]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - drivers/gpu/drm/amd/powerplay/hwmgr/smu7_hwmgr.c
Merge tag 'asoc-fix-v4.14-rc6' into asoc-linus
[mirror_ubuntu-focal-kernel.git] / drivers / gpu / drm / amd / powerplay / hwmgr / smu7_hwmgr.c
1 /*
2 * Copyright 2015 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 */
23 #include "pp_debug.h"
24 #include <linux/delay.h>
25 #include <linux/fb.h>
26 #include <linux/module.h>
27 #include <linux/slab.h>
28 #include <asm/div64.h>
29 #include "pp_acpi.h"
30 #include "ppatomctrl.h"
31 #include "atombios.h"
32 #include "pptable_v1_0.h"
33 #include "pppcielanes.h"
34 #include "amd_pcie_helpers.h"
35 #include "hardwaremanager.h"
36 #include "process_pptables_v1_0.h"
37 #include "cgs_common.h"
38
39 #include "smu7_common.h"
40
41 #include "hwmgr.h"
42 #include "smu7_hwmgr.h"
43 #include "smu7_smumgr.h"
44 #include "smu_ucode_xfer_vi.h"
45 #include "smu7_powertune.h"
46 #include "smu7_dyn_defaults.h"
47 #include "smu7_thermal.h"
48 #include "smu7_clockpowergating.h"
49 #include "processpptables.h"
50
51 #define MC_CG_ARB_FREQ_F0 0x0a
52 #define MC_CG_ARB_FREQ_F1 0x0b
53 #define MC_CG_ARB_FREQ_F2 0x0c
54 #define MC_CG_ARB_FREQ_F3 0x0d
55
56 #define MC_CG_SEQ_DRAMCONF_S0 0x05
57 #define MC_CG_SEQ_DRAMCONF_S1 0x06
58 #define MC_CG_SEQ_YCLK_SUSPEND 0x04
59 #define MC_CG_SEQ_YCLK_RESUME 0x0a
60
61 #define SMC_CG_IND_START 0xc0030000
62 #define SMC_CG_IND_END 0xc0040000
63
64 #define VOLTAGE_SCALE 4
65 #define VOLTAGE_VID_OFFSET_SCALE1 625
66 #define VOLTAGE_VID_OFFSET_SCALE2 100
67
68 #define MEM_FREQ_LOW_LATENCY 25000
69 #define MEM_FREQ_HIGH_LATENCY 80000
70
71 #define MEM_LATENCY_HIGH 45
72 #define MEM_LATENCY_LOW 35
73 #define MEM_LATENCY_ERR 0xFFFF
74
75 #define MC_SEQ_MISC0_GDDR5_SHIFT 28
76 #define MC_SEQ_MISC0_GDDR5_MASK 0xf0000000
77 #define MC_SEQ_MISC0_GDDR5_VALUE 5
78
79 #define PCIE_BUS_CLK 10000
80 #define TCLK (PCIE_BUS_CLK / 10)
81
82
83 /** Values for the CG_THERMAL_CTRL::DPM_EVENT_SRC field. */
84 enum DPM_EVENT_SRC {
85 DPM_EVENT_SRC_ANALOG = 0,
86 DPM_EVENT_SRC_EXTERNAL = 1,
87 DPM_EVENT_SRC_DIGITAL = 2,
88 DPM_EVENT_SRC_ANALOG_OR_EXTERNAL = 3,
89 DPM_EVENT_SRC_DIGITAL_OR_EXTERNAL = 4
90 };
91
92 static int smu7_avfs_control(struct pp_hwmgr *hwmgr, bool enable);
93 static const unsigned long PhwVIslands_Magic = (unsigned long)(PHM_VIslands_Magic);
94 static int smu7_force_clock_level(struct pp_hwmgr *hwmgr,
95 enum pp_clock_type type, uint32_t mask);
96
97 static struct smu7_power_state *cast_phw_smu7_power_state(
98 struct pp_hw_power_state *hw_ps)
99 {
100 PP_ASSERT_WITH_CODE((PhwVIslands_Magic == hw_ps->magic),
101 "Invalid Powerstate Type!",
102 return NULL);
103
104 return (struct smu7_power_state *)hw_ps;
105 }
106
107 static const struct smu7_power_state *cast_const_phw_smu7_power_state(
108 const struct pp_hw_power_state *hw_ps)
109 {
110 PP_ASSERT_WITH_CODE((PhwVIslands_Magic == hw_ps->magic),
111 "Invalid Powerstate Type!",
112 return NULL);
113
114 return (const struct smu7_power_state *)hw_ps;
115 }
116
117 /**
118 * Find the MC microcode version and store it in the HwMgr struct
119 *
120 * @param hwmgr the address of the powerplay hardware manager.
121 * @return always 0
122 */
123 static int smu7_get_mc_microcode_version(struct pp_hwmgr *hwmgr)
124 {
125 cgs_write_register(hwmgr->device, mmMC_SEQ_IO_DEBUG_INDEX, 0x9F);
126
127 hwmgr->microcode_version_info.MC = cgs_read_register(hwmgr->device, mmMC_SEQ_IO_DEBUG_DATA);
128
129 return 0;
130 }
131
132 static uint16_t smu7_get_current_pcie_speed(struct pp_hwmgr *hwmgr)
133 {
134 uint32_t speedCntl = 0;
135
136 /* mmPCIE_PORT_INDEX rename as mmPCIE_INDEX */
137 speedCntl = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__PCIE,
138 ixPCIE_LC_SPEED_CNTL);
139 return((uint16_t)PHM_GET_FIELD(speedCntl,
140 PCIE_LC_SPEED_CNTL, LC_CURRENT_DATA_RATE));
141 }
142
143 static int smu7_get_current_pcie_lane_number(struct pp_hwmgr *hwmgr)
144 {
145 uint32_t link_width;
146
147 /* mmPCIE_PORT_INDEX rename as mmPCIE_INDEX */
148 link_width = PHM_READ_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__PCIE,
149 PCIE_LC_LINK_WIDTH_CNTL, LC_LINK_WIDTH_RD);
150
151 PP_ASSERT_WITH_CODE((7 >= link_width),
152 "Invalid PCIe lane width!", return 0);
153
154 return decode_pcie_lane_width(link_width);
155 }
156
157 /**
158 * Enable voltage control
159 *
160 * @param pHwMgr the address of the powerplay hardware manager.
161 * @return always PP_Result_OK
162 */
163 static int smu7_enable_smc_voltage_controller(struct pp_hwmgr *hwmgr)
164 {
165 if (hwmgr->feature_mask & PP_SMC_VOLTAGE_CONTROL_MASK)
166 smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_Voltage_Cntl_Enable);
167
168 return 0;
169 }
170
171 /**
172 * Checks if we want to support voltage control
173 *
174 * @param hwmgr the address of the powerplay hardware manager.
175 */
176 static bool smu7_voltage_control(const struct pp_hwmgr *hwmgr)
177 {
178 const struct smu7_hwmgr *data =
179 (const struct smu7_hwmgr *)(hwmgr->backend);
180
181 return (SMU7_VOLTAGE_CONTROL_NONE != data->voltage_control);
182 }
183
184 /**
185 * Enable voltage control
186 *
187 * @param hwmgr the address of the powerplay hardware manager.
188 * @return always 0
189 */
190 static int smu7_enable_voltage_control(struct pp_hwmgr *hwmgr)
191 {
192 /* enable voltage control */
193 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
194 GENERAL_PWRMGT, VOLT_PWRMGT_EN, 1);
195
196 return 0;
197 }
198
199 static int phm_get_svi2_voltage_table_v0(pp_atomctrl_voltage_table *voltage_table,
200 struct phm_clock_voltage_dependency_table *voltage_dependency_table
201 )
202 {
203 uint32_t i;
204
205 PP_ASSERT_WITH_CODE((NULL != voltage_table),
206 "Voltage Dependency Table empty.", return -EINVAL;);
207
208 voltage_table->mask_low = 0;
209 voltage_table->phase_delay = 0;
210 voltage_table->count = voltage_dependency_table->count;
211
212 for (i = 0; i < voltage_dependency_table->count; i++) {
213 voltage_table->entries[i].value =
214 voltage_dependency_table->entries[i].v;
215 voltage_table->entries[i].smio_low = 0;
216 }
217
218 return 0;
219 }
220
221
222 /**
223 * Create Voltage Tables.
224 *
225 * @param hwmgr the address of the powerplay hardware manager.
226 * @return always 0
227 */
228 static int smu7_construct_voltage_tables(struct pp_hwmgr *hwmgr)
229 {
230 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
231 struct phm_ppt_v1_information *table_info =
232 (struct phm_ppt_v1_information *)hwmgr->pptable;
233 int result = 0;
234 uint32_t tmp;
235
236 if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) {
237 result = atomctrl_get_voltage_table_v3(hwmgr,
238 VOLTAGE_TYPE_MVDDC, VOLTAGE_OBJ_GPIO_LUT,
239 &(data->mvdd_voltage_table));
240 PP_ASSERT_WITH_CODE((0 == result),
241 "Failed to retrieve MVDD table.",
242 return result);
243 } else if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->mvdd_control) {
244 if (hwmgr->pp_table_version == PP_TABLE_V1)
245 result = phm_get_svi2_mvdd_voltage_table(&(data->mvdd_voltage_table),
246 table_info->vdd_dep_on_mclk);
247 else if (hwmgr->pp_table_version == PP_TABLE_V0)
248 result = phm_get_svi2_voltage_table_v0(&(data->mvdd_voltage_table),
249 hwmgr->dyn_state.mvdd_dependency_on_mclk);
250
251 PP_ASSERT_WITH_CODE((0 == result),
252 "Failed to retrieve SVI2 MVDD table from dependancy table.",
253 return result;);
254 }
255
256 if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) {
257 result = atomctrl_get_voltage_table_v3(hwmgr,
258 VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_GPIO_LUT,
259 &(data->vddci_voltage_table));
260 PP_ASSERT_WITH_CODE((0 == result),
261 "Failed to retrieve VDDCI table.",
262 return result);
263 } else if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control) {
264 if (hwmgr->pp_table_version == PP_TABLE_V1)
265 result = phm_get_svi2_vddci_voltage_table(&(data->vddci_voltage_table),
266 table_info->vdd_dep_on_mclk);
267 else if (hwmgr->pp_table_version == PP_TABLE_V0)
268 result = phm_get_svi2_voltage_table_v0(&(data->vddci_voltage_table),
269 hwmgr->dyn_state.vddci_dependency_on_mclk);
270 PP_ASSERT_WITH_CODE((0 == result),
271 "Failed to retrieve SVI2 VDDCI table from dependancy table.",
272 return result);
273 }
274
275 if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vdd_gfx_control) {
276 /* VDDGFX has only SVI2 voltage control */
277 result = phm_get_svi2_vdd_voltage_table(&(data->vddgfx_voltage_table),
278 table_info->vddgfx_lookup_table);
279 PP_ASSERT_WITH_CODE((0 == result),
280 "Failed to retrieve SVI2 VDDGFX table from lookup table.", return result;);
281 }
282
283
284 if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->voltage_control) {
285 result = atomctrl_get_voltage_table_v3(hwmgr,
286 VOLTAGE_TYPE_VDDC, VOLTAGE_OBJ_GPIO_LUT,
287 &data->vddc_voltage_table);
288 PP_ASSERT_WITH_CODE((0 == result),
289 "Failed to retrieve VDDC table.", return result;);
290 } else if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) {
291
292 if (hwmgr->pp_table_version == PP_TABLE_V0)
293 result = phm_get_svi2_voltage_table_v0(&data->vddc_voltage_table,
294 hwmgr->dyn_state.vddc_dependency_on_mclk);
295 else if (hwmgr->pp_table_version == PP_TABLE_V1)
296 result = phm_get_svi2_vdd_voltage_table(&(data->vddc_voltage_table),
297 table_info->vddc_lookup_table);
298
299 PP_ASSERT_WITH_CODE((0 == result),
300 "Failed to retrieve SVI2 VDDC table from dependancy table.", return result;);
301 }
302
303 tmp = smum_get_mac_definition(hwmgr->smumgr, SMU_MAX_LEVELS_VDDC);
304 PP_ASSERT_WITH_CODE(
305 (data->vddc_voltage_table.count <= tmp),
306 "Too many voltage values for VDDC. Trimming to fit state table.",
307 phm_trim_voltage_table_to_fit_state_table(tmp,
308 &(data->vddc_voltage_table)));
309
310 tmp = smum_get_mac_definition(hwmgr->smumgr, SMU_MAX_LEVELS_VDDGFX);
311 PP_ASSERT_WITH_CODE(
312 (data->vddgfx_voltage_table.count <= tmp),
313 "Too many voltage values for VDDC. Trimming to fit state table.",
314 phm_trim_voltage_table_to_fit_state_table(tmp,
315 &(data->vddgfx_voltage_table)));
316
317 tmp = smum_get_mac_definition(hwmgr->smumgr, SMU_MAX_LEVELS_VDDCI);
318 PP_ASSERT_WITH_CODE(
319 (data->vddci_voltage_table.count <= tmp),
320 "Too many voltage values for VDDCI. Trimming to fit state table.",
321 phm_trim_voltage_table_to_fit_state_table(tmp,
322 &(data->vddci_voltage_table)));
323
324 tmp = smum_get_mac_definition(hwmgr->smumgr, SMU_MAX_LEVELS_MVDD);
325 PP_ASSERT_WITH_CODE(
326 (data->mvdd_voltage_table.count <= tmp),
327 "Too many voltage values for MVDD. Trimming to fit state table.",
328 phm_trim_voltage_table_to_fit_state_table(tmp,
329 &(data->mvdd_voltage_table)));
330
331 return 0;
332 }
333
334 /**
335 * Programs static screed detection parameters
336 *
337 * @param hwmgr the address of the powerplay hardware manager.
338 * @return always 0
339 */
340 static int smu7_program_static_screen_threshold_parameters(
341 struct pp_hwmgr *hwmgr)
342 {
343 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
344
345 /* Set static screen threshold unit */
346 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
347 CG_STATIC_SCREEN_PARAMETER, STATIC_SCREEN_THRESHOLD_UNIT,
348 data->static_screen_threshold_unit);
349 /* Set static screen threshold */
350 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
351 CG_STATIC_SCREEN_PARAMETER, STATIC_SCREEN_THRESHOLD,
352 data->static_screen_threshold);
353
354 return 0;
355 }
356
357 /**
358 * Setup display gap for glitch free memory clock switching.
359 *
360 * @param hwmgr the address of the powerplay hardware manager.
361 * @return always 0
362 */
363 static int smu7_enable_display_gap(struct pp_hwmgr *hwmgr)
364 {
365 uint32_t display_gap =
366 cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
367 ixCG_DISPLAY_GAP_CNTL);
368
369 display_gap = PHM_SET_FIELD(display_gap, CG_DISPLAY_GAP_CNTL,
370 DISP_GAP, DISPLAY_GAP_IGNORE);
371
372 display_gap = PHM_SET_FIELD(display_gap, CG_DISPLAY_GAP_CNTL,
373 DISP_GAP_MCHG, DISPLAY_GAP_VBLANK);
374
375 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
376 ixCG_DISPLAY_GAP_CNTL, display_gap);
377
378 return 0;
379 }
380
381 /**
382 * Programs activity state transition voting clients
383 *
384 * @param hwmgr the address of the powerplay hardware manager.
385 * @return always 0
386 */
387 static int smu7_program_voting_clients(struct pp_hwmgr *hwmgr)
388 {
389 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
390
391 /* Clear reset for voting clients before enabling DPM */
392 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
393 SCLK_PWRMGT_CNTL, RESET_SCLK_CNT, 0);
394 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
395 SCLK_PWRMGT_CNTL, RESET_BUSY_CNT, 0);
396
397 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
398 ixCG_FREQ_TRAN_VOTING_0, data->voting_rights_clients0);
399 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
400 ixCG_FREQ_TRAN_VOTING_1, data->voting_rights_clients1);
401 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
402 ixCG_FREQ_TRAN_VOTING_2, data->voting_rights_clients2);
403 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
404 ixCG_FREQ_TRAN_VOTING_3, data->voting_rights_clients3);
405 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
406 ixCG_FREQ_TRAN_VOTING_4, data->voting_rights_clients4);
407 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
408 ixCG_FREQ_TRAN_VOTING_5, data->voting_rights_clients5);
409 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
410 ixCG_FREQ_TRAN_VOTING_6, data->voting_rights_clients6);
411 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
412 ixCG_FREQ_TRAN_VOTING_7, data->voting_rights_clients7);
413
414 return 0;
415 }
416
417 static int smu7_clear_voting_clients(struct pp_hwmgr *hwmgr)
418 {
419 /* Reset voting clients before disabling DPM */
420 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
421 SCLK_PWRMGT_CNTL, RESET_SCLK_CNT, 1);
422 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
423 SCLK_PWRMGT_CNTL, RESET_BUSY_CNT, 1);
424
425 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
426 ixCG_FREQ_TRAN_VOTING_0, 0);
427 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
428 ixCG_FREQ_TRAN_VOTING_1, 0);
429 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
430 ixCG_FREQ_TRAN_VOTING_2, 0);
431 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
432 ixCG_FREQ_TRAN_VOTING_3, 0);
433 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
434 ixCG_FREQ_TRAN_VOTING_4, 0);
435 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
436 ixCG_FREQ_TRAN_VOTING_5, 0);
437 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
438 ixCG_FREQ_TRAN_VOTING_6, 0);
439 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
440 ixCG_FREQ_TRAN_VOTING_7, 0);
441
442 return 0;
443 }
444
445 /* Copy one arb setting to another and then switch the active set.
446 * arb_src and arb_dest is one of the MC_CG_ARB_FREQ_Fx constants.
447 */
448 static int smu7_copy_and_switch_arb_sets(struct pp_hwmgr *hwmgr,
449 uint32_t arb_src, uint32_t arb_dest)
450 {
451 uint32_t mc_arb_dram_timing;
452 uint32_t mc_arb_dram_timing2;
453 uint32_t burst_time;
454 uint32_t mc_cg_config;
455
456 switch (arb_src) {
457 case MC_CG_ARB_FREQ_F0:
458 mc_arb_dram_timing = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING);
459 mc_arb_dram_timing2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2);
460 burst_time = PHM_READ_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE0);
461 break;
462 case MC_CG_ARB_FREQ_F1:
463 mc_arb_dram_timing = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING_1);
464 mc_arb_dram_timing2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2_1);
465 burst_time = PHM_READ_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE1);
466 break;
467 default:
468 return -EINVAL;
469 }
470
471 switch (arb_dest) {
472 case MC_CG_ARB_FREQ_F0:
473 cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING, mc_arb_dram_timing);
474 cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2, mc_arb_dram_timing2);
475 PHM_WRITE_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE0, burst_time);
476 break;
477 case MC_CG_ARB_FREQ_F1:
478 cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING_1, mc_arb_dram_timing);
479 cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2_1, mc_arb_dram_timing2);
480 PHM_WRITE_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE1, burst_time);
481 break;
482 default:
483 return -EINVAL;
484 }
485
486 mc_cg_config = cgs_read_register(hwmgr->device, mmMC_CG_CONFIG);
487 mc_cg_config |= 0x0000000F;
488 cgs_write_register(hwmgr->device, mmMC_CG_CONFIG, mc_cg_config);
489 PHM_WRITE_FIELD(hwmgr->device, MC_ARB_CG, CG_ARB_REQ, arb_dest);
490
491 return 0;
492 }
493
494 static int smu7_reset_to_default(struct pp_hwmgr *hwmgr)
495 {
496 return smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_ResetToDefaults);
497 }
498
499 /**
500 * Initial switch from ARB F0->F1
501 *
502 * @param hwmgr the address of the powerplay hardware manager.
503 * @return always 0
504 * This function is to be called from the SetPowerState table.
505 */
506 static int smu7_initial_switch_from_arbf0_to_f1(struct pp_hwmgr *hwmgr)
507 {
508 return smu7_copy_and_switch_arb_sets(hwmgr,
509 MC_CG_ARB_FREQ_F0, MC_CG_ARB_FREQ_F1);
510 }
511
512 static int smu7_force_switch_to_arbf0(struct pp_hwmgr *hwmgr)
513 {
514 uint32_t tmp;
515
516 tmp = (cgs_read_ind_register(hwmgr->device,
517 CGS_IND_REG__SMC, ixSMC_SCRATCH9) &
518 0x0000ff00) >> 8;
519
520 if (tmp == MC_CG_ARB_FREQ_F0)
521 return 0;
522
523 return smu7_copy_and_switch_arb_sets(hwmgr,
524 tmp, MC_CG_ARB_FREQ_F0);
525 }
526
527 static int smu7_setup_default_pcie_table(struct pp_hwmgr *hwmgr)
528 {
529 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
530
531 struct phm_ppt_v1_information *table_info =
532 (struct phm_ppt_v1_information *)(hwmgr->pptable);
533 struct phm_ppt_v1_pcie_table *pcie_table = NULL;
534
535 uint32_t i, max_entry;
536 uint32_t tmp;
537
538 PP_ASSERT_WITH_CODE((data->use_pcie_performance_levels ||
539 data->use_pcie_power_saving_levels), "No pcie performance levels!",
540 return -EINVAL);
541
542 if (table_info != NULL)
543 pcie_table = table_info->pcie_table;
544
545 if (data->use_pcie_performance_levels &&
546 !data->use_pcie_power_saving_levels) {
547 data->pcie_gen_power_saving = data->pcie_gen_performance;
548 data->pcie_lane_power_saving = data->pcie_lane_performance;
549 } else if (!data->use_pcie_performance_levels &&
550 data->use_pcie_power_saving_levels) {
551 data->pcie_gen_performance = data->pcie_gen_power_saving;
552 data->pcie_lane_performance = data->pcie_lane_power_saving;
553 }
554 tmp = smum_get_mac_definition(hwmgr->smumgr, SMU_MAX_LEVELS_LINK);
555 phm_reset_single_dpm_table(&data->dpm_table.pcie_speed_table,
556 tmp,
557 MAX_REGULAR_DPM_NUMBER);
558
559 if (pcie_table != NULL) {
560 /* max_entry is used to make sure we reserve one PCIE level
561 * for boot level (fix for A+A PSPP issue).
562 * If PCIE table from PPTable have ULV entry + 8 entries,
563 * then ignore the last entry.*/
564 max_entry = (tmp < pcie_table->count) ? tmp : pcie_table->count;
565 for (i = 1; i < max_entry; i++) {
566 phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, i - 1,
567 get_pcie_gen_support(data->pcie_gen_cap,
568 pcie_table->entries[i].gen_speed),
569 get_pcie_lane_support(data->pcie_lane_cap,
570 pcie_table->entries[i].lane_width));
571 }
572 data->dpm_table.pcie_speed_table.count = max_entry - 1;
573 smum_update_smc_table(hwmgr, SMU_BIF_TABLE);
574 } else {
575 /* Hardcode Pcie Table */
576 phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 0,
577 get_pcie_gen_support(data->pcie_gen_cap,
578 PP_Min_PCIEGen),
579 get_pcie_lane_support(data->pcie_lane_cap,
580 PP_Max_PCIELane));
581 phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 1,
582 get_pcie_gen_support(data->pcie_gen_cap,
583 PP_Min_PCIEGen),
584 get_pcie_lane_support(data->pcie_lane_cap,
585 PP_Max_PCIELane));
586 phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 2,
587 get_pcie_gen_support(data->pcie_gen_cap,
588 PP_Max_PCIEGen),
589 get_pcie_lane_support(data->pcie_lane_cap,
590 PP_Max_PCIELane));
591 phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 3,
592 get_pcie_gen_support(data->pcie_gen_cap,
593 PP_Max_PCIEGen),
594 get_pcie_lane_support(data->pcie_lane_cap,
595 PP_Max_PCIELane));
596 phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 4,
597 get_pcie_gen_support(data->pcie_gen_cap,
598 PP_Max_PCIEGen),
599 get_pcie_lane_support(data->pcie_lane_cap,
600 PP_Max_PCIELane));
601 phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 5,
602 get_pcie_gen_support(data->pcie_gen_cap,
603 PP_Max_PCIEGen),
604 get_pcie_lane_support(data->pcie_lane_cap,
605 PP_Max_PCIELane));
606
607 data->dpm_table.pcie_speed_table.count = 6;
608 }
609 /* Populate last level for boot PCIE level, but do not increment count. */
610 phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table,
611 data->dpm_table.pcie_speed_table.count,
612 get_pcie_gen_support(data->pcie_gen_cap,
613 PP_Min_PCIEGen),
614 get_pcie_lane_support(data->pcie_lane_cap,
615 PP_Max_PCIELane));
616
617 return 0;
618 }
619
620 static int smu7_reset_dpm_tables(struct pp_hwmgr *hwmgr)
621 {
622 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
623
624 memset(&(data->dpm_table), 0x00, sizeof(data->dpm_table));
625
626 phm_reset_single_dpm_table(
627 &data->dpm_table.sclk_table,
628 smum_get_mac_definition(hwmgr->smumgr,
629 SMU_MAX_LEVELS_GRAPHICS),
630 MAX_REGULAR_DPM_NUMBER);
631 phm_reset_single_dpm_table(
632 &data->dpm_table.mclk_table,
633 smum_get_mac_definition(hwmgr->smumgr,
634 SMU_MAX_LEVELS_MEMORY), MAX_REGULAR_DPM_NUMBER);
635
636 phm_reset_single_dpm_table(
637 &data->dpm_table.vddc_table,
638 smum_get_mac_definition(hwmgr->smumgr,
639 SMU_MAX_LEVELS_VDDC),
640 MAX_REGULAR_DPM_NUMBER);
641 phm_reset_single_dpm_table(
642 &data->dpm_table.vddci_table,
643 smum_get_mac_definition(hwmgr->smumgr,
644 SMU_MAX_LEVELS_VDDCI), MAX_REGULAR_DPM_NUMBER);
645
646 phm_reset_single_dpm_table(
647 &data->dpm_table.mvdd_table,
648 smum_get_mac_definition(hwmgr->smumgr,
649 SMU_MAX_LEVELS_MVDD),
650 MAX_REGULAR_DPM_NUMBER);
651 return 0;
652 }
653 /*
654 * This function is to initialize all DPM state tables
655 * for SMU7 based on the dependency table.
