]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - drivers/gpu/drm/amd/amdkfd/kfd_device_queue_manager.c
Merge tag 'drm-intel-next-2015-03-27-merge' of git://anongit.freedesktop.org/drm...
[mirror_ubuntu-eoan-kernel.git] / drivers / gpu / drm / amd / amdkfd / kfd_device_queue_manager.c
1 /*
2 * Copyright 2014 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 */
23
24 #include <linux/slab.h>
25 #include <linux/list.h>
26 #include <linux/types.h>
27 #include <linux/printk.h>
28 #include <linux/bitops.h>
29 #include <linux/sched.h>
30 #include "kfd_priv.h"
31 #include "kfd_device_queue_manager.h"
32 #include "kfd_mqd_manager.h"
33 #include "cik_regs.h"
34 #include "kfd_kernel_queue.h"
35
36 /* Size of the per-pipe EOP queue */
37 #define CIK_HPD_EOP_BYTES_LOG2 11
38 #define CIK_HPD_EOP_BYTES (1U << CIK_HPD_EOP_BYTES_LOG2)
39
40 static int set_pasid_vmid_mapping(struct device_queue_manager *dqm,
41 unsigned int pasid, unsigned int vmid);
42
43 static int create_compute_queue_nocpsch(struct device_queue_manager *dqm,
44 struct queue *q,
45 struct qcm_process_device *qpd);
46
47 static int execute_queues_cpsch(struct device_queue_manager *dqm, bool lock);
48 static int destroy_queues_cpsch(struct device_queue_manager *dqm, bool lock);
49
50 static int create_sdma_queue_nocpsch(struct device_queue_manager *dqm,
51 struct queue *q,
52 struct qcm_process_device *qpd);
53
54 static void deallocate_sdma_queue(struct device_queue_manager *dqm,
55 unsigned int sdma_queue_id);
56
57 static inline
58 enum KFD_MQD_TYPE get_mqd_type_from_queue_type(enum kfd_queue_type type)
59 {
60 if (type == KFD_QUEUE_TYPE_SDMA)
61 return KFD_MQD_TYPE_SDMA;
62 return KFD_MQD_TYPE_CP;
63 }
64
65 unsigned int get_first_pipe(struct device_queue_manager *dqm)
66 {
67 BUG_ON(!dqm || !dqm->dev);
68 return dqm->dev->shared_resources.first_compute_pipe;
69 }
70
71 unsigned int get_pipes_num(struct device_queue_manager *dqm)
72 {
73 BUG_ON(!dqm || !dqm->dev);
74 return dqm->dev->shared_resources.compute_pipe_count;
75 }
76
77 static inline unsigned int get_pipes_num_cpsch(void)
78 {
79 return PIPE_PER_ME_CP_SCHEDULING;
80 }
81
82 void program_sh_mem_settings(struct device_queue_manager *dqm,
83 struct qcm_process_device *qpd)
84 {
85 return dqm->dev->kfd2kgd->program_sh_mem_settings(
86 dqm->dev->kgd, qpd->vmid,
87 qpd->sh_mem_config,
88 qpd->sh_mem_ape1_base,
89 qpd->sh_mem_ape1_limit,
90 qpd->sh_mem_bases);
91 }
92
93 static int allocate_vmid(struct device_queue_manager *dqm,
94 struct qcm_process_device *qpd,
95 struct queue *q)
96 {
97 int bit, allocated_vmid;
98
99 if (dqm->vmid_bitmap == 0)
100 return -ENOMEM;
101
102 bit = find_first_bit((unsigned long *)&dqm->vmid_bitmap, CIK_VMID_NUM);
103 clear_bit(bit, (unsigned long *)&dqm->vmid_bitmap);
104
105 /* Kaveri kfd vmid's starts from vmid 8 */
106 allocated_vmid = bit + KFD_VMID_START_OFFSET;
107 pr_debug("kfd: vmid allocation %d\n", allocated_vmid);
108 qpd->vmid = allocated_vmid;
109 q->properties.vmid = allocated_vmid;
110
111 set_pasid_vmid_mapping(dqm, q->process->pasid, q->properties.vmid);
112 program_sh_mem_settings(dqm, qpd);
113
114 return 0;
115 }
116
117 static void deallocate_vmid(struct device_queue_manager *dqm,
118 struct qcm_process_device *qpd,
119 struct queue *q)
120 {
121 int bit = qpd->vmid - KFD_VMID_START_OFFSET;
122
123 /* Release the vmid mapping */
124 set_pasid_vmid_mapping(dqm, 0, qpd->vmid);
125
126 set_bit(bit, (unsigned long *)&dqm->vmid_bitmap);
127 qpd->vmid = 0;
128 q->properties.vmid = 0;
129 }
130
131 static int create_queue_nocpsch(struct device_queue_manager *dqm,
132 struct queue *q,
133 struct qcm_process_device *qpd,
134 int *allocated_vmid)
135 {
136 int retval;
137
138 BUG_ON(!dqm || !q || !qpd || !allocated_vmid);
139
140 pr_debug("kfd: In func %s\n", __func__);
141 print_queue(q);
142
143 mutex_lock(&dqm->lock);
144
145 if (dqm->total_queue_count >= max_num_of_queues_per_device) {
146 pr_warn("amdkfd: Can't create new usermode queue because %d queues were already created\n",
147 dqm->total_queue_count);
148 mutex_unlock(&dqm->lock);
149 return -EPERM;
150 }
151
152 if (list_empty(&qpd->queues_list)) {
153 retval = allocate_vmid(dqm, qpd, q);
154 if (retval != 0) {
155 mutex_unlock(&dqm->lock);
156 return retval;
157 }
158 }
159 *allocated_vmid = qpd->vmid;
160 q->properties.vmid = qpd->vmid;
161
162 if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE)
163 retval = create_compute_queue_nocpsch(dqm, q, qpd);
164 if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
165 retval = create_sdma_queue_nocpsch(dqm, q, qpd);
166
167 if (retval != 0) {
168 if (list_empty(&qpd->queues_list)) {
169 deallocate_vmid(dqm, qpd, q);
170 *allocated_vmid = 0;
171 }
172 mutex_unlock(&dqm->lock);
173 return retval;
174 }
175
176 list_add(&q->list, &qpd->queues_list);
177 if (q->properties.is_active)
178 dqm->queue_count++;
179
180 if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
181 dqm->sdma_queue_count++;
182
183 /*
184 * Unconditionally increment this counter, regardless of the queue's
185 * type or whether the queue is active.
