]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - drivers/gpu/drm/amd/amdkfd/kfd_chardev.c
Merge remote-tracking branches 'asoc/topic/ac97', 'asoc/topic/ac97-mfd', 'asoc/topic...
[mirror_ubuntu-focal-kernel.git] / drivers / gpu / drm / amd / amdkfd / kfd_chardev.c
1 /*
2 * Copyright 2014 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 */
22
23 #include <linux/device.h>
24 #include <linux/export.h>
25 #include <linux/err.h>
26 #include <linux/fs.h>
27 #include <linux/sched.h>
28 #include <linux/slab.h>
29 #include <linux/uaccess.h>
30 #include <linux/compat.h>
31 #include <uapi/linux/kfd_ioctl.h>
32 #include <linux/time.h>
33 #include <linux/mm.h>
34 #include <linux/mman.h>
35 #include <asm/processor.h>
36 #include "kfd_priv.h"
37 #include "kfd_device_queue_manager.h"
38 #include "kfd_dbgmgr.h"
39
40 static long kfd_ioctl(struct file *, unsigned int, unsigned long);
41 static int kfd_open(struct inode *, struct file *);
42 static int kfd_mmap(struct file *, struct vm_area_struct *);
43
44 static const char kfd_dev_name[] = "kfd";
45
46 static const struct file_operations kfd_fops = {
47 .owner = THIS_MODULE,
48 .unlocked_ioctl = kfd_ioctl,
49 .compat_ioctl = kfd_ioctl,
50 .open = kfd_open,
51 .mmap = kfd_mmap,
52 };
53
54 static int kfd_char_dev_major = -1;
55 static struct class *kfd_class;
56 struct device *kfd_device;
57
58 int kfd_chardev_init(void)
59 {
60 int err = 0;
61
62 kfd_char_dev_major = register_chrdev(0, kfd_dev_name, &kfd_fops);
63 err = kfd_char_dev_major;
64 if (err < 0)
65 goto err_register_chrdev;
66
67 kfd_class = class_create(THIS_MODULE, kfd_dev_name);
68 err = PTR_ERR(kfd_class);
69 if (IS_ERR(kfd_class))
70 goto err_class_create;
71
72 kfd_device = device_create(kfd_class, NULL,
73 MKDEV(kfd_char_dev_major, 0),
74 NULL, kfd_dev_name);
75 err = PTR_ERR(kfd_device);
76 if (IS_ERR(kfd_device))
77 goto err_device_create;
78
79 return 0;
80
81 err_device_create:
82 class_destroy(kfd_class);
83 err_class_create:
84 unregister_chrdev(kfd_char_dev_major, kfd_dev_name);
85 err_register_chrdev:
86 return err;
87 }
88
89 void kfd_chardev_exit(void)
90 {
91 device_destroy(kfd_class, MKDEV(kfd_char_dev_major, 0));
92 class_destroy(kfd_class);
93 unregister_chrdev(kfd_char_dev_major, kfd_dev_name);
94 }
95
96 struct device *kfd_chardev(void)
97 {
98 return kfd_device;
99 }
100
101
102 static int kfd_open(struct inode *inode, struct file *filep)
103 {
104 struct kfd_process *process;
105 bool is_32bit_user_mode;
106
107 if (iminor(inode) != 0)
108 return -ENODEV;
109
110 is_32bit_user_mode = in_compat_syscall();
111
112 if (is_32bit_user_mode) {
113 dev_warn(kfd_device,
114 "Process %d (32-bit) failed to open /dev/kfd\n"
115 "32-bit processes are not supported by amdkfd\n",
116 current->pid);
117 return -EPERM;
118 }
119
120 process = kfd_create_process(current);
121 if (IS_ERR(process))
122 return PTR_ERR(process);
123
124 dev_dbg(kfd_device, "process %d opened, compat mode (32 bit) - %d\n",
125 process->pasid, process->is_32bit_user_mode);
126
127 return 0;
128 }
129
130 static int kfd_ioctl_get_version(struct file *filep, struct kfd_process *p,
131 void *data)
132 {
133 struct kfd_ioctl_get_version_args *args = data;
134
135 args->major_version = KFD_IOCTL_MAJOR_VERSION;
136 args->minor_version = KFD_IOCTL_MINOR_VERSION;
137
138 return 0;
139 }
140
141 static int set_queue_properties_from_user(struct queue_properties *q_properties,
142 struct kfd_ioctl_create_queue_args *args)
143 {
144 if (args->queue_percentage > KFD_MAX_QUEUE_PERCENTAGE) {
145 pr_err("Queue percentage must be between 0 to KFD_MAX_QUEUE_PERCENTAGE\n");
146 return -EINVAL;
147 }
148
149 if (args->queue_priority > KFD_MAX_QUEUE_PRIORITY) {
150 pr_err("Queue priority must be between 0 to KFD_MAX_QUEUE_PRIORITY\n");
151 return -EINVAL;
152 }
153
154 if ((args->ring_base_address) &&
155 (!access_ok(VERIFY_WRITE,
156 (const void __user *) args->ring_base_address,
157 sizeof(uint64_t)))) {
158 pr_err("Can't access ring base address\n");
159 return -EFAULT;
160 }
161
162 if (!is_power_of_2(args->ring_size) && (args->ring_size != 0)) {