656 * Dynamic state patching function will then trim these
657 * state tables to the allowed range based
658 * on the power policy or external client requests,
659 * such as UVD request, etc.
660 */
661
662 static int smu7_setup_dpm_tables_v0(struct pp_hwmgr *hwmgr)
663 {
664 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
665 struct phm_clock_voltage_dependency_table *allowed_vdd_sclk_table =
666 hwmgr->dyn_state.vddc_dependency_on_sclk;
667 struct phm_clock_voltage_dependency_table *allowed_vdd_mclk_table =
668 hwmgr->dyn_state.vddc_dependency_on_mclk;
669 struct phm_cac_leakage_table *std_voltage_table =
670 hwmgr->dyn_state.cac_leakage_table;
671 uint32_t i;
672
673 PP_ASSERT_WITH_CODE(allowed_vdd_sclk_table != NULL,
674 "SCLK dependency table is missing. This table is mandatory", return -EINVAL);
675 PP_ASSERT_WITH_CODE(allowed_vdd_sclk_table->count >= 1,
676 "SCLK dependency table has to have is missing. This table is mandatory", return -EINVAL);
677
678 PP_ASSERT_WITH_CODE(allowed_vdd_mclk_table != NULL,
679 "MCLK dependency table is missing. This table is mandatory", return -EINVAL);
680 PP_ASSERT_WITH_CODE(allowed_vdd_mclk_table->count >= 1,
681 "VMCLK dependency table has to have is missing. This table is mandatory", return -EINVAL);
682
683
684 /* Initialize Sclk DPM table based on allow Sclk values*/
685 data->dpm_table.sclk_table.count = 0;
686
687 for (i = 0; i < allowed_vdd_sclk_table->count; i++) {
688 if (i == 0 || data->dpm_table.sclk_table.dpm_levels[data->dpm_table.sclk_table.count-1].value !=
689 allowed_vdd_sclk_table->entries[i].clk) {
690 data->dpm_table.sclk_table.dpm_levels[data->dpm_table.sclk_table.count].value =
691 allowed_vdd_sclk_table->entries[i].clk;
692 data->dpm_table.sclk_table.dpm_levels[data->dpm_table.sclk_table.count].enabled = 1; /*(i==0) ? 1 : 0; to do */
693 data->dpm_table.sclk_table.count++;
694 }
695 }
696
697 PP_ASSERT_WITH_CODE(allowed_vdd_mclk_table != NULL,
698 "MCLK dependency table is missing. This table is mandatory", return -EINVAL);
699 /* Initialize Mclk DPM table based on allow Mclk values */
700 data->dpm_table.mclk_table.count = 0;
701 for (i = 0; i < allowed_vdd_mclk_table->count; i++) {
702 if (i == 0 || data->dpm_table.mclk_table.dpm_levels[data->dpm_table.mclk_table.count-1].value !=
703 allowed_vdd_mclk_table->entries[i].clk) {
704 data->dpm_table.mclk_table.dpm_levels[data->dpm_table.mclk_table.count].value =
705 allowed_vdd_mclk_table->entries[i].clk;
706 data->dpm_table.mclk_table.dpm_levels[data->dpm_table.mclk_table.count].enabled = 1; /*(i==0) ? 1 : 0; */
707 data->dpm_table.mclk_table.count++;
708 }
709 }
710
711 /* Initialize Vddc DPM table based on allow Vddc values. And populate corresponding std values. */
712 for (i = 0; i < allowed_vdd_sclk_table->count; i++) {
713 data->dpm_table.vddc_table.dpm_levels[i].value = allowed_vdd_mclk_table->entries[i].v;
714 data->dpm_table.vddc_table.dpm_levels[i].param1 = std_voltage_table->entries[i].Leakage;
715 /* param1 is for corresponding std voltage */
716 data->dpm_table.vddc_table.dpm_levels[i].enabled = 1;
717 }
718
719 data->dpm_table.vddc_table.count = allowed_vdd_sclk_table->count;
720 allowed_vdd_mclk_table = hwmgr->dyn_state.vddci_dependency_on_mclk;
721
722 if (NULL != allowed_vdd_mclk_table) {
723 /* Initialize Vddci DPM table based on allow Mclk values */
724 for (i = 0; i < allowed_vdd_mclk_table->count; i++) {
725 data->dpm_table.vddci_table.dpm_levels[i].value = allowed_vdd_mclk_table->entries[i].v;
726 data->dpm_table.vddci_table.dpm_levels[i].enabled = 1;
727 }
728 data->dpm_table.vddci_table.count = allowed_vdd_mclk_table->count;
729 }
730
731 allowed_vdd_mclk_table = hwmgr->dyn_state.mvdd_dependency_on_mclk;
732
733 if (NULL != allowed_vdd_mclk_table) {
734 /*
735 * Initialize MVDD DPM table based on allow Mclk
736 * values
737 */
738 for (i = 0; i < allowed_vdd_mclk_table->count; i++) {
739 data->dpm_table.mvdd_table.dpm_levels[i].value = allowed_vdd_mclk_table->entries[i].v;
740 data->dpm_table.mvdd_table.dpm_levels[i].enabled = 1;
741 }
742 data->dpm_table.mvdd_table.count = allowed_vdd_mclk_table->count;
743 }
744
745 return 0;
746 }
747
748 static int smu7_setup_dpm_tables_v1(struct pp_hwmgr *hwmgr)
749 {
750 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
751 struct phm_ppt_v1_information *table_info =
752 (struct phm_ppt_v1_information *)(hwmgr->pptable);
753 uint32_t i;
754
755 struct phm_ppt_v1_clock_voltage_dependency_table *dep_sclk_table;
756 struct phm_ppt_v1_clock_voltage_dependency_table *dep_mclk_table;
757
758 if (table_info == NULL)
759 return -EINVAL;
760
761 dep_sclk_table = table_info->vdd_dep_on_sclk;
762 dep_mclk_table = table_info->vdd_dep_on_mclk;
763
764 PP_ASSERT_WITH_CODE(dep_sclk_table != NULL,
765 "SCLK dependency table is missing.",
766 return -EINVAL);
767 PP_ASSERT_WITH_CODE(dep_sclk_table->count >= 1,
768 "SCLK dependency table count is 0.",
769 return -EINVAL);
770
771 PP_ASSERT_WITH_CODE(dep_mclk_table != NULL,
772 "MCLK dependency table is missing.",
773 return -EINVAL);
774 PP_ASSERT_WITH_CODE(dep_mclk_table->count >= 1,
775 "MCLK dependency table count is 0",
776 return -EINVAL);
777
778 /* Initialize Sclk DPM table based on allow Sclk values */
779 data->dpm_table.sclk_table.count = 0;
780 for (i = 0; i < dep_sclk_table->count; i++) {
781 if (i == 0 || data->dpm_table.sclk_table.dpm_levels[data->dpm_table.sclk_table.count - 1].value !=
782 dep_sclk_table->entries[i].clk) {
783
784 data->dpm_table.sclk_table.dpm_levels[data->dpm_table.sclk_table.count].value =
785 dep_sclk_table->entries[i].clk;
786
787 data->dpm_table.sclk_table.dpm_levels[data->dpm_table.sclk_table.count].enabled =
788 (i == 0) ? true : false;
789 data->dpm_table.sclk_table.count++;
790 }
791 }
792
793 /* Initialize Mclk DPM table based on allow Mclk values */
794 data->dpm_table.mclk_table.count = 0;
795 for (i = 0; i < dep_mclk_table->count; i++) {
796 if (i == 0 || data->dpm_table.mclk_table.dpm_levels
797 [data->dpm_table.mclk_table.count - 1].value !=
798 dep_mclk_table->entries[i].clk) {
799 data->dpm_table.mclk_table.dpm_levels[data->dpm_table.mclk_table.count].value =
800 dep_mclk_table->entries[i].clk;
801 data->dpm_table.mclk_table.dpm_levels[data->dpm_table.mclk_table.count].enabled =
802 (i == 0) ? true : false;
803 data->dpm_table.mclk_table.count++;
804 }
805 }
806
807 return 0;
808 }
809
810 static int smu7_setup_default_dpm_tables(struct pp_hwmgr *hwmgr)
811 {
812 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
813
814 smu7_reset_dpm_tables(hwmgr);
815
816 if (hwmgr->pp_table_version == PP_TABLE_V1)
817 smu7_setup_dpm_tables_v1(hwmgr);
818 else if (hwmgr->pp_table_version == PP_TABLE_V0)
819 smu7_setup_dpm_tables_v0(hwmgr);
820
821 smu7_setup_default_pcie_table(hwmgr);
822
823 /* save a copy of the default DPM table */
824 memcpy(&(data->golden_dpm_table), &(data->dpm_table),
825 sizeof(struct smu7_dpm_table));
826 return 0;
827 }
828
829 uint32_t smu7_get_xclk(struct pp_hwmgr *hwmgr)
830 {
831 uint32_t reference_clock, tmp;
832 struct cgs_display_info info = {0};
833 struct cgs_mode_info mode_info = {0};
834
835 info.mode_info = &mode_info;
836
837 tmp = PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, CG_CLKPIN_CNTL_2, MUX_TCLK_TO_XCLK);
838
839 if (tmp)
840 return TCLK;
841
842 cgs_get_active_displays_info(hwmgr->device, &info);
843 reference_clock = mode_info.ref_clock;
844
845 tmp = PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, CG_CLKPIN_CNTL, XTALIN_DIVIDE);
846
847 if (0 != tmp)
848 return reference_clock / 4;
849
850 return reference_clock;
851 }
852
853 static int smu7_enable_vrhot_gpio_interrupt(struct pp_hwmgr *hwmgr)
854 {
855
856 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
857 PHM_PlatformCaps_RegulatorHot))
858 return smum_send_msg_to_smc(hwmgr->smumgr,
859 PPSMC_MSG_EnableVRHotGPIOInterrupt);
860
861 return 0;
862 }
863
864 static int smu7_enable_sclk_control(struct pp_hwmgr *hwmgr)
865 {
866 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SCLK_PWRMGT_CNTL,
867 SCLK_PWRMGT_OFF, 0);
868 return 0;
869 }
870
871 static int smu7_enable_ulv(struct pp_hwmgr *hwmgr)
872 {
873 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
874
875 if (data->ulv_supported)
876 return smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_EnableULV);
877
878 return 0;
879 }
880
881 static int smu7_disable_ulv(struct pp_hwmgr *hwmgr)
882 {
883 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
884
885 if (data->ulv_supported)
886 return smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_DisableULV);
887
888 return 0;
889 }
890
891 static int smu7_enable_deep_sleep_master_switch(struct pp_hwmgr *hwmgr)
892 {
893 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
894 PHM_PlatformCaps_SclkDeepSleep)) {
895 if (smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_MASTER_DeepSleep_ON))
896 PP_ASSERT_WITH_CODE(false,
897 "Attempt to enable Master Deep Sleep switch failed!",
898 return -EINVAL);
899 } else {
900 if (smum_send_msg_to_smc(hwmgr->smumgr,
901 PPSMC_MSG_MASTER_DeepSleep_OFF)) {
902 PP_ASSERT_WITH_CODE(false,
903 "Attempt to disable Master Deep Sleep switch failed!",
904 return -EINVAL);
905 }
906 }
907
908 return 0;
909 }
910
911 static int smu7_disable_deep_sleep_master_switch(struct pp_hwmgr *hwmgr)
912 {
913 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
914 PHM_PlatformCaps_SclkDeepSleep)) {
915 if (smum_send_msg_to_smc(hwmgr->smumgr,
916 PPSMC_MSG_MASTER_DeepSleep_OFF)) {
917 PP_ASSERT_WITH_CODE(false,
918 "Attempt to disable Master Deep Sleep switch failed!",
919 return -EINVAL);
920 }
921 }
922
923 return 0;
924 }
925
926 static int smu7_disable_handshake_uvd(struct pp_hwmgr *hwmgr)
927 {
928 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
929 uint32_t soft_register_value = 0;
930 uint32_t handshake_disables_offset = data->soft_regs_start
931 + smum_get_offsetof(hwmgr->smumgr,
932 SMU_SoftRegisters, HandshakeDisables);
933
934 soft_register_value = cgs_read_ind_register(hwmgr->device,
935 CGS_IND_REG__SMC, handshake_disables_offset);
936 soft_register_value |= smum_get_mac_definition(hwmgr->smumgr,
937 SMU_UVD_MCLK_HANDSHAKE_DISABLE);
938 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
939 handshake_disables_offset, soft_register_value);
940 return 0;
941 }
942
943 static int smu7_enable_sclk_mclk_dpm(struct pp_hwmgr *hwmgr)
944 {
945 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
946
947 /* enable SCLK dpm */
948 if (!data->sclk_dpm_key_disabled)
949 PP_ASSERT_WITH_CODE(
950 (0 == smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_DPM_Enable)),
951 "Failed to enable SCLK DPM during DPM Start Function!",
952 return -EINVAL);
953
954 /* enable MCLK dpm */
955 if (0 == data->mclk_dpm_key_disabled) {
956 if (!(hwmgr->feature_mask & PP_UVD_HANDSHAKE_MASK))
957 smu7_disable_handshake_uvd(hwmgr);
958 PP_ASSERT_WITH_CODE(
959 (0 == smum_send_msg_to_smc(hwmgr->smumgr,
960 PPSMC_MSG_MCLKDPM_Enable)),
961 "Failed to enable MCLK DPM during DPM Start Function!",
962 return -EINVAL);
963
964 PHM_WRITE_FIELD(hwmgr->device, MC_SEQ_CNTL_3, CAC_EN, 0x1);
965
966 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_MC0_CNTL, 0x5);
967 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_MC1_CNTL, 0x5);
968 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_CPL_CNTL, 0x100005);
969 udelay(10);
970 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_MC0_CNTL, 0x400005);
971 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_MC1_CNTL, 0x400005);
972 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_CPL_CNTL, 0x500005);
973 }
974
975 return 0;
976 }
977
978 static int smu7_start_dpm(struct pp_hwmgr *hwmgr)
979 {
980 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
981
982 /*enable general power management */
983
984 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT,
985 GLOBAL_PWRMGT_EN, 1);
986
987 /* enable sclk deep sleep */
988
989 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SCLK_PWRMGT_CNTL,
990 DYNAMIC_PM_EN, 1);
991
992 /* prepare for PCIE DPM */
993
994 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
995 data->soft_regs_start +
996 smum_get_offsetof(hwmgr->smumgr, SMU_SoftRegisters,
997 VoltageChangeTimeout), 0x1000);
998 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__PCIE,
999 SWRST_COMMAND_1, RESETLC, 0x0);
1000
1001 if (smu7_enable_sclk_mclk_dpm(hwmgr)) {
1002 pr_err("Failed to enable Sclk DPM and Mclk DPM!");
1003 return -EINVAL;
1004 }
1005
1006 /* enable PCIE dpm */
1007 if (0 == data->pcie_dpm_key_disabled) {
1008 PP_ASSERT_WITH_CODE(
1009 (0 == smum_send_msg_to_smc(hwmgr->smumgr,
1010 PPSMC_MSG_PCIeDPM_Enable)),
1011 "Failed to enable pcie DPM during DPM Start Function!",
1012 return -EINVAL);
1013 }
1014
1015 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1016 PHM_PlatformCaps_Falcon_QuickTransition)) {
1017 PP_ASSERT_WITH_CODE((0 == smum_send_msg_to_smc(hwmgr->smumgr,
1018 PPSMC_MSG_EnableACDCGPIOInterrupt)),
1019 "Failed to enable AC DC GPIO Interrupt!",
1020 );
1021 }
1022
1023 return 0;
1024 }
1025
1026 static int smu7_disable_sclk_mclk_dpm(struct pp_hwmgr *hwmgr)
1027 {
1028 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1029
1030 /* disable SCLK dpm */
1031 if (!data->sclk_dpm_key_disabled) {
1032 PP_ASSERT_WITH_CODE(true == smum_is_dpm_running(hwmgr),
1033 "Trying to disable SCLK DPM when DPM is disabled",
1034 return 0);
1035 smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_DPM_Disable);
1036 }
1037
1038 /* disable MCLK dpm */
1039 if (!data->mclk_dpm_key_disabled) {
1040 PP_ASSERT_WITH_CODE(true == smum_is_dpm_running(hwmgr),
1041 "Trying to disable MCLK DPM when DPM is disabled",
1042 return 0);
1043 smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_MCLKDPM_Disable);
1044 }
1045
1046 return 0;
1047 }
1048
1049 static int smu7_stop_dpm(struct pp_hwmgr *hwmgr)
1050 {
1051 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1052
1053 /* disable general power management */
1054 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT,
1055 GLOBAL_PWRMGT_EN, 0);
1056 /* disable sclk deep sleep */
1057 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SCLK_PWRMGT_CNTL,
1058 DYNAMIC_PM_EN, 0);
1059
1060 /* disable PCIE dpm */
1061 if (!data->pcie_dpm_key_disabled) {
1062 PP_ASSERT_WITH_CODE(
1063 (smum_send_msg_to_smc(hwmgr->smumgr,
1064 PPSMC_MSG_PCIeDPM_Disable) == 0),
1065 "Failed to disable pcie DPM during DPM Stop Function!",
1066 return -EINVAL);
1067 }
1068
1069 smu7_disable_sclk_mclk_dpm(hwmgr);
1070
1071 PP_ASSERT_WITH_CODE(true == smum_is_dpm_running(hwmgr),
1072 "Trying to disable voltage DPM when DPM is disabled",
1073 return 0);
1074
1075 smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_Voltage_Cntl_Disable);
1076
1077 return 0;
1078 }
1079
1080 static void smu7_set_dpm_event_sources(struct pp_hwmgr *hwmgr, uint32_t sources)
1081 {
1082 bool protection;
1083 enum DPM_EVENT_SRC src;
1084
1085 switch (sources) {
1086 default:
1087 pr_err("Unknown throttling event sources.");
1088 /* fall through */
1089 case 0:
1090 protection = false;
1091 /* src is unused */
1092 break;
1093 case (1 << PHM_AutoThrottleSource_Thermal):
1094 protection = true;
1095 src = DPM_EVENT_SRC_DIGITAL;
1096 break;
1097 case (1 << PHM_AutoThrottleSource_External):
1098 protection = true;
1099 src = DPM_EVENT_SRC_EXTERNAL;
1100 break;
1101 case (1 << PHM_AutoThrottleSource_External) |
1102 (1 << PHM_AutoThrottleSource_Thermal):
1103 protection = true;
1104 src = DPM_EVENT_SRC_DIGITAL_OR_EXTERNAL;
1105 break;
1106 }
1107 /* Order matters - don't enable thermal protection for the wrong source. */
1108 if (protection) {
1109 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, CG_THERMAL_CTRL,
1110 DPM_EVENT_SRC, src);
1111 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT,
1112 THERMAL_PROTECTION_DIS,
1113 !phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1114 PHM_PlatformCaps_ThermalController));
1115 } else
1116 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT,
1117 THERMAL_PROTECTION_DIS, 1);
1118 }
1119
1120 static int smu7_enable_auto_throttle_source(struct pp_hwmgr *hwmgr,
1121 PHM_AutoThrottleSource source)
1122 {
1123 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1124
1125 if (!(data->active_auto_throttle_sources & (1 << source))) {
1126 data->active_auto_throttle_sources |= 1 << source;
1127 smu7_set_dpm_event_sources(hwmgr, data->active_auto_throttle_sources);
1128 }
1129 return 0;
1130 }
1131
1132 static int smu7_enable_thermal_auto_throttle(struct pp_hwmgr *hwmgr)
1133 {
1134 return smu7_enable_auto_throttle_source(hwmgr, PHM_AutoThrottleSource_Thermal);
1135 }
1136
1137 static int smu7_disable_auto_throttle_source(struct pp_hwmgr *hwmgr,
1138 PHM_AutoThrottleSource source)
1139 {
1140 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1141
1142 if (data->active_auto_throttle_sources & (1 << source)) {
1143 data->active_auto_throttle_sources &= ~(1 << source);
1144 smu7_set_dpm_event_sources(hwmgr, data->active_auto_throttle_sources);
1145 }
1146 return 0;
1147 }
1148
1149 static int smu7_disable_thermal_auto_throttle(struct pp_hwmgr *hwmgr)
1150 {
1151 return smu7_disable_auto_throttle_source(hwmgr, PHM_AutoThrottleSource_Thermal);
1152 }
1153
1154 static int smu7_pcie_performance_request(struct pp_hwmgr *hwmgr)
1155 {
1156 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1157 data->pcie_performance_request = true;
1158
1159 return 0;
1160 }
1161
1162 static int smu7_enable_dpm_tasks(struct pp_hwmgr *hwmgr)
1163 {
1164 int tmp_result = 0;
1165 int result = 0;
1166
1167 tmp_result = (!smum_is_dpm_running(hwmgr)) ? 0 : -1;
1168 PP_ASSERT_WITH_CODE(tmp_result == 0,
1169 "DPM is already running",
1170 );
1171
1172 if (smu7_voltage_control(hwmgr)) {
1173 tmp_result = smu7_enable_voltage_control(hwmgr);
1174 PP_ASSERT_WITH_CODE(tmp_result == 0,
1175 "Failed to enable voltage control!",
1176 result = tmp_result);
1177
1178 tmp_result = smu7_construct_voltage_tables(hwmgr);
1179 PP_ASSERT_WITH_CODE((0 == tmp_result),
1180 "Failed to contruct voltage tables!",
1181 result = tmp_result);
1182 }
1183 smum_initialize_mc_reg_table(hwmgr);
1184
1185 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1186 PHM_PlatformCaps_EngineSpreadSpectrumSupport))
1187 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
1188 GENERAL_PWRMGT, DYN_SPREAD_SPECTRUM_EN, 1);
1189
1190 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1191 PHM_PlatformCaps_ThermalController))
1192 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
1193 GENERAL_PWRMGT, THERMAL_PROTECTION_DIS, 0);
1194
1195 tmp_result = smu7_program_static_screen_threshold_parameters(hwmgr);
1196 PP_ASSERT_WITH_CODE((0 == tmp_result),
1197 "Failed to program static screen threshold parameters!",
1198 result = tmp_result);
1199
1200 tmp_result = smu7_enable_display_gap(hwmgr);
1201 PP_ASSERT_WITH_CODE((0 == tmp_result),
1202 "Failed to enable display gap!", result = tmp_result);
1203
1204 tmp_result = smu7_program_voting_clients(hwmgr);
1205 PP_ASSERT_WITH_CODE((0 == tmp_result),
1206 "Failed to program voting clients!", result = tmp_result);
1207
1208 tmp_result = smum_process_firmware_header(hwmgr);
1209 PP_ASSERT_WITH_CODE((0 == tmp_result),
1210 "Failed to process firmware header!", result = tmp_result);
1211
1212 tmp_result = smu7_initial_switch_from_arbf0_to_f1(hwmgr);
1213 PP_ASSERT_WITH_CODE((0 == tmp_result),
1214 "Failed to initialize switch from ArbF0 to F1!",
1215 result = tmp_result);
1216
1217 result = smu7_setup_default_dpm_tables(hwmgr);
1218 PP_ASSERT_WITH_CODE(0 == result,
1219 "Failed to setup default DPM tables!", return result);
1220
1221 tmp_result = smum_init_smc_table(hwmgr);
1222 PP_ASSERT_WITH_CODE((0 == tmp_result),
1223 "Failed to initialize SMC table!", result = tmp_result);
1224
1225 tmp_result = smu7_enable_vrhot_gpio_interrupt(hwmgr);
1226 PP_ASSERT_WITH_CODE((0 == tmp_result),
1227 "Failed to enable VR hot GPIO interrupt!", result = tmp_result);
1228
1229 smum_send_msg_to_smc(hwmgr->smumgr, (PPSMC_Msg)PPSMC_NoDisplay);
1230
1231 tmp_result = smu7_enable_sclk_control(hwmgr);
1232 PP_ASSERT_WITH_CODE((0 == tmp_result),
