]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - drivers/gpu/drm/amd/amdgpu/sdma_v5_0.c
Merge branch 'floppy'
[mirror_ubuntu-hirsute-kernel.git] / drivers / gpu / drm / amd / amdgpu / sdma_v5_0.c
1 /*
2 * Copyright 2019 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 */
23
24 #include <linux/firmware.h>
25 #include <drm/drmP.h>
26 #include "amdgpu.h"
27 #include "amdgpu_ucode.h"
28 #include "amdgpu_trace.h"
29
30 #include "gc/gc_10_1_0_offset.h"
31 #include "gc/gc_10_1_0_sh_mask.h"
32 #include "hdp/hdp_5_0_0_offset.h"
33 #include "ivsrcid/sdma0/irqsrcs_sdma0_5_0.h"
34 #include "ivsrcid/sdma1/irqsrcs_sdma1_5_0.h"
35
36 #include "soc15_common.h"
37 #include "soc15.h"
38 #include "navi10_sdma_pkt_open.h"
39 #include "nbio_v2_3.h"
40 #include "sdma_v5_0.h"
41
42 MODULE_FIRMWARE("amdgpu/navi10_sdma.bin");
43 MODULE_FIRMWARE("amdgpu/navi10_sdma1.bin");
44
45 #define SDMA1_REG_OFFSET 0x600
46 #define SDMA0_HYP_DEC_REG_START 0x5880
47 #define SDMA0_HYP_DEC_REG_END 0x5893
48 #define SDMA1_HYP_DEC_REG_OFFSET 0x20
49
50 static void sdma_v5_0_set_ring_funcs(struct amdgpu_device *adev);
51 static void sdma_v5_0_set_buffer_funcs(struct amdgpu_device *adev);
52 static void sdma_v5_0_set_vm_pte_funcs(struct amdgpu_device *adev);
53 static void sdma_v5_0_set_irq_funcs(struct amdgpu_device *adev);
54
55 static const struct soc15_reg_golden golden_settings_sdma_5[] = {
56 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_CHICKEN_BITS, 0xffbf1f0f, 0x03ab0107),
57 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
58 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
59 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
60 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
61 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC2_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
62 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC3_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
63 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC4_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
64 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC5_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
65 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC6_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
66 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC7_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
67 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_UTCL1_PAGE, 0x00ffffff, 0x000c5c00),
68 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_CHICKEN_BITS, 0xffbf1f0f, 0x03ab0107),
69 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
70 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_PAGE_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
71 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
72 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
73 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC2_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
74 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC3_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
75 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC4_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
76 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC5_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
77 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC6_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
78 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC7_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
79 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_UTCL1_PAGE, 0x00ffffff, 0x000c5c00)
80 };
81
82 static const struct soc15_reg_golden golden_settings_sdma_nv10[] = {
83 };
84
85 static u32 sdma_v5_0_get_reg_offset(struct amdgpu_device *adev, u32 instance, u32 internal_offset)
86 {
87 u32 base;
88
89 if (internal_offset >= SDMA0_HYP_DEC_REG_START &&
90 internal_offset <= SDMA0_HYP_DEC_REG_END) {
91 base = adev->reg_offset[GC_HWIP][0][1];
92 if (instance == 1)
93 internal_offset += SDMA1_HYP_DEC_REG_OFFSET;
94 } else {
95 base = adev->reg_offset[GC_HWIP][0][0];
96 if (instance == 1)
97 internal_offset += SDMA1_REG_OFFSET;
98 }
99
100 return base + internal_offset;
101 }
102
103 static void sdma_v5_0_init_golden_registers(struct amdgpu_device *adev)
104 {
105 switch (adev->asic_type) {
106 case CHIP_NAVI10:
107 soc15_program_register_sequence(adev,
108 golden_settings_sdma_5,
109 (const u32)ARRAY_SIZE(golden_settings_sdma_5));
110 soc15_program_register_sequence(adev,
111 golden_settings_sdma_nv10,
112 (const u32)ARRAY_SIZE(golden_settings_sdma_nv10));
113 break;
114 default:
115 break;
116 }
117 }
118
119 /**
120 * sdma_v5_0_init_microcode - load ucode images from disk
121 *
122 * @adev: amdgpu_device pointer
123 *
124 * Use the firmware interface to load the ucode images into
125 * the driver (not loaded into hw).
126 * Returns 0 on success, error on failure.
127 */
128
129 // emulation only, won't work on real chip
130 // navi10 real chip need to use PSP to load firmware
131 static int sdma_v5_0_init_microcode(struct amdgpu_device *adev)
132 {
133 const char *chip_name;
134 char fw_name[30];
135 int err = 0, i;
136 struct amdgpu_firmware_info *info = NULL;
137 const struct common_firmware_header *header = NULL;
138 const struct sdma_firmware_header_v1_0 *hdr;
139
140 DRM_DEBUG("\n");
141
142 switch (adev->asic_type) {
143 case CHIP_NAVI10:
144 chip_name = "navi10";
145 break;
146 default:
147 BUG();
148 }
149
150 for (i = 0; i < adev->sdma.num_instances; i++) {
151 if (i == 0)
152 snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma.bin", chip_name);
153 else
154 snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma1.bin", chip_name);
155 err = request_firmware(&adev->sdma.instance[i].fw, fw_name, adev->dev);
156 if (err)
157 goto out;
158 err = amdgpu_ucode_validate(adev->sdma.instance[i].fw);
159 if (err)
160 goto out;
161 hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
162 adev->sdma.instance[i].fw_version = le32_to_cpu(hdr->header.ucode_version);
163 adev->sdma.instance[i].feature_version = le32_to_cpu(hdr->ucode_feature_version);
164 if (adev->sdma.instance[i].feature_version >= 20)
165 adev->sdma.instance[i].burst_nop = true;
166 DRM_DEBUG("psp_load == '%s'\n",
167 adev->firmware.load_type == AMDGPU_FW_LOAD_PSP ? "true" : "false");
168
169 if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP) {
170 info = &adev->firmware.ucode[AMDGPU_UCODE_ID_SDMA0 + i];
171 info->ucode_id = AMDGPU_UCODE_ID_SDMA0 + i;
172 info->fw = adev->sdma.instance[i].fw;
173 header = (const struct common_firmware_header *)info->fw->data;
174 adev->firmware.fw_size +=
175 ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE);
176 }
177 }
178 out:
179 if (err) {
180 DRM_ERROR("sdma_v5_0: Failed to load firmware \"%s\"\n", fw_name);
181 for (i = 0; i < adev->sdma.num_instances; i++) {
182 release_firmware(adev->sdma.instance[i].fw);
183 adev->sdma.instance[i].fw = NULL;
184 }
185 }
186 return err;
187 }
188
189 static unsigned sdma_v5_0_ring_init_cond_exec(struct amdgpu_ring *ring)
190 {
191 unsigned ret;
192
193 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_COND_EXE));
194 amdgpu_ring_write(ring, lower_32_bits(ring->cond_exe_gpu_addr));
195 amdgpu_ring_write(ring, upper_32_bits(ring->cond_exe_gpu_addr));
196 amdgpu_ring_write(ring, 1);
197 ret = ring->wptr & ring->buf_mask;/* this is the offset we need patch later */
198 amdgpu_ring_write(ring, 0x55aa55aa);/* insert dummy here and patch it later */
199
200 return ret;
201 }
202
203 static void sdma_v5_0_ring_patch_cond_exec(struct amdgpu_ring *ring,
204 unsigned offset)
205 {
206 unsigned cur;
207
208 BUG_ON(offset > ring->buf_mask);
209 BUG_ON(ring->ring[offset] != 0x55aa55aa);
210
211 cur = (ring->wptr - 1) & ring->buf_mask;
212 if (cur > offset)
213 ring->ring[offset] = cur - offset;
214 else
215 ring->ring[offset] = (ring->buf_mask + 1) - offset + cur;
216 }
217
218 /**
219 * sdma_v5_0_ring_get_rptr - get the current read pointer
220 *
221 * @ring: amdgpu ring pointer
222 *
223 * Get the current rptr from the hardware (NAVI10+).