163 pr_err("Ring size must be a power of 2 or 0\n");
164 return -EINVAL;
165 }
166
167 if (!access_ok(VERIFY_WRITE,
168 (const void __user *) args->read_pointer_address,
169 sizeof(uint32_t))) {
170 pr_err("Can't access read pointer\n");
171 return -EFAULT;
172 }
173
174 if (!access_ok(VERIFY_WRITE,
175 (const void __user *) args->write_pointer_address,
176 sizeof(uint32_t))) {
177 pr_err("Can't access write pointer\n");
178 return -EFAULT;
179 }
180
181 if (args->eop_buffer_address &&
182 !access_ok(VERIFY_WRITE,
183 (const void __user *) args->eop_buffer_address,
184 sizeof(uint32_t))) {
185 pr_debug("Can't access eop buffer");
186 return -EFAULT;
187 }
188
189 if (args->ctx_save_restore_address &&
190 !access_ok(VERIFY_WRITE,
191 (const void __user *) args->ctx_save_restore_address,
192 sizeof(uint32_t))) {
193 pr_debug("Can't access ctx save restore buffer");
194 return -EFAULT;
195 }
196
197 q_properties->is_interop = false;
198 q_properties->queue_percent = args->queue_percentage;
199 q_properties->priority = args->queue_priority;
200 q_properties->queue_address = args->ring_base_address;
201 q_properties->queue_size = args->ring_size;
202 q_properties->read_ptr = (uint32_t *) args->read_pointer_address;
203 q_properties->write_ptr = (uint32_t *) args->write_pointer_address;
204 q_properties->eop_ring_buffer_address = args->eop_buffer_address;
205 q_properties->eop_ring_buffer_size = args->eop_buffer_size;
206 q_properties->ctx_save_restore_area_address =
207 args->ctx_save_restore_address;
208 q_properties->ctx_save_restore_area_size = args->ctx_save_restore_size;
209 if (args->queue_type == KFD_IOC_QUEUE_TYPE_COMPUTE ||
210 args->queue_type == KFD_IOC_QUEUE_TYPE_COMPUTE_AQL)
211 q_properties->type = KFD_QUEUE_TYPE_COMPUTE;
212 else if (args->queue_type == KFD_IOC_QUEUE_TYPE_SDMA)
213 q_properties->type = KFD_QUEUE_TYPE_SDMA;
214 else
215 return -ENOTSUPP;
216
217 if (args->queue_type == KFD_IOC_QUEUE_TYPE_COMPUTE_AQL)
218 q_properties->format = KFD_QUEUE_FORMAT_AQL;
219 else
220 q_properties->format = KFD_QUEUE_FORMAT_PM4;
221
222 pr_debug("Queue Percentage: %d, %d\n",
223 q_properties->queue_percent, args->queue_percentage);
224
225 pr_debug("Queue Priority: %d, %d\n",
226 q_properties->priority, args->queue_priority);
227
228 pr_debug("Queue Address: 0x%llX, 0x%llX\n",
229 q_properties->queue_address, args->ring_base_address);
230
231 pr_debug("Queue Size: 0x%llX, %u\n",
232 q_properties->queue_size, args->ring_size);
233
234 pr_debug("Queue r/w Pointers: %p, %p\n",
235 q_properties->read_ptr,
236 q_properties->write_ptr);
237
238 pr_debug("Queue Format: %d\n", q_properties->format);
239
240 pr_debug("Queue EOP: 0x%llX\n", q_properties->eop_ring_buffer_address);
241
242 pr_debug("Queue CTX save area: 0x%llX\n",
243 q_properties->ctx_save_restore_area_address);
244
245 return 0;
246 }
247
248 static int kfd_ioctl_create_queue(struct file *filep, struct kfd_process *p,
249 void *data)
250 {
251 struct kfd_ioctl_create_queue_args *args = data;
252 struct kfd_dev *dev;
253 int err = 0;
254 unsigned int queue_id;
255 struct kfd_process_device *pdd;
256 struct queue_properties q_properties;
257
258 memset(&q_properties, 0, sizeof(struct queue_properties));
259
260 pr_debug("Creating queue ioctl\n");
261
262 err = set_queue_properties_from_user(&q_properties, args);
263 if (err)
264 return err;
265
266 pr_debug("Looking for gpu id 0x%x\n", args->gpu_id);
267 dev = kfd_device_by_id(args->gpu_id);
268 if (!dev) {
269 pr_debug("Could not find gpu id 0x%x\n", args->gpu_id);
270 return -EINVAL;
271 }
272
273 mutex_lock(&p->mutex);
274
275 pdd = kfd_bind_process_to_device(dev, p);
276 if (IS_ERR(pdd)) {
277 err = -ESRCH;
278 goto err_bind_process;
279 }
280
281 pr_debug("Creating queue for PASID %d on gpu 0x%x\n",
282 p->pasid,
283 dev->id);
284
285 err = pqm_create_queue(&p->pqm, dev, filep, &q_properties,
286 0, q_properties.type, &queue_id);
287 if (err != 0)
288 goto err_create_queue;
289
290 args->queue_id = queue_id;
291
292
293 /* Return gpu_id as doorbell offset for mmap usage */
294 args->doorbell_offset = (KFD_MMAP_DOORBELL_MASK | args->gpu_id);
