]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/gpu/drm/amd/display/dc/dcn10/dcn10_timing_generator.c
Merge tag 'mmc-v4.15-2' of git://git.kernel.org/pub/scm/linux/kernel/git/ulfh/mmc
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / amd / display / dc / dcn10 / dcn10_timing_generator.c
1 /*
2 * Copyright 2012-15 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 * Authors: AMD
23 *
24 */
25
26 #include "reg_helper.h"
27 #include "dcn10_timing_generator.h"
28 #include "dc.h"
29
30 #define REG(reg)\
31 tgn10->tg_regs->reg
32
33 #define CTX \
34 tgn10->base.ctx
35
36 #undef FN
37 #define FN(reg_name, field_name) \
38 tgn10->tg_shift->field_name, tgn10->tg_mask->field_name
39
40 #define STATIC_SCREEN_EVENT_MASK_RANGETIMING_DOUBLE_BUFFER_UPDATE_EN 0x100
41
42 /**
43 * apply_front_porch_workaround TODO FPGA still need?
44 *
45 * This is a workaround for a bug that has existed since R5xx and has not been
46 * fixed keep Front porch at minimum 2 for Interlaced mode or 1 for progressive.
47 */
48 static void tgn10_apply_front_porch_workaround(
49 struct timing_generator *tg,
50 struct dc_crtc_timing *timing)
51 {
52 if (timing->flags.INTERLACE == 1) {
53 if (timing->v_front_porch < 2)
54 timing->v_front_porch = 2;
55 } else {
56 if (timing->v_front_porch < 1)
57 timing->v_front_porch = 1;
58 }
59 }
60
61 static void tgn10_program_global_sync(
62 struct timing_generator *tg)
63 {
64 struct dcn10_timing_generator *tgn10 = DCN10TG_FROM_TG(tg);
65
66 if (tg->dlg_otg_param.vstartup_start == 0) {
67 BREAK_TO_DEBUGGER();
68 return;
69 }
70
71 REG_SET(OTG_VSTARTUP_PARAM, 0,
72 VSTARTUP_START, tg->dlg_otg_param.vstartup_start);
73
74 REG_SET_2(OTG_VUPDATE_PARAM, 0,
75 VUPDATE_OFFSET, tg->dlg_otg_param.vupdate_offset,
76 VUPDATE_WIDTH, tg->dlg_otg_param.vupdate_width);
77
78 REG_SET(OTG_VREADY_PARAM, 0,
79 VREADY_OFFSET, tg->dlg_otg_param.vready_offset);
80 }
81
82 static void tgn10_disable_stereo(struct timing_generator *tg)
83 {
84 struct dcn10_timing_generator *tgn10 = DCN10TG_FROM_TG(tg);
85
86 REG_SET(OTG_STEREO_CONTROL, 0,
87 OTG_STEREO_EN, 0);
88
89 REG_SET_3(OTG_3D_STRUCTURE_CONTROL, 0,
90 OTG_3D_STRUCTURE_EN, 0,
91 OTG_3D_STRUCTURE_V_UPDATE_MODE, 0,
92 OTG_3D_STRUCTURE_STEREO_SEL_OVR, 0);
93
94 REG_UPDATE(OPPBUF_CONTROL,
95 OPPBUF_ACTIVE_WIDTH, 0);
96 REG_UPDATE(OPPBUF_3D_PARAMETERS_0,
97 OPPBUF_3D_VACT_SPACE1_SIZE, 0);
98 }
99
100 /**
101 * program_timing_generator used by mode timing set
102 * Program CRTC Timing Registers - OTG_H_*, OTG_V_*, Pixel repetition.
103 * Including SYNC. Call BIOS command table to program Timings.
104 */
105 static void tgn10_program_timing(
106 struct timing_generator *tg,
107 const struct dc_crtc_timing *dc_crtc_timing,
108 bool use_vbios)
109 {
110 struct dc_crtc_timing patched_crtc_timing;
111 uint32_t vesa_sync_start;
112 uint32_t asic_blank_end;
113 uint32_t asic_blank_start;
114 uint32_t v_total;
115 uint32_t v_sync_end;
116 uint32_t v_init, v_fp2;
117 uint32_t h_sync_polarity, v_sync_polarity;
118 uint32_t interlace_factor;
119 uint32_t start_point = 0;
120 uint32_t field_num = 0;
121 uint32_t h_div_2;
122 int32_t vertical_line_start;
123
124 struct dcn10_timing_generator *tgn10 = DCN10TG_FROM_TG(tg);
125
126 patched_crtc_timing = *dc_crtc_timing;
127 tgn10_apply_front_porch_workaround(tg, &patched_crtc_timing);
128
129 /* Load horizontal timing */
130
131 /* CRTC_H_TOTAL = vesa.h_total - 1 */
132 REG_SET(OTG_H_TOTAL, 0,
133 OTG_H_TOTAL, patched_crtc_timing.h_total - 1);
134
135 /* h_sync_start = 0, h_sync_end = vesa.h_sync_width */
136 REG_UPDATE_2(OTG_H_SYNC_A,
137 OTG_H_SYNC_A_START, 0,
138 OTG_H_SYNC_A_END, patched_crtc_timing.h_sync_width);
139
140 /* asic_h_blank_end = HsyncWidth + HbackPorch =
141 * vesa. usHorizontalTotal - vesa. usHorizontalSyncStart -
142 * vesa.h_left_border
143 */
144 vesa_sync_start = patched_crtc_timing.h_addressable +
145 patched_crtc_timing.h_border_right +
146 patched_crtc_timing.h_front_porch;
147
148 asic_blank_end = patched_crtc_timing.h_total -
149 vesa_sync_start -
150 patched_crtc_timing.h_border_left;
151
152 /* h_blank_start = v_blank_end + v_active */
153 asic_blank_start = asic_blank_end +
154 patched_crtc_timing.h_border_left +
155 patched_crtc_timing.h_addressable +
156 patched_crtc_timing.h_border_right;
157
158 REG_UPDATE_2(OTG_H_BLANK_START_END,
159 OTG_H_BLANK_START, asic_blank_start,
160 OTG_H_BLANK_END, asic_blank_end);
161
162 /* h_sync polarity */
163 h_sync_polarity = patched_crtc_timing.flags.HSYNC_POSITIVE_POLARITY ?