224 */
225 static uint64_t sdma_v5_0_ring_get_rptr(struct amdgpu_ring *ring)
226 {
227 u64 *rptr;
228
229 /* XXX check if swapping is necessary on BE */
230 rptr = ((u64 *)&ring->adev->wb.wb[ring->rptr_offs]);
231
232 DRM_DEBUG("rptr before shift == 0x%016llx\n", *rptr);
233 return ((*rptr) >> 2);
234 }
235
236 /**
237 * sdma_v5_0_ring_get_wptr - get the current write pointer
238 *
239 * @ring: amdgpu ring pointer
240 *
241 * Get the current wptr from the hardware (NAVI10+).
242 */
243 static uint64_t sdma_v5_0_ring_get_wptr(struct amdgpu_ring *ring)
244 {
245 struct amdgpu_device *adev = ring->adev;
246 u64 *wptr = NULL;
247 uint64_t local_wptr = 0;
248
249 if (ring->use_doorbell) {
250 /* XXX check if swapping is necessary on BE */
251 wptr = ((u64 *)&adev->wb.wb[ring->wptr_offs]);
252 DRM_DEBUG("wptr/doorbell before shift == 0x%016llx\n", *wptr);
253 *wptr = (*wptr) >> 2;
254 DRM_DEBUG("wptr/doorbell after shift == 0x%016llx\n", *wptr);
255 } else {
256 u32 lowbit, highbit;
257
258 wptr = &local_wptr;
259 lowbit = RREG32(sdma_v5_0_get_reg_offset(adev, ring->me, mmSDMA0_GFX_RB_WPTR)) >> 2;
260 highbit = RREG32(sdma_v5_0_get_reg_offset(adev, ring->me, mmSDMA0_GFX_RB_WPTR_HI)) >> 2;
261
262 DRM_DEBUG("wptr [%i]high== 0x%08x low==0x%08x\n",
263 ring->me, highbit, lowbit);
264 *wptr = highbit;
265 *wptr = (*wptr) << 32;
266 *wptr |= lowbit;
267 }
268
269 return *wptr;
270 }
271
272 /**
273 * sdma_v5_0_ring_set_wptr - commit the write pointer
274 *
275 * @ring: amdgpu ring pointer
276 *
277 * Write the wptr back to the hardware (NAVI10+).
278 */
279 static void sdma_v5_0_ring_set_wptr(struct amdgpu_ring *ring)
280 {
281 struct amdgpu_device *adev = ring->adev;
282
283 DRM_DEBUG("Setting write pointer\n");
284 if (ring->use_doorbell) {
285 DRM_DEBUG("Using doorbell -- "
286 "wptr_offs == 0x%08x "
287 "lower_32_bits(ring->wptr) << 2 == 0x%08x "
288 "upper_32_bits(ring->wptr) << 2 == 0x%08x\n",
289 ring->wptr_offs,
290 lower_32_bits(ring->wptr << 2),
291 upper_32_bits(ring->wptr << 2));
292 /* XXX check if swapping is necessary on BE */
293 adev->wb.wb[ring->wptr_offs] = lower_32_bits(ring->wptr << 2);
294 adev->wb.wb[ring->wptr_offs + 1] = upper_32_bits(ring->wptr << 2);
295 DRM_DEBUG("calling WDOORBELL64(0x%08x, 0x%016llx)\n",
296 ring->doorbell_index, ring->wptr << 2);
297 WDOORBELL64(ring->doorbell_index, ring->wptr << 2);
298 } else {
299 DRM_DEBUG("Not using doorbell -- "
300 "mmSDMA%i_GFX_RB_WPTR == 0x%08x "
301 "mmSDMA%i_GFX_RB_WPTR_HI == 0x%08x\n",
302 ring->me,
303 lower_32_bits(ring->wptr << 2),
304 ring->me,
305 upper_32_bits(ring->wptr << 2));
306 WREG32(sdma_v5_0_get_reg_offset(adev, ring->me, mmSDMA0_GFX_RB_WPTR),
307 lower_32_bits(ring->wptr << 2));
308 WREG32(sdma_v5_0_get_reg_offset(adev, ring->me, mmSDMA0_GFX_RB_WPTR_HI),
309 upper_32_bits(ring->wptr << 2));
310 }
311 }
312
313 static void sdma_v5_0_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count)
314 {
315 struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring);
316 int i;
317
318 for (i = 0; i < count; i++)
319 if (sdma && sdma->burst_nop && (i == 0))
320 amdgpu_ring_write(ring, ring->funcs->nop |
321 SDMA_PKT_NOP_HEADER_COUNT(count - 1));
322 else
323 amdgpu_ring_write(ring, ring->funcs->nop);
324 }
325
326 /**
327 * sdma_v5_0_ring_emit_ib - Schedule an IB on the DMA engine
328 *
329 * @ring: amdgpu ring pointer
330 * @ib: IB object to schedule
331 *
332 * Schedule an IB in the DMA ring (NAVI10).
333 */
334 static void sdma_v5_0_ring_emit_ib(struct amdgpu_ring *ring,
335 struct amdgpu_job *job,
336 struct amdgpu_ib *ib,
337 uint32_t flags)
338 {
339 unsigned vmid = AMDGPU_JOB_GET_VMID(job);
340 uint64_t csa_mc_addr = amdgpu_sdma_get_csa_mc_addr(ring, vmid);
341
342 /* IB packet must end on a 8 DW boundary */
343 sdma_v5_0_ring_insert_nop(ring, (10 - (lower_32_bits(ring->wptr) & 7)) % 8);
344
345 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_INDIRECT) |
346 SDMA_PKT_INDIRECT_HEADER_VMID(vmid & 0xf));
347 /* base must be 32 byte aligned */
348 amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr) & 0xffffffe0);
349 amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr));
350 amdgpu_ring_write(ring, ib->length_dw);
351 amdgpu_ring_write(ring, lower_32_bits(csa_mc_addr));
352 amdgpu_ring_write(ring, upper_32_bits(csa_mc_addr));
353 }
354
355 /**
356 * sdma_v5_0_ring_emit_hdp_flush - emit an hdp flush on the DMA ring
357 *
358 * @ring: amdgpu ring pointer
359 *
360 * Emit an hdp flush packet on the requested DMA ring.
361 */
362 static void sdma_v5_0_ring_emit_hdp_flush(struct amdgpu_ring *ring)
363 {
364 struct amdgpu_device *adev = ring->adev;
365 u32 ref_and_mask = 0;
366 const struct nbio_hdp_flush_reg *nbio_hf_reg = adev->nbio_funcs->hdp_flush_reg;
367
368 if (ring->me == 0)
369 ref_and_mask = nbio_hf_reg->ref_and_mask_sdma0;
370 else
371 ref_and_mask = nbio_hf_reg->ref_and_mask_sdma1;
372
373 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
374 SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(1) |
375 SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* == */
376 amdgpu_ring_write(ring, (adev->nbio_funcs->get_hdp_flush_done_offset(adev)) << 2);
377 amdgpu_ring_write(ring, (adev->nbio_funcs->get_hdp_flush_req_offset(adev)) << 2);
378 amdgpu_ring_write(ring, ref_and_mask); /* reference */
379 amdgpu_ring_write(ring, ref_and_mask); /* mask */
380 amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
381 SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */
382 }
383
384 /**
385 * sdma_v5_0_ring_emit_fence - emit a fence on the DMA ring
386 *
387 * @ring: amdgpu ring pointer
388 * @fence: amdgpu fence object
389 *
390 * Add a DMA fence packet to the ring to write
391 * the fence seq number and DMA trap packet to generate
392 * an interrupt if needed (NAVI10).