295 args->doorbell_offset <<= PAGE_SHIFT;
296
297 mutex_unlock(&p->mutex);
298
299 pr_debug("Queue id %d was created successfully\n", args->queue_id);
300
301 pr_debug("Ring buffer address == 0x%016llX\n",
302 args->ring_base_address);
303
304 pr_debug("Read ptr address == 0x%016llX\n",
305 args->read_pointer_address);
306
307 pr_debug("Write ptr address == 0x%016llX\n",
308 args->write_pointer_address);
309
310 return 0;
311
312 err_create_queue:
313 err_bind_process:
314 mutex_unlock(&p->mutex);
315 return err;
316 }
317
318 static int kfd_ioctl_destroy_queue(struct file *filp, struct kfd_process *p,
319 void *data)
320 {
321 int retval;
322 struct kfd_ioctl_destroy_queue_args *args = data;
323
324 pr_debug("Destroying queue id %d for pasid %d\n",
325 args->queue_id,
326 p->pasid);
327
328 mutex_lock(&p->mutex);
329
330 retval = pqm_destroy_queue(&p->pqm, args->queue_id);
331
332 mutex_unlock(&p->mutex);
333 return retval;
334 }
335
336 static int kfd_ioctl_update_queue(struct file *filp, struct kfd_process *p,
337 void *data)
338 {
339 int retval;
340 struct kfd_ioctl_update_queue_args *args = data;
341 struct queue_properties properties;
342
343 if (args->queue_percentage > KFD_MAX_QUEUE_PERCENTAGE) {
344 pr_err("Queue percentage must be between 0 to KFD_MAX_QUEUE_PERCENTAGE\n");
345 return -EINVAL;
346 }
347
348 if (args->queue_priority > KFD_MAX_QUEUE_PRIORITY) {
349 pr_err("Queue priority must be between 0 to KFD_MAX_QUEUE_PRIORITY\n");
350 return -EINVAL;
351 }
352
353 if ((args->ring_base_address) &&
354 (!access_ok(VERIFY_WRITE,
355 (const void __user *) args->ring_base_address,
356 sizeof(uint64_t)))) {
357 pr_err("Can't access ring base address\n");
358 return -EFAULT;
359 }
360
361 if (!is_power_of_2(args->ring_size) && (args->ring_size != 0)) {
362 pr_err("Ring size must be a power of 2 or 0\n");
363 return -EINVAL;
364 }
365
366 properties.queue_address = args->ring_base_address;
367 properties.queue_size = args->ring_size;
368 properties.queue_percent = args->queue_percentage;
369 properties.priority = args->queue_priority;
370
371 pr_debug("Updating queue id %d for pasid %d\n",
372 args->queue_id, p->pasid);
373
374 mutex_lock(&p->mutex);
375
376 retval = pqm_update_queue(&p->pqm, args->queue_id, &properties);
377
378 mutex_unlock(&p->mutex);
379
380 return retval;
381 }
382
383 static int kfd_ioctl_set_memory_policy(struct file *filep,
384 struct kfd_process *p, void *data)
385 {
386 struct kfd_ioctl_set_memory_policy_args *args = data;
387 struct kfd_dev *dev;
388 int err = 0;
389 struct kfd_process_device *pdd;
390 enum cache_policy default_policy, alternate_policy;
391
392 if (args->default_policy != KFD_IOC_CACHE_POLICY_COHERENT
393 && args->default_policy != KFD_IOC_CACHE_POLICY_NONCOHERENT) {
394 return -EINVAL;
395 }
396
397 if (args->alternate_policy != KFD_IOC_CACHE_POLICY_COHERENT
398 && args->alternate_policy != KFD_IOC_CACHE_POLICY_NONCOHERENT) {
399 return -EINVAL;
400 }
401
402 dev = kfd_device_by_id(args->gpu_id);
403 if (!dev)
404 return -EINVAL;
405
406 mutex_lock(&p->mutex);
407
408 pdd = kfd_bind_process_to_device(dev, p);
409 if (IS_ERR(pdd)) {
410 err = -ESRCH;
411 goto out;
412 }
413
414 default_policy = (args->default_policy == KFD_IOC_CACHE_POLICY_COHERENT)
415 ? cache_policy_coherent : cache_policy_noncoherent;
416
417 alternate_policy =
418 (args->alternate_policy == KFD_IOC_CACHE_POLICY_COHERENT)
419 ? cache_policy_coherent : cache_policy_noncoherent;
420
421 if (!dev->dqm->ops.set_cache_memory_policy(dev->dqm,
422 &pdd->qpd,
423 default_policy,
424 alternate_policy,
425 (void __user *)args->alternate_aperture_base,
426 args->alternate_aperture_size))
427 err = -EINVAL;
428
429 out:
430 mutex_unlock(&p->mutex);
431
432 return err;
433 }
434
435 static int kfd_ioctl_dbg_register(struct file *filep,
436 struct kfd_process *p, void *data)
437 {
438 struct kfd_ioctl_dbg_register_args *args = data;
439 struct kfd_dev *dev;
440 struct kfd_dbgmgr *dbgmgr_ptr;
441 struct kfd_process_device *pdd;
442 bool create_ok;
443 long status = 0;
444
445 dev = kfd_device_by_id(args->gpu_id);
