutex);
1287 }
1288 }
1289
1290 static int sdma_v3_0_soft_reset(void *handle)
1291 {
1292 u32 srbm_soft_reset = 0;
1293 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1294 u32 tmp = RREG32(mmSRBM_STATUS2);
1295
1296 if (tmp & SRBM_STATUS2__SDMA_BUSY_MASK) {
1297 /* sdma0 */
1298 tmp = RREG32(mmSDMA0_F32_CNTL + SDMA0_REGISTER_OFFSET);
1299 tmp = REG_SET_FIELD(tmp, SDMA0_F32_CNTL, HALT, 0);
1300 WREG32(mmSDMA0_F32_CNTL + SDMA0_REGISTER_OFFSET, tmp);
1301 srbm_soft_reset |= SRBM_SOFT_RESET__SOFT_RESET_SDMA_MASK;
1302 }
1303 if (tmp & SRBM_STATUS2__SDMA1_BUSY_MASK) {
1304 /* sdma1 */
1305 tmp = RREG32(mmSDMA0_F32_CNTL + SDMA1_REGISTER_OFFSET);
1306 tmp = REG_SET_FIELD(tmp, SDMA0_F32_CNTL, HALT, 0);
1307 WREG32(mmSDMA0_F32_CNTL + SDMA1_REGISTER_OFFSET, tmp);
1308 srbm_soft_reset |= SRBM_SOFT_RESET__SOFT_RESET_SDMA1_MASK;
1309 }
1310
1311 if (srbm_soft_reset) {
1312 sdma_v3_0_print_status((void *)adev);
1313
1314 tmp = RREG32(mmSRBM_SOFT_RESET);
1315 tmp |= srbm_soft_reset;
1316 dev_info(adev->dev, "SRBM_SOFT_RESET=0x%08X\n", tmp);
1317 WREG32(mmSRBM_SOFT_RESET, tmp);
1318 tmp = RREG32(mmSRBM_SOFT_RESET);
1319
1320 udelay(50);
1321
1322 tmp &= ~srbm_soft_reset;
1323 WREG32(mmSRBM_SOFT_RESET, tmp);
1324 tmp = RREG32(mmSRBM_SOFT_RESET);
1325
1326 /* Wait a little for things to settle down */
1327 udelay(50);
1328
1329 sdma_v3_0_print_status((void *)adev);
1330 }
1331
1332 return 0;
1333 }
1334
1335 static int sdma_v3_0_set_trap_irq_state(struct amdgpu_device *adev,
1336 struct amdgpu_irq_src *source,
1337 unsigned type,
1338 enum amdgpu_interrupt_state state)
1339 {
1340 u32 sdma_cntl;
1341
1342 switch (type) {
1343 case AMDGPU_SDMA_IRQ_TRAP0:
1344 switch (state) {
1345 case AMDGPU_IRQ_STATE_DISABLE:
1346 sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET);
1347 sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 0);
1348 WREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET, sdma_cntl);
1349 break;
1350 case AMDGPU_IRQ_STATE_ENABLE:
1351 sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET);
1352 sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 1);
1353 WREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET, sdma_cntl);
1354 break;
1355 default:
1356 break;
1357 }
1358 break;
1359 case AMDGPU_SDMA_IRQ_TRAP1:
1360 switch (state) {
1361 case AMDGPU_IRQ_STATE_DISABLE:
1362 sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET);
1363 sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 0);
1364 WREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET, sdma_cntl);
1365 break;
1366 case AMDGPU_IRQ_STATE_ENABLE:
1367 sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET);
1368 sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 1);
1369 WREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET, sdma_cntl);
1370 break;
1371 default:
1372 break;
1373 }
1374 break;
1375 default:
1376 break;
1377 }
1378 return 0;
1379 }
1380
1381 static int sdma_v3_0_process_trap_irq(struct amdgpu_device *adev,
1382 struct amdgpu_irq_src *source,
1383 struct amdgpu_iv_entry *entry)
1384 {
1385 u8 instance_id, queue_id;
1386
1387 instance_id = (entry->ring_id & 0x3) >> 0;
1388 queue_id = (entry->ring_id & 0xc) >> 2;
1389 DRM_DEBUG("IH: SDMA trap\n");
1390 switch (instance_id) {
1391 case 0:
1392 switch (queue_id) {
1393 case 0:
1394 amdgpu_fence_process(&adev->sdma.instance[0].ring);
