]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/gpu/drm/amd/amdkfd/kfd_mqd_manager_cik.c
mmc: core: prepend 0x to OCR entry in sysfs
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / amd / amdkfd / kfd_mqd_manager_cik.c
1 /*
2 * Copyright 2014 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 */
23
24 #include <linux/printk.h>
25 #include <linux/slab.h>
26 #include <linux/mm_types.h>
27
28 #include "kfd_priv.h"
29 #include "kfd_mqd_manager.h"
30 #include "cik_regs.h"
31 #include "cik_structs.h"
32 #include "oss/oss_2_4_sh_mask.h"
33
34 static inline struct cik_mqd *get_mqd(void *mqd)
35 {
36 return (struct cik_mqd *)mqd;
37 }
38
39 static int init_mqd(struct mqd_manager *mm, void **mqd,
40 struct kfd_mem_obj **mqd_mem_obj, uint64_t *gart_addr,
41 struct queue_properties *q)
42 {
43 uint64_t addr;
44 struct cik_mqd *m;
45 int retval;
46
47 retval = kfd_gtt_sa_allocate(mm->dev, sizeof(struct cik_mqd),
48 mqd_mem_obj);
49
50 if (retval != 0)
51 return -ENOMEM;
52
53 m = (struct cik_mqd *) (*mqd_mem_obj)->cpu_ptr;
54 addr = (*mqd_mem_obj)->gpu_addr;
55
56 memset(m, 0, ALIGN(sizeof(struct cik_mqd), 256));
57
58 m->header = 0xC0310800;
59 m->compute_pipelinestat_enable = 1;
60 m->compute_static_thread_mgmt_se0 = 0xFFFFFFFF;
61 m->compute_static_thread_mgmt_se1 = 0xFFFFFFFF;
62 m->compute_static_thread_mgmt_se2 = 0xFFFFFFFF;
63 m->compute_static_thread_mgmt_se3 = 0xFFFFFFFF;
64
65 /*
66 * Make sure to use the last queue state saved on mqd when the cp
67 * reassigns the queue, so when queue is switched on/off (e.g over
68 * subscription or quantum timeout) the context will be consistent
69 */
70 m->cp_hqd_persistent_state =
71 DEFAULT_CP_HQD_PERSISTENT_STATE | PRELOAD_REQ;
72
73 m->cp_mqd_control = MQD_CONTROL_PRIV_STATE_EN;
74 m->cp_mqd_base_addr_lo = lower_32_bits(addr);
75 m->cp_mqd_base_addr_hi = upper_32_bits(addr);
76
77 m->cp_hqd_ib_control = DEFAULT_MIN_IB_AVAIL_SIZE | IB_ATC_EN;
78 /* Although WinKFD writes this, I suspect it should not be necessary */
79 m->cp_hqd_ib_control = IB_ATC_EN | DEFAULT_MIN_IB_AVAIL_SIZE;
80
81 m->cp_hqd_quantum = QUANTUM_EN | QUANTUM_SCALE_1MS |
82 QUANTUM_DURATION(10);
83
84 /*
85 * Pipe Priority
86 * Identifies the pipe relative priority when this queue is connected
87 * to the pipeline. The pipe priority is against the GFX pipe and HP3D.
88 * In KFD we are using a fixed pipe priority set to CS_MEDIUM.