164 0 : 1;
165
166 REG_UPDATE(OTG_H_SYNC_A_CNTL,
167 OTG_H_SYNC_A_POL, h_sync_polarity);
168
169 /* Load vertical timing */
170
171 /* CRTC_V_TOTAL = v_total - 1 */
172 if (patched_crtc_timing.flags.INTERLACE) {
173 interlace_factor = 2;
174 v_total = 2 * patched_crtc_timing.v_total;
175 } else {
176 interlace_factor = 1;
177 v_total = patched_crtc_timing.v_total - 1;
178 }
179 REG_SET(OTG_V_TOTAL, 0,
180 OTG_V_TOTAL, v_total);
181
182 /* In case of V_TOTAL_CONTROL is on, make sure OTG_V_TOTAL_MAX and
183 * OTG_V_TOTAL_MIN are equal to V_TOTAL.
184 */
185 REG_SET(OTG_V_TOTAL_MAX, 0,
186 OTG_V_TOTAL_MAX, v_total);
187 REG_SET(OTG_V_TOTAL_MIN, 0,
188 OTG_V_TOTAL_MIN, v_total);
189
190 /* v_sync_start = 0, v_sync_end = v_sync_width */
191 v_sync_end = patched_crtc_timing.v_sync_width * interlace_factor;
192
193 REG_UPDATE_2(OTG_V_SYNC_A,
194 OTG_V_SYNC_A_START, 0,
195 OTG_V_SYNC_A_END, v_sync_end);
196
197 vesa_sync_start = patched_crtc_timing.v_addressable +
198 patched_crtc_timing.v_border_bottom +
199 patched_crtc_timing.v_front_porch;
200
201 asic_blank_end = (patched_crtc_timing.v_total -
202 vesa_sync_start -
203 patched_crtc_timing.v_border_top)
204 * interlace_factor;
205
206 /* v_blank_start = v_blank_end + v_active */
207 asic_blank_start = asic_blank_end +
208 (patched_crtc_timing.v_border_top +
209 patched_crtc_timing.v_addressable +
210 patched_crtc_timing.v_border_bottom)
211 * interlace_factor;
212
213 REG_UPDATE_2(OTG_V_BLANK_START_END,
214 OTG_V_BLANK_START, asic_blank_start,
215 OTG_V_BLANK_END, asic_blank_end);
216
217 /* Use OTG_VERTICAL_INTERRUPT2 replace VUPDATE interrupt,
218 * program the reg for interrupt postition.
219 */
220 vertical_line_start = asic_blank_end - tg->dlg_otg_param.vstartup_start + 1;
221 if (vertical_line_start < 0) {
222 ASSERT(0);
223 vertical_line_start = 0;
224 }
225 REG_SET(OTG_VERTICAL_INTERRUPT2_POSITION, 0,
226 OTG_VERTICAL_INTERRUPT2_LINE_START, vertical_line_start);
227
228 /* v_sync polarity */
229 v_sync_polarity = patched_crtc_timing.flags.VSYNC_POSITIVE_POLARITY ?
230 0 : 1;
231
232 REG_UPDATE(OTG_V_SYNC_A_CNTL,
233 OTG_V_SYNC_A_POL, v_sync_polarity);
234
235 v_init = asic_blank_start;
236 if (tg->dlg_otg_param.signal == SIGNAL_TYPE_DISPLAY_PORT ||
237 tg->dlg_otg_param.signal == SIGNAL_TYPE_DISPLAY_PORT_MST ||
238 tg->dlg_otg_param.signal == SIGNAL_TYPE_EDP) {
239 start_point = 1;
240 if (patched_crtc_timing.flags.INTERLACE == 1)
241 field_num = 1;
242 }
243 v_fp2 = 0;
244 if (tg->dlg_otg_param.vstartup_start > asic_blank_end)
245 v_fp2 = tg->dlg_otg_param.vstartup_start > asic_blank_end;
246
247 /* Interlace */
248 if (patched_crtc_timing.flags.INTERLACE == 1) {
249 REG_UPDATE(OTG_INTERLACE_CONTROL,
250 OTG_INTERLACE_ENABLE, 1);
251 v_init = v_init / 2;
252 if ((tg->dlg_otg_param.vstartup_start/2)*2 > asic_blank_end)
253 v_fp2 = v_fp2 / 2;
254 }
255 else
256 REG_UPDATE(OTG_INTERLACE_CONTROL,
257 OTG_INTERLACE_ENABLE, 0);
258
259
260 /* VTG enable set to 0 first VInit */
261 REG_UPDATE(CONTROL,
262 VTG0_ENABLE, 0);
263
264 REG_UPDATE_2(CONTROL,
265 VTG0_FP2, v_fp2,
266 VTG0_VCOUNT_INIT, v_init);
267
268 /* original code is using VTG offset to address OTG reg, seems wrong */
269 REG_UPDATE_2(OTG_CONTROL,
270 OTG_START_POINT_CNTL, start_point,
271 OTG_FIELD_NUMBER_CNTL, field_num);
272
273 tgn10_program_global_sync(tg);
274
275 /* TODO
276 * patched_crtc_timing.flags.HORZ_COUNT_BY_TWO == 1
277 * program_horz_count_by_2
278 * for DVI 30bpp mode, 0 otherwise
279 * program_horz_count_by_2(tg, &patched_crtc_timing);
280 */
281
282 /* Enable stereo - only when we need to pack 3D frame. Other types
283 * of stereo handled in explicit call
284 */
285 h_div_2 = (dc_crtc_timing->pixel_encoding == PIXEL_ENCODING_YCBCR420) ?
286 1 : 0;
287
288 REG_UPDATE(OTG_H_TIMING_CNTL,
289 OTG_H_TIMING_DIV_BY2, h_div_2);
290
291 }
292
293 /**
294 * unblank_crtc
295 * Call ASIC Control Object to UnBlank CRTC.
296 */
297 static void tgn10_unblank_crtc(struct timing_generator *tg)
298 {
299 struct dcn10_timing_generator *tgn10 = DCN10TG_FROM_TG(tg);
300 uint32_t vertical_interrupt_enable = 0;
301
302 REG_GET(OTG_VERTICAL_INTERRUPT2_CONTROL,
303 OTG_VERTICAL_INTERRUPT2_INT_ENABLE, &vertical_interrupt_enable);
304
305 /* temporary work around for vertical interrupt, once vertical interrupt enabled,
306 * this check will be removed.