446 if (!dev)
447 return -EINVAL;
448
449 if (dev->device_info->asic_family == CHIP_CARRIZO) {
450 pr_debug("kfd_ioctl_dbg_register not supported on CZ\n");
451 return -EINVAL;
452 }
453
454 mutex_lock(kfd_get_dbgmgr_mutex());
455 mutex_lock(&p->mutex);
456
457 /*
458 * make sure that we have pdd, if this the first queue created for
459 * this process
460 */
461 pdd = kfd_bind_process_to_device(dev, p);
462 if (IS_ERR(pdd)) {
463 status = PTR_ERR(pdd);
464 goto out;
465 }
466
467 if (!dev->dbgmgr) {
468 /* In case of a legal call, we have no dbgmgr yet */
469 create_ok = kfd_dbgmgr_create(&dbgmgr_ptr, dev);
470 if (create_ok) {
471 status = kfd_dbgmgr_register(dbgmgr_ptr, p);
472 if (status != 0)
473 kfd_dbgmgr_destroy(dbgmgr_ptr);
474 else
475 dev->dbgmgr = dbgmgr_ptr;
476 }
477 } else {
478 pr_debug("debugger already registered\n");
479 status = -EINVAL;
480 }
481
482 out:
483 mutex_unlock(&p->mutex);
484 mutex_unlock(kfd_get_dbgmgr_mutex());
485
486 return status;
487 }
488
489 static int kfd_ioctl_dbg_unregister(struct file *filep,
490 struct kfd_process *p, void *data)
491 {
492 struct kfd_ioctl_dbg_unregister_args *args = data;
493 struct kfd_dev *dev;
494 long status;
495
496 dev = kfd_device_by_id(args->gpu_id);
497 if (!dev)
498 return -EINVAL;
499
500 if (dev->device_info->asic_family == CHIP_CARRIZO) {
501 pr_debug("kfd_ioctl_dbg_unregister not supported on CZ\n");
502 return -EINVAL;
503 }
504
505 mutex_lock(kfd_get_dbgmgr_mutex());
506
507 status = kfd_dbgmgr_unregister(dev->dbgmgr, p);
508 if (!status) {
509 kfd_dbgmgr_destroy(dev->dbgmgr);
510 dev->dbgmgr = NULL;
511 }
512
513 mutex_unlock(kfd_get_dbgmgr_mutex());
514
515 return status;
516 }
517
518 /*
519 * Parse and generate variable size data structure for address watch.
520 * Total size of the buffer and # watch points is limited in order
521 * to prevent kernel abuse. (no bearing to the much smaller HW limitation
522 * which is enforced by dbgdev module)
523 * please also note that the watch address itself are not "copied from user",
524 * since it be set into the HW in user mode values.
525 *
526 */
527 static int kfd_ioctl_dbg_address_watch(struct file *filep,
528 struct kfd_process *p, void *data)
529 {
530 struct kfd_ioctl_dbg_address_watch_args *args = data;
531 struct kfd_dev *dev;
532 struct dbg_address_watch_info aw_info;
533 unsigned char *args_buff;
534 long status;
535 void __user *cmd_from_user;
536 uint64_t watch_mask_value = 0;
537 unsigned int args_idx = 0;
538
539 memset((void *) &aw_info, 0, sizeof(struct dbg_address_watch_info));
540
541 dev = kfd_device_by_id(args->gpu_id);
542 if (!dev)
543 return -EINVAL;
544
545 if (dev->device_info->asic_family == CHIP_CARRIZO) {
546 pr_debug("kfd_ioctl_dbg_wave_control not supported on CZ\n");
547 return -EINVAL;
548 }
549
550 cmd_from_user = (void __user *) args->content_ptr;
551
552 /* Validate arguments */
553
554 if ((args->buf_size_in_bytes > MAX_ALLOWED_AW_BUFF_SIZE) ||
555 (args->buf_size_in_bytes <= sizeof(*args) + sizeof(int) * 2) ||
556 (cmd_from_user == NULL))
557 return -EINVAL;
558
559 /* this is the actual buffer to work with */
560 args_buff = memdup_user(cmd_from_user,
561 args->buf_size_in_bytes - sizeof(*args));
562 if (IS_ERR(args_buff))
563 return PTR_ERR(args_buff);
564
565 aw_info.process = p;
566
567 aw_info.num_watch_points = *((uint32_t *)(&args_buff[args_idx]));
568 args_idx += sizeof(aw_info.num_watch_points);
569
570 aw_info.watch_mode = (enum HSA_DBG_WATCH_MODE *) &args_buff[args_idx];
571 args_idx += sizeof(enum HSA_DBG_WATCH_MODE) * aw_info.num_watch_points;
572
573 /*
574 * set watch address base pointer to point on the array base
575 * within args_buff
576 */
577 aw_info.watch_address = (uint64_t *) &args_buff[args_idx];
578
579 /* skip over the addresses buffer */
580 args_idx += sizeof(aw_info.watch_address) * aw_info.num_watch_points;
581
582 if (args_idx >= args->buf_size_in_bytes - sizeof(*args)) {
583 status = -EINVAL;
584 goto out;
585 }
586
587 watch_mask_value = (uint64_t) args_buff[args_idx];
588
589 if (watch_mask_value > 0) {
590 /*
591 * There is an array of masks.
