]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/gpu/drm/amd/powerplay/hwmgr/hwmgr.c
Merge branch 'for-linus' of git://git.kernel.dk/linux-block
[mirror_ubuntu-zesty-kernel.git] / drivers / gpu / drm / amd / powerplay / hwmgr / hwmgr.c
1 /*
2 * Copyright 2015 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 */
23 #include "linux/delay.h"
24 #include <linux/types.h>
25 #include <linux/kernel.h>
26 #include <linux/slab.h>
27 #include "cgs_common.h"
28 #include "power_state.h"
29 #include "hwmgr.h"
30 #include "pppcielanes.h"
31 #include "pp_debug.h"
32 #include "ppatomctrl.h"
33 #include "ppsmc.h"
34
35 #define VOLTAGE_SCALE 4
36
37 extern int cz_hwmgr_init(struct pp_hwmgr *hwmgr);
38 extern int tonga_hwmgr_init(struct pp_hwmgr *hwmgr);
39 extern int fiji_hwmgr_init(struct pp_hwmgr *hwmgr);
40 extern int polaris10_hwmgr_init(struct pp_hwmgr *hwmgr);
41
42 int hwmgr_init(struct amd_pp_init *pp_init, struct pp_instance *handle)
43 {
44 struct pp_hwmgr *hwmgr;
45
46 if ((handle == NULL) || (pp_init == NULL))
47 return -EINVAL;
48
49 hwmgr = kzalloc(sizeof(struct pp_hwmgr), GFP_KERNEL);
50 if (hwmgr == NULL)
51 return -ENOMEM;
52
53 handle->hwmgr = hwmgr;
54 hwmgr->smumgr = handle->smu_mgr;
55 hwmgr->device = pp_init->device;
56 hwmgr->chip_family = pp_init->chip_family;
57 hwmgr->chip_id = pp_init->chip_id;
58 hwmgr->hw_revision = pp_init->rev_id;
59 hwmgr->usec_timeout = AMD_MAX_USEC_TIMEOUT;
60 hwmgr->power_source = PP_PowerSource_AC;
61
62 switch (hwmgr->chip_family) {
63 case AMD_FAMILY_CZ:
64 cz_hwmgr_init(hwmgr);
65 break;
66 case AMD_FAMILY_VI:
67 switch (hwmgr->chip_id) {
68 case CHIP_TONGA:
69 tonga_hwmgr_init(hwmgr);
70 break;
71 case CHIP_FIJI:
72 fiji_hwmgr_init(hwmgr);
73 break;
74 case CHIP_POLARIS11:
75 case CHIP_POLARIS10:
76 polaris10_hwmgr_init(hwmgr);
77 break;
78 default:
79 return -EINVAL;
80 }
81 break;
82 default:
83 return -EINVAL;
84 }
85
86 phm_init_dynamic_caps(hwmgr);
87
88 return 0;
89 }
90
91 int hwmgr_fini(struct pp_hwmgr *hwmgr)
92 {
93 if (hwmgr == NULL || hwmgr->ps == NULL)
94 return -EINVAL;
95
96 /* do hwmgr finish*/
97 kfree(hwmgr->backend);
98
99 kfree(hwmgr->start_thermal_controller.function_list);
100
101 kfree(hwmgr->set_temperature_range.function_list);
102
103 kfree(hwmgr->ps);
104 kfree(hwmgr);
105 return 0;
106 }
107
108 int hw_init_power_state_table(struct pp_hwmgr *hwmgr)
109 {
110 int result;
111 unsigned int i;
112 unsigned int table_entries;
113 struct pp_power_state *state;
114 int size;
115
116 if (hwmgr->hwmgr_func->get_num_of_pp_table_entries == NULL)
117 return -EINVAL;
118
119 if (hwmgr->hwmgr_func->get_power_state_size == NULL)
120 return -EINVAL;
121
122 hwmgr->num_ps = table_entries = hwmgr->hwmgr_func->get_num_of_pp_table_entries(hwmgr);
123
124 hwmgr->ps_size = size = hwmgr->hwmgr_func->get_power_state_size(hwmgr) +
125 sizeof(struct pp_power_state);
126
127 hwmgr->ps = kzalloc(size * table_entries, GFP_KERNEL);
128
129 if (hwmgr->ps == NULL)
130 return -ENOMEM;
131
132 state = hwmgr->ps;
133
134 for (i = 0; i < table_entries; i++) {
135 result = hwmgr->hwmgr_func->get_pp_table_entry(hwmgr, i, state);
136
137 if (state->classification.flags & PP_StateClassificationFlag_Boot) {
138 hwmgr->boot_ps = state;
139 hwmgr->current_ps = hwmgr->request_ps = state;
140 }
141
142 state->id = i + 1; /* assigned unique num for every power state id */
143
144 if (state->classification.flags & PP_StateClassificationFlag_Uvd)
145 hwmgr->uvd_ps = state;
146 state = (struct pp_power_state *)((unsigned long)state + size);
147 }
148
149 return 0;
150 }
151
152
153 /**
154 * Returns once the part of the register indicated by the mask has
155 * reached the given value.