186 */
187 dqm->total_queue_count++;
188 pr_debug("Total of %d queues are accountable so far\n",
189 dqm->total_queue_count);
190
191 mutex_unlock(&dqm->lock);
192 return 0;
193 }
194
195 static int allocate_hqd(struct device_queue_manager *dqm, struct queue *q)
196 {
197 bool set;
198 int pipe, bit, i;
199
200 set = false;
201
202 for (pipe = dqm->next_pipe_to_allocate, i = 0; i < get_pipes_num(dqm);
203 pipe = ((pipe + 1) % get_pipes_num(dqm)), ++i) {
204 if (dqm->allocated_queues[pipe] != 0) {
205 bit = find_first_bit(
206 (unsigned long *)&dqm->allocated_queues[pipe],
207 QUEUES_PER_PIPE);
208
209 clear_bit(bit,
210 (unsigned long *)&dqm->allocated_queues[pipe]);
211 q->pipe = pipe;
212 q->queue = bit;
213 set = true;
214 break;
215 }
216 }
217
218 if (set == false)
219 return -EBUSY;
220
221 pr_debug("kfd: DQM %s hqd slot - pipe (%d) queue(%d)\n",
222 __func__, q->pipe, q->queue);
223 /* horizontal hqd allocation */
224 dqm->next_pipe_to_allocate = (pipe + 1) % get_pipes_num(dqm);
225
226 return 0;
227 }
228
229 static inline void deallocate_hqd(struct device_queue_manager *dqm,
230 struct queue *q)
231 {
232 set_bit(q->queue, (unsigned long *)&dqm->allocated_queues[q->pipe]);
233 }
234
235 static int create_compute_queue_nocpsch(struct device_queue_manager *dqm,
236 struct queue *q,
237 struct qcm_process_device *qpd)
238 {
239 int retval;
240 struct mqd_manager *mqd;
241
242 BUG_ON(!dqm || !q || !qpd);
243
244 mqd = dqm->ops.get_mqd_manager(dqm, KFD_MQD_TYPE_COMPUTE);
245 if (mqd == NULL)
246 return -ENOMEM;
247
248 retval = allocate_hqd(dqm, q);
249 if (retval != 0)
250 return retval;
251
252 retval = mqd->init_mqd(mqd, &q->mqd, &q->mqd_mem_obj,
253 &q->gart_mqd_addr, &q->properties);
254 if (retval != 0) {
255 deallocate_hqd(dqm, q);
256 return retval;
257 }
258
259 pr_debug("kfd: loading mqd to hqd on pipe (%d) queue (%d)\n",
260 q->pipe,
261 q->queue);
262
263 retval = mqd->load_mqd(mqd, q->mqd, q->pipe,
264 q->queue, (uint32_t __user *) q->properties.write_ptr);
265 if (retval != 0) {
266 deallocate_hqd(dqm, q);
267 mqd->uninit_mqd(mqd, q->mqd, q->mqd_mem_obj);
268 return retval;
269 }
270
271 return 0;
272 }
273
274 static int destroy_queue_nocpsch(struct device_queue_manager *dqm,
275 struct qcm_process_device *qpd,
276 struct queue *q)
277 {
278 int retval;
279 struct mqd_manager *mqd;
280
281 BUG_ON(!dqm || !q || !q->mqd || !qpd);
282
283 retval = 0;
284
285 pr_debug("kfd: In Func %s\n", __func__);
286
287 mutex_lock(&dqm->lock);
288
289 if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE) {
290 mqd = dqm->ops.get_mqd_manager(dqm, KFD_MQD_TYPE_COMPUTE);
291 if (mqd == NULL) {
292 retval = -ENOMEM;
293 goto out;
294 }
295 deallocate_hqd(dqm, q);
296 } else if (q->properties.type == KFD_QUEUE_TYPE_SDMA) {
297 mqd = dqm->ops.get_mqd_manager(dqm, KFD_MQD_TYPE_SDMA);
298 if (mqd == NULL) {
299 retval = -ENOMEM;
300 goto out;
301 }
302 dqm->sdma_queue_count--;
303 deallocate_sdma_queue(dqm, q->sdma_id);
304 } else {
305 pr_debug("q->properties.type is invalid (%d)\n",
306 q->properties.type);
307 retval = -EINVAL;
308 goto out;
309 }
310
311 retval = mqd->destroy_mqd(mqd, q->mqd,
312 KFD_PREEMPT_TYPE_WAVEFRONT_RESET,
313 QUEUE_PREEMPT_DEFAULT_TIMEOUT_MS,
314 q->pipe, q->queue);
315
316 if (retval != 0)
317 goto out;
318
319 mqd->uninit_mqd(mqd, q->mqd, q->mqd_mem_obj);
320
321 list_del(&q->list);
322 if (list_empty(&qpd->queues_list))
323 deallocate_vmid(dqm, qpd, q);
324 if (q->properties.is_active)
325 dqm->queue_count--;
326
327 /*
328 * Unconditionally decrement this counter, regardless of the queue's
329 * type
330 */
331 dqm->total_queue_count--;