89 * 0 = CS_LOW (typically below GFX)
90 * 1 = CS_MEDIUM (typically between HP3D and GFX
91 * 2 = CS_HIGH (typically above HP3D)
92 */
93 m->cp_hqd_pipe_priority = 1;
94 m->cp_hqd_queue_priority = 15;
95
96 if (q->format == KFD_QUEUE_FORMAT_AQL)
97 m->cp_hqd_iq_rptr = AQL_ENABLE;
98
99 *mqd = m;
100 if (gart_addr)
101 *gart_addr = addr;
102 retval = mm->update_mqd(mm, m, q);
103
104 return retval;
105 }
106
107 static int init_mqd_sdma(struct mqd_manager *mm, void **mqd,
108 struct kfd_mem_obj **mqd_mem_obj, uint64_t *gart_addr,
109 struct queue_properties *q)
110 {
111 int retval;
112 struct cik_sdma_rlc_registers *m;
113
114 retval = kfd_gtt_sa_allocate(mm->dev,
115 sizeof(struct cik_sdma_rlc_registers),
116 mqd_mem_obj);
117
118 if (retval != 0)
119 return -ENOMEM;
120
121 m = (struct cik_sdma_rlc_registers *) (*mqd_mem_obj)->cpu_ptr;
122
123 memset(m, 0, sizeof(struct cik_sdma_rlc_registers));
124
125 *mqd = m;
126 if (gart_addr)
127 *gart_addr = (*mqd_mem_obj)->gpu_addr;
128
129 retval = mm->update_mqd(mm, m, q);
130
131 return retval;
132 }
133
134 static void uninit_mqd(struct mqd_manager *mm, void *mqd,
135 struct kfd_mem_obj *mqd_mem_obj)
136 {
137 kfd_gtt_sa_free(mm->dev, mqd_mem_obj);
138 }
139
140 static void uninit_mqd_sdma(struct mqd_manager *mm, void *mqd,
141 struct kfd_mem_obj *mqd_mem_obj)
142 {
143 kfd_gtt_sa_free(mm->dev, mqd_mem_obj);
144 }
145
146 static int load_mqd(struct mqd_manager *mm, void *mqd, uint32_t pipe_id,
147 uint32_t queue_id, struct queue_properties *p,
148 struct mm_struct *mms)
149 {
150 /* AQL write pointer counts in 64B packets, PM4/CP counts in dwords. */
151 uint32_t wptr_shift = (p->format == KFD_QUEUE_FORMAT_AQL ? 4 : 0);
152 uint32_t wptr_mask = (uint32_t)((p->queue_size / sizeof(uint32_t)) - 1);
153
154 return mm->dev->kfd2kgd->hqd_load(mm->dev->kgd, mqd, pipe_id, queue_id,
155 (uint32_t __user *)p->write_ptr,
156 wptr_shift, wptr_mask, mms);
157 }
158
159 static int load_mqd_sdma(struct mqd_manager *mm, void *mqd,
160 uint32_t pipe_id, uint32_t queue_id,
161 struct queue_properties *p, struct mm_struct *mms)
162 {
163 return mm->dev->kfd2kgd->hqd_sdma_load(mm->dev->kgd, mqd);
164 }
165
166 static int update_mqd(struct mqd_manager *mm, void *mqd,
167 struct queue_properties *q)
168 {
169 struct cik_mqd *m;
170
171 m = get_mqd(mqd);
172 m->cp_hqd_pq_control = DEFAULT_RPTR_BLOCK_SIZE |
173 DEFAULT_MIN_AVAIL_SIZE | PQ_ATC_EN;
174
175 /*
176 * Calculating queue size which is log base 2 of actual queue size -1
177 * dwords and another -1 for ffs
178 */
179 m->cp_hqd_pq_control |= ffs(q->queue_size / sizeof(unsigned int))
180 - 1 - 1;
181 m->cp_hqd_pq_base_lo = lower_32_bits((uint64_t)q->queue_address >> 8);
182 m->cp_hqd_pq_base_hi = upper_32_bits((uint64_t)q->queue_address >> 8);
183 m->cp_hqd_pq_rptr_report_addr_lo = lower_32_bits((uint64_t)q->read_ptr);
184 m->cp_hqd_pq_rptr_report_addr_hi = upper_32_bits((uint64_t)q->read_ptr);
185 m->cp_hqd_pq_doorbell_control = DOORBELL_OFFSET(q->doorbell_off);
186
187 m->cp_hqd_vmid = q->vmid;
188
189 if (q->format == KFD_QUEUE_FORMAT_AQL)
190 m->cp_hqd_pq_control |= NO_UPDATE_RPTR;
191
192 q->is_active = (q->queue_size > 0 &&
193 q->queue_address != 0 &&
194 q->queue_percent > 0);
195
196 return 0;
197 }
198
199 static int update_mqd_sdma(struct mqd_manager *mm, void *mqd,
200 struct queue_properties *q)
201 {
202 struct cik_sdma_rlc_registers *m;
203
204 m = get_sdma_mqd(mqd);
205 m->sdma_rlc_rb_cntl = ffs(q->queue_size / sizeof(unsigned int)) <<
206 SDMA0_RLC0_RB_CNTL__RB_SIZE__SHIFT |