156 */
157 int phm_wait_on_register(struct pp_hwmgr *hwmgr, uint32_t index,
158 uint32_t value, uint32_t mask)
159 {
160 uint32_t i;
161 uint32_t cur_value;
162
163 if (hwmgr == NULL || hwmgr->device == NULL) {
164 printk(KERN_ERR "[ powerplay ] Invalid Hardware Manager!");
165 return -EINVAL;
166 }
167
168 for (i = 0; i < hwmgr->usec_timeout; i++) {
169 cur_value = cgs_read_register(hwmgr->device, index);
170 if ((cur_value & mask) == (value & mask))
171 break;
172 udelay(1);
173 }
174
175 /* timeout means wrong logic*/
176 if (i == hwmgr->usec_timeout)
177 return -1;
178 return 0;
179 }
180
181 int phm_wait_for_register_unequal(struct pp_hwmgr *hwmgr,
182 uint32_t index, uint32_t value, uint32_t mask)
183 {
184 uint32_t i;
185 uint32_t cur_value;
186
187 if (hwmgr == NULL || hwmgr->device == NULL) {
188 printk(KERN_ERR "[ powerplay ] Invalid Hardware Manager!");
189 return -EINVAL;
190 }
191
192 for (i = 0; i < hwmgr->usec_timeout; i++) {
193 cur_value = cgs_read_register(hwmgr->device, index);
194 if ((cur_value & mask) != (value & mask))
195 break;
196 udelay(1);
197 }
198
199 /* timeout means wrong logic*/
200 if (i == hwmgr->usec_timeout)
201 return -1;
202 return 0;
203 }
204
205
206 /**
207 * Returns once the part of the register indicated by the mask has
208 * reached the given value.The indirect space is described by giving
209 * the memory-mapped index of the indirect index register.
210 */
211 void phm_wait_on_indirect_register(struct pp_hwmgr *hwmgr,
212 uint32_t indirect_port,
213 uint32_t index,
214 uint32_t value,
215 uint32_t mask)
216 {
217 if (hwmgr == NULL || hwmgr->device == NULL) {
218 printk(KERN_ERR "[ powerplay ] Invalid Hardware Manager!");
219 return;
220 }
221
222 cgs_write_register(hwmgr->device, indirect_port, index);
223 phm_wait_on_register(hwmgr, indirect_port + 1, mask, value);
224 }
225
226 void phm_wait_for_indirect_register_unequal(struct pp_hwmgr *hwmgr,
227 uint32_t indirect_port,
228 uint32_t index,
229 uint32_t value,
230 uint32_t mask)
231 {
232 if (hwmgr == NULL || hwmgr->device == NULL) {
233 printk(KERN_ERR "[ powerplay ] Invalid Hardware Manager!");
234 return;
235 }
236
237 cgs_write_register(hwmgr->device, indirect_port, index);
238 phm_wait_for_register_unequal(hwmgr, indirect_port + 1,
239 value, mask);
240 }
241
242 bool phm_cf_want_uvd_power_gating(struct pp_hwmgr *hwmgr)
243 {
244 return phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_UVDPowerGating);
245 }
246
247 bool phm_cf_want_vce_power_gating(struct pp_hwmgr *hwmgr)
248 {
249 return phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_VCEPowerGating);
250 }
251
252
253 int phm_trim_voltage_table(struct pp_atomctrl_voltage_table *vol_table)
254 {
255 uint32_t i, j;
256 uint16_t vvalue;
257 bool found = false;
258 struct pp_atomctrl_voltage_table *table;
259
260 PP_ASSERT_WITH_CODE((NULL != vol_table),
261 "Voltage Table empty.", return -EINVAL);
262
263 table = kzalloc(sizeof(struct pp_atomctrl_voltage_table),
264 GFP_KERNEL);
265
266 if (NULL == table)
267 return -EINVAL;
268
269 table->mask_low = vol_table->mask_low;
270 table->phase_delay = vol_table->phase_delay;
271
272 for (i = 0; i < vol_table->count; i++) {
273 vvalue = vol_table->entries[i].value;
274 found = false;
275
276 for (j = 0; j < table->count; j++) {
277 if (vvalue == table->entries[j].value) {
278 found = true;