1233 "Failed to enable SCLK control!", result = tmp_result);
1234
1235 tmp_result = smu7_enable_smc_voltage_controller(hwmgr);
1236 PP_ASSERT_WITH_CODE((0 == tmp_result),
1237 "Failed to enable voltage control!", result = tmp_result);
1238
1239 tmp_result = smu7_enable_ulv(hwmgr);
1240 PP_ASSERT_WITH_CODE((0 == tmp_result),
1241 "Failed to enable ULV!", result = tmp_result);
1242
1243 tmp_result = smu7_enable_deep_sleep_master_switch(hwmgr);
1244 PP_ASSERT_WITH_CODE((0 == tmp_result),
1245 "Failed to enable deep sleep master switch!", result = tmp_result);
1246
1247 tmp_result = smu7_enable_didt_config(hwmgr);
1248 PP_ASSERT_WITH_CODE((tmp_result == 0),
1249 "Failed to enable deep sleep master switch!", result = tmp_result);
1250
1251 tmp_result = smu7_start_dpm(hwmgr);
1252 PP_ASSERT_WITH_CODE((0 == tmp_result),
1253 "Failed to start DPM!", result = tmp_result);
1254
1255 tmp_result = smu7_enable_smc_cac(hwmgr);
1256 PP_ASSERT_WITH_CODE((0 == tmp_result),
1257 "Failed to enable SMC CAC!", result = tmp_result);
1258
1259 tmp_result = smu7_enable_power_containment(hwmgr);
1260 PP_ASSERT_WITH_CODE((0 == tmp_result),
1261 "Failed to enable power containment!", result = tmp_result);
1262
1263 tmp_result = smu7_power_control_set_level(hwmgr);
1264 PP_ASSERT_WITH_CODE((0 == tmp_result),
1265 "Failed to power control set level!", result = tmp_result);
1266
1267 tmp_result = smu7_enable_thermal_auto_throttle(hwmgr);
1268 PP_ASSERT_WITH_CODE((0 == tmp_result),
1269 "Failed to enable thermal auto throttle!", result = tmp_result);
1270
1271 tmp_result = smu7_pcie_performance_request(hwmgr);
1272 PP_ASSERT_WITH_CODE((0 == tmp_result),
1273 "pcie performance request failed!", result = tmp_result);
1274
1275 return 0;
1276 }
1277
1278 int smu7_disable_dpm_tasks(struct pp_hwmgr *hwmgr)
1279 {
1280 int tmp_result, result = 0;
1281
1282 tmp_result = (smum_is_dpm_running(hwmgr)) ? 0 : -1;
1283 PP_ASSERT_WITH_CODE(tmp_result == 0,
1284 "DPM is not running right now, no need to disable DPM!",
1285 return 0);
1286
1287 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1288 PHM_PlatformCaps_ThermalController))
1289 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
1290 GENERAL_PWRMGT, THERMAL_PROTECTION_DIS, 1);
1291
1292 tmp_result = smu7_disable_power_containment(hwmgr);
1293 PP_ASSERT_WITH_CODE((tmp_result == 0),
1294 "Failed to disable power containment!", result = tmp_result);
1295
1296 tmp_result = smu7_disable_smc_cac(hwmgr);
1297 PP_ASSERT_WITH_CODE((tmp_result == 0),
1298 "Failed to disable SMC CAC!", result = tmp_result);
1299
1300 tmp_result = smu7_disable_didt_config(hwmgr);
1301 PP_ASSERT_WITH_CODE((tmp_result == 0),
1302 "Failed to disable DIDT!", result = tmp_result);
1303
1304 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
1305 CG_SPLL_SPREAD_SPECTRUM, SSEN, 0);
1306 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
1307 GENERAL_PWRMGT, DYN_SPREAD_SPECTRUM_EN, 0);
1308
1309 tmp_result = smu7_disable_thermal_auto_throttle(hwmgr);
1310 PP_ASSERT_WITH_CODE((tmp_result == 0),
1311 "Failed to disable thermal auto throttle!", result = tmp_result);
1312
1313 tmp_result = smu7_avfs_control(hwmgr, false);
1314 PP_ASSERT_WITH_CODE((tmp_result == 0),
1315 "Failed to disable AVFS!", result = tmp_result);
1316
1317 tmp_result = smu7_stop_dpm(hwmgr);
1318 PP_ASSERT_WITH_CODE((tmp_result == 0),
1319 "Failed to stop DPM!", result = tmp_result);
1320
1321 tmp_result = smu7_disable_deep_sleep_master_switch(hwmgr);
1322 PP_ASSERT_WITH_CODE((tmp_result == 0),
1323 "Failed to disable deep sleep master switch!", result = tmp_result);
1324
1325 tmp_result = smu7_disable_ulv(hwmgr);
1326 PP_ASSERT_WITH_CODE((tmp_result == 0),
1327 "Failed to disable ULV!", result = tmp_result);
1328
1329 tmp_result = smu7_clear_voting_clients(hwmgr);
1330 PP_ASSERT_WITH_CODE((tmp_result == 0),
1331 "Failed to clear voting clients!", result = tmp_result);
1332
1333 tmp_result = smu7_reset_to_default(hwmgr);
1334 PP_ASSERT_WITH_CODE((tmp_result == 0),
1335 "Failed to reset to default!", result = tmp_result);
1336
1337 tmp_result = smu7_force_switch_to_arbf0(hwmgr);
1338 PP_ASSERT_WITH_CODE((tmp_result == 0),
1339 "Failed to force to switch arbf0!", result = tmp_result);
1340
1341 return result;
1342 }
1343
1344 int smu7_reset_asic_tasks(struct pp_hwmgr *hwmgr)
1345 {
1346
1347 return 0;
1348 }
1349
1350 static void smu7_init_dpm_defaults(struct pp_hwmgr *hwmgr)
1351 {
1352 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1353 struct phm_ppt_v1_information *table_info =
1354 (struct phm_ppt_v1_information *)(hwmgr->pptable);
1355 struct cgs_system_info sys_info = {0};
1356 int result;
1357
1358 data->dll_default_on = false;
1359 data->mclk_dpm0_activity_target = 0xa;
1360 data->mclk_activity_target = SMU7_MCLK_TARGETACTIVITY_DFLT;
1361 data->vddc_vddgfx_delta = 300;
1362 data->static_screen_threshold = SMU7_STATICSCREENTHRESHOLD_DFLT;
1363 data->static_screen_threshold_unit = SMU7_STATICSCREENTHRESHOLDUNIT_DFLT;
1364 data->voting_rights_clients0 = SMU7_VOTINGRIGHTSCLIENTS_DFLT0;
1365 data->voting_rights_clients1 = SMU7_VOTINGRIGHTSCLIENTS_DFLT1;
1366 data->voting_rights_clients2 = SMU7_VOTINGRIGHTSCLIENTS_DFLT2;
1367 data->voting_rights_clients3 = SMU7_VOTINGRIGHTSCLIENTS_DFLT3;
1368 data->voting_rights_clients4 = SMU7_VOTINGRIGHTSCLIENTS_DFLT4;
1369 data->voting_rights_clients5 = SMU7_VOTINGRIGHTSCLIENTS_DFLT5;
1370 data->voting_rights_clients6 = SMU7_VOTINGRIGHTSCLIENTS_DFLT6;
1371 data->voting_rights_clients7 = SMU7_VOTINGRIGHTSCLIENTS_DFLT7;
1372
1373 data->mclk_dpm_key_disabled = hwmgr->feature_mask & PP_MCLK_DPM_MASK ? false : true;
1374 data->sclk_dpm_key_disabled = hwmgr->feature_mask & PP_SCLK_DPM_MASK ? false : true;
1375 data->pcie_dpm_key_disabled = hwmgr->feature_mask & PP_PCIE_DPM_MASK ? false : true;
1376 /* need to set voltage control types before EVV patching */
1377 data->voltage_control = SMU7_VOLTAGE_CONTROL_NONE;
1378 data->vddci_control = SMU7_VOLTAGE_CONTROL_NONE;
1379 data->mvdd_control = SMU7_VOLTAGE_CONTROL_NONE;
1380 data->enable_tdc_limit_feature = true;
1381 data->enable_pkg_pwr_tracking_feature = true;
1382 data->force_pcie_gen = PP_PCIEGenInvalid;
1383 data->ulv_supported = hwmgr->feature_mask & PP_ULV_MASK ? true : false;
1384
1385 if (hwmgr->chip_id == CHIP_POLARIS12 || hwmgr->smumgr->is_kicker) {
1386 uint8_t tmp1, tmp2;
1387 uint16_t tmp3 = 0;
1388 atomctrl_get_svi2_info(hwmgr, VOLTAGE_TYPE_VDDC, &tmp1, &tmp2,
1389 &tmp3);
1390 tmp3 = (tmp3 >> 5) & 0x3;
1391 data->vddc_phase_shed_control = ((tmp3 << 1) | (tmp3 >> 1)) & 0x3;
1392 }
1393
1394 data->fast_watermark_threshold = 100;
1395 if (atomctrl_is_voltage_controled_by_gpio_v3(hwmgr,
1396 VOLTAGE_TYPE_VDDC, VOLTAGE_OBJ_SVID2))
1397 data->voltage_control = SMU7_VOLTAGE_CONTROL_BY_SVID2;
1398
1399 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1400 PHM_PlatformCaps_ControlVDDGFX)) {
1401 if (atomctrl_is_voltage_controled_by_gpio_v3(hwmgr,
1402 VOLTAGE_TYPE_VDDGFX, VOLTAGE_OBJ_SVID2)) {
1403 data->vdd_gfx_control = SMU7_VOLTAGE_CONTROL_BY_SVID2;
1404 }
1405 }
1406
1407 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1408 PHM_PlatformCaps_EnableMVDDControl)) {
1409 if (atomctrl_is_voltage_controled_by_gpio_v3(hwmgr,
1410 VOLTAGE_TYPE_MVDDC, VOLTAGE_OBJ_GPIO_LUT))
1411 data->mvdd_control = SMU7_VOLTAGE_CONTROL_BY_GPIO;
1412 else if (atomctrl_is_voltage_controled_by_gpio_v3(hwmgr,
1413 VOLTAGE_TYPE_MVDDC, VOLTAGE_OBJ_SVID2))
1414 data->mvdd_control = SMU7_VOLTAGE_CONTROL_BY_SVID2;
1415 }
1416
1417 if (SMU7_VOLTAGE_CONTROL_NONE == data->vdd_gfx_control) {
1418 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
1419 PHM_PlatformCaps_ControlVDDGFX);
1420 }
1421
1422 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1423 PHM_PlatformCaps_ControlVDDCI)) {
1424 if (atomctrl_is_voltage_controled_by_gpio_v3(hwmgr,
1425 VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_GPIO_LUT))
1426 data->vddci_control = SMU7_VOLTAGE_CONTROL_BY_GPIO;
1427 else if (atomctrl_is_voltage_controled_by_gpio_v3(hwmgr,
1428 VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_SVID2))
1429 data->vddci_control = SMU7_VOLTAGE_CONTROL_BY_SVID2;
1430 }
1431
1432 if (data->mvdd_control == SMU7_VOLTAGE_CONTROL_NONE)
1433 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
1434 PHM_PlatformCaps_EnableMVDDControl);
1435
1436 if (data->vddci_control == SMU7_VOLTAGE_CONTROL_NONE)
1437 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
1438 PHM_PlatformCaps_ControlVDDCI);
1439
1440 if ((hwmgr->pp_table_version != PP_TABLE_V0) && (hwmgr->feature_mask & PP_CLOCK_STRETCH_MASK)
1441 && (table_info->cac_dtp_table->usClockStretchAmount != 0))
1442 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
1443 PHM_PlatformCaps_ClockStretcher);
1444
1445 data->pcie_gen_performance.max = PP_PCIEGen1;
1446 data->pcie_gen_performance.min = PP_PCIEGen3;
1447 data->pcie_gen_power_saving.max = PP_PCIEGen1;
1448 data->pcie_gen_power_saving.min = PP_PCIEGen3;
1449 data->pcie_lane_performance.max = 0;
1450 data->pcie_lane_performance.min = 16;
1451 data->pcie_lane_power_saving.max = 0;
1452 data->pcie_lane_power_saving.min = 16;
1453
1454 sys_info.size = sizeof(struct cgs_system_info);
1455 sys_info.info_id = CGS_SYSTEM_INFO_PG_FLAGS;
1456 result = cgs_query_system_info(hwmgr->device, &sys_info);
1457 if (!result) {
1458 if (sys_info.value & AMD_PG_SUPPORT_UVD)
1459 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
1460 PHM_PlatformCaps_UVDPowerGating);
1461 if (sys_info.value & AMD_PG_SUPPORT_VCE)
1462 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
1463 PHM_PlatformCaps_VCEPowerGating);
1464 }
1465 }
1466
1467 /**
1468 * Get Leakage VDDC based on leakage ID.
1469 *
1470 * @param hwmgr the address of the powerplay hardware manager.
1471 * @return always 0
1472 */
1473 static int smu7_get_evv_voltages(struct pp_hwmgr *hwmgr)
1474 {
1475 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1476 uint16_t vv_id;
1477 uint16_t vddc = 0;
1478 uint16_t vddgfx = 0;
1479 uint16_t i, j;
1480 uint32_t sclk = 0;
1481 struct phm_ppt_v1_information *table_info =
1482 (struct phm_ppt_v1_information *)hwmgr->pptable;
1483 struct phm_ppt_v1_clock_voltage_dependency_table *sclk_table = NULL;
1484
1485
1486 for (i = 0; i < SMU7_MAX_LEAKAGE_COUNT; i++) {
1487 vv_id = ATOM_VIRTUAL_VOLTAGE_ID0 + i;
1488
1489 if (data->vdd_gfx_control == SMU7_VOLTAGE_CONTROL_BY_SVID2) {
1490 if ((hwmgr->pp_table_version == PP_TABLE_V1)
1491 && !phm_get_sclk_for_voltage_evv(hwmgr,
1492 table_info->vddgfx_lookup_table, vv_id, &sclk)) {
1493 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1494 PHM_PlatformCaps_ClockStretcher)) {
1495 sclk_table = table_info->vdd_dep_on_sclk;
1496
1497 for (j = 1; j < sclk_table->count; j++) {
1498 if (sclk_table->entries[j].clk == sclk &&
1499 sclk_table->entries[j].cks_enable == 0) {
1500 sclk += 5000;
1501 break;
1502 }
1503 }
1504 }
1505 if (0 == atomctrl_get_voltage_evv_on_sclk
1506 (hwmgr, VOLTAGE_TYPE_VDDGFX, sclk,
1507 vv_id, &vddgfx)) {
1508 /* need to make sure vddgfx is less than 2v or else, it could burn the ASIC. */
1509 PP_ASSERT_WITH_CODE((vddgfx < 2000 && vddgfx != 0), "Invalid VDDGFX value!", return -EINVAL);
1510
1511 /* the voltage should not be zero nor equal to leakage ID */
1512 if (vddgfx != 0 && vddgfx != vv_id) {
1513 data->vddcgfx_leakage.actual_voltage[data->vddcgfx_leakage.count] = vddgfx;
1514 data->vddcgfx_leakage.leakage_id[data->vddcgfx_leakage.count] = vv_id;
1515 data->vddcgfx_leakage.count++;
1516 }
1517 } else {
1518 pr_info("Error retrieving EVV voltage value!\n");
1519 }
1520 }
1521 } else {
1522 if ((hwmgr->pp_table_version == PP_TABLE_V0)
1523 || !phm_get_sclk_for_voltage_evv(hwmgr,
1524 table_info->vddc_lookup_table, vv_id, &sclk)) {
1525 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1526 PHM_PlatformCaps_ClockStretcher)) {
1527 if (table_info == NULL)
1528 return -EINVAL;
1529 sclk_table = table_info->vdd_dep_on_sclk;
1530
1531 for (j = 1; j < sclk_table->count; j++) {
1532 if (sclk_table->entries[j].clk == sclk &&
1533 sclk_table->entries[j].cks_enable == 0) {
1534 sclk += 5000;
1535 break;
1536 }
1537 }
1538 }
1539
1540 if (phm_get_voltage_evv_on_sclk(hwmgr,
1541 VOLTAGE_TYPE_VDDC,
1542 sclk, vv_id, &vddc) == 0) {
1543 if (vddc >= 2000 || vddc == 0)
1544 return -EINVAL;
1545 } else {
1546 pr_warn("failed to retrieving EVV voltage!\n");
1547 continue;
1548 }
1549
1550 /* the voltage should not be zero nor equal to leakage ID */
1551 if (vddc != 0 && vddc != vv_id) {
1552 data->vddc_leakage.actual_voltage[data->vddc_leakage.count] = (uint16_t)(vddc);
1553 data->vddc_leakage.leakage_id[data->vddc_leakage.count] = vv_id;
1554 data->vddc_leakage.count++;
1555 }
1556 }
1557 }
1558 }
1559
1560 return 0;
1561 }
1562
1563 /**
1564 * Change virtual leakage voltage to actual value.
1565 *
1566 * @param hwmgr the address of the powerplay hardware manager.
1567 * @param pointer to changing voltage
1568 * @param pointer to leakage table
1569 */
1570 static void smu7_patch_ppt_v1_with_vdd_leakage(struct pp_hwmgr *hwmgr,
1571 uint16_t *voltage, struct smu7_leakage_voltage *leakage_table)
1572 {
1573 uint32_t index;
1574
1575 /* search for leakage voltage ID 0xff01 ~ 0xff08 */
1576 for (index = 0; index < leakage_table->count; index++) {
1577 /* if this voltage matches a leakage voltage ID */
1578 /* patch with actual leakage voltage */
1579 if (leakage_table->leakage_id[index] == *voltage) {
1580 *voltage = leakage_table->actual_voltage[index];
1581 break;
1582 }
1583 }
1584
1585 if (*voltage > ATOM_VIRTUAL_VOLTAGE_ID0)
1586 pr_err("Voltage value looks like a Leakage ID but it's not patched \n");
1587 }
1588
1589 /**
1590 * Patch voltage lookup table by EVV leakages.
1591 *
1592 * @param hwmgr the address of the powerplay hardware manager.
1593 * @param pointer to voltage lookup table
1594 * @param pointer to leakage table
1595 * @return always 0
1596 */
1597 static int smu7_patch_lookup_table_with_leakage(struct pp_hwmgr *hwmgr,
1598 phm_ppt_v1_voltage_lookup_table *lookup_table,
1599 struct smu7_leakage_voltage *leakage_table)
1600 {
1601 uint32_t i;
1602
1603 for (i = 0; i < lookup_table->count; i++)
1604 smu7_patch_ppt_v1_with_vdd_leakage(hwmgr,
1605 &lookup_table->entries[i].us_vdd, leakage_table);
1606
1607 return 0;
1608 }
1609
1610 static int smu7_patch_clock_voltage_limits_with_vddc_leakage(
1611 struct pp_hwmgr *hwmgr, struct smu7_leakage_voltage *leakage_table,
1612 uint16_t *vddc)
1613 {
1614 struct phm_ppt_v1_information *table_info =
1615 (struct phm_ppt_v1_information *)(hwmgr->pptable);
1616 smu7_patch_ppt_v1_with_vdd_leakage(hwmgr, (uint16_t *)vddc, leakage_table);
1617 hwmgr->dyn_state.max_clock_voltage_on_dc.vddc =
1618 table_info->max_clock_voltage_on_dc.vddc;
1619 return 0;
1620 }
1621
1622 static int smu7_patch_voltage_dependency_tables_with_lookup_table(
1623 struct pp_hwmgr *hwmgr)
1624 {
1625 uint8_t entry_id;
1626 uint8_t voltage_id;
1627 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1628 struct phm_ppt_v1_information *table_info =
1629 (struct phm_ppt_v1_information *)(hwmgr->pptable);
1630
1631 struct phm_ppt_v1_clock_voltage_dependency_table *sclk_table =
1632 table_info->vdd_dep_on_sclk;
1633 struct phm_ppt_v1_clock_voltage_dependency_table *mclk_table =
1634 table_info->vdd_dep_on_mclk;
1635 struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
1636 table_info->mm_dep_table;
1637
1638 if (data->vdd_gfx_control == SMU7_VOLTAGE_CONTROL_BY_SVID2) {
1639 for (entry_id = 0; entry_id < sclk_table->count; ++entry_id) {
1640 voltage_id = sclk_table->entries[entry_id].vddInd;
1641 sclk_table->entries[entry_id].vddgfx =
1642 table_info->vddgfx_lookup_table->entries[voltage_id].us_vdd;
1643 }
1644 } else {
1645 for (entry_id = 0; entry_id < sclk_table->count; ++entry_id) {
1646 voltage_id = sclk_table->entries[entry_id].vddInd;
1647 sclk_table->entries[entry_id].vddc =
1648 table_info->vddc_lookup_table->entries[voltage_id].us_vdd;
1649 }
1650 }
1651
1652 for (entry_id = 0; entry_id < mclk_table->count; ++entry_id) {
1653 voltage_id = mclk_table->entries[entry_id].vddInd;
1654 mclk_table->entries[entry_id].vddc =
1655 table_info->vddc_lookup_table->entries[voltage_id].us_vdd;
1656 }
1657
1658 for (entry_id = 0; entry_id < mm_table->count; ++entry_id) {
1659 voltage_id = mm_table->entries[entry_id].vddcInd;
1660 mm_table->entries[entry_id].vddc =
1661 table_info->vddc_lookup_table->entries[voltage_id].us_vdd;
1662 }
1663
1664 return 0;
1665
1666 }
1667
1668 static int phm_add_voltage(struct pp_hwmgr *hwmgr,
1669 phm_ppt_v1_voltage_lookup_table *look_up_table,
1670 phm_ppt_v1_voltage_lookup_record *record)
1671 {
1672 uint32_t i;
1673
1674 PP_ASSERT_WITH_CODE((NULL != look_up_table),
1675 "Lookup Table empty.", return -EINVAL);
1676 PP_ASSERT_WITH_CODE((0 != look_up_table->count),
1677 "Lookup Table empty.", return -EINVAL);
1678
1679 i = smum_get_mac_definition(hwmgr->smumgr, SMU_MAX_LEVELS_VDDGFX);
1680 PP_ASSERT_WITH_CODE((i >= look_up_table->count),
1681 "Lookup Table is full.", return -EINVAL);
1682
1683 /* This is to avoid entering duplicate calculated records. */
1684 for (i = 0; i < look_up_table->count; i++) {
1685 if (look_up_table->entries[i].us_vdd == record->us_vdd) {
1686 if (look_up_table->entries[i].us_calculated == 1)
1687 return 0;
1688 break;
1689 }
1690 }
1691
1692 look_up_table->entries[i].us_calculated = 1;
1693 look_up_table->entries[i].us_vdd = record->us_vdd;
1694 look_up_table->entries[i].us_cac_low = record->us_cac_low;
1695 look_up_table->entries[i].us_cac_mid = record->us_cac_mid;
1696 look_up_table->entries[i].us_cac_high = record->us_cac_high;
1697 /* Only increment the count when we're appending, not replacing duplicate entry. */
1698 if (i == look_up_table->count)
1699 look_up_table->count++;
1700
1701 return 0;
1702 }
1703
1704
1705 static int smu7_calc_voltage_dependency_tables(struct pp_hwmgr *hwmgr)
1706 {
1707 uint8_t entry_id;
1708 struct phm_ppt_v1_voltage_lookup_record v_record;
1709 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1710 struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
1711
1712 phm_ppt_v1_clock_voltage_dependency_table *sclk_table = pptable_info->vdd_dep_on_sclk;
1713 phm_ppt_v1_clock_voltage_dependency_table *mclk_table = pptable_info->vdd_dep_on_mclk;
1714
1715 if (data->vdd_gfx_control == SMU7_VOLTAGE_CONTROL_BY_SVID2) {
1716 for (entry_id = 0; entry_id < sclk_table->count; ++entry_id) {
1717 if (sclk_table->entries[entry_id].vdd_offset & (1 << 15))
1718 v_record.us_vdd = sclk_table->entries[entry_id].vddgfx +
1719 sclk_table->entries[entry_id].vdd_offset - 0xFFFF;
1720 else
1721 v_record.us_vdd = sclk_table->entries[entry_id].vddgfx +
1722 sclk_table->entries[entry_id].vdd_offset;
1723
1724 sclk_table->entries[entry_id].vddc =
1725 v_record.us_cac_low = v_record.us_cac_mid =
1726 v_record.us_cac_high = v_record.us_vdd;
1727
1728 phm_add_voltage(hwmgr, pptable_info->vddc_lookup_table, &v_record);
1729 }
1730
1731 for (entry_id = 0; entry_id < mclk_table->count; ++entry_id) {
1732 if (mclk_table->entries[entry_id].vdd_offset & (1 << 15))
1733 v_record.us_vdd = mclk_table->entries[entry_id].vddc +
1734 mclk_table->entries[entry_id].vdd_offset - 0xFFFF;
1735 else
1736 v_record.us_vdd = mclk_table->entries[entry_id].vddc +
1737 mclk_table->entries[entry_id].vdd_offset;
1738
1739 mclk_table->entries[entry_id].vddgfx = v_record.us_cac_low =
1740 v_record.us_cac_mid = v_record.us_cac_high = v_record.us_vdd;
1741 phm_add_voltage(hwmgr, pptable_info->vddgfx_lookup_table, &v_record);
1742 }
1743 }
1744 return 0;
1745 }
1746
1747 static int smu7_calc_mm_voltage_dependency_table(struct pp_hwmgr *hwmgr)
1748 {
1749 uint8_t entry_id;
1750 struct phm_ppt_v1_voltage_lookup_record v_record;
1751 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1752 struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
1753 phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table = pptable_info->mm_dep_table;
1754
1755 if (data->vdd_gfx_control == SMU7_VOLTAGE_CONTROL_BY_SVID2) {
1756 for (entry_id = 0; entry_id < mm_table->count; entry_id++) {
1757 if (mm_table->entries[entry_id].vddgfx_offset & (1 << 15))