307 */
308 if (vertical_interrupt_enable)
309 REG_UPDATE(OTG_DOUBLE_BUFFER_CONTROL,
310 OTG_BLANK_DATA_DOUBLE_BUFFER_EN, 1);
311
312 REG_UPDATE_2(OTG_BLANK_CONTROL,
313 OTG_BLANK_DATA_EN, 0,
314 OTG_BLANK_DE_MODE, 0);
315 }
316
317 /**
318 * blank_crtc
319 * Call ASIC Control Object to Blank CRTC.
320 */
321
322 static void tgn10_blank_crtc(struct timing_generator *tg)
323 {
324 struct dcn10_timing_generator *tgn10 = DCN10TG_FROM_TG(tg);
325
326 REG_UPDATE_2(OTG_BLANK_CONTROL,
327 OTG_BLANK_DATA_EN, 1,
328 OTG_BLANK_DE_MODE, 0);
329
330 /* todo: why are we waiting for BLANK_DATA_EN? shouldn't we be waiting
331 * for status?
332 */
333 REG_WAIT(OTG_BLANK_CONTROL,
334 OTG_BLANK_DATA_EN, 1,
335 1, 100000);
336
337 REG_UPDATE(OTG_DOUBLE_BUFFER_CONTROL,
338 OTG_BLANK_DATA_DOUBLE_BUFFER_EN, 0);
339 }
340
341 static void tgn10_set_blank(struct timing_generator *tg,
342 bool enable_blanking)
343 {
344 if (enable_blanking)
345 tgn10_blank_crtc(tg);
346 else
347 tgn10_unblank_crtc(tg);
348 }
349
350 static bool tgn10_is_blanked(struct timing_generator *tg)
351 {
352 struct dcn10_timing_generator *tgn10 = DCN10TG_FROM_TG(tg);
353 uint32_t blank_en;
354 uint32_t blank_state;
355
356 REG_GET_2(OTG_BLANK_CONTROL,
357 OTG_BLANK_DATA_EN, &blank_en,
358 OTG_CURRENT_BLANK_STATE, &blank_state);
359
360 return blank_en && blank_state;
361 }
362
363 static void tgn10_enable_optc_clock(struct timing_generator *tg, bool enable)
364 {
365 struct dcn10_timing_generator *tgn10 = DCN10TG_FROM_TG(tg);
366
367 if (enable) {
368 REG_UPDATE_2(OPTC_INPUT_CLOCK_CONTROL,
369 OPTC_INPUT_CLK_EN, 1,
370 OPTC_INPUT_CLK_GATE_DIS, 1);
371
372 REG_WAIT(OPTC_INPUT_CLOCK_CONTROL,
373 OPTC_INPUT_CLK_ON, 1,
374 1, 1000);
375
376 /* Enable clock */
377 REG_UPDATE_2(OTG_CLOCK_CONTROL,
378 OTG_CLOCK_EN, 1,
379 OTG_CLOCK_GATE_DIS, 1);
380 REG_WAIT(OTG_CLOCK_CONTROL,
381 OTG_CLOCK_ON, 1,
382 1, 1000);
383 } else {
384 REG_UPDATE_2(OTG_CLOCK_CONTROL,
385 OTG_CLOCK_GATE_DIS, 0,
386 OTG_CLOCK_EN, 0);
387
388 if (tg->ctx->dce_environment != DCE_ENV_FPGA_MAXIMUS)
389 REG_WAIT(OTG_CLOCK_CONTROL,
390 OTG_CLOCK_ON, 0,
391 1, 1000);
392
393 REG_UPDATE_2(OPTC_INPUT_CLOCK_CONTROL,
394 OPTC_INPUT_CLK_GATE_DIS, 0,
395 OPTC_INPUT_CLK_EN, 0);
396
397 if (tg->ctx->dce_environment != DCE_ENV_FPGA_MAXIMUS)
398 REG_WAIT(OPTC_INPUT_CLOCK_CONTROL,
399 OPTC_INPUT_CLK_ON, 0,
400 1, 1000);
401 }
402 }
403
404 /**
405 * Enable CRTC
406 * Enable CRTC - call ASIC Control Object to enable Timing generator.
407 */
408 static bool tgn10_enable_crtc(struct timing_generator *tg)
409 {
410 /* TODO FPGA wait for answer
411 * OTG_MASTER_UPDATE_MODE != CRTC_MASTER_UPDATE_MODE
412 * OTG_MASTER_UPDATE_LOCK != CRTC_MASTER_UPDATE_LOCK
413 */
414 struct dcn10_timing_generator *tgn10 = DCN10TG_FROM_TG(tg);
415
416 /* opp instance for OTG. For DCN1.0, ODM is remoed.
