]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/gpu/drm/amd/powerplay/hwmgr/smu7_hwmgr.c
Merge tag 'mmc-v4.15-2' of git://git.kernel.org/pub/scm/linux/kernel/git/ulfh/mmc
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / amd / powerplay / hwmgr / smu7_hwmgr.c
1 /*
2 * Copyright 2015 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 */
23 #include "pp_debug.h"
24 #include <linux/delay.h>
25 #include <linux/fb.h>
26 #include <linux/module.h>
27 #include <linux/slab.h>
28 #include <asm/div64.h>
29 #include <drm/amdgpu_drm.h>
30 #include "pp_acpi.h"
31 #include "ppatomctrl.h"
32 #include "atombios.h"
33 #include "pptable_v1_0.h"
34 #include "pppcielanes.h"
35 #include "amd_pcie_helpers.h"
36 #include "hardwaremanager.h"
37 #include "process_pptables_v1_0.h"
38 #include "cgs_common.h"
39
40 #include "smu7_common.h"
41
42 #include "hwmgr.h"
43 #include "smu7_hwmgr.h"
44 #include "smu7_smumgr.h"
45 #include "smu_ucode_xfer_vi.h"
46 #include "smu7_powertune.h"
47 #include "smu7_dyn_defaults.h"
48 #include "smu7_thermal.h"
49 #include "smu7_clockpowergating.h"
50 #include "processpptables.h"
51
52 #define MC_CG_ARB_FREQ_F0 0x0a
53 #define MC_CG_ARB_FREQ_F1 0x0b
54 #define MC_CG_ARB_FREQ_F2 0x0c
55 #define MC_CG_ARB_FREQ_F3 0x0d
56
57 #define MC_CG_SEQ_DRAMCONF_S0 0x05
58 #define MC_CG_SEQ_DRAMCONF_S1 0x06
59 #define MC_CG_SEQ_YCLK_SUSPEND 0x04
60 #define MC_CG_SEQ_YCLK_RESUME 0x0a
61
62 #define SMC_CG_IND_START 0xc0030000
63 #define SMC_CG_IND_END 0xc0040000
64
65 #define VOLTAGE_SCALE 4
66 #define VOLTAGE_VID_OFFSET_SCALE1 625
67 #define VOLTAGE_VID_OFFSET_SCALE2 100
68
69 #define MEM_FREQ_LOW_LATENCY 25000
70 #define MEM_FREQ_HIGH_LATENCY 80000
71
72 #define MEM_LATENCY_HIGH 45
73 #define MEM_LATENCY_LOW 35
74 #define MEM_LATENCY_ERR 0xFFFF
75
76 #define MC_SEQ_MISC0_GDDR5_SHIFT 28
77 #define MC_SEQ_MISC0_GDDR5_MASK 0xf0000000
78 #define MC_SEQ_MISC0_GDDR5_VALUE 5
79
80 #define PCIE_BUS_CLK 10000
81 #define TCLK (PCIE_BUS_CLK / 10)
82
83
84 /** Values for the CG_THERMAL_CTRL::DPM_EVENT_SRC field. */
85 enum DPM_EVENT_SRC {
86 DPM_EVENT_SRC_ANALOG = 0,
87 DPM_EVENT_SRC_EXTERNAL = 1,
88 DPM_EVENT_SRC_DIGITAL = 2,
89 DPM_EVENT_SRC_ANALOG_OR_EXTERNAL = 3,
90 DPM_EVENT_SRC_DIGITAL_OR_EXTERNAL = 4
91 };
92
93 static int smu7_avfs_control(struct pp_hwmgr *hwmgr, bool enable);
94 static const unsigned long PhwVIslands_Magic = (unsigned long)(PHM_VIslands_Magic);
95 static int smu7_force_clock_level(struct pp_hwmgr *hwmgr,
96 enum pp_clock_type type, uint32_t mask);
97
98 static struct smu7_power_state *cast_phw_smu7_power_state(
99 struct pp_hw_power_state *hw_ps)
100 {
101 PP_ASSERT_WITH_CODE((PhwVIslands_Magic == hw_ps->magic),
102 "Invalid Powerstate Type!",
103 return NULL);
104
105 return (struct smu7_power_state *)hw_ps;
106 }
107
108 static const struct smu7_power_state *cast_const_phw_smu7_power_state(
109 const struct pp_hw_power_state *hw_ps)
110 {
111 PP_ASSERT_WITH_CODE((PhwVIslands_Magic == hw_ps->magic),
112 "Invalid Powerstate Type!",
113 return NULL);
114
115 return (const struct smu7_power_state *)hw_ps;
116 }
117
118 /**
119 * Find the MC microcode version and store it in the HwMgr struct
120 *
121 * @param hwmgr the address of the powerplay hardware manager.
122 * @return always 0
123 */
124 static int smu7_get_mc_microcode_version(struct pp_hwmgr *hwmgr)
125 {
126 cgs_write_register(hwmgr->device, mmMC_SEQ_IO_DEBUG_INDEX, 0x9F);
127
128 hwmgr->microcode_version_info.MC = cgs_read_register(hwmgr->device, mmMC_SEQ_IO_DEBUG_DATA);
129
130 return 0;
131 }
132
133 static uint16_t smu7_get_current_pcie_speed(struct pp_hwmgr *hwmgr)
134 {
135 uint32_t speedCntl = 0;
136
137 /* mmPCIE_PORT_INDEX rename as mmPCIE_INDEX */
138 speedCntl = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__PCIE,
139 ixPCIE_LC_SPEED_CNTL);
140 return((uint16_t)PHM_GET_FIELD(speedCntl,
141 PCIE_LC_SPEED_CNTL, LC_CURRENT_DATA_RATE));
142 }
143
144 static int smu7_get_current_pcie_lane_number(struct pp_hwmgr *hwmgr)
145 {
146 uint32_t link_width;
147
148 /* mmPCIE_PORT_INDEX rename as mmPCIE_INDEX */
149 link_width = PHM_READ_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__PCIE,
150 PCIE_LC_LINK_WIDTH_CNTL, LC_LINK_WIDTH_RD);
151
152 PP_ASSERT_WITH_CODE((7 >= link_width),
153 "Invalid PCIe lane width!", return 0);
154
155 return decode_pcie_lane_width(link_width);
156 }
157
158 /**
159 * Enable voltage control
160 *
161 * @param pHwMgr the address of the powerplay hardware manager.
162 * @return always PP_Result_OK
163 */
164 static int smu7_enable_smc_voltage_controller(struct pp_hwmgr *hwmgr)
165 {
166 if (hwmgr->feature_mask & PP_SMC_VOLTAGE_CONTROL_MASK)
167 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_Voltage_Cntl_Enable);
168
169 return 0;
170 }
171
172 /**
173 * Checks if we want to support voltage control
174 *
175 * @param hwmgr the address of the powerplay hardware manager.
176 */
177 static bool smu7_voltage_control(const struct pp_hwmgr *hwmgr)
178 {
179 const struct smu7_hwmgr *data =
180 (const struct smu7_hwmgr *)(hwmgr->backend);
181
182 return (SMU7_VOLTAGE_CONTROL_NONE != data->voltage_control);
183 }
184
185 /**
186 * Enable voltage control
187 *
188 * @param hwmgr the address of the powerplay hardware manager.
189 * @return always 0
190 */
191 static int smu7_enable_voltage_control(struct pp_hwmgr *hwmgr)
192 {
193 /* enable voltage control */
194 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
195 GENERAL_PWRMGT, VOLT_PWRMGT_EN, 1);
196
197 return 0;
198 }
199
200 static int phm_get_svi2_voltage_table_v0(pp_atomctrl_voltage_table *voltage_table,
201 struct phm_clock_voltage_dependency_table *voltage_dependency_table
202 )
203 {
204 uint32_t i;
205
206 PP_ASSERT_WITH_CODE((NULL != voltage_table),
207 "Voltage Dependency Table empty.", return -EINVAL;);
208
209 voltage_table->mask_low = 0;
210 voltage_table->phase_delay = 0;
211 voltage_table->count = voltage_dependency_table->count;
212
213 for (i = 0; i < voltage_dependency_table->count; i++) {
214 voltage_table->entries[i].value =
215 voltage_dependency_table->entries[i].v;
216 voltage_table->entries[i].smio_low = 0;
217 }
218
219 return 0;
220 }
221
222
223 /**
224 * Create Voltage Tables.
225 *
226 * @param hwmgr the address of the powerplay hardware manager.
227 * @return always 0
228 */
229 static int smu7_construct_voltage_tables(struct pp_hwmgr *hwmgr)
230 {
231 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
232 struct phm_ppt_v1_information *table_info =
233 (struct phm_ppt_v1_information *)hwmgr->pptable;
234 int result = 0;
235 uint32_t tmp;
236
237 if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) {
238 result = atomctrl_get_voltage_table_v3(hwmgr,
239 VOLTAGE_TYPE_MVDDC, VOLTAGE_OBJ_GPIO_LUT,
240 &(data->mvdd_voltage_table));
241 PP_ASSERT_WITH_CODE((0 == result),
242 "Failed to retrieve MVDD table.",
243 return result);
244 } else if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->mvdd_control) {
245 if (hwmgr->pp_table_version == PP_TABLE_V1)
246 result = phm_get_svi2_mvdd_voltage_table(&(data->mvdd_voltage_table),
247 table_info->vdd_dep_on_mclk);
248 else if (hwmgr->pp_table_version == PP_TABLE_V0)
249 result = phm_get_svi2_voltage_table_v0(&(data->mvdd_voltage_table),
250 hwmgr->dyn_state.mvdd_dependency_on_mclk);
251
252 PP_ASSERT_WITH_CODE((0 == result),
253 "Failed to retrieve SVI2 MVDD table from dependancy table.",
254 return result;);
255 }
256
257 if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) {
258 result = atomctrl_get_voltage_table_v3(hwmgr,
259 VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_GPIO_LUT,
260 &(data->vddci_voltage_table));
261 PP_ASSERT_WITH_CODE((0 == result),
262 "Failed to retrieve VDDCI table.",
263 return result);
264 } else if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control) {
265 if (hwmgr->pp_table_version == PP_TABLE_V1)
266 result = phm_get_svi2_vddci_voltage_table(&(data->vddci_voltage_table),
267 table_info->vdd_dep_on_mclk);
268 else if (hwmgr->pp_table_version == PP_TABLE_V0)
269 result = phm_get_svi2_voltage_table_v0(&(data->vddci_voltage_table),
270 hwmgr->dyn_state.vddci_dependency_on_mclk);
271 PP_ASSERT_WITH_CODE((0 == result),
272 "Failed to retrieve SVI2 VDDCI table from dependancy table.",
273 return result);
274 }
275
276 if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vdd_gfx_control) {
277 /* VDDGFX has only SVI2 voltage control */
278 result = phm_get_svi2_vdd_voltage_table(&(data->vddgfx_voltage_table),
279 table_info->vddgfx_lookup_table);
280 PP_ASSERT_WITH_CODE((0 == result),
281 "Failed to retrieve SVI2 VDDGFX table from lookup table.", return result;);
282 }
283
284
285 if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->voltage_control) {
286 result = atomctrl_get_voltage_table_v3(hwmgr,
287 VOLTAGE_TYPE_VDDC, VOLTAGE_OBJ_GPIO_LUT,
288 &data->vddc_voltage_table);
289 PP_ASSERT_WITH_CODE((0 == result),
290 "Failed to retrieve VDDC table.", return result;);
291 } else if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) {
292
293 if (hwmgr->pp_table_version == PP_TABLE_V0)
294 result = phm_get_svi2_voltage_table_v0(&data->vddc_voltage_table,
295 hwmgr->dyn_state.vddc_dependency_on_mclk);
296 else if (hwmgr->pp_table_version == PP_TABLE_V1)
297 result = phm_get_svi2_vdd_voltage_table(&(data->vddc_voltage_table),
298 table_info->vddc_lookup_table);
299
300 PP_ASSERT_WITH_CODE((0 == result),
301 "Failed to retrieve SVI2 VDDC table from dependancy table.", return result;);
302 }
303
304 tmp = smum_get_mac_definition(hwmgr, SMU_MAX_LEVELS_VDDC);
305 PP_ASSERT_WITH_CODE(
306 (data->vddc_voltage_table.count <= tmp),
307 "Too many voltage values for VDDC. Trimming to fit state table.",
308 phm_trim_voltage_table_to_fit_state_table(tmp,
309 &(data->vddc_voltage_table)));
310
311 tmp = smum_get_mac_definition(hwmgr, SMU_MAX_LEVELS_VDDGFX);
312 PP_ASSERT_WITH_CODE(
313 (data->vddgfx_voltage_table.count <= tmp),
314 "Too many voltage values for VDDC. Trimming to fit state table.",
315 phm_trim_voltage_table_to_fit_state_table(tmp,
316 &(data->vddgfx_voltage_table)));
317
318 tmp = smum_get_mac_definition(hwmgr, SMU_MAX_LEVELS_VDDCI);
319 PP_ASSERT_WITH_CODE(
320 (data->vddci_voltage_table.count <= tmp),
321 "Too many voltage values for VDDCI. Trimming to fit state table.",
322 phm_trim_voltage_table_to_fit_state_table(tmp,
323 &(data->vddci_voltage_table)));
324
325 tmp = smum_get_mac_definition(hwmgr, SMU_MAX_LEVELS_MVDD);
326 PP_ASSERT_WITH_CODE(
327 (data->mvdd_voltage_table.count <= tmp),
328 "Too many voltage values for MVDD. Trimming to fit state table.",
329 phm_trim_voltage_table_to_fit_state_table(tmp,
330 &(data->mvdd_voltage_table)));
331
332 return 0;
333 }
334
335 /**
336 * Programs static screed detection parameters
337 *
338 * @param hwmgr the address of the powerplay hardware manager.
339 * @return always 0
340 */
341 static int smu7_program_static_screen_threshold_parameters(
342 struct pp_hwmgr *hwmgr)
343 {
344 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
345
346 /* Set static screen threshold unit */
347 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
348 CG_STATIC_SCREEN_PARAMETER, STATIC_SCREEN_THRESHOLD_UNIT,
349 data->static_screen_threshold_unit);
350 /* Set static screen threshold */
351 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
352 CG_STATIC_SCREEN_PARAMETER, STATIC_SCREEN_THRESHOLD,
353 data->static_screen_threshold);
354
355 return 0;
356 }
357
358 /**
359 * Setup display gap for glitch free memory clock switching.
360 *
361 * @param hwmgr the address of the powerplay hardware manager.
362 * @return always 0
363 */
364 static int smu7_enable_display_gap(struct pp_hwmgr *hwmgr)
365 {
366 uint32_t display_gap =
367 cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
368 ixCG_DISPLAY_GAP_CNTL);
369
370 display_gap = PHM_SET_FIELD(display_gap, CG_DISPLAY_GAP_CNTL,
371 DISP_GAP, DISPLAY_GAP_IGNORE);
372
373 display_gap = PHM_SET_FIELD(display_gap, CG_DISPLAY_GAP_CNTL,
374 DISP_GAP_MCHG, DISPLAY_GAP_VBLANK);
375
376 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
377 ixCG_DISPLAY_GAP_CNTL, display_gap);
378
379 return 0;
380 }
381
382 /**
383 * Programs activity state transition voting clients
384 *
385 * @param hwmgr the address of the powerplay hardware manager.
386 * @return always 0
387 */
388 static int smu7_program_voting_clients(struct pp_hwmgr *hwmgr)
389 {
390 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
391 int i;
392
393 /* Clear reset for voting clients before enabling DPM */
394 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
395 SCLK_PWRMGT_CNTL, RESET_SCLK_CNT, 0);
396 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
397 SCLK_PWRMGT_CNTL, RESET_BUSY_CNT, 0);
398
399 for (i = 0; i < 8; i++)
400 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
401 ixCG_FREQ_TRAN_VOTING_0 + i * 4,
402 data->voting_rights_clients[i]);
403 return 0;
404 }
405
406 static int smu7_clear_voting_clients(struct pp_hwmgr *hwmgr)
407 {
408 int i;
409
410 /* Reset voting clients before disabling DPM */
411 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
412 SCLK_PWRMGT_CNTL, RESET_SCLK_CNT, 1);
413 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
414 SCLK_PWRMGT_CNTL, RESET_BUSY_CNT, 1);
415
416 for (i = 0; i < 8; i++)
417 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
418 ixCG_FREQ_TRAN_VOTING_0 + i * 4, 0);
419
420 return 0;
421 }
422
423 /* Copy one arb setting to another and then switch the active set.
424 * arb_src and arb_dest is one of the MC_CG_ARB_FREQ_Fx constants.
425 */
426 static int smu7_copy_and_switch_arb_sets(struct pp_hwmgr *hwmgr,
427 uint32_t arb_src, uint32_t arb_dest)
428 {
429 uint32_t mc_arb_dram_timing;
430 uint32_t mc_arb_dram_timing2;
431 uint32_t burst_time;
432 uint32_t mc_cg_config;
433
434 switch (arb_src) {
435 case MC_CG_ARB_FREQ_F0:
436 mc_arb_dram_timing = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING);
437 mc_arb_dram_timing2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2);
438 burst_time = PHM_READ_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE0);
439 break;
440 case MC_CG_ARB_FREQ_F1:
441 mc_arb_dram_timing = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING_1);
442 mc_arb_dram_timing2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2_1);
443 burst_time = PHM_READ_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE1);
444 break;
445 default:
446 return -EINVAL;
447 }
448
449 switch (arb_dest) {
450 case MC_CG_ARB_FREQ_F0:
451 cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING, mc_arb_dram_timing);
452 cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2, mc_arb_dram_timing2);
453 PHM_WRITE_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE0, burst_time);
454 break;
455 case MC_CG_ARB_FREQ_F1:
456 cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING_1, mc_arb_dram_timing);
457 cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2_1, mc_arb_dram_timing2);
458 PHM_WRITE_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE1, burst_time);
459 break;
460 default:
461 return -EINVAL;
462 }
463
464 mc_cg_config = cgs_read_register(hwmgr->device, mmMC_CG_CONFIG);
465 mc_cg_config |= 0x0000000F;
466 cgs_write_register(hwmgr->device, mmMC_CG_CONFIG, mc_cg_config);
467 PHM_WRITE_FIELD(hwmgr->device, MC_ARB_CG, CG_ARB_REQ, arb_dest);
468
469 return 0;
470 }
471
472 static int smu7_reset_to_default(struct pp_hwmgr *hwmgr)
473 {
474 return smum_send_msg_to_smc(hwmgr, PPSMC_MSG_ResetToDefaults);
475 }
476
477 /**
478 * Initial switch from ARB F0->F1
479 *
480 * @param hwmgr the address of the powerplay hardware manager.
481 * @return always 0
482 * This function is to be called from the SetPowerState table.
483 */
484 static int smu7_initial_switch_from_arbf0_to_f1(struct pp_hwmgr *hwmgr)
485 {
486 return smu7_copy_and_switch_arb_sets(hwmgr,
487 MC_CG_ARB_FREQ_F0, MC_CG_ARB_FREQ_F1);
488 }
489
490 static int smu7_force_switch_to_arbf0(struct pp_hwmgr *hwmgr)
491 {
492 uint32_t tmp;
493
494 tmp = (cgs_read_ind_register(hwmgr->device,
495 CGS_IND_REG__SMC, ixSMC_SCRATCH9) &
496 0x0000ff00) >> 8;
497
498 if (tmp == MC_CG_ARB_FREQ_F0)
499 return 0;
500
501 return smu7_copy_and_switch_arb_sets(hwmgr,
502 tmp, MC_CG_ARB_FREQ_F0);
503 }
504
505 static int smu7_setup_default_pcie_table(struct pp_hwmgr *hwmgr)
506 {
507 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
508
509 struct phm_ppt_v1_information *table_info =
510 (struct phm_ppt_v1_information *)(hwmgr->pptable);
511 struct phm_ppt_v1_pcie_table *pcie_table = NULL;
512
513 uint32_t i, max_entry;
514 uint32_t tmp;
515
516 PP_ASSERT_WITH_CODE((data->use_pcie_performance_levels ||
517 data->use_pcie_power_saving_levels), "No pcie performance levels!",
518 return -EINVAL);
519
520 if (table_info != NULL)
521 pcie_table = table_info->pcie_table;
522
523 if (data->use_pcie_performance_levels &&
524 !data->use_pcie_power_saving_levels) {
525 data->pcie_gen_power_saving = data->pcie_gen_performance;
526 data->pcie_lane_power_saving = data->pcie_lane_performance;
527 } else if (!data->use_pcie_performance_levels &&
528 data->use_pcie_power_saving_levels) {
529 data->pcie_gen_performance = data->pcie_gen_power_saving;
530 data->pcie_lane_performance = data->pcie_lane_power_saving;
531 }
532 tmp = smum_get_mac_definition(hwmgr, SMU_MAX_LEVELS_LINK);
533 phm_reset_single_dpm_table(&data->dpm_table.pcie_speed_table,
534 tmp,
535 MAX_REGULAR_DPM_NUMBER);
536
537 if (pcie_table != NULL) {
538 /* max_entry is used to make sure we reserve one PCIE level
539 * for boot level (fix for A+A PSPP issue).
540 * If PCIE table from PPTable have ULV entry + 8 entries,
541 * then ignore the last entry.*/
542 max_entry = (tmp < pcie_table->count) ? tmp : pcie_table->count;
543 for (i = 1; i < max_entry; i++) {
544 phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, i - 1,
545 get_pcie_gen_support(data->pcie_gen_cap,
546 pcie_table->entries[i].gen_speed),
547 get_pcie_lane_support(data->pcie_lane_cap,
548 pcie_table->entries[i].lane_width));
549 }
550 data->dpm_table.pcie_speed_table.count = max_entry - 1;
551 smum_update_smc_table(hwmgr, SMU_BIF_TABLE);
552 } else {
553 /* Hardcode Pcie Table */
554 phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 0,
555 get_pcie_gen_support(data->pcie_gen_cap,
556 PP_Min_PCIEGen),
557 get_pcie_lane_support(data->pcie_lane_cap,
558 PP_Max_PCIELane));
559 phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 1,
560 get_pcie_gen_support(data->pcie_gen_cap,
561 PP_Min_PCIEGen),
562 get_pcie_lane_support(data->pcie_lane_cap,
563 PP_Max_PCIELane));
564 phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 2,
565 get_pcie_gen_support(data->pcie_gen_cap,
566 PP_Max_PCIEGen),
567 get_pcie_lane_support(data->pcie_lane_cap,
568 PP_Max_PCIELane));
569 phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 3,
570 get_pcie_gen_support(data->pcie_gen_cap,
571 PP_Max_PCIEGen),
572 get_pcie_lane_support(data->pcie_lane_cap,
573 PP_Max_PCIELane));
574 phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 4,
575 get_pcie_gen_support(data->pcie_gen_cap,
576 PP_Max_PCIEGen),
577 get_pcie_lane_support(data->pcie_lane_cap,
578 PP_Max_PCIELane));
579 phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 5,
580 get_pcie_gen_support(data->pcie_gen_cap,
581 PP_Max_PCIEGen),
582 get_pcie_lane_support(data->pcie_lane_cap,
583 PP_Max_PCIELane));
584
585 data->dpm_table.pcie_speed_table.count = 6;
586 }
587 /* Populate last level for boot PCIE level, but do not increment count. */
588 if (hwmgr->chip_family == AMDGPU_FAMILY_CI) {
589 for (i = 0; i <= data->dpm_table.pcie_speed_table.count; i++)
590 phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, i,
591 get_pcie_gen_support(data->pcie_gen_cap,
592 PP_Max_PCIEGen),
593 data->vbios_boot_state.pcie_lane_bootup_value);
594 } else {
595 phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table,
596 data->dpm_table.pcie_speed_table.count,
597 get_pcie_gen_support(data->pcie_gen_cap,
598 PP_Min_PCIEGen),
599 get_pcie_lane_support(data->pcie_lane_cap,
600 PP_Max_PCIELane));
601 }
602 return 0;
603 }
604
605 static int smu7_reset_dpm_tables(struct pp_hwmgr *hwmgr)
606 {
607 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
608
609 memset(&(data->dpm_table), 0x00, sizeof(data->dpm_table));
610
611 phm_reset_single_dpm_table(
612 &data->dpm_table.sclk_table,
613 smum_get_mac_definition(hwmgr,
614 SMU_MAX_LEVELS_GRAPHICS),
615 MAX_REGULAR_DPM_NUMBER);
616 phm_reset_single_dpm_table(
617 &data->dpm_table.mclk_table,
618 smum_get_mac_definition(hwmgr,
619 SMU_MAX_LEVELS_MEMORY), MAX_REGULAR_DPM_NUMBER);
620
621 phm_reset_single_dpm_table(
622 &data->dpm_table.vddc_table,
623 smum_get_mac_definition(hwmgr,
624 SMU_MAX_LEVELS_VDDC),
625 MAX_REGULAR_DPM_NUMBER);
626 phm_reset_single_dpm_table(
627 &data->dpm_table.vddci_table,
628 smum_get_mac_definition(hwmgr,
629 SMU_MAX_LEVELS_VDDCI), MAX_REGULAR_DPM_NUMBER);
630
631 phm_reset_single_dpm_table(
632 &data->dpm_table.mvdd_table,
633 smum_get_mac_definition(hwmgr,
634 SMU_MAX_LEVELS_MVDD),
635 MAX_REGULAR_DPM_NUMBER);
636 return 0;
637 }
638 /*
639 * This function is to initialize all DPM state tables
640 * for SMU7 based on the dependency table.
641 * Dynamic state patching function will then trim these
642 * state tables to the allowed range based
643 * on the power policy or external client requests,
644 * such as UVD request, etc.