592 * set watch mask base pointer to point on the array base
593 * within args_buff
594 */
595 aw_info.watch_mask = (uint64_t *) &args_buff[args_idx];
596
597 /* skip over the masks buffer */
598 args_idx += sizeof(aw_info.watch_mask) *
599 aw_info.num_watch_points;
600 } else {
601 /* just the NULL mask, set to NULL and skip over it */
602 aw_info.watch_mask = NULL;
603 args_idx += sizeof(aw_info.watch_mask);
604 }
605
606 if (args_idx >= args->buf_size_in_bytes - sizeof(args)) {
607 status = -EINVAL;
608 goto out;
609 }
610
611 /* Currently HSA Event is not supported for DBG */
612 aw_info.watch_event = NULL;
613
614 mutex_lock(kfd_get_dbgmgr_mutex());
615
616 status = kfd_dbgmgr_address_watch(dev->dbgmgr, &aw_info);
617
618 mutex_unlock(kfd_get_dbgmgr_mutex());
619
620 out:
621 kfree(args_buff);
622
623 return status;
624 }
625
626 /* Parse and generate fixed size data structure for wave control */
627 static int kfd_ioctl_dbg_wave_control(struct file *filep,
628 struct kfd_process *p, void *data)
629 {
630 struct kfd_ioctl_dbg_wave_control_args *args = data;
631 struct kfd_dev *dev;
632 struct dbg_wave_control_info wac_info;
633 unsigned char *args_buff;
634 uint32_t computed_buff_size;
635 long status;
636 void __user *cmd_from_user;
637 unsigned int args_idx = 0;
638
639 memset((void *) &wac_info, 0, sizeof(struct dbg_wave_control_info));
640
641 /* we use compact form, independent of the packing attribute value */
642 computed_buff_size = sizeof(*args) +
643 sizeof(wac_info.mode) +
644 sizeof(wac_info.operand) +
645 sizeof(wac_info.dbgWave_msg.DbgWaveMsg) +
646 sizeof(wac_info.dbgWave_msg.MemoryVA) +
647 sizeof(wac_info.trapId);
648
649 dev = kfd_device_by_id(args->gpu_id);
650 if (!dev)
651 return -EINVAL;
652
653 if (dev->device_info->asic_family == CHIP_CARRIZO) {
654 pr_debug("kfd_ioctl_dbg_wave_control not supported on CZ\n");
655 return -EINVAL;
656 }
657
658 /* input size must match the computed "compact" size */
659 if (args->buf_size_in_bytes != computed_buff_size) {
660 pr_debug("size mismatch, computed : actual %u : %u\n",
661 args->buf_size_in_bytes, computed_buff_size);
662 return -EINVAL;
663 }
664
665 cmd_from_user = (void __user *) args->content_ptr;
666
667 if (cmd_from_user == NULL)
668 return -EINVAL;
669
670 /* copy the entire buffer from user */
671
672 args_buff = memdup_user(cmd_from_user,
673 args->buf_size_in_bytes - sizeof(*args));
674 if (IS_ERR(args_buff))
675 return PTR_ERR(args_buff);
676
677 /* move ptr to the start of the "pay-load" area */
678 wac_info.process = p;
679
680 wac_info.operand = *((enum HSA_DBG_WAVEOP *)(&args_buff[args_idx]));
681 args_idx += sizeof(wac_info.operand);
682
683 wac_info.mode = *((enum HSA_DBG_WAVEMODE *)(&args_buff[args_idx]));
684 args_idx += sizeof(wac_info.mode);
685
686 wac_info.trapId = *((uint32_t *)(&args_buff[args_idx]));
687 args_idx += sizeof(wac_info.trapId);
688
689 wac_info.dbgWave_msg.DbgWaveMsg.WaveMsgInfoGen2.Value =
690 *((uint32_t *)(&args_buff[args_idx]));
691 wac_info.dbgWave_msg.MemoryVA = NULL;
692
693 mutex_lock(kfd_get_dbgmgr_mutex());
694
695 pr_debug("Calling dbg manager process %p, operand %u, mode %u, trapId %u, message %u\n",
696 wac_info.process, wac_info.operand,
697 wac_info.mode, wac_info.trapId,
698 wac_info.dbgWave_msg.DbgWaveMsg.WaveMsgInfoGen2.Value);
699
700 status = kfd_dbgmgr_wave_control(dev->dbgmgr, &wac_info);
701
702 pr_debug("Returned status of dbg manager is %ld\n", status);
703
704 mutex_unlock(kfd_get_dbgmgr_mutex());
705
706 kfree(args_buff);
707
708 return status;
709 }
710
711 static int kfd_ioctl_get_clock_counters(struct file *filep,
712 struct kfd_process *p, void *data)
713 {