207 q->vmid << SDMA0_RLC0_RB_CNTL__RB_VMID__SHIFT |
208 1 << SDMA0_RLC0_RB_CNTL__RPTR_WRITEBACK_ENABLE__SHIFT |
209 6 << SDMA0_RLC0_RB_CNTL__RPTR_WRITEBACK_TIMER__SHIFT;
210
211 m->sdma_rlc_rb_base = lower_32_bits(q->queue_address >> 8);
212 m->sdma_rlc_rb_base_hi = upper_32_bits(q->queue_address >> 8);
213 m->sdma_rlc_rb_rptr_addr_lo = lower_32_bits((uint64_t)q->read_ptr);
214 m->sdma_rlc_rb_rptr_addr_hi = upper_32_bits((uint64_t)q->read_ptr);
215 m->sdma_rlc_doorbell =
216 q->doorbell_off << SDMA0_RLC0_DOORBELL__OFFSET__SHIFT;
217
218 m->sdma_rlc_virtual_addr = q->sdma_vm_addr;
219
220 m->sdma_engine_id = q->sdma_engine_id;
221 m->sdma_queue_id = q->sdma_queue_id;
222
223 q->is_active = (q->queue_size > 0 &&
224 q->queue_address != 0 &&
225 q->queue_percent > 0);
226
227 return 0;
228 }
229
230 static int destroy_mqd(struct mqd_manager *mm, void *mqd,
231 enum kfd_preempt_type type,
232 unsigned int timeout, uint32_t pipe_id,
233 uint32_t queue_id)
234 {
235 return mm->dev->kfd2kgd->hqd_destroy(mm->dev->kgd, mqd, type, timeout,
236 pipe_id, queue_id);
237 }
238
239 /*
240 * preempt type here is ignored because there is only one way
241 * to preempt sdma queue
242 */
243 static int destroy_mqd_sdma(struct mqd_manager *mm, void *mqd,
244 enum kfd_preempt_type type,
245 unsigned int timeout, uint32_t pipe_id,
246 uint32_t queue_id)
247 {
248 return mm->dev->kfd2kgd->hqd_sdma_destroy(mm->dev->kgd, mqd, timeout);
249 }
250
251 static bool is_occupied(struct mqd_manager *mm, void *mqd,
252 uint64_t queue_address, uint32_t pipe_id,
253 uint32_t queue_id)
254 {
255
256 return mm->dev->kfd2kgd->hqd_is_occupied(mm->dev->kgd, queue_address,
257 pipe_id, queue_id);
258
259 }
260
261 static bool is_occupied_sdma(struct mqd_manager *mm, void *mqd,
262 uint64_t queue_address, uint32_t pipe_id,
263 uint32_t queue_id)
264 {
265 return mm->dev->kfd2kgd->hqd_sdma_is_occupied(mm->dev->kgd, mqd);
266 }
267
268 /*
269 * HIQ MQD Implementation, concrete implementation for HIQ MQD implementation.
270 * The HIQ queue in Kaveri is using the same MQD structure as all the user mode
271 * queues but with different initial values.
272 */
273
274 static int init_mqd_hiq(struct mqd_manager *mm, void **mqd,
275 struct kfd_mem_obj **mqd_mem_obj, uint64_t *gart_addr,
276 struct queue_properties *q)
277 {
278 uint64_t addr;
279 struct cik_mqd *m;
280 int retval;
281
282 retval = kfd_gtt_sa_allocate(mm->dev, sizeof(struct cik_mqd),
283 mqd_mem_obj);
284
285 if (retval != 0)
286 return -ENOMEM;
287
288 m = (struct cik_mqd *) (*mqd_mem_obj)->cpu_ptr;
289 addr = (*mqd_mem_obj)->gpu_addr;
290
291 memset(m, 0, ALIGN(sizeof(struct cik_mqd), 256));
292
293 m->header = 0xC0310800;
294 m->compute_pipelinestat_enable = 1;
295 m->compute_static_thread_mgmt_se0 = 0xFFFFFFFF;
296 m->compute_static_thread_mgmt_se1 = 0xFFFFFFFF;
297 m->compute_static_thread_mgmt_se2 = 0xFFFFFFFF;
298 m->compute_static_thread_mgmt_se3 = 0xFFFFFFFF;
299
300 m->cp_hqd_persistent_state = DEFAULT_CP_HQD_PERSISTENT_STATE |
301 PRELOAD_REQ;
302 m->cp_hqd_quantum = QUANTUM_EN | QUANTUM_SCALE_1MS |
303 QUANTUM_DURATION(10);
304
305 m->cp_mqd_control = MQD_CONTROL_PRIV_STATE_EN;
306 m->cp_mqd_base_addr_lo = lower_32_bits(addr);
307 m->cp_mqd_base_addr_hi = upper_32_bits(addr);
308
309 m->cp_hqd_ib_control = DEFAULT_MIN_IB_AVAIL_SIZE;
310
311 /*
312 * Pipe Priority
313 * Identifies the pipe relative priority when this queue is connected
314 * to the pipeline. The pipe priority is against the GFX pipe and HP3D.