645 */
646
647 static int smu7_setup_dpm_tables_v0(struct pp_hwmgr *hwmgr)
648 {
649 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
650 struct phm_clock_voltage_dependency_table *allowed_vdd_sclk_table =
651 hwmgr->dyn_state.vddc_dependency_on_sclk;
652 struct phm_clock_voltage_dependency_table *allowed_vdd_mclk_table =
653 hwmgr->dyn_state.vddc_dependency_on_mclk;
654 struct phm_cac_leakage_table *std_voltage_table =
655 hwmgr->dyn_state.cac_leakage_table;
656 uint32_t i;
657
658 PP_ASSERT_WITH_CODE(allowed_vdd_sclk_table != NULL,
659 "SCLK dependency table is missing. This table is mandatory", return -EINVAL);
660 PP_ASSERT_WITH_CODE(allowed_vdd_sclk_table->count >= 1,
661 "SCLK dependency table has to have is missing. This table is mandatory", return -EINVAL);
662
663 PP_ASSERT_WITH_CODE(allowed_vdd_mclk_table != NULL,
664 "MCLK dependency table is missing. This table is mandatory", return -EINVAL);
665 PP_ASSERT_WITH_CODE(allowed_vdd_mclk_table->count >= 1,
666 "VMCLK dependency table has to have is missing. This table is mandatory", return -EINVAL);
667
668
669 /* Initialize Sclk DPM table based on allow Sclk values*/
670 data->dpm_table.sclk_table.count = 0;
671
672 for (i = 0; i < allowed_vdd_sclk_table->count; i++) {
673 if (i == 0 || data->dpm_table.sclk_table.dpm_levels[data->dpm_table.sclk_table.count-1].value !=
674 allowed_vdd_sclk_table->entries[i].clk) {
675 data->dpm_table.sclk_table.dpm_levels[data->dpm_table.sclk_table.count].value =
676 allowed_vdd_sclk_table->entries[i].clk;
677 data->dpm_table.sclk_table.dpm_levels[data->dpm_table.sclk_table.count].enabled = (i == 0) ? 1 : 0;
678 data->dpm_table.sclk_table.count++;
679 }
680 }
681
682 PP_ASSERT_WITH_CODE(allowed_vdd_mclk_table != NULL,
683 "MCLK dependency table is missing. This table is mandatory", return -EINVAL);
684 /* Initialize Mclk DPM table based on allow Mclk values */
685 data->dpm_table.mclk_table.count = 0;
686 for (i = 0; i < allowed_vdd_mclk_table->count; i++) {
687 if (i == 0 || data->dpm_table.mclk_table.dpm_levels[data->dpm_table.mclk_table.count-1].value !=
688 allowed_vdd_mclk_table->entries[i].clk) {
689 data->dpm_table.mclk_table.dpm_levels[data->dpm_table.mclk_table.count].value =
690 allowed_vdd_mclk_table->entries[i].clk;
691 data->dpm_table.mclk_table.dpm_levels[data->dpm_table.mclk_table.count].enabled = (i == 0) ? 1 : 0;
692 data->dpm_table.mclk_table.count++;
693 }
694 }
695
696 /* Initialize Vddc DPM table based on allow Vddc values. And populate corresponding std values. */
697 for (i = 0; i < allowed_vdd_sclk_table->count; i++) {
698 data->dpm_table.vddc_table.dpm_levels[i].value = allowed_vdd_mclk_table->entries[i].v;
699 data->dpm_table.vddc_table.dpm_levels[i].param1 = std_voltage_table->entries[i].Leakage;
700 /* param1 is for corresponding std voltage */
701 data->dpm_table.vddc_table.dpm_levels[i].enabled = 1;
702 }
703
704 data->dpm_table.vddc_table.count = allowed_vdd_sclk_table->count;
705 allowed_vdd_mclk_table = hwmgr->dyn_state.vddci_dependency_on_mclk;
706
707 if (NULL != allowed_vdd_mclk_table) {
708 /* Initialize Vddci DPM table based on allow Mclk values */
709 for (i = 0; i < allowed_vdd_mclk_table->count; i++) {
710 data->dpm_table.vddci_table.dpm_levels[i].value = allowed_vdd_mclk_table->entries[i].v;
711 data->dpm_table.vddci_table.dpm_levels[i].enabled = 1;
712 }
713 data->dpm_table.vddci_table.count = allowed_vdd_mclk_table->count;
714 }
715
716 allowed_vdd_mclk_table = hwmgr->dyn_state.mvdd_dependency_on_mclk;
717
718 if (NULL != allowed_vdd_mclk_table) {
719 /*
720 * Initialize MVDD DPM table based on allow Mclk
721 * values
722 */
723 for (i = 0; i < allowed_vdd_mclk_table->count; i++) {
724 data->dpm_table.mvdd_table.dpm_levels[i].value = allowed_vdd_mclk_table->entries[i].v;
725 data->dpm_table.mvdd_table.dpm_levels[i].enabled = 1;
726 }
727 data->dpm_table.mvdd_table.count = allowed_vdd_mclk_table->count;
728 }
729
730 return 0;
731 }
732
733 static int smu7_setup_dpm_tables_v1(struct pp_hwmgr *hwmgr)
734 {
735 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
736 struct phm_ppt_v1_information *table_info =
737 (struct phm_ppt_v1_information *)(hwmgr->pptable);
738 uint32_t i;
739
740 struct phm_ppt_v1_clock_voltage_dependency_table *dep_sclk_table;
741 struct phm_ppt_v1_clock_voltage_dependency_table *dep_mclk_table;
742
743 if (table_info == NULL)
744 return -EINVAL;
745
746 dep_sclk_table = table_info->vdd_dep_on_sclk;
747 dep_mclk_table = table_info->vdd_dep_on_mclk;
748
749 PP_ASSERT_WITH_CODE(dep_sclk_table != NULL,
750 "SCLK dependency table is missing.",
751 return -EINVAL);
752 PP_ASSERT_WITH_CODE(dep_sclk_table->count >= 1,
753 "SCLK dependency table count is 0.",
754 return -EINVAL);
755
756 PP_ASSERT_WITH_CODE(dep_mclk_table != NULL,
757 "MCLK dependency table is missing.",
758 return -EINVAL);
759 PP_ASSERT_WITH_CODE(dep_mclk_table->count >= 1,
760 "MCLK dependency table count is 0",
761 return -EINVAL);
762
763 /* Initialize Sclk DPM table based on allow Sclk values */
764 data->dpm_table.sclk_table.count = 0;
765 for (i = 0; i < dep_sclk_table->count; i++) {
766 if (i == 0 || data->dpm_table.sclk_table.dpm_levels[data->dpm_table.sclk_table.count - 1].value !=
767 dep_sclk_table->entries[i].clk) {
768
769 data->dpm_table.sclk_table.dpm_levels[data->dpm_table.sclk_table.count].value =
770 dep_sclk_table->entries[i].clk;
771
772 data->dpm_table.sclk_table.dpm_levels[data->dpm_table.sclk_table.count].enabled =
773 (i == 0) ? true : false;
774 data->dpm_table.sclk_table.count++;
775 }
776 }
777
778 /* Initialize Mclk DPM table based on allow Mclk values */
779 data->dpm_table.mclk_table.count = 0;
780 for (i = 0; i < dep_mclk_table->count; i++) {
781 if (i == 0 || data->dpm_table.mclk_table.dpm_levels
782 [data->dpm_table.mclk_table.count - 1].value !=
783 dep_mclk_table->entries[i].clk) {
784 data->dpm_table.mclk_table.dpm_levels[data->dpm_table.mclk_table.count].value =
785 dep_mclk_table->entries[i].clk;
786 data->dpm_table.mclk_table.dpm_levels[data->dpm_table.mclk_table.count].enabled =
787 (i == 0) ? true : false;
788 data->dpm_table.mclk_table.count++;
789 }
790 }
791
792 return 0;
793 }
794
795 static int smu7_setup_default_dpm_tables(struct pp_hwmgr *hwmgr)
796 {
797 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
798
799 smu7_reset_dpm_tables(hwmgr);
800
801 if (hwmgr->pp_table_version == PP_TABLE_V1)
802 smu7_setup_dpm_tables_v1(hwmgr);
803 else if (hwmgr->pp_table_version == PP_TABLE_V0)
804 smu7_setup_dpm_tables_v0(hwmgr);
805
806 smu7_setup_default_pcie_table(hwmgr);
807
808 /* save a copy of the default DPM table */
809 memcpy(&(data->golden_dpm_table), &(data->dpm_table),
810 sizeof(struct smu7_dpm_table));
811 return 0;
812 }
813
814 uint32_t smu7_get_xclk(struct pp_hwmgr *hwmgr)
815 {
816 uint32_t reference_clock, tmp;
817 struct cgs_display_info info = {0};
818 struct cgs_mode_info mode_info = {0};
819
820 info.mode_info = &mode_info;
821
822 tmp = PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, CG_CLKPIN_CNTL_2, MUX_TCLK_TO_XCLK);
823
824 if (tmp)
825 return TCLK;
826
827 cgs_get_active_displays_info(hwmgr->device, &info);
828 reference_clock = mode_info.ref_clock;
829
830 tmp = PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, CG_CLKPIN_CNTL, XTALIN_DIVIDE);
831
832 if (0 != tmp)
833 return reference_clock / 4;
834
835 return reference_clock;
836 }
837
838 static int smu7_enable_vrhot_gpio_interrupt(struct pp_hwmgr *hwmgr)
839 {
840
841 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
842 PHM_PlatformCaps_RegulatorHot))
843 return smum_send_msg_to_smc(hwmgr,
844 PPSMC_MSG_EnableVRHotGPIOInterrupt);
845
846 return 0;
847 }
848
849 static int smu7_enable_sclk_control(struct pp_hwmgr *hwmgr)
850 {
851 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SCLK_PWRMGT_CNTL,
852 SCLK_PWRMGT_OFF, 0);
853 return 0;
854 }
855
856 static int smu7_enable_ulv(struct pp_hwmgr *hwmgr)
857 {
858 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
859
860 if (data->ulv_supported)
861 return smum_send_msg_to_smc(hwmgr, PPSMC_MSG_EnableULV);
862
863 return 0;
864 }
865
866 static int smu7_disable_ulv(struct pp_hwmgr *hwmgr)
867 {
868 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
869
870 if (data->ulv_supported)
871 return smum_send_msg_to_smc(hwmgr, PPSMC_MSG_DisableULV);
872
873 return 0;
874 }
875
876 static int smu7_enable_deep_sleep_master_switch(struct pp_hwmgr *hwmgr)
877 {
878 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
879 PHM_PlatformCaps_SclkDeepSleep)) {
880 if (smum_send_msg_to_smc(hwmgr, PPSMC_MSG_MASTER_DeepSleep_ON))
881 PP_ASSERT_WITH_CODE(false,
882 "Attempt to enable Master Deep Sleep switch failed!",
883 return -EINVAL);
884 } else {
885 if (smum_send_msg_to_smc(hwmgr,
886 PPSMC_MSG_MASTER_DeepSleep_OFF)) {
887 PP_ASSERT_WITH_CODE(false,
888 "Attempt to disable Master Deep Sleep switch failed!",
889 return -EINVAL);
890 }
891 }
892
893 return 0;
894 }
895
896 static int smu7_disable_deep_sleep_master_switch(struct pp_hwmgr *hwmgr)
897 {
898 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
899 PHM_PlatformCaps_SclkDeepSleep)) {
900 if (smum_send_msg_to_smc(hwmgr,
901 PPSMC_MSG_MASTER_DeepSleep_OFF)) {
902 PP_ASSERT_WITH_CODE(false,
903 "Attempt to disable Master Deep Sleep switch failed!",
904 return -EINVAL);
905 }
906 }
907
908 return 0;
909 }
910
911 static int smu7_disable_handshake_uvd(struct pp_hwmgr *hwmgr)
912 {
913 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
914 uint32_t soft_register_value = 0;
915 uint32_t handshake_disables_offset = data->soft_regs_start
916 + smum_get_offsetof(hwmgr,
917 SMU_SoftRegisters, HandshakeDisables);
918
919 soft_register_value = cgs_read_ind_register(hwmgr->device,
920 CGS_IND_REG__SMC, handshake_disables_offset);
921 soft_register_value |= smum_get_mac_definition(hwmgr,
922 SMU_UVD_MCLK_HANDSHAKE_DISABLE);
923 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
924 handshake_disables_offset, soft_register_value);
925 return 0;
926 }
927
928 static int smu7_enable_sclk_mclk_dpm(struct pp_hwmgr *hwmgr)
929 {
930 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
931
932 /* enable SCLK dpm */
933 if (!data->sclk_dpm_key_disabled)
934 PP_ASSERT_WITH_CODE(
935 (0 == smum_send_msg_to_smc(hwmgr, PPSMC_MSG_DPM_Enable)),
936 "Failed to enable SCLK DPM during DPM Start Function!",
937 return -EINVAL);
938
939 /* enable MCLK dpm */
940 if (0 == data->mclk_dpm_key_disabled) {
941 if (!(hwmgr->feature_mask & PP_UVD_HANDSHAKE_MASK))
942 smu7_disable_handshake_uvd(hwmgr);
943 PP_ASSERT_WITH_CODE(
944 (0 == smum_send_msg_to_smc(hwmgr,
945 PPSMC_MSG_MCLKDPM_Enable)),
946 "Failed to enable MCLK DPM during DPM Start Function!",
947 return -EINVAL);
948
949 PHM_WRITE_FIELD(hwmgr->device, MC_SEQ_CNTL_3, CAC_EN, 0x1);
950
951
952 if (hwmgr->chip_family == AMDGPU_FAMILY_CI) {
953 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, 0xc0400d30, 0x5);
954 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, 0xc0400d3c, 0x5);
955 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, 0xc0400d80, 0x100005);
956 udelay(10);
957 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, 0xc0400d30, 0x400005);
958 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, 0xc0400d3c, 0x400005);
959 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, 0xc0400d80, 0x500005);
960 } else {
961 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_MC0_CNTL, 0x5);
962 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_MC1_CNTL, 0x5);
963 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_CPL_CNTL, 0x100005);
964 udelay(10);
965 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_MC0_CNTL, 0x400005);
966 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_MC1_CNTL, 0x400005);
967 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_CPL_CNTL, 0x500005);
968 }
969 }
970
971 return 0;
972 }
973
974 static int smu7_start_dpm(struct pp_hwmgr *hwmgr)
975 {
976 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
977
978 /*enable general power management */
979
980 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT,
981 GLOBAL_PWRMGT_EN, 1);
982
983 /* enable sclk deep sleep */
984
985 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SCLK_PWRMGT_CNTL,
986 DYNAMIC_PM_EN, 1);
987
988 /* prepare for PCIE DPM */
989
990 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
991 data->soft_regs_start +
992 smum_get_offsetof(hwmgr, SMU_SoftRegisters,
993 VoltageChangeTimeout), 0x1000);
994 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__PCIE,
995 SWRST_COMMAND_1, RESETLC, 0x0);
996
997 if (hwmgr->chip_family == AMDGPU_FAMILY_CI)
998 cgs_write_register(hwmgr->device, 0x1488,
999 (cgs_read_register(hwmgr->device, 0x1488) & ~0x1));
1000
1001 if (smu7_enable_sclk_mclk_dpm(hwmgr)) {
1002 pr_err("Failed to enable Sclk DPM and Mclk DPM!");
1003 return -EINVAL;
1004 }
1005
1006 /* enable PCIE dpm */
1007 if (0 == data->pcie_dpm_key_disabled) {
1008 PP_ASSERT_WITH_CODE(
1009 (0 == smum_send_msg_to_smc(hwmgr,
1010 PPSMC_MSG_PCIeDPM_Enable)),
1011 "Failed to enable pcie DPM during DPM Start Function!",
1012 return -EINVAL);
1013 }
1014
1015 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1016 PHM_PlatformCaps_Falcon_QuickTransition)) {
1017 PP_ASSERT_WITH_CODE((0 == smum_send_msg_to_smc(hwmgr,
1018 PPSMC_MSG_EnableACDCGPIOInterrupt)),
1019 "Failed to enable AC DC GPIO Interrupt!",
1020 );
1021 }
1022
1023 return 0;
1024 }
1025
1026 static int smu7_disable_sclk_mclk_dpm(struct pp_hwmgr *hwmgr)
1027 {
1028 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1029
1030 /* disable SCLK dpm */
1031 if (!data->sclk_dpm_key_disabled) {
1032 PP_ASSERT_WITH_CODE(true == smum_is_dpm_running(hwmgr),
1033 "Trying to disable SCLK DPM when DPM is disabled",
1034 return 0);
1035 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_DPM_Disable);
1036 }
1037
1038 /* disable MCLK dpm */
1039 if (!data->mclk_dpm_key_disabled) {
1040 PP_ASSERT_WITH_CODE(true == smum_is_dpm_running(hwmgr),
1041 "Trying to disable MCLK DPM when DPM is disabled",
1042 return 0);
1043 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_MCLKDPM_Disable);
1044 }
1045
1046 return 0;
1047 }
1048
1049 static int smu7_stop_dpm(struct pp_hwmgr *hwmgr)
1050 {
1051 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1052
1053 /* disable general power management */
1054 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT,
1055 GLOBAL_PWRMGT_EN, 0);
1056 /* disable sclk deep sleep */
1057 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SCLK_PWRMGT_CNTL,
1058 DYNAMIC_PM_EN, 0);
1059
1060 /* disable PCIE dpm */
1061 if (!data->pcie_dpm_key_disabled) {
1062 PP_ASSERT_WITH_CODE(
1063 (smum_send_msg_to_smc(hwmgr,
1064 PPSMC_MSG_PCIeDPM_Disable) == 0),
1065 "Failed to disable pcie DPM during DPM Stop Function!",
1066 return -EINVAL);
1067 }
1068
1069 smu7_disable_sclk_mclk_dpm(hwmgr);
1070
1071 PP_ASSERT_WITH_CODE(true == smum_is_dpm_running(hwmgr),
1072 "Trying to disable voltage DPM when DPM is disabled",
1073 return 0);
1074
1075 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_Voltage_Cntl_Disable);
1076
1077 return 0;
1078 }
1079
1080 static void smu7_set_dpm_event_sources(struct pp_hwmgr *hwmgr, uint32_t sources)
1081 {
1082 bool protection;
1083 enum DPM_EVENT_SRC src;
1084
1085 switch (sources) {
1086 default:
1087 pr_err("Unknown throttling event sources.");
1088 /* fall through */
1089 case 0:
1090 protection = false;
1091 /* src is unused */
1092 break;
1093 case (1 << PHM_AutoThrottleSource_Thermal):
1094 protection = true;
1095 src = DPM_EVENT_SRC_DIGITAL;
1096 break;
1097 case (1 << PHM_AutoThrottleSource_External):
1098 protection = true;
1099 src = DPM_EVENT_SRC_EXTERNAL;
1100 break;
1101 case (1 << PHM_AutoThrottleSource_External) |
1102 (1 << PHM_AutoThrottleSource_Thermal):
1103 protection = true;
1104 src = DPM_EVENT_SRC_DIGITAL_OR_EXTERNAL;
1105 break;
1106 }
1107 /* Order matters - don't enable thermal protection for the wrong source. */
1108 if (protection) {
1109 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, CG_THERMAL_CTRL,
1110 DPM_EVENT_SRC, src);
1111 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT,
1112 THERMAL_PROTECTION_DIS,
1113 !phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1114 PHM_PlatformCaps_ThermalController));
1115 } else
1116 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT,
1117 THERMAL_PROTECTION_DIS, 1);
1118 }
1119
1120 static int smu7_enable_auto_throttle_source(struct pp_hwmgr *hwmgr,
1121 PHM_AutoThrottleSource source)
1122 {
1123 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1124
1125 if (!(data->active_auto_throttle_sources & (1 << source))) {
1126 data->active_auto_throttle_sources |= 1 << source;
1127 smu7_set_dpm_event_sources(hwmgr, data->active_auto_throttle_sources);
1128 }
1129 return 0;
1130 }
1131
1132 static int smu7_enable_thermal_auto_throttle(struct pp_hwmgr *hwmgr)
1133 {
1134 return smu7_enable_auto_throttle_source(hwmgr, PHM_AutoThrottleSource_Thermal);
1135 }
1136
1137 static int smu7_disable_auto_throttle_source(struct pp_hwmgr *hwmgr,
1138 PHM_AutoThrottleSource source)
1139 {
1140 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1141
1142 if (data->active_auto_throttle_sources & (1 << source)) {
1143 data->active_auto_throttle_sources &= ~(1 << source);
1144 smu7_set_dpm_event_sources(hwmgr, data->active_auto_throttle_sources);
1145 }
1146 return 0;
1147 }
1148
1149 static int smu7_disable_thermal_auto_throttle(struct pp_hwmgr *hwmgr)
1150 {
1151 return smu7_disable_auto_throttle_source(hwmgr, PHM_AutoThrottleSource_Thermal);
1152 }
1153
1154 static int smu7_pcie_performance_request(struct pp_hwmgr *hwmgr)
1155 {
1156 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1157 data->pcie_performance_request = true;
1158
1159 return 0;
1160 }
1161
1162 static int smu7_enable_dpm_tasks(struct pp_hwmgr *hwmgr)
1163 {
1164 int tmp_result = 0;
1165 int result = 0;
1166
1167 tmp_result = (!smum_is_dpm_running(hwmgr)) ? 0 : -1;
1168 PP_ASSERT_WITH_CODE(tmp_result == 0,
1169 "DPM is already running",
1170 );
1171
1172 if (smu7_voltage_control(hwmgr)) {
1173 tmp_result = smu7_enable_voltage_control(hwmgr);
1174 PP_ASSERT_WITH_CODE(tmp_result == 0,
1175 "Failed to enable voltage control!",
1176 result = tmp_result);
1177
1178 tmp_result = smu7_construct_voltage_tables(hwmgr);
1179 PP_ASSERT_WITH_CODE((0 == tmp_result),
1180 "Failed to contruct voltage tables!",
1181 result = tmp_result);
1182 }
1183 smum_initialize_mc_reg_table(hwmgr);
1184
1185 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1186 PHM_PlatformCaps_EngineSpreadSpectrumSupport))
1187 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
1188 GENERAL_PWRMGT, DYN_SPREAD_SPECTRUM_EN, 1);
1189
1190 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1191 PHM_PlatformCaps_ThermalController))
1192 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
1193 GENERAL_PWRMGT, THERMAL_PROTECTION_DIS, 0);
1194
1195 tmp_result = smu7_program_static_screen_threshold_parameters(hwmgr);
1196 PP_ASSERT_WITH_CODE((0 == tmp_result),
1197 "Failed to program static screen threshold parameters!",
1198 result = tmp_result);
1199
1200 tmp_result = smu7_enable_display_gap(hwmgr);
1201 PP_ASSERT_WITH_CODE((0 == tmp_result),
1202 "Failed to enable display gap!", result = tmp_result);
1203
1204 tmp_result = smu7_program_voting_clients(hwmgr);
1205 PP_ASSERT_WITH_CODE((0 == tmp_result),
1206 "Failed to program voting clients!", result = tmp_result);
1207
1208 tmp_result = smum_process_firmware_header(hwmgr);
1209 PP_ASSERT_WITH_CODE((0 == tmp_result),
1210 "Failed to process firmware header!", result = tmp_result);
1211
1212 tmp_result = smu7_initial_switch_from_arbf0_to_f1(hwmgr);
1213 PP_ASSERT_WITH_CODE((0 == tmp_result),
1214 "Failed to initialize switch from ArbF0 to F1!",
1215 result = tmp_result);
1216
1217 result = smu7_setup_default_dpm_tables(hwmgr);
1218 PP_ASSERT_WITH_CODE(0 == result,
1219 "Failed to setup default DPM tables!", return result);
1220
1221 tmp_result = smum_init_smc_table(hwmgr);
1222 PP_ASSERT_WITH_CODE((0 == tmp_result),
1223 "Failed to initialize SMC table!", result = tmp_result);
1224
1225 tmp_result = smu7_enable_vrhot_gpio_interrupt(hwmgr);
1226 PP_ASSERT_WITH_CODE((0 == tmp_result),
1227 "Failed to enable VR hot GPIO interrupt!", result = tmp_result);
1228