714 struct kfd_ioctl_get_clock_counters_args *args = data;
715 struct kfd_dev *dev;
716 struct timespec64 time;
717
718 dev = kfd_device_by_id(args->gpu_id);
719 if (dev == NULL)
720 return -EINVAL;
721
722 /* Reading GPU clock counter from KGD */
723 args->gpu_clock_counter =
724 dev->kfd2kgd->get_gpu_clock_counter(dev->kgd);
725
726 /* No access to rdtsc. Using raw monotonic time */
727 getrawmonotonic64(&time);
728 args->cpu_clock_counter = (uint64_t)timespec64_to_ns(&time);
729
730 get_monotonic_boottime64(&time);
731 args->system_clock_counter = (uint64_t)timespec64_to_ns(&time);
732
733 /* Since the counter is in nano-seconds we use 1GHz frequency */
734 args->system_clock_freq = 1000000000;
735
736 return 0;
737 }
738
739
740 static int kfd_ioctl_get_process_apertures(struct file *filp,
741 struct kfd_process *p, void *data)
742 {
743 struct kfd_ioctl_get_process_apertures_args *args = data;
744 struct kfd_process_device_apertures *pAperture;
745 struct kfd_process_device *pdd;
746
747 dev_dbg(kfd_device, "get apertures for PASID %d", p->pasid);
748
749 args->num_of_nodes = 0;
750
751 mutex_lock(&p->mutex);
752
753 /*if the process-device list isn't empty*/
754 if (kfd_has_process_device_data(p)) {
755 /* Run over all pdd of the process */
756 pdd = kfd_get_first_process_device_data(p);
757 do {
758 pAperture =
759 &args->process_apertures[args->num_of_nodes];
760 pAperture->gpu_id = pdd->dev->id;
761 pAperture->lds_base = pdd->lds_base;
762 pAperture->lds_limit = pdd->lds_limit;
763 pAperture->gpuvm_base = pdd->gpuvm_base;
764 pAperture->gpuvm_limit = pdd->gpuvm_limit;
765 pAperture->scratch_base = pdd->scratch_base;
766 pAperture->scratch_limit = pdd->scratch_limit;
767
768 dev_dbg(kfd_device,
769 "node id %u\n", args->num_of_nodes);
770 dev_dbg(kfd_device,
771 "gpu id %u\n", pdd->dev->id);
772 dev_dbg(kfd_device,
773 "lds_base %llX\n", pdd->lds_base);
774 dev_dbg(kfd_device,
775 "lds_limit %llX\n", pdd->lds_limit);
776 dev_dbg(kfd_device,
777 "gpuvm_base %llX\n", pdd->gpuvm_base);
778 dev_dbg(kfd_device,
779 "gpuvm_limit %llX\n", pdd->gpuvm_limit);
780 dev_dbg(kfd_device,
781 "scratch_base %llX\n", pdd->scratch_base);
782 dev_dbg(kfd_device,
783 "scratch_limit %llX\n", pdd->scratch_limit);
784
785 args->num_of_nodes++;
786
787 pdd = kfd_get_next_process_device_data(p, pdd);
788 } while (pdd && (args->num_of_nodes < NUM_OF_SUPPORTED_GPUS));
789 }
790
791 mutex_unlock(&p->mutex);
792
793 return 0;
794 }
795
796 static int kfd_ioctl_create_event(struct file *filp, struct kfd_process *p,
797 void *data)
798 {
799 struct kfd_ioctl_create_event_args *args = data;
800 int err;
801
802 err = kfd_event_create(filp, p, args->event_type,
803 args->auto_reset != 0, args->node_id,
804 &args->event_id, &args->event_trigger_data,
805 &args->event_page_offset,
806 &args->event_slot_index);
807
808 return err;
809 }
810
811 static int kfd_ioctl_destroy_event(struct file *filp, struct kfd_process *p,
812 void *data)
813 {
814 struct kfd_ioctl_destroy_event_args *args = data;
815
816 return kfd_event_destroy(p, args->event_id);
817 }
818
819 static int kfd_ioctl_set_event(struct file *filp, struct kfd_process *p,
820 void *data)
821 {
822 struct kfd_ioctl_set_event_args *args = data;
823
824 return kfd_set_event(p, args->event_id);
825 }
826
827 static int kfd_ioctl_reset_event(struct file *filp, struct kfd_process *p,
828 void *data)
829 {
830 struct kfd_ioctl_reset_event_args *args = data;
831
832 return kfd_reset_event(p, args->event_id);
833 }
834
835 static int kfd_ioctl_wait_events(struct file *filp, struct kfd_process *p,
836 void *data)
837 {
838 struct kfd_ioctl_wait_events_args *args = data;