279 break;
280 }
281 }
282
283 if (!found) {
284 table->entries[table->count].value = vvalue;
285 table->entries[table->count].smio_low =
286 vol_table->entries[i].smio_low;
287 table->count++;
288 }
289 }
290
291 memcpy(vol_table, table, sizeof(struct pp_atomctrl_voltage_table));
292 kfree(table);
293
294 return 0;
295 }
296
297 int phm_get_svi2_mvdd_voltage_table(struct pp_atomctrl_voltage_table *vol_table,
298 phm_ppt_v1_clock_voltage_dependency_table *dep_table)
299 {
300 uint32_t i;
301 int result;
302
303 PP_ASSERT_WITH_CODE((0 != dep_table->count),
304 "Voltage Dependency Table empty.", return -EINVAL);
305
306 PP_ASSERT_WITH_CODE((NULL != vol_table),
307 "vol_table empty.", return -EINVAL);
308
309 vol_table->mask_low = 0;
310 vol_table->phase_delay = 0;
311 vol_table->count = dep_table->count;
312
313 for (i = 0; i < dep_table->count; i++) {
314 vol_table->entries[i].value = dep_table->entries[i].mvdd;
315 vol_table->entries[i].smio_low = 0;
316 }
317
318 result = phm_trim_voltage_table(vol_table);
319 PP_ASSERT_WITH_CODE((0 == result),
320 "Failed to trim MVDD table.", return result);
321
322 return 0;
323 }
324
325 int phm_get_svi2_vddci_voltage_table(struct pp_atomctrl_voltage_table *vol_table,
326 phm_ppt_v1_clock_voltage_dependency_table *dep_table)
327 {
328 uint32_t i;
329 int result;
330
331 PP_ASSERT_WITH_CODE((0 != dep_table->count),
332 "Voltage Dependency Table empty.", return -EINVAL);
333
334 PP_ASSERT_WITH_CODE((NULL != vol_table),
335 "vol_table empty.", return -EINVAL);
336
337 vol_table->mask_low = 0;
338 vol_table->phase_delay = 0;
339 vol_table->count = dep_table->count;
340
341 for (i = 0; i < dep_table->count; i++) {
342 vol_table->entries[i].value = dep_table->entries[i].vddci;
343 vol_table->entries[i].smio_low = 0;
344 }
345
346 result = phm_trim_voltage_table(vol_table);
347 PP_ASSERT_WITH_CODE((0 == result),
348 "Failed to trim VDDCI table.", return result);
349
350 return 0;
351 }
352
353 int phm_get_svi2_vdd_voltage_table(struct pp_atomctrl_voltage_table *vol_table,
354 phm_ppt_v1_voltage_lookup_table *lookup_table)
355 {
356 int i = 0;
357
358 PP_ASSERT_WITH_CODE((0 != lookup_table->count),
359 "Voltage Lookup Table empty.", return -EINVAL);
360
361 PP_ASSERT_WITH_CODE((NULL != vol_table),
362 "vol_table empty.", return -EINVAL);
363
364 vol_table->mask_low = 0;
365 vol_table->phase_delay = 0;
366
367 vol_table->count = lookup_table->count;
368
369 for (i = 0; i < vol_table->count; i++) {
370 vol_table->entries[i].value = lookup_table->entries[i].us_vdd;
371 vol_table->entries[i].smio_low = 0;
372 }
373
374 return 0;
375 }
376
377 void phm_trim_voltage_table_to_fit_state_table(uint32_t max_vol_steps,
378 struct pp_atomctrl_voltage_table *vol_table)
379 {
380 unsigned int i, diff;
381
382 if (vol_table->count <= max_vol_steps)
383 return;
384
385 diff = vol_table->count - max_vol_steps;
386
387 for (i = 0; i < max_vol_steps; i++)
388 vol_table->entries[i] = vol_table->entries[i + diff];
389
390 vol_table->count = max_vol_steps;
391
392 return;
393 }
394
395 int phm_reset_single_dpm_table(void *table,
396 uint32_t count, int max)
397 {
398 int i;
399
400 struct vi_dpm_table *dpm_table = (struct vi_dpm_table *)table;
401
402 PP_ASSERT_WITH_CODE(count <= max,
403 "Fatal error, can not set up single DPM table entries to exceed max number!",
404 );
405
406 dpm_table->count = count;