1229 smum_send_msg_to_smc(hwmgr, (PPSMC_Msg)PPSMC_NoDisplay);
1230
1231 tmp_result = smu7_enable_sclk_control(hwmgr);
1232 PP_ASSERT_WITH_CODE((0 == tmp_result),
1233 "Failed to enable SCLK control!", result = tmp_result);
1234
1235 tmp_result = smu7_enable_smc_voltage_controller(hwmgr);
1236 PP_ASSERT_WITH_CODE((0 == tmp_result),
1237 "Failed to enable voltage control!", result = tmp_result);
1238
1239 tmp_result = smu7_enable_ulv(hwmgr);
1240 PP_ASSERT_WITH_CODE((0 == tmp_result),
1241 "Failed to enable ULV!", result = tmp_result);
1242
1243 tmp_result = smu7_enable_deep_sleep_master_switch(hwmgr);
1244 PP_ASSERT_WITH_CODE((0 == tmp_result),
1245 "Failed to enable deep sleep master switch!", result = tmp_result);
1246
1247 tmp_result = smu7_enable_didt_config(hwmgr);
1248 PP_ASSERT_WITH_CODE((tmp_result == 0),
1249 "Failed to enable deep sleep master switch!", result = tmp_result);
1250
1251 tmp_result = smu7_start_dpm(hwmgr);
1252 PP_ASSERT_WITH_CODE((0 == tmp_result),
1253 "Failed to start DPM!", result = tmp_result);
1254
1255 tmp_result = smu7_enable_smc_cac(hwmgr);
1256 PP_ASSERT_WITH_CODE((0 == tmp_result),
1257 "Failed to enable SMC CAC!", result = tmp_result);
1258
1259 tmp_result = smu7_enable_power_containment(hwmgr);
1260 PP_ASSERT_WITH_CODE((0 == tmp_result),
1261 "Failed to enable power containment!", result = tmp_result);
1262
1263 tmp_result = smu7_power_control_set_level(hwmgr);
1264 PP_ASSERT_WITH_CODE((0 == tmp_result),
1265 "Failed to power control set level!", result = tmp_result);
1266
1267 tmp_result = smu7_enable_thermal_auto_throttle(hwmgr);
1268 PP_ASSERT_WITH_CODE((0 == tmp_result),
1269 "Failed to enable thermal auto throttle!", result = tmp_result);
1270
1271 tmp_result = smu7_pcie_performance_request(hwmgr);
1272 PP_ASSERT_WITH_CODE((0 == tmp_result),
1273 "pcie performance request failed!", result = tmp_result);
1274
1275 return 0;
1276 }
1277
1278 int smu7_disable_dpm_tasks(struct pp_hwmgr *hwmgr)
1279 {
1280 int tmp_result, result = 0;
1281
1282 tmp_result = (smum_is_dpm_running(hwmgr)) ? 0 : -1;
1283 PP_ASSERT_WITH_CODE(tmp_result == 0,
1284 "DPM is not running right now, no need to disable DPM!",
1285 return 0);
1286
1287 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1288 PHM_PlatformCaps_ThermalController))
1289 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
1290 GENERAL_PWRMGT, THERMAL_PROTECTION_DIS, 1);
1291
1292 tmp_result = smu7_disable_power_containment(hwmgr);
1293 PP_ASSERT_WITH_CODE((tmp_result == 0),
1294 "Failed to disable power containment!", result = tmp_result);
1295
1296 tmp_result = smu7_disable_smc_cac(hwmgr);
1297 PP_ASSERT_WITH_CODE((tmp_result == 0),
1298 "Failed to disable SMC CAC!", result = tmp_result);
1299
1300 tmp_result = smu7_disable_didt_config(hwmgr);
1301 PP_ASSERT_WITH_CODE((tmp_result == 0),
1302 "Failed to disable DIDT!", result = tmp_result);
1303
1304 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
1305 CG_SPLL_SPREAD_SPECTRUM, SSEN, 0);
1306 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
1307 GENERAL_PWRMGT, DYN_SPREAD_SPECTRUM_EN, 0);
1308
1309 tmp_result = smu7_disable_thermal_auto_throttle(hwmgr);
1310 PP_ASSERT_WITH_CODE((tmp_result == 0),
1311 "Failed to disable thermal auto throttle!", result = tmp_result);
1312
1313 tmp_result = smu7_avfs_control(hwmgr, false);
1314 PP_ASSERT_WITH_CODE((tmp_result == 0),
1315 "Failed to disable AVFS!", result = tmp_result);
1316
1317 tmp_result = smu7_stop_dpm(hwmgr);
1318 PP_ASSERT_WITH_CODE((tmp_result == 0),
1319 "Failed to stop DPM!", result = tmp_result);
1320
1321 tmp_result = smu7_disable_deep_sleep_master_switch(hwmgr);
1322 PP_ASSERT_WITH_CODE((tmp_result == 0),
1323 "Failed to disable deep sleep master switch!", result = tmp_result);
1324
1325 tmp_result = smu7_disable_ulv(hwmgr);
1326 PP_ASSERT_WITH_CODE((tmp_result == 0),
1327 "Failed to disable ULV!", result = tmp_result);
1328
1329 tmp_result = smu7_clear_voting_clients(hwmgr);
1330 PP_ASSERT_WITH_CODE((tmp_result == 0),
1331 "Failed to clear voting clients!", result = tmp_result);
1332
1333 tmp_result = smu7_reset_to_default(hwmgr);
1334 PP_ASSERT_WITH_CODE((tmp_result == 0),
1335 "Failed to reset to default!", result = tmp_result);
1336
1337 tmp_result = smu7_force_switch_to_arbf0(hwmgr);
1338 PP_ASSERT_WITH_CODE((tmp_result == 0),
1339 "Failed to force to switch arbf0!", result = tmp_result);
1340
1341 return result;
1342 }
1343
1344 int smu7_reset_asic_tasks(struct pp_hwmgr *hwmgr)
1345 {
1346
1347 return 0;
1348 }
1349
1350 static void smu7_init_dpm_defaults(struct pp_hwmgr *hwmgr)
1351 {
1352 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1353 struct phm_ppt_v1_information *table_info =
1354 (struct phm_ppt_v1_information *)(hwmgr->pptable);
1355 struct cgs_system_info sys_info = {0};
1356 int result;
1357
1358 data->dll_default_on = false;
1359 data->mclk_dpm0_activity_target = 0xa;
1360 data->mclk_activity_target = SMU7_MCLK_TARGETACTIVITY_DFLT;
1361 data->vddc_vddgfx_delta = 300;
1362 data->static_screen_threshold = SMU7_STATICSCREENTHRESHOLD_DFLT;
1363 data->static_screen_threshold_unit = SMU7_STATICSCREENTHRESHOLDUNIT_DFLT;
1364 data->voting_rights_clients[0] = SMU7_VOTINGRIGHTSCLIENTS_DFLT0;
1365 data->voting_rights_clients[1]= SMU7_VOTINGRIGHTSCLIENTS_DFLT1;
1366 data->voting_rights_clients[2] = SMU7_VOTINGRIGHTSCLIENTS_DFLT2;
1367 data->voting_rights_clients[3]= SMU7_VOTINGRIGHTSCLIENTS_DFLT3;
1368 data->voting_rights_clients[4]= SMU7_VOTINGRIGHTSCLIENTS_DFLT4;
1369 data->voting_rights_clients[5]= SMU7_VOTINGRIGHTSCLIENTS_DFLT5;
1370 data->voting_rights_clients[6]= SMU7_VOTINGRIGHTSCLIENTS_DFLT6;
1371 data->voting_rights_clients[7]= SMU7_VOTINGRIGHTSCLIENTS_DFLT7;
1372
1373 data->mclk_dpm_key_disabled = hwmgr->feature_mask & PP_MCLK_DPM_MASK ? false : true;
1374 data->sclk_dpm_key_disabled = hwmgr->feature_mask & PP_SCLK_DPM_MASK ? false : true;
1375 data->pcie_dpm_key_disabled = hwmgr->feature_mask & PP_PCIE_DPM_MASK ? false : true;
1376 /* need to set voltage control types before EVV patching */
1377 data->voltage_control = SMU7_VOLTAGE_CONTROL_NONE;
1378 data->vddci_control = SMU7_VOLTAGE_CONTROL_NONE;
1379 data->mvdd_control = SMU7_VOLTAGE_CONTROL_NONE;
1380 data->enable_tdc_limit_feature = true;
1381 data->enable_pkg_pwr_tracking_feature = true;
1382 data->force_pcie_gen = PP_PCIEGenInvalid;
1383 data->ulv_supported = hwmgr->feature_mask & PP_ULV_MASK ? true : false;
1384
1385 if (hwmgr->chip_id == CHIP_POLARIS12 || hwmgr->is_kicker) {
1386 uint8_t tmp1, tmp2;
1387 uint16_t tmp3 = 0;
1388 atomctrl_get_svi2_info(hwmgr, VOLTAGE_TYPE_VDDC, &tmp1, &tmp2,
1389 &tmp3);
1390 tmp3 = (tmp3 >> 5) & 0x3;
1391 data->vddc_phase_shed_control = ((tmp3 << 1) | (tmp3 >> 1)) & 0x3;
1392 } else if (hwmgr->chip_family == AMDGPU_FAMILY_CI) {
1393 data->vddc_phase_shed_control = 1;
1394 } else {
1395 data->vddc_phase_shed_control = 0;
1396 }
1397
1398 if (hwmgr->chip_id == CHIP_HAWAII) {
1399 data->thermal_temp_setting.temperature_low = 94500;
1400 data->thermal_temp_setting.temperature_high = 95000;
1401 data->thermal_temp_setting.temperature_shutdown = 104000;
1402 } else {
1403 data->thermal_temp_setting.temperature_low = 99500;
1404 data->thermal_temp_setting.temperature_high = 100000;
1405 data->thermal_temp_setting.temperature_shutdown = 104000;
1406 }
1407
1408 data->fast_watermark_threshold = 100;
1409 if (atomctrl_is_voltage_controlled_by_gpio_v3(hwmgr,
1410 VOLTAGE_TYPE_VDDC, VOLTAGE_OBJ_SVID2))
1411 data->voltage_control = SMU7_VOLTAGE_CONTROL_BY_SVID2;
1412 else if (atomctrl_is_voltage_controlled_by_gpio_v3(hwmgr,
1413 VOLTAGE_TYPE_VDDC, VOLTAGE_OBJ_GPIO_LUT))
1414 data->voltage_control = SMU7_VOLTAGE_CONTROL_BY_GPIO;
1415
1416 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1417 PHM_PlatformCaps_ControlVDDGFX)) {
1418 if (atomctrl_is_voltage_controlled_by_gpio_v3(hwmgr,
1419 VOLTAGE_TYPE_VDDGFX, VOLTAGE_OBJ_SVID2)) {
1420 data->vdd_gfx_control = SMU7_VOLTAGE_CONTROL_BY_SVID2;
1421 }
1422 }
1423
1424 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1425 PHM_PlatformCaps_EnableMVDDControl)) {
1426 if (atomctrl_is_voltage_controlled_by_gpio_v3(hwmgr,
1427 VOLTAGE_TYPE_MVDDC, VOLTAGE_OBJ_GPIO_LUT))
1428 data->mvdd_control = SMU7_VOLTAGE_CONTROL_BY_GPIO;
1429 else if (atomctrl_is_voltage_controlled_by_gpio_v3(hwmgr,
1430 VOLTAGE_TYPE_MVDDC, VOLTAGE_OBJ_SVID2))
1431 data->mvdd_control = SMU7_VOLTAGE_CONTROL_BY_SVID2;
1432 }
1433
1434 if (SMU7_VOLTAGE_CONTROL_NONE == data->vdd_gfx_control)
1435 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
1436 PHM_PlatformCaps_ControlVDDGFX);
1437
1438 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1439 PHM_PlatformCaps_ControlVDDCI)) {
1440 if (atomctrl_is_voltage_controlled_by_gpio_v3(hwmgr,
1441 VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_GPIO_LUT))
1442 data->vddci_control = SMU7_VOLTAGE_CONTROL_BY_GPIO;
1443 else if (atomctrl_is_voltage_controlled_by_gpio_v3(hwmgr,
1444 VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_SVID2))
1445 data->vddci_control = SMU7_VOLTAGE_CONTROL_BY_SVID2;
1446 }
1447
1448 if (data->mvdd_control == SMU7_VOLTAGE_CONTROL_NONE)
1449 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
1450 PHM_PlatformCaps_EnableMVDDControl);
1451
1452 if (data->vddci_control == SMU7_VOLTAGE_CONTROL_NONE)
1453 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
1454 PHM_PlatformCaps_ControlVDDCI);
1455
1456 if ((hwmgr->pp_table_version != PP_TABLE_V0) && (hwmgr->feature_mask & PP_CLOCK_STRETCH_MASK)
1457 && (table_info->cac_dtp_table->usClockStretchAmount != 0))
1458 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
1459 PHM_PlatformCaps_ClockStretcher);
1460
1461 data->pcie_gen_performance.max = PP_PCIEGen1;
1462 data->pcie_gen_performance.min = PP_PCIEGen3;
1463 data->pcie_gen_power_saving.max = PP_PCIEGen1;
1464 data->pcie_gen_power_saving.min = PP_PCIEGen3;
1465 data->pcie_lane_performance.max = 0;
1466 data->pcie_lane_performance.min = 16;
1467 data->pcie_lane_power_saving.max = 0;
1468 data->pcie_lane_power_saving.min = 16;
1469
1470 sys_info.size = sizeof(struct cgs_system_info);
1471 sys_info.info_id = CGS_SYSTEM_INFO_PG_FLAGS;
1472 result = cgs_query_system_info(hwmgr->device, &sys_info);
1473 if (!result) {
1474 if (sys_info.value & AMD_PG_SUPPORT_UVD)
1475 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
1476 PHM_PlatformCaps_UVDPowerGating);
1477 if (sys_info.value & AMD_PG_SUPPORT_VCE)
1478 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
1479 PHM_PlatformCaps_VCEPowerGating);
1480 }
1481 }
1482
1483 /**
1484 * Get Leakage VDDC based on leakage ID.
1485 *
1486 * @param hwmgr the address of the powerplay hardware manager.
1487 * @return always 0
1488 */
1489 static int smu7_get_evv_voltages(struct pp_hwmgr *hwmgr)
1490 {
1491 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1492 uint16_t vv_id;
1493 uint16_t vddc = 0;
1494 uint16_t vddgfx = 0;
1495 uint16_t i, j;
1496 uint32_t sclk = 0;
1497 struct phm_ppt_v1_information *table_info =
1498 (struct phm_ppt_v1_information *)hwmgr->pptable;
1499 struct phm_ppt_v1_clock_voltage_dependency_table *sclk_table = NULL;
1500
1501
1502 for (i = 0; i < SMU7_MAX_LEAKAGE_COUNT; i++) {
1503 vv_id = ATOM_VIRTUAL_VOLTAGE_ID0 + i;
1504
1505 if (data->vdd_gfx_control == SMU7_VOLTAGE_CONTROL_BY_SVID2) {
1506 if ((hwmgr->pp_table_version == PP_TABLE_V1)
1507 && !phm_get_sclk_for_voltage_evv(hwmgr,
1508 table_info->vddgfx_lookup_table, vv_id, &sclk)) {
1509 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1510 PHM_PlatformCaps_ClockStretcher)) {
1511 sclk_table = table_info->vdd_dep_on_sclk;
1512
1513 for (j = 1; j < sclk_table->count; j++) {
1514 if (sclk_table->entries[j].clk == sclk &&
1515 sclk_table->entries[j].cks_enable == 0) {
1516 sclk += 5000;
1517 break;
1518 }
1519 }
1520 }
1521 if (0 == atomctrl_get_voltage_evv_on_sclk
1522 (hwmgr, VOLTAGE_TYPE_VDDGFX, sclk,
1523 vv_id, &vddgfx)) {
1524 /* need to make sure vddgfx is less than 2v or else, it could burn the ASIC. */
1525 PP_ASSERT_WITH_CODE((vddgfx < 2000 && vddgfx != 0), "Invalid VDDGFX value!", return -EINVAL);
1526
1527 /* the voltage should not be zero nor equal to leakage ID */
1528 if (vddgfx != 0 && vddgfx != vv_id) {
1529 data->vddcgfx_leakage.actual_voltage[data->vddcgfx_leakage.count] = vddgfx;
1530 data->vddcgfx_leakage.leakage_id[data->vddcgfx_leakage.count] = vv_id;
1531 data->vddcgfx_leakage.count++;
1532 }
1533 } else {
1534 pr_info("Error retrieving EVV voltage value!\n");
1535 }
1536 }
1537 } else {
1538 if ((hwmgr->pp_table_version == PP_TABLE_V0)
1539 || !phm_get_sclk_for_voltage_evv(hwmgr,
1540 table_info->vddc_lookup_table, vv_id, &sclk)) {
1541 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1542 PHM_PlatformCaps_ClockStretcher)) {
1543 if (table_info == NULL)
1544 return -EINVAL;
1545 sclk_table = table_info->vdd_dep_on_sclk;
1546
1547 for (j = 1; j < sclk_table->count; j++) {
1548 if (sclk_table->entries[j].clk == sclk &&
1549 sclk_table->entries[j].cks_enable == 0) {
1550 sclk += 5000;
1551 break;
1552 }
1553 }
1554 }
1555
1556 if (phm_get_voltage_evv_on_sclk(hwmgr,
1557 VOLTAGE_TYPE_VDDC,
1558 sclk, vv_id, &vddc) == 0) {
1559 if (vddc >= 2000 || vddc == 0)
1560 return -EINVAL;
1561 } else {
1562 pr_debug("failed to retrieving EVV voltage!\n");
1563 continue;
1564 }
1565
1566 /* the voltage should not be zero nor equal to leakage ID */
1567 if (vddc != 0 && vddc != vv_id) {
1568 data->vddc_leakage.actual_voltage[data->vddc_leakage.count] = (uint16_t)(vddc);
1569 data->vddc_leakage.leakage_id[data->vddc_leakage.count] = vv_id;
1570 data->vddc_leakage.count++;
1571 }
1572 }
1573 }
1574 }
1575
1576 return 0;
1577 }
1578
1579 /**
1580 * Change virtual leakage voltage to actual value.
1581 *
1582 * @param hwmgr the address of the powerplay hardware manager.
1583 * @param pointer to changing voltage
1584 * @param pointer to leakage table
1585 */
1586 static void smu7_patch_ppt_v1_with_vdd_leakage(struct pp_hwmgr *hwmgr,
1587 uint16_t *voltage, struct smu7_leakage_voltage *leakage_table)
1588 {
1589 uint32_t index;
1590
1591 /* search for leakage voltage ID 0xff01 ~ 0xff08 */
1592 for (index = 0; index < leakage_table->count; index++) {
1593 /* if this voltage matches a leakage voltage ID */
1594 /* patch with actual leakage voltage */
1595 if (leakage_table->leakage_id[index] == *voltage) {
1596 *voltage = leakage_table->actual_voltage[index];
1597 break;
1598 }
1599 }
1600
1601 if (*voltage > ATOM_VIRTUAL_VOLTAGE_ID0)
1602 pr_err("Voltage value looks like a Leakage ID but it's not patched \n");
1603 }
1604
1605 /**
1606 * Patch voltage lookup table by EVV leakages.
1607 *
1608 * @param hwmgr the address of the powerplay hardware manager.
1609 * @param pointer to voltage lookup table
1610 * @param pointer to leakage table
1611 * @return always 0
1612 */
1613 static int smu7_patch_lookup_table_with_leakage(struct pp_hwmgr *hwmgr,
1614 phm_ppt_v1_voltage_lookup_table *lookup_table,
1615 struct smu7_leakage_voltage *leakage_table)
1616 {
1617 uint32_t i;
1618
1619 for (i = 0; i < lookup_table->count; i++)
1620 smu7_patch_ppt_v1_with_vdd_leakage(hwmgr,
1621 &lookup_table->entries[i].us_vdd, leakage_table);
1622
1623 return 0;
1624 }
1625
1626 static int smu7_patch_clock_voltage_limits_with_vddc_leakage(
1627 struct pp_hwmgr *hwmgr, struct smu7_leakage_voltage *leakage_table,
1628 uint16_t *vddc)
1629 {
1630 struct phm_ppt_v1_information *table_info =
1631 (struct phm_ppt_v1_information *)(hwmgr->pptable);
1632 smu7_patch_ppt_v1_with_vdd_leakage(hwmgr, (uint16_t *)vddc, leakage_table);
1633 hwmgr->dyn_state.max_clock_voltage_on_dc.vddc =
1634 table_info->max_clock_voltage_on_dc.vddc;
1635 return 0;
1636 }
1637
1638 static int smu7_patch_voltage_dependency_tables_with_lookup_table(
1639 struct pp_hwmgr *hwmgr)
1640 {
1641 uint8_t entry_id;
1642 uint8_t voltage_id;
1643 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1644 struct phm_ppt_v1_information *table_info =
1645 (struct phm_ppt_v1_information *)(hwmgr->pptable);
1646
1647 struct phm_ppt_v1_clock_voltage_dependency_table *sclk_table =
1648 table_info->vdd_dep_on_sclk;
1649 struct phm_ppt_v1_clock_voltage_dependency_table *mclk_table =
1650 table_info->vdd_dep_on_mclk;
1651 struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
1652 table_info->mm_dep_table;
1653
1654 if (data->vdd_gfx_control == SMU7_VOLTAGE_CONTROL_BY_SVID2) {
1655 for (entry_id = 0; entry_id < sclk_table->count; ++entry_id) {
1656 voltage_id = sclk_table->entries[entry_id].vddInd;
1657 sclk_table->entries[entry_id].vddgfx =
1658 table_info->vddgfx_lookup_table->entries[voltage_id].us_vdd;
1659 }
1660 } else {
1661 for (entry_id = 0; entry_id < sclk_table->count; ++entry_id) {
1662 voltage_id = sclk_table->entries[entry_id].vddInd;
1663 sclk_table->entries[entry_id].vddc =
1664 table_info->vddc_lookup_table->entries[voltage_id].us_vdd;
1665 }
1666 }
1667
1668 for (entry_id = 0; entry_id < mclk_table->count; ++entry_id) {
1669 voltage_id = mclk_table->entries[entry_id].vddInd;
1670 mclk_table->entries[entry_id].vddc =
1671 table_info->vddc_lookup_table->entries[voltage_id].us_vdd;
1672 }
1673
1674 for (entry_id = 0; entry_id < mm_table->count; ++entry_id) {
1675 voltage_id = mm_table->entries[entry_id].vddcInd;
1676 mm_table->entries[entry_id].vddc =
1677 table_info->vddc_lookup_table->entries[voltage_id].us_vdd;
1678 }
1679
1680 return 0;
1681
1682 }
1683
1684 static int phm_add_voltage(struct pp_hwmgr *hwmgr,
1685 phm_ppt_v1_voltage_lookup_table *look_up_table,
1686 phm_ppt_v1_voltage_lookup_record *record)
1687 {
1688 uint32_t i;
1689
1690 PP_ASSERT_WITH_CODE((NULL != look_up_table),
1691 "Lookup Table empty.", return -EINVAL);
1692 PP_ASSERT_WITH_CODE((0 != look_up_table->count),
1693 "Lookup Table empty.", return -EINVAL);
1694
1695 i = smum_get_mac_definition(hwmgr, SMU_MAX_LEVELS_VDDGFX);
1696 PP_ASSERT_WITH_CODE((i >= look_up_table->count),
1697 "Lookup Table is full.", return -EINVAL);
1698
1699 /* This is to avoid entering duplicate calculated records. */
1700 for (i = 0; i < look_up_table->count; i++) {
1701 if (look_up_table->entries[i].us_vdd == record->us_vdd) {
1702 if (look_up_table->entries[i].us_calculated == 1)
1703 return 0;
1704 break;
1705 }
1706 }
1707
1708 look_up_table->entries[i].us_calculated = 1;
1709 look_up_table->entries[i].us_vdd = record->us_vdd;
1710 look_up_table->entries[i].us_cac_low = record->us_cac_low;
1711 look_up_table->entries[i].us_cac_mid = record->us_cac_mid;
1712 look_up_table->entries[i].us_cac_high = record->us_cac_high;
1713 /* Only increment the count when we're appending, not replacing duplicate entry. */
1714 if (i == look_up_table->count)
1715 look_up_table->count++;
1716
1717 return 0;
1718 }
1719
1720
1721 static int smu7_calc_voltage_dependency_tables(struct pp_hwmgr *hwmgr)
1722 {
1723 uint8_t entry_id;
1724 struct phm_ppt_v1_voltage_lookup_record v_record;
1725 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1726 struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
1727
1728 phm_ppt_v1_clock_voltage_dependency_table *sclk_table = pptable_info->vdd_dep_on_sclk;
1729 phm_ppt_v1_clock_voltage_dependency_table *mclk_table = pptable_info->vdd_dep_on_mclk;
1730
1731 if (data->vdd_gfx_control == SMU7_VOLTAGE_CONTROL_BY_SVID2) {
1732 for (entry_id = 0; entry_id < sclk_table->count; ++entry_id) {
1733 if (sclk_table->entries[entry_id].vdd_offset & (1 << 15))
1734 v_record.us_vdd = sclk_table->entries[entry_id].vddgfx +
1735 sclk_table->entries[entry_id].vdd_offset - 0xFFFF;
1736 else
1737 v_record.us_vdd = sclk_table->entries[entry_id].vddgfx +
1738 sclk_table->entries[entry_id].vdd_offset;
1739
1740 sclk_table->entries[entry_id].vddc =
1741 v_record.us_cac_low = v_record.us_cac_mid =
1742 v_record.us_cac_high = v_record.us_vdd;
1743
1744 phm_add_voltage(hwmgr, pptable_info->vddc_lookup_table, &v_record);
1745 }
1746
1747 for (entry_id = 0; entry_id < mclk_table->count; ++entry_id) {
1748 if (mclk_table->entries[entry_id].vdd_offset & (1 << 15))
1749 v_record.us_vdd = mclk_table->entries[entry_id].vddc +
1750 mclk_table->entries[entry_id].vdd_offset - 0xFFFF;
1751 else
1752 v_record.us_vdd = mclk_table->entries[entry_id].vddc +
1753 mclk_table->entries[entry_id].vdd_offset;
1754
1755 mclk_table->entries[entry_id].vddgfx = v_record.us_cac_low =
1756 v_record.us_cac_mid = v_record.us_cac_high = v_record.us_vdd;