417 * OPP and OPTC should 1:1 mapping
418 */
419 REG_UPDATE(OPTC_DATA_SOURCE_SELECT,
420 OPTC_SRC_SEL, tg->inst);
421
422 /* VTG enable first is for HW workaround */
423 REG_UPDATE(CONTROL,
424 VTG0_ENABLE, 1);
425
426 /* Enable CRTC */
427 REG_UPDATE_2(OTG_CONTROL,
428 OTG_DISABLE_POINT_CNTL, 3,
429 OTG_MASTER_EN, 1);
430
431 return true;
432 }
433
434 /* disable_crtc - call ASIC Control Object to disable Timing generator. */
435 static bool tgn10_disable_crtc(struct timing_generator *tg)
436 {
437 struct dcn10_timing_generator *tgn10 = DCN10TG_FROM_TG(tg);
438
439 /* disable otg request until end of the first line
440 * in the vertical blank region
441 */
442 REG_UPDATE_2(OTG_CONTROL,
443 OTG_DISABLE_POINT_CNTL, 3,
444 OTG_MASTER_EN, 0);
445
446 REG_UPDATE(CONTROL,
447 VTG0_ENABLE, 0);
448
449 /* CRTC disabled, so disable clock. */
450 REG_WAIT(OTG_CLOCK_CONTROL,
451 OTG_BUSY, 0,
452 1, 100000);
453
454 return true;
455 }
456
457
458 static void tgn10_program_blank_color(
459 struct timing_generator *tg,
460 const struct tg_color *black_color)
461 {
462 struct dcn10_timing_generator *tgn10 = DCN10TG_FROM_TG(tg);
463
464 REG_SET_3(OTG_BLACK_COLOR, 0,
465 OTG_BLACK_COLOR_B_CB, black_color->color_b_cb,
466 OTG_BLACK_COLOR_G_Y, black_color->color_g_y,
467 OTG_BLACK_COLOR_R_CR, black_color->color_r_cr);
468 }
469
470 static bool tgn10_validate_timing(
471 struct timing_generator *tg,
472 const struct dc_crtc_timing *timing)
473 {
474 uint32_t interlace_factor;
475 uint32_t v_blank;
476 uint32_t h_blank;
477 uint32_t min_v_blank;
478 struct dcn10_timing_generator *tgn10 = DCN10TG_FROM_TG(tg);
479
480 ASSERT(timing != NULL);
481
482 interlace_factor = timing->flags.INTERLACE ? 2 : 1;
483 v_blank = (timing->v_total - timing->v_addressable -
484 timing->v_border_top - timing->v_border_bottom) *
485 interlace_factor;
486
487 h_blank = (timing->h_total - timing->h_addressable -
488 timing->h_border_right -
489 timing->h_border_left);
490
491 if (timing->timing_3d_format != TIMING_3D_FORMAT_NONE &&
492 timing->timing_3d_format != TIMING_3D_FORMAT_HW_FRAME_PACKING &&
493 timing->timing_3d_format != TIMING_3D_FORMAT_TOP_AND_BOTTOM &&
494 timing->timing_3d_format != TIMING_3D_FORMAT_SIDE_BY_SIDE &&
495 timing->timing_3d_format != TIMING_3D_FORMAT_FRAME_ALTERNATE &&
496 timing->timing_3d_format != TIMING_3D_FORMAT_INBAND_FA)
497 return false;
498
499 /* Temporarily blocking interlacing mode until it's supported */
500 if (timing->flags.INTERLACE == 1)
501 return false;
502
503 /* Check maximum number of pixels supported by Timing Generator
504 * (Currently will never fail, in order to fail needs display which
505 * needs more than 8192 horizontal and
506 * more than 8192 vertical total pixels)
507 */
508 if (timing->h_total > tgn10->max_h_total ||
509 timing->v_total > tgn10->max_v_total)
510 return false;
511
512
513 if (h_blank < tgn10->min_h_blank)
514 return false;
515
516 if (timing->h_sync_width < tgn10->min_h_sync_width ||
517 timing->v_sync_width < tgn10->min_v_sync_width)
518 return false;
519
520 min_v_blank = timing->flags.INTERLACE?tgn10->min_v_blank_interlace:tgn10->min_v_blank;
521
522 if (v_blank < min_v_blank)
523 return false;
524
525 return true;
526
527 }
528
529 /*
530 * get_vblank_counter
531 *
532 * @brief
533 * Get counter for vertical blanks. use register CRTC_STATUS_FRAME_COUNT which
534 * holds the counter of frames.
535 *
536 * @param
537 * struct timing_generator *tg - [in] timing generator which controls the
538 * desired CRTC
539 *
540 * @return
541 * Counter of frames, which should equal to number of vblanks.
542 */
543 static uint32_t tgn10_get_vblank_counter(struct timing_generator *tg)
544 {
545 struct dcn10_timing_generator *tgn10 = DCN10TG_FROM_TG(tg);
546 uint32_t frame_count;
547
548 REG_GET(OTG_STATUS_FRAME_COUNT,
549 OTG_FRAME_COUNT, &frame_count);
550
551 return frame_count;
552 }
553
554 static void tgn10_lock(struct timing_generator *tg)
555 {
556 struct dcn10_timing_generator *tgn10 = DCN10TG_FROM_TG(tg);
557
558 REG_SET(OTG_GLOBAL_CONTROL0, 0,
559 OTG_MASTER_UPDATE_LOCK_SEL, tg->inst);
560 REG_SET(OTG_MASTER_UPDATE_LOCK, 0,
561 OTG_MASTER_UPDATE_LOCK, 1);
562
563 if (tg->ctx->dce_environment != DCE_ENV_FPGA_MAXIMUS)
564 REG_WAIT(OTG_MASTER_UPDATE_LOCK,
565 UPDATE_LOCK_STATUS, 1,
566 1, 100);
567 }
568
569 static void tgn10_unlock(struct timing_generator *tg)
570 {
571 struct dcn10_timing_generator *tgn10 = DCN10TG_FROM_TG(tg);
572
573 REG_SET(OTG_MASTER_UPDATE_LOCK, 0,
574 OTG_MASTER_UPDATE_LOCK, 0);
575
576 /* why are we waiting here? */
577 REG_WAIT(OTG_DOUBLE_BUFFER_CONTROL,
578 OTG_UPDATE_PENDING, 0,
579 1, 100000);
580 }
581
582 static void tgn10_get_position(struct timing_generator *tg,
583 struct crtc_position *position)
584 {
585 struct dcn10_timing_generator *tgn10 = DCN10TG_FROM_TG(tg);
586
587 REG_GET_2(OTG_STATUS_POSITION,
588 OTG_HORZ_COUNT, &position->horizontal_count,
589 OTG_VERT_COUNT, &position->vertical_count);
590
591 REG_GET(OTG_NOM_VERT_POSITION,
592 OTG_VERT_COUNT_NOM, &position->nominal_vcount);
593 }
594
595 static bool tgn10_is_counter_moving(struct timing_generator *tg)
596 {
597 struct crtc_position position1, position2;
598
599 tg->funcs->get_position(tg, &position1);