407 for (i = 0; i < max; i++)
408 dpm_table->dpm_level[i].enabled = false;
409
410 return 0;
411 }
412
413 void phm_setup_pcie_table_entry(
414 void *table,
415 uint32_t index, uint32_t pcie_gen,
416 uint32_t pcie_lanes)
417 {
418 struct vi_dpm_table *dpm_table = (struct vi_dpm_table *)table;
419 dpm_table->dpm_level[index].value = pcie_gen;
420 dpm_table->dpm_level[index].param1 = pcie_lanes;
421 dpm_table->dpm_level[index].enabled = 1;
422 }
423
424 int32_t phm_get_dpm_level_enable_mask_value(void *table)
425 {
426 int32_t i;
427 int32_t mask = 0;
428 struct vi_dpm_table *dpm_table = (struct vi_dpm_table *)table;
429
430 for (i = dpm_table->count; i > 0; i--) {
431 mask = mask << 1;
432 if (dpm_table->dpm_level[i - 1].enabled)
433 mask |= 0x1;
434 else
435 mask &= 0xFFFFFFFE;
436 }
437
438 return mask;
439 }
440
441 uint8_t phm_get_voltage_index(
442 struct phm_ppt_v1_voltage_lookup_table *lookup_table, uint16_t voltage)
443 {
444 uint8_t count = (uint8_t) (lookup_table->count);
445 uint8_t i;
446
447 PP_ASSERT_WITH_CODE((NULL != lookup_table),
448 "Lookup Table empty.", return 0);
449 PP_ASSERT_WITH_CODE((0 != count),
450 "Lookup Table empty.", return 0);
451
452 for (i = 0; i < lookup_table->count; i++) {
453 /* find first voltage equal or bigger than requested */
454 if (lookup_table->entries[i].us_vdd >= voltage)
455 return i;
456 }
457 /* voltage is bigger than max voltage in the table */
458 return i - 1;
459 }
460
461 uint16_t phm_find_closest_vddci(struct pp_atomctrl_voltage_table *vddci_table, uint16_t vddci)
462 {
463 uint32_t i;
464
465 for (i = 0; i < vddci_table->count; i++) {
466 if (vddci_table->entries[i].value >= vddci)
467 return vddci_table->entries[i].value;
468 }
469
470 PP_ASSERT_WITH_CODE(false,
471 "VDDCI is larger than max VDDCI in VDDCI Voltage Table!",
472 return vddci_table->entries[i-1].value);
473 }
474
475 int phm_find_boot_level(void *table,
476 uint32_t value, uint32_t *boot_level)
477 {
478 int result = -EINVAL;
479 uint32_t i;
480 struct vi_dpm_table *dpm_table = (struct vi_dpm_table *)table;
481
482 for (i = 0; i < dpm_table->count; i++) {
483 if (value == dpm_table->dpm_level[i].value) {
484 *boot_level = i;
485 result = 0;
486 }
487 }
488
489 return result;
490 }
491
492 int phm_get_sclk_for_voltage_evv(struct pp_hwmgr *hwmgr,
493 phm_ppt_v1_voltage_lookup_table *lookup_table,
494 uint16_t virtual_voltage_id, int32_t *sclk)
495 {
496 uint8_t entryId;
497 uint8_t voltageId;
498 struct phm_ppt_v1_information *table_info =
499 (struct phm_ppt_v1_information *)(hwmgr->pptable);
500
501 PP_ASSERT_WITH_CODE(lookup_table->count != 0, "Lookup table is empty", return -EINVAL);
502
503 /* search for leakage voltage ID 0xff01 ~ 0xff08 and sckl */
504 for (entryId = 0; entryId < table_info->vdd_dep_on_sclk->count; entryId++) {
505 voltageId = table_info->vdd_dep_on_sclk->entries[entryId].vddInd;
506 if (lookup_table->entries[voltageId].us_vdd == virtual_voltage_id)
507 break;
508 }
509
510 PP_ASSERT_WITH_CODE(entryId < table_info->vdd_dep_on_sclk->count,
511 "Can't find requested voltage id in vdd_dep_on_sclk table!",
512 return -EINVAL;
513 );
514
515 *sclk = table_info->vdd_dep_on_sclk->entries[entryId].clk;
516
517 return 0;
518 }
519
520 /**
521 * Initialize Dynamic State Adjustment Rule Settings
522 *
523 * @param hwmgr the address of the powerplay hardware manager.