1758 v_record.us_vdd = mm_table->entries[entry_id].vddc +
1759 mm_table->entries[entry_id].vddgfx_offset - 0xFFFF;
1760 else
1761 v_record.us_vdd = mm_table->entries[entry_id].vddc +
1762 mm_table->entries[entry_id].vddgfx_offset;
1763
1764 /* Add the calculated VDDGFX to the VDDGFX lookup table */
1765 mm_table->entries[entry_id].vddgfx = v_record.us_cac_low =
1766 v_record.us_cac_mid = v_record.us_cac_high = v_record.us_vdd;
1767 phm_add_voltage(hwmgr, pptable_info->vddgfx_lookup_table, &v_record);
1768 }
1769 }
1770 return 0;
1771 }
1772
1773 static int smu7_sort_lookup_table(struct pp_hwmgr *hwmgr,
1774 struct phm_ppt_v1_voltage_lookup_table *lookup_table)
1775 {
1776 uint32_t table_size, i, j;
1777 struct phm_ppt_v1_voltage_lookup_record tmp_voltage_lookup_record;
1778 table_size = lookup_table->count;
1779
1780 PP_ASSERT_WITH_CODE(0 != lookup_table->count,
1781 "Lookup table is empty", return -EINVAL);
1782
1783 /* Sorting voltages */
1784 for (i = 0; i < table_size - 1; i++) {
1785 for (j = i + 1; j > 0; j--) {
1786 if (lookup_table->entries[j].us_vdd <
1787 lookup_table->entries[j - 1].us_vdd) {
1788 tmp_voltage_lookup_record = lookup_table->entries[j - 1];
1789 lookup_table->entries[j - 1] = lookup_table->entries[j];
1790 lookup_table->entries[j] = tmp_voltage_lookup_record;
1791 }
1792 }
1793 }
1794
1795 return 0;
1796 }
1797
1798 static int smu7_complete_dependency_tables(struct pp_hwmgr *hwmgr)
1799 {
1800 int result = 0;
1801 int tmp_result;
1802 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1803 struct phm_ppt_v1_information *table_info =
1804 (struct phm_ppt_v1_information *)(hwmgr->pptable);
1805
1806 if (data->vdd_gfx_control == SMU7_VOLTAGE_CONTROL_BY_SVID2) {
1807 tmp_result = smu7_patch_lookup_table_with_leakage(hwmgr,
1808 table_info->vddgfx_lookup_table, &(data->vddcgfx_leakage));
1809 if (tmp_result != 0)
1810 result = tmp_result;
1811
1812 smu7_patch_ppt_v1_with_vdd_leakage(hwmgr,
1813 &table_info->max_clock_voltage_on_dc.vddgfx, &(data->vddcgfx_leakage));
1814 } else {
1815
1816 tmp_result = smu7_patch_lookup_table_with_leakage(hwmgr,
1817 table_info->vddc_lookup_table, &(data->vddc_leakage));
1818 if (tmp_result)
1819 result = tmp_result;
1820
1821 tmp_result = smu7_patch_clock_voltage_limits_with_vddc_leakage(hwmgr,
1822 &(data->vddc_leakage), &table_info->max_clock_voltage_on_dc.vddc);
1823 if (tmp_result)
1824 result = tmp_result;
1825 }
1826
1827 tmp_result = smu7_patch_voltage_dependency_tables_with_lookup_table(hwmgr);
1828 if (tmp_result)
1829 result = tmp_result;
1830
1831 tmp_result = smu7_calc_voltage_dependency_tables(hwmgr);
1832 if (tmp_result)
1833 result = tmp_result;
1834
1835 tmp_result = smu7_calc_mm_voltage_dependency_table(hwmgr);
1836 if (tmp_result)
1837 result = tmp_result;
1838
1839 tmp_result = smu7_sort_lookup_table(hwmgr, table_info->vddgfx_lookup_table);
1840 if (tmp_result)
1841 result = tmp_result;
1842
1843 tmp_result = smu7_sort_lookup_table(hwmgr, table_info->vddc_lookup_table);
1844 if (tmp_result)
1845 result = tmp_result;
1846
1847 return result;
1848 }
1849
1850 static int smu7_set_private_data_based_on_pptable_v1(struct pp_hwmgr *hwmgr)
1851 {
1852 struct phm_ppt_v1_information *table_info =
1853 (struct phm_ppt_v1_information *)(hwmgr->pptable);
1854
1855 struct phm_ppt_v1_clock_voltage_dependency_table *allowed_sclk_vdd_table =
1856 table_info->vdd_dep_on_sclk;
1857 struct phm_ppt_v1_clock_voltage_dependency_table *allowed_mclk_vdd_table =
1858 table_info->vdd_dep_on_mclk;
1859
1860 PP_ASSERT_WITH_CODE(allowed_sclk_vdd_table != NULL,
1861 "VDD dependency on SCLK table is missing.",
1862 return -EINVAL);
1863 PP_ASSERT_WITH_CODE(allowed_sclk_vdd_table->count >= 1,
1864 "VDD dependency on SCLK table has to have is missing.",
1865 return -EINVAL);
1866
1867 PP_ASSERT_WITH_CODE(allowed_mclk_vdd_table != NULL,
1868 "VDD dependency on MCLK table is missing",
1869 return -EINVAL);
1870 PP_ASSERT_WITH_CODE(allowed_mclk_vdd_table->count >= 1,
1871 "VDD dependency on MCLK table has to have is missing.",
1872 return -EINVAL);
1873
1874 table_info->max_clock_voltage_on_ac.sclk =
1875 allowed_sclk_vdd_table->entries[allowed_sclk_vdd_table->count - 1].clk;
1876 table_info->max_clock_voltage_on_ac.mclk =
1877 allowed_mclk_vdd_table->entries[allowed_mclk_vdd_table->count - 1].clk;
1878 table_info->max_clock_voltage_on_ac.vddc =
1879 allowed_sclk_vdd_table->entries[allowed_sclk_vdd_table->count - 1].vddc;
1880 table_info->max_clock_voltage_on_ac.vddci =
1881 allowed_mclk_vdd_table->entries[allowed_mclk_vdd_table->count - 1].vddci;
1882
1883 hwmgr->dyn_state.max_clock_voltage_on_ac.sclk = table_info->max_clock_voltage_on_ac.sclk;
1884 hwmgr->dyn_state.max_clock_voltage_on_ac.mclk = table_info->max_clock_voltage_on_ac.mclk;
1885 hwmgr->dyn_state.max_clock_voltage_on_ac.vddc = table_info->max_clock_voltage_on_ac.vddc;
1886 hwmgr->dyn_state.max_clock_voltage_on_ac.vddci = table_info->max_clock_voltage_on_ac.vddci;
1887
1888 return 0;
1889 }
1890
1891 static int smu7_patch_voltage_workaround(struct pp_hwmgr *hwmgr)
1892 {
1893 struct phm_ppt_v1_information *table_info =
1894 (struct phm_ppt_v1_information *)(hwmgr->pptable);
1895 struct phm_ppt_v1_clock_voltage_dependency_table *dep_mclk_table;
1896 struct phm_ppt_v1_voltage_lookup_table *lookup_table;
1897 uint32_t i;
1898 uint32_t hw_revision, sub_vendor_id, sub_sys_id;
1899 struct cgs_system_info sys_info = {0};
1900
1901 if (table_info != NULL) {
1902 dep_mclk_table = table_info->vdd_dep_on_mclk;
1903 lookup_table = table_info->vddc_lookup_table;
1904 } else
1905 return 0;
1906
1907 sys_info.size = sizeof(struct cgs_system_info);
1908
1909 sys_info.info_id = CGS_SYSTEM_INFO_PCIE_REV;
1910 cgs_query_system_info(hwmgr->device, &sys_info);
1911 hw_revision = (uint32_t)sys_info.value;
1912
1913 sys_info.info_id = CGS_SYSTEM_INFO_PCIE_SUB_SYS_ID;
1914 cgs_query_system_info(hwmgr->device, &sys_info);
1915 sub_sys_id = (uint32_t)sys_info.value;
1916
1917 sys_info.info_id = CGS_SYSTEM_INFO_PCIE_SUB_SYS_VENDOR_ID;
1918 cgs_query_system_info(hwmgr->device, &sys_info);
1919 sub_vendor_id = (uint32_t)sys_info.value;
1920
1921 if (hwmgr->chip_id == CHIP_POLARIS10 && hw_revision == 0xC7 &&
1922 ((sub_sys_id == 0xb37 && sub_vendor_id == 0x1002) ||
1923 (sub_sys_id == 0x4a8 && sub_vendor_id == 0x1043) ||
1924 (sub_sys_id == 0x9480 && sub_vendor_id == 0x1682))) {
1925 if (lookup_table->entries[dep_mclk_table->entries[dep_mclk_table->count-1].vddInd].us_vdd >= 1000)
1926 return 0;
1927
1928 for (i = 0; i < lookup_table->count; i++) {
1929 if (lookup_table->entries[i].us_vdd < 0xff01 && lookup_table->entries[i].us_vdd >= 1000) {
1930 dep_mclk_table->entries[dep_mclk_table->count-1].vddInd = (uint8_t) i;
1931 return 0;
1932 }
1933 }
1934 }
1935 return 0;
1936 }
1937
1938 static int smu7_thermal_parameter_init(struct pp_hwmgr *hwmgr)
1939 {
1940 struct pp_atomctrl_gpio_pin_assignment gpio_pin_assignment;
1941 uint32_t temp_reg;
1942 struct phm_ppt_v1_information *table_info =
1943 (struct phm_ppt_v1_information *)(hwmgr->pptable);
1944
1945
1946 if (atomctrl_get_pp_assign_pin(hwmgr, VDDC_PCC_GPIO_PINID, &gpio_pin_assignment)) {
1947 temp_reg = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCNB_PWRMGT_CNTL);
1948 switch (gpio_pin_assignment.uc_gpio_pin_bit_shift) {
1949 case 0:
1950 temp_reg = PHM_SET_FIELD(temp_reg, CNB_PWRMGT_CNTL, GNB_SLOW_MODE, 0x1);
1951 break;
1952 case 1:
1953 temp_reg = PHM_SET_FIELD(temp_reg, CNB_PWRMGT_CNTL, GNB_SLOW_MODE, 0x2);
1954 break;
1955 case 2:
1956 temp_reg = PHM_SET_FIELD(temp_reg, CNB_PWRMGT_CNTL, GNB_SLOW, 0x1);
1957 break;
1958 case 3:
1959 temp_reg = PHM_SET_FIELD(temp_reg, CNB_PWRMGT_CNTL, FORCE_NB_PS1, 0x1);
1960 break;
1961 case 4:
1962 temp_reg = PHM_SET_FIELD(temp_reg, CNB_PWRMGT_CNTL, DPM_ENABLED, 0x1);
1963 break;
1964 default:
1965 break;
1966 }
1967 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCNB_PWRMGT_CNTL, temp_reg);
1968 }
1969
1970 if (table_info == NULL)
1971 return 0;
1972
1973 if (table_info->cac_dtp_table->usDefaultTargetOperatingTemp != 0 &&
1974 hwmgr->thermal_controller.advanceFanControlParameters.ucFanControlMode) {
1975 hwmgr->thermal_controller.advanceFanControlParameters.usFanPWMMinLimit =
1976 (uint16_t)hwmgr->thermal_controller.advanceFanControlParameters.ucMinimumPWMLimit;
1977
1978 hwmgr->thermal_controller.advanceFanControlParameters.usFanPWMMaxLimit =
1979 (uint16_t)hwmgr->thermal_controller.advanceFanControlParameters.usDefaultMaxFanPWM;
1980
1981 hwmgr->thermal_controller.advanceFanControlParameters.usFanPWMStep = 1;
1982
1983 hwmgr->thermal_controller.advanceFanControlParameters.usFanRPMMaxLimit = 100;
1984
1985 hwmgr->thermal_controller.advanceFanControlParameters.usFanRPMMinLimit =
1986 (uint16_t)hwmgr->thermal_controller.advanceFanControlParameters.ucMinimumPWMLimit;
1987
1988 hwmgr->thermal_controller.advanceFanControlParameters.usFanRPMStep = 1;
1989
1990 table_info->cac_dtp_table->usDefaultTargetOperatingTemp = (table_info->cac_dtp_table->usDefaultTargetOperatingTemp >= 50) ?
1991 (table_info->cac_dtp_table->usDefaultTargetOperatingTemp - 50) : 0;
1992
1993 table_info->cac_dtp_table->usOperatingTempMaxLimit = table_info->cac_dtp_table->usDefaultTargetOperatingTemp;
1994 table_info->cac_dtp_table->usOperatingTempStep = 1;
1995 table_info->cac_dtp_table->usOperatingTempHyst = 1;
1996
1997 hwmgr->thermal_controller.advanceFanControlParameters.usMaxFanPWM =
1998 hwmgr->thermal_controller.advanceFanControlParameters.usDefaultMaxFanPWM;
1999
2000 hwmgr->thermal_controller.advanceFanControlParameters.usMaxFanRPM =
2001 hwmgr->thermal_controller.advanceFanControlParameters.usDefaultMaxFanRPM;
2002
2003 hwmgr->dyn_state.cac_dtp_table->usOperatingTempMinLimit =
2004 table_info->cac_dtp_table->usOperatingTempMinLimit;
2005
2006 hwmgr->dyn_state.cac_dtp_table->usOperatingTempMaxLimit =
2007 table_info->cac_dtp_table->usOperatingTempMaxLimit;
2008
2009 hwmgr->dyn_state.cac_dtp_table->usDefaultTargetOperatingTemp =
2010 table_info->cac_dtp_table->usDefaultTargetOperatingTemp;
2011
2012 hwmgr->dyn_state.cac_dtp_table->usOperatingTempStep =
2013 table_info->cac_dtp_table->usOperatingTempStep;
2014
2015 hwmgr->dyn_state.cac_dtp_table->usTargetOperatingTemp =
2016 table_info->cac_dtp_table->usTargetOperatingTemp;
2017 if (hwmgr->feature_mask & PP_OD_FUZZY_FAN_CONTROL_MASK)
2018 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
2019 PHM_PlatformCaps_ODFuzzyFanControlSupport);
2020 }
2021
2022 return 0;
2023 }
2024
2025 /**
2026 * Change virtual leakage voltage to actual value.
2027 *
2028 * @param hwmgr the address of the powerplay hardware manager.
2029 * @param pointer to changing voltage
2030 * @param pointer to leakage table
2031 */
2032 static void smu7_patch_ppt_v0_with_vdd_leakage(struct pp_hwmgr *hwmgr,
2033 uint32_t *voltage, struct smu7_leakage_voltage *leakage_table)
2034 {
2035 uint32_t index;
2036
2037 /* search for leakage voltage ID 0xff01 ~ 0xff08 */
2038 for (index = 0; index < leakage_table->count; index++) {
2039 /* if this voltage matches a leakage voltage ID */
2040 /* patch with actual leakage voltage */
2041 if (leakage_table->leakage_id[index] == *voltage) {
2042 *voltage = leakage_table->actual_voltage[index];
2043 break;
2044 }
2045 }
2046
2047 if (*voltage > ATOM_VIRTUAL_VOLTAGE_ID0)
2048 pr_err("Voltage value looks like a Leakage ID but it's not patched \n");
2049 }
2050
2051
2052 static int smu7_patch_vddc(struct pp_hwmgr *hwmgr,
2053 struct phm_clock_voltage_dependency_table *tab)
2054 {
2055 uint16_t i;
2056 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2057
2058 if (tab)
2059 for (i = 0; i < tab->count; i++)
2060 smu7_patch_ppt_v0_with_vdd_leakage(hwmgr, &tab->entries[i].v,
2061 &data->vddc_leakage);
2062
2063 return 0;
2064 }
2065
2066 static int smu7_patch_vddci(struct pp_hwmgr *hwmgr,
2067 struct phm_clock_voltage_dependency_table *tab)
2068 {
2069 uint16_t i;
2070 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2071
2072 if (tab)
2073 for (i = 0; i < tab->count; i++)
2074 smu7_patch_ppt_v0_with_vdd_leakage(hwmgr, &tab->entries[i].v,
2075 &data->vddci_leakage);
2076
2077 return 0;
2078 }
2079
2080 static int smu7_patch_vce_vddc(struct pp_hwmgr *hwmgr,
2081 struct phm_vce_clock_voltage_dependency_table *tab)
2082 {
2083 uint16_t i;
2084 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2085
2086 if (tab)
2087 for (i = 0; i < tab->count; i++)
2088 smu7_patch_ppt_v0_with_vdd_leakage(hwmgr, &tab->entries[i].v,
2089 &data->vddc_leakage);
2090
2091 return 0;
2092 }
2093
2094
2095 static int smu7_patch_uvd_vddc(struct pp_hwmgr *hwmgr,
2096 struct phm_uvd_clock_voltage_dependency_table *tab)
2097 {
2098 uint16_t i;
2099 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2100
2101 if (tab)
2102 for (i = 0; i < tab->count; i++)
2103 smu7_patch_ppt_v0_with_vdd_leakage(hwmgr, &tab->entries[i].v,
2104 &data->vddc_leakage);
2105
2106 return 0;
2107 }
2108
2109 static int smu7_patch_vddc_shed_limit(struct pp_hwmgr *hwmgr,
2110 struct phm_phase_shedding_limits_table *tab)
2111 {
2112 uint16_t i;
2113 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2114
2115 if (tab)
2116 for (i = 0; i < tab->count; i++)
2117 smu7_patch_ppt_v0_with_vdd_leakage(hwmgr, &tab->entries[i].Voltage,
2118 &data->vddc_leakage);
2119
2120 return 0;
2121 }
2122
2123 static int smu7_patch_samu_vddc(struct pp_hwmgr *hwmgr,
2124 struct phm_samu_clock_voltage_dependency_table *tab)
2125 {
2126 uint16_t i;
2127 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2128
2129 if (tab)
2130 for (i = 0; i < tab->count; i++)
2131 smu7_patch_ppt_v0_with_vdd_leakage(hwmgr, &tab->entries[i].v,
2132 &data->vddc_leakage);
2133
2134 return 0;
2135 }
2136
2137 static int smu7_patch_acp_vddc(struct pp_hwmgr *hwmgr,
2138 struct phm_acp_clock_voltage_dependency_table *tab)
2139 {
2140 uint16_t i;
2141 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2142
2143 if (tab)
2144 for (i = 0; i < tab->count; i++)
2145 smu7_patch_ppt_v0_with_vdd_leakage(hwmgr, &tab->entries[i].v,
2146 &data->vddc_leakage);
2147
2148 return 0;
2149 }
2150
2151 static int smu7_patch_limits_vddc(struct pp_hwmgr *hwmgr,
2152 struct phm_clock_and_voltage_limits *tab)
2153 {
2154 uint32_t vddc, vddci;
2155 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2156
2157 if (tab) {
2158 vddc = tab->vddc;
2159 smu7_patch_ppt_v0_with_vdd_leakage(hwmgr, &vddc,
2160 &data->vddc_leakage);
2161 tab->vddc = vddc;
2162 vddci = tab->vddci;
2163 smu7_patch_ppt_v0_with_vdd_leakage(hwmgr, &vddci,
2164 &data->vddci_leakage);
2165 tab->vddci = vddci;
2166 }
2167
2168 return 0;
2169 }
2170
2171 static int smu7_patch_cac_vddc(struct pp_hwmgr *hwmgr, struct phm_cac_leakage_table *tab)
2172 {
2173 uint32_t i;
2174 uint32_t vddc;
2175 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2176
2177 if (tab) {
2178 for (i = 0; i < tab->count; i++) {
2179 vddc = (uint32_t)(tab->entries[i].Vddc);
2180 smu7_patch_ppt_v0_with_vdd_leakage(hwmgr, &vddc, &data->vddc_leakage);
2181 tab->entries[i].Vddc = (uint16_t)vddc;
2182 }
2183 }
2184
2185 return 0;
2186 }
2187
2188 static int smu7_patch_dependency_tables_with_leakage(struct pp_hwmgr *hwmgr)
2189 {
2190 int tmp;
2191
2192 tmp = smu7_patch_vddc(hwmgr, hwmgr->dyn_state.vddc_dependency_on_sclk);
2193 if (tmp)
2194 return -EINVAL;
2195
2196 tmp = smu7_patch_vddc(hwmgr, hwmgr->dyn_state.vddc_dependency_on_mclk);
2197 if (tmp)
2198 return -EINVAL;
2199
2200 tmp = smu7_patch_vddc(hwmgr, hwmgr->dyn_state.vddc_dep_on_dal_pwrl);
2201 if (tmp)
2202 return -EINVAL;
2203
2204 tmp = smu7_patch_vddci(hwmgr, hwmgr->dyn_state.vddci_dependency_on_mclk);
2205 if (tmp)
2206 return -EINVAL;
2207
2208 tmp = smu7_patch_vce_vddc(hwmgr, hwmgr->dyn_state.vce_clock_voltage_dependency_table);
2209 if (tmp)
2210 return -EINVAL;
2211
2212 tmp = smu7_patch_uvd_vddc(hwmgr, hwmgr->dyn_state.uvd_clock_voltage_dependency_table);
2213 if (tmp)
2214 return -EINVAL;
2215
2216 tmp = smu7_patch_samu_vddc(hwmgr, hwmgr->dyn_state.samu_clock_voltage_dependency_table);
2217 if (tmp)
2218 return -EINVAL;
2219
2220 tmp = smu7_patch_acp_vddc(hwmgr, hwmgr->dyn_state.acp_clock_voltage_dependency_table);
2221 if (tmp)
2222 return -EINVAL;
2223
2224 tmp = smu7_patch_vddc_shed_limit(hwmgr, hwmgr->dyn_state.vddc_phase_shed_limits_table);
2225 if (tmp)
2226 return -EINVAL;
2227
2228 tmp = smu7_patch_limits_vddc(hwmgr, &hwmgr->dyn_state.max_clock_voltage_on_ac);
2229 if (tmp)
2230 return -EINVAL;
2231
2232 tmp = smu7_patch_limits_vddc(hwmgr, &hwmgr->dyn_state.max_clock_voltage_on_dc);
2233 if (tmp)
2234 return -EINVAL;
2235
2236 tmp = smu7_patch_cac_vddc(hwmgr, hwmgr->dyn_state.cac_leakage_table);
2237 if (tmp)
2238 return -EINVAL;
2239
2240 return 0;
2241 }
2242
2243
2244 static int smu7_set_private_data_based_on_pptable_v0(struct pp_hwmgr *hwmgr)
2245 {
2246 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2247
2248 struct phm_clock_voltage_dependency_table *allowed_sclk_vddc_table = hwmgr->dyn_state.vddc_dependency_on_sclk;
2249 struct phm_clock_voltage_dependency_table *allowed_mclk_vddc_table = hwmgr->dyn_state.vddc_dependency_on_mclk;
2250 struct phm_clock_voltage_dependency_table *allowed_mclk_vddci_table = hwmgr->dyn_state.vddci_dependency_on_mclk;
2251
2252 PP_ASSERT_WITH_CODE(allowed_sclk_vddc_table != NULL,
2253 "VDDC dependency on SCLK table is missing. This table is mandatory\n", return -EINVAL);
2254 PP_ASSERT_WITH_CODE(allowed_sclk_vddc_table->count >= 1,
2255 "VDDC dependency on SCLK table has to have is missing. This table is mandatory\n", return -EINVAL);
2256
2257 PP_ASSERT_WITH_CODE(allowed_mclk_vddc_table != NULL,
2258 "VDDC dependency on MCLK table is missing. This table is mandatory\n", return -EINVAL);
2259 PP_ASSERT_WITH_CODE(allowed_mclk_vddc_table->count >= 1,
2260 "VDD dependency on MCLK table has to have is missing. This table is mandatory\n", return -EINVAL);
2261
2262 data->min_vddc_in_pptable = (uint16_t)allowed_sclk_vddc_table->entries[0].v;
2263 data->max_vddc_in_pptable = (uint16_t)allowed_sclk_vddc_table->entries[allowed_sclk_vddc_table->count - 1].v;
2264
2265 hwmgr->dyn_state.max_clock_voltage_on_ac.sclk =
2266 allowed_sclk_vddc_table->entries[allowed_sclk_vddc_table->count - 1].clk;
2267 hwmgr->dyn_state.max_clock_voltage_on_ac.mclk =
2268 allowed_mclk_vddc_table->entries[allowed_mclk_vddc_table->count - 1].clk;
2269 hwmgr->dyn_state.max_clock_voltage_on_ac.vddc =
2270 allowed_sclk_vddc_table->entries[allowed_sclk_vddc_table->count - 1].v;
2271
2272 if (allowed_mclk_vddci_table != NULL && allowed_mclk_vddci_table->count >= 1) {
2273 data->min_vddci_in_pptable = (uint16_t)allowed_mclk_vddci_table->entries[0].v;
2274 data->max_vddci_in_pptable = (uint16_t)allowed_mclk_vddci_table->entries[allowed_mclk_vddci_table->count - 1].v;
2275 }
2276
2277 if (hwmgr->dyn_state.vddci_dependency_on_mclk != NULL && hwmgr->dyn_state.vddci_dependency_on_mclk->count > 1)
2278 hwmgr->dyn_state.max_clock_voltage_on_ac.vddci = hwmgr->dyn_state.vddci_dependency_on_mclk->entries[hwmgr->dyn_state.vddci_dependency_on_mclk->count - 1].v;
2279
2280 return 0;
2281 }
2282
2283 static int smu7_hwmgr_backend_fini(struct pp_hwmgr *hwmgr)
2284 {
2285 if (NULL != hwmgr->dyn_state.vddc_dep_on_dal_pwrl) {
2286 kfree(hwmgr->dyn_state.vddc_dep_on_dal_pwrl);
2287 hwmgr->dyn_state.vddc_dep_on_dal_pwrl = NULL;
2288 }
2289 pp_smu7_thermal_fini(hwmgr);
2290 if (NULL != hwmgr->backend) {
2291 kfree(hwmgr->backend);
2292 hwmgr->backend = NULL;
2293 }
2294
2295 return 0;
2296 }
2297
2298 static int smu7_hwmgr_backend_init(struct pp_hwmgr *hwmgr)
2299 {
2300 struct smu7_hwmgr *data;
2301 int result;
2302
2303 data = kzalloc(sizeof(struct smu7_hwmgr), GFP_KERNEL);
2304 if (data == NULL)
2305 return -ENOMEM;
2306
2307 hwmgr->backend = data;
2308 pp_smu7_thermal_initialize(hwmgr);
2309
2310 smu7_patch_voltage_workaround(hwmgr);
2311 smu7_init_dpm_defaults(hwmgr);
2312
2313 /* Get leakage voltage based on leakage ID. */
2314 result = smu7_get_evv_voltages(hwmgr);
2315
2316 if (result) {
2317 pr_info("Get EVV Voltage Failed. Abort Driver loading!\n");
2318 return -EINVAL;
2319 }
2320
2321 if (hwmgr->pp_table_version == PP_TABLE_V1) {