332 pr_debug("Total of %d queues are accountable so far\n",
333 dqm->total_queue_count);
334
335 out:
336 mutex_unlock(&dqm->lock);
337 return retval;
338 }
339
340 static int update_queue(struct device_queue_manager *dqm, struct queue *q)
341 {
342 int retval;
343 struct mqd_manager *mqd;
344 bool prev_active = false;
345
346 BUG_ON(!dqm || !q || !q->mqd);
347
348 mutex_lock(&dqm->lock);
349 mqd = dqm->ops.get_mqd_manager(dqm,
350 get_mqd_type_from_queue_type(q->properties.type));
351 if (mqd == NULL) {
352 mutex_unlock(&dqm->lock);
353 return -ENOMEM;
354 }
355
356 if (q->properties.is_active == true)
357 prev_active = true;
358
359 /*
360 *
361 * check active state vs. the previous state
362 * and modify counter accordingly
363 */
364 retval = mqd->update_mqd(mqd, q->mqd, &q->properties);
365 if ((q->properties.is_active == true) && (prev_active == false))
366 dqm->queue_count++;
367 else if ((q->properties.is_active == false) && (prev_active == true))
368 dqm->queue_count--;
369
370 if (sched_policy != KFD_SCHED_POLICY_NO_HWS)
371 retval = execute_queues_cpsch(dqm, false);
372
373 mutex_unlock(&dqm->lock);
374 return retval;
375 }
376
377 static struct mqd_manager *get_mqd_manager_nocpsch(
378 struct device_queue_manager *dqm, enum KFD_MQD_TYPE type)
379 {
380 struct mqd_manager *mqd;
381
382 BUG_ON(!dqm || type >= KFD_MQD_TYPE_MAX);
383
384 pr_debug("kfd: In func %s mqd type %d\n", __func__, type);
385
386 mqd = dqm->mqds[type];
387 if (!mqd) {
388 mqd = mqd_manager_init(type, dqm->dev);
389 if (mqd == NULL)
390 pr_err("kfd: mqd manager is NULL");
391 dqm->mqds[type] = mqd;
392 }
393
394 return mqd;
395 }
396
397 static int register_process_nocpsch(struct device_queue_manager *dqm,
398 struct qcm_process_device *qpd)
399 {
400 struct device_process_node *n;
401 int retval;
402
403 BUG_ON(!dqm || !qpd);
404
405 pr_debug("kfd: In func %s\n", __func__);
406
407 n = kzalloc(sizeof(struct device_process_node), GFP_KERNEL);
408 if (!n)
409 return -ENOMEM;
410
411 n->qpd = qpd;
412
413 mutex_lock(&dqm->lock);
414 list_add(&n->list, &dqm->queues);
415
416 retval = dqm->ops_asic_specific.register_process(dqm, qpd);
417
418 dqm->processes_count++;
419
420 mutex_unlock(&dqm->lock);
421
422 return retval;
423 }
424
425 static int unregister_process_nocpsch(struct device_queue_manager *dqm,
426 struct qcm_process_device *qpd)
427 {
428 int retval;
429 struct device_process_node *cur, *next;
430
431 BUG_ON(!dqm || !qpd);
432
433 BUG_ON(!list_empty(&qpd->queues_list));
434
435 pr_debug("kfd: In func %s\n", __func__);
436
437 retval = 0;
438 mutex_lock(&dqm->lock);
439
440 list_for_each_entry_safe(cur, next, &dqm->queues, list) {
441 if (qpd == cur->qpd) {
442 list_del(&cur->list);
443 kfree(cur);
444 dqm->processes_count--;
445 goto out;
446 }
447 }
448 /* qpd not found in dqm list */
449 retval = 1;
450 out:
451 mutex_unlock(&dqm->lock);
452 return retval;
453 }
454
455 static int
456 set_pasid_vmid_mapping(struct device_queue_manager *dqm, unsigned int pasid,
457 unsigned int vmid)
458 {
459 uint32_t pasid_mapping;
460
461 pasid_mapping = (pasid == 0) ? 0 :
462 (uint32_t)pasid |
463 ATC_VMID_PASID_MAPPING_VALID;
464
465 return dqm->dev->kfd2kgd->set_pasid_vmid_mapping(
466 dqm->dev->kgd, pasid_mapping,
467 vmid);
468 }
469
470 int init_pipelines(struct device_queue_manager *dqm,
471 unsigned int pipes_num, unsigned int first_pipe)
472 {
473 void *hpdptr;
474 struct mqd_manager *mqd;
475 unsigned int i, err, inx;
476 uint64_t pipe_hpd_addr;
477
478 BUG_ON(!dqm || !dqm->dev);
479
480 pr_debug("kfd: In func %s\n", __func__);
481
482 /*
483 * Allocate memory for the HPDs. This is hardware-owned per-pipe data.