839 enum kfd_event_wait_result wait_result;
840 int err;
841
842 err = kfd_wait_on_events(p, args->num_events,
843 (void __user *)args->events_ptr,
844 (args->wait_for_all != 0),
845 args->timeout, &wait_result);
846
847 args->wait_result = wait_result;
848
849 return err;
850 }
851 static int kfd_ioctl_set_scratch_backing_va(struct file *filep,
852 struct kfd_process *p, void *data)
853 {
854 struct kfd_ioctl_set_scratch_backing_va_args *args = data;
855 struct kfd_process_device *pdd;
856 struct kfd_dev *dev;
857 long err;
858
859 dev = kfd_device_by_id(args->gpu_id);
860 if (!dev)
861 return -EINVAL;
862
863 mutex_lock(&p->mutex);
864
865 pdd = kfd_bind_process_to_device(dev, p);
866 if (IS_ERR(pdd)) {
867 err = PTR_ERR(pdd);
868 goto bind_process_to_device_fail;
869 }
870
871 pdd->qpd.sh_hidden_private_base = args->va_addr;
872
873 mutex_unlock(&p->mutex);
874
875 if (sched_policy == KFD_SCHED_POLICY_NO_HWS && pdd->qpd.vmid != 0)
876 dev->kfd2kgd->set_scratch_backing_va(
877 dev->kgd, args->va_addr, pdd->qpd.vmid);
878
879 return 0;
880
881 bind_process_to_device_fail:
882 mutex_unlock(&p->mutex);
883 return err;
884 }
885
886 static int kfd_ioctl_get_tile_config(struct file *filep,
887 struct kfd_process *p, void *data)
888 {
889 struct kfd_ioctl_get_tile_config_args *args = data;
890 struct kfd_dev *dev;
891 struct tile_config config;
892 int err = 0;
893
894 dev = kfd_device_by_id(args->gpu_id);
895 if (!dev)
896 return -EINVAL;
897
898 dev->kfd2kgd->get_tile_config(dev->kgd, &config);
899
900 args->gb_addr_config = config.gb_addr_config;
901 args->num_banks = config.num_banks;
902 args->num_ranks = config.num_ranks;
903
904 if (args->num_tile_configs > config.num_tile_configs)
905 args->num_tile_configs = config.num_tile_configs;
906 err = copy_to_user((void __user *)args->tile_config_ptr,
907 config.tile_config_ptr,
908 args->num_tile_configs * sizeof(uint32_t));
909 if (err) {
910 args->num_tile_configs = 0;
911 return -EFAULT;
912 }
913
914 if (args->num_macro_tile_configs > config.num_macro_tile_configs)
915 args->num_macro_tile_configs =
916 config.num_macro_tile_configs;
917 err = copy_to_user((void __user *)args->macro_tile_config_ptr,
918 config.macro_tile_config_ptr,
919 args->num_macro_tile_configs * sizeof(uint32_t));
920 if (err) {
921 args->num_macro_tile_configs = 0;
922 return -EFAULT;
923 }
924
925 return 0;
926 }
927
928 #define AMDKFD_IOCTL_DEF(ioctl, _func, _flags) \
929 [_IOC_NR(ioctl)] = {.cmd = ioctl, .func = _func, .flags = _flags, \
930 .cmd_drv = 0, .name = #ioctl}
931
932 /** Ioctl table */
933 static const struct amdkfd_ioctl_desc amdkfd_ioctls[] = {
934 AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_VERSION,
935 kfd_ioctl_get_version, 0),
936
937 AMDKFD_IOCTL_DEF(AMDKFD_IOC_CREATE_QUEUE,
938 kfd_ioctl_create_queue, 0),
939
940 AMDKFD_IOCTL_DEF(AMDKFD_IOC_DESTROY_QUEUE,
941 kfd_ioctl_destroy_queue, 0),
942
943 AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_MEMORY_POLICY,
944 kfd_ioctl_set_memory_policy, 0),
945
946 AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_CLOCK_COUNTERS,
947 kfd_ioctl_get_clock_counters, 0),
948
949 AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_PROCESS_APERTURES,
950 kfd_ioctl_get_process_apertures, 0),
951
952 AMDKFD_IOCTL_DEF(AMDKFD_IOC_UPDATE_QUEUE,
953 kfd_ioctl_update_queue, 0),
954
955 AMDKFD_IOCTL_DEF(AMDKFD_IOC_CREATE_EVENT,
956 kfd_ioctl_create_event, 0),
957
958 AMDKFD_IOCTL_DEF(AMDKFD_IOC_DESTROY_EVENT,
959 kfd_ioctl_destroy_event, 0),
960
961 AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_EVENT,
962 kfd_ioctl_set_event, 0),
963
964 AMDKFD_IOCTL_DEF(AMDKFD_IOC_RESET_EVENT,
965 kfd_ioctl_reset_event, 0),