2322 smu7_complete_dependency_tables(hwmgr);
2323 smu7_set_private_data_based_on_pptable_v1(hwmgr);
2324 } else if (hwmgr->pp_table_version == PP_TABLE_V0) {
2325 smu7_patch_dependency_tables_with_leakage(hwmgr);
2326 smu7_set_private_data_based_on_pptable_v0(hwmgr);
2327 }
2328
2329 /* Initalize Dynamic State Adjustment Rule Settings */
2330 result = phm_initializa_dynamic_state_adjustment_rule_settings(hwmgr);
2331
2332 if (0 == result) {
2333 struct cgs_system_info sys_info = {0};
2334
2335 data->is_tlu_enabled = false;
2336
2337 hwmgr->platform_descriptor.hardwareActivityPerformanceLevels =
2338 SMU7_MAX_HARDWARE_POWERLEVELS;
2339 hwmgr->platform_descriptor.hardwarePerformanceLevels = 2;
2340 hwmgr->platform_descriptor.minimumClocksReductionPercentage = 50;
2341
2342 sys_info.size = sizeof(struct cgs_system_info);
2343 sys_info.info_id = CGS_SYSTEM_INFO_PCIE_GEN_INFO;
2344 result = cgs_query_system_info(hwmgr->device, &sys_info);
2345 if (result)
2346 data->pcie_gen_cap = AMDGPU_DEFAULT_PCIE_GEN_MASK;
2347 else
2348 data->pcie_gen_cap = (uint32_t)sys_info.value;
2349 if (data->pcie_gen_cap & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN3)
2350 data->pcie_spc_cap = 20;
2351 sys_info.size = sizeof(struct cgs_system_info);
2352 sys_info.info_id = CGS_SYSTEM_INFO_PCIE_MLW;
2353 result = cgs_query_system_info(hwmgr->device, &sys_info);
2354 if (result)
2355 data->pcie_lane_cap = AMDGPU_DEFAULT_PCIE_MLW_MASK;
2356 else
2357 data->pcie_lane_cap = (uint32_t)sys_info.value;
2358
2359 hwmgr->platform_descriptor.vbiosInterruptId = 0x20000400; /* IRQ_SOURCE1_SW_INT */
2360 /* The true clock step depends on the frequency, typically 4.5 or 9 MHz. Here we use 5. */
2361 hwmgr->platform_descriptor.clockStep.engineClock = 500;
2362 hwmgr->platform_descriptor.clockStep.memoryClock = 500;
2363 smu7_thermal_parameter_init(hwmgr);
2364 } else {
2365 /* Ignore return value in here, we are cleaning up a mess. */
2366 smu7_hwmgr_backend_fini(hwmgr);
2367 }
2368
2369 return 0;
2370 }
2371
2372 static int smu7_force_dpm_highest(struct pp_hwmgr *hwmgr)
2373 {
2374 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2375 uint32_t level, tmp;
2376
2377 if (!data->pcie_dpm_key_disabled) {
2378 if (data->dpm_level_enable_mask.pcie_dpm_enable_mask) {
2379 level = 0;
2380 tmp = data->dpm_level_enable_mask.pcie_dpm_enable_mask;
2381 while (tmp >>= 1)
2382 level++;
2383
2384 if (level)
2385 smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
2386 PPSMC_MSG_PCIeDPM_ForceLevel, level);
2387 }
2388 }
2389
2390 if (!data->sclk_dpm_key_disabled) {
2391 if (data->dpm_level_enable_mask.sclk_dpm_enable_mask) {
2392 level = 0;
2393 tmp = data->dpm_level_enable_mask.sclk_dpm_enable_mask;
2394 while (tmp >>= 1)
2395 level++;
2396
2397 if (level)
2398 smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
2399 PPSMC_MSG_SCLKDPM_SetEnabledMask,
2400 (1 << level));
2401 }
2402 }
2403
2404 if (!data->mclk_dpm_key_disabled) {
2405 if (data->dpm_level_enable_mask.mclk_dpm_enable_mask) {
2406 level = 0;
2407 tmp = data->dpm_level_enable_mask.mclk_dpm_enable_mask;
2408 while (tmp >>= 1)
2409 level++;
2410
2411 if (level)
2412 smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
2413 PPSMC_MSG_MCLKDPM_SetEnabledMask,
2414 (1 << level));
2415 }
2416 }
2417
2418 return 0;
2419 }
2420
2421 static int smu7_upload_dpm_level_enable_mask(struct pp_hwmgr *hwmgr)
2422 {
2423 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2424
2425 if (hwmgr->pp_table_version == PP_TABLE_V1)
2426 phm_apply_dal_min_voltage_request(hwmgr);
2427 /* TO DO for v0 iceland and Ci*/
2428
2429 if (!data->sclk_dpm_key_disabled) {
2430 if (data->dpm_level_enable_mask.sclk_dpm_enable_mask)
2431 smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
2432 PPSMC_MSG_SCLKDPM_SetEnabledMask,
2433 data->dpm_level_enable_mask.sclk_dpm_enable_mask);
2434 }
2435
2436 if (!data->mclk_dpm_key_disabled) {
2437 if (data->dpm_level_enable_mask.mclk_dpm_enable_mask)
2438 smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
2439 PPSMC_MSG_MCLKDPM_SetEnabledMask,
2440 data->dpm_level_enable_mask.mclk_dpm_enable_mask);
2441 }
2442
2443 return 0;
2444 }
2445
2446 static int smu7_unforce_dpm_levels(struct pp_hwmgr *hwmgr)
2447 {
2448 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2449
2450 if (!smum_is_dpm_running(hwmgr))
2451 return -EINVAL;
2452
2453 if (!data->pcie_dpm_key_disabled) {
2454 smum_send_msg_to_smc(hwmgr->smumgr,
2455 PPSMC_MSG_PCIeDPM_UnForceLevel);
2456 }
2457
2458 return smu7_upload_dpm_level_enable_mask(hwmgr);
2459 }
2460
2461 static int smu7_force_dpm_lowest(struct pp_hwmgr *hwmgr)
2462 {
2463 struct smu7_hwmgr *data =
2464 (struct smu7_hwmgr *)(hwmgr->backend);
2465 uint32_t level;
2466
2467 if (!data->sclk_dpm_key_disabled)
2468 if (data->dpm_level_enable_mask.sclk_dpm_enable_mask) {
2469 level = phm_get_lowest_enabled_level(hwmgr,
2470 data->dpm_level_enable_mask.sclk_dpm_enable_mask);
2471 smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
2472 PPSMC_MSG_SCLKDPM_SetEnabledMask,
2473 (1 << level));
2474
2475 }
2476
2477 if (!data->mclk_dpm_key_disabled) {
2478 if (data->dpm_level_enable_mask.mclk_dpm_enable_mask) {
2479 level = phm_get_lowest_enabled_level(hwmgr,
2480 data->dpm_level_enable_mask.mclk_dpm_enable_mask);
2481 smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
2482 PPSMC_MSG_MCLKDPM_SetEnabledMask,
2483 (1 << level));
2484 }
2485 }
2486
2487 if (!data->pcie_dpm_key_disabled) {
2488 if (data->dpm_level_enable_mask.pcie_dpm_enable_mask) {
2489 level = phm_get_lowest_enabled_level(hwmgr,
2490 data->dpm_level_enable_mask.pcie_dpm_enable_mask);
2491 smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
2492 PPSMC_MSG_PCIeDPM_ForceLevel,
2493 (level));
2494 }
2495 }
2496
2497 return 0;
2498 }
2499
2500 static int smu7_get_profiling_clk(struct pp_hwmgr *hwmgr, enum amd_dpm_forced_level level,
2501 uint32_t *sclk_mask, uint32_t *mclk_mask, uint32_t *pcie_mask)
2502 {
2503 uint32_t percentage;
2504 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2505 struct smu7_dpm_table *golden_dpm_table = &data->golden_dpm_table;
2506 int32_t tmp_mclk;
2507 int32_t tmp_sclk;
2508 int32_t count;
2509
2510 if (golden_dpm_table->mclk_table.count < 1)
2511 return -EINVAL;
2512
2513 percentage = 100 * golden_dpm_table->sclk_table.dpm_levels[golden_dpm_table->sclk_table.count - 1].value /
2514 golden_dpm_table->mclk_table.dpm_levels[golden_dpm_table->mclk_table.count - 1].value;
2515
2516 if (golden_dpm_table->mclk_table.count == 1) {
2517 percentage = 70;
2518 tmp_mclk = golden_dpm_table->mclk_table.dpm_levels[golden_dpm_table->mclk_table.count - 1].value;
2519 *mclk_mask = golden_dpm_table->mclk_table.count - 1;
2520 } else {
2521 tmp_mclk = golden_dpm_table->mclk_table.dpm_levels[golden_dpm_table->mclk_table.count - 2].value;
2522 *mclk_mask = golden_dpm_table->mclk_table.count - 2;
2523 }
2524
2525 tmp_sclk = tmp_mclk * percentage / 100;
2526
2527 if (hwmgr->pp_table_version == PP_TABLE_V0) {
2528 for (count = hwmgr->dyn_state.vddc_dependency_on_sclk->count-1;
2529 count >= 0; count--) {
2530 if (tmp_sclk >= hwmgr->dyn_state.vddc_dependency_on_sclk->entries[count].clk) {
2531 tmp_sclk = hwmgr->dyn_state.vddc_dependency_on_sclk->entries[count].clk;
2532 *sclk_mask = count;
2533 break;
2534 }
2535 }
2536 if (count < 0 || level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK)
2537 *sclk_mask = 0;
2538
2539 if (level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK)
2540 *sclk_mask = hwmgr->dyn_state.vddc_dependency_on_sclk->count-1;
2541 } else if (hwmgr->pp_table_version == PP_TABLE_V1) {
2542 struct phm_ppt_v1_information *table_info =
2543 (struct phm_ppt_v1_information *)(hwmgr->pptable);
2544
2545 for (count = table_info->vdd_dep_on_sclk->count-1; count >= 0; count--) {
2546 if (tmp_sclk >= table_info->vdd_dep_on_sclk->entries[count].clk) {
2547 tmp_sclk = table_info->vdd_dep_on_sclk->entries[count].clk;
2548 *sclk_mask = count;
2549 break;
2550 }
2551 }
2552 if (count < 0 || level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK)
2553 *sclk_mask = 0;
2554
2555 if (level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK)
2556 *sclk_mask = table_info->vdd_dep_on_sclk->count - 1;
2557 }
2558
2559 if (level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK)
2560 *mclk_mask = 0;
2561 else if (level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK)
2562 *mclk_mask = golden_dpm_table->mclk_table.count - 1;
2563
2564 *pcie_mask = data->dpm_table.pcie_speed_table.count - 1;
2565 return 0;
2566 }
2567
2568 static int smu7_force_dpm_level(struct pp_hwmgr *hwmgr,
2569 enum amd_dpm_forced_level level)
2570 {
2571 int ret = 0;
2572 uint32_t sclk_mask = 0;
2573 uint32_t mclk_mask = 0;
2574 uint32_t pcie_mask = 0;
2575 uint32_t profile_mode_mask = AMD_DPM_FORCED_LEVEL_PROFILE_STANDARD |
2576 AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK |
2577 AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK |
2578 AMD_DPM_FORCED_LEVEL_PROFILE_PEAK;
2579
2580 if (level == hwmgr->dpm_level)
2581 return ret;
2582
2583 if (!(hwmgr->dpm_level & profile_mode_mask)) {
2584 /* enter profile mode, save current level, disable gfx cg*/
2585 if (level & profile_mode_mask) {
2586 hwmgr->saved_dpm_level = hwmgr->dpm_level;
2587 cgs_set_clockgating_state(hwmgr->device,
2588 AMD_IP_BLOCK_TYPE_GFX,
2589 AMD_CG_STATE_UNGATE);
2590 }
2591 } else {
2592 /* exit profile mode, restore level, enable gfx cg*/
2593 if (!(level & profile_mode_mask)) {
2594 if (level == AMD_DPM_FORCED_LEVEL_PROFILE_EXIT)
2595 level = hwmgr->saved_dpm_level;
2596 cgs_set_clockgating_state(hwmgr->device,
2597 AMD_IP_BLOCK_TYPE_GFX,
2598 AMD_CG_STATE_GATE);
2599 }
2600 }
2601
2602 switch (level) {
2603 case AMD_DPM_FORCED_LEVEL_HIGH:
2604 ret = smu7_force_dpm_highest(hwmgr);
2605 if (ret)
2606 return ret;
2607 hwmgr->dpm_level = level;
2608 break;
2609 case AMD_DPM_FORCED_LEVEL_LOW:
2610 ret = smu7_force_dpm_lowest(hwmgr);
2611 if (ret)
2612 return ret;
2613 hwmgr->dpm_level = level;
2614 break;
2615 case AMD_DPM_FORCED_LEVEL_AUTO:
2616 ret = smu7_unforce_dpm_levels(hwmgr);
2617 if (ret)
2618 return ret;
2619 hwmgr->dpm_level = level;
2620 break;
2621 case AMD_DPM_FORCED_LEVEL_PROFILE_STANDARD:
2622 case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK:
2623 case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK:
2624 case AMD_DPM_FORCED_LEVEL_PROFILE_PEAK:
2625 ret = smu7_get_profiling_clk(hwmgr, level, &sclk_mask, &mclk_mask, &pcie_mask);
2626 if (ret)
2627 return ret;
2628 hwmgr->dpm_level = level;
2629 smu7_force_clock_level(hwmgr, PP_SCLK, 1<<sclk_mask);
2630 smu7_force_clock_level(hwmgr, PP_MCLK, 1<<mclk_mask);
2631 smu7_force_clock_level(hwmgr, PP_PCIE, 1<<pcie_mask);
2632
2633 break;
2634 case AMD_DPM_FORCED_LEVEL_MANUAL:
2635 hwmgr->dpm_level = level;
2636 break;
2637 case AMD_DPM_FORCED_LEVEL_PROFILE_EXIT:
2638 default:
2639 break;
2640 }
2641
2642 if (level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK && hwmgr->saved_dpm_level != AMD_DPM_FORCED_LEVEL_PROFILE_PEAK)
2643 smu7_fan_ctrl_set_fan_speed_percent(hwmgr, 100);
2644 else if (level != AMD_DPM_FORCED_LEVEL_PROFILE_PEAK && hwmgr->saved_dpm_level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK)
2645 smu7_fan_ctrl_reset_fan_speed_to_default(hwmgr);
2646
2647 return 0;
2648 }
2649
2650 static int smu7_get_power_state_size(struct pp_hwmgr *hwmgr)
2651 {
2652 return sizeof(struct smu7_power_state);
2653 }
2654
2655 static int smu7_vblank_too_short(struct pp_hwmgr *hwmgr,
2656 uint32_t vblank_time_us)
2657 {
2658 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2659 uint32_t switch_limit_us;
2660
2661 switch (hwmgr->chip_id) {
2662 case CHIP_POLARIS10:
2663 case CHIP_POLARIS11:
2664 case CHIP_POLARIS12:
2665 switch_limit_us = data->is_memory_gddr5 ? 190 : 150;
2666 break;
2667 default:
2668 switch_limit_us = data->is_memory_gddr5 ? 450 : 150;
2669 break;
2670 }
2671
2672 if (vblank_time_us < switch_limit_us)
2673 return true;
2674 else
2675 return false;
2676 }
2677
2678 static int smu7_apply_state_adjust_rules(struct pp_hwmgr *hwmgr,
2679 struct pp_power_state *request_ps,
2680 const struct pp_power_state *current_ps)
2681 {
2682
2683 struct smu7_power_state *smu7_ps =
2684 cast_phw_smu7_power_state(&request_ps->hardware);
2685 uint32_t sclk;
2686 uint32_t mclk;
2687 struct PP_Clocks minimum_clocks = {0};
2688 bool disable_mclk_switching;
2689 bool disable_mclk_switching_for_frame_lock;
2690 struct cgs_display_info info = {0};
2691 struct cgs_mode_info mode_info = {0};
2692 const struct phm_clock_and_voltage_limits *max_limits;
2693 uint32_t i;
2694 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2695 struct phm_ppt_v1_information *table_info =
2696 (struct phm_ppt_v1_information *)(hwmgr->pptable);
2697 int32_t count;
2698 int32_t stable_pstate_sclk = 0, stable_pstate_mclk = 0;
2699
2700 info.mode_info = &mode_info;
2701 data->battery_state = (PP_StateUILabel_Battery ==
2702 request_ps->classification.ui_label);
2703
2704 PP_ASSERT_WITH_CODE(smu7_ps->performance_level_count == 2,
2705 "VI should always have 2 performance levels",
2706 );
2707
2708 max_limits = (PP_PowerSource_AC == hwmgr->power_source) ?
2709 &(hwmgr->dyn_state.max_clock_voltage_on_ac) :
2710 &(hwmgr->dyn_state.max_clock_voltage_on_dc);
2711
2712 /* Cap clock DPM tables at DC MAX if it is in DC. */
2713 if (PP_PowerSource_DC == hwmgr->power_source) {
2714 for (i = 0; i < smu7_ps->performance_level_count; i++) {
2715 if (smu7_ps->performance_levels[i].memory_clock > max_limits->mclk)
2716 smu7_ps->performance_levels[i].memory_clock = max_limits->mclk;
2717 if (smu7_ps->performance_levels[i].engine_clock > max_limits->sclk)
2718 smu7_ps->performance_levels[i].engine_clock = max_limits->sclk;
2719 }
2720 }
2721
2722 smu7_ps->vce_clks.evclk = hwmgr->vce_arbiter.evclk;
2723 smu7_ps->vce_clks.ecclk = hwmgr->vce_arbiter.ecclk;
2724
2725 cgs_get_active_displays_info(hwmgr->device, &info);
2726
2727 minimum_clocks.engineClock = hwmgr->display_config.min_core_set_clock;
2728 minimum_clocks.memoryClock = hwmgr->display_config.min_mem_set_clock;
2729
2730 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2731 PHM_PlatformCaps_StablePState)) {
2732 max_limits = &(hwmgr->dyn_state.max_clock_voltage_on_ac);
2733 stable_pstate_sclk = (max_limits->sclk * 75) / 100;
2734
2735 for (count = table_info->vdd_dep_on_sclk->count - 1;
2736 count >= 0; count--) {
2737 if (stable_pstate_sclk >=
2738 table_info->vdd_dep_on_sclk->entries[count].clk) {
2739 stable_pstate_sclk =
2740 table_info->vdd_dep_on_sclk->entries[count].clk;
2741 break;
2742 }
2743 }
2744
2745 if (count < 0)
2746 stable_pstate_sclk = table_info->vdd_dep_on_sclk->entries[0].clk;
2747
2748 stable_pstate_mclk = max_limits->mclk;
2749
2750 minimum_clocks.engineClock = stable_pstate_sclk;
2751 minimum_clocks.memoryClock = stable_pstate_mclk;
2752 }
2753
2754 if (minimum_clocks.engineClock < hwmgr->gfx_arbiter.sclk)
2755 minimum_clocks.engineClock = hwmgr->gfx_arbiter.sclk;
2756
2757 if (minimum_clocks.memoryClock < hwmgr->gfx_arbiter.mclk)
2758 minimum_clocks.memoryClock = hwmgr->gfx_arbiter.mclk;
2759
2760 smu7_ps->sclk_threshold = hwmgr->gfx_arbiter.sclk_threshold;
2761
2762 if (0 != hwmgr->gfx_arbiter.sclk_over_drive) {
2763 PP_ASSERT_WITH_CODE((hwmgr->gfx_arbiter.sclk_over_drive <=
2764 hwmgr->platform_descriptor.overdriveLimit.engineClock),
2765 "Overdrive sclk exceeds limit",
2766 hwmgr->gfx_arbiter.sclk_over_drive =
2767 hwmgr->platform_descriptor.overdriveLimit.engineClock);
2768
2769 if (hwmgr->gfx_arbiter.sclk_over_drive >= hwmgr->gfx_arbiter.sclk)
2770 smu7_ps->performance_levels[1].engine_clock =
2771 hwmgr->gfx_arbiter.sclk_over_drive;
2772 }
2773
2774 if (0 != hwmgr->gfx_arbiter.mclk_over_drive) {
2775 PP_ASSERT_WITH_CODE((hwmgr->gfx_arbiter.mclk_over_drive <=
2776 hwmgr->platform_descriptor.overdriveLimit.memoryClock),
2777 "Overdrive mclk exceeds limit",
2778 hwmgr->gfx_arbiter.mclk_over_drive =
2779 hwmgr->platform_descriptor.overdriveLimit.memoryClock);
2780
2781 if (hwmgr->gfx_arbiter.mclk_over_drive >= hwmgr->gfx_arbiter.mclk)
2782 smu7_ps->performance_levels[1].memory_clock =
2783 hwmgr->gfx_arbiter.mclk_over_drive;
2784 }
2785
2786 disable_mclk_switching_for_frame_lock = phm_cap_enabled(
2787 hwmgr->platform_descriptor.platformCaps,
2788 PHM_PlatformCaps_DisableMclkSwitchingForFrameLock);
2789
2790
2791 disable_mclk_switching = ((1 < info.display_count) ||
2792 disable_mclk_switching_for_frame_lock ||
2793 smu7_vblank_too_short(hwmgr, mode_info.vblank_time_us) ||
2794 (mode_info.refresh_rate > 120));
2795
2796 sclk = smu7_ps->performance_levels[0].engine_clock;
2797 mclk = smu7_ps->performance_levels[0].memory_clock;
2798
2799 if (disable_mclk_switching)
2800 mclk = smu7_ps->performance_levels
2801 [smu7_ps->performance_level_count - 1].memory_clock;
2802
2803 if (sclk < minimum_clocks.engineClock)
2804 sclk = (minimum_clocks.engineClock > max_limits->sclk) ?
2805 max_limits->sclk : minimum_clocks.engineClock;
2806
2807 if (mclk < minimum_clocks.memoryClock)
2808 mclk = (minimum_clocks.memoryClock > max_limits->mclk) ?
2809 max_limits->mclk : minimum_clocks.memoryClock;
2810
2811 smu7_ps->performance_levels[0].engine_clock = sclk;
2812 smu7_ps->performance_levels[0].memory_clock = mclk;
2813
2814 smu7_ps->performance_levels[1].engine_clock =
2815 (smu7_ps->performance_levels[1].engine_clock >=
2816 smu7_ps->performance_levels[0].engine_clock) ?
2817 smu7_ps->performance_levels[1].engine_clock :
2818 smu7_ps->performance_levels[0].engine_clock;
2819
2820 if (disable_mclk_switching) {
2821 if (mclk < smu7_ps->performance_levels[1].memory_clock)
2822 mclk = smu7_ps->performance_levels[1].memory_clock;
2823
2824 smu7_ps->performance_levels[0].memory_clock = mclk;
2825 smu7_ps->performance_levels[1].memory_clock = mclk;
2826 } else {
2827 if (smu7_ps->performance_levels[1].memory_clock <
2828 smu7_ps->performance_levels[0].memory_clock)
2829 smu7_ps->performance_levels[1].memory_clock =
2830 smu7_ps->performance_levels[0].memory_clock;
2831 }
2832
2833 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2834 PHM_PlatformCaps_StablePState)) {
2835 for (i = 0; i < smu7_ps->performance_level_count; i++) {
2836 smu7_ps->performance_levels[i].engine_clock = stable_pstate_sclk;
2837 smu7_ps->performance_levels[i].memory_clock = stable_pstate_mclk;
2838 smu7_ps->performance_levels[i].pcie_gen = data->pcie_gen_performance.max;
2839 smu7_ps->performance_levels[i].pcie_lane = data->pcie_gen_performance.max;
2840 }
2841 }
2842 return 0;
2843 }
2844
2845
2846 static int smu7_dpm_get_mclk(struct pp_hwmgr *hwmgr, bool low)
2847 {
2848 struct pp_power_state *ps;
2849 struct smu7_power_state *smu7_ps;
2850
2851 if (hwmgr == NULL)
2852 return -EINVAL;
2853
2854 ps = hwmgr->request_ps;
2855
2856 if (ps == NULL)
2857 return -EINVAL;
2858
2859 smu7_ps = cast_phw_smu7_power_state(&ps->hardware);
2860
2861 if (low)
2862 return smu7_ps->performance_levels[0].memory_clock;
2863 else
2864 return smu7_ps->performance_levels
2865 [smu7_ps->performance_level_count-1].memory_clock;
2866 }
2867
2868 static int smu7_dpm_get_sclk(struct pp_hwmgr *hwmgr, bool low)
2869 {
2870 struct pp_power_state *ps;
2871 struct smu7_power_state *smu7_ps;
2872
2873 if (hwmgr == NULL)
2874 return -EINVAL;
2875
2876 ps = hwmgr->request_ps;
2877
2878 if (ps == NULL)
2879 return -EINVAL;
2880
2881 smu7_ps = cast_phw_smu7_power_state(&ps->hardware);
2882
2883 if (low)
2884 return smu7_ps->performance_levels[0].engine_clock;
2885 else
2886 return smu7_ps->performance_levels
2887 [smu7_ps->performance_level_count-1].engine_clock;
2888 }
2889
2890 static int smu7_dpm_patch_boot_state(struct pp_hwmgr *hwmgr,
2891 struct pp_hw_power_state *hw_ps)
2892 {
2893 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2894 struct smu7_power_state *ps = (struct smu7_power_state *)hw_ps;
2895 ATOM_FIRMWARE_INFO_V2_2 *fw_info;
2896 uint16_t size;
2897 uint8_t frev, crev;
2898 int index = GetIndexIntoMasterTable(DATA, FirmwareInfo);
2899
2900 /* First retrieve the Boot clocks and VDDC from the firmware info table.
2901 * We assume here that fw_info is unchanged if this call fails.