484 * The driver never accesses this memory after zeroing it.
485 * It doesn't even have to be saved/restored on suspend/resume
486 * because it contains no data when there are no active queues.
487 */
488
489 err = kfd_gtt_sa_allocate(dqm->dev, CIK_HPD_EOP_BYTES * pipes_num,
490 &dqm->pipeline_mem);
491
492 if (err) {
493 pr_err("kfd: error allocate vidmem num pipes: %d\n",
494 pipes_num);
495 return -ENOMEM;
496 }
497
498 hpdptr = dqm->pipeline_mem->cpu_ptr;
499 dqm->pipelines_addr = dqm->pipeline_mem->gpu_addr;
500
501 memset(hpdptr, 0, CIK_HPD_EOP_BYTES * pipes_num);
502
503 mqd = dqm->ops.get_mqd_manager(dqm, KFD_MQD_TYPE_COMPUTE);
504 if (mqd == NULL) {
505 kfd_gtt_sa_free(dqm->dev, dqm->pipeline_mem);
506 return -ENOMEM;
507 }
508
509 for (i = 0; i < pipes_num; i++) {
510 inx = i + first_pipe;
511 /*
512 * HPD buffer on GTT is allocated by amdkfd, no need to waste
513 * space in GTT for pipelines we don't initialize
514 */
515 pipe_hpd_addr = dqm->pipelines_addr + i * CIK_HPD_EOP_BYTES;
516 pr_debug("kfd: pipeline address %llX\n", pipe_hpd_addr);
517 /* = log2(bytes/4)-1 */
518 dqm->dev->kfd2kgd->init_pipeline(dqm->dev->kgd, inx,
519 CIK_HPD_EOP_BYTES_LOG2 - 3, pipe_hpd_addr);
520 }
521
522 return 0;
523 }
524
525 static int init_scheduler(struct device_queue_manager *dqm)
526 {
527 int retval;
528
529 BUG_ON(!dqm);
530
531 pr_debug("kfd: In %s\n", __func__);
532
533 retval = init_pipelines(dqm, get_pipes_num(dqm), get_first_pipe(dqm));
534 return retval;
535 }
536
537 static int initialize_nocpsch(struct device_queue_manager *dqm)
538 {
539 int i;
540
541 BUG_ON(!dqm);
542
543 pr_debug("kfd: In func %s num of pipes: %d\n",
544 __func__, get_pipes_num(dqm));
545
546 mutex_init(&dqm->lock);
547 INIT_LIST_HEAD(&dqm->queues);
548 dqm->queue_count = dqm->next_pipe_to_allocate = 0;
549 dqm->sdma_queue_count = 0;
550 dqm->allocated_queues = kcalloc(get_pipes_num(dqm),
551 sizeof(unsigned int), GFP_KERNEL);
552 if (!dqm->allocated_queues) {
553 mutex_destroy(&dqm->lock);
554 return -ENOMEM;
555 }
556
557 for (i = 0; i < get_pipes_num(dqm); i++)
558 dqm->allocated_queues[i] = (1 << QUEUES_PER_PIPE) - 1;
559
560 dqm->vmid_bitmap = (1 << VMID_PER_DEVICE) - 1;
561 dqm->sdma_bitmap = (1 << CIK_SDMA_QUEUES) - 1;
562
563 init_scheduler(dqm);
564 return 0;
565 }
566
567 static void uninitialize_nocpsch(struct device_queue_manager *dqm)
568 {
569 int i;
570
571 BUG_ON(!dqm);
572
573 BUG_ON(dqm->queue_count > 0 || dqm->processes_count > 0);
574
575 kfree(dqm->allocated_queues);
576 for (i = 0 ; i < KFD_MQD_TYPE_MAX ; i++)
577 kfree(dqm->mqds[i]);
578 mutex_destroy(&dqm->lock);
579 kfd_gtt_sa_free(dqm->dev, dqm->pipeline_mem);
580 }
581
582 static int start_nocpsch(struct device_queue_manager *dqm)
583 {
584 return 0;
585 }
586
587 static int stop_nocpsch(struct device_queue_manager *dqm)
588 {
589 return 0;
590 }
591
592 static int allocate_sdma_queue(struct device_queue_manager *dqm,
593 unsigned int *sdma_queue_id)
594 {
595 int bit;
596
597 if (dqm->sdma_bitmap == 0)
598 return -ENOMEM;
599
600 bit = find_first_bit((unsigned long *)&dqm->sdma_bitmap,
601 CIK_SDMA_QUEUES);
602
603 clear_bit(bit, (unsigned long *)&dqm->sdma_bitmap);
604 *sdma_queue_id = bit;
605
606 return 0;
607 }
608
609 static void deallocate_sdma_queue(struct device_queue_manager *dqm,
610 unsigned int sdma_queue_id)
611 {
612 if (sdma_queue_id >= CIK_SDMA_QUEUES)
613 return;
614 set_bit(sdma_queue_id, (unsigned long *)&dqm->sdma_bitmap);
615 }
616
617 static void init_sdma_vm(struct device_queue_manager *dqm, struct queue *q,
618 struct qcm_process_device *qpd)
619 {
620 uint32_t value = SDMA_ATC;
621
622 if (q->process->is_32bit_user_mode)
623 value |= SDMA_VA_PTR32 | get_sh_mem_bases_32(qpd_to_pdd(qpd));
624 else
625 value |= SDMA_VA_SHARED_BASE(get_sh_mem_bases_nybble_64(
626 qpd_to_pdd(qpd)));
627 q->properties.sdma_vm_addr = value;
628 }
629
630 static int create_sdma_queue_nocpsch(struct device_queue_manager *dqm,
631 struct queue *q,
632 struct qcm_process_device *qpd)
633 {
634 struct mqd_manager *mqd;
635 int retval;
636
637 mqd = dqm->ops.get_mqd_manager(dqm, KFD_MQD_TYPE_SDMA);
638 if (!mqd)
639 return -ENOMEM;
640
641 retval = allocate_sdma_queue(dqm, &q->sdma_id);
642 if (retval != 0)
643 return retval;
644
645 q->properties.sdma_queue_id = q->sdma_id % CIK_SDMA_QUEUES_PER_ENGINE;