1757 phm_add_voltage(hwmgr, pptable_info->vddgfx_lookup_table, &v_record);
1758 }
1759 }
1760 return 0;
1761 }
1762
1763 static int smu7_calc_mm_voltage_dependency_table(struct pp_hwmgr *hwmgr)
1764 {
1765 uint8_t entry_id;
1766 struct phm_ppt_v1_voltage_lookup_record v_record;
1767 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1768 struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
1769 phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table = pptable_info->mm_dep_table;
1770
1771 if (data->vdd_gfx_control == SMU7_VOLTAGE_CONTROL_BY_SVID2) {
1772 for (entry_id = 0; entry_id < mm_table->count; entry_id++) {
1773 if (mm_table->entries[entry_id].vddgfx_offset & (1 << 15))
1774 v_record.us_vdd = mm_table->entries[entry_id].vddc +
1775 mm_table->entries[entry_id].vddgfx_offset - 0xFFFF;
1776 else
1777 v_record.us_vdd = mm_table->entries[entry_id].vddc +
1778 mm_table->entries[entry_id].vddgfx_offset;
1779
1780 /* Add the calculated VDDGFX to the VDDGFX lookup table */
1781 mm_table->entries[entry_id].vddgfx = v_record.us_cac_low =
1782 v_record.us_cac_mid = v_record.us_cac_high = v_record.us_vdd;
1783 phm_add_voltage(hwmgr, pptable_info->vddgfx_lookup_table, &v_record);
1784 }
1785 }
1786 return 0;
1787 }
1788
1789 static int smu7_sort_lookup_table(struct pp_hwmgr *hwmgr,
1790 struct phm_ppt_v1_voltage_lookup_table *lookup_table)
1791 {
1792 uint32_t table_size, i, j;
1793 struct phm_ppt_v1_voltage_lookup_record tmp_voltage_lookup_record;
1794 table_size = lookup_table->count;
1795
1796 PP_ASSERT_WITH_CODE(0 != lookup_table->count,
1797 "Lookup table is empty", return -EINVAL);
1798
1799 /* Sorting voltages */
1800 for (i = 0; i < table_size - 1; i++) {
1801 for (j = i + 1; j > 0; j--) {
1802 if (lookup_table->entries[j].us_vdd <
1803 lookup_table->entries[j - 1].us_vdd) {
1804 tmp_voltage_lookup_record = lookup_table->entries[j - 1];
1805 lookup_table->entries[j - 1] = lookup_table->entries[j];
1806 lookup_table->entries[j] = tmp_voltage_lookup_record;
1807 }
1808 }
1809 }
1810
1811 return 0;
1812 }
1813
1814 static int smu7_complete_dependency_tables(struct pp_hwmgr *hwmgr)
1815 {
1816 int result = 0;
1817 int tmp_result;
1818 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1819 struct phm_ppt_v1_information *table_info =
1820 (struct phm_ppt_v1_information *)(hwmgr->pptable);
1821
1822 if (data->vdd_gfx_control == SMU7_VOLTAGE_CONTROL_BY_SVID2) {
1823 tmp_result = smu7_patch_lookup_table_with_leakage(hwmgr,
1824 table_info->vddgfx_lookup_table, &(data->vddcgfx_leakage));
1825 if (tmp_result != 0)
1826 result = tmp_result;
1827
1828 smu7_patch_ppt_v1_with_vdd_leakage(hwmgr,
1829 &table_info->max_clock_voltage_on_dc.vddgfx, &(data->vddcgfx_leakage));
1830 } else {
1831
1832 tmp_result = smu7_patch_lookup_table_with_leakage(hwmgr,
1833 table_info->vddc_lookup_table, &(data->vddc_leakage));
1834 if (tmp_result)
1835 result = tmp_result;
1836
1837 tmp_result = smu7_patch_clock_voltage_limits_with_vddc_leakage(hwmgr,
1838 &(data->vddc_leakage), &table_info->max_clock_voltage_on_dc.vddc);
1839 if (tmp_result)
1840 result = tmp_result;
1841 }
1842
1843 tmp_result = smu7_patch_voltage_dependency_tables_with_lookup_table(hwmgr);
1844 if (tmp_result)
1845 result = tmp_result;
1846
1847 tmp_result = smu7_calc_voltage_dependency_tables(hwmgr);
1848 if (tmp_result)
1849 result = tmp_result;
1850
1851 tmp_result = smu7_calc_mm_voltage_dependency_table(hwmgr);
1852 if (tmp_result)
1853 result = tmp_result;
1854
1855 tmp_result = smu7_sort_lookup_table(hwmgr, table_info->vddgfx_lookup_table);
1856 if (tmp_result)
1857 result = tmp_result;
1858
1859 tmp_result = smu7_sort_lookup_table(hwmgr, table_info->vddc_lookup_table);
1860 if (tmp_result)
1861 result = tmp_result;
1862
1863 return result;
1864 }
1865
1866 static int smu7_set_private_data_based_on_pptable_v1(struct pp_hwmgr *hwmgr)
1867 {
1868 struct phm_ppt_v1_information *table_info =
1869 (struct phm_ppt_v1_information *)(hwmgr->pptable);
1870
1871 struct phm_ppt_v1_clock_voltage_dependency_table *allowed_sclk_vdd_table =
1872 table_info->vdd_dep_on_sclk;
1873 struct phm_ppt_v1_clock_voltage_dependency_table *allowed_mclk_vdd_table =
1874 table_info->vdd_dep_on_mclk;
1875
1876 PP_ASSERT_WITH_CODE(allowed_sclk_vdd_table != NULL,
1877 "VDD dependency on SCLK table is missing.",
1878 return -EINVAL);
1879 PP_ASSERT_WITH_CODE(allowed_sclk_vdd_table->count >= 1,
1880 "VDD dependency on SCLK table has to have is missing.",
1881 return -EINVAL);
1882
1883 PP_ASSERT_WITH_CODE(allowed_mclk_vdd_table != NULL,
1884 "VDD dependency on MCLK table is missing",
1885 return -EINVAL);
1886 PP_ASSERT_WITH_CODE(allowed_mclk_vdd_table->count >= 1,
1887 "VDD dependency on MCLK table has to have is missing.",
1888 return -EINVAL);
1889
1890 table_info->max_clock_voltage_on_ac.sclk =
1891 allowed_sclk_vdd_table->entries[allowed_sclk_vdd_table->count - 1].clk;
1892 table_info->max_clock_voltage_on_ac.mclk =
1893 allowed_mclk_vdd_table->entries[allowed_mclk_vdd_table->count - 1].clk;
1894 table_info->max_clock_voltage_on_ac.vddc =
1895 allowed_sclk_vdd_table->entries[allowed_sclk_vdd_table->count - 1].vddc;
1896 table_info->max_clock_voltage_on_ac.vddci =
1897 allowed_mclk_vdd_table->entries[allowed_mclk_vdd_table->count - 1].vddci;
1898
1899 hwmgr->dyn_state.max_clock_voltage_on_ac.sclk = table_info->max_clock_voltage_on_ac.sclk;
1900 hwmgr->dyn_state.max_clock_voltage_on_ac.mclk = table_info->max_clock_voltage_on_ac.mclk;
1901 hwmgr->dyn_state.max_clock_voltage_on_ac.vddc = table_info->max_clock_voltage_on_ac.vddc;
1902 hwmgr->dyn_state.max_clock_voltage_on_ac.vddci = table_info->max_clock_voltage_on_ac.vddci;
1903
1904 return 0;
1905 }
1906
1907 static int smu7_patch_voltage_workaround(struct pp_hwmgr *hwmgr)
1908 {
1909 struct phm_ppt_v1_information *table_info =
1910 (struct phm_ppt_v1_information *)(hwmgr->pptable);
1911 struct phm_ppt_v1_clock_voltage_dependency_table *dep_mclk_table;
1912 struct phm_ppt_v1_voltage_lookup_table *lookup_table;
1913 uint32_t i;
1914 uint32_t hw_revision, sub_vendor_id, sub_sys_id;
1915 struct cgs_system_info sys_info = {0};
1916
1917 if (table_info != NULL) {
1918 dep_mclk_table = table_info->vdd_dep_on_mclk;
1919 lookup_table = table_info->vddc_lookup_table;
1920 } else
1921 return 0;
1922
1923 sys_info.size = sizeof(struct cgs_system_info);
1924
1925 sys_info.info_id = CGS_SYSTEM_INFO_PCIE_REV;
1926 cgs_query_system_info(hwmgr->device, &sys_info);
1927 hw_revision = (uint32_t)sys_info.value;
1928
1929 sys_info.info_id = CGS_SYSTEM_INFO_PCIE_SUB_SYS_ID;
1930 cgs_query_system_info(hwmgr->device, &sys_info);
1931 sub_sys_id = (uint32_t)sys_info.value;
1932
1933 sys_info.info_id = CGS_SYSTEM_INFO_PCIE_SUB_SYS_VENDOR_ID;
1934 cgs_query_system_info(hwmgr->device, &sys_info);
1935 sub_vendor_id = (uint32_t)sys_info.value;
1936
1937 if (hwmgr->chip_id == CHIP_POLARIS10 && hw_revision == 0xC7 &&
1938 ((sub_sys_id == 0xb37 && sub_vendor_id == 0x1002) ||
1939 (sub_sys_id == 0x4a8 && sub_vendor_id == 0x1043) ||
1940 (sub_sys_id == 0x9480 && sub_vendor_id == 0x1682))) {
1941 if (lookup_table->entries[dep_mclk_table->entries[dep_mclk_table->count-1].vddInd].us_vdd >= 1000)
1942 return 0;
1943
1944 for (i = 0; i < lookup_table->count; i++) {
1945 if (lookup_table->entries[i].us_vdd < 0xff01 && lookup_table->entries[i].us_vdd >= 1000) {
1946 dep_mclk_table->entries[dep_mclk_table->count-1].vddInd = (uint8_t) i;
1947 return 0;
1948 }
1949 }
1950 }
1951 return 0;
1952 }
1953
1954 static int smu7_thermal_parameter_init(struct pp_hwmgr *hwmgr)
1955 {
1956 struct pp_atomctrl_gpio_pin_assignment gpio_pin_assignment;
1957 uint32_t temp_reg;
1958 struct phm_ppt_v1_information *table_info =
1959 (struct phm_ppt_v1_information *)(hwmgr->pptable);
1960
1961
1962 if (atomctrl_get_pp_assign_pin(hwmgr, VDDC_PCC_GPIO_PINID, &gpio_pin_assignment)) {
1963 temp_reg = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCNB_PWRMGT_CNTL);
1964 switch (gpio_pin_assignment.uc_gpio_pin_bit_shift) {
1965 case 0:
1966 temp_reg = PHM_SET_FIELD(temp_reg, CNB_PWRMGT_CNTL, GNB_SLOW_MODE, 0x1);
1967 break;
1968 case 1:
1969 temp_reg = PHM_SET_FIELD(temp_reg, CNB_PWRMGT_CNTL, GNB_SLOW_MODE, 0x2);
1970 break;
1971 case 2:
1972 temp_reg = PHM_SET_FIELD(temp_reg, CNB_PWRMGT_CNTL, GNB_SLOW, 0x1);
1973 break;
1974 case 3:
1975 temp_reg = PHM_SET_FIELD(temp_reg, CNB_PWRMGT_CNTL, FORCE_NB_PS1, 0x1);
1976 break;
1977 case 4:
1978 temp_reg = PHM_SET_FIELD(temp_reg, CNB_PWRMGT_CNTL, DPM_ENABLED, 0x1);
1979 break;
1980 default:
1981 break;
1982 }
1983 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCNB_PWRMGT_CNTL, temp_reg);
1984 }
1985
1986 if (table_info == NULL)
1987 return 0;
1988
1989 if (table_info->cac_dtp_table->usDefaultTargetOperatingTemp != 0 &&
1990 hwmgr->thermal_controller.advanceFanControlParameters.ucFanControlMode) {
1991 hwmgr->thermal_controller.advanceFanControlParameters.usFanPWMMinLimit =
1992 (uint16_t)hwmgr->thermal_controller.advanceFanControlParameters.ucMinimumPWMLimit;
1993
1994 hwmgr->thermal_controller.advanceFanControlParameters.usFanPWMMaxLimit =
1995 (uint16_t)hwmgr->thermal_controller.advanceFanControlParameters.usDefaultMaxFanPWM;
1996
1997 hwmgr->thermal_controller.advanceFanControlParameters.usFanPWMStep = 1;
1998
1999 hwmgr->thermal_controller.advanceFanControlParameters.usFanRPMMaxLimit = 100;
2000
2001 hwmgr->thermal_controller.advanceFanControlParameters.usFanRPMMinLimit =
2002 (uint16_t)hwmgr->thermal_controller.advanceFanControlParameters.ucMinimumPWMLimit;
2003
2004 hwmgr->thermal_controller.advanceFanControlParameters.usFanRPMStep = 1;
2005
2006 table_info->cac_dtp_table->usDefaultTargetOperatingTemp = (table_info->cac_dtp_table->usDefaultTargetOperatingTemp >= 50) ?
2007 (table_info->cac_dtp_table->usDefaultTargetOperatingTemp - 50) : 0;
2008
2009 table_info->cac_dtp_table->usOperatingTempMaxLimit = table_info->cac_dtp_table->usDefaultTargetOperatingTemp;
2010 table_info->cac_dtp_table->usOperatingTempStep = 1;
2011 table_info->cac_dtp_table->usOperatingTempHyst = 1;
2012
2013 hwmgr->thermal_controller.advanceFanControlParameters.usMaxFanPWM =
2014 hwmgr->thermal_controller.advanceFanControlParameters.usDefaultMaxFanPWM;
2015
2016 hwmgr->thermal_controller.advanceFanControlParameters.usMaxFanRPM =
2017 hwmgr->thermal_controller.advanceFanControlParameters.usDefaultMaxFanRPM;
2018
2019 hwmgr->dyn_state.cac_dtp_table->usOperatingTempMinLimit =
2020 table_info->cac_dtp_table->usOperatingTempMinLimit;
2021
2022 hwmgr->dyn_state.cac_dtp_table->usOperatingTempMaxLimit =
2023 table_info->cac_dtp_table->usOperatingTempMaxLimit;
2024
2025 hwmgr->dyn_state.cac_dtp_table->usDefaultTargetOperatingTemp =
2026 table_info->cac_dtp_table->usDefaultTargetOperatingTemp;
2027
2028 hwmgr->dyn_state.cac_dtp_table->usOperatingTempStep =
2029 table_info->cac_dtp_table->usOperatingTempStep;
2030
2031 hwmgr->dyn_state.cac_dtp_table->usTargetOperatingTemp =
2032 table_info->cac_dtp_table->usTargetOperatingTemp;
2033 if (hwmgr->feature_mask & PP_OD_FUZZY_FAN_CONTROL_MASK)
2034 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
2035 PHM_PlatformCaps_ODFuzzyFanControlSupport);
2036 }
2037
2038 return 0;
2039 }
2040
2041 /**
2042 * Change virtual leakage voltage to actual value.
2043 *
2044 * @param hwmgr the address of the powerplay hardware manager.
2045 * @param pointer to changing voltage
2046 * @param pointer to leakage table
2047 */
2048 static void smu7_patch_ppt_v0_with_vdd_leakage(struct pp_hwmgr *hwmgr,
2049 uint32_t *voltage, struct smu7_leakage_voltage *leakage_table)
2050 {
2051 uint32_t index;
2052
2053 /* search for leakage voltage ID 0xff01 ~ 0xff08 */
2054 for (index = 0; index < leakage_table->count; index++) {
2055 /* if this voltage matches a leakage voltage ID */
2056 /* patch with actual leakage voltage */
2057 if (leakage_table->leakage_id[index] == *voltage) {
2058 *voltage = leakage_table->actual_voltage[index];
2059 break;
2060 }
2061 }
2062
2063 if (*voltage > ATOM_VIRTUAL_VOLTAGE_ID0)
2064 pr_err("Voltage value looks like a Leakage ID but it's not patched \n");
2065 }
2066
2067
2068 static int smu7_patch_vddc(struct pp_hwmgr *hwmgr,
2069 struct phm_clock_voltage_dependency_table *tab)
2070 {
2071 uint16_t i;
2072 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2073
2074 if (tab)
2075 for (i = 0; i < tab->count; i++)
2076 smu7_patch_ppt_v0_with_vdd_leakage(hwmgr, &tab->entries[i].v,
2077 &data->vddc_leakage);
2078
2079 return 0;
2080 }
2081
2082 static int smu7_patch_vddci(struct pp_hwmgr *hwmgr,
2083 struct phm_clock_voltage_dependency_table *tab)
2084 {
2085 uint16_t i;
2086 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2087
2088 if (tab)
2089 for (i = 0; i < tab->count; i++)
2090 smu7_patch_ppt_v0_with_vdd_leakage(hwmgr, &tab->entries[i].v,
2091 &data->vddci_leakage);
2092
2093 return 0;
2094 }
2095
2096 static int smu7_patch_vce_vddc(struct pp_hwmgr *hwmgr,
2097 struct phm_vce_clock_voltage_dependency_table *tab)
2098 {
2099 uint16_t i;
2100 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2101
2102 if (tab)
2103 for (i = 0; i < tab->count; i++)
2104 smu7_patch_ppt_v0_with_vdd_leakage(hwmgr, &tab->entries[i].v,
2105 &data->vddc_leakage);
2106
2107 return 0;
2108 }
2109
2110
2111 static int smu7_patch_uvd_vddc(struct pp_hwmgr *hwmgr,
2112 struct phm_uvd_clock_voltage_dependency_table *tab)
2113 {
2114 uint16_t i;
2115 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2116
2117 if (tab)
2118 for (i = 0; i < tab->count; i++)
2119 smu7_patch_ppt_v0_with_vdd_leakage(hwmgr, &tab->entries[i].v,
2120 &data->vddc_leakage);
2121
2122 return 0;
2123 }
2124
2125 static int smu7_patch_vddc_shed_limit(struct pp_hwmgr *hwmgr,
2126 struct phm_phase_shedding_limits_table *tab)
2127 {
2128 uint16_t i;
2129 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2130
2131 if (tab)
2132 for (i = 0; i < tab->count; i++)
2133 smu7_patch_ppt_v0_with_vdd_leakage(hwmgr, &tab->entries[i].Voltage,
2134 &data->vddc_leakage);
2135
2136 return 0;
2137 }
2138
2139 static int smu7_patch_samu_vddc(struct pp_hwmgr *hwmgr,
2140 struct phm_samu_clock_voltage_dependency_table *tab)
2141 {
2142 uint16_t i;
2143 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2144
2145 if (tab)
2146 for (i = 0; i < tab->count; i++)
2147 smu7_patch_ppt_v0_with_vdd_leakage(hwmgr, &tab->entries[i].v,
2148 &data->vddc_leakage);
2149
2150 return 0;
2151 }
2152
2153 static int smu7_patch_acp_vddc(struct pp_hwmgr *hwmgr,
2154 struct phm_acp_clock_voltage_dependency_table *tab)
2155 {
2156 uint16_t i;
2157 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2158
2159 if (tab)
2160 for (i = 0; i < tab->count; i++)
2161 smu7_patch_ppt_v0_with_vdd_leakage(hwmgr, &tab->entries[i].v,
2162 &data->vddc_leakage);
2163
2164 return 0;
2165 }
2166
2167 static int smu7_patch_limits_vddc(struct pp_hwmgr *hwmgr,
2168 struct phm_clock_and_voltage_limits *tab)
2169 {
2170 uint32_t vddc, vddci;
2171 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2172
2173 if (tab) {
2174 vddc = tab->vddc;
2175 smu7_patch_ppt_v0_with_vdd_leakage(hwmgr, &vddc,
2176 &data->vddc_leakage);
2177 tab->vddc = vddc;
2178 vddci = tab->vddci;
2179 smu7_patch_ppt_v0_with_vdd_leakage(hwmgr, &vddci,
2180 &data->vddci_leakage);
2181 tab->vddci = vddci;
2182 }
2183
2184 return 0;
2185 }
2186
2187 static int smu7_patch_cac_vddc(struct pp_hwmgr *hwmgr, struct phm_cac_leakage_table *tab)
2188 {
2189 uint32_t i;
2190 uint32_t vddc;
2191 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2192
2193 if (tab) {
2194 for (i = 0; i < tab->count; i++) {
2195 vddc = (uint32_t)(tab->entries[i].Vddc);
2196 smu7_patch_ppt_v0_with_vdd_leakage(hwmgr, &vddc, &data->vddc_leakage);
2197 tab->entries[i].Vddc = (uint16_t)vddc;
2198 }
2199 }
2200
2201 return 0;
2202 }
2203
2204 static int smu7_patch_dependency_tables_with_leakage(struct pp_hwmgr *hwmgr)
2205 {
2206 int tmp;
2207
2208 tmp = smu7_patch_vddc(hwmgr, hwmgr->dyn_state.vddc_dependency_on_sclk);
2209 if (tmp)
2210 return -EINVAL;
2211
2212 tmp = smu7_patch_vddc(hwmgr, hwmgr->dyn_state.vddc_dependency_on_mclk);
2213 if (tmp)
2214 return -EINVAL;
2215
2216 tmp = smu7_patch_vddc(hwmgr, hwmgr->dyn_state.vddc_dep_on_dal_pwrl);
2217 if (tmp)
2218 return -EINVAL;
2219
2220 tmp = smu7_patch_vddci(hwmgr, hwmgr->dyn_state.vddci_dependency_on_mclk);
2221 if (tmp)
2222 return -EINVAL;
2223
2224 tmp = smu7_patch_vce_vddc(hwmgr, hwmgr->dyn_state.vce_clock_voltage_dependency_table);
2225 if (tmp)
2226 return -EINVAL;
2227
2228 tmp = smu7_patch_uvd_vddc(hwmgr, hwmgr->dyn_state.uvd_clock_voltage_dependency_table);
2229 if (tmp)
2230 return -EINVAL;
2231
2232 tmp = smu7_patch_samu_vddc(hwmgr, hwmgr->dyn_state.samu_clock_voltage_dependency_table);
2233 if (tmp)
2234 return -EINVAL;
2235
2236 tmp = smu7_patch_acp_vddc(hwmgr, hwmgr->dyn_state.acp_clock_voltage_dependency_table);
2237 if (tmp)
2238 return -EINVAL;
2239
2240 tmp = smu7_patch_vddc_shed_limit(hwmgr, hwmgr->dyn_state.vddc_phase_shed_limits_table);
2241 if (tmp)
2242 return -EINVAL;
2243
2244 tmp = smu7_patch_limits_vddc(hwmgr, &hwmgr->dyn_state.max_clock_voltage_on_ac);
2245 if (tmp)
2246 return -EINVAL;
2247
2248 tmp = smu7_patch_limits_vddc(hwmgr, &hwmgr->dyn_state.max_clock_voltage_on_dc);
2249 if (tmp)
2250 return -EINVAL;
2251
2252 tmp = smu7_patch_cac_vddc(hwmgr, hwmgr->dyn_state.cac_leakage_table);
2253 if (tmp)
2254 return -EINVAL;
2255
2256 return 0;
2257 }
2258
2259
2260 static int smu7_set_private_data_based_on_pptable_v0(struct pp_hwmgr *hwmgr)
2261 {
2262 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2263
2264 struct phm_clock_voltage_dependency_table *allowed_sclk_vddc_table = hwmgr->dyn_state.vddc_dependency_on_sclk;
2265 struct phm_clock_voltage_dependency_table *allowed_mclk_vddc_table = hwmgr->dyn_state.vddc_dependency_on_mclk;
2266 struct phm_clock_voltage_dependency_table *allowed_mclk_vddci_table = hwmgr->dyn_state.vddci_dependency_on_mclk;
2267
2268 PP_ASSERT_WITH_CODE(allowed_sclk_vddc_table != NULL,
2269 "VDDC dependency on SCLK table is missing. This table is mandatory\n", return -EINVAL);
2270 PP_ASSERT_WITH_CODE(allowed_sclk_vddc_table->count >= 1,
2271 "VDDC dependency on SCLK table has to have is missing. This table is mandatory\n", return -EINVAL);
2272
2273 PP_ASSERT_WITH_CODE(allowed_mclk_vddc_table != NULL,
2274 "VDDC dependency on MCLK table is missing. This table is mandatory\n", return -EINVAL);
2275 PP_ASSERT_WITH_CODE(allowed_mclk_vddc_table->count >= 1,
2276 "VDD dependency on MCLK table has to have is missing. This table is mandatory\n", return -EINVAL);
2277
2278 data->min_vddc_in_pptable = (uint16_t)allowed_sclk_vddc_table->entries[0].v;
2279 data->max_vddc_in_pptable = (uint16_t)allowed_sclk_vddc_table->entries[allowed_sclk_vddc_table->count - 1].v;
2280
2281 hwmgr->dyn_state.max_clock_voltage_on_ac.sclk =
2282 allowed_sclk_vddc_table->entries[allowed_sclk_vddc_table->count - 1].clk;
2283 hwmgr->dyn_state.max_clock_voltage_on_ac.mclk =
2284 allowed_mclk_vddc_table->entries[allowed_mclk_vddc_table->count - 1].clk;
2285 hwmgr->dyn_state.max_clock_voltage_on_ac.vddc =
2286 allowed_sclk_vddc_table->entries[allowed_sclk_vddc_table->count - 1].v;
2287
2288 if (allowed_mclk_vddci_table != NULL && allowed_mclk_vddci_table->count >= 1) {
2289 data->min_vddci_in_pptable = (uint16_t)allowed_mclk_vddci_table->entries[0].v;
2290 data->max_vddci_in_pptable = (uint16_t)allowed_mclk_vddci_table->entries[allowed_mclk_vddci_table->count - 1].v;
2291 }
2292
2293 if (hwmgr->dyn_state.vddci_dependency_on_mclk != NULL && hwmgr->dyn_state.vddci_dependency_on_mclk->count >= 1)
2294 hwmgr->dyn_state.max_clock_voltage_on_ac.vddci = hwmgr->dyn_state.vddci_dependency_on_mclk->entries[hwmgr->dyn_state.vddci_dependency_on_mclk->count - 1].v;
2295
2296 return 0;
2297 }
2298
2299 static int smu7_hwmgr_backend_fini(struct pp_hwmgr *hwmgr)
2300 {
2301 kfree(hwmgr->dyn_state.vddc_dep_on_dal_pwrl);
2302 hwmgr->dyn_state.vddc_dep_on_dal_pwrl = NULL;
2303 kfree(hwmgr->backend);
2304 hwmgr->backend = NULL;
2305
2306 return 0;
2307 }
2308
2309 static int smu7_get_elb_voltages(struct pp_hwmgr *hwmgr)
2310 {
2311 uint16_t virtual_voltage_id, vddc, vddci, efuse_voltage_id;
2312 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2313 int i;
2314
2315 if (atomctrl_get_leakage_id_from_efuse(hwmgr, &efuse_voltage_id) == 0) {
2316 for (i = 0; i < SMU7_MAX_LEAKAGE_COUNT; i++) {