315 * In KFD we are using a fixed pipe priority set to CS_MEDIUM.
316 * 0 = CS_LOW (typically below GFX)
317 * 1 = CS_MEDIUM (typically between HP3D and GFX
318 * 2 = CS_HIGH (typically above HP3D)
319 */
320 m->cp_hqd_pipe_priority = 1;
321 m->cp_hqd_queue_priority = 15;
322
323 *mqd = m;
324 if (gart_addr)
325 *gart_addr = addr;
326 retval = mm->update_mqd(mm, m, q);
327
328 return retval;
329 }
330
331 static int update_mqd_hiq(struct mqd_manager *mm, void *mqd,
332 struct queue_properties *q)
333 {
334 struct cik_mqd *m;
335
336 m = get_mqd(mqd);
337 m->cp_hqd_pq_control = DEFAULT_RPTR_BLOCK_SIZE |
338 DEFAULT_MIN_AVAIL_SIZE |
339 PRIV_STATE |
340 KMD_QUEUE;
341
342 /*
343 * Calculating queue size which is log base 2 of actual queue
344 * size -1 dwords
345 */
346 m->cp_hqd_pq_control |= ffs(q->queue_size / sizeof(unsigned int))
347 - 1 - 1;
348 m->cp_hqd_pq_base_lo = lower_32_bits((uint64_t)q->queue_address >> 8);
349 m->cp_hqd_pq_base_hi = upper_32_bits((uint64_t)q->queue_address >> 8);
350 m->cp_hqd_pq_rptr_report_addr_lo = lower_32_bits((uint64_t)q->read_ptr);
351 m->cp_hqd_pq_rptr_report_addr_hi = upper_32_bits((uint64_t)q->read_ptr);
352 m->cp_hqd_pq_doorbell_control = DOORBELL_OFFSET(q->doorbell_off);
353
354 m->cp_hqd_vmid = q->vmid;
355
356 q->is_active = (q->queue_size > 0 &&
357 q->queue_address != 0 &&
358 q->queue_percent > 0);
359
360 return 0;
361 }
362
363 struct cik_sdma_rlc_registers *get_sdma_mqd(void *mqd)
364 {
365 struct cik_sdma_rlc_registers *m;
366
367 m = (struct cik_sdma_rlc_registers *)mqd;
368
369 return m;
370 }
371
372 struct mqd_manager *mqd_manager_init_cik(enum KFD_MQD_TYPE type,
373 struct kfd_dev *dev)
374 {
375 struct mqd_manager *mqd;
376
377 if (WARN_ON(type >= KFD_MQD_TYPE_MAX))
378 return NULL;
379
380 mqd = kzalloc(sizeof(*mqd), GFP_KERNEL);
381 if (!mqd)
382 return NULL;
383
384 mqd->dev = dev;
385
386 switch (type) {
387 case KFD_MQD_TYPE_CP:
388 case KFD_MQD_TYPE_COMPUTE:
389 mqd->init_mqd = init_mqd;
390 mqd->uninit_mqd = uninit_mqd;
391 mqd->load_mqd = load_mqd;
392 mqd->update_mqd = update_mqd;
393 mqd->destroy_mqd = destroy_mqd;
394 mqd->is_occupied = is_occupied;
395 break;
396 case KFD_MQD_TYPE_HIQ:
397 mqd->init_mqd = init_mqd_hiq;
398 mqd->uninit_mqd = uninit_mqd;
399 mqd->load_mqd = load_mqd;
400 mqd->update_mqd = update_mqd_hiq;
401 mqd->destroy_mqd = destroy_mqd;
402 mqd->is_occupied = is_occupied;
403 break;
404 case KFD_MQD_TYPE_SDMA:
405 mqd->init_mqd = init_mqd_sdma;
406 mqd->uninit_mqd = uninit_mqd_sdma;
407 mqd->load_mqd = load_mqd_sdma;
408 mqd->update_mqd = update_mqd_sdma;
409 mqd->destroy_mqd = destroy_mqd_sdma;
410 mqd->is_occupied = is_occupied_sdma;
411 break;
412 default:
413 kfree(mqd);
414 return NULL;
415 }
416
417 return mqd;
418 }
419