646 q->properties.sdma_engine_id = q->sdma_id / CIK_SDMA_ENGINE_NUM;
647
648 pr_debug("kfd: sdma id is: %d\n", q->sdma_id);
649 pr_debug(" sdma queue id: %d\n", q->properties.sdma_queue_id);
650 pr_debug(" sdma engine id: %d\n", q->properties.sdma_engine_id);
651
652 init_sdma_vm(dqm, q, qpd);
653 retval = mqd->init_mqd(mqd, &q->mqd, &q->mqd_mem_obj,
654 &q->gart_mqd_addr, &q->properties);
655 if (retval != 0) {
656 deallocate_sdma_queue(dqm, q->sdma_id);
657 return retval;
658 }
659
660 retval = mqd->load_mqd(mqd, q->mqd, 0,
661 0, NULL);
662 if (retval != 0) {
663 deallocate_sdma_queue(dqm, q->sdma_id);
664 mqd->uninit_mqd(mqd, q->mqd, q->mqd_mem_obj);
665 return retval;
666 }
667
668 return 0;
669 }
670
671 /*
672 * Device Queue Manager implementation for cp scheduler
673 */
674
675 static int set_sched_resources(struct device_queue_manager *dqm)
676 {
677 struct scheduling_resources res;
678 unsigned int queue_num, queue_mask;
679
680 BUG_ON(!dqm);
681
682 pr_debug("kfd: In func %s\n", __func__);
683
684 queue_num = get_pipes_num_cpsch() * QUEUES_PER_PIPE;
685 queue_mask = (1 << queue_num) - 1;
686 res.vmid_mask = (1 << VMID_PER_DEVICE) - 1;
687 res.vmid_mask <<= KFD_VMID_START_OFFSET;
688 res.queue_mask = queue_mask << (get_first_pipe(dqm) * QUEUES_PER_PIPE);
689 res.gws_mask = res.oac_mask = res.gds_heap_base =
690 res.gds_heap_size = 0;
691
692 pr_debug("kfd: scheduling resources:\n"
693 " vmid mask: 0x%8X\n"
694 " queue mask: 0x%8llX\n",
695 res.vmid_mask, res.queue_mask);
696
697 return pm_send_set_resources(&dqm->packets, &res);
698 }
699
700 static int initialize_cpsch(struct device_queue_manager *dqm)
701 {
702 int retval;
703
704 BUG_ON(!dqm);
705
706 pr_debug("kfd: In func %s num of pipes: %d\n",
707 __func__, get_pipes_num_cpsch());
708
709 mutex_init(&dqm->lock);
710 INIT_LIST_HEAD(&dqm->queues);
711 dqm->queue_count = dqm->processes_count = 0;
712 dqm->sdma_queue_count = 0;
713 dqm->active_runlist = false;
714 retval = dqm->ops_asic_specific.initialize(dqm);
715 if (retval != 0)
716 goto fail_init_pipelines;
717
718 return 0;
719
720 fail_init_pipelines:
721 mutex_destroy(&dqm->lock);
722 return retval;
723 }
724
725 static int start_cpsch(struct device_queue_manager *dqm)
726 {
727 struct device_process_node *node;
728 int retval;
729
730 BUG_ON(!dqm);
731
732 retval = 0;
733
734 retval = pm_init(&dqm->packets, dqm);
735 if (retval != 0)
736 goto fail_packet_manager_init;
737
738 retval = set_sched_resources(dqm);
739 if (retval != 0)
740 goto fail_set_sched_resources;
741
742 pr_debug("kfd: allocating fence memory\n");
743
744 /* allocate fence memory on the gart */
745 retval = kfd_gtt_sa_allocate(dqm->dev, sizeof(*dqm->fence_addr),
746 &dqm->fence_mem);
747
748 if (retval != 0)
749 goto fail_allocate_vidmem;
750
751 dqm->fence_addr = dqm->fence_mem->cpu_ptr;
752 dqm->fence_gpu_addr = dqm->fence_mem->gpu_addr;
753 list_for_each_entry(node, &dqm->queues, list)
754 if (node->qpd->pqm->process && dqm->dev)
755 kfd_bind_process_to_device(dqm->dev,
756 node->qpd->pqm->process);
757
758 execute_queues_cpsch(dqm, true);
759
760 return 0;
761 fail_allocate_vidmem:
762 fail_set_sched_resources:
763 pm_uninit(&dqm->packets);
764 fail_packet_manager_init:
765 return retval;
766 }
767
768 static int stop_cpsch(struct device_queue_manager *dqm)
769 {
770 struct device_process_node *node;
771 struct kfd_process_device *pdd;
772
773 BUG_ON(!dqm);
774
775 destroy_queues_cpsch(dqm, true);
776
777 list_for_each_entry(node, &dqm->queues, list) {
778 pdd = qpd_to_pdd(node->qpd);
779 pdd->bound = false;
780 }
781 kfd_gtt_sa_free(dqm->dev, dqm->fence_mem);
782 pm_uninit(&dqm->packets);
783
784 return 0;
785 }
786
787 static int create_kernel_queue_cpsch(struct device_queue_manager *dqm,
788 struct kernel_queue *kq,
789 struct qcm_process_device *qpd)
790 {
791 BUG_ON(!dqm || !kq || !qpd);
792
793 pr_debug("kfd: In func %s\n", __func__);
794
795 mutex_lock(&dqm->lock);
796 if (dqm->total_queue_count >= max_num_of_queues_per_device) {
797 pr_warn("amdkfd: Can't create new kernel queue because %d queues were already created\n",
798 dqm->total_queue_count);
799 mutex_unlock(&dqm->lock);
800 return -EPERM;
801 }
802
803 /*
804 * Unconditionally increment this counter, regardless of the queue's
805 * type or whether the queue is active.