2317 virtual_voltage_id = ATOM_VIRTUAL_VOLTAGE_ID0 + i;
2318 if (atomctrl_get_leakage_vddc_base_on_leakage(hwmgr, &vddc, &vddci,
2319 virtual_voltage_id,
2320 efuse_voltage_id) == 0) {
2321 if (vddc != 0 && vddc != virtual_voltage_id) {
2322 data->vddc_leakage.actual_voltage[data->vddc_leakage.count] = vddc;
2323 data->vddc_leakage.leakage_id[data->vddc_leakage.count] = virtual_voltage_id;
2324 data->vddc_leakage.count++;
2325 }
2326 if (vddci != 0 && vddci != virtual_voltage_id) {
2327 data->vddci_leakage.actual_voltage[data->vddci_leakage.count] = vddci;
2328 data->vddci_leakage.leakage_id[data->vddci_leakage.count] = virtual_voltage_id;
2329 data->vddci_leakage.count++;
2330 }
2331 }
2332 }
2333 }
2334 return 0;
2335 }
2336
2337 static int smu7_hwmgr_backend_init(struct pp_hwmgr *hwmgr)
2338 {
2339 struct smu7_hwmgr *data;
2340 int result = 0;
2341
2342 data = kzalloc(sizeof(struct smu7_hwmgr), GFP_KERNEL);
2343 if (data == NULL)
2344 return -ENOMEM;
2345
2346 hwmgr->backend = data;
2347 smu7_patch_voltage_workaround(hwmgr);
2348 smu7_init_dpm_defaults(hwmgr);
2349
2350 /* Get leakage voltage based on leakage ID. */
2351 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2352 PHM_PlatformCaps_EVV)) {
2353 result = smu7_get_evv_voltages(hwmgr);
2354 if (result) {
2355 pr_info("Get EVV Voltage Failed. Abort Driver loading!\n");
2356 return -EINVAL;
2357 }
2358 } else {
2359 smu7_get_elb_voltages(hwmgr);
2360 }
2361
2362 if (hwmgr->pp_table_version == PP_TABLE_V1) {
2363 smu7_complete_dependency_tables(hwmgr);
2364 smu7_set_private_data_based_on_pptable_v1(hwmgr);
2365 } else if (hwmgr->pp_table_version == PP_TABLE_V0) {
2366 smu7_patch_dependency_tables_with_leakage(hwmgr);
2367 smu7_set_private_data_based_on_pptable_v0(hwmgr);
2368 }
2369
2370 /* Initalize Dynamic State Adjustment Rule Settings */
2371 result = phm_initializa_dynamic_state_adjustment_rule_settings(hwmgr);
2372
2373 if (0 == result) {
2374 struct cgs_system_info sys_info = {0};
2375
2376 data->is_tlu_enabled = false;
2377
2378 hwmgr->platform_descriptor.hardwareActivityPerformanceLevels =
2379 SMU7_MAX_HARDWARE_POWERLEVELS;
2380 hwmgr->platform_descriptor.hardwarePerformanceLevels = 2;
2381 hwmgr->platform_descriptor.minimumClocksReductionPercentage = 50;
2382
2383 sys_info.size = sizeof(struct cgs_system_info);
2384 sys_info.info_id = CGS_SYSTEM_INFO_PCIE_GEN_INFO;
2385 result = cgs_query_system_info(hwmgr->device, &sys_info);
2386 if (result)
2387 data->pcie_gen_cap = AMDGPU_DEFAULT_PCIE_GEN_MASK;
2388 else
2389 data->pcie_gen_cap = (uint32_t)sys_info.value;
2390 if (data->pcie_gen_cap & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN3)
2391 data->pcie_spc_cap = 20;
2392 sys_info.size = sizeof(struct cgs_system_info);
2393 sys_info.info_id = CGS_SYSTEM_INFO_PCIE_MLW;
2394 result = cgs_query_system_info(hwmgr->device, &sys_info);
2395 if (result)
2396 data->pcie_lane_cap = AMDGPU_DEFAULT_PCIE_MLW_MASK;
2397 else
2398 data->pcie_lane_cap = (uint32_t)sys_info.value;
2399
2400 hwmgr->platform_descriptor.vbiosInterruptId = 0x20000400; /* IRQ_SOURCE1_SW_INT */
2401 /* The true clock step depends on the frequency, typically 4.5 or 9 MHz. Here we use 5. */
2402 hwmgr->platform_descriptor.clockStep.engineClock = 500;
2403 hwmgr->platform_descriptor.clockStep.memoryClock = 500;
2404 smu7_thermal_parameter_init(hwmgr);
2405 } else {
2406 /* Ignore return value in here, we are cleaning up a mess. */
2407 smu7_hwmgr_backend_fini(hwmgr);
2408 }
2409
2410 return 0;
2411 }
2412
2413 static int smu7_force_dpm_highest(struct pp_hwmgr *hwmgr)
2414 {
2415 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2416 uint32_t level, tmp;
2417
2418 if (!data->pcie_dpm_key_disabled) {
2419 if (data->dpm_level_enable_mask.pcie_dpm_enable_mask) {
2420 level = 0;
2421 tmp = data->dpm_level_enable_mask.pcie_dpm_enable_mask;
2422 while (tmp >>= 1)
2423 level++;
2424
2425 if (level)
2426 smum_send_msg_to_smc_with_parameter(hwmgr,
2427 PPSMC_MSG_PCIeDPM_ForceLevel, level);
2428 }
2429 }
2430
2431 if (!data->sclk_dpm_key_disabled) {
2432 if (data->dpm_level_enable_mask.sclk_dpm_enable_mask) {
2433 level = 0;
2434 tmp = data->dpm_level_enable_mask.sclk_dpm_enable_mask;
2435 while (tmp >>= 1)
2436 level++;
2437
2438 if (level)
2439 smum_send_msg_to_smc_with_parameter(hwmgr,
2440 PPSMC_MSG_SCLKDPM_SetEnabledMask,
2441 (1 << level));
2442 }
2443 }
2444
2445 if (!data->mclk_dpm_key_disabled) {
2446 if (data->dpm_level_enable_mask.mclk_dpm_enable_mask) {
2447 level = 0;
2448 tmp = data->dpm_level_enable_mask.mclk_dpm_enable_mask;
2449 while (tmp >>= 1)
2450 level++;
2451
2452 if (level)
2453 smum_send_msg_to_smc_with_parameter(hwmgr,
2454 PPSMC_MSG_MCLKDPM_SetEnabledMask,
2455 (1 << level));
2456 }
2457 }
2458
2459 return 0;
2460 }
2461
2462 static int smu7_upload_dpm_level_enable_mask(struct pp_hwmgr *hwmgr)
2463 {
2464 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2465
2466 if (hwmgr->pp_table_version == PP_TABLE_V1)
2467 phm_apply_dal_min_voltage_request(hwmgr);
2468 /* TO DO for v0 iceland and Ci*/
2469
2470 if (!data->sclk_dpm_key_disabled) {
2471 if (data->dpm_level_enable_mask.sclk_dpm_enable_mask)
2472 smum_send_msg_to_smc_with_parameter(hwmgr,
2473 PPSMC_MSG_SCLKDPM_SetEnabledMask,
2474 data->dpm_level_enable_mask.sclk_dpm_enable_mask);
2475 }
2476
2477 if (!data->mclk_dpm_key_disabled) {
2478 if (data->dpm_level_enable_mask.mclk_dpm_enable_mask)
2479 smum_send_msg_to_smc_with_parameter(hwmgr,
2480 PPSMC_MSG_MCLKDPM_SetEnabledMask,
2481 data->dpm_level_enable_mask.mclk_dpm_enable_mask);
2482 }
2483
2484 return 0;
2485 }
2486
2487 static int smu7_unforce_dpm_levels(struct pp_hwmgr *hwmgr)
2488 {
2489 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2490
2491 if (!smum_is_dpm_running(hwmgr))
2492 return -EINVAL;
2493
2494 if (!data->pcie_dpm_key_disabled) {
2495 smum_send_msg_to_smc(hwmgr,
2496 PPSMC_MSG_PCIeDPM_UnForceLevel);
2497 }
2498
2499 return smu7_upload_dpm_level_enable_mask(hwmgr);
2500 }
2501
2502 static int smu7_force_dpm_lowest(struct pp_hwmgr *hwmgr)
2503 {
2504 struct smu7_hwmgr *data =
2505 (struct smu7_hwmgr *)(hwmgr->backend);
2506 uint32_t level;
2507
2508 if (!data->sclk_dpm_key_disabled)
2509 if (data->dpm_level_enable_mask.sclk_dpm_enable_mask) {
2510 level = phm_get_lowest_enabled_level(hwmgr,
2511 data->dpm_level_enable_mask.sclk_dpm_enable_mask);
2512 smum_send_msg_to_smc_with_parameter(hwmgr,
2513 PPSMC_MSG_SCLKDPM_SetEnabledMask,
2514 (1 << level));
2515
2516 }
2517
2518 if (!data->mclk_dpm_key_disabled) {
2519 if (data->dpm_level_enable_mask.mclk_dpm_enable_mask) {
2520 level = phm_get_lowest_enabled_level(hwmgr,
2521 data->dpm_level_enable_mask.mclk_dpm_enable_mask);
2522 smum_send_msg_to_smc_with_parameter(hwmgr,
2523 PPSMC_MSG_MCLKDPM_SetEnabledMask,
2524 (1 << level));
2525 }
2526 }
2527
2528 if (!data->pcie_dpm_key_disabled) {
2529 if (data->dpm_level_enable_mask.pcie_dpm_enable_mask) {
2530 level = phm_get_lowest_enabled_level(hwmgr,
2531 data->dpm_level_enable_mask.pcie_dpm_enable_mask);
2532 smum_send_msg_to_smc_with_parameter(hwmgr,
2533 PPSMC_MSG_PCIeDPM_ForceLevel,
2534 (level));
2535 }
2536 }
2537
2538 return 0;
2539 }
2540
2541 static int smu7_get_profiling_clk(struct pp_hwmgr *hwmgr, enum amd_dpm_forced_level level,
2542 uint32_t *sclk_mask, uint32_t *mclk_mask, uint32_t *pcie_mask)
2543 {
2544 uint32_t percentage;
2545 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2546 struct smu7_dpm_table *golden_dpm_table = &data->golden_dpm_table;
2547 int32_t tmp_mclk;
2548 int32_t tmp_sclk;
2549 int32_t count;
2550
2551 if (golden_dpm_table->mclk_table.count < 1)
2552 return -EINVAL;
2553
2554 percentage = 100 * golden_dpm_table->sclk_table.dpm_levels[golden_dpm_table->sclk_table.count - 1].value /
2555 golden_dpm_table->mclk_table.dpm_levels[golden_dpm_table->mclk_table.count - 1].value;
2556
2557 if (golden_dpm_table->mclk_table.count == 1) {
2558 percentage = 70;
2559 tmp_mclk = golden_dpm_table->mclk_table.dpm_levels[golden_dpm_table->mclk_table.count - 1].value;
2560 *mclk_mask = golden_dpm_table->mclk_table.count - 1;
2561 } else {
2562 tmp_mclk = golden_dpm_table->mclk_table.dpm_levels[golden_dpm_table->mclk_table.count - 2].value;
2563 *mclk_mask = golden_dpm_table->mclk_table.count - 2;
2564 }
2565
2566 tmp_sclk = tmp_mclk * percentage / 100;
2567
2568 if (hwmgr->pp_table_version == PP_TABLE_V0) {
2569 for (count = hwmgr->dyn_state.vddc_dependency_on_sclk->count-1;
2570 count >= 0; count--) {
2571 if (tmp_sclk >= hwmgr->dyn_state.vddc_dependency_on_sclk->entries[count].clk) {
2572 tmp_sclk = hwmgr->dyn_state.vddc_dependency_on_sclk->entries[count].clk;
2573 *sclk_mask = count;
2574 break;
2575 }
2576 }
2577 if (count < 0 || level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK)
2578 *sclk_mask = 0;
2579
2580 if (level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK)
2581 *sclk_mask = hwmgr->dyn_state.vddc_dependency_on_sclk->count-1;
2582 } else if (hwmgr->pp_table_version == PP_TABLE_V1) {
2583 struct phm_ppt_v1_information *table_info =
2584 (struct phm_ppt_v1_information *)(hwmgr->pptable);
2585
2586 for (count = table_info->vdd_dep_on_sclk->count-1; count >= 0; count--) {
2587 if (tmp_sclk >= table_info->vdd_dep_on_sclk->entries[count].clk) {
2588 tmp_sclk = table_info->vdd_dep_on_sclk->entries[count].clk;
2589 *sclk_mask = count;
2590 break;
2591 }
2592 }
2593 if (count < 0 || level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK)
2594 *sclk_mask = 0;
2595
2596 if (level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK)
2597 *sclk_mask = table_info->vdd_dep_on_sclk->count - 1;
2598 }
2599
2600 if (level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK)
2601 *mclk_mask = 0;
2602 else if (level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK)
2603 *mclk_mask = golden_dpm_table->mclk_table.count - 1;
2604
2605 *pcie_mask = data->dpm_table.pcie_speed_table.count - 1;
2606 return 0;
2607 }
2608
2609 static int smu7_force_dpm_level(struct pp_hwmgr *hwmgr,
2610 enum amd_dpm_forced_level level)
2611 {
2612 int ret = 0;
2613 uint32_t sclk_mask = 0;
2614 uint32_t mclk_mask = 0;
2615 uint32_t pcie_mask = 0;
2616
2617 switch (level) {
2618 case AMD_DPM_FORCED_LEVEL_HIGH:
2619 ret = smu7_force_dpm_highest(hwmgr);
2620 break;
2621 case AMD_DPM_FORCED_LEVEL_LOW:
2622 ret = smu7_force_dpm_lowest(hwmgr);
2623 break;
2624 case AMD_DPM_FORCED_LEVEL_AUTO:
2625 ret = smu7_unforce_dpm_levels(hwmgr);
2626 break;
2627 case AMD_DPM_FORCED_LEVEL_PROFILE_STANDARD:
2628 case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK:
2629 case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK:
2630 case AMD_DPM_FORCED_LEVEL_PROFILE_PEAK:
2631 ret = smu7_get_profiling_clk(hwmgr, level, &sclk_mask, &mclk_mask, &pcie_mask);
2632 if (ret)
2633 return ret;
2634 smu7_force_clock_level(hwmgr, PP_SCLK, 1<<sclk_mask);
2635 smu7_force_clock_level(hwmgr, PP_MCLK, 1<<mclk_mask);
2636 smu7_force_clock_level(hwmgr, PP_PCIE, 1<<pcie_mask);
2637 break;
2638 case AMD_DPM_FORCED_LEVEL_MANUAL:
2639 case AMD_DPM_FORCED_LEVEL_PROFILE_EXIT:
2640 default:
2641 break;
2642 }
2643
2644 if (!ret) {
2645 if (level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK && hwmgr->dpm_level != AMD_DPM_FORCED_LEVEL_PROFILE_PEAK)
2646 smu7_fan_ctrl_set_fan_speed_percent(hwmgr, 100);
2647 else if (level != AMD_DPM_FORCED_LEVEL_PROFILE_PEAK && hwmgr->dpm_level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK)
2648 smu7_fan_ctrl_reset_fan_speed_to_default(hwmgr);
2649 }
2650 return ret;
2651 }
2652
2653 static int smu7_get_power_state_size(struct pp_hwmgr *hwmgr)
2654 {
2655 return sizeof(struct smu7_power_state);
2656 }
2657
2658 static int smu7_vblank_too_short(struct pp_hwmgr *hwmgr,
2659 uint32_t vblank_time_us)
2660 {
2661 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2662 uint32_t switch_limit_us;
2663
2664 switch (hwmgr->chip_id) {
2665 case CHIP_POLARIS10:
2666 case CHIP_POLARIS11:
2667 case CHIP_POLARIS12:
2668 switch_limit_us = data->is_memory_gddr5 ? 190 : 150;
2669 break;
2670 default:
2671 switch_limit_us = data->is_memory_gddr5 ? 450 : 150;
2672 break;
2673 }
2674
2675 if (vblank_time_us < switch_limit_us)
2676 return true;
2677 else
2678 return false;
2679 }
2680
2681 static int smu7_apply_state_adjust_rules(struct pp_hwmgr *hwmgr,
2682 struct pp_power_state *request_ps,
2683 const struct pp_power_state *current_ps)
2684 {
2685
2686 struct smu7_power_state *smu7_ps =
2687 cast_phw_smu7_power_state(&request_ps->hardware);
2688 uint32_t sclk;
2689 uint32_t mclk;
2690 struct PP_Clocks minimum_clocks = {0};
2691 bool disable_mclk_switching;
2692 bool disable_mclk_switching_for_frame_lock;
2693 struct cgs_display_info info = {0};
2694 struct cgs_mode_info mode_info = {0};
2695 const struct phm_clock_and_voltage_limits *max_limits;
2696 uint32_t i;
2697 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2698 struct phm_ppt_v1_information *table_info =
2699 (struct phm_ppt_v1_information *)(hwmgr->pptable);
2700 int32_t count;
2701 int32_t stable_pstate_sclk = 0, stable_pstate_mclk = 0;
2702
2703 info.mode_info = &mode_info;
2704 data->battery_state = (PP_StateUILabel_Battery ==
2705 request_ps->classification.ui_label);
2706
2707 PP_ASSERT_WITH_CODE(smu7_ps->performance_level_count == 2,
2708 "VI should always have 2 performance levels",
2709 );
2710
2711 max_limits = (PP_PowerSource_AC == hwmgr->power_source) ?
2712 &(hwmgr->dyn_state.max_clock_voltage_on_ac) :
2713 &(hwmgr->dyn_state.max_clock_voltage_on_dc);
2714
2715 /* Cap clock DPM tables at DC MAX if it is in DC. */
2716 if (PP_PowerSource_DC == hwmgr->power_source) {
2717 for (i = 0; i < smu7_ps->performance_level_count; i++) {
2718 if (smu7_ps->performance_levels[i].memory_clock > max_limits->mclk)
2719 smu7_ps->performance_levels[i].memory_clock = max_limits->mclk;
2720 if (smu7_ps->performance_levels[i].engine_clock > max_limits->sclk)
2721 smu7_ps->performance_levels[i].engine_clock = max_limits->sclk;
2722 }
2723 }
2724
2725 smu7_ps->vce_clks.evclk = hwmgr->vce_arbiter.evclk;
2726 smu7_ps->vce_clks.ecclk = hwmgr->vce_arbiter.ecclk;
2727
2728 cgs_get_active_displays_info(hwmgr->device, &info);
2729
2730 minimum_clocks.engineClock = hwmgr->display_config.min_core_set_clock;
2731 minimum_clocks.memoryClock = hwmgr->display_config.min_mem_set_clock;
2732
2733 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2734 PHM_PlatformCaps_StablePState)) {
2735 max_limits = &(hwmgr->dyn_state.max_clock_voltage_on_ac);
2736 stable_pstate_sclk = (max_limits->sclk * 75) / 100;
2737
2738 for (count = table_info->vdd_dep_on_sclk->count - 1;
2739 count >= 0; count--) {
2740 if (stable_pstate_sclk >=
2741 table_info->vdd_dep_on_sclk->entries[count].clk) {
2742 stable_pstate_sclk =
2743 table_info->vdd_dep_on_sclk->entries[count].clk;
2744 break;
2745 }
2746 }
2747
2748 if (count < 0)
2749 stable_pstate_sclk = table_info->vdd_dep_on_sclk->entries[0].clk;
2750
2751 stable_pstate_mclk = max_limits->mclk;
2752
2753 minimum_clocks.engineClock = stable_pstate_sclk;
2754 minimum_clocks.memoryClock = stable_pstate_mclk;
2755 }
2756
2757 if (minimum_clocks.engineClock < hwmgr->gfx_arbiter.sclk)
2758 minimum_clocks.engineClock = hwmgr->gfx_arbiter.sclk;
2759
2760 if (minimum_clocks.memoryClock < hwmgr->gfx_arbiter.mclk)
2761 minimum_clocks.memoryClock = hwmgr->gfx_arbiter.mclk;
2762
2763 smu7_ps->sclk_threshold = hwmgr->gfx_arbiter.sclk_threshold;
2764
2765 if (0 != hwmgr->gfx_arbiter.sclk_over_drive) {
2766 PP_ASSERT_WITH_CODE((hwmgr->gfx_arbiter.sclk_over_drive <=
2767 hwmgr->platform_descriptor.overdriveLimit.engineClock),
2768 "Overdrive sclk exceeds limit",
2769 hwmgr->gfx_arbiter.sclk_over_drive =
2770 hwmgr->platform_descriptor.overdriveLimit.engineClock);
2771
2772 if (hwmgr->gfx_arbiter.sclk_over_drive >= hwmgr->gfx_arbiter.sclk)
2773 smu7_ps->performance_levels[1].engine_clock =
2774 hwmgr->gfx_arbiter.sclk_over_drive;
2775 }
2776
2777 if (0 != hwmgr->gfx_arbiter.mclk_over_drive) {
2778 PP_ASSERT_WITH_CODE((hwmgr->gfx_arbiter.mclk_over_drive <=
2779 hwmgr->platform_descriptor.overdriveLimit.memoryClock),
2780 "Overdrive mclk exceeds limit",
2781 hwmgr->gfx_arbiter.mclk_over_drive =
2782 hwmgr->platform_descriptor.overdriveLimit.memoryClock);
2783
2784 if (hwmgr->gfx_arbiter.mclk_over_drive >= hwmgr->gfx_arbiter.mclk)
2785 smu7_ps->performance_levels[1].memory_clock =
2786 hwmgr->gfx_arbiter.mclk_over_drive;
2787 }
2788
2789 disable_mclk_switching_for_frame_lock = phm_cap_enabled(
2790 hwmgr->platform_descriptor.platformCaps,
2791 PHM_PlatformCaps_DisableMclkSwitchingForFrameLock);
2792
2793
2794 disable_mclk_switching = ((1 < info.display_count) ||
2795 disable_mclk_switching_for_frame_lock ||
2796 smu7_vblank_too_short(hwmgr, mode_info.vblank_time_us) ||
2797 (mode_info.refresh_rate > 120));
2798
2799 sclk = smu7_ps->performance_levels[0].engine_clock;
2800 mclk = smu7_ps->performance_levels[0].memory_clock;
2801
2802 if (disable_mclk_switching)
2803 mclk = smu7_ps->performance_levels
2804 [smu7_ps->performance_level_count - 1].memory_clock;
2805
2806 if (sclk < minimum_clocks.engineClock)
2807 sclk = (minimum_clocks.engineClock > max_limits->sclk) ?
2808 max_limits->sclk : minimum_clocks.engineClock;
2809
2810 if (mclk < minimum_clocks.memoryClock)
2811 mclk = (minimum_clocks.memoryClock > max_limits->mclk) ?
2812 max_limits->mclk : minimum_clocks.memoryClock;
2813
2814 smu7_ps->performance_levels[0].engine_clock = sclk;
2815 smu7_ps->performance_levels[0].memory_clock = mclk;
2816
2817 smu7_ps->performance_levels[1].engine_clock =
2818 (smu7_ps->performance_levels[1].engine_clock >=
2819 smu7_ps->performance_levels[0].engine_clock) ?
2820 smu7_ps->performance_levels[1].engine_clock :
2821 smu7_ps->performance_levels[0].engine_clock;
2822
2823 if (disable_mclk_switching) {
2824 if (mclk < smu7_ps->performance_levels[1].memory_clock)
2825 mclk = smu7_ps->performance_levels[1].memory_clock;
2826
2827 smu7_ps->performance_levels[0].memory_clock = mclk;
2828 smu7_ps->performance_levels[1].memory_clock = mclk;
2829 } else {
2830 if (smu7_ps->performance_levels[1].memory_clock <
2831 smu7_ps->performance_levels[0].memory_clock)
2832 smu7_ps->performance_levels[1].memory_clock =
2833 smu7_ps->performance_levels[0].memory_clock;
2834 }
2835
2836 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2837 PHM_PlatformCaps_StablePState)) {
2838 for (i = 0; i < smu7_ps->performance_level_count; i++) {
2839 smu7_ps->performance_levels[i].engine_clock = stable_pstate_sclk;
2840 smu7_ps->performance_levels[i].memory_clock = stable_pstate_mclk;
2841 smu7_ps->performance_levels[i].pcie_gen = data->pcie_gen_performance.max;
2842 smu7_ps->performance_levels[i].pcie_lane = data->pcie_gen_performance.max;
2843 }
2844 }
2845 return 0;
2846 }
2847
2848
2849 static uint32_t smu7_dpm_get_mclk(struct pp_hwmgr *hwmgr, bool low)
2850 {
2851 struct pp_power_state *ps;
2852 struct smu7_power_state *smu7_ps;
2853
2854 if (hwmgr == NULL)
2855 return -EINVAL;
2856
2857 ps = hwmgr->request_ps;
2858
2859 if (ps == NULL)
2860 return -EINVAL;
2861
2862 smu7_ps = cast_phw_smu7_power_state(&ps->hardware);
2863
2864 if (low)
2865 return smu7_ps->performance_levels[0].memory_clock;
2866 else
2867 return smu7_ps->performance_levels
2868 [smu7_ps->performance_level_count-1].memory_clock;
2869 }
2870
2871 static uint32_t smu7_dpm_get_sclk(struct pp_hwmgr *hwmgr, bool low)
2872 {
2873 struct pp_power_state *ps;
2874 struct smu7_power_state *smu7_ps;
2875
2876 if (hwmgr == NULL)
2877 return -EINVAL;
2878
2879 ps = hwmgr->request_ps;
2880
2881 if (ps == NULL)
2882 return -EINVAL;
2883
2884 smu7_ps = cast_phw_smu7_power_state(&ps->hardware);
2885
2886 if (low)
2887 return smu7_ps->performance_levels[0].engine_clock;
2888 else
2889 return smu7_ps->performance_levels
2890 [smu7_ps->performance_level_count-1].engine_clock;
2891 }
2892
2893 static int smu7_dpm_patch_boot_state(struct pp_hwmgr *hwmgr,
2894 struct pp_hw_power_state *hw_ps)
2895 {
2896 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2897 struct smu7_power_state *ps = (struct smu7_power_state *)hw_ps;
2898 ATOM_FIRMWARE_INFO_V2_2 *fw_info;
2899 uint16_t size;
2900 uint8_t frev, crev;
2901 int index = GetIndexIntoMasterTable(DATA, FirmwareInfo);
2902
2903 /* First retrieve the Boot clocks and VDDC from the firmware info table.
2904 * We assume here that fw_info is unchanged if this call fails.