1395 break;
1396 case 1:
1397 /* XXX compute */
1398 break;
1399 case 2:
1400 /* XXX compute */
1401 break;
1402 }
1403 break;
1404 case 1:
1405 switch (queue_id) {
1406 case 0:
1407 amdgpu_fence_process(&adev->sdma.instance[1].ring);
1408 break;
1409 case 1:
1410 /* XXX compute */
1411 break;
1412 case 2:
1413 /* XXX compute */
1414 break;
1415 }
1416 break;
1417 }
1418 return 0;
1419 }
1420
1421 static int sdma_v3_0_process_illegal_inst_irq(struct amdgpu_device *adev,
1422 struct amdgpu_irq_src *source,
1423 struct amdgpu_iv_entry *entry)
1424 {
1425 DRM_ERROR("Illegal instruction in SDMA command stream\n");
1426 schedule_work(&adev->reset_work);
1427 return 0;
1428 }
1429
1430 static int sdma_v3_0_set_clockgating_state(void *handle,
1431 enum amd_clockgating_state state)
1432 {
1433 return 0;
1434 }
1435
1436 static int sdma_v3_0_set_powergating_state(void *handle,
1437 enum amd_powergating_state state)
1438 {
1439 return 0;
1440 }
1441
1442 const struct amd_ip_funcs sdma_v3_0_ip_funcs = {
1443 .early_init = sdma_v3_0_early_init,
1444 .late_init = NULL,
1445 .sw_init = sdma_v3_0_sw_init,
1446 .sw_fini = sdma_v3_0_sw_fini,
1447 .hw_init = sdma_v3_0_hw_init,
1448 .hw_fini = sdma_v3_0_hw_fini,
1449 .suspend = sdma_v3_0_suspend,
1450 .resume = sdma_v3_0_resume,
1451 .is_idle = sdma_v3_0_is_idle,
1452 .wait_for_idle = sdma_v3_0_wait_for_idle,
1453 .soft_reset = sdma_v3_0_soft_reset,
1454 .print_status = sdma_v3_0_print_status,
1455 .set_clockgating_state = sdma_v3_0_set_clockgating_state,
1456 .set_powergating_state = sdma_v3_0_set_powergating_state,
1457 };
1458
1459 static const struct amdgpu_ring_funcs sdma_v3_0_ring_funcs = {
1460 .get_rptr = sdma_v3_0_ring_get_rptr,
1461 .get_wptr = sdma_v3_0_ring_get_wptr,
1462 .set_wptr = sdma_v3_0_ring_set_wptr,
1463 .parse_cs = NULL,
1464 .emit_ib = sdma_v3_0_ring_emit_ib,
1465 .emit_fence = sdma_v3_0_ring_emit_fence,
1466 .emit_semaphore = sdma_v3_0_ring_emit_semaphore,
1467 .emit_vm_flush = sdma_v3_0_ring_emit_vm_flush,
1468 .emit_hdp_flush = sdma_v3_0_ring_emit_hdp_flush,
1469 .test_ring = sdma_v3_0_ring_test_ring,
1470 .test_ib = sdma_v3_0_ring_test_ib,
1471 .insert_nop = sdma_v3_0_ring_insert_nop,
1472 };
1473
1474 static void sdma_v3_0_set_ring_funcs(struct amdgpu_device *adev)
1475 {
1476 int i;
1477
1478 for (i = 0; i < adev->sdma.num_instances; i++)
1479 adev->sdma.instance[i].ring.funcs = &sdma_v3_0_ring_funcs;
1480 }
1481
1482 static const struct amdgpu_irq_src_funcs sdma_v3_0_trap_irq_funcs = {
1483 .set = sdma_v3_0_set_trap_irq_state,
1484 .process = sdma_v3_0_process_trap_irq,
1485 };
1486
1487 static const struct amdgpu_irq_src_funcs sdma_v3_0_illegal_inst_irq_funcs = {
1488 .process = sdma_v3_0_process_illegal_inst_irq,
1489 };
1490
1491 static void sdma_v3_0_set_irq_funcs(struct amdgpu_device *adev)
1492 {
1493 adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_LAST;
1494 adev->sdma.trap_irq.funcs = &sdma_v3_0_trap_irq_funcs;
1495 adev->sdma.illegal_inst_irq.funcs = &sdma_v3_0_illegal_inst_irq_funcs;
1496 }
1497
1498 /**
1499 * sdma_v3_0_emit_copy_buffer - copy buffer using the sDMA engine
1500 *
1501 * @ring: amdgpu_ring structure holding ring information
1502 * @src_offset: src GPU address
1503 * @dst_offset: dst GPU address
1504 * @byte_count: number of bytes to xfer
1505 *
1506 * Copy GPU buffers using the DMA engine (VI).