2902 */
2903 fw_info = (ATOM_FIRMWARE_INFO_V2_2 *)cgs_atom_get_data_table(
2904 hwmgr->device, index,
2905 &size, &frev, &crev);
2906 if (!fw_info)
2907 /* During a test, there is no firmware info table. */
2908 return 0;
2909
2910 /* Patch the state. */
2911 data->vbios_boot_state.sclk_bootup_value =
2912 le32_to_cpu(fw_info->ulDefaultEngineClock);
2913 data->vbios_boot_state.mclk_bootup_value =
2914 le32_to_cpu(fw_info->ulDefaultMemoryClock);
2915 data->vbios_boot_state.mvdd_bootup_value =
2916 le16_to_cpu(fw_info->usBootUpMVDDCVoltage);
2917 data->vbios_boot_state.vddc_bootup_value =
2918 le16_to_cpu(fw_info->usBootUpVDDCVoltage);
2919 data->vbios_boot_state.vddci_bootup_value =
2920 le16_to_cpu(fw_info->usBootUpVDDCIVoltage);
2921 data->vbios_boot_state.pcie_gen_bootup_value =
2922 smu7_get_current_pcie_speed(hwmgr);
2923
2924 data->vbios_boot_state.pcie_lane_bootup_value =
2925 (uint16_t)smu7_get_current_pcie_lane_number(hwmgr);
2926
2927 /* set boot power state */
2928 ps->performance_levels[0].memory_clock = data->vbios_boot_state.mclk_bootup_value;
2929 ps->performance_levels[0].engine_clock = data->vbios_boot_state.sclk_bootup_value;
2930 ps->performance_levels[0].pcie_gen = data->vbios_boot_state.pcie_gen_bootup_value;
2931 ps->performance_levels[0].pcie_lane = data->vbios_boot_state.pcie_lane_bootup_value;
2932
2933 return 0;
2934 }
2935
2936 static int smu7_get_number_of_powerplay_table_entries(struct pp_hwmgr *hwmgr)
2937 {
2938 int result;
2939 unsigned long ret = 0;
2940
2941 if (hwmgr->pp_table_version == PP_TABLE_V0) {
2942 result = pp_tables_get_num_of_entries(hwmgr, &ret);
2943 return result ? 0 : ret;
2944 } else if (hwmgr->pp_table_version == PP_TABLE_V1) {
2945 result = get_number_of_powerplay_table_entries_v1_0(hwmgr);
2946 return result;
2947 }
2948 return 0;
2949 }
2950
2951 static int smu7_get_pp_table_entry_callback_func_v1(struct pp_hwmgr *hwmgr,
2952 void *state, struct pp_power_state *power_state,
2953 void *pp_table, uint32_t classification_flag)
2954 {
2955 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2956 struct smu7_power_state *smu7_power_state =
2957 (struct smu7_power_state *)(&(power_state->hardware));
2958 struct smu7_performance_level *performance_level;
2959 ATOM_Tonga_State *state_entry = (ATOM_Tonga_State *)state;
2960 ATOM_Tonga_POWERPLAYTABLE *powerplay_table =
2961 (ATOM_Tonga_POWERPLAYTABLE *)pp_table;
2962 PPTable_Generic_SubTable_Header *sclk_dep_table =
2963 (PPTable_Generic_SubTable_Header *)
2964 (((unsigned long)powerplay_table) +
2965 le16_to_cpu(powerplay_table->usSclkDependencyTableOffset));
2966
2967 ATOM_Tonga_MCLK_Dependency_Table *mclk_dep_table =
2968 (ATOM_Tonga_MCLK_Dependency_Table *)
2969 (((unsigned long)powerplay_table) +
2970 le16_to_cpu(powerplay_table->usMclkDependencyTableOffset));
2971
2972 /* The following fields are not initialized here: id orderedList allStatesList */
2973 power_state->classification.ui_label =
2974 (le16_to_cpu(state_entry->usClassification) &
2975 ATOM_PPLIB_CLASSIFICATION_UI_MASK) >>
2976 ATOM_PPLIB_CLASSIFICATION_UI_SHIFT;
2977 power_state->classification.flags = classification_flag;
2978 /* NOTE: There is a classification2 flag in BIOS that is not being used right now */
2979
2980 power_state->classification.temporary_state = false;
2981 power_state->classification.to_be_deleted = false;
2982
2983 power_state->validation.disallowOnDC =
2984 (0 != (le32_to_cpu(state_entry->ulCapsAndSettings) &
2985 ATOM_Tonga_DISALLOW_ON_DC));
2986
2987 power_state->pcie.lanes = 0;
2988
2989 power_state->display.disableFrameModulation = false;
2990 power_state->display.limitRefreshrate = false;
2991 power_state->display.enableVariBright =
2992 (0 != (le32_to_cpu(state_entry->ulCapsAndSettings) &
2993 ATOM_Tonga_ENABLE_VARIBRIGHT));
2994
2995 power_state->validation.supportedPowerLevels = 0;
2996 power_state->uvd_clocks.VCLK = 0;
2997 power_state->uvd_clocks.DCLK = 0;
2998 power_state->temperatures.min = 0;
2999 power_state->temperatures.max = 0;
3000
3001 performance_level = &(smu7_power_state->performance_levels
3002 [smu7_power_state->performance_level_count++]);
3003
3004 PP_ASSERT_WITH_CODE(
3005 (smu7_power_state->performance_level_count < smum_get_mac_definition(hwmgr->smumgr, SMU_MAX_LEVELS_GRAPHICS)),
3006 "Performance levels exceeds SMC limit!",
3007 return -EINVAL);
3008
3009 PP_ASSERT_WITH_CODE(
3010 (smu7_power_state->performance_level_count <=
3011 hwmgr->platform_descriptor.hardwareActivityPerformanceLevels),
3012 "Performance levels exceeds Driver limit!",
3013 return -EINVAL);
3014
3015 /* Performance levels are arranged from low to high. */
3016 performance_level->memory_clock = mclk_dep_table->entries
3017 [state_entry->ucMemoryClockIndexLow].ulMclk;
3018 if (sclk_dep_table->ucRevId == 0)
3019 performance_level->engine_clock = ((ATOM_Tonga_SCLK_Dependency_Table *)sclk_dep_table)->entries
3020 [state_entry->ucEngineClockIndexLow].ulSclk;
3021 else if (sclk_dep_table->ucRevId == 1)
3022 performance_level->engine_clock = ((ATOM_Polaris_SCLK_Dependency_Table *)sclk_dep_table)->entries
3023 [state_entry->ucEngineClockIndexLow].ulSclk;
3024 performance_level->pcie_gen = get_pcie_gen_support(data->pcie_gen_cap,
3025 state_entry->ucPCIEGenLow);
3026 performance_level->pcie_lane = get_pcie_lane_support(data->pcie_lane_cap,
3027 state_entry->ucPCIELaneHigh);
3028
3029 performance_level = &(smu7_power_state->performance_levels
3030 [smu7_power_state->performance_level_count++]);
3031 performance_level->memory_clock = mclk_dep_table->entries
3032 [state_entry->ucMemoryClockIndexHigh].ulMclk;
3033
3034 if (sclk_dep_table->ucRevId == 0)
3035 performance_level->engine_clock = ((ATOM_Tonga_SCLK_Dependency_Table *)sclk_dep_table)->entries
3036 [state_entry->ucEngineClockIndexHigh].ulSclk;
3037 else if (sclk_dep_table->ucRevId == 1)
3038 performance_level->engine_clock = ((ATOM_Polaris_SCLK_Dependency_Table *)sclk_dep_table)->entries
3039 [state_entry->ucEngineClockIndexHigh].ulSclk;
3040
3041 performance_level->pcie_gen = get_pcie_gen_support(data->pcie_gen_cap,
3042 state_entry->ucPCIEGenHigh);
3043 performance_level->pcie_lane = get_pcie_lane_support(data->pcie_lane_cap,
3044 state_entry->ucPCIELaneHigh);
3045
3046 return 0;
3047 }
3048
3049 static int smu7_get_pp_table_entry_v1(struct pp_hwmgr *hwmgr,
3050 unsigned long entry_index, struct pp_power_state *state)
3051 {
3052 int result;
3053 struct smu7_power_state *ps;
3054 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
3055 struct phm_ppt_v1_information *table_info =
3056 (struct phm_ppt_v1_information *)(hwmgr->pptable);
3057 struct phm_ppt_v1_clock_voltage_dependency_table *dep_mclk_table =
3058 table_info->vdd_dep_on_mclk;
3059
3060 state->hardware.magic = PHM_VIslands_Magic;
3061
3062 ps = (struct smu7_power_state *)(&state->hardware);
3063
3064 result = get_powerplay_table_entry_v1_0(hwmgr, entry_index, state,
3065 smu7_get_pp_table_entry_callback_func_v1);
3066
3067 /* This is the earliest time we have all the dependency table and the VBIOS boot state
3068 * as PP_Tables_GetPowerPlayTableEntry retrieves the VBIOS boot state
3069 * if there is only one VDDCI/MCLK level, check if it's the same as VBIOS boot state
3070 */
3071 if (dep_mclk_table != NULL && dep_mclk_table->count == 1) {
3072 if (dep_mclk_table->entries[0].clk !=
3073 data->vbios_boot_state.mclk_bootup_value)
3074 pr_err("Single MCLK entry VDDCI/MCLK dependency table "
3075 "does not match VBIOS boot MCLK level");
3076 if (dep_mclk_table->entries[0].vddci !=
3077 data->vbios_boot_state.vddci_bootup_value)
3078 pr_err("Single VDDCI entry VDDCI/MCLK dependency table "
3079 "does not match VBIOS boot VDDCI level");
3080 }
3081
3082 /* set DC compatible flag if this state supports DC */
3083 if (!state->validation.disallowOnDC)
3084 ps->dc_compatible = true;
3085
3086 if (state->classification.flags & PP_StateClassificationFlag_ACPI)
3087 data->acpi_pcie_gen = ps->performance_levels[0].pcie_gen;
3088
3089 ps->uvd_clks.vclk = state->uvd_clocks.VCLK;
3090 ps->uvd_clks.dclk = state->uvd_clocks.DCLK;
3091
3092 if (!result) {
3093 uint32_t i;
3094
3095 switch (state->classification.ui_label) {
3096 case PP_StateUILabel_Performance:
3097 data->use_pcie_performance_levels = true;
3098 for (i = 0; i < ps->performance_level_count; i++) {
3099 if (data->pcie_gen_performance.max <
3100 ps->performance_levels[i].pcie_gen)
3101 data->pcie_gen_performance.max =
3102 ps->performance_levels[i].pcie_gen;
3103
3104 if (data->pcie_gen_performance.min >
3105 ps->performance_levels[i].pcie_gen)
3106 data->pcie_gen_performance.min =
3107 ps->performance_levels[i].pcie_gen;
3108
3109 if (data->pcie_lane_performance.max <
3110 ps->performance_levels[i].pcie_lane)
3111 data->pcie_lane_performance.max =
3112 ps->performance_levels[i].pcie_lane;
3113 if (data->pcie_lane_performance.min >
3114 ps->performance_levels[i].pcie_lane)
3115 data->pcie_lane_performance.min =
3116 ps->performance_levels[i].pcie_lane;
3117 }
3118 break;
3119 case PP_StateUILabel_Battery:
3120 data->use_pcie_power_saving_levels = true;
3121
3122 for (i = 0; i < ps->performance_level_count; i++) {
3123 if (data->pcie_gen_power_saving.max <
3124 ps->performance_levels[i].pcie_gen)
3125 data->pcie_gen_power_saving.max =
3126 ps->performance_levels[i].pcie_gen;
3127
3128 if (data->pcie_gen_power_saving.min >
3129 ps->performance_levels[i].pcie_gen)
3130 data->pcie_gen_power_saving.min =
3131 ps->performance_levels[i].pcie_gen;
3132
3133 if (data->pcie_lane_power_saving.max <
3134 ps->performance_levels[i].pcie_lane)
3135 data->pcie_lane_power_saving.max =
3136 ps->performance_levels[i].pcie_lane;
3137
3138 if (data->pcie_lane_power_saving.min >
3139 ps->performance_levels[i].pcie_lane)
3140 data->pcie_lane_power_saving.min =
3141 ps->performance_levels[i].pcie_lane;
3142 }
3143 break;
3144 default:
3145 break;
3146 }
3147 }
3148 return 0;
3149 }
3150
3151 static int smu7_get_pp_table_entry_callback_func_v0(struct pp_hwmgr *hwmgr,
3152 struct pp_hw_power_state *power_state,
3153 unsigned int index, const void *clock_info)
3154 {
3155 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
3156 struct smu7_power_state *ps = cast_phw_smu7_power_state(power_state);
3157 const ATOM_PPLIB_CI_CLOCK_INFO *visland_clk_info = clock_info;
3158 struct smu7_performance_level *performance_level;
3159 uint32_t engine_clock, memory_clock;
3160 uint16_t pcie_gen_from_bios;
3161
3162 engine_clock = visland_clk_info->ucEngineClockHigh << 16 | visland_clk_info->usEngineClockLow;
3163 memory_clock = visland_clk_info->ucMemoryClockHigh << 16 | visland_clk_info->usMemoryClockLow;
3164
3165 if (!(data->mc_micro_code_feature & DISABLE_MC_LOADMICROCODE) && memory_clock > data->highest_mclk)
3166 data->highest_mclk = memory_clock;
3167
3168 PP_ASSERT_WITH_CODE(
3169 (ps->performance_level_count < smum_get_mac_definition(hwmgr->smumgr, SMU_MAX_LEVELS_GRAPHICS)),
3170 "Performance levels exceeds SMC limit!",
3171 return -EINVAL);
3172
3173 PP_ASSERT_WITH_CODE(
3174 (ps->performance_level_count <
3175 hwmgr->platform_descriptor.hardwareActivityPerformanceLevels),
3176 "Performance levels exceeds Driver limit, Skip!",
3177 return 0);
3178
3179 performance_level = &(ps->performance_levels
3180 [ps->performance_level_count++]);
3181
3182 /* Performance levels are arranged from low to high. */
3183 performance_level->memory_clock = memory_clock;
3184 performance_level->engine_clock = engine_clock;
3185
3186 pcie_gen_from_bios = visland_clk_info->ucPCIEGen;
3187
3188 performance_level->pcie_gen = get_pcie_gen_support(data->pcie_gen_cap, pcie_gen_from_bios);
3189 performance_level->pcie_lane = get_pcie_lane_support(data->pcie_lane_cap, visland_clk_info->usPCIELane);
3190
3191 return 0;
3192 }
3193
3194 static int smu7_get_pp_table_entry_v0(struct pp_hwmgr *hwmgr,
3195 unsigned long entry_index, struct pp_power_state *state)
3196 {
3197 int result;
3198 struct smu7_power_state *ps;
3199 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
3200 struct phm_clock_voltage_dependency_table *dep_mclk_table =
3201 hwmgr->dyn_state.vddci_dependency_on_mclk;
3202
3203 memset(&state->hardware, 0x00, sizeof(struct pp_hw_power_state));
3204
3205 state->hardware.magic = PHM_VIslands_Magic;
3206
3207 ps = (struct smu7_power_state *)(&state->hardware);
3208
3209 result = pp_tables_get_entry(hwmgr, entry_index, state,
3210 smu7_get_pp_table_entry_callback_func_v0);
3211
3212 /*
3213 * This is the earliest time we have all the dependency table
3214 * and the VBIOS boot state as
3215 * PP_Tables_GetPowerPlayTableEntry retrieves the VBIOS boot
3216 * state if there is only one VDDCI/MCLK level, check if it's
3217 * the same as VBIOS boot state
3218 */
3219 if (dep_mclk_table != NULL && dep_mclk_table->count == 1) {
3220 if (dep_mclk_table->entries[0].clk !=
3221 data->vbios_boot_state.mclk_bootup_value)
3222 pr_err("Single MCLK entry VDDCI/MCLK dependency table "
3223 "does not match VBIOS boot MCLK level");
3224 if (dep_mclk_table->entries[0].v !=
3225 data->vbios_boot_state.vddci_bootup_value)
3226 pr_err("Single VDDCI entry VDDCI/MCLK dependency table "
3227 "does not match VBIOS boot VDDCI level");
3228 }
3229
3230 /* set DC compatible flag if this state supports DC */
3231 if (!state->validation.disallowOnDC)
3232 ps->dc_compatible = true;
3233
3234 if (state->classification.flags & PP_StateClassificationFlag_ACPI)
3235 data->acpi_pcie_gen = ps->performance_levels[0].pcie_gen;
3236
3237 ps->uvd_clks.vclk = state->uvd_clocks.VCLK;
3238 ps->uvd_clks.dclk = state->uvd_clocks.DCLK;
3239
3240 if (!result) {
3241 uint32_t i;
3242
3243 switch (state->classification.ui_label) {
3244 case PP_StateUILabel_Performance:
3245 data->use_pcie_performance_levels = true;
3246
3247 for (i = 0; i < ps->performance_level_count; i++) {
3248 if (data->pcie_gen_performance.max <
3249 ps->performance_levels[i].pcie_gen)
3250 data->pcie_gen_performance.max =
3251 ps->performance_levels[i].pcie_gen;
3252
3253 if (data->pcie_gen_performance.min >
3254 ps->performance_levels[i].pcie_gen)
3255 data->pcie_gen_performance.min =
3256 ps->performance_levels[i].pcie_gen;
3257
3258 if (data->pcie_lane_performance.max <
3259 ps->performance_levels[i].pcie_lane)
3260 data->pcie_lane_performance.max =
3261 ps->performance_levels[i].pcie_lane;
3262
3263 if (data->pcie_lane_performance.min >
3264 ps->performance_levels[i].pcie_lane)
3265 data->pcie_lane_performance.min =
3266 ps->performance_levels[i].pcie_lane;
3267 }
3268 break;
3269 case PP_StateUILabel_Battery:
3270 data->use_pcie_power_saving_levels = true;
3271
3272 for (i = 0; i < ps->performance_level_count; i++) {
3273 if (data->pcie_gen_power_saving.max <
3274 ps->performance_levels[i].pcie_gen)
3275 data->pcie_gen_power_saving.max =
3276 ps->performance_levels[i].pcie_gen;
3277
3278 if (data->pcie_gen_power_saving.min >
3279 ps->performance_levels[i].pcie_gen)
3280 data->pcie_gen_power_saving.min =
3281 ps->performance_levels[i].pcie_gen;
3282
3283 if (data->pcie_lane_power_saving.max <
3284 ps->performance_levels[i].pcie_lane)
3285 data->pcie_lane_power_saving.max =
3286 ps->performance_levels[i].pcie_lane;
3287
3288 if (data->pcie_lane_power_saving.min >
3289 ps->performance_levels[i].pcie_lane)
3290 data->pcie_lane_power_saving.min =
3291 ps->performance_levels[i].pcie_lane;
3292 }
3293 break;
3294 default:
3295 break;
3296 }
3297 }
3298 return 0;
3299 }
3300
3301 static int smu7_get_pp_table_entry(struct pp_hwmgr *hwmgr,
3302 unsigned long entry_index, struct pp_power_state *state)
3303 {
3304 if (hwmgr->pp_table_version == PP_TABLE_V0)
3305 return smu7_get_pp_table_entry_v0(hwmgr, entry_index, state);
3306 else if (hwmgr->pp_table_version == PP_TABLE_V1)
3307 return smu7_get_pp_table_entry_v1(hwmgr, entry_index, state);
3308
3309 return 0;
3310 }
3311
3312 static int smu7_get_gpu_power(struct pp_hwmgr *hwmgr,
3313 struct pp_gpu_power *query)
3314 {
3315 PP_ASSERT_WITH_CODE(!smum_send_msg_to_smc(hwmgr->smumgr,
3316 PPSMC_MSG_PmStatusLogStart),
3317 "Failed to start pm status log!",
3318 return -1);
3319
3320 msleep_interruptible(20);
3321
3322 PP_ASSERT_WITH_CODE(!smum_send_msg_to_smc(hwmgr->smumgr,
3323 PPSMC_MSG_PmStatusLogSample),
3324 "Failed to sample pm status log!",
3325 return -1);
3326
3327 query->vddc_power = cgs_read_ind_register(hwmgr->device,
3328 CGS_IND_REG__SMC,
3329 ixSMU_PM_STATUS_40);
3330 query->vddci_power = cgs_read_ind_register(hwmgr->device,
3331 CGS_IND_REG__SMC,
3332 ixSMU_PM_STATUS_49);
3333 query->max_gpu_power = cgs_read_ind_register(hwmgr->device,
3334 CGS_IND_REG__SMC,
3335 ixSMU_PM_STATUS_94);
3336 query->average_gpu_power = cgs_read_ind_register(hwmgr->device,
3337 CGS_IND_REG__SMC,
3338 ixSMU_PM_STATUS_95);
3339
3340 return 0;
3341 }
3342
3343 static int smu7_read_sensor(struct pp_hwmgr *hwmgr, int idx,
3344 void *value, int *size)
3345 {
3346 uint32_t sclk, mclk, activity_percent;
3347 uint32_t offset;
3348 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
3349
3350 /* size must be at least 4 bytes for all sensors */
3351 if (*size < 4)
3352 return -EINVAL;
3353
3354 switch (idx) {
3355 case AMDGPU_PP_SENSOR_GFX_SCLK:
3356 smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_API_GetSclkFrequency);
3357 sclk = cgs_read_register(hwmgr->device, mmSMC_MSG_ARG_0);
3358 *((uint32_t *)value) = sclk;
3359 *size = 4;
3360 return 0;
3361 case AMDGPU_PP_SENSOR_GFX_MCLK:
3362 smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_API_GetMclkFrequency);
3363 mclk = cgs_read_register(hwmgr->device, mmSMC_MSG_ARG_0);
3364 *((uint32_t *)value) = mclk;
3365 *size = 4;
3366 return 0;
3367 case AMDGPU_PP_SENSOR_GPU_LOAD:
3368 offset = data->soft_regs_start + smum_get_offsetof(hwmgr->smumgr,
3369 SMU_SoftRegisters,
3370 AverageGraphicsActivity);
3371
3372 activity_percent = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset);
3373 activity_percent += 0x80;
3374 activity_percent >>= 8;
3375 *((uint32_t *)value) = activity_percent > 100 ? 100 : activity_percent;
3376 *size = 4;
3377 return 0;
3378 case AMDGPU_PP_SENSOR_GPU_TEMP:
3379 *((uint32_t *)value) = smu7_thermal_get_temperature(hwmgr);
3380 *size = 4;
3381 return 0;
3382 case AMDGPU_PP_SENSOR_UVD_POWER:
3383 *((uint32_t *)value) = data->uvd_power_gated ? 0 : 1;
3384 *size = 4;
3385 return 0;
3386 case AMDGPU_PP_SENSOR_VCE_POWER:
3387 *((uint32_t *)value) = data->vce_power_gated ? 0 : 1;
3388 *size = 4;
3389 return 0;
3390 case AMDGPU_PP_SENSOR_GPU_POWER:
3391 if (*size < sizeof(struct pp_gpu_power))
3392 return -EINVAL;
3393 *size = sizeof(struct pp_gpu_power);
3394 return smu7_get_gpu_power(hwmgr, (struct pp_gpu_power *)value);
3395 default:
3396 return -EINVAL;
3397 }
3398 }
3399
3400 static int smu7_find_dpm_states_clocks_in_dpm_table(struct pp_hwmgr *hwmgr, const void *input)
3401 {
3402 const struct phm_set_power_state_input *states =
3403 (const struct phm_set_power_state_input *)input;
3404 const struct smu7_power_state *smu7_ps =
3405 cast_const_phw_smu7_power_state(states->pnew_state);
3406 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
3407 struct smu7_single_dpm_table *sclk_table = &(data->dpm_table.sclk_table);
3408 uint32_t sclk = smu7_ps->performance_levels
3409 [smu7_ps->performance_level_count - 1].engine_clock;
3410 struct smu7_single_dpm_table *mclk_table = &(data->dpm_table.mclk_table);
3411 uint32_t mclk = smu7_ps->performance_levels
3412 [smu7_ps->performance_level_count - 1].memory_clock;
3413 struct PP_Clocks min_clocks = {0};
3414 uint32_t i;
3415 struct cgs_display_info info = {0};
3416
3417 data->need_update_smu7_dpm_table = 0;
3418
3419 for (i = 0; i < sclk_table->count; i++) {
3420 if (sclk == sclk_table->dpm_levels[i].value)
3421 break;
3422 }
3423
3424 if (i >= sclk_table->count)
3425 data->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_SCLK;
3426 else {
3427 /* TODO: Check SCLK in DAL's minimum clocks
3428 * in case DeepSleep divider update is required.
3429 */
3430 if (data->display_timing.min_clock_in_sr != min_clocks.engineClockInSR &&
3431 (min_clocks.engineClockInSR >= SMU7_MINIMUM_ENGINE_CLOCK ||
3432 data->display_timing.min_clock_in_sr >= SMU7_MINIMUM_ENGINE_CLOCK))
3433 data->need_update_smu7_dpm_table |= DPMTABLE_UPDATE_SCLK;
3434 }
3435
3436 for (i = 0; i < mclk_table->count; i++) {
3437 if (mclk == mclk_table->dpm_levels[i].value)
3438 break;
3439 }
3440
3441 if (i >= mclk_table->count)
3442 data->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_MCLK;
3443
3444 cgs_get_active_displays_info(hwmgr->device, &info);
3445
3446 if (data->display_timing.num_existing_displays != info.display_count)
3447 data->need_update_smu7_dpm_table |= DPMTABLE_UPDATE_MCLK;
3448
3449 return 0;
3450 }
3451
3452 static uint16_t smu7_get_maximum_link_speed(struct pp_hwmgr *hwmgr,
3453 const struct smu7_power_state *smu7_ps)
3454 {
3455 uint32_t i;
3456 uint32_t sclk, max_sclk = 0;
3457 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
3458 struct smu7_dpm_table *dpm_table = &data->dpm_table;
3459
3460 for (i = 0; i < smu7_ps->performance_level_count; i++) {
3461 sclk = smu7_ps->performance_levels[i].engine_clock;
3462 if (max_sclk < sclk)
3463 max_sclk = sclk;
3464 }
3465
3466 for (i = 0; i < dpm_table->sclk_table.count; i++) {
3467 if (dpm_table->sclk_table.dpm_levels[i].value == max_sclk)
3468 return (uint16_t) ((i >= dpm_table->pcie_speed_table.count) ?