393 */
394 static void sdma_v5_0_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq,
395 unsigned flags)
396 {
397 struct amdgpu_device *adev = ring->adev;
398 bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT;
399 /* write the fence */
400 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE) |
401 SDMA_PKT_FENCE_HEADER_MTYPE(0x3)); /* Ucached(UC) */
402 /* zero in first two bits */
403 BUG_ON(addr & 0x3);
404 amdgpu_ring_write(ring, lower_32_bits(addr));
405 amdgpu_ring_write(ring, upper_32_bits(addr));
406 amdgpu_ring_write(ring, lower_32_bits(seq));
407
408 /* optionally write high bits as well */
409 if (write64bit) {
410 addr += 4;
411 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE) |
412 SDMA_PKT_FENCE_HEADER_MTYPE(0x3));
413 /* zero in first two bits */
414 BUG_ON(addr & 0x3);
415 amdgpu_ring_write(ring, lower_32_bits(addr));
416 amdgpu_ring_write(ring, upper_32_bits(addr));
417 amdgpu_ring_write(ring, upper_32_bits(seq));
418 }
419
420 /* Interrupt not work fine on GFX10.1 model yet. Use fallback instead */
421 if ((flags & AMDGPU_FENCE_FLAG_INT) && adev->pdev->device != 0x50) {
422 /* generate an interrupt */
423 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_TRAP));
424 amdgpu_ring_write(ring, SDMA_PKT_TRAP_INT_CONTEXT_INT_CONTEXT(0));
425 }
426 }
427
428
429 /**
430 * sdma_v5_0_gfx_stop - stop the gfx async dma engines
431 *
432 * @adev: amdgpu_device pointer
433 *
434 * Stop the gfx async dma ring buffers (NAVI10).
435 */
436 static void sdma_v5_0_gfx_stop(struct amdgpu_device *adev)
437 {
438 struct amdgpu_ring *sdma0 = &adev->sdma.instance[0].ring;
439 struct amdgpu_ring *sdma1 = &adev->sdma.instance[1].ring;
440 u32 rb_cntl, ib_cntl;
441 int i;
442
443 if ((adev->mman.buffer_funcs_ring == sdma0) ||
444 (adev->mman.buffer_funcs_ring == sdma1))
445 amdgpu_ttm_set_buffer_funcs_status(adev, false);
446
447 for (i = 0; i < adev->sdma.num_instances; i++) {
448 rb_cntl = RREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_CNTL));
449 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 0);
450 WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_CNTL), rb_cntl);
451 ib_cntl = RREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_IB_CNTL));
452 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 0);
453 WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_IB_CNTL), ib_cntl);
454 }
455
456 sdma0->sched.ready = false;
457 sdma1->sched.ready = false;
458 }
459
460 /**
461 * sdma_v5_0_rlc_stop - stop the compute async dma engines
462 *
463 * @adev: amdgpu_device pointer
464 *
465 * Stop the compute async dma queues (NAVI10).
466 */
467 static void sdma_v5_0_rlc_stop(struct amdgpu_device *adev)
468 {
469 /* XXX todo */
470 }
471
472 /**
473 * sdma_v_0_ctx_switch_enable - stop the async dma engines context switch
474 *
475 * @adev: amdgpu_device pointer
476 * @enable: enable/disable the DMA MEs context switch.
477 *
478 * Halt or unhalt the async dma engines context switch (NAVI10).
479 */
480 static void sdma_v5_0_ctx_switch_enable(struct amdgpu_device *adev, bool enable)
481 {
482 u32 f32_cntl, phase_quantum = 0;
483 int i;
484
485 if (amdgpu_sdma_phase_quantum) {
486 unsigned value = amdgpu_sdma_phase_quantum;
487 unsigned unit = 0;
488
489 while (value > (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
490 SDMA0_PHASE0_QUANTUM__VALUE__SHIFT)) {
491 value = (value + 1) >> 1;
492 unit++;
493 }
494 if (unit > (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
495 SDMA0_PHASE0_QUANTUM__UNIT__SHIFT)) {
496 value = (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
497 SDMA0_PHASE0_QUANTUM__VALUE__SHIFT);
498 unit = (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
499 SDMA0_PHASE0_QUANTUM__UNIT__SHIFT);
500 WARN_ONCE(1,
501 "clamping sdma_phase_quantum to %uK clock cycles\n",
502 value << unit);
503 }
504 phase_quantum =
505 value << SDMA0_PHASE0_QUANTUM__VALUE__SHIFT |
506 unit << SDMA0_PHASE0_QUANTUM__UNIT__SHIFT;
507 }
508
509 for (i = 0; i < adev->sdma.num_instances; i++) {
510 f32_cntl = RREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_CNTL));
511 f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
512 AUTO_CTXSW_ENABLE, enable ? 1 : 0);
513 if (enable && amdgpu_sdma_phase_quantum) {
514 WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_PHASE0_QUANTUM),
515 phase_quantum);
516 WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_PHASE1_QUANTUM),
517 phase_quantum);
518 WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_PHASE2_QUANTUM),
519 phase_quantum);
520 }
521 WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_CNTL), f32_cntl);
522 }
523
524 }
525
526 /**
527 * sdma_v5_0_enable - stop the async dma engines
528 *
529 * @adev: amdgpu_device pointer
530 * @enable: enable/disable the DMA MEs.
531 *
532 * Halt or unhalt the async dma engines (NAVI10).
533 */
534 static void sdma_v5_0_enable(struct amdgpu_device *adev, bool enable)
535 {
536 u32 f32_cntl;
537 int i;
538
539 if (enable == false) {
540 sdma_v5_0_gfx_stop(adev);
541 sdma_v5_0_rlc_stop(adev);
542 }
543
544 for (i = 0; i < adev->sdma.num_instances; i++) {
545 f32_cntl = RREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_F32_CNTL));
546 f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, enable ? 0 : 1);
547 WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_F32_CNTL), f32_cntl);
548 }
549 }
550
551 /**
552 * sdma_v5_0_gfx_resume - setup and start the async dma engines
553 *
554 * @adev: amdgpu_device pointer
555 *
556 * Set up the gfx DMA ring buffers and enable them (NAVI10).
557 * Returns 0 for success, error for failure.
558 */
559 static int sdma_v5_0_gfx_resume(struct amdgpu_device *adev)
560 {
561 struct amdgpu_ring *ring;
562 u32 rb_cntl, ib_cntl;
563 u32 rb_bufsz;
564 u32 wb_offset;
565 u32 doorbell;
566 u32 doorbell_offset;
567 u32 temp;
568 u32 wptr_poll_cntl;
569 u64 wptr_gpu_addr;
570 int i, r;
571
572 for (i = 0; i < adev->sdma.num_instances; i++) {
573 ring = &adev->sdma.instance[i].ring;
574 wb_offset = (ring->rptr_offs * 4);
575
576 WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL), 0);
577
578 /* Set ring buffer size in dwords */
579 rb_bufsz = order_base_2(ring->ring_size / 4);
580 rb_cntl = RREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_CNTL));
581 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SIZE, rb_bufsz);
582 #ifdef __BIG_ENDIAN
583 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SWAP_ENABLE, 1);
584 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
585 RPTR_WRITEBACK_SWAP_ENABLE, 1);
586 #endif
587 WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_CNTL), rb_cntl);
588
589 /* Initialize the ring buffer's read and write pointers */
590 WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_RPTR), 0);
591 WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_RPTR_HI), 0);
592 WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR), 0);
593 WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR_HI), 0);
594
595 /* setup the wptr shadow polling */
596 wptr_gpu_addr = adev->wb.gpu_addr + (ring->wptr_offs * 4);
597 WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR_POLL_ADDR_LO),
598 lower_32_bits(wptr_gpu_addr));
599 WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR_POLL_ADDR_HI),
600 upper_32_bits(wptr_gpu_addr));
601 wptr_poll_cntl = RREG32(sdma_v5_0_get_reg_offset(adev, i,
602 mmSDMA0_GFX_RB_WPTR_POLL_CNTL));
603 wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl,
604 SDMA0_GFX_RB_WPTR_POLL_CNTL,
605 F32_POLL_ENABLE, 1);