1507 * Used by the amdgpu ttm implementation to move pages if
1508 * registered as the asic copy callback.
1509 */
1510 static void sdma_v3_0_emit_copy_buffer(struct amdgpu_ib *ib,
1511 uint64_t src_offset,
1512 uint64_t dst_offset,
1513 uint32_t byte_count)
1514 {
1515 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
1516 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
1517 ib->ptr[ib->length_dw++] = byte_count;
1518 ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
1519 ib->ptr[ib->length_dw++] = lower_32_bits(src_offset);
1520 ib->ptr[ib->length_dw++] = upper_32_bits(src_offset);
1521 ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
1522 ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
1523 }
1524
1525 /**
1526 * sdma_v3_0_emit_fill_buffer - fill buffer using the sDMA engine
1527 *
1528 * @ring: amdgpu_ring structure holding ring information
1529 * @src_data: value to write to buffer
1530 * @dst_offset: dst GPU address
1531 * @byte_count: number of bytes to xfer
1532 *
1533 * Fill GPU buffers using the DMA engine (VI).
1534 */
1535 static void sdma_v3_0_emit_fill_buffer(struct amdgpu_ib *ib,
1536 uint32_t src_data,
1537 uint64_t dst_offset,
1538 uint32_t byte_count)
1539 {
1540 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_CONST_FILL);
1541 ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
1542 ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
1543 ib->ptr[ib->length_dw++] = src_data;
1544 ib->ptr[ib->length_dw++] = byte_count;
1545 }
1546
1547 static const struct amdgpu_buffer_funcs sdma_v3_0_buffer_funcs = {
1548 .copy_max_bytes = 0x1fffff,
1549 .copy_num_dw = 7,
1550 .emit_copy_buffer = sdma_v3_0_emit_copy_buffer,
1551
1552 .fill_max_bytes = 0x1fffff,
1553 .fill_num_dw = 5,
1554 .emit_fill_buffer = sdma_v3_0_emit_fill_buffer,
1555 };
1556
1557 static void sdma_v3_0_set_buffer_funcs(struct amdgpu_device *adev)
1558 {
1559 if (adev->mman.buffer_funcs == NULL) {
1560 adev->mman.buffer_funcs = &sdma_v3_0_buffer_funcs;
1561 adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].ring;
1562 }
1563 }
1564
1565 static const struct amdgpu_vm_pte_funcs sdma_v3_0_vm_pte_funcs = {
1566 .copy_pte = sdma_v3_0_vm_copy_pte,
1567 .write_pte = sdma_v3_0_vm_write_pte,
1568 .set_pte_pde = sdma_v3_0_vm_set_pte_pde,
1569 .pad_ib = sdma_v3_0_vm_pad_ib,
1570 };
1571
1572 static void sdma_v3_0_set_vm_pte_funcs(struct amdgpu_device *adev)
1573 {
1574 if (adev->vm_manager.vm_pte_funcs == NULL) {
1575 adev->vm_manager.vm_pte_funcs = &sdma_v3_0_vm_pte_funcs;
1576 adev->vm_manager.vm_pte_funcs_ring = &adev->sdma.instance[0].ring;
1577 adev->vm_manager.vm_pte_funcs_ring->is_pte_ring = true;
1578 }
1579 }