3469 dpm_table->pcie_speed_table.dpm_levels
3470 [dpm_table->pcie_speed_table.count - 1].value :
3471 dpm_table->pcie_speed_table.dpm_levels[i].value);
3472 }
3473
3474 return 0;
3475 }
3476
3477 static int smu7_request_link_speed_change_before_state_change(
3478 struct pp_hwmgr *hwmgr, const void *input)
3479 {
3480 const struct phm_set_power_state_input *states =
3481 (const struct phm_set_power_state_input *)input;
3482 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
3483 const struct smu7_power_state *smu7_nps =
3484 cast_const_phw_smu7_power_state(states->pnew_state);
3485 const struct smu7_power_state *polaris10_cps =
3486 cast_const_phw_smu7_power_state(states->pcurrent_state);
3487
3488 uint16_t target_link_speed = smu7_get_maximum_link_speed(hwmgr, smu7_nps);
3489 uint16_t current_link_speed;
3490
3491 if (data->force_pcie_gen == PP_PCIEGenInvalid)
3492 current_link_speed = smu7_get_maximum_link_speed(hwmgr, polaris10_cps);
3493 else
3494 current_link_speed = data->force_pcie_gen;
3495
3496 data->force_pcie_gen = PP_PCIEGenInvalid;
3497 data->pspp_notify_required = false;
3498
3499 if (target_link_speed > current_link_speed) {
3500 switch (target_link_speed) {
3501 case PP_PCIEGen3:
3502 if (0 == acpi_pcie_perf_request(hwmgr->device, PCIE_PERF_REQ_GEN3, false))
3503 break;
3504 data->force_pcie_gen = PP_PCIEGen2;
3505 if (current_link_speed == PP_PCIEGen2)
3506 break;
3507 case PP_PCIEGen2:
3508 if (0 == acpi_pcie_perf_request(hwmgr->device, PCIE_PERF_REQ_GEN2, false))
3509 break;
3510 default:
3511 data->force_pcie_gen = smu7_get_current_pcie_speed(hwmgr);
3512 break;
3513 }
3514 } else {
3515 if (target_link_speed < current_link_speed)
3516 data->pspp_notify_required = true;
3517 }
3518
3519 return 0;
3520 }
3521
3522 static int smu7_freeze_sclk_mclk_dpm(struct pp_hwmgr *hwmgr)
3523 {
3524 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
3525
3526 if (0 == data->need_update_smu7_dpm_table)
3527 return 0;
3528
3529 if ((0 == data->sclk_dpm_key_disabled) &&
3530 (data->need_update_smu7_dpm_table &
3531 (DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_UPDATE_SCLK))) {
3532 PP_ASSERT_WITH_CODE(true == smum_is_dpm_running(hwmgr),
3533 "Trying to freeze SCLK DPM when DPM is disabled",
3534 );
3535 PP_ASSERT_WITH_CODE(0 == smum_send_msg_to_smc(hwmgr->smumgr,
3536 PPSMC_MSG_SCLKDPM_FreezeLevel),
3537 "Failed to freeze SCLK DPM during FreezeSclkMclkDPM Function!",
3538 return -EINVAL);
3539 }
3540
3541 if ((0 == data->mclk_dpm_key_disabled) &&
3542 (data->need_update_smu7_dpm_table &
3543 DPMTABLE_OD_UPDATE_MCLK)) {
3544 PP_ASSERT_WITH_CODE(true == smum_is_dpm_running(hwmgr),
3545 "Trying to freeze MCLK DPM when DPM is disabled",
3546 );
3547 PP_ASSERT_WITH_CODE(0 == smum_send_msg_to_smc(hwmgr->smumgr,
3548 PPSMC_MSG_MCLKDPM_FreezeLevel),
3549 "Failed to freeze MCLK DPM during FreezeSclkMclkDPM Function!",
3550 return -EINVAL);
3551 }
3552
3553 return 0;
3554 }
3555
3556 static int smu7_populate_and_upload_sclk_mclk_dpm_levels(
3557 struct pp_hwmgr *hwmgr, const void *input)
3558 {
3559 int result = 0;
3560 const struct phm_set_power_state_input *states =
3561 (const struct phm_set_power_state_input *)input;
3562 const struct smu7_power_state *smu7_ps =
3563 cast_const_phw_smu7_power_state(states->pnew_state);
3564 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
3565 uint32_t sclk = smu7_ps->performance_levels
3566 [smu7_ps->performance_level_count - 1].engine_clock;
3567 uint32_t mclk = smu7_ps->performance_levels
3568 [smu7_ps->performance_level_count - 1].memory_clock;
3569 struct smu7_dpm_table *dpm_table = &data->dpm_table;
3570
3571 struct smu7_dpm_table *golden_dpm_table = &data->golden_dpm_table;
3572 uint32_t dpm_count, clock_percent;
3573 uint32_t i;
3574
3575 if (0 == data->need_update_smu7_dpm_table)
3576 return 0;
3577
3578 if (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_SCLK) {
3579 dpm_table->sclk_table.dpm_levels
3580 [dpm_table->sclk_table.count - 1].value = sclk;
3581
3582 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_OD6PlusinACSupport) ||
3583 phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_OD6PlusinDCSupport)) {
3584 /* Need to do calculation based on the golden DPM table
3585 * as the Heatmap GPU Clock axis is also based on the default values
3586 */
3587 PP_ASSERT_WITH_CODE(
3588 (golden_dpm_table->sclk_table.dpm_levels
3589 [golden_dpm_table->sclk_table.count - 1].value != 0),
3590 "Divide by 0!",
3591 return -EINVAL);
3592 dpm_count = dpm_table->sclk_table.count < 2 ? 0 : dpm_table->sclk_table.count - 2;
3593
3594 for (i = dpm_count; i > 1; i--) {
3595 if (sclk > golden_dpm_table->sclk_table.dpm_levels[golden_dpm_table->sclk_table.count-1].value) {
3596 clock_percent =
3597 ((sclk
3598 - golden_dpm_table->sclk_table.dpm_levels[golden_dpm_table->sclk_table.count-1].value
3599 ) * 100)
3600 / golden_dpm_table->sclk_table.dpm_levels[golden_dpm_table->sclk_table.count-1].value;
3601
3602 dpm_table->sclk_table.dpm_levels[i].value =
3603 golden_dpm_table->sclk_table.dpm_levels[i].value +
3604 (golden_dpm_table->sclk_table.dpm_levels[i].value *
3605 clock_percent)/100;
3606
3607 } else if (golden_dpm_table->sclk_table.dpm_levels[dpm_table->sclk_table.count-1].value > sclk) {
3608 clock_percent =
3609 ((golden_dpm_table->sclk_table.dpm_levels[golden_dpm_table->sclk_table.count - 1].value
3610 - sclk) * 100)
3611 / golden_dpm_table->sclk_table.dpm_levels[golden_dpm_table->sclk_table.count-1].value;
3612
3613 dpm_table->sclk_table.dpm_levels[i].value =
3614 golden_dpm_table->sclk_table.dpm_levels[i].value -
3615 (golden_dpm_table->sclk_table.dpm_levels[i].value *
3616 clock_percent) / 100;
3617 } else
3618 dpm_table->sclk_table.dpm_levels[i].value =
3619 golden_dpm_table->sclk_table.dpm_levels[i].value;
3620 }
3621 }
3622 }
3623
3624 if (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_MCLK) {
3625 dpm_table->mclk_table.dpm_levels
3626 [dpm_table->mclk_table.count - 1].value = mclk;
3627
3628 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_OD6PlusinACSupport) ||
3629 phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_OD6PlusinDCSupport)) {
3630
3631 PP_ASSERT_WITH_CODE(
3632 (golden_dpm_table->mclk_table.dpm_levels
3633 [golden_dpm_table->mclk_table.count-1].value != 0),
3634 "Divide by 0!",
3635 return -EINVAL);
3636 dpm_count = dpm_table->mclk_table.count < 2 ? 0 : dpm_table->mclk_table.count - 2;
3637 for (i = dpm_count; i > 1; i--) {
3638 if (golden_dpm_table->mclk_table.dpm_levels[golden_dpm_table->mclk_table.count-1].value < mclk) {
3639 clock_percent = ((mclk -
3640 golden_dpm_table->mclk_table.dpm_levels[golden_dpm_table->mclk_table.count-1].value) * 100)
3641 / golden_dpm_table->mclk_table.dpm_levels[golden_dpm_table->mclk_table.count-1].value;
3642
3643 dpm_table->mclk_table.dpm_levels[i].value =
3644 golden_dpm_table->mclk_table.dpm_levels[i].value +
3645 (golden_dpm_table->mclk_table.dpm_levels[i].value *
3646 clock_percent) / 100;
3647
3648 } else if (golden_dpm_table->mclk_table.dpm_levels[dpm_table->mclk_table.count-1].value > mclk) {
3649 clock_percent = (
3650 (golden_dpm_table->mclk_table.dpm_levels[golden_dpm_table->mclk_table.count-1].value - mclk)
3651 * 100)
3652 / golden_dpm_table->mclk_table.dpm_levels[golden_dpm_table->mclk_table.count-1].value;
3653
3654 dpm_table->mclk_table.dpm_levels[i].value =
3655 golden_dpm_table->mclk_table.dpm_levels[i].value -
3656 (golden_dpm_table->mclk_table.dpm_levels[i].value *
3657 clock_percent) / 100;
3658 } else
3659 dpm_table->mclk_table.dpm_levels[i].value =
3660 golden_dpm_table->mclk_table.dpm_levels[i].value;
3661 }
3662 }
3663 }
3664
3665 if (data->need_update_smu7_dpm_table &
3666 (DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_UPDATE_SCLK)) {
3667 result = smum_populate_all_graphic_levels(hwmgr);
3668 PP_ASSERT_WITH_CODE((0 == result),
3669 "Failed to populate SCLK during PopulateNewDPMClocksStates Function!",
3670 return result);
3671 }
3672
3673 if (data->need_update_smu7_dpm_table &
3674 (DPMTABLE_OD_UPDATE_MCLK + DPMTABLE_UPDATE_MCLK)) {
3675 /*populate MCLK dpm table to SMU7 */
3676 result = smum_populate_all_memory_levels(hwmgr);
3677 PP_ASSERT_WITH_CODE((0 == result),
3678 "Failed to populate MCLK during PopulateNewDPMClocksStates Function!",
3679 return result);
3680 }
3681
3682 return result;
3683 }
3684
3685 static int smu7_trim_single_dpm_states(struct pp_hwmgr *hwmgr,
3686 struct smu7_single_dpm_table *dpm_table,
3687 uint32_t low_limit, uint32_t high_limit)
3688 {
3689 uint32_t i;
3690
3691 for (i = 0; i < dpm_table->count; i++) {
3692 if ((dpm_table->dpm_levels[i].value < low_limit)
3693 || (dpm_table->dpm_levels[i].value > high_limit))
3694 dpm_table->dpm_levels[i].enabled = false;
3695 else
3696 dpm_table->dpm_levels[i].enabled = true;
3697 }
3698
3699 return 0;
3700 }
3701
3702 static int smu7_trim_dpm_states(struct pp_hwmgr *hwmgr,
3703 const struct smu7_power_state *smu7_ps)
3704 {
3705 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
3706 uint32_t high_limit_count;
3707
3708 PP_ASSERT_WITH_CODE((smu7_ps->performance_level_count >= 1),
3709 "power state did not have any performance level",
3710 return -EINVAL);
3711
3712 high_limit_count = (1 == smu7_ps->performance_level_count) ? 0 : 1;
3713
3714 smu7_trim_single_dpm_states(hwmgr,
3715 &(data->dpm_table.sclk_table),
3716 smu7_ps->performance_levels[0].engine_clock,
3717 smu7_ps->performance_levels[high_limit_count].engine_clock);
3718
3719 smu7_trim_single_dpm_states(hwmgr,
3720 &(data->dpm_table.mclk_table),
3721 smu7_ps->performance_levels[0].memory_clock,
3722 smu7_ps->performance_levels[high_limit_count].memory_clock);
3723
3724 return 0;
3725 }
3726
3727 static int smu7_generate_dpm_level_enable_mask(
3728 struct pp_hwmgr *hwmgr, const void *input)
3729 {
3730 int result;
3731 const struct phm_set_power_state_input *states =
3732 (const struct phm_set_power_state_input *)input;
3733 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
3734 const struct smu7_power_state *smu7_ps =
3735 cast_const_phw_smu7_power_state(states->pnew_state);
3736
3737 result = smu7_trim_dpm_states(hwmgr, smu7_ps);
3738 if (result)
3739 return result;
3740
3741 data->dpm_level_enable_mask.sclk_dpm_enable_mask =
3742 phm_get_dpm_level_enable_mask_value(&data->dpm_table.sclk_table);
3743 data->dpm_level_enable_mask.mclk_dpm_enable_mask =
3744 phm_get_dpm_level_enable_mask_value(&data->dpm_table.mclk_table);
3745 data->dpm_level_enable_mask.pcie_dpm_enable_mask =
3746 phm_get_dpm_level_enable_mask_value(&data->dpm_table.pcie_speed_table);
3747
3748 return 0;
3749 }
3750
3751 static int smu7_unfreeze_sclk_mclk_dpm(struct pp_hwmgr *hwmgr)
3752 {
3753 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
3754
3755 if (0 == data->need_update_smu7_dpm_table)
3756 return 0;
3757
3758 if ((0 == data->sclk_dpm_key_disabled) &&
3759 (data->need_update_smu7_dpm_table &
3760 (DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_UPDATE_SCLK))) {
3761
3762 PP_ASSERT_WITH_CODE(true == smum_is_dpm_running(hwmgr),
3763 "Trying to Unfreeze SCLK DPM when DPM is disabled",
3764 );
3765 PP_ASSERT_WITH_CODE(0 == smum_send_msg_to_smc(hwmgr->smumgr,
3766 PPSMC_MSG_SCLKDPM_UnfreezeLevel),
3767 "Failed to unfreeze SCLK DPM during UnFreezeSclkMclkDPM Function!",
3768 return -EINVAL);
3769 }
3770
3771 if ((0 == data->mclk_dpm_key_disabled) &&
3772 (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_MCLK)) {
3773
3774 PP_ASSERT_WITH_CODE(true == smum_is_dpm_running(hwmgr),
3775 "Trying to Unfreeze MCLK DPM when DPM is disabled",
3776 );
3777 PP_ASSERT_WITH_CODE(0 == smum_send_msg_to_smc(hwmgr->smumgr,
3778 PPSMC_MSG_SCLKDPM_UnfreezeLevel),
3779 "Failed to unfreeze MCLK DPM during UnFreezeSclkMclkDPM Function!",
3780 return -EINVAL);
3781 }
3782
3783 data->need_update_smu7_dpm_table = 0;
3784
3785 return 0;
3786 }
3787
3788 static int smu7_notify_link_speed_change_after_state_change(
3789 struct pp_hwmgr *hwmgr, const void *input)
3790 {
3791 const struct phm_set_power_state_input *states =
3792 (const struct phm_set_power_state_input *)input;
3793 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
3794 const struct smu7_power_state *smu7_ps =
3795 cast_const_phw_smu7_power_state(states->pnew_state);
3796 uint16_t target_link_speed = smu7_get_maximum_link_speed(hwmgr, smu7_ps);
3797 uint8_t request;
3798
3799 if (data->pspp_notify_required) {
3800 if (target_link_speed == PP_PCIEGen3)
3801 request = PCIE_PERF_REQ_GEN3;
3802 else if (target_link_speed == PP_PCIEGen2)
3803 request = PCIE_PERF_REQ_GEN2;
3804 else
3805 request = PCIE_PERF_REQ_GEN1;
3806
3807 if (request == PCIE_PERF_REQ_GEN1 &&
3808 smu7_get_current_pcie_speed(hwmgr) > 0)
3809 return 0;
3810
3811 if (acpi_pcie_perf_request(hwmgr->device, request, false)) {
3812 if (PP_PCIEGen2 == target_link_speed)
3813 pr_info("PSPP request to switch to Gen2 from Gen3 Failed!");
3814 else
3815 pr_info("PSPP request to switch to Gen1 from Gen2 Failed!");
3816 }
3817 }
3818
3819 return 0;
3820 }
3821
3822 static int smu7_notify_smc_display(struct pp_hwmgr *hwmgr)
3823 {
3824 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
3825
3826 if (hwmgr->feature_mask & PP_VBI_TIME_SUPPORT_MASK)
3827 smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
3828 (PPSMC_Msg)PPSMC_MSG_SetVBITimeout, data->frame_time_x2);
3829 return (smum_send_msg_to_smc(hwmgr->smumgr, (PPSMC_Msg)PPSMC_HasDisplay) == 0) ? 0 : -EINVAL;
3830 }
3831
3832 static int smu7_set_power_state_tasks(struct pp_hwmgr *hwmgr, const void *input)
3833 {
3834 int tmp_result, result = 0;
3835 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
3836
3837 tmp_result = smu7_find_dpm_states_clocks_in_dpm_table(hwmgr, input);
3838 PP_ASSERT_WITH_CODE((0 == tmp_result),
3839 "Failed to find DPM states clocks in DPM table!",
3840 result = tmp_result);
3841
3842 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
3843 PHM_PlatformCaps_PCIEPerformanceRequest)) {
3844 tmp_result =
3845 smu7_request_link_speed_change_before_state_change(hwmgr, input);
3846 PP_ASSERT_WITH_CODE((0 == tmp_result),
3847 "Failed to request link speed change before state change!",
3848 result = tmp_result);
3849 }
3850
3851 tmp_result = smu7_freeze_sclk_mclk_dpm(hwmgr);
3852 PP_ASSERT_WITH_CODE((0 == tmp_result),
3853 "Failed to freeze SCLK MCLK DPM!", result = tmp_result);
3854
3855 tmp_result = smu7_populate_and_upload_sclk_mclk_dpm_levels(hwmgr, input);
3856 PP_ASSERT_WITH_CODE((0 == tmp_result),
3857 "Failed to populate and upload SCLK MCLK DPM levels!",
3858 result = tmp_result);
3859
3860 tmp_result = smu7_generate_dpm_level_enable_mask(hwmgr, input);
3861 PP_ASSERT_WITH_CODE((0 == tmp_result),
3862 "Failed to generate DPM level enabled mask!",
3863 result = tmp_result);
3864
3865 tmp_result = smum_update_sclk_threshold(hwmgr);
3866 PP_ASSERT_WITH_CODE((0 == tmp_result),
3867 "Failed to update SCLK threshold!",
3868 result = tmp_result);
3869
3870 tmp_result = smu7_notify_smc_display(hwmgr);
3871 PP_ASSERT_WITH_CODE((0 == tmp_result),
3872 "Failed to notify smc display settings!",
3873 result = tmp_result);
3874
3875 tmp_result = smu7_unfreeze_sclk_mclk_dpm(hwmgr);
3876 PP_ASSERT_WITH_CODE((0 == tmp_result),
3877 "Failed to unfreeze SCLK MCLK DPM!",
3878 result = tmp_result);
3879
3880 tmp_result = smu7_upload_dpm_level_enable_mask(hwmgr);
3881 PP_ASSERT_WITH_CODE((0 == tmp_result),
3882 "Failed to upload DPM level enabled mask!",
3883 result = tmp_result);
3884
3885 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
3886 PHM_PlatformCaps_PCIEPerformanceRequest)) {
3887 tmp_result =
3888 smu7_notify_link_speed_change_after_state_change(hwmgr, input);
3889 PP_ASSERT_WITH_CODE((0 == tmp_result),
3890 "Failed to notify link speed change after state change!",
3891 result = tmp_result);
3892 }
3893 data->apply_optimized_settings = false;
3894 return result;
3895 }
3896
3897 static int smu7_set_max_fan_pwm_output(struct pp_hwmgr *hwmgr, uint16_t us_max_fan_pwm)
3898 {
3899 hwmgr->thermal_controller.
3900 advanceFanControlParameters.usMaxFanPWM = us_max_fan_pwm;
3901
3902 if (phm_is_hw_access_blocked(hwmgr))
3903 return 0;
3904
3905 return smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
3906 PPSMC_MSG_SetFanPwmMax, us_max_fan_pwm);
3907 }
3908
3909 static int
3910 smu7_notify_smc_display_change(struct pp_hwmgr *hwmgr, bool has_display)
3911 {
3912 PPSMC_Msg msg = has_display ? (PPSMC_Msg)PPSMC_HasDisplay : (PPSMC_Msg)PPSMC_NoDisplay;
3913
3914 return (smum_send_msg_to_smc(hwmgr->smumgr, msg) == 0) ? 0 : -1;
3915 }
3916
3917 static int
3918 smu7_notify_smc_display_config_after_ps_adjustment(struct pp_hwmgr *hwmgr)
3919 {
3920 uint32_t num_active_displays = 0;
3921 struct cgs_display_info info = {0};
3922
3923 info.mode_info = NULL;
3924 cgs_get_active_displays_info(hwmgr->device, &info);
3925
3926 num_active_displays = info.display_count;
3927
3928 if (num_active_displays > 1 && hwmgr->display_config.multi_monitor_in_sync != true)
3929 smu7_notify_smc_display_change(hwmgr, false);
3930
3931 return 0;
3932 }
3933
3934 /**
3935 * Programs the display gap
3936 *
3937 * @param hwmgr the address of the powerplay hardware manager.
3938 * @return always OK
3939 */
3940 static int smu7_program_display_gap(struct pp_hwmgr *hwmgr)
3941 {
3942 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
3943 uint32_t num_active_displays = 0;
3944 uint32_t display_gap = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_DISPLAY_GAP_CNTL);
3945 uint32_t display_gap2;
3946 uint32_t pre_vbi_time_in_us;
3947 uint32_t frame_time_in_us;
3948 uint32_t ref_clock;
3949 uint32_t refresh_rate = 0;
3950 struct cgs_display_info info = {0};
3951 struct cgs_mode_info mode_info = {0};
3952
3953 info.mode_info = &mode_info;
3954 cgs_get_active_displays_info(hwmgr->device, &info);
3955 num_active_displays = info.display_count;
3956
3957 display_gap = PHM_SET_FIELD(display_gap, CG_DISPLAY_GAP_CNTL, DISP_GAP, (num_active_displays > 0) ? DISPLAY_GAP_VBLANK_OR_WM : DISPLAY_GAP_IGNORE);
3958 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_DISPLAY_GAP_CNTL, display_gap);
3959
3960 ref_clock = mode_info.ref_clock;
3961 refresh_rate = mode_info.refresh_rate;
3962
3963 if (0 == refresh_rate)
3964 refresh_rate = 60;
3965
3966 frame_time_in_us = 1000000 / refresh_rate;
3967
3968 pre_vbi_time_in_us = frame_time_in_us - 200 - mode_info.vblank_time_us;
3969
3970 data->frame_time_x2 = frame_time_in_us * 2 / 100;
3971
3972 display_gap2 = pre_vbi_time_in_us * (ref_clock / 100);
3973
3974 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_DISPLAY_GAP_CNTL2, display_gap2);
3975
3976 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
3977 data->soft_regs_start + smum_get_offsetof(hwmgr->smumgr,
3978 SMU_SoftRegisters,
3979 PreVBlankGap), 0x64);
3980
3981 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
3982 data->soft_regs_start + smum_get_offsetof(hwmgr->smumgr,
3983 SMU_SoftRegisters,
3984 VBlankTimeout),
3985 (frame_time_in_us - pre_vbi_time_in_us));
3986
3987 return 0;
3988 }
3989
3990 static int smu7_display_configuration_changed_task(struct pp_hwmgr *hwmgr)
3991 {
3992 return smu7_program_display_gap(hwmgr);
3993 }
3994
3995 /**
3996 * Set maximum target operating fan output RPM
3997 *
3998 * @param hwmgr: the address of the powerplay hardware manager.
3999 * @param usMaxFanRpm: max operating fan RPM value.
4000 * @return The response that came from the SMC.
4001 */
4002 static int smu7_set_max_fan_rpm_output(struct pp_hwmgr *hwmgr, uint16_t us_max_fan_rpm)
4003 {
4004 hwmgr->thermal_controller.
4005 advanceFanControlParameters.usMaxFanRPM = us_max_fan_rpm;
4006
4007 if (phm_is_hw_access_blocked(hwmgr))
4008 return 0;
4009
4010 return smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
4011 PPSMC_MSG_SetFanRpmMax, us_max_fan_rpm);
4012 }
4013
4014 static int smu7_register_internal_thermal_interrupt(struct pp_hwmgr *hwmgr,
4015 const void *thermal_interrupt_info)
4016 {
4017 return 0;
4018 }
4019
4020 static bool
4021 smu7_check_smc_update_required_for_display_configuration(struct pp_hwmgr *hwmgr)
4022 {
4023 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4024 bool is_update_required = false;
4025 struct cgs_display_info info = {0, 0, NULL};
4026
4027 cgs_get_active_displays_info(hwmgr->device, &info);
4028
4029 if (data->display_timing.num_existing_displays != info.display_count)
4030 is_update_required = true;
4031
4032 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SclkDeepSleep)) {
4033 if (data->display_timing.min_clock_in_sr != hwmgr->display_config.min_core_set_clock_in_sr &&
4034 (data->display_timing.min_clock_in_sr >= SMU7_MINIMUM_ENGINE_CLOCK ||
4035 hwmgr->display_config.min_core_set_clock_in_sr >= SMU7_MINIMUM_ENGINE_CLOCK))
4036 is_update_required = true;
4037 }
4038 return is_update_required;
4039 }
4040
4041 static inline bool smu7_are_power_levels_equal(const struct smu7_performance_level *pl1,
4042 const struct smu7_performance_level *pl2)
4043 {
4044 return ((pl1->memory_clock == pl2->memory_clock) &&
4045 (pl1->engine_clock == pl2->engine_clock) &&
4046 (pl1->pcie_gen == pl2->pcie_gen) &&
4047 (pl1->pcie_lane == pl2->pcie_lane));
4048 }
4049
4050 static int smu7_check_states_equal(struct pp_hwmgr *hwmgr,
4051 const struct pp_hw_power_state *pstate1,
4052 const struct pp_hw_power_state *pstate2, bool *equal)
4053 {
4054 const struct smu7_power_state *psa;
4055 const struct smu7_power_state *psb;
4056 int i;
4057
4058 if (pstate1 == NULL || pstate2 == NULL || equal == NULL)
4059 return -EINVAL;
4060
4061 psa = cast_const_phw_smu7_power_state(pstate1);
4062 psb = cast_const_phw_smu7_power_state(pstate2);
4063 /* If the two states don't even have the same number of performance levels they cannot be the same state. */
4064 if (psa->performance_level_count != psb->performance_level_count) {
4065 *equal = false;
4066 return 0;
4067 }
4068
4069 for (i = 0; i < psa->performance_level_count; i++) {
4070 if (!smu7_are_power_levels_equal(&(psa->performance_levels[i]), &(psb->performance_levels[i]))) {
4071 /* If we have found even one performance level pair that is different the states are different. */
4072 *equal = false;
4073 return 0;
4074 }
4075 }
4076
4077 /* If all performance levels are the same try to use the UVD clocks to break the tie.*/
4078 *equal = ((psa->uvd_clks.vclk == psb->uvd_clks.vclk) && (psa->uvd_clks.dclk == psb->uvd_clks.dclk));
4079 *equal &= ((psa->vce_clks.evclk == psb->vce_clks.evclk) && (psa->vce_clks.ecclk == psb->vce_clks.ecclk));
4080 *equal &= (psa->sclk_threshold == psb->sclk_threshold);
4081
4082 return 0;
4083 }
4084
4085 static int smu7_upload_mc_firmware(struct pp_hwmgr *hwmgr)
4086 {
4087 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4088
4089 uint32_t vbios_version;
4090 uint32_t tmp;
4091
4092 /* Read MC indirect register offset 0x9F bits [3:0] to see
4093 * if VBIOS has already loaded a full version of MC ucode
4094 * or not.