606 WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR_POLL_CNTL),
607 wptr_poll_cntl);
608
609 /* set the wb address whether it's enabled or not */
610 WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_RPTR_ADDR_HI),
611 upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF);
612 WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_RPTR_ADDR_LO),
613 lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC);
614
615 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RPTR_WRITEBACK_ENABLE, 1);
616
617 WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_BASE), ring->gpu_addr >> 8);
618 WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_BASE_HI), ring->gpu_addr >> 40);
619
620 ring->wptr = 0;
621
622 /* before programing wptr to a less value, need set minor_ptr_update first */
623 WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_MINOR_PTR_UPDATE), 1);
624
625 if (!amdgpu_sriov_vf(adev)) { /* only bare-metal use register write for wptr */
626 WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR), lower_32_bits(ring->wptr) << 2);
627 WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR_HI), upper_32_bits(ring->wptr) << 2);
628 }
629
630 doorbell = RREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_DOORBELL));
631 doorbell_offset = RREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_DOORBELL_OFFSET));
632
633 if (ring->use_doorbell) {
634 doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 1);
635 doorbell_offset = REG_SET_FIELD(doorbell_offset, SDMA0_GFX_DOORBELL_OFFSET,
636 OFFSET, ring->doorbell_index);
637 } else {
638 doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 0);
639 }
640 WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_DOORBELL), doorbell);
641 WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_DOORBELL_OFFSET), doorbell_offset);
642
643 adev->nbio_funcs->sdma_doorbell_range(adev, i, ring->use_doorbell,
644 ring->doorbell_index, 20);
645
646 if (amdgpu_sriov_vf(adev))
647 sdma_v5_0_ring_set_wptr(ring);
648
649 /* set minor_ptr_update to 0 after wptr programed */
650 WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_MINOR_PTR_UPDATE), 0);
651
652 /* set utc l1 enable flag always to 1 */
653 temp = RREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_CNTL));
654 temp = REG_SET_FIELD(temp, SDMA0_CNTL, UTC_L1_ENABLE, 1);
655
656 /* enable MCBP */
657 temp = REG_SET_FIELD(temp, SDMA0_CNTL, MIDCMD_PREEMPT_ENABLE, 1);
658 WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_CNTL), temp);
659
660 /* Set up RESP_MODE to non-copy addresses */
661 temp = RREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_UTCL1_CNTL));
662 temp = REG_SET_FIELD(temp, SDMA0_UTCL1_CNTL, RESP_MODE, 3);
663 temp = REG_SET_FIELD(temp, SDMA0_UTCL1_CNTL, REDO_DELAY, 9);
664 WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_UTCL1_CNTL), temp);
665
666 /* program default cache read and write policy */
667 temp = RREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_UTCL1_PAGE));
668 /* clean read policy and write policy bits */
669 temp &= 0xFF0FFF;
670 temp |= ((CACHE_READ_POLICY_L2__DEFAULT << 12) | (CACHE_WRITE_POLICY_L2__DEFAULT << 14));
671 WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_UTCL1_PAGE), temp);
672
673 if (!amdgpu_sriov_vf(adev)) {
674 /* unhalt engine */
675 temp = RREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_F32_CNTL));
676 temp = REG_SET_FIELD(temp, SDMA0_F32_CNTL, HALT, 0);
677 WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_F32_CNTL), temp);
678 }
679
680 /* enable DMA RB */
681 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 1);
682 WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_CNTL), rb_cntl);
683
684 ib_cntl = RREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_IB_CNTL));
685 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 1);
686 #ifdef __BIG_ENDIAN
687 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_SWAP_ENABLE, 1);
688 #endif
689 /* enable DMA IBs */
690 WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_IB_CNTL), ib_cntl);
691
692 ring->sched.ready = true;
693
694 if (amdgpu_sriov_vf(adev)) { /* bare-metal sequence doesn't need below to lines */
695 sdma_v5_0_ctx_switch_enable(adev, true);
696 sdma_v5_0_enable(adev, true);
697 }
698
699 r = amdgpu_ring_test_ring(ring);
700 if (r) {
701 ring->sched.ready = false;
702 return r;
703 }
704
705 if (adev->mman.buffer_funcs_ring == ring)
706 amdgpu_ttm_set_buffer_funcs_status(adev, true);
707 }
708
709 return 0;
710 }
711
712 /**
713 * sdma_v5_0_rlc_resume - setup and start the async dma engines
714 *
715 * @adev: amdgpu_device pointer
716 *
717 * Set up the compute DMA queues and enable them (NAVI10).
718 * Returns 0 for success, error for failure.
719 */
720 static int sdma_v5_0_rlc_resume(struct amdgpu_device *adev)
721 {
722 return 0;
723 }
724
725 /**
726 * sdma_v5_0_load_microcode - load the sDMA ME ucode
727 *
728 * @adev: amdgpu_device pointer
729 *
730 * Loads the sDMA0/1 ucode.
731 * Returns 0 for success, -EINVAL if the ucode is not available.
732 */
733 static int sdma_v5_0_load_microcode(struct amdgpu_device *adev)
734 {
735 const struct sdma_firmware_header_v1_0 *hdr;
736 const __le32 *fw_data;
737 u32 fw_size;
738 int i, j;
739
740 /* halt the MEs */
741 sdma_v5_0_enable(adev, false);
742
743 for (i = 0; i < adev->sdma.num_instances; i++) {
744 if (!adev->sdma.instance[i].fw)
745 return -EINVAL;
746
747 hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
748 amdgpu_ucode_print_sdma_hdr(&hdr->header);
749 fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4;
750
751 fw_data = (const __le32 *)
752 (adev->sdma.instance[i].fw->data +
753 le32_to_cpu(hdr->header.ucode_array_offset_bytes));
754
755 WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_UCODE_ADDR), 0);
756
757 for (j = 0; j < fw_size; j++) {
758 if (amdgpu_emu_mode == 1 && j % 500 == 0)
759 msleep(1);
760 WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_UCODE_DATA), le32_to_cpup(fw_data++));
761 }
762
763 WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_UCODE_ADDR), adev->sdma.instance[i].fw_version);
764 }
765
766 return 0;
767 }
768
769 /**
770 * sdma_v5_0_start - setup and start the async dma engines
771 *
772 * @adev: amdgpu_device pointer
773 *
774 * Set up the DMA engines and enable them (NAVI10).
775 * Returns 0 for success, error for failure.
776 */
777 static int sdma_v5_0_start(struct amdgpu_device *adev)
778 {
779 int r = 0;
780
781 if (amdgpu_sriov_vf(adev)) {
782 sdma_v5_0_ctx_switch_enable(adev, false);
783 sdma_v5_0_enable(adev, false);
784
785 /* set RB registers */
786 r = sdma_v5_0_gfx_resume(adev);
787 return r;
788 }
789
790 if (adev->firmware.load_type == AMDGPU_FW_LOAD_DIRECT) {
791 r = sdma_v5_0_load_microcode(adev);
792 if (r)
793 return r;
794
795 /* The value of mmSDMA_F32_CNTL is invalid the moment after loading fw */
796 if (amdgpu_emu_mode == 1 && adev->pdev->device == 0x4d)
797 msleep(1000);
798 }
799
800 /* unhalt the MEs */
801 sdma_v5_0_enable(adev, true);
802 /* enable sdma ring preemption */
803 sdma_v5_0_ctx_switch_enable(adev, true);
804
805 /* start the gfx rings and rlc compute queues */
806 r = sdma_v5_0_gfx_resume(adev);
807 if (r)
808 return r;
809 r = sdma_v5_0_rlc_resume(adev);
810
811 return r;
812 }
813
814 /**
815 * sdma_v5_0_ring_test_ring - simple async dma engine test
816 *
817 * @ring: amdgpu_ring structure holding ring information
818 *
819 * Test the DMA engine by writing using it to write an
820 * value to memory. (NAVI10).
821 * Returns 0 for success, error for failure.