2905 */
2906 fw_info = (ATOM_FIRMWARE_INFO_V2_2 *)cgs_atom_get_data_table(
2907 hwmgr->device, index,
2908 &size, &frev, &crev);
2909 if (!fw_info)
2910 /* During a test, there is no firmware info table. */
2911 return 0;
2912
2913 /* Patch the state. */
2914 data->vbios_boot_state.sclk_bootup_value =
2915 le32_to_cpu(fw_info->ulDefaultEngineClock);
2916 data->vbios_boot_state.mclk_bootup_value =
2917 le32_to_cpu(fw_info->ulDefaultMemoryClock);
2918 data->vbios_boot_state.mvdd_bootup_value =
2919 le16_to_cpu(fw_info->usBootUpMVDDCVoltage);
2920 data->vbios_boot_state.vddc_bootup_value =
2921 le16_to_cpu(fw_info->usBootUpVDDCVoltage);
2922 data->vbios_boot_state.vddci_bootup_value =
2923 le16_to_cpu(fw_info->usBootUpVDDCIVoltage);
2924 data->vbios_boot_state.pcie_gen_bootup_value =
2925 smu7_get_current_pcie_speed(hwmgr);
2926
2927 data->vbios_boot_state.pcie_lane_bootup_value =
2928 (uint16_t)smu7_get_current_pcie_lane_number(hwmgr);
2929
2930 /* set boot power state */
2931 ps->performance_levels[0].memory_clock = data->vbios_boot_state.mclk_bootup_value;
2932 ps->performance_levels[0].engine_clock = data->vbios_boot_state.sclk_bootup_value;
2933 ps->performance_levels[0].pcie_gen = data->vbios_boot_state.pcie_gen_bootup_value;
2934 ps->performance_levels[0].pcie_lane = data->vbios_boot_state.pcie_lane_bootup_value;
2935
2936 return 0;
2937 }
2938
2939 static int smu7_get_number_of_powerplay_table_entries(struct pp_hwmgr *hwmgr)
2940 {
2941 int result;
2942 unsigned long ret = 0;
2943
2944 if (hwmgr->pp_table_version == PP_TABLE_V0) {
2945 result = pp_tables_get_num_of_entries(hwmgr, &ret);
2946 return result ? 0 : ret;
2947 } else if (hwmgr->pp_table_version == PP_TABLE_V1) {
2948 result = get_number_of_powerplay_table_entries_v1_0(hwmgr);
2949 return result;
2950 }
2951 return 0;
2952 }
2953
2954 static int smu7_get_pp_table_entry_callback_func_v1(struct pp_hwmgr *hwmgr,
2955 void *state, struct pp_power_state *power_state,
2956 void *pp_table, uint32_t classification_flag)
2957 {
2958 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2959 struct smu7_power_state *smu7_power_state =
2960 (struct smu7_power_state *)(&(power_state->hardware));
2961 struct smu7_performance_level *performance_level;
2962 ATOM_Tonga_State *state_entry = (ATOM_Tonga_State *)state;
2963 ATOM_Tonga_POWERPLAYTABLE *powerplay_table =
2964 (ATOM_Tonga_POWERPLAYTABLE *)pp_table;
2965 PPTable_Generic_SubTable_Header *sclk_dep_table =
2966 (PPTable_Generic_SubTable_Header *)
2967 (((unsigned long)powerplay_table) +
2968 le16_to_cpu(powerplay_table->usSclkDependencyTableOffset));
2969
2970 ATOM_Tonga_MCLK_Dependency_Table *mclk_dep_table =
2971 (ATOM_Tonga_MCLK_Dependency_Table *)
2972 (((unsigned long)powerplay_table) +
2973 le16_to_cpu(powerplay_table->usMclkDependencyTableOffset));
2974
2975 /* The following fields are not initialized here: id orderedList allStatesList */
2976 power_state->classification.ui_label =
2977 (le16_to_cpu(state_entry->usClassification) &
2978 ATOM_PPLIB_CLASSIFICATION_UI_MASK) >>
2979 ATOM_PPLIB_CLASSIFICATION_UI_SHIFT;
2980 power_state->classification.flags = classification_flag;
2981 /* NOTE: There is a classification2 flag in BIOS that is not being used right now */
2982
2983 power_state->classification.temporary_state = false;
2984 power_state->classification.to_be_deleted = false;
2985
2986 power_state->validation.disallowOnDC =
2987 (0 != (le32_to_cpu(state_entry->ulCapsAndSettings) &
2988 ATOM_Tonga_DISALLOW_ON_DC));
2989
2990 power_state->pcie.lanes = 0;
2991
2992 power_state->display.disableFrameModulation = false;
2993 power_state->display.limitRefreshrate = false;
2994 power_state->display.enableVariBright =
2995 (0 != (le32_to_cpu(state_entry->ulCapsAndSettings) &
2996 ATOM_Tonga_ENABLE_VARIBRIGHT));
2997
2998 power_state->validation.supportedPowerLevels = 0;
2999 power_state->uvd_clocks.VCLK = 0;
3000 power_state->uvd_clocks.DCLK = 0;
3001 power_state->temperatures.min = 0;
3002 power_state->temperatures.max = 0;
3003
3004 performance_level = &(smu7_power_state->performance_levels
3005 [smu7_power_state->performance_level_count++]);
3006
3007 PP_ASSERT_WITH_CODE(
3008 (smu7_power_state->performance_level_count < smum_get_mac_definition(hwmgr, SMU_MAX_LEVELS_GRAPHICS)),
3009 "Performance levels exceeds SMC limit!",
3010 return -EINVAL);
3011
3012 PP_ASSERT_WITH_CODE(
3013 (smu7_power_state->performance_level_count <=
3014 hwmgr->platform_descriptor.hardwareActivityPerformanceLevels),
3015 "Performance levels exceeds Driver limit!",
3016 return -EINVAL);
3017
3018 /* Performance levels are arranged from low to high. */
3019 performance_level->memory_clock = mclk_dep_table->entries
3020 [state_entry->ucMemoryClockIndexLow].ulMclk;
3021 if (sclk_dep_table->ucRevId == 0)
3022 performance_level->engine_clock = ((ATOM_Tonga_SCLK_Dependency_Table *)sclk_dep_table)->entries
3023 [state_entry->ucEngineClockIndexLow].ulSclk;
3024 else if (sclk_dep_table->ucRevId == 1)
3025 performance_level->engine_clock = ((ATOM_Polaris_SCLK_Dependency_Table *)sclk_dep_table)->entries
3026 [state_entry->ucEngineClockIndexLow].ulSclk;
3027 performance_level->pcie_gen = get_pcie_gen_support(data->pcie_gen_cap,
3028 state_entry->ucPCIEGenLow);
3029 performance_level->pcie_lane = get_pcie_lane_support(data->pcie_lane_cap,
3030 state_entry->ucPCIELaneHigh);
3031
3032 performance_level = &(smu7_power_state->performance_levels
3033 [smu7_power_state->performance_level_count++]);
3034 performance_level->memory_clock = mclk_dep_table->entries
3035 [state_entry->ucMemoryClockIndexHigh].ulMclk;
3036
3037 if (sclk_dep_table->ucRevId == 0)
3038 performance_level->engine_clock = ((ATOM_Tonga_SCLK_Dependency_Table *)sclk_dep_table)->entries
3039 [state_entry->ucEngineClockIndexHigh].ulSclk;
3040 else if (sclk_dep_table->ucRevId == 1)
3041 performance_level->engine_clock = ((ATOM_Polaris_SCLK_Dependency_Table *)sclk_dep_table)->entries
3042 [state_entry->ucEngineClockIndexHigh].ulSclk;
3043
3044 performance_level->pcie_gen = get_pcie_gen_support(data->pcie_gen_cap,
3045 state_entry->ucPCIEGenHigh);
3046 performance_level->pcie_lane = get_pcie_lane_support(data->pcie_lane_cap,
3047 state_entry->ucPCIELaneHigh);
3048
3049 return 0;
3050 }
3051
3052 static int smu7_get_pp_table_entry_v1(struct pp_hwmgr *hwmgr,
3053 unsigned long entry_index, struct pp_power_state *state)
3054 {
3055 int result;
3056 struct smu7_power_state *ps;
3057 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
3058 struct phm_ppt_v1_information *table_info =
3059 (struct phm_ppt_v1_information *)(hwmgr->pptable);
3060 struct phm_ppt_v1_clock_voltage_dependency_table *dep_mclk_table =
3061 table_info->vdd_dep_on_mclk;
3062
3063 state->hardware.magic = PHM_VIslands_Magic;
3064
3065 ps = (struct smu7_power_state *)(&state->hardware);
3066
3067 result = get_powerplay_table_entry_v1_0(hwmgr, entry_index, state,
3068 smu7_get_pp_table_entry_callback_func_v1);
3069
3070 /* This is the earliest time we have all the dependency table and the VBIOS boot state
3071 * as PP_Tables_GetPowerPlayTableEntry retrieves the VBIOS boot state
3072 * if there is only one VDDCI/MCLK level, check if it's the same as VBIOS boot state
3073 */
3074 if (dep_mclk_table != NULL && dep_mclk_table->count == 1) {
3075 if (dep_mclk_table->entries[0].clk !=
3076 data->vbios_boot_state.mclk_bootup_value)
3077 pr_debug("Single MCLK entry VDDCI/MCLK dependency table "
3078 "does not match VBIOS boot MCLK level");
3079 if (dep_mclk_table->entries[0].vddci !=
3080 data->vbios_boot_state.vddci_bootup_value)
3081 pr_debug("Single VDDCI entry VDDCI/MCLK dependency table "
3082 "does not match VBIOS boot VDDCI level");
3083 }
3084
3085 /* set DC compatible flag if this state supports DC */
3086 if (!state->validation.disallowOnDC)
3087 ps->dc_compatible = true;
3088
3089 if (state->classification.flags & PP_StateClassificationFlag_ACPI)
3090 data->acpi_pcie_gen = ps->performance_levels[0].pcie_gen;
3091
3092 ps->uvd_clks.vclk = state->uvd_clocks.VCLK;
3093 ps->uvd_clks.dclk = state->uvd_clocks.DCLK;
3094
3095 if (!result) {
3096 uint32_t i;
3097
3098 switch (state->classification.ui_label) {
3099 case PP_StateUILabel_Performance:
3100 data->use_pcie_performance_levels = true;
3101 for (i = 0; i < ps->performance_level_count; i++) {
3102 if (data->pcie_gen_performance.max <
3103 ps->performance_levels[i].pcie_gen)
3104 data->pcie_gen_performance.max =
3105 ps->performance_levels[i].pcie_gen;
3106
3107 if (data->pcie_gen_performance.min >
3108 ps->performance_levels[i].pcie_gen)
3109 data->pcie_gen_performance.min =
3110 ps->performance_levels[i].pcie_gen;
3111
3112 if (data->pcie_lane_performance.max <
3113 ps->performance_levels[i].pcie_lane)
3114 data->pcie_lane_performance.max =
3115 ps->performance_levels[i].pcie_lane;
3116 if (data->pcie_lane_performance.min >
3117 ps->performance_levels[i].pcie_lane)
3118 data->pcie_lane_performance.min =
3119 ps->performance_levels[i].pcie_lane;
3120 }
3121 break;
3122 case PP_StateUILabel_Battery:
3123 data->use_pcie_power_saving_levels = true;
3124
3125 for (i = 0; i < ps->performance_level_count; i++) {
3126 if (data->pcie_gen_power_saving.max <
3127 ps->performance_levels[i].pcie_gen)
3128 data->pcie_gen_power_saving.max =
3129 ps->performance_levels[i].pcie_gen;
3130
3131 if (data->pcie_gen_power_saving.min >
3132 ps->performance_levels[i].pcie_gen)
3133 data->pcie_gen_power_saving.min =
3134 ps->performance_levels[i].pcie_gen;
3135
3136 if (data->pcie_lane_power_saving.max <
3137 ps->performance_levels[i].pcie_lane)
3138 data->pcie_lane_power_saving.max =
3139 ps->performance_levels[i].pcie_lane;
3140
3141 if (data->pcie_lane_power_saving.min >
3142 ps->performance_levels[i].pcie_lane)
3143 data->pcie_lane_power_saving.min =
3144 ps->performance_levels[i].pcie_lane;
3145 }
3146 break;
3147 default:
3148 break;
3149 }
3150 }
3151 return 0;
3152 }
3153
3154 static int smu7_get_pp_table_entry_callback_func_v0(struct pp_hwmgr *hwmgr,
3155 struct pp_hw_power_state *power_state,
3156 unsigned int index, const void *clock_info)
3157 {
3158 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
3159 struct smu7_power_state *ps = cast_phw_smu7_power_state(power_state);
3160 const ATOM_PPLIB_CI_CLOCK_INFO *visland_clk_info = clock_info;
3161 struct smu7_performance_level *performance_level;
3162 uint32_t engine_clock, memory_clock;
3163 uint16_t pcie_gen_from_bios;
3164
3165 engine_clock = visland_clk_info->ucEngineClockHigh << 16 | visland_clk_info->usEngineClockLow;
3166 memory_clock = visland_clk_info->ucMemoryClockHigh << 16 | visland_clk_info->usMemoryClockLow;
3167
3168 if (!(data->mc_micro_code_feature & DISABLE_MC_LOADMICROCODE) && memory_clock > data->highest_mclk)
3169 data->highest_mclk = memory_clock;
3170
3171 PP_ASSERT_WITH_CODE(
3172 (ps->performance_level_count < smum_get_mac_definition(hwmgr, SMU_MAX_LEVELS_GRAPHICS)),
3173 "Performance levels exceeds SMC limit!",
3174 return -EINVAL);
3175
3176 PP_ASSERT_WITH_CODE(
3177 (ps->performance_level_count <
3178 hwmgr->platform_descriptor.hardwareActivityPerformanceLevels),
3179 "Performance levels exceeds Driver limit, Skip!",
3180 return 0);
3181
3182 performance_level = &(ps->performance_levels
3183 [ps->performance_level_count++]);
3184
3185 /* Performance levels are arranged from low to high. */
3186 performance_level->memory_clock = memory_clock;
3187 performance_level->engine_clock = engine_clock;
3188
3189 pcie_gen_from_bios = visland_clk_info->ucPCIEGen;
3190
3191 performance_level->pcie_gen = get_pcie_gen_support(data->pcie_gen_cap, pcie_gen_from_bios);
3192 performance_level->pcie_lane = get_pcie_lane_support(data->pcie_lane_cap, visland_clk_info->usPCIELane);
3193
3194 return 0;
3195 }
3196
3197 static int smu7_get_pp_table_entry_v0(struct pp_hwmgr *hwmgr,
3198 unsigned long entry_index, struct pp_power_state *state)
3199 {
3200 int result;
3201 struct smu7_power_state *ps;
3202 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
3203 struct phm_clock_voltage_dependency_table *dep_mclk_table =
3204 hwmgr->dyn_state.vddci_dependency_on_mclk;
3205
3206 memset(&state->hardware, 0x00, sizeof(struct pp_hw_power_state));
3207
3208 state->hardware.magic = PHM_VIslands_Magic;
3209
3210 ps = (struct smu7_power_state *)(&state->hardware);
3211
3212 result = pp_tables_get_entry(hwmgr, entry_index, state,
3213 smu7_get_pp_table_entry_callback_func_v0);
3214
3215 /*
3216 * This is the earliest time we have all the dependency table
3217 * and the VBIOS boot state as
3218 * PP_Tables_GetPowerPlayTableEntry retrieves the VBIOS boot
3219 * state if there is only one VDDCI/MCLK level, check if it's
3220 * the same as VBIOS boot state
3221 */
3222 if (dep_mclk_table != NULL && dep_mclk_table->count == 1) {
3223 if (dep_mclk_table->entries[0].clk !=
3224 data->vbios_boot_state.mclk_bootup_value)
3225 pr_debug("Single MCLK entry VDDCI/MCLK dependency table "
3226 "does not match VBIOS boot MCLK level");
3227 if (dep_mclk_table->entries[0].v !=
3228 data->vbios_boot_state.vddci_bootup_value)
3229 pr_debug("Single VDDCI entry VDDCI/MCLK dependency table "
3230 "does not match VBIOS boot VDDCI level");
3231 }
3232
3233 /* set DC compatible flag if this state supports DC */
3234 if (!state->validation.disallowOnDC)
3235 ps->dc_compatible = true;
3236
3237 if (state->classification.flags & PP_StateClassificationFlag_ACPI)
3238 data->acpi_pcie_gen = ps->performance_levels[0].pcie_gen;
3239
3240 ps->uvd_clks.vclk = state->uvd_clocks.VCLK;
3241 ps->uvd_clks.dclk = state->uvd_clocks.DCLK;
3242
3243 if (!result) {
3244 uint32_t i;
3245
3246 switch (state->classification.ui_label) {
3247 case PP_StateUILabel_Performance:
3248 data->use_pcie_performance_levels = true;
3249
3250 for (i = 0; i < ps->performance_level_count; i++) {
3251 if (data->pcie_gen_performance.max <
3252 ps->performance_levels[i].pcie_gen)
3253 data->pcie_gen_performance.max =
3254 ps->performance_levels[i].pcie_gen;
3255
3256 if (data->pcie_gen_performance.min >
3257 ps->performance_levels[i].pcie_gen)
3258 data->pcie_gen_performance.min =
3259 ps->performance_levels[i].pcie_gen;
3260
3261 if (data->pcie_lane_performance.max <
3262 ps->performance_levels[i].pcie_lane)
3263 data->pcie_lane_performance.max =
3264 ps->performance_levels[i].pcie_lane;
3265
3266 if (data->pcie_lane_performance.min >
3267 ps->performance_levels[i].pcie_lane)
3268 data->pcie_lane_performance.min =
3269 ps->performance_levels[i].pcie_lane;
3270 }
3271 break;
3272 case PP_StateUILabel_Battery:
3273 data->use_pcie_power_saving_levels = true;
3274
3275 for (i = 0; i < ps->performance_level_count; i++) {
3276 if (data->pcie_gen_power_saving.max <
3277 ps->performance_levels[i].pcie_gen)
3278 data->pcie_gen_power_saving.max =
3279 ps->performance_levels[i].pcie_gen;
3280
3281 if (data->pcie_gen_power_saving.min >
3282 ps->performance_levels[i].pcie_gen)
3283 data->pcie_gen_power_saving.min =
3284 ps->performance_levels[i].pcie_gen;
3285
3286 if (data->pcie_lane_power_saving.max <
3287 ps->performance_levels[i].pcie_lane)
3288 data->pcie_lane_power_saving.max =
3289 ps->performance_levels[i].pcie_lane;
3290
3291 if (data->pcie_lane_power_saving.min >
3292 ps->performance_levels[i].pcie_lane)
3293 data->pcie_lane_power_saving.min =
3294 ps->performance_levels[i].pcie_lane;
3295 }
3296 break;
3297 default:
3298 break;
3299 }
3300 }
3301 return 0;
3302 }
3303
3304 static int smu7_get_pp_table_entry(struct pp_hwmgr *hwmgr,
3305 unsigned long entry_index, struct pp_power_state *state)
3306 {
3307 if (hwmgr->pp_table_version == PP_TABLE_V0)
3308 return smu7_get_pp_table_entry_v0(hwmgr, entry_index, state);
3309 else if (hwmgr->pp_table_version == PP_TABLE_V1)
3310 return smu7_get_pp_table_entry_v1(hwmgr, entry_index, state);
3311
3312 return 0;
3313 }
3314
3315 static int smu7_get_gpu_power(struct pp_hwmgr *hwmgr,
3316 struct pp_gpu_power *query)
3317 {
3318 PP_ASSERT_WITH_CODE(!smum_send_msg_to_smc(hwmgr,
3319 PPSMC_MSG_PmStatusLogStart),
3320 "Failed to start pm status log!",
3321 return -1);
3322
3323 msleep_interruptible(20);
3324
3325 PP_ASSERT_WITH_CODE(!smum_send_msg_to_smc(hwmgr,
3326 PPSMC_MSG_PmStatusLogSample),
3327 "Failed to sample pm status log!",
3328 return -1);
3329
3330 query->vddc_power = cgs_read_ind_register(hwmgr->device,
3331 CGS_IND_REG__SMC,
3332 ixSMU_PM_STATUS_40);
3333 query->vddci_power = cgs_read_ind_register(hwmgr->device,
3334 CGS_IND_REG__SMC,
3335 ixSMU_PM_STATUS_49);
3336 query->max_gpu_power = cgs_read_ind_register(hwmgr->device,
3337 CGS_IND_REG__SMC,
3338 ixSMU_PM_STATUS_94);
3339 query->average_gpu_power = cgs_read_ind_register(hwmgr->device,
3340 CGS_IND_REG__SMC,
3341 ixSMU_PM_STATUS_95);
3342
3343 return 0;
3344 }
3345
3346 static int smu7_read_sensor(struct pp_hwmgr *hwmgr, int idx,
3347 void *value, int *size)
3348 {
3349 uint32_t sclk, mclk, activity_percent;
3350 uint32_t offset;
3351 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
3352
3353 /* size must be at least 4 bytes for all sensors */
3354 if (*size < 4)
3355 return -EINVAL;
3356
3357 switch (idx) {
3358 case AMDGPU_PP_SENSOR_GFX_SCLK:
3359 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_API_GetSclkFrequency);
3360 sclk = cgs_read_register(hwmgr->device, mmSMC_MSG_ARG_0);
3361 *((uint32_t *)value) = sclk;
3362 *size = 4;
3363 return 0;
3364 case AMDGPU_PP_SENSOR_GFX_MCLK:
3365 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_API_GetMclkFrequency);
3366 mclk = cgs_read_register(hwmgr->device, mmSMC_MSG_ARG_0);
3367 *((uint32_t *)value) = mclk;
3368 *size = 4;
3369 return 0;
3370 case AMDGPU_PP_SENSOR_GPU_LOAD:
3371 offset = data->soft_regs_start + smum_get_offsetof(hwmgr,
3372 SMU_SoftRegisters,
3373 AverageGraphicsActivity);
3374
3375 activity_percent = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset);
3376 activity_percent += 0x80;
3377 activity_percent >>= 8;
3378 *((uint32_t *)value) = activity_percent > 100 ? 100 : activity_percent;
3379 *size = 4;
3380 return 0;
3381 case AMDGPU_PP_SENSOR_GPU_TEMP:
3382 *((uint32_t *)value) = smu7_thermal_get_temperature(hwmgr);
3383 *size = 4;
3384 return 0;
3385 case AMDGPU_PP_SENSOR_UVD_POWER:
3386 *((uint32_t *)value) = data->uvd_power_gated ? 0 : 1;
3387 *size = 4;
3388 return 0;
3389 case AMDGPU_PP_SENSOR_VCE_POWER:
3390 *((uint32_t *)value) = data->vce_power_gated ? 0 : 1;
3391 *size = 4;
3392 return 0;
3393 case AMDGPU_PP_SENSOR_GPU_POWER:
3394 if (*size < sizeof(struct pp_gpu_power))
3395 return -EINVAL;
3396 *size = sizeof(struct pp_gpu_power);
3397 return smu7_get_gpu_power(hwmgr, (struct pp_gpu_power *)value);
3398 default:
3399 return -EINVAL;
3400 }
3401 }
3402
3403 static int smu7_find_dpm_states_clocks_in_dpm_table(struct pp_hwmgr *hwmgr, const void *input)
3404 {
3405 const struct phm_set_power_state_input *states =
3406 (const struct phm_set_power_state_input *)input;
3407 const struct smu7_power_state *smu7_ps =
3408 cast_const_phw_smu7_power_state(states->pnew_state);
3409 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
3410 struct smu7_single_dpm_table *sclk_table = &(data->dpm_table.sclk_table);
3411 uint32_t sclk = smu7_ps->performance_levels
3412 [smu7_ps->performance_level_count - 1].engine_clock;
3413 struct smu7_single_dpm_table *mclk_table = &(data->dpm_table.mclk_table);
3414 uint32_t mclk = smu7_ps->performance_levels
3415 [smu7_ps->performance_level_count - 1].memory_clock;
3416 struct PP_Clocks min_clocks = {0};
3417 uint32_t i;
3418 struct cgs_display_info info = {0};
3419
3420 data->need_update_smu7_dpm_table = 0;
3421
3422 for (i = 0; i < sclk_table->count; i++) {
3423 if (sclk == sclk_table->dpm_levels[i].value)
3424 break;
3425 }
3426
3427 if (i >= sclk_table->count)
3428 data->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_SCLK;
3429 else {
3430 /* TODO: Check SCLK in DAL's minimum clocks
3431 * in case DeepSleep divider update is required.
3432 */
3433 if (data->display_timing.min_clock_in_sr != min_clocks.engineClockInSR &&
3434 (min_clocks.engineClockInSR >= SMU7_MINIMUM_ENGINE_CLOCK ||
3435 data->display_timing.min_clock_in_sr >= SMU7_MINIMUM_ENGINE_CLOCK))
3436 data->need_update_smu7_dpm_table |= DPMTABLE_UPDATE_SCLK;
3437 }
3438
3439 for (i = 0; i < mclk_table->count; i++) {
3440 if (mclk == mclk_table->dpm_levels[i].value)
3441 break;
3442 }
3443
3444 if (i >= mclk_table->count)
3445 data->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_MCLK;
3446
3447 cgs_get_active_displays_info(hwmgr->device, &info);
3448
3449 if (data->display_timing.num_existing_displays != info.display_count)
3450 data->need_update_smu7_dpm_table |= DPMTABLE_UPDATE_MCLK;
3451
3452 return 0;
3453 }
3454
3455 static uint16_t smu7_get_maximum_link_speed(struct pp_hwmgr *hwmgr,
3456 const struct smu7_power_state *smu7_ps)
3457 {
3458 uint32_t i;
3459 uint32_t sclk, max_sclk = 0;
3460 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
3461 struct smu7_dpm_table *dpm_table = &data->dpm_table;
3462
3463 for (i = 0; i < smu7_ps->performance_level_count; i++) {
3464 sclk = smu7_ps->performance_levels[i].engine_clock;
3465 if (max_sclk < sclk)
3466 max_sclk = sclk;
3467 }
3468
3469 for (i = 0; i < dpm_table->sclk_table.count; i++) {
3470 if (dpm_table->sclk_table.dpm_levels[i].value == max_sclk)
3471 return (uint16_t) ((i >= dpm_table->pcie_speed_table.count) ?