806 */
807 dqm->total_queue_count++;
808 pr_debug("Total of %d queues are accountable so far\n",
809 dqm->total_queue_count);
810
811 list_add(&kq->list, &qpd->priv_queue_list);
812 dqm->queue_count++;
813 qpd->is_debug = true;
814 execute_queues_cpsch(dqm, false);
815 mutex_unlock(&dqm->lock);
816
817 return 0;
818 }
819
820 static void destroy_kernel_queue_cpsch(struct device_queue_manager *dqm,
821 struct kernel_queue *kq,
822 struct qcm_process_device *qpd)
823 {
824 BUG_ON(!dqm || !kq);
825
826 pr_debug("kfd: In %s\n", __func__);
827
828 mutex_lock(&dqm->lock);
829 destroy_queues_cpsch(dqm, false);
830 list_del(&kq->list);
831 dqm->queue_count--;
832 qpd->is_debug = false;
833 execute_queues_cpsch(dqm, false);
834 /*
835 * Unconditionally decrement this counter, regardless of the queue's
836 * type.
837 */
838 dqm->total_queue_count--;
839 pr_debug("Total of %d queues are accountable so far\n",
840 dqm->total_queue_count);
841 mutex_unlock(&dqm->lock);
842 }
843
844 static void select_sdma_engine_id(struct queue *q)
845 {
846 static int sdma_id;
847
848 q->sdma_id = sdma_id;
849 sdma_id = (sdma_id + 1) % 2;
850 }
851
852 static int create_queue_cpsch(struct device_queue_manager *dqm, struct queue *q,
853 struct qcm_process_device *qpd, int *allocate_vmid)
854 {
855 int retval;
856 struct mqd_manager *mqd;
857
858 BUG_ON(!dqm || !q || !qpd);
859
860 retval = 0;
861
862 if (allocate_vmid)
863 *allocate_vmid = 0;
864
865 mutex_lock(&dqm->lock);
866
867 if (dqm->total_queue_count >= max_num_of_queues_per_device) {
868 pr_warn("amdkfd: Can't create new usermode queue because %d queues were already created\n",
869 dqm->total_queue_count);
870 retval = -EPERM;
871 goto out;
872 }
873
874 if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
875 select_sdma_engine_id(q);
876
877 mqd = dqm->ops.get_mqd_manager(dqm,
878 get_mqd_type_from_queue_type(q->properties.type));
879
880 if (mqd == NULL) {
881 mutex_unlock(&dqm->lock);
882 return -ENOMEM;
883 }
884
885 retval = mqd->init_mqd(mqd, &q->mqd, &q->mqd_mem_obj,
886 &q->gart_mqd_addr, &q->properties);
887 if (retval != 0)
888 goto out;
889
890 list_add(&q->list, &qpd->queues_list);
891 if (q->properties.is_active) {
892 dqm->queue_count++;
893 retval = execute_queues_cpsch(dqm, false);
894 }
895
896 if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
897 dqm->sdma_queue_count++;
898 /*
899 * Unconditionally increment this counter, regardless of the queue's
900 * type or whether the queue is active.