822 */
823 static int sdma_v5_0_ring_test_ring(struct amdgpu_ring *ring)
824 {
825 struct amdgpu_device *adev = ring->adev;
826 unsigned i;
827 unsigned index;
828 int r;
829 u32 tmp;
830 u64 gpu_addr;
831
832 r = amdgpu_device_wb_get(adev, &index);
833 if (r) {
834 dev_err(adev->dev, "(%d) failed to allocate wb slot\n", r);
835 return r;
836 }
837
838 gpu_addr = adev->wb.gpu_addr + (index * 4);
839 tmp = 0xCAFEDEAD;
840 adev->wb.wb[index] = cpu_to_le32(tmp);
841
842 r = amdgpu_ring_alloc(ring, 5);
843 if (r) {
844 DRM_ERROR("amdgpu: dma failed to lock ring %d (%d).\n", ring->idx, r);
845 amdgpu_device_wb_free(adev, index);
846 return r;
847 }
848
849 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
850 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR));
851 amdgpu_ring_write(ring, lower_32_bits(gpu_addr));
852 amdgpu_ring_write(ring, upper_32_bits(gpu_addr));
853 amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0));
854 amdgpu_ring_write(ring, 0xDEADBEEF);
855 amdgpu_ring_commit(ring);
856
857 for (i = 0; i < adev->usec_timeout; i++) {
858 tmp = le32_to_cpu(adev->wb.wb[index]);
859 if (tmp == 0xDEADBEEF)
860 break;
861 if (amdgpu_emu_mode == 1)
862 msleep(1);
863 else
864 DRM_UDELAY(1);
865 }
866
867 if (i < adev->usec_timeout) {
868 if (amdgpu_emu_mode == 1)
869 DRM_INFO("ring test on %d succeeded in %d msecs\n", ring->idx, i);
870 else
871 DRM_INFO("ring test on %d succeeded in %d usecs\n", ring->idx, i);
872 } else {
873 DRM_ERROR("amdgpu: ring %d test failed (0x%08X)\n",
874 ring->idx, tmp);
875 r = -EINVAL;
876 }
877 amdgpu_device_wb_free(adev, index);
878
879 return r;
880 }
881
882 /**
883 * sdma_v5_0_ring_test_ib - test an IB on the DMA engine
884 *
885 * @ring: amdgpu_ring structure holding ring information
886 *
887 * Test a simple IB in the DMA ring (NAVI10).
888 * Returns 0 on success, error on failure.
889 */
890 static int sdma_v5_0_ring_test_ib(struct amdgpu_ring *ring, long timeout)
891 {
892 struct amdgpu_device *adev = ring->adev;
893 struct amdgpu_ib ib;
894 struct dma_fence *f = NULL;
895 unsigned index;
896 long r;
897 u32 tmp = 0;
898 u64 gpu_addr;
899
900 r = amdgpu_device_wb_get(adev, &index);
901 if (r) {
902 dev_err(adev->dev, "(%ld) failed to allocate wb slot\n", r);
903 return r;
904 }
905
906 gpu_addr = adev->wb.gpu_addr + (index * 4);
907 tmp = 0xCAFEDEAD;
908 adev->wb.wb[index] = cpu_to_le32(tmp);
909 memset(&ib, 0, sizeof(ib));
910 r = amdgpu_ib_get(adev, NULL, 256, &ib);
911 if (r) {
912 DRM_ERROR("amdgpu: failed to get ib (%ld).\n", r);
913 goto err0;
914 }
915
916 ib.ptr[0] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
917 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
918 ib.ptr[1] = lower_32_bits(gpu_addr);
919 ib.ptr[2] = upper_32_bits(gpu_addr);
920 ib.ptr[3] = SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0);
921 ib.ptr[4] = 0xDEADBEEF;
922 ib.ptr[5] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
923 ib.ptr[6] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
924 ib.ptr[7] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
925 ib.length_dw = 8;
926
927 r = amdgpu_ib_schedule(ring, 1, &ib, NULL, &f);
928 if (r)
929 goto err1;
930
931 r = dma_fence_wait_timeout(f, false, timeout);
932 if (r == 0) {
933 DRM_ERROR("amdgpu: IB test timed out\n");
934 r = -ETIMEDOUT;
935 goto err1;
936 } else if (r < 0) {
937 DRM_ERROR("amdgpu: fence wait failed (%ld).\n", r);
938 goto err1;
939 }
940 tmp = le32_to_cpu(adev->wb.wb[index]);
941 if (tmp == 0xDEADBEEF) {
942 DRM_INFO("ib test on ring %d succeeded\n", ring->idx);
943 r = 0;
944 } else {
945 DRM_ERROR("amdgpu: ib test failed (0x%08X)\n", tmp);
946 r = -EINVAL;
947 }
948
949 err1:
950 amdgpu_ib_free(adev, &ib, NULL);
951 dma_fence_put(f);
952 err0:
953 amdgpu_device_wb_free(adev, index);
954 return r;
955 }
956
957
958 /**
959 * sdma_v5_0_vm_copy_pte - update PTEs by copying them from the GART
960 *
961 * @ib: indirect buffer to fill with commands
962 * @pe: addr of the page entry
963 * @src: src addr to copy from
964 * @count: number of page entries to update
965 *
966 * Update PTEs by copying them from the GART using sDMA (NAVI10).
967 */
968 static void sdma_v5_0_vm_copy_pte(struct amdgpu_ib *ib,
969 uint64_t pe, uint64_t src,
970 unsigned count)
971 {
972 unsigned bytes = count * 8;
973
974 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
975 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
976 ib->ptr[ib->length_dw++] = bytes - 1;
977 ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
978 ib->ptr[ib->length_dw++] = lower_32_bits(src);
979 ib->ptr[ib->length_dw++] = upper_32_bits(src);
980 ib->ptr[ib->length_dw++] = lower_32_bits(pe);
981 ib->ptr[ib->length_dw++] = upper_32_bits(pe);
982
983 }
984
985 /**
986 * sdma_v5_0_vm_write_pte - update PTEs by writing them manually
987 *
988 * @ib: indirect buffer to fill with commands
989 * @pe: addr of the page entry
990 * @addr: dst addr to write into pe
991 * @count: number of page entries to update
992 * @incr: increase next addr by incr bytes
993 * @flags: access flags
994 *
995 * Update PTEs by writing them manually using sDMA (NAVI10).
996 */
997 static void sdma_v5_0_vm_write_pte(struct amdgpu_ib *ib, uint64_t pe,
998 uint64_t value, unsigned count,
999 uint32_t incr)
1000 {
1001 unsigned ndw = count * 2;
1002
1003 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
1004 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
1005 ib->ptr[ib->length_dw++] = lower_32_bits(pe);
1006 ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1007 ib->ptr[ib->length_dw++] = ndw - 1;
1008 for (; ndw > 0; ndw -= 2) {
1009 ib->ptr[ib->length_dw++] = lower_32_bits(value);
1010 ib->ptr[ib->length_dw++] = upper_32_bits(value);
1011 value += incr;
1012 }
1013 }
1014
1015 /**
1016 * sdma_v5_0_vm_set_pte_pde - update the page tables using sDMA
1017 *
1018 * @ib: indirect buffer to fill with commands
1019 * @pe: addr of the page entry
1020 * @addr: dst addr to write into pe
1021 * @count: number of page entries to update
1022 * @incr: increase next addr by incr bytes
1023 * @flags: access flags
1024 *
1025 * Update the page tables using sDMA (NAVI10).
1026 */
1027 static void sdma_v5_0_vm_set_pte_pde(struct amdgpu_ib *ib,
1028 uint64_t pe,
1029 uint64_t addr, unsigned count,
1030 uint32_t incr, uint64_t flags)
1031 {
1032 /* for physically contiguous pages (vram) */
1033 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_PTEPDE);
1034 ib->ptr[ib->length_dw++] = lower_32_bits(pe); /* dst addr */
1035 ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1036 ib->ptr[ib->length_dw++] = lower_32_bits(flags); /* mask */
1037 ib->ptr[ib->length_dw++] = upper_32_bits(flags);
1038 ib->ptr[ib->length_dw++] = lower_32_bits(addr); /* value */
1039 ib->ptr[ib->length_dw++] = upper_32_bits(addr);
1040 ib->ptr[ib->length_dw++] = incr; /* increment size */
1041 ib->ptr[ib->length_dw++] = 0;
1042 ib->ptr[ib->length_dw++] = count - 1; /* number of entries */
1043 }
1044
1045 /**
1046 * sdma_v5_0_ring_pad_ib - pad the IB to the required number of dw
1047 *
1048 * @ib: indirect buffer to fill with padding
1049 *
1050 */
1051 static void sdma_v5_0_ring_pad_ib(struct amdgpu_ring *ring, struct amdgpu_ib *ib)
1052 {
1053 struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring);
1054 u32 pad_count;
1055 int i;
1056
1057 pad_count = (8 - (ib->length_dw & 0x7)) % 8;
1058 for (i = 0; i < pad_count; i++)
1059 if (sdma && sdma->burst_nop && (i == 0))
1060 ib->ptr[ib->length_dw++] =
1061 SDMA_PKT_HEADER_OP(SDMA_OP_NOP) |
1062 SDMA_PKT_NOP_HEADER_COUNT(pad_count - 1);
1063 else
1064 ib->ptr[ib->length_dw++] =
1065 SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
1066 }
1067
1068
1069 /**
1070 * sdma_v5_0_ring_emit_pipeline_sync - sync the pipeline
1071 *
1072 * @ring: amdgpu_ring pointer
1073 *
1074 * Make sure all previous operations are completed (CIK).