600 tg->funcs->get_position(tg, &position2);
601
602 if (position1.horizontal_count == position2.horizontal_count &&
603 position1.vertical_count == position2.vertical_count)
604 return false;
605 else
606 return true;
607 }
608
609 static bool tgn10_did_triggered_reset_occur(
610 struct timing_generator *tg)
611 {
612 struct dcn10_timing_generator *tgn10 = DCN10TG_FROM_TG(tg);
613 uint32_t occurred;
614
615 REG_GET(OTG_FORCE_COUNT_NOW_CNTL,
616 OTG_FORCE_COUNT_NOW_OCCURRED, &occurred);
617
618 return occurred != 0;
619 }
620
621 static void tgn10_enable_reset_trigger(struct timing_generator *tg, int source_tg_inst)
622 {
623 struct dcn10_timing_generator *tgn10 = DCN10TG_FROM_TG(tg);
624 uint32_t falling_edge;
625
626 REG_GET(OTG_V_SYNC_A_CNTL,
627 OTG_V_SYNC_A_POL, &falling_edge);
628
629 if (falling_edge)
630 REG_SET_3(OTG_TRIGA_CNTL, 0,
631 /* vsync signal from selected OTG pipe based
632 * on OTG_TRIG_SOURCE_PIPE_SELECT setting
633 */
634 OTG_TRIGA_SOURCE_SELECT, 20,
635 OTG_TRIGA_SOURCE_PIPE_SELECT, source_tg_inst,
636 /* always detect falling edge */
637 OTG_TRIGA_FALLING_EDGE_DETECT_CNTL, 1);
638 else
639 REG_SET_3(OTG_TRIGA_CNTL, 0,
640 /* vsync signal from selected OTG pipe based
641 * on OTG_TRIG_SOURCE_PIPE_SELECT setting
642 */
643 OTG_TRIGA_SOURCE_SELECT, 20,
644 OTG_TRIGA_SOURCE_PIPE_SELECT, source_tg_inst,
645 /* always detect rising edge */
646 OTG_TRIGA_RISING_EDGE_DETECT_CNTL, 1);
647
648 REG_SET(OTG_FORCE_COUNT_NOW_CNTL, 0,
649 /* force H count to H_TOTAL and V count to V_TOTAL in
650 * progressive mode and V_TOTAL-1 in interlaced mode
651 */
652 OTG_FORCE_COUNT_NOW_MODE, 2);
653 }
654
655 static void tgn10_disable_reset_trigger(struct timing_generator *tg)
656 {
657 struct dcn10_timing_generator *tgn10 = DCN10TG_FROM_TG(tg);
658
659 REG_WRITE(OTG_TRIGA_CNTL, 0);
660
661 REG_SET(OTG_FORCE_COUNT_NOW_CNTL, 0,
662 OTG_FORCE_COUNT_NOW_CLEAR, 1);
663 }
664
665 static void tgn10_wait_for_state(struct timing_generator *tg,
666 enum crtc_state state)
667 {
668 struct dcn10_timing_generator *tgn10 = DCN10TG_FROM_TG(tg);
669
670 switch (state) {
671 case CRTC_STATE_VBLANK:
672 REG_WAIT(OTG_STATUS,
673 OTG_V_BLANK, 1,
674 1, 100000); /* 1 vupdate at 10hz */
675 break;
676
677 case CRTC_STATE_VACTIVE:
678 REG_WAIT(OTG_STATUS,
679 OTG_V_ACTIVE_DISP, 1,
680 1, 100000); /* 1 vupdate at 10hz */
681 break;
682
683 default:
684 break;
685 }
686 }
687
688 static void tgn10_set_early_control(
689 struct timing_generator *tg,
690 uint32_t early_cntl)
691 {
692 /* asic design change, do not need this control
693 * empty for share caller logic
694 */
695 }
696
697
698 static void tgn10_set_static_screen_control(
699 struct timing_generator *tg,
700 uint32_t value)
701 {
702 struct dcn10_timing_generator *tgn10 = DCN10TG_FROM_TG(tg);
703
704 /* Bit 8 is no longer applicable in RV for PSR case,
705 * set bit 8 to 0 if given
706 */
707 if ((value & STATIC_SCREEN_EVENT_MASK_RANGETIMING_DOUBLE_BUFFER_UPDATE_EN)
708 != 0)
709 value = value &
710 ~STATIC_SCREEN_EVENT_MASK_RANGETIMING_DOUBLE_BUFFER_UPDATE_EN;
711
712 REG_SET_2(OTG_STATIC_SCREEN_CONTROL, 0,
713 OTG_STATIC_SCREEN_EVENT_MASK, value,
714 OTG_STATIC_SCREEN_FRAME_COUNT, 2);
715 }
716
717
718 /**
719 *****************************************************************************
720 * Function: set_drr
721 *
722 * @brief
723 * Program dynamic refresh rate registers m_OTGx_OTG_V_TOTAL_*.
724 *
725 *****************************************************************************
726 */
727 static void tgn10_set_drr(
728 struct timing_generator *tg,
729 const struct drr_params *params)
730 {
731 struct dcn10_timing_generator *tgn10 = DCN10TG_FROM_TG(tg);
732
733 if (params != NULL &&
734 params->vertical_total_max > 0 &&
735 params->vertical_total_min > 0) {
736
737 REG_SET(OTG_V_TOTAL_MAX, 0,
738 OTG_V_TOTAL_MAX, params->vertical_total_max - 1);
739
740 REG_SET(OTG_V_TOTAL_MIN, 0,
741 OTG_V_TOTAL_MIN, params->vertical_total_min - 1);
742
743 REG_UPDATE_5(OTG_V_TOTAL_CONTROL,
744 OTG_V_TOTAL_MIN_SEL, 1,
745 OTG_V_TOTAL_MAX_SEL, 1,
746 OTG_FORCE_LOCK_ON_EVENT, 0,
747 OTG_SET_V_TOTAL_MIN_MASK_EN, 0,
748 OTG_SET_V_TOTAL_MIN_MASK, 0);
749 } else {
750 REG_SET(OTG_V_TOTAL_MIN, 0,
751 OTG_V_TOTAL_MIN, 0);
752
753 REG_SET(OTG_V_TOTAL_MAX, 0,
754 OTG_V_TOTAL_MAX, 0);
755
756 REG_UPDATE_4(OTG_V_TOTAL_CONTROL,
757 OTG_SET_V_TOTAL_MIN_MASK, 0,
758 OTG_V_TOTAL_MIN_SEL, 0,
759 OTG_V_TOTAL_MAX_SEL, 0,
760 OTG_FORCE_LOCK_ON_EVENT, 0);
761 }
762 }
763
764 static void tgn10_set_test_pattern(
765 struct timing_generator *tg,
766 /* TODO: replace 'controller_dp_test_pattern' by 'test_pattern_mode'
767 * because this is not DP-specific (which is probably somewhere in DP
768 * encoder) */
769 enum controller_dp_test_pattern test_pattern,
770 enum dc_color_depth color_depth)
771 {
772 struct dcn10_timing_generator *tgn10 = DCN10TG_FROM_TG(tg);
773 enum test_pattern_color_format bit_depth;
774 enum test_pattern_dyn_range dyn_range;
775 enum test_pattern_mode mode;
776 uint32_t pattern_mask;
777 uint32_t pattern_data;
778 /* color ramp generator mixes 16-bits color */
779 uint32_t src_bpc = 16;
780 /* requested bpc */
781 uint32_t dst_bpc;
782 uint32_t index;
783 /* RGB values of the color bars.