3472 dpm_table->pcie_speed_table.dpm_levels
3473 [dpm_table->pcie_speed_table.count - 1].value :
3474 dpm_table->pcie_speed_table.dpm_levels[i].value);
3475 }
3476
3477 return 0;
3478 }
3479
3480 static int smu7_request_link_speed_change_before_state_change(
3481 struct pp_hwmgr *hwmgr, const void *input)
3482 {
3483 const struct phm_set_power_state_input *states =
3484 (const struct phm_set_power_state_input *)input;
3485 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
3486 const struct smu7_power_state *smu7_nps =
3487 cast_const_phw_smu7_power_state(states->pnew_state);
3488 const struct smu7_power_state *polaris10_cps =
3489 cast_const_phw_smu7_power_state(states->pcurrent_state);
3490
3491 uint16_t target_link_speed = smu7_get_maximum_link_speed(hwmgr, smu7_nps);
3492 uint16_t current_link_speed;
3493
3494 if (data->force_pcie_gen == PP_PCIEGenInvalid)
3495 current_link_speed = smu7_get_maximum_link_speed(hwmgr, polaris10_cps);
3496 else
3497 current_link_speed = data->force_pcie_gen;
3498
3499 data->force_pcie_gen = PP_PCIEGenInvalid;
3500 data->pspp_notify_required = false;
3501
3502 if (target_link_speed > current_link_speed) {
3503 switch (target_link_speed) {
3504 case PP_PCIEGen3:
3505 if (0 == acpi_pcie_perf_request(hwmgr->device, PCIE_PERF_REQ_GEN3, false))
3506 break;
3507 data->force_pcie_gen = PP_PCIEGen2;
3508 if (current_link_speed == PP_PCIEGen2)
3509 break;
3510 case PP_PCIEGen2:
3511 if (0 == acpi_pcie_perf_request(hwmgr->device, PCIE_PERF_REQ_GEN2, false))
3512 break;
3513 default:
3514 data->force_pcie_gen = smu7_get_current_pcie_speed(hwmgr);
3515 break;
3516 }
3517 } else {
3518 if (target_link_speed < current_link_speed)
3519 data->pspp_notify_required = true;
3520 }
3521
3522 return 0;
3523 }
3524
3525 static int smu7_freeze_sclk_mclk_dpm(struct pp_hwmgr *hwmgr)
3526 {
3527 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
3528
3529 if (0 == data->need_update_smu7_dpm_table)
3530 return 0;
3531
3532 if ((0 == data->sclk_dpm_key_disabled) &&
3533 (data->need_update_smu7_dpm_table &
3534 (DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_UPDATE_SCLK))) {
3535 PP_ASSERT_WITH_CODE(true == smum_is_dpm_running(hwmgr),
3536 "Trying to freeze SCLK DPM when DPM is disabled",
3537 );
3538 PP_ASSERT_WITH_CODE(0 == smum_send_msg_to_smc(hwmgr,
3539 PPSMC_MSG_SCLKDPM_FreezeLevel),
3540 "Failed to freeze SCLK DPM during FreezeSclkMclkDPM Function!",
3541 return -EINVAL);
3542 }
3543
3544 if ((0 == data->mclk_dpm_key_disabled) &&
3545 (data->need_update_smu7_dpm_table &
3546 DPMTABLE_OD_UPDATE_MCLK)) {
3547 PP_ASSERT_WITH_CODE(true == smum_is_dpm_running(hwmgr),
3548 "Trying to freeze MCLK DPM when DPM is disabled",
3549 );
3550 PP_ASSERT_WITH_CODE(0 == smum_send_msg_to_smc(hwmgr,
3551 PPSMC_MSG_MCLKDPM_FreezeLevel),
3552 "Failed to freeze MCLK DPM during FreezeSclkMclkDPM Function!",
3553 return -EINVAL);
3554 }
3555
3556 return 0;
3557 }
3558
3559 static int smu7_populate_and_upload_sclk_mclk_dpm_levels(
3560 struct pp_hwmgr *hwmgr, const void *input)
3561 {
3562 int result = 0;
3563 const struct phm_set_power_state_input *states =
3564 (const struct phm_set_power_state_input *)input;
3565 const struct smu7_power_state *smu7_ps =
3566 cast_const_phw_smu7_power_state(states->pnew_state);
3567 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
3568 uint32_t sclk = smu7_ps->performance_levels
3569 [smu7_ps->performance_level_count - 1].engine_clock;
3570 uint32_t mclk = smu7_ps->performance_levels
3571 [smu7_ps->performance_level_count - 1].memory_clock;
3572 struct smu7_dpm_table *dpm_table = &data->dpm_table;
3573
3574 struct smu7_dpm_table *golden_dpm_table = &data->golden_dpm_table;
3575 uint32_t dpm_count, clock_percent;
3576 uint32_t i;
3577
3578 if (0 == data->need_update_smu7_dpm_table)
3579 return 0;
3580
3581 if (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_SCLK) {
3582 dpm_table->sclk_table.dpm_levels
3583 [dpm_table->sclk_table.count - 1].value = sclk;
3584
3585 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_OD6PlusinACSupport) ||
3586 phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_OD6PlusinDCSupport)) {
3587 /* Need to do calculation based on the golden DPM table
3588 * as the Heatmap GPU Clock axis is also based on the default values
3589 */
3590 PP_ASSERT_WITH_CODE(
3591 (golden_dpm_table->sclk_table.dpm_levels
3592 [golden_dpm_table->sclk_table.count - 1].value != 0),
3593 "Divide by 0!",
3594 return -EINVAL);
3595 dpm_count = dpm_table->sclk_table.count < 2 ? 0 : dpm_table->sclk_table.count - 2;
3596
3597 for (i = dpm_count; i > 1; i--) {
3598 if (sclk > golden_dpm_table->sclk_table.dpm_levels[golden_dpm_table->sclk_table.count-1].value) {
3599 clock_percent =
3600 ((sclk
3601 - golden_dpm_table->sclk_table.dpm_levels[golden_dpm_table->sclk_table.count-1].value
3602 ) * 100)
3603 / golden_dpm_table->sclk_table.dpm_levels[golden_dpm_table->sclk_table.count-1].value;
3604
3605 dpm_table->sclk_table.dpm_levels[i].value =
3606 golden_dpm_table->sclk_table.dpm_levels[i].value +
3607 (golden_dpm_table->sclk_table.dpm_levels[i].value *
3608 clock_percent)/100;
3609
3610 } else if (golden_dpm_table->sclk_table.dpm_levels[dpm_table->sclk_table.count-1].value > sclk) {
3611 clock_percent =
3612 ((golden_dpm_table->sclk_table.dpm_levels[golden_dpm_table->sclk_table.count - 1].value
3613 - sclk) * 100)
3614 / golden_dpm_table->sclk_table.dpm_levels[golden_dpm_table->sclk_table.count-1].value;
3615
3616 dpm_table->sclk_table.dpm_levels[i].value =
3617 golden_dpm_table->sclk_table.dpm_levels[i].value -
3618 (golden_dpm_table->sclk_table.dpm_levels[i].value *
3619 clock_percent) / 100;
3620 } else
3621 dpm_table->sclk_table.dpm_levels[i].value =
3622 golden_dpm_table->sclk_table.dpm_levels[i].value;
3623 }
3624 }
3625 }
3626
3627 if (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_MCLK) {
3628 dpm_table->mclk_table.dpm_levels
3629 [dpm_table->mclk_table.count - 1].value = mclk;
3630
3631 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_OD6PlusinACSupport) ||
3632 phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_OD6PlusinDCSupport)) {
3633
3634 PP_ASSERT_WITH_CODE(
3635 (golden_dpm_table->mclk_table.dpm_levels
3636 [golden_dpm_table->mclk_table.count-1].value != 0),
3637 "Divide by 0!",
3638 return -EINVAL);
3639 dpm_count = dpm_table->mclk_table.count < 2 ? 0 : dpm_table->mclk_table.count - 2;
3640 for (i = dpm_count; i > 1; i--) {
3641 if (golden_dpm_table->mclk_table.dpm_levels[golden_dpm_table->mclk_table.count-1].value < mclk) {
3642 clock_percent = ((mclk -
3643 golden_dpm_table->mclk_table.dpm_levels[golden_dpm_table->mclk_table.count-1].value) * 100)
3644 / golden_dpm_table->mclk_table.dpm_levels[golden_dpm_table->mclk_table.count-1].value;
3645
3646 dpm_table->mclk_table.dpm_levels[i].value =
3647 golden_dpm_table->mclk_table.dpm_levels[i].value +
3648 (golden_dpm_table->mclk_table.dpm_levels[i].value *
3649 clock_percent) / 100;
3650
3651 } else if (golden_dpm_table->mclk_table.dpm_levels[dpm_table->mclk_table.count-1].value > mclk) {
3652 clock_percent = (
3653 (golden_dpm_table->mclk_table.dpm_levels[golden_dpm_table->mclk_table.count-1].value - mclk)
3654 * 100)
3655 / golden_dpm_table->mclk_table.dpm_levels[golden_dpm_table->mclk_table.count-1].value;
3656
3657 dpm_table->mclk_table.dpm_levels[i].value =
3658 golden_dpm_table->mclk_table.dpm_levels[i].value -
3659 (golden_dpm_table->mclk_table.dpm_levels[i].value *
3660 clock_percent) / 100;
3661 } else
3662 dpm_table->mclk_table.dpm_levels[i].value =
3663 golden_dpm_table->mclk_table.dpm_levels[i].value;
3664 }
3665 }
3666 }
3667
3668 if (data->need_update_smu7_dpm_table &
3669 (DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_UPDATE_SCLK)) {
3670 result = smum_populate_all_graphic_levels(hwmgr);
3671 PP_ASSERT_WITH_CODE((0 == result),
3672 "Failed to populate SCLK during PopulateNewDPMClocksStates Function!",
3673 return result);
3674 }
3675
3676 if (data->need_update_smu7_dpm_table &
3677 (DPMTABLE_OD_UPDATE_MCLK + DPMTABLE_UPDATE_MCLK)) {
3678 /*populate MCLK dpm table to SMU7 */
3679 result = smum_populate_all_memory_levels(hwmgr);
3680 PP_ASSERT_WITH_CODE((0 == result),
3681 "Failed to populate MCLK during PopulateNewDPMClocksStates Function!",
3682 return result);
3683 }
3684
3685 return result;
3686 }
3687
3688 static int smu7_trim_single_dpm_states(struct pp_hwmgr *hwmgr,
3689 struct smu7_single_dpm_table *dpm_table,
3690 uint32_t low_limit, uint32_t high_limit)
3691 {
3692 uint32_t i;
3693
3694 for (i = 0; i < dpm_table->count; i++) {
3695 if ((dpm_table->dpm_levels[i].value < low_limit)
3696 || (dpm_table->dpm_levels[i].value > high_limit))
3697 dpm_table->dpm_levels[i].enabled = false;
3698 else
3699 dpm_table->dpm_levels[i].enabled = true;
3700 }
3701
3702 return 0;
3703 }
3704
3705 static int smu7_trim_dpm_states(struct pp_hwmgr *hwmgr,
3706 const struct smu7_power_state *smu7_ps)
3707 {
3708 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
3709 uint32_t high_limit_count;
3710
3711 PP_ASSERT_WITH_CODE((smu7_ps->performance_level_count >= 1),
3712 "power state did not have any performance level",
3713 return -EINVAL);
3714
3715 high_limit_count = (1 == smu7_ps->performance_level_count) ? 0 : 1;
3716
3717 smu7_trim_single_dpm_states(hwmgr,
3718 &(data->dpm_table.sclk_table),
3719 smu7_ps->performance_levels[0].engine_clock,
3720 smu7_ps->performance_levels[high_limit_count].engine_clock);
3721
3722 smu7_trim_single_dpm_states(hwmgr,
3723 &(data->dpm_table.mclk_table),
3724 smu7_ps->performance_levels[0].memory_clock,
3725 smu7_ps->performance_levels[high_limit_count].memory_clock);
3726
3727 return 0;
3728 }
3729
3730 static int smu7_generate_dpm_level_enable_mask(
3731 struct pp_hwmgr *hwmgr, const void *input)
3732 {
3733 int result;
3734 const struct phm_set_power_state_input *states =
3735 (const struct phm_set_power_state_input *)input;
3736 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
3737 const struct smu7_power_state *smu7_ps =
3738 cast_const_phw_smu7_power_state(states->pnew_state);
3739
3740 result = smu7_trim_dpm_states(hwmgr, smu7_ps);
3741 if (result)
3742 return result;
3743
3744 data->dpm_level_enable_mask.sclk_dpm_enable_mask =
3745 phm_get_dpm_level_enable_mask_value(&data->dpm_table.sclk_table);
3746 data->dpm_level_enable_mask.mclk_dpm_enable_mask =
3747 phm_get_dpm_level_enable_mask_value(&data->dpm_table.mclk_table);
3748 data->dpm_level_enable_mask.pcie_dpm_enable_mask =
3749 phm_get_dpm_level_enable_mask_value(&data->dpm_table.pcie_speed_table);
3750
3751 return 0;
3752 }
3753
3754 static int smu7_unfreeze_sclk_mclk_dpm(struct pp_hwmgr *hwmgr)
3755 {
3756 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
3757
3758 if (0 == data->need_update_smu7_dpm_table)
3759 return 0;
3760
3761 if ((0 == data->sclk_dpm_key_disabled) &&
3762 (data->need_update_smu7_dpm_table &
3763 (DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_UPDATE_SCLK))) {
3764
3765 PP_ASSERT_WITH_CODE(true == smum_is_dpm_running(hwmgr),
3766 "Trying to Unfreeze SCLK DPM when DPM is disabled",
3767 );
3768 PP_ASSERT_WITH_CODE(0 == smum_send_msg_to_smc(hwmgr,
3769 PPSMC_MSG_SCLKDPM_UnfreezeLevel),
3770 "Failed to unfreeze SCLK DPM during UnFreezeSclkMclkDPM Function!",
3771 return -EINVAL);
3772 }
3773
3774 if ((0 == data->mclk_dpm_key_disabled) &&
3775 (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_MCLK)) {
3776
3777 PP_ASSERT_WITH_CODE(true == smum_is_dpm_running(hwmgr),
3778 "Trying to Unfreeze MCLK DPM when DPM is disabled",
3779 );
3780 PP_ASSERT_WITH_CODE(0 == smum_send_msg_to_smc(hwmgr,
3781 PPSMC_MSG_MCLKDPM_UnfreezeLevel),
3782 "Failed to unfreeze MCLK DPM during UnFreezeSclkMclkDPM Function!",
3783 return -EINVAL);
3784 }
3785
3786 data->need_update_smu7_dpm_table = 0;
3787
3788 return 0;
3789 }
3790
3791 static int smu7_notify_link_speed_change_after_state_change(
3792 struct pp_hwmgr *hwmgr, const void *input)
3793 {
3794 const struct phm_set_power_state_input *states =
3795 (const struct phm_set_power_state_input *)input;
3796 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
3797 const struct smu7_power_state *smu7_ps =
3798 cast_const_phw_smu7_power_state(states->pnew_state);
3799 uint16_t target_link_speed = smu7_get_maximum_link_speed(hwmgr, smu7_ps);
3800 uint8_t request;
3801
3802 if (data->pspp_notify_required) {
3803 if (target_link_speed == PP_PCIEGen3)
3804 request = PCIE_PERF_REQ_GEN3;
3805 else if (target_link_speed == PP_PCIEGen2)
3806 request = PCIE_PERF_REQ_GEN2;
3807 else
3808 request = PCIE_PERF_REQ_GEN1;
3809
3810 if (request == PCIE_PERF_REQ_GEN1 &&
3811 smu7_get_current_pcie_speed(hwmgr) > 0)
3812 return 0;
3813
3814 if (acpi_pcie_perf_request(hwmgr->device, request, false)) {
3815 if (PP_PCIEGen2 == target_link_speed)
3816 pr_info("PSPP request to switch to Gen2 from Gen3 Failed!");
3817 else
3818 pr_info("PSPP request to switch to Gen1 from Gen2 Failed!");
3819 }
3820 }
3821
3822 return 0;
3823 }
3824
3825 static int smu7_notify_smc_display(struct pp_hwmgr *hwmgr)
3826 {
3827 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
3828
3829 if (hwmgr->feature_mask & PP_VBI_TIME_SUPPORT_MASK)
3830 smum_send_msg_to_smc_with_parameter(hwmgr,
3831 (PPSMC_Msg)PPSMC_MSG_SetVBITimeout, data->frame_time_x2);
3832 return (smum_send_msg_to_smc(hwmgr, (PPSMC_Msg)PPSMC_HasDisplay) == 0) ? 0 : -EINVAL;
3833 }
3834
3835 static int smu7_set_power_state_tasks(struct pp_hwmgr *hwmgr, const void *input)
3836 {
3837 int tmp_result, result = 0;
3838 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
3839
3840 tmp_result = smu7_find_dpm_states_clocks_in_dpm_table(hwmgr, input);
3841 PP_ASSERT_WITH_CODE((0 == tmp_result),
3842 "Failed to find DPM states clocks in DPM table!",
3843 result = tmp_result);
3844
3845 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
3846 PHM_PlatformCaps_PCIEPerformanceRequest)) {
3847 tmp_result =
3848 smu7_request_link_speed_change_before_state_change(hwmgr, input);
3849 PP_ASSERT_WITH_CODE((0 == tmp_result),
3850 "Failed to request link speed change before state change!",
3851 result = tmp_result);
3852 }
3853
3854 tmp_result = smu7_freeze_sclk_mclk_dpm(hwmgr);
3855 PP_ASSERT_WITH_CODE((0 == tmp_result),
3856 "Failed to freeze SCLK MCLK DPM!", result = tmp_result);
3857
3858 tmp_result = smu7_populate_and_upload_sclk_mclk_dpm_levels(hwmgr, input);
3859 PP_ASSERT_WITH_CODE((0 == tmp_result),
3860 "Failed to populate and upload SCLK MCLK DPM levels!",
3861 result = tmp_result);
3862
3863 tmp_result = smu7_generate_dpm_level_enable_mask(hwmgr, input);
3864 PP_ASSERT_WITH_CODE((0 == tmp_result),
3865 "Failed to generate DPM level enabled mask!",
3866 result = tmp_result);
3867
3868 tmp_result = smum_update_sclk_threshold(hwmgr);
3869 PP_ASSERT_WITH_CODE((0 == tmp_result),
3870 "Failed to update SCLK threshold!",
3871 result = tmp_result);
3872
3873 tmp_result = smu7_notify_smc_display(hwmgr);
3874 PP_ASSERT_WITH_CODE((0 == tmp_result),
3875 "Failed to notify smc display settings!",
3876 result = tmp_result);
3877
3878 tmp_result = smu7_unfreeze_sclk_mclk_dpm(hwmgr);
3879 PP_ASSERT_WITH_CODE((0 == tmp_result),
3880 "Failed to unfreeze SCLK MCLK DPM!",
3881 result = tmp_result);
3882
3883 tmp_result = smu7_upload_dpm_level_enable_mask(hwmgr);
3884 PP_ASSERT_WITH_CODE((0 == tmp_result),
3885 "Failed to upload DPM level enabled mask!",
3886 result = tmp_result);
3887
3888 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
3889 PHM_PlatformCaps_PCIEPerformanceRequest)) {
3890 tmp_result =
3891 smu7_notify_link_speed_change_after_state_change(hwmgr, input);
3892 PP_ASSERT_WITH_CODE((0 == tmp_result),
3893 "Failed to notify link speed change after state change!",
3894 result = tmp_result);
3895 }
3896 data->apply_optimized_settings = false;
3897 return result;
3898 }
3899
3900 static int smu7_set_max_fan_pwm_output(struct pp_hwmgr *hwmgr, uint16_t us_max_fan_pwm)
3901 {
3902 hwmgr->thermal_controller.
3903 advanceFanControlParameters.usMaxFanPWM = us_max_fan_pwm;
3904
3905 return smum_send_msg_to_smc_with_parameter(hwmgr,
3906 PPSMC_MSG_SetFanPwmMax, us_max_fan_pwm);
3907 }
3908
3909 static int
3910 smu7_notify_smc_display_change(struct pp_hwmgr *hwmgr, bool has_display)
3911 {
3912 PPSMC_Msg msg = has_display ? (PPSMC_Msg)PPSMC_HasDisplay : (PPSMC_Msg)PPSMC_NoDisplay;
3913
3914 return (smum_send_msg_to_smc(hwmgr, msg) == 0) ? 0 : -1;
3915 }
3916
3917 static int
3918 smu7_notify_smc_display_config_after_ps_adjustment(struct pp_hwmgr *hwmgr)
3919 {
3920 uint32_t num_active_displays = 0;
3921 struct cgs_display_info info = {0};
3922
3923 info.mode_info = NULL;
3924 cgs_get_active_displays_info(hwmgr->device, &info);
3925
3926 num_active_displays = info.display_count;
3927
3928 if (num_active_displays > 1 && hwmgr->display_config.multi_monitor_in_sync != true)
3929 smu7_notify_smc_display_change(hwmgr, false);
3930
3931 return 0;
3932 }
3933
3934 /**
3935 * Programs the display gap
3936 *
3937 * @param hwmgr the address of the powerplay hardware manager.
3938 * @return always OK
3939 */
3940 static int smu7_program_display_gap(struct pp_hwmgr *hwmgr)
3941 {
3942 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
3943 uint32_t num_active_displays = 0;
3944 uint32_t display_gap = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_DISPLAY_GAP_CNTL);
3945 uint32_t display_gap2;
3946 uint32_t pre_vbi_time_in_us;
3947 uint32_t frame_time_in_us;
3948 uint32_t ref_clock;
3949 uint32_t refresh_rate = 0;
3950 struct cgs_display_info info = {0};
3951 struct cgs_mode_info mode_info = {0};
3952
3953 info.mode_info = &mode_info;
3954 cgs_get_active_displays_info(hwmgr->device, &info);
3955 num_active_displays = info.display_count;
3956
3957 display_gap = PHM_SET_FIELD(display_gap, CG_DISPLAY_GAP_CNTL, DISP_GAP, (num_active_displays > 0) ? DISPLAY_GAP_VBLANK_OR_WM : DISPLAY_GAP_IGNORE);
3958 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_DISPLAY_GAP_CNTL, display_gap);
3959
3960 ref_clock = mode_info.ref_clock;
3961 refresh_rate = mode_info.refresh_rate;
3962
3963 if (0 == refresh_rate)
3964 refresh_rate = 60;
3965
3966 frame_time_in_us = 1000000 / refresh_rate;
3967
3968 pre_vbi_time_in_us = frame_time_in_us - 200 - mode_info.vblank_time_us;
3969
3970 data->frame_time_x2 = frame_time_in_us * 2 / 100;
3971
3972 display_gap2 = pre_vbi_time_in_us * (ref_clock / 100);
3973
3974 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_DISPLAY_GAP_CNTL2, display_gap2);
3975
3976 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
3977 data->soft_regs_start + smum_get_offsetof(hwmgr,
3978 SMU_SoftRegisters,
3979 PreVBlankGap), 0x64);
3980
3981 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
3982 data->soft_regs_start + smum_get_offsetof(hwmgr,
3983 SMU_SoftRegisters,
3984 VBlankTimeout),
3985 (frame_time_in_us - pre_vbi_time_in_us));
3986
3987 return 0;
3988 }
3989
3990 static int smu7_display_configuration_changed_task(struct pp_hwmgr *hwmgr)
3991 {
3992 return smu7_program_display_gap(hwmgr);
3993 }
3994
3995 /**
3996 * Set maximum target operating fan output RPM
3997 *
3998 * @param hwmgr: the address of the powerplay hardware manager.
3999 * @param usMaxFanRpm: max operating fan RPM value.
4000 * @return The response that came from the SMC.
4001 */
4002 static int smu7_set_max_fan_rpm_output(struct pp_hwmgr *hwmgr, uint16_t us_max_fan_rpm)
4003 {
4004 hwmgr->thermal_controller.
4005 advanceFanControlParameters.usMaxFanRPM = us_max_fan_rpm;
4006
4007 return smum_send_msg_to_smc_with_parameter(hwmgr,
4008 PPSMC_MSG_SetFanRpmMax, us_max_fan_rpm);
4009 }
4010
4011 static int smu7_register_internal_thermal_interrupt(struct pp_hwmgr *hwmgr,
4012 const void *thermal_interrupt_info)
4013 {
4014 return 0;
4015 }
4016
4017 static bool
4018 smu7_check_smc_update_required_for_display_configuration(struct pp_hwmgr *hwmgr)
4019 {
4020 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4021 bool is_update_required = false;
4022 struct cgs_display_info info = {0, 0, NULL};
4023
4024 cgs_get_active_displays_info(hwmgr->device, &info);
4025
4026 if (data->display_timing.num_existing_displays != info.display_count)
4027 is_update_required = true;
4028
4029 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SclkDeepSleep)) {
4030 if (data->display_timing.min_clock_in_sr != hwmgr->display_config.min_core_set_clock_in_sr &&
4031 (data->display_timing.min_clock_in_sr >= SMU7_MINIMUM_ENGINE_CLOCK ||
4032 hwmgr->display_config.min_core_set_clock_in_sr >= SMU7_MINIMUM_ENGINE_CLOCK))
4033 is_update_required = true;
4034 }
4035 return is_update_required;
4036 }
4037
4038 static inline bool smu7_are_power_levels_equal(const struct smu7_performance_level *pl1,
4039 const struct smu7_performance_level *pl2)
4040 {
4041 return ((pl1->memory_clock == pl2->memory_clock) &&
4042 (pl1->engine_clock == pl2->engine_clock) &&
4043 (pl1->pcie_gen == pl2->pcie_gen) &&
4044 (pl1->pcie_lane == pl2->pcie_lane));
4045 }
4046
4047 static int smu7_check_states_equal(struct pp_hwmgr *hwmgr,
4048 const struct pp_hw_power_state *pstate1,
4049 const struct pp_hw_power_state *pstate2, bool *equal)
4050 {
4051 const struct smu7_power_state *psa;
4052 const struct smu7_power_state *psb;
4053 int i;
4054
4055 if (pstate1 == NULL || pstate2 == NULL || equal == NULL)
4056 return -EINVAL;
4057
4058 psa = cast_const_phw_smu7_power_state(pstate1);
4059 psb = cast_const_phw_smu7_power_state(pstate2);
4060 /* If the two states don't even have the same number of performance levels they cannot be the same state. */
4061 if (psa->performance_level_count != psb->performance_level_count) {
4062 *equal = false;
4063 return 0;
4064 }
4065
4066 for (i = 0; i < psa->performance_level_count; i++) {
4067 if (!smu7_are_power_levels_equal(&(psa->performance_levels[i]), &(psb->performance_levels[i]))) {
4068 /* If we have found even one performance level pair that is different the states are different. */
4069 *equal = false;
4070 return 0;
4071 }
4072 }
4073
4074 /* If all performance levels are the same try to use the UVD clocks to break the tie.*/
4075 *equal = ((psa->uvd_clks.vclk == psb->uvd_clks.vclk) && (psa->uvd_clks.dclk == psb->uvd_clks.dclk));
4076 *equal &= ((psa->vce_clks.evclk == psb->vce_clks.evclk) && (psa->vce_clks.ecclk == psb->vce_clks.ecclk));
4077 *equal &= (psa->sclk_threshold == psb->sclk_threshold);
4078
4079 return 0;
4080 }
4081
4082 static int smu7_upload_mc_firmware(struct pp_hwmgr *hwmgr)
4083 {
4084 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4085
4086 uint32_t vbios_version;
4087 uint32_t tmp;
4088
4089 /* Read MC indirect register offset 0x9F bits [3:0] to see
4090 * if VBIOS has already loaded a full version of MC ucode
4091 * or not.
4092 */
4093
4094 smu7_get_mc_microcode_version(hwmgr);
4095 vbios_version = hwmgr->microcode_version_info.MC & 0xf;
4096
4097 data->need_long_memory_training = false;
4098
4099 cgs_write_register(hwmgr->device, mmMC_SEQ_IO_DEBUG_INDEX,
4100 ixMC_IO_DEBUG_UP_13);
4101 tmp = cgs_read_register(hwmgr->device, mmMC_SEQ_IO_DEBUG_DATA);
4102
4103 if (tmp & (1 << 23)) {
4104 data->mem_latency_high = MEM_LATENCY_HIGH;
4105 data->mem_latency_low = MEM_LATENCY_LOW;
4106 } else {
4107 data->mem_latency_high = 330;
4108 data->mem_latency_low = 330;
4109 }
4110
4111 return 0;
4112 }
4113
4114 static int smu7_read_clock_registers(struct pp_hwmgr *hwmgr)
4115 {
4116 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4117
4118 data->clock_registers.vCG_SPLL_FUNC_CNTL =
4119 cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_SPLL_FUNC_CNTL);
4120 data->clock_registers.vCG_SPLL_FUNC_CNTL_2 =
4121 cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_SPLL_FUNC_CNTL_2);
4122 data->clock_registers.vCG_SPLL_FUNC_CNTL_3 =
4123 cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_SPLL_FUNC_CNTL_3);
4124 data->clock_registers.vCG_SPLL_FUNC_CNTL_4 =
4125 cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_SPLL_FUNC_CNTL_4);
4126 data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM =
4127 cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_SPLL_SPREAD_SPECTRUM);
4128 data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2 =
4129 cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_SPLL_SPREAD_SPECTRUM_2);
4130 data->clock_registers.vDLL_CNTL =
4131 cgs_read_register(hwmgr->device, mmDLL_CNTL);
4132 data->clock_registers.vMCLK_PWRMGT_CNTL =
4133 cgs_read_register(hwmgr->device, mmMCLK_PWRMGT_CNTL);
4134 data->clock_registers.vMPLL_AD_FUNC_CNTL =
4135 cgs_read_register(hwmgr->device, mmMPLL_AD_FUNC_CNTL);
4136 data->clock_registers.vMPLL_DQ_FUNC_CNTL =
4137 cgs_read_register(hwmgr->device, mmMPLL_DQ_FUNC_CNTL);
4138 data->clock_registers.vMPLL_FUNC_CNTL =
4139 cgs_read_register(hwmgr->device, mmMPLL_FUNC_CNTL);
4140 data->clock_registers.vMPLL_FUNC_CNTL_1 =
4141 cgs_read_register(hwmgr->device, mmMPLL_FUNC_CNTL_1);
4142 data->clock_registers.vMPLL_FUNC_CNTL_2 =
4143 cgs_read_register(hwmgr->device, mmMPLL_FUNC_CNTL_2);
4144 data->clock_registers.vMPLL_SS1 =
4145 cgs_read_register(hwmgr->device, mmMPLL_SS1);
4146 data->clock_registers.vMPLL_SS2 =
4147 cgs_read_register(hwmgr->device, mmMPLL_SS2);
4148 return 0;
4149
4150 }
4151
4152 /**
4153 * Find out if memory is GDDR5.