901 */
902 dqm->total_queue_count++;
903
904 pr_debug("Total of %d queues are accountable so far\n",
905 dqm->total_queue_count);
906
907 out:
908 mutex_unlock(&dqm->lock);
909 return retval;
910 }
911
912 static int amdkfd_fence_wait_timeout(unsigned int *fence_addr,
913 unsigned int fence_value,
914 unsigned long timeout)
915 {
916 BUG_ON(!fence_addr);
917 timeout += jiffies;
918
919 while (*fence_addr != fence_value) {
920 if (time_after(jiffies, timeout)) {
921 pr_err("kfd: qcm fence wait loop timeout expired\n");
922 return -ETIME;
923 }
924 schedule();
925 }
926
927 return 0;
928 }
929
930 static int destroy_sdma_queues(struct device_queue_manager *dqm,
931 unsigned int sdma_engine)
932 {
933 return pm_send_unmap_queue(&dqm->packets, KFD_QUEUE_TYPE_SDMA,
934 KFD_PREEMPT_TYPE_FILTER_ALL_QUEUES, 0, false,
935 sdma_engine);
936 }
937
938 static int destroy_queues_cpsch(struct device_queue_manager *dqm, bool lock)
939 {
940 int retval;
941
942 BUG_ON(!dqm);
943
944 retval = 0;
945
946 if (lock)
947 mutex_lock(&dqm->lock);
948 if (dqm->active_runlist == false)
949 goto out;
950
951 pr_debug("kfd: Before destroying queues, sdma queue count is : %u\n",
952 dqm->sdma_queue_count);
953
954 if (dqm->sdma_queue_count > 0) {
955 destroy_sdma_queues(dqm, 0);
956 destroy_sdma_queues(dqm, 1);
957 }
958
959 retval = pm_send_unmap_queue(&dqm->packets, KFD_QUEUE_TYPE_COMPUTE,
960 KFD_PREEMPT_TYPE_FILTER_ALL_QUEUES, 0, false, 0);
961 if (retval != 0)
962 goto out;
963
964 *dqm->fence_addr = KFD_FENCE_INIT;
965 pm_send_query_status(&dqm->packets, dqm->fence_gpu_addr,
966 KFD_FENCE_COMPLETED);
967 /* should be timed out */
968 amdkfd_fence_wait_timeout(dqm->fence_addr, KFD_FENCE_COMPLETED,
969 QUEUE_PREEMPT_DEFAULT_TIMEOUT_MS);
970 pm_release_ib(&dqm->packets);
971 dqm->active_runlist = false;
972
973 out:
974 if (lock)
975 mutex_unlock(&dqm->lock);
976 return retval;
977 }
978
979 static int execute_queues_cpsch(struct device_queue_manager *dqm, bool lock)
980 {
981 int retval;
982
983 BUG_ON(!dqm);
984
985 if (lock)
986 mutex_lock(&dqm->lock);
987
988 retval = destroy_queues_cpsch(dqm, false);
989 if (retval != 0) {
990 pr_err("kfd: the cp might be in an unrecoverable state due to an unsuccessful queues preemption");
991 goto out;
992 }
993
994 if (dqm->queue_count <= 0 || dqm->processes_count <= 0) {
995 retval = 0;
996 goto out;
997 }
998
999 if (dqm->active_runlist) {
1000 retval = 0;
1001 goto out;
1002 }
1003
1004 retval = pm_send_runlist(&dqm->packets, &dqm->queues);
1005 if (retval != 0) {
1006 pr_err("kfd: failed to execute runlist");
1007 goto out;
1008 }
1009 dqm->active_runlist = true;
1010
1011 out:
1012 if (lock)
1013 mutex_unlock(&dqm->lock);
1014 return retval;
1015 }
1016
1017 static int destroy_queue_cpsch(struct device_queue_manager *dqm,
1018 struct qcm_process_device *qpd,
1019 struct queue *q)
1020 {
1021 int retval;
1022 struct mqd_manager *mqd;
1023
1024 BUG_ON(!dqm || !qpd || !q);
1025
1026 retval = 0;
1027
1028 /* remove queue from list to prevent rescheduling after preemption */
1029 mutex_lock(&dqm->lock);
1030 mqd = dqm->ops.get_mqd_manager(dqm,
1031 get_mqd_type_from_queue_type(q->properties.type));
1032 if (!mqd) {
1033 retval = -ENOMEM;
1034 goto failed;
1035 }
1036
1037 if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
1038 dqm->sdma_queue_count--;
1039
1040 list_del(&q->list);
1041 if (q->properties.is_active)
1042 dqm->queue_count--;
1043
1044 execute_queues_cpsch(dqm, false);
1045
1046 mqd->uninit_mqd(mqd, q->mqd, q->mqd_mem_obj);
1047
1048 /*
1049 * Unconditionally decrement this counter, regardless of the queue's
1050 * type
1051 */
1052 dqm->total_queue_count--;
1053 pr_debug("Total of %d queues are accountable so far\n",
1054 dqm->total_queue_count);
1055
1056 mutex_unlock(&dqm->lock);
1057
1058 return 0;
1059
1060 failed:
1061 mutex_unlock(&dqm->lock);
1062 return retval;
1063 }
1064
1065 /*
1066 * Low bits must be 0000/FFFF as required by HW, high bits must be 0 to
1067 * stay in user mode.
1068 */
1069 #define APE1_FIXED_BITS_MASK 0xFFFF80000000FFFFULL
1070 /* APE1 limit is inclusive and 64K aligned. */
1071 #define APE1_LIMIT_ALIGNMENT 0xFFFF
1072
1073 static bool set_cache_memory_policy(struct device_queue_manager *dqm,
1074 struct qcm_process_device *qpd,
1075 enum cache_policy default_policy,
1076 enum cache_policy alternate_policy,
1077 void __user *alternate_aperture_base,
1078 uint64_t alternate_aperture_size)
1079 {
1080 bool retval;
1081
1082 pr_debug("kfd: In func %s\n", __func__);
1083
1084 mutex_lock(&dqm->lock);
1085
1086 if (alternate_aperture_size == 0) {
1087 /* base > limit disables APE1 */
1088 qpd->sh_mem_ape1_base = 1;
1089 qpd->sh_mem_ape1_limit = 0;
1090 } else {
1091 /*
1092 * In FSA64, APE1_Base[63:0] = { 16{SH_MEM_APE1_BASE[31]},
1093 * SH_MEM_APE1_BASE[31:0], 0x0000 }
1094 * APE1_Limit[63:0] = { 16{SH_MEM_APE1_LIMIT[31]},
1095 * SH_MEM_APE1_LIMIT[31:0], 0xFFFF }
1096 * Verify that the base and size parameters can be
1097 * represented in this format and convert them.