784 * Produce two RGB colors: RGB0 - white (all Fs)
785 * and RGB1 - black (all 0s)
786 * (three RGB components for two colors)
787 */
788 uint16_t src_color[6] = {0xFFFF, 0xFFFF, 0xFFFF, 0x0000,
789 0x0000, 0x0000};
790 /* dest color (converted to the specified color format) */
791 uint16_t dst_color[6];
792 uint32_t inc_base;
793
794 /* translate to bit depth */
795 switch (color_depth) {
796 case COLOR_DEPTH_666:
797 bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_6;
798 break;
799 case COLOR_DEPTH_888:
800 bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_8;
801 break;
802 case COLOR_DEPTH_101010:
803 bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_10;
804 break;
805 case COLOR_DEPTH_121212:
806 bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_12;
807 break;
808 default:
809 bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_8;
810 break;
811 }
812
813 switch (test_pattern) {
814 case CONTROLLER_DP_TEST_PATTERN_COLORSQUARES:
815 case CONTROLLER_DP_TEST_PATTERN_COLORSQUARES_CEA:
816 {
817 dyn_range = (test_pattern ==
818 CONTROLLER_DP_TEST_PATTERN_COLORSQUARES_CEA ?
819 TEST_PATTERN_DYN_RANGE_CEA :
820 TEST_PATTERN_DYN_RANGE_VESA);
821 mode = TEST_PATTERN_MODE_COLORSQUARES_RGB;
822
823 REG_UPDATE_2(OTG_TEST_PATTERN_PARAMETERS,
824 OTG_TEST_PATTERN_VRES, 6,
825 OTG_TEST_PATTERN_HRES, 6);
826
827 REG_UPDATE_4(OTG_TEST_PATTERN_CONTROL,
828 OTG_TEST_PATTERN_EN, 1,
829 OTG_TEST_PATTERN_MODE, mode,
830 OTG_TEST_PATTERN_DYNAMIC_RANGE, dyn_range,
831 OTG_TEST_PATTERN_COLOR_FORMAT, bit_depth);
832 }
833 break;
834
835 case CONTROLLER_DP_TEST_PATTERN_VERTICALBARS:
836 case CONTROLLER_DP_TEST_PATTERN_HORIZONTALBARS:
837 {
838 mode = (test_pattern ==
839 CONTROLLER_DP_TEST_PATTERN_VERTICALBARS ?
840 TEST_PATTERN_MODE_VERTICALBARS :
841 TEST_PATTERN_MODE_HORIZONTALBARS);
842
843 switch (bit_depth) {
844 case TEST_PATTERN_COLOR_FORMAT_BPC_6:
845 dst_bpc = 6;
846 break;
847 case TEST_PATTERN_COLOR_FORMAT_BPC_8:
848 dst_bpc = 8;
849 break;
850 case TEST_PATTERN_COLOR_FORMAT_BPC_10:
851 dst_bpc = 10;
852 break;
853 default:
854 dst_bpc = 8;
855 break;
856 }
857
858 /* adjust color to the required colorFormat */
859 for (index = 0; index < 6; index++) {
860 /* dst = 2^dstBpc * src / 2^srcBpc = src >>
861 * (srcBpc - dstBpc);
862 */
863 dst_color[index] =
864 src_color[index] >> (src_bpc - dst_bpc);
865 /* CRTC_TEST_PATTERN_DATA has 16 bits,
866 * lowest 6 are hardwired to ZERO
867 * color bits should be left aligned aligned to MSB
868 * XXXXXXXXXX000000 for 10 bit,
869 * XXXXXXXX00000000 for 8 bit and XXXXXX0000000000 for 6
870 */
871 dst_color[index] <<= (16 - dst_bpc);
872 }
873
874 REG_WRITE(OTG_TEST_PATTERN_PARAMETERS, 0);
875
876 /* We have to write the mask before data, similar to pipeline.
877 * For example, for 8 bpc, if we want RGB0 to be magenta,
878 * and RGB1 to be cyan,
879 * we need to make 7 writes:
880 * MASK DATA
881 * 000001 00000000 00000000 set mask to R0
882 * 000010 11111111 00000000 R0 255, 0xFF00, set mask to G0
883 * 000100 00000000 00000000 G0 0, 0x0000, set mask to B0
884 * 001000 11111111 00000000 B0 255, 0xFF00, set mask to R1
885 * 010000 00000000 00000000 R1 0, 0x0000, set mask to G1
886 * 100000 11111111 00000000 G1 255, 0xFF00, set mask to B1
887 * 100000 11111111 00000000 B1 255, 0xFF00
888 *
889 * we will make a loop of 6 in which we prepare the mask,
890 * then write, then prepare the color for next write.
891 * first iteration will write mask only,
892 * but each next iteration color prepared in
893 * previous iteration will be written within new mask,
894 * the last component will written separately,
895 * mask is not changing between 6th and 7th write
896 * and color will be prepared by last iteration
897 */
898
899 /* write color, color values mask in CRTC_TEST_PATTERN_MASK
900 * is B1, G1, R1, B0, G0, R0
901 */
902 pattern_data = 0;
903 for (index = 0; index < 6; index++) {
904 /* prepare color mask, first write PATTERN_DATA
905 * will have all zeros
906 */
907 pattern_mask = (1 << index);
908
909 /* write color component */
910 REG_SET_2(OTG_TEST_PATTERN_COLOR, 0,
911 OTG_TEST_PATTERN_MASK, pattern_mask,
912 OTG_TEST_PATTERN_DATA, pattern_data);
913
914 /* prepare next color component,
915 * will be written in the next iteration
916 */
917 pattern_data = dst_color[index];
918 }
919 /* write last color component,
920 * it's been already prepared in the loop
921 */
922 REG_SET_2(OTG_TEST_PATTERN_COLOR, 0,
923 OTG_TEST_PATTERN_MASK, pattern_mask,
924 OTG_TEST_PATTERN_DATA, pattern_data);
925
926 /* enable test pattern */
927 REG_UPDATE_4(OTG_TEST_PATTERN_CONTROL,
928 OTG_TEST_PATTERN_EN, 1,
929 OTG_TEST_PATTERN_MODE, mode,
930 OTG_TEST_PATTERN_DYNAMIC_RANGE, 0,
931 OTG_TEST_PATTERN_COLOR_FORMAT, bit_depth);
932 }
933 break;
934
935 case CONTROLLER_DP_TEST_PATTERN_COLORRAMP:
936 {
937 mode = (bit_depth ==
938 TEST_PATTERN_COLOR_FORMAT_BPC_10 ?
939 TEST_PATTERN_MODE_DUALRAMP_RGB :
940 TEST_PATTERN_MODE_SINGLERAMP_RGB);
941
942 switch (bit_depth) {
943 case TEST_PATTERN_COLOR_FORMAT_BPC_6:
944 dst_bpc = 6;
945 break;
946 case TEST_PATTERN_COLOR_FORMAT_BPC_8:
947 dst_bpc = 8;
948 break;
949 case TEST_PATTERN_COLOR_FORMAT_BPC_10:
950 dst_bpc = 10;
951 break;
952 default:
953 dst_bpc = 8;
954 break;
955 }
956
957 /* increment for the first ramp for one color gradation
958 * 1 gradation for 6-bit color is 2^10
959 * gradations in 16-bit color
960 */
961 inc_base = (src_bpc - dst_bpc);
962
963 switch (bit_depth) {
964 case TEST_PATTERN_COLOR_FORMAT_BPC_6:
965 {
966 REG_UPDATE_5(OTG_TEST_PATTERN_PARAMETERS,
967 OTG_TEST_PATTERN_INC0, inc_base,
968 OTG_TEST_PATTERN_INC1, 0,
969 OTG_TEST_PATTERN_HRES, 6,
970 OTG_TEST_PATTERN_VRES, 6,
971 OTG_TEST_PATTERN_RAMP0_OFFSET, 0);
972 }
973 break;
974 case TEST_PATTERN_COLOR_FORMAT_BPC_8:
975 {
976 REG_UPDATE_5(OTG_TEST_PATTERN_PARAMETERS,
977 OTG_TEST_PATTERN_INC0, inc_base,
978 OTG_TEST_PATTERN_INC1, 0,
979 OTG_TEST_PATTERN_HRES, 8,
980 OTG_TEST_PATTERN_VRES, 6,
981 OTG_TEST_PATTERN_RAMP0_OFFSET, 0);
982 }
983 break;
984 case TEST_PATTERN_COLOR_FORMAT_BPC_10:
985 {
986 REG_UPDATE_5(OTG_TEST_PATTERN_PARAMETERS,
987 OTG_TEST_PATTERN_INC0, inc_base,
988 OTG_TEST_PATTERN_INC1, inc_base + 2,
989 OTG_TEST_PATTERN_HRES, 8,
990 OTG_TEST_PATTERN_VRES, 5,
991 OTG_TEST_PATTERN_RAMP0_OFFSET, 384 << 6);
992 }
993 break;
994 default:
995 break;
996 }
997
998 REG_WRITE(OTG_TEST_PATTERN_COLOR, 0);
999
1000 /* enable test pattern */
1001 REG_WRITE(OTG_TEST_PATTERN_CONTROL, 0);
1002
1003 REG_SET_4(OTG_TEST_PATTERN_CONTROL, 0,
1004 OTG_TEST_PATTERN_EN, 1,
1005 OTG_TEST_PATTERN_MODE, mode,
1006 OTG_TEST_PATTERN_DYNAMIC_RANGE, 0,
1007 OTG_TEST_PATTERN_COLOR_FORMAT, bit_depth);
1008 }
1009 break;
1010 case CONTROLLER_DP_TEST_PATTERN_VIDEOMODE:
1011 {
1012 REG_WRITE(OTG_TEST_PATTERN_CONTROL, 0);
1013 REG_WRITE(OTG_TEST_PATTERN_COLOR, 0);
1014 REG_WRITE(OTG_TEST_PATTERN_PARAMETERS, 0);
1015 }
1016 break;
1017 default:
1018 break;
1019
1020 }
1021 }
1022
1023 static void tgn10_get_crtc_scanoutpos(
1024 struct timing_generator *tg,
1025 uint32_t *v_blank_start,
1026 uint32_t *v_blank_end,
1027 uint32_t *h_position,
1028 uint32_t *v_position)
1029 {
1030 struct dcn10_timing_generator *tgn10 = DCN10TG_FROM_TG(tg);
1031 struct crtc_position position;
1032
1033 REG_GET_2(OTG_V_BLANK_START_END,
1034 OTG_V_BLANK_START, v_blank_start,
1035 OTG_V_BLANK_END, v_blank_end);
1036
1037 tgn10_get_position(tg, &position);
1038
1039 *h_position = position.horizontal_count;
1040 *v_position = position.vertical_count;
1041 }
1042
1043
1044
1045 static void tgn10_enable_stereo(struct timing_generator *tg,
1046 const struct dc_crtc_timing *timing, struct crtc_stereo_flags *flags)
1047 {
1048 struct dcn10_timing_generator *tgn10 = DCN10TG_FROM_TG(tg);
1049
1050 uint32_t active_width = timing->h_addressable;
1051 uint32_t space1_size = timing->v_total - timing->v_addressable;
1052
1053 if (flags) {
1054 uint32_t stereo_en;
1055 stereo_en = flags->FRAME_PACKED == 0 ? 1 : 0;
1056
1057 if (flags->PROGRAM_STEREO)
1058 REG_UPDATE_3(OTG_STEREO_CONTROL,
1059 OTG_STEREO_EN, stereo_en,
1060 OTG_STEREO_SYNC_OUTPUT_LINE_NUM, 0,
1061 OTG_STEREO_SYNC_OUTPUT_POLARITY, 0);
1062
1063 if (flags->PROGRAM_POLARITY)
1064 REG_UPDATE(OTG_STEREO_CONTROL,
1065 OTG_STEREO_EYE_FLAG_POLARITY,
1066 flags->RIGHT_EYE_POLARITY == 0 ? 0 : 1);
1067
1068 if (flags->DISABLE_STEREO_DP_SYNC)
1069 REG_UPDATE(OTG_STEREO_CONTROL,
1070 OTG_DISABLE_STEREOSYNC_OUTPUT_FOR_DP, 1);
1071
1072 if (flags->PROGRAM_STEREO)
1073 REG_UPDATE_3(OTG_3D_STRUCTURE_CONTROL,
1074 OTG_3D_STRUCTURE_EN, flags->FRAME_PACKED,
1075 OTG_3D_STRUCTURE_V_UPDATE_MODE, flags->FRAME_PACKED,
1076 OTG_3D_STRUCTURE_STEREO_SEL_OVR, flags->FRAME_PACKED);
1077
1078 }