4154 *
4155 * @param hwmgr the address of the powerplay hardware manager.
4156 * @return always 0
4157 */
4158 static int smu7_get_memory_type(struct pp_hwmgr *hwmgr)
4159 {
4160 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4161 uint32_t temp;
4162
4163 temp = cgs_read_register(hwmgr->device, mmMC_SEQ_MISC0);
4164
4165 data->is_memory_gddr5 = (MC_SEQ_MISC0_GDDR5_VALUE ==
4166 ((temp & MC_SEQ_MISC0_GDDR5_MASK) >>
4167 MC_SEQ_MISC0_GDDR5_SHIFT));
4168
4169 return 0;
4170 }
4171
4172 /**
4173 * Enables Dynamic Power Management by SMC
4174 *
4175 * @param hwmgr the address of the powerplay hardware manager.
4176 * @return always 0
4177 */
4178 static int smu7_enable_acpi_power_management(struct pp_hwmgr *hwmgr)
4179 {
4180 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
4181 GENERAL_PWRMGT, STATIC_PM_EN, 1);
4182
4183 return 0;
4184 }
4185
4186 /**
4187 * Initialize PowerGating States for different engines
4188 *
4189 * @param hwmgr the address of the powerplay hardware manager.
4190 * @return always 0
4191 */
4192 static int smu7_init_power_gate_state(struct pp_hwmgr *hwmgr)
4193 {
4194 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4195
4196 data->uvd_power_gated = false;
4197 data->vce_power_gated = false;
4198 data->samu_power_gated = false;
4199
4200 return 0;
4201 }
4202
4203 static int smu7_init_sclk_threshold(struct pp_hwmgr *hwmgr)
4204 {
4205 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4206
4207 data->low_sclk_interrupt_threshold = 0;
4208 return 0;
4209 }
4210
4211 static int smu7_setup_asic_task(struct pp_hwmgr *hwmgr)
4212 {
4213 int tmp_result, result = 0;
4214
4215 smu7_upload_mc_firmware(hwmgr);
4216
4217 tmp_result = smu7_read_clock_registers(hwmgr);
4218 PP_ASSERT_WITH_CODE((0 == tmp_result),
4219 "Failed to read clock registers!", result = tmp_result);
4220
4221 tmp_result = smu7_get_memory_type(hwmgr);
4222 PP_ASSERT_WITH_CODE((0 == tmp_result),
4223 "Failed to get memory type!", result = tmp_result);
4224
4225 tmp_result = smu7_enable_acpi_power_management(hwmgr);
4226 PP_ASSERT_WITH_CODE((0 == tmp_result),
4227 "Failed to enable ACPI power management!", result = tmp_result);
4228
4229 tmp_result = smu7_init_power_gate_state(hwmgr);
4230 PP_ASSERT_WITH_CODE((0 == tmp_result),
4231 "Failed to init power gate state!", result = tmp_result);
4232
4233 tmp_result = smu7_get_mc_microcode_version(hwmgr);
4234 PP_ASSERT_WITH_CODE((0 == tmp_result),
4235 "Failed to get MC microcode version!", result = tmp_result);
4236
4237 tmp_result = smu7_init_sclk_threshold(hwmgr);
4238 PP_ASSERT_WITH_CODE((0 == tmp_result),
4239 "Failed to init sclk threshold!", result = tmp_result);
4240
4241 return result;
4242 }
4243
4244 static int smu7_force_clock_level(struct pp_hwmgr *hwmgr,
4245 enum pp_clock_type type, uint32_t mask)
4246 {
4247 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4248
4249 if (hwmgr->request_dpm_level & (AMD_DPM_FORCED_LEVEL_AUTO |
4250 AMD_DPM_FORCED_LEVEL_LOW |
4251 AMD_DPM_FORCED_LEVEL_HIGH))
4252 return -EINVAL;
4253
4254 switch (type) {
4255 case PP_SCLK:
4256 if (!data->sclk_dpm_key_disabled)
4257 smum_send_msg_to_smc_with_parameter(hwmgr,
4258 PPSMC_MSG_SCLKDPM_SetEnabledMask,
4259 data->dpm_level_enable_mask.sclk_dpm_enable_mask & mask);
4260 break;
4261 case PP_MCLK:
4262 if (!data->mclk_dpm_key_disabled)
4263 smum_send_msg_to_smc_with_parameter(hwmgr,
4264 PPSMC_MSG_MCLKDPM_SetEnabledMask,
4265 data->dpm_level_enable_mask.mclk_dpm_enable_mask & mask);
4266 break;
4267 case PP_PCIE:
4268 {
4269 uint32_t tmp = mask & data->dpm_level_enable_mask.pcie_dpm_enable_mask;
4270 uint32_t level = 0;
4271
4272 while (tmp >>= 1)
4273 level++;
4274
4275 if (!data->pcie_dpm_key_disabled)
4276 smum_send_msg_to_smc_with_parameter(hwmgr,
4277 PPSMC_MSG_PCIeDPM_ForceLevel,
4278 level);
4279 break;
4280 }
4281 default:
4282 break;
4283 }
4284
4285 return 0;
4286 }
4287
4288 static int smu7_print_clock_levels(struct pp_hwmgr *hwmgr,
4289 enum pp_clock_type type, char *buf)
4290 {
4291 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4292 struct smu7_single_dpm_table *sclk_table = &(data->dpm_table.sclk_table);
4293 struct smu7_single_dpm_table *mclk_table = &(data->dpm_table.mclk_table);
4294 struct smu7_single_dpm_table *pcie_table = &(data->dpm_table.pcie_speed_table);
4295 int i, now, size = 0;
4296 uint32_t clock, pcie_speed;
4297
4298 switch (type) {
4299 case PP_SCLK:
4300 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_API_GetSclkFrequency);
4301 clock = cgs_read_register(hwmgr->device, mmSMC_MSG_ARG_0);
4302
4303 for (i = 0; i < sclk_table->count; i++) {
4304 if (clock > sclk_table->dpm_levels[i].value)
4305 continue;
4306 break;
4307 }
4308 now = i;
4309
4310 for (i = 0; i < sclk_table->count; i++)
4311 size += sprintf(buf + size, "%d: %uMhz %s\n",
4312 i, sclk_table->dpm_levels[i].value / 100,
4313 (i == now) ? "*" : "");
4314 break;
4315 case PP_MCLK:
4316 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_API_GetMclkFrequency);
4317 clock = cgs_read_register(hwmgr->device, mmSMC_MSG_ARG_0);
4318
4319 for (i = 0; i < mclk_table->count; i++) {
4320 if (clock > mclk_table->dpm_levels[i].value)
4321 continue;
4322 break;
4323 }
4324 now = i;
4325
4326 for (i = 0; i < mclk_table->count; i++)
4327 size += sprintf(buf + size, "%d: %uMhz %s\n",
4328 i, mclk_table->dpm_levels[i].value / 100,
4329 (i == now) ? "*" : "");
4330 break;
4331 case PP_PCIE:
4332 pcie_speed = smu7_get_current_pcie_speed(hwmgr);
4333 for (i = 0; i < pcie_table->count; i++) {
4334 if (pcie_speed != pcie_table->dpm_levels[i].value)
4335 continue;
4336 break;
4337 }
4338 now = i;
4339
4340 for (i = 0; i < pcie_table->count; i++)
4341 size += sprintf(buf + size, "%d: %s %s\n", i,
4342 (pcie_table->dpm_levels[i].value == 0) ? "2.5GB, x8" :
4343 (pcie_table->dpm_levels[i].value == 1) ? "5.0GB, x16" :
4344 (pcie_table->dpm_levels[i].value == 2) ? "8.0GB, x16" : "",
4345 (i == now) ? "*" : "");
4346 break;
4347 default:
4348 break;
4349 }
4350 return size;
4351 }
4352
4353 static void smu7_set_fan_control_mode(struct pp_hwmgr *hwmgr, uint32_t mode)
4354 {
4355 switch (mode) {
4356 case AMD_FAN_CTRL_NONE:
4357 smu7_fan_ctrl_set_fan_speed_percent(hwmgr, 100);
4358 break;
4359 case AMD_FAN_CTRL_MANUAL:
4360 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
4361 PHM_PlatformCaps_MicrocodeFanControl))
4362 smu7_fan_ctrl_stop_smc_fan_control(hwmgr);
4363 break;
4364 case AMD_FAN_CTRL_AUTO:
4365 if (!smu7_fan_ctrl_set_static_mode(hwmgr, mode))
4366 smu7_fan_ctrl_start_smc_fan_control(hwmgr);
4367 break;
4368 default:
4369 break;
4370 }
4371 }
4372
4373 static uint32_t smu7_get_fan_control_mode(struct pp_hwmgr *hwmgr)
4374 {
4375 return hwmgr->fan_ctrl_enabled ? AMD_FAN_CTRL_AUTO : AMD_FAN_CTRL_MANUAL;
4376 }
4377
4378 static int smu7_get_sclk_od(struct pp_hwmgr *hwmgr)
4379 {
4380 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4381 struct smu7_single_dpm_table *sclk_table = &(data->dpm_table.sclk_table);
4382 struct smu7_single_dpm_table *golden_sclk_table =
4383 &(data->golden_dpm_table.sclk_table);
4384 int value;
4385
4386 value = (sclk_table->dpm_levels[sclk_table->count - 1].value -
4387 golden_sclk_table->dpm_levels[golden_sclk_table->count - 1].value) *
4388 100 /
4389 golden_sclk_table->dpm_levels[golden_sclk_table->count - 1].value;
4390
4391 return value;
4392 }
4393
4394 static int smu7_set_sclk_od(struct pp_hwmgr *hwmgr, uint32_t value)
4395 {
4396 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4397 struct smu7_single_dpm_table *golden_sclk_table =
4398 &(data->golden_dpm_table.sclk_table);
4399 struct pp_power_state *ps;
4400 struct smu7_power_state *smu7_ps;
4401
4402 if (value > 20)
4403 value = 20;
4404
4405 ps = hwmgr->request_ps;
4406
4407 if (ps == NULL)
4408 return -EINVAL;
4409
4410 smu7_ps = cast_phw_smu7_power_state(&ps->hardware);
4411
4412 smu7_ps->performance_levels[smu7_ps->performance_level_count - 1].engine_clock =
4413 golden_sclk_table->dpm_levels[golden_sclk_table->count - 1].value *
4414 value / 100 +
4415 golden_sclk_table->dpm_levels[golden_sclk_table->count - 1].value;
4416
4417 return 0;
4418 }
4419
4420 static int smu7_get_mclk_od(struct pp_hwmgr *hwmgr)
4421 {
4422 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4423 struct smu7_single_dpm_table *mclk_table = &(data->dpm_table.mclk_table);
4424 struct smu7_single_dpm_table *golden_mclk_table =
4425 &(data->golden_dpm_table.mclk_table);
4426 int value;
4427
4428 value = (mclk_table->dpm_levels[mclk_table->count - 1].value -
4429 golden_mclk_table->dpm_levels[golden_mclk_table->count - 1].value) *
4430 100 /
4431 golden_mclk_table->dpm_levels[golden_mclk_table->count - 1].value;
4432
4433 return value;
4434 }
4435
4436 static int smu7_set_mclk_od(struct pp_hwmgr *hwmgr, uint32_t value)
4437 {
4438 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4439 struct smu7_single_dpm_table *golden_mclk_table =
4440 &(data->golden_dpm_table.mclk_table);
4441 struct pp_power_state *ps;
4442 struct smu7_power_state *smu7_ps;
4443
4444 if (value > 20)
4445 value = 20;
4446
4447 ps = hwmgr->request_ps;
4448
4449 if (ps == NULL)
4450 return -EINVAL;
4451
4452 smu7_ps = cast_phw_smu7_power_state(&ps->hardware);
4453
4454 smu7_ps->performance_levels[smu7_ps->performance_level_count - 1].memory_clock =
4455 golden_mclk_table->dpm_levels[golden_mclk_table->count - 1].value *
4456 value / 100 +
4457 golden_mclk_table->dpm_levels[golden_mclk_table->count - 1].value;
4458
4459 return 0;
4460 }
4461
4462
4463 static int smu7_get_sclks(struct pp_hwmgr *hwmgr, struct amd_pp_clocks *clocks)
4464 {
4465 struct phm_ppt_v1_information *table_info =
4466 (struct phm_ppt_v1_information *)hwmgr->pptable;
4467 struct phm_ppt_v1_clock_voltage_dependency_table *dep_sclk_table = NULL;
4468 struct phm_clock_voltage_dependency_table *sclk_table;
4469 int i;
4470
4471 if (hwmgr->pp_table_version == PP_TABLE_V1) {
4472 if (table_info == NULL || table_info->vdd_dep_on_sclk == NULL)
4473 return -EINVAL;
4474 dep_sclk_table = table_info->vdd_dep_on_sclk;
4475 for (i = 0; i < dep_sclk_table->count; i++)
4476 clocks->clock[i] = dep_sclk_table->entries[i].clk;
4477 clocks->count = dep_sclk_table->count;
4478 } else if (hwmgr->pp_table_version == PP_TABLE_V0) {
4479 sclk_table = hwmgr->dyn_state.vddc_dependency_on_sclk;
4480 for (i = 0; i < sclk_table->count; i++)
4481 clocks->clock[i] = sclk_table->entries[i].clk;
4482 clocks->count = sclk_table->count;
4483 }
4484
4485 return 0;
4486 }
4487
4488 static uint32_t smu7_get_mem_latency(struct pp_hwmgr *hwmgr, uint32_t clk)
4489 {
4490 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4491
4492 if (clk >= MEM_FREQ_LOW_LATENCY && clk < MEM_FREQ_HIGH_LATENCY)
4493 return data->mem_latency_high;
4494 else if (clk >= MEM_FREQ_HIGH_LATENCY)
4495 return data->mem_latency_low;
4496 else
4497 return MEM_LATENCY_ERR;
4498 }
4499
4500 static int smu7_get_mclks(struct pp_hwmgr *hwmgr, struct amd_pp_clocks *clocks)
4501 {
4502 struct phm_ppt_v1_information *table_info =
4503 (struct phm_ppt_v1_information *)hwmgr->pptable;
4504 struct phm_ppt_v1_clock_voltage_dependency_table *dep_mclk_table;
4505 int i;
4506 struct phm_clock_voltage_dependency_table *mclk_table;
4507
4508 if (hwmgr->pp_table_version == PP_TABLE_V1) {
4509 if (table_info == NULL)
4510 return -EINVAL;
4511 dep_mclk_table = table_info->vdd_dep_on_mclk;
4512 for (i = 0; i < dep_mclk_table->count; i++) {
4513 clocks->clock[i] = dep_mclk_table->entries[i].clk;
4514 clocks->latency[i] = smu7_get_mem_latency(hwmgr,
4515 dep_mclk_table->entries[i].clk);
4516 }
4517 clocks->count = dep_mclk_table->count;
4518 } else if (hwmgr->pp_table_version == PP_TABLE_V0) {
4519 mclk_table = hwmgr->dyn_state.vddc_dependency_on_mclk;
4520 for (i = 0; i < mclk_table->count; i++)
4521 clocks->clock[i] = mclk_table->entries[i].clk;
4522 clocks->count = mclk_table->count;
4523 }
4524 return 0;
4525 }
4526
4527 static int smu7_get_clock_by_type(struct pp_hwmgr *hwmgr, enum amd_pp_clock_type type,
4528 struct amd_pp_clocks *clocks)
4529 {
4530 switch (type) {
4531 case amd_pp_sys_clock:
4532 smu7_get_sclks(hwmgr, clocks);
4533 break;
4534 case amd_pp_mem_clock:
4535 smu7_get_mclks(hwmgr, clocks);
4536 break;
4537 default:
4538 return -EINVAL;
4539 }
4540
4541 return 0;
4542 }
4543
4544 static void smu7_find_min_clock_masks(struct pp_hwmgr *hwmgr,
4545 uint32_t *sclk_mask, uint32_t *mclk_mask,
4546 uint32_t min_sclk, uint32_t min_mclk)
4547 {
4548 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4549 struct smu7_dpm_table *dpm_table = &(data->dpm_table);
4550 uint32_t i;
4551
4552 for (i = 0; i < dpm_table->sclk_table.count; i++) {
4553 if (dpm_table->sclk_table.dpm_levels[i].enabled &&
4554 dpm_table->sclk_table.dpm_levels[i].value >= min_sclk)
4555 *sclk_mask |= 1 << i;
4556 }
4557
4558 for (i = 0; i < dpm_table->mclk_table.count; i++) {
4559 if (dpm_table->mclk_table.dpm_levels[i].enabled &&
4560 dpm_table->mclk_table.dpm_levels[i].value >= min_mclk)
4561 *mclk_mask |= 1 << i;
4562 }
4563 }
4564
4565 static int smu7_set_power_profile_state(struct pp_hwmgr *hwmgr,
4566 struct amd_pp_profile *request)
4567 {
4568 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4569 int tmp_result, result = 0;
4570 uint32_t sclk_mask = 0, mclk_mask = 0;
4571
4572 if (hwmgr->chip_id == CHIP_FIJI) {
4573 if (request->type == AMD_PP_GFX_PROFILE)
4574 smu7_enable_power_containment(hwmgr);
4575 else if (request->type == AMD_PP_COMPUTE_PROFILE)
4576 smu7_disable_power_containment(hwmgr);
4577 }
4578
4579 if (hwmgr->dpm_level != AMD_DPM_FORCED_LEVEL_AUTO)
4580 return -EINVAL;
4581
4582 tmp_result = smu7_freeze_sclk_mclk_dpm(hwmgr);
4583 PP_ASSERT_WITH_CODE(!tmp_result,
4584 "Failed to freeze SCLK MCLK DPM!",
4585 result = tmp_result);
4586
4587 tmp_result = smum_populate_requested_graphic_levels(hwmgr, request);
4588 PP_ASSERT_WITH_CODE(!tmp_result,
4589 "Failed to populate requested graphic levels!",
4590 result = tmp_result);
4591
4592 tmp_result = smu7_unfreeze_sclk_mclk_dpm(hwmgr);
4593 PP_ASSERT_WITH_CODE(!tmp_result,
4594 "Failed to unfreeze SCLK MCLK DPM!",
4595 result = tmp_result);
4596
4597 smu7_find_min_clock_masks(hwmgr, &sclk_mask, &mclk_mask,
4598 request->min_sclk, request->min_mclk);
4599
4600 if (sclk_mask) {
4601 if (!data->sclk_dpm_key_disabled)
4602 smum_send_msg_to_smc_with_parameter(hwmgr,
4603 PPSMC_MSG_SCLKDPM_SetEnabledMask,
4604 data->dpm_level_enable_mask.
4605 sclk_dpm_enable_mask &
4606 sclk_mask);
4607 }
4608
4609 if (mclk_mask) {
4610 if (!data->mclk_dpm_key_disabled)
4611 smum_send_msg_to_smc_with_parameter(hwmgr,
4612 PPSMC_MSG_MCLKDPM_SetEnabledMask,
4613 data->dpm_level_enable_mask.
4614 mclk_dpm_enable_mask &
4615 mclk_mask);
4616 }
4617
4618 return result;
4619 }
4620
4621 static int smu7_avfs_control(struct pp_hwmgr *hwmgr, bool enable)
4622 {
4623 struct smu7_smumgr *smu_data = (struct smu7_smumgr *)(hwmgr->smu_backend);
4624
4625 if (smu_data == NULL)
4626 return -EINVAL;
4627
4628 if (smu_data->avfs.avfs_btc_status == AVFS_BTC_NOTSUPPORTED)
4629 return 0;
4630
4631 if (enable) {
4632 if (!PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device,
4633 CGS_IND_REG__SMC, FEATURE_STATUS, AVS_ON))
4634 PP_ASSERT_WITH_CODE(!smum_send_msg_to_smc(
4635 hwmgr, PPSMC_MSG_EnableAvfs),
4636 "Failed to enable AVFS!",
4637 return -EINVAL);
4638 } else if (PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device,
4639 CGS_IND_REG__SMC, FEATURE_STATUS, AVS_ON))
4640 PP_ASSERT_WITH_CODE(!smum_send_msg_to_smc(
4641 hwmgr, PPSMC_MSG_DisableAvfs),
4642 "Failed to disable AVFS!",
4643 return -EINVAL);
4644
4645 return 0;
4646 }
4647
4648 static int smu7_notify_cac_buffer_info(struct pp_hwmgr *hwmgr,
4649 uint32_t virtual_addr_low,
4650 uint32_t virtual_addr_hi,
4651 uint32_t mc_addr_low,
4652 uint32_t mc_addr_hi,
4653 uint32_t size)
4654 {
4655 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4656
4657 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
4658 data->soft_regs_start +
4659 smum_get_offsetof(hwmgr,
4660 SMU_SoftRegisters, DRAM_LOG_ADDR_H),
4661 mc_addr_hi);
4662
4663 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
4664 data->soft_regs_start +
4665 smum_get_offsetof(hwmgr,
4666 SMU_SoftRegisters, DRAM_LOG_ADDR_L),
4667 mc_addr_low);
4668
4669 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
4670 data->soft_regs_start +
4671 smum_get_offsetof(hwmgr,
4672 SMU_SoftRegisters, DRAM_LOG_PHY_ADDR_H),
4673 virtual_addr_hi);
4674
4675 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
4676 data->soft_regs_start +
4677 smum_get_offsetof(hwmgr,
4678 SMU_SoftRegisters, DRAM_LOG_PHY_ADDR_L),
4679 virtual_addr_low);
4680
4681 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
4682 data->soft_regs_start +
4683 smum_get_offsetof(hwmgr,
4684 SMU_SoftRegisters, DRAM_LOG_BUFF_SIZE),
4685 size);
4686 return 0;
4687 }
4688
4689 static const struct pp_hwmgr_func smu7_hwmgr_funcs = {
4690 .backend_init = &smu7_hwmgr_backend_init,
4691 .backend_fini = &smu7_hwmgr_backend_fini,
4692 .asic_setup = &smu7_setup_asic_task,
4693 .dynamic_state_management_enable = &smu7_enable_dpm_tasks,
4694 .apply_state_adjust_rules = smu7_apply_state_adjust_rules,
4695 .force_dpm_level = &smu7_force_dpm_level,
4696 .power_state_set = smu7_set_power_state_tasks,
4697 .get_power_state_size = smu7_get_power_state_size,
4698 .get_mclk = smu7_dpm_get_mclk,
4699 .get_sclk = smu7_dpm_get_sclk,
4700 .patch_boot_state = smu7_dpm_patch_boot_state,
4701 .get_pp_table_entry = smu7_get_pp_table_entry,
4702 .get_num_of_pp_table_entries = smu7_get_number_of_powerplay_table_entries,
4703 .powerdown_uvd = smu7_powerdown_uvd,
4704 .powergate_uvd = smu7_powergate_uvd,
4705 .powergate_vce = smu7_powergate_vce,
4706 .disable_clock_power_gating = smu7_disable_clock_power_gating,
4707 .update_clock_gatings = smu7_update_clock_gatings,
4708 .notify_smc_display_config_after_ps_adjustment = smu7_notify_smc_display_config_after_ps_adjustment,
4709 .display_config_changed = smu7_display_configuration_changed_task,
4710 .set_max_fan_pwm_output = smu7_set_max_fan_pwm_output,
4711 .set_max_fan_rpm_output = smu7_set_max_fan_rpm_output,
4712 .get_temperature = smu7_thermal_get_temperature,
4713 .stop_thermal_controller = smu7_thermal_stop_thermal_controller,
4714 .get_fan_speed_info = smu7_fan_ctrl_get_fan_speed_info,
4715 .get_fan_speed_percent = smu7_fan_ctrl_get_fan_speed_percent,
4716 .set_fan_speed_percent = smu7_fan_ctrl_set_fan_speed_percent,
4717 .reset_fan_speed_to_default = smu7_fan_ctrl_reset_fan_speed_to_default,
4718 .get_fan_speed_rpm = smu7_fan_ctrl_get_fan_speed_rpm,
4719 .set_fan_speed_rpm = smu7_fan_ctrl_set_fan_speed_rpm,
4720 .uninitialize_thermal_controller = smu7_thermal_ctrl_uninitialize_thermal_controller,
4721 .register_internal_thermal_interrupt = smu7_register_internal_thermal_interrupt,
4722 .check_smc_update_required_for_display_configuration = smu7_check_smc_update_required_for_display_configuration,
4723 .check_states_equal = smu7_check_states_equal,
4724 .set_fan_control_mode = smu7_set_fan_control_mode,
4725 .get_fan_control_mode = smu7_get_fan_control_mode,
4726 .force_clock_level = smu7_force_clock_level,
4727 .print_clock_levels = smu7_print_clock_levels,
4728 .enable_per_cu_power_gating = smu7_enable_per_cu_power_gating,
4729 .get_sclk_od = smu7_get_sclk_od,
4730 .set_sclk_od = smu7_set_sclk_od,
4731 .get_mclk_od = smu7_get_mclk_od,
4732 .set_mclk_od = smu7_set_mclk_od,
4733 .get_clock_by_type = smu7_get_clock_by_type,
4734 .read_sensor = smu7_read_sensor,
4735 .dynamic_state_management_disable = smu7_disable_dpm_tasks,
4736 .set_power_profile_state = smu7_set_power_profile_state,
4737 .avfs_control = smu7_avfs_control,
4738 .disable_smc_firmware_ctf = smu7_thermal_disable_alert,
4739 .start_thermal_controller = smu7_start_thermal_controller,
4740 .notify_cac_buffer_info = smu7_notify_cac_buffer_info,
4741 };
4742
4743 uint8_t smu7_get_sleep_divider_id_from_clock(uint32_t clock,
4744 uint32_t clock_insr)
4745 {
4746 uint8_t i;
4747 uint32_t temp;
4748 uint32_t min = max(clock_insr, (uint32_t)SMU7_MINIMUM_ENGINE_CLOCK);
4749
4750 PP_ASSERT_WITH_CODE((clock >= min), "Engine clock can't satisfy stutter requirement!", return 0);
4751 for (i = SMU7_MAX_DEEPSLEEP_DIVIDER_ID; ; i--) {
4752 temp = clock >> i;
4753
4754 if (temp >= min || i == 0)
4755 break;
4756 }
4757 return i;
4758 }
4759
4760 int smu7_init_function_pointers(struct pp_hwmgr *hwmgr)
4761 {
4762 int ret = 0;
4763
4764 hwmgr->hwmgr_func = &smu7_hwmgr_funcs;
4765 if (hwmgr->pp_table_version == PP_TABLE_V0)
4766 hwmgr->pptable_func = &pptable_funcs;
4767 else if (hwmgr->pp_table_version == PP_TABLE_V1)
4768 hwmgr->pptable_func = &pptable_v1_0_funcs;
4769
4770 return ret;
4771 }
4772