1098 * Additionally restrict APE1 to user-mode addresses.
1099 */
1100
1101 uint64_t base = (uintptr_t)alternate_aperture_base;
1102 uint64_t limit = base + alternate_aperture_size - 1;
1103
1104 if (limit <= base)
1105 goto out;
1106
1107 if ((base & APE1_FIXED_BITS_MASK) != 0)
1108 goto out;
1109
1110 if ((limit & APE1_FIXED_BITS_MASK) != APE1_LIMIT_ALIGNMENT)
1111 goto out;
1112
1113 qpd->sh_mem_ape1_base = base >> 16;
1114 qpd->sh_mem_ape1_limit = limit >> 16;
1115 }
1116
1117 retval = dqm->ops_asic_specific.set_cache_memory_policy(
1118 dqm,
1119 qpd,
1120 default_policy,
1121 alternate_policy,
1122 alternate_aperture_base,
1123 alternate_aperture_size);
1124
1125 if ((sched_policy == KFD_SCHED_POLICY_NO_HWS) && (qpd->vmid != 0))
1126 program_sh_mem_settings(dqm, qpd);
1127
1128 pr_debug("kfd: sh_mem_config: 0x%x, ape1_base: 0x%x, ape1_limit: 0x%x\n",
1129 qpd->sh_mem_config, qpd->sh_mem_ape1_base,
1130 qpd->sh_mem_ape1_limit);
1131
1132 mutex_unlock(&dqm->lock);
1133 return retval;
1134
1135 out:
1136 mutex_unlock(&dqm->lock);
1137 return false;
1138 }
1139
1140 struct device_queue_manager *device_queue_manager_init(struct kfd_dev *dev)
1141 {
1142 struct device_queue_manager *dqm;
1143
1144 BUG_ON(!dev);
1145
1146 pr_debug("kfd: loading device queue manager\n");
1147
1148 dqm = kzalloc(sizeof(struct device_queue_manager), GFP_KERNEL);
1149 if (!dqm)
1150 return NULL;
1151
1152 dqm->dev = dev;
1153 switch (sched_policy) {
1154 case KFD_SCHED_POLICY_HWS:
1155 case KFD_SCHED_POLICY_HWS_NO_OVERSUBSCRIPTION:
1156 /* initialize dqm for cp scheduling */
1157 dqm->ops.create_queue = create_queue_cpsch;
1158 dqm->ops.initialize = initialize_cpsch;
1159 dqm->ops.start = start_cpsch;
1160 dqm->ops.stop = stop_cpsch;
1161 dqm->ops.destroy_queue = destroy_queue_cpsch;
1162 dqm->ops.update_queue = update_queue;
1163 dqm->ops.get_mqd_manager = get_mqd_manager_nocpsch;
1164 dqm->ops.register_process = register_process_nocpsch;
1165 dqm->ops.unregister_process = unregister_process_nocpsch;
1166 dqm->ops.uninitialize = uninitialize_nocpsch;
1167 dqm->ops.create_kernel_queue = create_kernel_queue_cpsch;
1168 dqm->ops.destroy_kernel_queue = destroy_kernel_queue_cpsch;
1169 dqm->ops.set_cache_memory_policy = set_cache_memory_policy;
1170 break;
1171 case KFD_SCHED_POLICY_NO_HWS:
1172 /* initialize dqm for no cp scheduling */
1173 dqm->ops.start = start_nocpsch;
1174 dqm->ops.stop = stop_nocpsch;
1175 dqm->ops.create_queue = create_queue_nocpsch;
1176 dqm->ops.destroy_queue = destroy_queue_nocpsch;
1177 dqm->ops.update_queue = update_queue;
1178 dqm->ops.get_mqd_manager = get_mqd_manager_nocpsch;
1179 dqm->ops.register_process = register_process_nocpsch;
1180 dqm->ops.unregister_process = unregister_process_nocpsch;
1181 dqm->ops.initialize = initialize_nocpsch;
1182 dqm->ops.uninitialize = uninitialize_nocpsch;
1183 dqm->ops.set_cache_memory_policy = set_cache_memory_policy;
1184 break;
1185 default:
1186 BUG();
1187 break;
1188 }
1189
1190 switch (dev->device_info->asic_family) {
1191 case CHIP_CARRIZO:
1192 device_queue_manager_init_vi(&dqm->ops_asic_specific);
1193 break;
1194
1195 case CHIP_KAVERI:
1196 device_queue_manager_init_cik(&dqm->ops_asic_specific);
1197 break;
1198 }
1199
1200 if (dqm->ops.initialize(dqm) != 0) {
1201 kfree(dqm);
1202 return NULL;
1203 }
1204
1205 return dqm;
1206 }
1207
1208 void device_queue_manager_uninit(struct device_queue_manager *dqm)
1209 {
1210 BUG_ON(!dqm);
1211
1212 dqm->ops.uninitialize(dqm);
1213 kfree(dqm);
1214 }