1075 */
1076 static void sdma_v5_0_ring_emit_pipeline_sync(struct amdgpu_ring *ring)
1077 {
1078 uint32_t seq = ring->fence_drv.sync_seq;
1079 uint64_t addr = ring->fence_drv.gpu_addr;
1080
1081 /* wait for idle */
1082 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
1083 SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) |
1084 SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3) | /* equal */
1085 SDMA_PKT_POLL_REGMEM_HEADER_MEM_POLL(1));
1086 amdgpu_ring_write(ring, addr & 0xfffffffc);
1087 amdgpu_ring_write(ring, upper_32_bits(addr) & 0xffffffff);
1088 amdgpu_ring_write(ring, seq); /* reference */
1089 amdgpu_ring_write(ring, 0xfffffff); /* mask */
1090 amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
1091 SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(4)); /* retry count, poll interval */
1092 }
1093
1094
1095 /**
1096 * sdma_v5_0_ring_emit_vm_flush - vm flush using sDMA
1097 *
1098 * @ring: amdgpu_ring pointer
1099 * @vm: amdgpu_vm pointer
1100 *
1101 * Update the page table base and flush the VM TLB
1102 * using sDMA (NAVI10).
1103 */
1104 static void sdma_v5_0_ring_emit_vm_flush(struct amdgpu_ring *ring,
1105 unsigned vmid, uint64_t pd_addr)
1106 {
1107 amdgpu_gmc_emit_flush_gpu_tlb(ring, vmid, pd_addr);
1108 }
1109
1110 static void sdma_v5_0_ring_emit_wreg(struct amdgpu_ring *ring,
1111 uint32_t reg, uint32_t val)
1112 {
1113 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
1114 SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
1115 amdgpu_ring_write(ring, reg);
1116 amdgpu_ring_write(ring, val);
1117 }
1118
1119 static void sdma_v5_0_ring_emit_reg_wait(struct amdgpu_ring *ring, uint32_t reg,
1120 uint32_t val, uint32_t mask)
1121 {
1122 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
1123 SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) |
1124 SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* equal */
1125 amdgpu_ring_write(ring, reg << 2);
1126 amdgpu_ring_write(ring, 0);
1127 amdgpu_ring_write(ring, val); /* reference */
1128 amdgpu_ring_write(ring, mask); /* mask */
1129 amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
1130 SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10));
1131 }
1132
1133 static int sdma_v5_0_early_init(void *handle)
1134 {
1135 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1136
1137 adev->sdma.num_instances = 2;
1138
1139 sdma_v5_0_set_ring_funcs(adev);
1140 sdma_v5_0_set_buffer_funcs(adev);
1141 sdma_v5_0_set_vm_pte_funcs(adev);
1142 sdma_v5_0_set_irq_funcs(adev);
1143
1144 return 0;
1145 }
1146
1147
1148 static int sdma_v5_0_sw_init(void *handle)
1149 {
1150 struct amdgpu_ring *ring;
1151 int r, i;
1152 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1153
1154 /* SDMA trap event */
1155 r = amdgpu_irq_add_id(adev, SOC15_IH_CLIENTID_SDMA0,
1156 SDMA0_5_0__SRCID__SDMA_TRAP,
1157 &adev->sdma.trap_irq);
1158 if (r)
1159 return r;
1160
1161 /* SDMA trap event */
1162 r = amdgpu_irq_add_id(adev, SOC15_IH_CLIENTID_SDMA1,
1163 SDMA1_5_0__SRCID__SDMA_TRAP,
1164 &adev->sdma.trap_irq);
1165 if (r)
1166 return r;
1167
1168 r = sdma_v5_0_init_microcode(adev);
1169 if (r) {
1170 DRM_ERROR("Failed to load sdma firmware!\n");
1171 return r;
1172 }
1173
1174 for (i = 0; i < adev->sdma.num_instances; i++) {
1175 ring = &adev->sdma.instance[i].ring;
1176 ring->ring_obj = NULL;
1177 ring->use_doorbell = true;
1178
1179 DRM_INFO("use_doorbell being set to: [%s]\n",
1180 ring->use_doorbell?"true":"false");
1181
1182 ring->doorbell_index = (i == 0) ?
1183 (adev->doorbell_index.sdma_engine[0] << 1) //get DWORD offset
1184 : (adev->doorbell_index.sdma_engine[1] << 1); // get DWORD offset
1185
1186 sprintf(ring->name, "sdma%d", i);
1187 r = amdgpu_ring_init(adev, ring, 1024,
1188 &adev->sdma.trap_irq,
1189 (i == 0) ?
1190 AMDGPU_SDMA_IRQ_INSTANCE0 :
1191 AMDGPU_SDMA_IRQ_INSTANCE1);
1192 if (r)
1193 return r;
1194 }
1195
1196 return r;
1197 }
1198
1199 static int sdma_v5_0_sw_fini(void *handle)
1200 {
1201 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1202 int i;
1203
1204 for (i = 0; i < adev->sdma.num_instances; i++)
1205 amdgpu_ring_fini(&adev->sdma.instance[i].ring);
1206
1207 return 0;
1208 }
1209
1210 static int sdma_v5_0_hw_init(void *handle)
1211 {
1212 int r;
1213 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1214
1215 sdma_v5_0_init_golden_registers(adev);
1216
1217 r = sdma_v5_0_start(adev);
1218
1219 return r;
1220 }
1221
1222 static int sdma_v5_0_hw_fini(void *handle)
1223 {
1224 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1225
1226 if (amdgpu_sriov_vf(adev))
1227 return 0;
1228
1229 sdma_v5_0_ctx_switch_enable(adev, false);
1230 sdma_v5_0_enable(adev, false);
1231
1232 return 0;
1233 }
1234
1235 static int sdma_v5_0_suspend(void *handle)
1236 {
1237 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1238
1239 return sdma_v5_0_hw_fini(adev);
1240 }
1241
1242 static int sdma_v5_0_resume(void *handle)
1243 {
1244 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1245
1246 return sdma_v5_0_hw_init(adev);
1247 }
1248
1249 static bool sdma_v5_0_is_idle(void *handle)
1250 {
1251 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1252 u32 i;
1253
1254 for (i = 0; i < adev->sdma.num_instances; i++) {
1255 u32 tmp = RREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_STATUS_REG));
1256
1257 if (!(tmp & SDMA0_STATUS_REG__IDLE_MASK))
1258 return false;
1259 }
1260
1261 return true;
1262 }
1263
1264 static int sdma_v5_0_wait_for_idle(void *handle)
1265 {
1266 unsigned i;
1267 u32 sdma0, sdma1;
1268 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1269
1270 for (i = 0; i < adev->usec_timeout; i++) {
1271 sdma0 = RREG32(sdma_v5_0_get_reg_offset(adev, 0, mmSDMA0_STATUS_REG));
1272 sdma1 = RREG32(sdma_v5_0_get_reg_offset(adev, 1, mmSDMA0_STATUS_REG));
1273
1274 if (sdma0 & sdma1 & SDMA0_STATUS_REG__IDLE_MASK)
1275 return 0;
1276 udelay(1);
1277 }
1278 return -ETIMEDOUT;
1279 }
1280
1281 static int sdma_v5_0_soft_reset(void *handle)
1282 {
1283 /* todo */
1284
1285 return 0;
1286 }
1287
1288 static int sdma_v5_0_ring_preempt_ib(struct amdgpu_ring *ring)
1289 {
1290 int i, r = 0;
1291 struct amdgpu_device *adev = ring->adev;
1292 u32 index = 0;
1293 u64 sdma_gfx_preempt;
1294
1295 amdgpu_sdma_get_index_from_ring(ring, &index);
1296 if (index == 0)
1297 sdma_gfx_preempt = mmSDMA0_GFX_PREEMPT;
1298 else
1299 sdma_gfx_preempt = mmSDMA1_GFX_PREEMPT;
1300
1301 /* assert preemption condition */
1302 amdgpu_ring_set_preempt_cond_exec(ring, false);
1303
1304 /* emit the trailing fence */
1305 ring->trail_seq += 1;
1306 amdgpu_ring_alloc(ring, 10);
1307 sdma_v5_0_ring_emit_fence(ring, ring->trail_fence_gpu_addr,
1308 ring->trail_seq, 0);
1309 amdgpu_ring_commit(ring);
1310
1311 /* assert IB preemption */
1312 WREG32(sdma_gfx_preempt, 1);
1313
1314 /* poll the trailing fence */
1315 for (i = 0; i < adev->usec_timeout; i++) {
1316 if (ring->trail_seq ==
1317 le32_to_cpu(*(ring->trail_fence_cpu_addr)))
1318 break;
1319 DRM_UDELAY(1);
1320 }
1321
1322 if (i >= adev->usec_timeout) {
1323 r = -EINVAL;
1324 DRM_ERROR("ring %d failed to be preempted\n", ring->idx);
1325 }
1326
1327 /* deassert IB preemption */
1328 WREG32(sdma_gfx_preempt, 0);
1329
1330 /* deassert the preemption condition */
1331 amdgpu_ring_set_preempt_cond_exec(ring, true);
1332 return r;
1333 }
1334
1335 static int sdma_v5_0_set_trap_irq_state(struct amdgpu_device *adev,
1336 struct amdgpu_irq_src *source,
1337 unsigned type,
1338 enum amdgpu_interrupt_state state)
1339 {
1340 u32 sdma_cntl;
1341
1342 u32 reg_offset = (type == AMDGPU_SDMA_IRQ_INSTANCE0) ?