1079
1080 REG_UPDATE(OPPBUF_CONTROL,
1081 OPPBUF_ACTIVE_WIDTH, active_width);
1082
1083 REG_UPDATE(OPPBUF_3D_PARAMETERS_0,
1084 OPPBUF_3D_VACT_SPACE1_SIZE, space1_size);
1085 }
1086
1087 static void tgn10_program_stereo(struct timing_generator *tg,
1088 const struct dc_crtc_timing *timing, struct crtc_stereo_flags *flags)
1089 {
1090 if (flags->PROGRAM_STEREO)
1091 tgn10_enable_stereo(tg, timing, flags);
1092 else
1093 tgn10_disable_stereo(tg);
1094 }
1095
1096
1097 static bool tgn10_is_stereo_left_eye(struct timing_generator *tg)
1098 {
1099 bool ret = false;
1100 uint32_t left_eye = 0;
1101 struct dcn10_timing_generator *tgn10 = DCN10TG_FROM_TG(tg);
1102
1103 REG_GET(OTG_STEREO_STATUS,
1104 OTG_STEREO_CURRENT_EYE, &left_eye);
1105 if (left_eye == 1)
1106 ret = true;
1107 else
1108 ret = false;
1109
1110 return ret;
1111 }
1112
1113 void tgn10_read_otg_state(struct dcn10_timing_generator *tgn10,
1114 struct dcn_otg_state *s)
1115 {
1116 REG_GET(OTG_CONTROL,
1117 OTG_MASTER_EN, &s->otg_enabled);
1118
1119 REG_GET_2(OTG_V_BLANK_START_END,
1120 OTG_V_BLANK_START, &s->v_blank_start,
1121 OTG_V_BLANK_END, &s->v_blank_end);
1122
1123 REG_GET(OTG_V_SYNC_A_CNTL,
1124 OTG_V_SYNC_A_POL, &s->v_sync_a_pol);
1125
1126 REG_GET(OTG_V_TOTAL,
1127 OTG_V_TOTAL, &s->v_total);
1128
1129 REG_GET(OTG_V_TOTAL_MAX,
1130 OTG_V_TOTAL_MAX, &s->v_total_max);
1131
1132 REG_GET(OTG_V_TOTAL_MIN,
1133 OTG_V_TOTAL_MIN, &s->v_total_min);
1134
1135 REG_GET_2(OTG_V_SYNC_A,
1136 OTG_V_SYNC_A_START, &s->v_sync_a_start,
1137 OTG_V_SYNC_A_END, &s->v_sync_a_end);
1138
1139 REG_GET_2(OTG_H_BLANK_START_END,
1140 OTG_H_BLANK_START, &s->h_blank_start,
1141 OTG_H_BLANK_END, &s->h_blank_end);
1142
1143 REG_GET_2(OTG_H_SYNC_A,
1144 OTG_H_SYNC_A_START, &s->h_sync_a_start,
1145 OTG_H_SYNC_A_END, &s->h_sync_a_end);
1146
1147 REG_GET(OTG_H_SYNC_A_CNTL,
1148 OTG_H_SYNC_A_POL, &s->h_sync_a_pol);
1149
1150 REG_GET(OTG_H_TOTAL,
1151 OTG_H_TOTAL, &s->h_total);
1152
1153 REG_GET(OPTC_INPUT_GLOBAL_CONTROL,
1154 OPTC_UNDERFLOW_OCCURRED_STATUS, &s->underflow_occurred_status);
1155 }
1156
1157
1158 static const struct timing_generator_funcs dcn10_tg_funcs = {
1159 .validate_timing = tgn10_validate_timing,
1160 .program_timing = tgn10_program_timing,
1161 .program_global_sync = tgn10_program_global_sync,
1162 .enable_crtc = tgn10_enable_crtc,
1163 .disable_crtc = tgn10_disable_crtc,
1164 /* used by enable_timing_synchronization. Not need for FPGA */
1165 .is_counter_moving = tgn10_is_counter_moving,
1166 .get_position = tgn10_get_position,
1167 .get_frame_count = tgn10_get_vblank_counter,
1168 .get_scanoutpos = tgn10_get_crtc_scanoutpos,
1169 .set_early_control = tgn10_set_early_control,
1170 /* used by enable_timing_synchronization. Not need for FPGA */
1171 .wait_for_state = tgn10_wait_for_state,
1172 .set_blank = tgn10_set_blank,
1173 .is_blanked = tgn10_is_blanked,
1174 .set_blank_color = tgn10_program_blank_color,
1175 .did_triggered_reset_occur = tgn10_did_triggered_reset_occur,
1176 .enable_reset_trigger = tgn10_enable_reset_trigger,
1177 .disable_reset_trigger = tgn10_disable_reset_trigger,
1178 .lock = tgn10_lock,
1179 .unlock = tgn10_unlock,
1180 .enable_optc_clock = tgn10_enable_optc_clock,
1181 .set_drr = tgn10_set_drr,
1182 .set_static_screen_control = tgn10_set_static_screen_control,
1183 .set_test_pattern = tgn10_set_test_pattern,
1184 .program_stereo = tgn10_program_stereo,
1185 .is_stereo_left_eye = tgn10_is_stereo_left_eye
1186 };
1187
1188 void dcn10_timing_generator_init(struct dcn10_timing_generator *tgn10)
1189 {
1190 tgn10->base.funcs = &dcn10_tg_funcs;
1191
1192 tgn10->max_h_total = tgn10->tg_mask->OTG_H_TOTAL + 1;
1193 tgn10->max_v_total = tgn10->tg_mask->OTG_V_TOTAL + 1;
1194
1195 tgn10->min_h_blank = 32;
1196 tgn10->min_v_blank = 3;
1197 tgn10->min_v_blank_interlace = 5;
1198 tgn10->min_h_sync_width = 8;
1199 tgn10->min_v_sync_width = 1;
1200 }