524 */
525 int phm_initializa_dynamic_state_adjustment_rule_settings(struct pp_hwmgr *hwmgr)
526 {
527 uint32_t table_size;
528 struct phm_clock_voltage_dependency_table *table_clk_vlt;
529 struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
530
531 /* initialize vddc_dep_on_dal_pwrl table */
532 table_size = sizeof(uint32_t) + 4 * sizeof(struct phm_clock_voltage_dependency_record);
533 table_clk_vlt = (struct phm_clock_voltage_dependency_table *)kzalloc(table_size, GFP_KERNEL);
534
535 if (NULL == table_clk_vlt) {
536 printk(KERN_ERR "[ powerplay ] Can not allocate space for vddc_dep_on_dal_pwrl! \n");
537 return -ENOMEM;
538 } else {
539 table_clk_vlt->count = 4;
540 table_clk_vlt->entries[0].clk = PP_DAL_POWERLEVEL_ULTRALOW;
541 table_clk_vlt->entries[0].v = 0;
542 table_clk_vlt->entries[1].clk = PP_DAL_POWERLEVEL_LOW;
543 table_clk_vlt->entries[1].v = 720;
544 table_clk_vlt->entries[2].clk = PP_DAL_POWERLEVEL_NOMINAL;
545 table_clk_vlt->entries[2].v = 810;
546 table_clk_vlt->entries[3].clk = PP_DAL_POWERLEVEL_PERFORMANCE;
547 table_clk_vlt->entries[3].v = 900;
548 pptable_info->vddc_dep_on_dal_pwrl = table_clk_vlt;
549 hwmgr->dyn_state.vddc_dep_on_dal_pwrl = table_clk_vlt;
550 }
551
552 return 0;
553 }
554
555 int phm_hwmgr_backend_fini(struct pp_hwmgr *hwmgr)
556 {
557 if (NULL != hwmgr->dyn_state.vddc_dep_on_dal_pwrl) {
558 kfree(hwmgr->dyn_state.vddc_dep_on_dal_pwrl);
559 hwmgr->dyn_state.vddc_dep_on_dal_pwrl = NULL;
560 }
561
562 if (NULL != hwmgr->backend) {
563 kfree(hwmgr->backend);
564 hwmgr->backend = NULL;
565 }
566
567 return 0;
568 }
569
570 uint32_t phm_get_lowest_enabled_level(struct pp_hwmgr *hwmgr, uint32_t mask)
571 {
572 uint32_t level = 0;
573
574 while (0 == (mask & (1 << level)))
575 level++;
576
577 return level;
578 }
579
580 void phm_apply_dal_min_voltage_request(struct pp_hwmgr *hwmgr)
581 {
582 struct phm_ppt_v1_information *table_info =
583 (struct phm_ppt_v1_information *)hwmgr->pptable;
584 struct phm_clock_voltage_dependency_table *table =
585 table_info->vddc_dep_on_dal_pwrl;
586 struct phm_ppt_v1_clock_voltage_dependency_table *vddc_table;
587 enum PP_DAL_POWERLEVEL dal_power_level = hwmgr->dal_power_level;
588 uint32_t req_vddc = 0, req_volt, i;
589
590 if (!table || table->count <= 0
591 || dal_power_level < PP_DAL_POWERLEVEL_ULTRALOW
592 || dal_power_level > PP_DAL_POWERLEVEL_PERFORMANCE)
593 return;
594
595 for (i = 0; i < table->count; i++) {
596 if (dal_power_level == table->entries[i].clk) {
597 req_vddc = table->entries[i].v;
598 break;
599 }
600 }
601
602 vddc_table = table_info->vdd_dep_on_sclk;
603 for (i = 0; i < vddc_table->count; i++) {
604 if (req_vddc <= vddc_table->entries[i].vddc) {
605 req_volt = (((uint32_t)vddc_table->entries[i].vddc) * VOLTAGE_SCALE);
606 smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
607 PPSMC_MSG_VddC_Request, req_volt);
608 return;
609 }
610 }
611 printk(KERN_ERR "DAL requested level can not"
612 " found a available voltage in VDDC DPM Table \n");
613 }