1343 sdma_v5_0_get_reg_offset(adev, 0, mmSDMA0_CNTL) :
1344 sdma_v5_0_get_reg_offset(adev, 1, mmSDMA0_CNTL);
1345
1346 sdma_cntl = RREG32(reg_offset);
1347 sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE,
1348 state == AMDGPU_IRQ_STATE_ENABLE ? 1 : 0);
1349 WREG32(reg_offset, sdma_cntl);
1350
1351 return 0;
1352 }
1353
1354 static int sdma_v5_0_process_trap_irq(struct amdgpu_device *adev,
1355 struct amdgpu_irq_src *source,
1356 struct amdgpu_iv_entry *entry)
1357 {
1358 DRM_DEBUG("IH: SDMA trap\n");
1359 switch (entry->client_id) {
1360 case SOC15_IH_CLIENTID_SDMA0:
1361 switch (entry->ring_id) {
1362 case 0:
1363 amdgpu_fence_process(&adev->sdma.instance[0].ring);
1364 break;
1365 case 1:
1366 /* XXX compute */
1367 break;
1368 case 2:
1369 /* XXX compute */
1370 break;
1371 case 3:
1372 /* XXX page queue*/
1373 break;
1374 }
1375 break;
1376 case SOC15_IH_CLIENTID_SDMA1:
1377 switch (entry->ring_id) {
1378 case 0:
1379 amdgpu_fence_process(&adev->sdma.instance[1].ring);
1380 break;
1381 case 1:
1382 /* XXX compute */
1383 break;
1384 case 2:
1385 /* XXX compute */
1386 break;
1387 case 3:
1388 /* XXX page queue*/
1389 break;
1390 }
1391 break;
1392 }
1393 return 0;
1394 }
1395
1396 static int sdma_v5_0_process_illegal_inst_irq(struct amdgpu_device *adev,
1397 struct amdgpu_irq_src *source,
1398 struct amdgpu_iv_entry *entry)
1399 {
1400 return 0;
1401 }
1402
1403 static void sdma_v5_0_update_medium_grain_clock_gating(struct amdgpu_device *adev,
1404 bool enable)
1405 {
1406 uint32_t data, def;
1407 int i;
1408
1409 for (i = 0; i < adev->sdma.num_instances; i++) {
1410 if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_MGCG)) {
1411 /* Enable sdma clock gating */
1412 def = data = RREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_CLK_CTRL));
1413 data &= ~(SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
1414 SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
1415 SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
1416 SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
1417 SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
1418 SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
1419 SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
1420 SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);
1421 if (def != data)
1422 WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_CLK_CTRL), data);
1423 } else {
1424 /* Disable sdma clock gating */
1425 def = data = RREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_CLK_CTRL));
1426 data |= (SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
1427 SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
1428 SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
1429 SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
1430 SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
1431 SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
1432 SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
1433 SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);
1434 if (def != data)
1435 WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_CLK_CTRL), data);
1436 }
1437 }
1438 }
1439
1440 static void sdma_v5_0_update_medium_grain_light_sleep(struct amdgpu_device *adev,
1441 bool enable)
1442 {
1443 uint32_t data, def;
1444 int i;
1445
1446 for (i = 0; i < adev->sdma.num_instances; i++) {
1447 if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_LS)) {
1448 /* Enable sdma mem light sleep */
1449 def = data = RREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_POWER_CNTL));
1450 data |= SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
1451 if (def != data)
1452 WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_POWER_CNTL), data);
1453
1454 } else {
1455 /* Disable sdma mem light sleep */
1456 def = data = RREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_POWER_CNTL));
1457 data &= ~SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
1458 if (def != data)
1459 WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_POWER_CNTL), data);
1460
1461 }
1462 }
1463 }
1464
1465 static int sdma_v5_0_set_clockgating_state(void *handle,
1466 enum amd_clockgating_state state)
1467 {
1468 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1469
1470 if (amdgpu_sriov_vf(adev))
1471 return 0;
1472
1473 switch (adev->asic_type) {
1474 case CHIP_NAVI10:
1475 sdma_v5_0_update_medium_grain_clock_gating(adev,
1476 state == AMD_CG_STATE_GATE ? true : false);
1477 sdma_v5_0_update_medium_grain_light_sleep(adev,
1478 state == AMD_CG_STATE_GATE ? true : false);
1479 break;
1480 default:
1481 break;
1482 }
1483
1484 return 0;
1485 }
1486
1487 static int sdma_v5_0_set_powergating_state(void *handle,
1488 enum amd_powergating_state state)
1489 {
1490 return 0;
1491 }
1492
1493 static void sdma_v5_0_get_clockgating_state(void *handle, u32 *flags)
1494 {
1495 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1496 int data;
1497
1498 if (amdgpu_sriov_vf(adev))
1499 *flags = 0;
1500
1501 /* AMD_CG_SUPPORT_SDMA_MGCG */
1502 data = RREG32(sdma_v5_0_get_reg_offset(adev, 0, mmSDMA0_CLK_CTRL));
1503 if (!(data & SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK))
1504 *flags |= AMD_CG_SUPPORT_SDMA_MGCG;
1505
1506 /* AMD_CG_SUPPORT_SDMA_LS */
1507 data = RREG32(sdma_v5_0_get_reg_offset(adev, 0, mmSDMA0_POWER_CNTL));
1508 if (data & SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK)
1509 *flags |= AMD_CG_SUPPORT_SDMA_LS;
1510 }
1511
1512 const struct amd_ip_funcs sdma_v5_0_ip_funcs = {
1513 .name = "sdma_v5_0",
1514 .early_init = sdma_v5_0_early_init,
1515 .late_init = NULL,
1516 .sw_init = sdma_v5_0_sw_init,
1517 .sw_fini = sdma_v5_0_sw_fini,
1518 .hw_init = sdma_v5_0_hw_init,
1519 .hw_fini = sdma_v5_0_hw_fini,
1520 .suspend = sdma_v5_0_suspend,
1521 .resume = sdma_v5_0_resume,
1522 .is_idle = sdma_v5_0_is_idle,
1523 .wait_for_idle = sdma_v5_0_wait_for_idle,
1524 .soft_reset = sdma_v5_0_soft_reset,
1525 .set_clockgating_state = sdma_v5_0_set_clockgating_state,