966
967 AMDKFD_IOCTL_DEF(AMDKFD_IOC_WAIT_EVENTS,
968 kfd_ioctl_wait_events, 0),
969
970 AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_REGISTER,
971 kfd_ioctl_dbg_register, 0),
972
973 AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_UNREGISTER,
974 kfd_ioctl_dbg_unregister, 0),
975
976 AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_ADDRESS_WATCH,
977 kfd_ioctl_dbg_address_watch, 0),
978
979 AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_WAVE_CONTROL,
980 kfd_ioctl_dbg_wave_control, 0),
981
982 AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_SCRATCH_BACKING_VA,
983 kfd_ioctl_set_scratch_backing_va, 0),
984
985 AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_TILE_CONFIG,
986 kfd_ioctl_get_tile_config, 0)
987 };
988
989 #define AMDKFD_CORE_IOCTL_COUNT ARRAY_SIZE(amdkfd_ioctls)
990
991 static long kfd_ioctl(struct file *filep, unsigned int cmd, unsigned long arg)
992 {
993 struct kfd_process *process;
994 amdkfd_ioctl_t *func;
995 const struct amdkfd_ioctl_desc *ioctl = NULL;
996 unsigned int nr = _IOC_NR(cmd);
997 char stack_kdata[128];
998 char *kdata = NULL;
999 unsigned int usize, asize;
1000 int retcode = -EINVAL;
1001
1002 if (nr >= AMDKFD_CORE_IOCTL_COUNT)
1003 goto err_i1;
1004
1005 if ((nr >= AMDKFD_COMMAND_START) && (nr < AMDKFD_COMMAND_END)) {
1006 u32 amdkfd_size;
1007
1008 ioctl = &amdkfd_ioctls[nr];
1009
1010 amdkfd_size = _IOC_SIZE(ioctl->cmd);
1011 usize = asize = _IOC_SIZE(cmd);
1012 if (amdkfd_size > asize)
1013 asize = amdkfd_size;
1014
1015 cmd = ioctl->cmd;
1016 } else
1017 goto err_i1;
1018
1019 dev_dbg(kfd_device, "ioctl cmd 0x%x (#%d), arg 0x%lx\n", cmd, nr, arg);
1020
1021 process = kfd_get_process(current);
1022 if (IS_ERR(process)) {
1023 dev_dbg(kfd_device, "no process\n");
1024 goto err_i1;
1025 }
1026
1027 /* Do not trust userspace, use our own definition */
1028 func = ioctl->func;
1029
1030 if (unlikely(!func)) {
1031 dev_dbg(kfd_device, "no function\n");
1032 retcode = -EINVAL;
1033 goto err_i1;
1034 }
1035
1036 if (cmd & (IOC_IN | IOC_OUT)) {
1037 if (asize <= sizeof(stack_kdata)) {
1038 kdata = stack_kdata;
1039 } else {
1040 kdata = kmalloc(asize, GFP_KERNEL);
1041 if (!kdata) {
1042 retcode = -ENOMEM;
1043 goto err_i1;
1044 }
1045 }
1046 if (asize > usize)
1047 memset(kdata + usize, 0, asize - usize);
1048 }
1049
1050 if (cmd & IOC_IN) {
1051 if (copy_from_user(kdata, (void __user *)arg, usize) != 0) {
1052 retcode = -EFAULT;
1053 goto err_i1;
1054 }
1055 } else if (cmd & IOC_OUT) {
1056 memset(kdata, 0, usize);
1057 }
1058
1059 retcode = func(filep, process, kdata);
1060
1061 if (cmd & IOC_OUT)
1062 if (copy_to_user((void __user *)arg, kdata, usize) != 0)
1063 retcode = -EFAULT;
1064
1065 err_i1:
1066 if (!ioctl)
1067 dev_dbg(kfd_device, "invalid ioctl: pid=%d, cmd=0x%02x, nr=0x%02x\n",
1068 task_pid_nr(current), cmd, nr);
1069
1070 if (kdata != stack_kdata)
1071 kfree(kdata);
1072
1073 if (retcode)
1074 dev_dbg(kfd_device, "ret = %d\n", retcode);
1075
1076 return retcode;
1077 }
1078
1079 static int kfd_mmap(struct file *filp, struct vm_area_struct *vma)
1080 {
1081 struct kfd_process *process;
1082
1083 process = kfd_get_process(current);
1084 if (IS_ERR(process))
1085 return PTR_ERR(process);
1086
1087 if ((vma->vm_pgoff & KFD_MMAP_DOORBELL_MASK) ==
1088 KFD_MMAP_DOORBELL_MASK) {
1089 vma->vm_pgoff = vma->vm_pgoff ^ KFD_MMAP_DOORBELL_MASK;
1090 return kfd_doorbell_mmap(process, vma);
1091 } else if ((vma->vm_pgoff & KFD_MMAP_EVENTS_MASK) ==
1092 KFD_MMAP_EVENTS_MASK) {
1093 vma->vm_pgoff = vma->vm_pgoff ^ KFD_MMAP_EVENTS_MASK;
1094 return kfd_event_mmap(process, vma);
1095 }
1096
1097 return -EFAULT;
1098 }