1526 .set_powergating_state = sdma_v5_0_set_powergating_state,
1527 .get_clockgating_state = sdma_v5_0_get_clockgating_state,
1528 };
1529
1530 static const struct amdgpu_ring_funcs sdma_v5_0_ring_funcs = {
1531 .type = AMDGPU_RING_TYPE_SDMA,
1532 .align_mask = 0xf,
1533 .nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
1534 .support_64bit_ptrs = true,
1535 .vmhub = AMDGPU_GFXHUB,
1536 .get_rptr = sdma_v5_0_ring_get_rptr,
1537 .get_wptr = sdma_v5_0_ring_get_wptr,
1538 .set_wptr = sdma_v5_0_ring_set_wptr,
1539 .emit_frame_size =
1540 5 + /* sdma_v5_0_ring_init_cond_exec */
1541 6 + /* sdma_v5_0_ring_emit_hdp_flush */
1542 3 + /* hdp_invalidate */
1543 6 + /* sdma_v5_0_ring_emit_pipeline_sync */
1544 /* sdma_v5_0_ring_emit_vm_flush */
1545 SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 +
1546 SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 +
1547 10 + 10 + 10, /* sdma_v5_0_ring_emit_fence x3 for user fence, vm fence */
1548 .emit_ib_size = 7 + 6, /* sdma_v5_0_ring_emit_ib */
1549 .emit_ib = sdma_v5_0_ring_emit_ib,
1550 .emit_fence = sdma_v5_0_ring_emit_fence,
1551 .emit_pipeline_sync = sdma_v5_0_ring_emit_pipeline_sync,
1552 .emit_vm_flush = sdma_v5_0_ring_emit_vm_flush,
1553 .emit_hdp_flush = sdma_v5_0_ring_emit_hdp_flush,
1554 .test_ring = sdma_v5_0_ring_test_ring,
1555 .test_ib = sdma_v5_0_ring_test_ib,
1556 .insert_nop = sdma_v5_0_ring_insert_nop,
1557 .pad_ib = sdma_v5_0_ring_pad_ib,
1558 .emit_wreg = sdma_v5_0_ring_emit_wreg,
1559 .emit_reg_wait = sdma_v5_0_ring_emit_reg_wait,
1560 .init_cond_exec = sdma_v5_0_ring_init_cond_exec,
1561 .patch_cond_exec = sdma_v5_0_ring_patch_cond_exec,
1562 .preempt_ib = sdma_v5_0_ring_preempt_ib,
1563 };
1564
1565 static void sdma_v5_0_set_ring_funcs(struct amdgpu_device *adev)
1566 {
1567 int i;
1568
1569 for (i = 0; i < adev->sdma.num_instances; i++) {
1570 adev->sdma.instance[i].ring.funcs = &sdma_v5_0_ring_funcs;
1571 adev->sdma.instance[i].ring.me = i;
1572 }
1573 }
1574
1575 static const struct amdgpu_irq_src_funcs sdma_v5_0_trap_irq_funcs = {
1576 .set = sdma_v5_0_set_trap_irq_state,
1577 .process = sdma_v5_0_process_trap_irq,
1578 };
1579
1580 static const struct amdgpu_irq_src_funcs sdma_v5_0_illegal_inst_irq_funcs = {
1581 .process = sdma_v5_0_process_illegal_inst_irq,
1582 };
1583
1584 static void sdma_v5_0_set_irq_funcs(struct amdgpu_device *adev)
1585 {
1586 adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_LAST;
1587 adev->sdma.trap_irq.funcs = &sdma_v5_0_trap_irq_funcs;
1588 adev->sdma.illegal_inst_irq.funcs = &sdma_v5_0_illegal_inst_irq_funcs;
1589 }
1590
1591 /**
1592 * sdma_v5_0_emit_copy_buffer - copy buffer using the sDMA engine
1593 *
1594 * @ring: amdgpu_ring structure holding ring information
1595 * @src_offset: src GPU address
1596 * @dst_offset: dst GPU address
1597 * @byte_count: number of bytes to xfer
1598 *
1599 * Copy GPU buffers using the DMA engine (NAVI10).
1600 * Used by the amdgpu ttm implementation to move pages if
1601 * registered as the asic copy callback.
1602 */
1603 static void sdma_v5_0_emit_copy_buffer(struct amdgpu_ib *ib,
1604 uint64_t src_offset,
1605 uint64_t dst_offset,
1606 uint32_t byte_count)
1607 {
1608 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
1609 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
1610 ib->ptr[ib->length_dw++] = byte_count - 1;
1611 ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
1612 ib->ptr[ib->length_dw++] = lower_32_bits(src_offset);
1613 ib->ptr[ib->length_dw++] = upper_32_bits(src_offset);
1614 ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
1615 ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
1616 }
1617
1618 /**
1619 * sdma_v5_0_emit_fill_buffer - fill buffer using the sDMA engine
1620 *
1621 * @ring: amdgpu_ring structure holding ring information
1622 * @src_data: value to write to buffer
1623 * @dst_offset: dst GPU address
1624 * @byte_count: number of bytes to xfer
1625 *
1626 * Fill GPU buffers using the DMA engine (NAVI10).
1627 */
1628 static void sdma_v5_0_emit_fill_buffer(struct amdgpu_ib *ib,
1629 uint32_t src_data,
1630 uint64_t dst_offset,
1631 uint32_t byte_count)
1632 {
1633 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_CONST_FILL);
1634 ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
1635 ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
1636 ib->ptr[ib->length_dw++] = src_data;
1637 ib->ptr[ib->length_dw++] = byte_count - 1;
1638 }
1639
1640 static const struct amdgpu_buffer_funcs sdma_v5_0_buffer_funcs = {
1641 .copy_max_bytes = 0x400000,
1642 .copy_num_dw = 7,
1643 .emit_copy_buffer = sdma_v5_0_emit_copy_buffer,
1644
1645 .fill_max_bytes = 0x400000,
1646 .fill_num_dw = 5,
1647 .emit_fill_buffer = sdma_v5_0_emit_fill_buffer,
1648 };
1649
1650 static void sdma_v5_0_set_buffer_funcs(struct amdgpu_device *adev)
1651 {
1652 if (adev->mman.buffer_funcs == NULL) {
1653 adev->mman.buffer_funcs = &sdma_v5_0_buffer_funcs;
1654 adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].ring;
1655 }
1656 }
1657
1658 static const struct amdgpu_vm_pte_funcs sdma_v5_0_vm_pte_funcs = {
1659 .copy_pte_num_dw = 7,
1660 .copy_pte = sdma_v5_0_vm_copy_pte,
1661 .write_pte = sdma_v5_0_vm_write_pte,
1662 .set_pte_pde = sdma_v5_0_vm_set_pte_pde,
1663 };
1664
1665 static void sdma_v5_0_set_vm_pte_funcs(struct amdgpu_device *adev)
1666 {
1667 struct drm_gpu_scheduler *sched;
1668 unsigned i;
1669
1670 if (adev->vm_manager.vm_pte_funcs == NULL) {
1671 adev->vm_manager.vm_pte_funcs = &sdma_v5_0_vm_pte_funcs;
1672 for (i = 0; i < adev->sdma.num_instances; i++) {
1673 sched = &adev->sdma.instance[i].ring.sched;
1674 adev->vm_manager.vm_pte_rqs[i] =
1675 &sched->sched_rq[DRM_SCHED_PRIORITY_KERNEL];
1676 }
1677 adev->vm_manager.vm_pte_num_rqs = adev->sdma.num_instances;
1678 }
1679 }
1680
1681 const struct amdgpu_ip_block_version sdma_v5_0_ip_block = {
1682 .type = AMD_IP_BLOCK_TYPE_SDMA,
1683 .major = 5,
1684 .minor = 0,
1685 .rev = 0,
1686 .funcs = &sdma_v5_0_ip_funcs,
1687 };