4095 */
4096
4097 smu7_get_mc_microcode_version(hwmgr);
4098 vbios_version = hwmgr->microcode_version_info.MC & 0xf;
4099
4100 data->need_long_memory_training = false;
4101
4102 cgs_write_register(hwmgr->device, mmMC_SEQ_IO_DEBUG_INDEX,
4103 ixMC_IO_DEBUG_UP_13);
4104 tmp = cgs_read_register(hwmgr->device, mmMC_SEQ_IO_DEBUG_DATA);
4105
4106 if (tmp & (1 << 23)) {
4107 data->mem_latency_high = MEM_LATENCY_HIGH;
4108 data->mem_latency_low = MEM_LATENCY_LOW;
4109 } else {
4110 data->mem_latency_high = 330;
4111 data->mem_latency_low = 330;
4112 }
4113
4114 return 0;
4115 }
4116
4117 static int smu7_read_clock_registers(struct pp_hwmgr *hwmgr)
4118 {
4119 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4120
4121 data->clock_registers.vCG_SPLL_FUNC_CNTL =
4122 cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_SPLL_FUNC_CNTL);
4123 data->clock_registers.vCG_SPLL_FUNC_CNTL_2 =
4124 cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_SPLL_FUNC_CNTL_2);
4125 data->clock_registers.vCG_SPLL_FUNC_CNTL_3 =
4126 cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_SPLL_FUNC_CNTL_3);
4127 data->clock_registers.vCG_SPLL_FUNC_CNTL_4 =
4128 cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_SPLL_FUNC_CNTL_4);
4129 data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM =
4130 cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_SPLL_SPREAD_SPECTRUM);
4131 data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2 =
4132 cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_SPLL_SPREAD_SPECTRUM_2);
4133 data->clock_registers.vDLL_CNTL =
4134 cgs_read_register(hwmgr->device, mmDLL_CNTL);
4135 data->clock_registers.vMCLK_PWRMGT_CNTL =
4136 cgs_read_register(hwmgr->device, mmMCLK_PWRMGT_CNTL);
4137 data->clock_registers.vMPLL_AD_FUNC_CNTL =
4138 cgs_read_register(hwmgr->device, mmMPLL_AD_FUNC_CNTL);
4139 data->clock_registers.vMPLL_DQ_FUNC_CNTL =
4140 cgs_read_register(hwmgr->device, mmMPLL_DQ_FUNC_CNTL);
4141 data->clock_registers.vMPLL_FUNC_CNTL =
4142 cgs_read_register(hwmgr->device, mmMPLL_FUNC_CNTL);
4143 data->clock_registers.vMPLL_FUNC_CNTL_1 =
4144 cgs_read_register(hwmgr->device, mmMPLL_FUNC_CNTL_1);
4145 data->clock_registers.vMPLL_FUNC_CNTL_2 =
4146 cgs_read_register(hwmgr->device, mmMPLL_FUNC_CNTL_2);
4147 data->clock_registers.vMPLL_SS1 =
4148 cgs_read_register(hwmgr->device, mmMPLL_SS1);
4149 data->clock_registers.vMPLL_SS2 =
4150 cgs_read_register(hwmgr->device, mmMPLL_SS2);
4151 return 0;
4152
4153 }
4154
4155 /**
4156 * Find out if memory is GDDR5.
4157 *
4158 * @param hwmgr the address of the powerplay hardware manager.
4159 * @return always 0
4160 */
4161 static int smu7_get_memory_type(struct pp_hwmgr *hwmgr)
4162 {
4163 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4164 uint32_t temp;
4165
4166 temp = cgs_read_register(hwmgr->device, mmMC_SEQ_MISC0);
4167
4168 data->is_memory_gddr5 = (MC_SEQ_MISC0_GDDR5_VALUE ==
4169 ((temp & MC_SEQ_MISC0_GDDR5_MASK) >>
4170 MC_SEQ_MISC0_GDDR5_SHIFT));
4171
4172 return 0;
4173 }
4174
4175 /**
4176 * Enables Dynamic Power Management by SMC
4177 *
4178 * @param hwmgr the address of the powerplay hardware manager.
4179 * @return always 0
4180 */
4181 static int smu7_enable_acpi_power_management(struct pp_hwmgr *hwmgr)
4182 {
4183 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
4184 GENERAL_PWRMGT, STATIC_PM_EN, 1);
4185
4186 return 0;
4187 }
4188
4189 /**
4190 * Initialize PowerGating States for different engines
4191 *
4192 * @param hwmgr the address of the powerplay hardware manager.
4193 * @return always 0
4194 */
4195 static int smu7_init_power_gate_state(struct pp_hwmgr *hwmgr)
4196 {
4197 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4198
4199 data->uvd_power_gated = false;
4200 data->vce_power_gated = false;
4201 data->samu_power_gated = false;
4202
4203 return 0;
4204 }
4205
4206 static int smu7_init_sclk_threshold(struct pp_hwmgr *hwmgr)
4207 {
4208 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4209
4210 data->low_sclk_interrupt_threshold = 0;
4211 return 0;
4212 }
4213
4214 static int smu7_setup_asic_task(struct pp_hwmgr *hwmgr)
4215 {
4216 int tmp_result, result = 0;
4217
4218 smu7_upload_mc_firmware(hwmgr);
4219
4220 tmp_result = smu7_read_clock_registers(hwmgr);
4221 PP_ASSERT_WITH_CODE((0 == tmp_result),
4222 "Failed to read clock registers!", result = tmp_result);
4223
4224 tmp_result = smu7_get_memory_type(hwmgr);
4225 PP_ASSERT_WITH_CODE((0 == tmp_result),
4226 "Failed to get memory type!", result = tmp_result);
4227
4228 tmp_result = smu7_enable_acpi_power_management(hwmgr);
4229 PP_ASSERT_WITH_CODE((0 == tmp_result),
4230 "Failed to enable ACPI power management!", result = tmp_result);
4231
4232 tmp_result = smu7_init_power_gate_state(hwmgr);
4233 PP_ASSERT_WITH_CODE((0 == tmp_result),
4234 "Failed to init power gate state!", result = tmp_result);
4235
4236 tmp_result = smu7_get_mc_microcode_version(hwmgr);
4237 PP_ASSERT_WITH_CODE((0 == tmp_result),
4238 "Failed to get MC microcode version!", result = tmp_result);
4239
4240 tmp_result = smu7_init_sclk_threshold(hwmgr);
4241 PP_ASSERT_WITH_CODE((0 == tmp_result),
4242 "Failed to init sclk threshold!", result = tmp_result);
4243
4244 return result;
4245 }
4246
4247 static int smu7_force_clock_level(struct pp_hwmgr *hwmgr,
4248 enum pp_clock_type type, uint32_t mask)
4249 {
4250 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4251
4252 if (hwmgr->dpm_level & (AMD_DPM_FORCED_LEVEL_AUTO |
4253 AMD_DPM_FORCED_LEVEL_LOW |
4254 AMD_DPM_FORCED_LEVEL_HIGH))
4255 return -EINVAL;
4256
4257 switch (type) {
4258 case PP_SCLK:
4259 if (!data->sclk_dpm_key_disabled)
4260 smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
4261 PPSMC_MSG_SCLKDPM_SetEnabledMask,
4262 data->dpm_level_enable_mask.sclk_dpm_enable_mask & mask);
4263 break;
4264 case PP_MCLK:
4265 if (!data->mclk_dpm_key_disabled)
4266 smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
4267 PPSMC_MSG_MCLKDPM_SetEnabledMask,
4268 data->dpm_level_enable_mask.mclk_dpm_enable_mask & mask);
4269 break;
4270 case PP_PCIE:
4271 {
4272 uint32_t tmp = mask & data->dpm_level_enable_mask.pcie_dpm_enable_mask;
4273 uint32_t level = 0;
4274
4275 while (tmp >>= 1)
4276 level++;
4277
4278 if (!data->pcie_dpm_key_disabled)
4279 smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
4280 PPSMC_MSG_PCIeDPM_ForceLevel,
4281 level);
4282 break;
4283 }
4284 default:
4285 break;
4286 }
4287
4288 return 0;
4289 }
4290
4291 static int smu7_print_clock_levels(struct pp_hwmgr *hwmgr,
4292 enum pp_clock_type type, char *buf)
4293 {
4294 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4295 struct smu7_single_dpm_table *sclk_table = &(data->dpm_table.sclk_table);
4296 struct smu7_single_dpm_table *mclk_table = &(data->dpm_table.mclk_table);
4297 struct smu7_single_dpm_table *pcie_table = &(data->dpm_table.pcie_speed_table);
4298 int i, now, size = 0;
4299 uint32_t clock, pcie_speed;
4300
4301 switch (type) {
4302 case PP_SCLK:
4303 smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_API_GetSclkFrequency);
4304 clock = cgs_read_register(hwmgr->device, mmSMC_MSG_ARG_0);
4305
4306 for (i = 0; i < sclk_table->count; i++) {
4307 if (clock > sclk_table->dpm_levels[i].value)
4308 continue;
4309 break;
4310 }
4311 now = i;
4312
4313 for (i = 0; i < sclk_table->count; i++)
4314 size += sprintf(buf + size, "%d: %uMhz %s\n",
4315 i, sclk_table->dpm_levels[i].value / 100,
4316 (i == now) ? "*" : "");
4317 break;
4318 case PP_MCLK:
4319 smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_API_GetMclkFrequency);
4320 clock = cgs_read_register(hwmgr->device, mmSMC_MSG_ARG_0);
4321
4322 for (i = 0; i < mclk_table->count; i++) {
4323 if (clock > mclk_table->dpm_levels[i].value)
4324 continue;
4325 break;
4326 }
4327 now = i;
4328
4329 for (i = 0; i < mclk_table->count; i++)
4330 size += sprintf(buf + size, "%d: %uMhz %s\n",
4331 i, mclk_table->dpm_levels[i].value / 100,
4332 (i == now) ? "*" : "");
4333 break;
4334 case PP_PCIE:
4335 pcie_speed = smu7_get_current_pcie_speed(hwmgr);
4336 for (i = 0; i < pcie_table->count; i++) {
4337 if (pcie_speed != pcie_table->dpm_levels[i].value)
4338 continue;
4339 break;
4340 }
4341 now = i;
4342
4343 for (i = 0; i < pcie_table->count; i++)
4344 size += sprintf(buf + size, "%d: %s %s\n", i,
4345 (pcie_table->dpm_levels[i].value == 0) ? "2.5GB, x8" :
4346 (pcie_table->dpm_levels[i].value == 1) ? "5.0GB, x16" :
4347 (pcie_table->dpm_levels[i].value == 2) ? "8.0GB, x16" : "",
4348 (i == now) ? "*" : "");
4349 break;
4350 default:
4351 break;
4352 }
4353 return size;
4354 }
4355
4356 static int smu7_set_fan_control_mode(struct pp_hwmgr *hwmgr, uint32_t mode)
4357 {
4358 int result = 0;
4359
4360 switch (mode) {
4361 case AMD_FAN_CTRL_NONE:
4362 result = smu7_fan_ctrl_set_fan_speed_percent(hwmgr, 100);
4363 break;
4364 case AMD_FAN_CTRL_MANUAL:
4365 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
4366 PHM_PlatformCaps_MicrocodeFanControl))
4367 result = smu7_fan_ctrl_stop_smc_fan_control(hwmgr);
4368 break;
4369 case AMD_FAN_CTRL_AUTO:
4370 result = smu7_fan_ctrl_set_static_mode(hwmgr, mode);
4371 if (!result)
4372 result = smu7_fan_ctrl_start_smc_fan_control(hwmgr);
4373 break;
4374 default:
4375 break;
4376 }
4377 return result;
4378 }
4379
4380 static int smu7_get_fan_control_mode(struct pp_hwmgr *hwmgr)
4381 {
4382 return hwmgr->fan_ctrl_enabled ? AMD_FAN_CTRL_AUTO : AMD_FAN_CTRL_MANUAL;
4383 }
4384
4385 static int smu7_get_sclk_od(struct pp_hwmgr *hwmgr)
4386 {
4387 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4388 struct smu7_single_dpm_table *sclk_table = &(data->dpm_table.sclk_table);
4389 struct smu7_single_dpm_table *golden_sclk_table =
4390 &(data->golden_dpm_table.sclk_table);
4391 int value;
4392
4393 value = (sclk_table->dpm_levels[sclk_table->count - 1].value -
4394 golden_sclk_table->dpm_levels[golden_sclk_table->count - 1].value) *
4395 100 /
4396 golden_sclk_table->dpm_levels[golden_sclk_table->count - 1].value;
4397
4398 return value;
4399 }
4400
4401 static int smu7_set_sclk_od(struct pp_hwmgr *hwmgr, uint32_t value)
4402 {
4403 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4404 struct smu7_single_dpm_table *golden_sclk_table =
4405 &(data->golden_dpm_table.sclk_table);
4406 struct pp_power_state *ps;
4407 struct smu7_power_state *smu7_ps;
4408
4409 if (value > 20)
4410 value = 20;
4411
4412 ps = hwmgr->request_ps;
4413
4414 if (ps == NULL)
4415 return -EINVAL;
4416
4417 smu7_ps = cast_phw_smu7_power_state(&ps->hardware);
4418
4419 smu7_ps->performance_levels[smu7_ps->performance_level_count - 1].engine_clock =
4420 golden_sclk_table->dpm_levels[golden_sclk_table->count - 1].value *
4421 value / 100 +
4422 golden_sclk_table->dpm_levels[golden_sclk_table->count - 1].value;
4423
4424 return 0;
4425 }
4426
4427 static int smu7_get_mclk_od(struct pp_hwmgr *hwmgr)
4428 {
4429 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4430 struct smu7_single_dpm_table *mclk_table = &(data->dpm_table.mclk_table);
4431 struct smu7_single_dpm_table *golden_mclk_table =
4432 &(data->golden_dpm_table.mclk_table);
4433 int value;
4434
4435 value = (mclk_table->dpm_levels[mclk_table->count - 1].value -
4436 golden_mclk_table->dpm_levels[golden_mclk_table->count - 1].value) *
4437 100 /
4438 golden_mclk_table->dpm_levels[golden_mclk_table->count - 1].value;
4439
4440 return value;
4441 }
4442
4443 static int smu7_set_mclk_od(struct pp_hwmgr *hwmgr, uint32_t value)
4444 {
4445 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4446 struct smu7_single_dpm_table *golden_mclk_table =
4447 &(data->golden_dpm_table.mclk_table);
4448 struct pp_power_state *ps;
4449 struct smu7_power_state *smu7_ps;
4450
4451 if (value > 20)
4452 value = 20;
4453
4454 ps = hwmgr->request_ps;
4455
4456 if (ps == NULL)
4457 return -EINVAL;
4458
4459 smu7_ps = cast_phw_smu7_power_state(&ps->hardware);
4460
4461 smu7_ps->performance_levels[smu7_ps->performance_level_count - 1].memory_clock =
4462 golden_mclk_table->dpm_levels[golden_mclk_table->count - 1].value *
4463 value / 100 +
4464 golden_mclk_table->dpm_levels[golden_mclk_table->count - 1].value;
4465
4466 return 0;
4467 }
4468
4469
4470 static int smu7_get_sclks(struct pp_hwmgr *hwmgr, struct amd_pp_clocks *clocks)
4471 {
4472 struct phm_ppt_v1_information *table_info =
4473 (struct phm_ppt_v1_information *)hwmgr->pptable;
4474 struct phm_ppt_v1_clock_voltage_dependency_table *dep_sclk_table = NULL;
4475 struct phm_clock_voltage_dependency_table *sclk_table;
4476 int i;
4477
4478 if (hwmgr->pp_table_version == PP_TABLE_V1) {
4479 if (table_info == NULL || table_info->vdd_dep_on_sclk == NULL)
4480 return -EINVAL;
4481 dep_sclk_table = table_info->vdd_dep_on_sclk;
4482 for (i = 0; i < dep_sclk_table->count; i++)
4483 clocks->clock[i] = dep_sclk_table->entries[i].clk;
4484 clocks->count = dep_sclk_table->count;
4485 } else if (hwmgr->pp_table_version == PP_TABLE_V0) {
4486 sclk_table = hwmgr->dyn_state.vddc_dependency_on_sclk;
4487 for (i = 0; i < sclk_table->count; i++)
4488 clocks->clock[i] = sclk_table->entries[i].clk;
4489 clocks->count = sclk_table->count;
4490 }
4491
4492 return 0;
4493 }
4494
4495 static uint32_t smu7_get_mem_latency(struct pp_hwmgr *hwmgr, uint32_t clk)
4496 {
4497 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4498
4499 if (clk >= MEM_FREQ_LOW_LATENCY && clk < MEM_FREQ_HIGH_LATENCY)
4500 return data->mem_latency_high;
4501 else if (clk >= MEM_FREQ_HIGH_LATENCY)
4502 return data->mem_latency_low;
4503 else
4504 return MEM_LATENCY_ERR;
4505 }
4506
4507 static int smu7_get_mclks(struct pp_hwmgr *hwmgr, struct amd_pp_clocks *clocks)
4508 {
4509 struct phm_ppt_v1_information *table_info =
4510 (struct phm_ppt_v1_information *)hwmgr->pptable;
4511 struct phm_ppt_v1_clock_voltage_dependency_table *dep_mclk_table;
4512 int i;
4513 struct phm_clock_voltage_dependency_table *mclk_table;
4514
4515 if (hwmgr->pp_table_version == PP_TABLE_V1) {
4516 if (table_info == NULL)
4517 return -EINVAL;
4518 dep_mclk_table = table_info->vdd_dep_on_mclk;
4519 for (i = 0; i < dep_mclk_table->count; i++) {
4520 clocks->clock[i] = dep_mclk_table->entries[i].clk;
4521 clocks->latency[i] = smu7_get_mem_latency(hwmgr,
4522 dep_mclk_table->entries[i].clk);
4523 }
4524 clocks->count = dep_mclk_table->count;
4525 } else if (hwmgr->pp_table_version == PP_TABLE_V0) {
4526 mclk_table = hwmgr->dyn_state.vddc_dependency_on_mclk;
4527 for (i = 0; i < mclk_table->count; i++)
4528 clocks->clock[i] = mclk_table->entries[i].clk;
4529 clocks->count = mclk_table->count;
4530 }
4531 return 0;
4532 }
4533
4534 static int smu7_get_clock_by_type(struct pp_hwmgr *hwmgr, enum amd_pp_clock_type type,
4535 struct amd_pp_clocks *clocks)
4536 {
4537 switch (type) {
4538 case amd_pp_sys_clock:
4539 smu7_get_sclks(hwmgr, clocks);
4540 break;
4541 case amd_pp_mem_clock:
4542 smu7_get_mclks(hwmgr, clocks);
4543 break;
4544 default:
4545 return -EINVAL;
4546 }
4547
4548 return 0;
4549 }
4550
4551 static void smu7_find_min_clock_masks(struct pp_hwmgr *hwmgr,
4552 uint32_t *sclk_mask, uint32_t *mclk_mask,
4553 uint32_t min_sclk, uint32_t min_mclk)
4554 {
4555 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4556 struct smu7_dpm_table *dpm_table = &(data->dpm_table);
4557 uint32_t i;
4558
4559 for (i = 0; i < dpm_table->sclk_table.count; i++) {
4560 if (dpm_table->sclk_table.dpm_levels[i].enabled &&
4561 dpm_table->sclk_table.dpm_levels[i].value >= min_sclk)
4562 *sclk_mask |= 1 << i;
4563 }
4564
4565 for (i = 0; i < dpm_table->mclk_table.count; i++) {
4566 if (dpm_table->mclk_table.dpm_levels[i].enabled &&
4567 dpm_table->mclk_table.dpm_levels[i].value >= min_mclk)
4568 *mclk_mask |= 1 << i;
4569 }
4570 }
4571
4572 static int smu7_set_power_profile_state(struct pp_hwmgr *hwmgr,
4573 struct amd_pp_profile *request)
4574 {
4575 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4576 int tmp_result, result = 0;
4577 uint32_t sclk_mask = 0, mclk_mask = 0;
4578
4579 if (hwmgr->chip_id == CHIP_FIJI) {
4580 if (request->type == AMD_PP_GFX_PROFILE)
4581 smu7_enable_power_containment(hwmgr);
4582 else if (request->type == AMD_PP_COMPUTE_PROFILE)
4583 smu7_disable_power_containment(hwmgr);
4584 }
4585
4586 if (hwmgr->dpm_level != AMD_DPM_FORCED_LEVEL_AUTO)
4587 return -EINVAL;
4588
4589 tmp_result = smu7_freeze_sclk_mclk_dpm(hwmgr);
4590 PP_ASSERT_WITH_CODE(!tmp_result,
4591 "Failed to freeze SCLK MCLK DPM!",
4592 result = tmp_result);
4593
4594 tmp_result = smum_populate_requested_graphic_levels(hwmgr, request);
4595 PP_ASSERT_WITH_CODE(!tmp_result,
4596 "Failed to populate requested graphic levels!",
4597 result = tmp_result);
4598
4599 tmp_result = smu7_unfreeze_sclk_mclk_dpm(hwmgr);
4600 PP_ASSERT_WITH_CODE(!tmp_result,
4601 "Failed to unfreeze SCLK MCLK DPM!",
4602 result = tmp_result);
4603
4604 smu7_find_min_clock_masks(hwmgr, &sclk_mask, &mclk_mask,
4605 request->min_sclk, request->min_mclk);
4606
4607 if (sclk_mask) {
4608 if (!data->sclk_dpm_key_disabled)
4609 smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
4610 PPSMC_MSG_SCLKDPM_SetEnabledMask,
4611 data->dpm_level_enable_mask.
4612 sclk_dpm_enable_mask &
4613 sclk_mask);
4614 }
4615
4616 if (mclk_mask) {
4617 if (!data->mclk_dpm_key_disabled)
4618 smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
4619 PPSMC_MSG_MCLKDPM_SetEnabledMask,
4620 data->dpm_level_enable_mask.
4621 mclk_dpm_enable_mask &
4622 mclk_mask);
4623 }
4624
4625 return result;
4626 }
4627
4628 static int smu7_avfs_control(struct pp_hwmgr *hwmgr, bool enable)
4629 {
4630 struct pp_smumgr *smumgr = (struct pp_smumgr *)(hwmgr->smumgr);
4631 struct smu7_smumgr *smu_data = (struct smu7_smumgr *)(smumgr->backend);
4632
4633 if (smu_data == NULL)
4634 return -EINVAL;
4635
4636 if (smu_data->avfs.avfs_btc_status == AVFS_BTC_NOTSUPPORTED)
4637 return 0;
4638
4639 if (enable) {
4640 if (!PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device,
4641 CGS_IND_REG__SMC, FEATURE_STATUS, AVS_ON))
4642 PP_ASSERT_WITH_CODE(!smum_send_msg_to_smc(
4643 hwmgr->smumgr, PPSMC_MSG_EnableAvfs),
4644 "Failed to enable AVFS!",
4645 return -EINVAL);
4646 } else if (PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device,
4647 CGS_IND_REG__SMC, FEATURE_STATUS, AVS_ON))
4648 PP_ASSERT_WITH_CODE(!smum_send_msg_to_smc(
4649 hwmgr->smumgr, PPSMC_MSG_DisableAvfs),
4650 "Failed to disable AVFS!",
4651 return -EINVAL);
4652
4653 return 0;
4654 }
4655
4656 static const struct pp_hwmgr_func smu7_hwmgr_funcs = {
4657 .backend_init = &smu7_hwmgr_backend_init,
4658 .backend_fini = &smu7_hwmgr_backend_fini,
4659 .asic_setup = &smu7_setup_asic_task,
4660 .dynamic_state_management_enable = &smu7_enable_dpm_tasks,
4661 .apply_state_adjust_rules = smu7_apply_state_adjust_rules,
4662 .force_dpm_level = &smu7_force_dpm_level,
4663 .power_state_set = smu7_set_power_state_tasks,
4664 .get_power_state_size = smu7_get_power_state_size,
4665 .get_mclk = smu7_dpm_get_mclk,
4666 .get_sclk = smu7_dpm_get_sclk,
4667 .patch_boot_state = smu7_dpm_patch_boot_state,
4668 .get_pp_table_entry = smu7_get_pp_table_entry,
4669 .get_num_of_pp_table_entries = smu7_get_number_of_powerplay_table_entries,
4670 .powerdown_uvd = smu7_powerdown_uvd,
4671 .powergate_uvd = smu7_powergate_uvd,
4672 .powergate_vce = smu7_powergate_vce,
4673 .disable_clock_power_gating = smu7_disable_clock_power_gating,
4674 .update_clock_gatings = smu7_update_clock_gatings,
4675 .notify_smc_display_config_after_ps_adjustment = smu7_notify_smc_display_config_after_ps_adjustment,
4676 .display_config_changed = smu7_display_configuration_changed_task,
4677 .set_max_fan_pwm_output = smu7_set_max_fan_pwm_output,
4678 .set_max_fan_rpm_output = smu7_set_max_fan_rpm_output,
4679 .get_temperature = smu7_thermal_get_temperature,
4680 .stop_thermal_controller = smu7_thermal_stop_thermal_controller,
4681 .get_fan_speed_info = smu7_fan_ctrl_get_fan_speed_info,
4682 .get_fan_speed_percent = smu7_fan_ctrl_get_fan_speed_percent,
4683 .set_fan_speed_percent = smu7_fan_ctrl_set_fan_speed_percent,
4684 .reset_fan_speed_to_default = smu7_fan_ctrl_reset_fan_speed_to_default,
4685 .get_fan_speed_rpm = smu7_fan_ctrl_get_fan_speed_rpm,
4686 .set_fan_speed_rpm = smu7_fan_ctrl_set_fan_speed_rpm,
4687 .uninitialize_thermal_controller = smu7_thermal_ctrl_uninitialize_thermal_controller,
4688 .register_internal_thermal_interrupt = smu7_register_internal_thermal_interrupt,
4689 .check_smc_update_required_for_display_configuration = smu7_check_smc_update_required_for_display_configuration,
4690 .check_states_equal = smu7_check_states_equal,
4691 .set_fan_control_mode = smu7_set_fan_control_mode,
4692 .get_fan_control_mode = smu7_get_fan_control_mode,
4693 .force_clock_level = smu7_force_clock_level,
4694 .print_clock_levels = smu7_print_clock_levels,
4695 .enable_per_cu_power_gating = smu7_enable_per_cu_power_gating,
4696 .get_sclk_od = smu7_get_sclk_od,
4697 .set_sclk_od = smu7_set_sclk_od,
4698 .get_mclk_od = smu7_get_mclk_od,
4699 .set_mclk_od = smu7_set_mclk_od,
4700 .get_clock_by_type = smu7_get_clock_by_type,
4701 .read_sensor = smu7_read_sensor,
4702 .dynamic_state_management_disable = smu7_disable_dpm_tasks,
4703 .set_power_profile_state = smu7_set_power_profile_state,
4704 .avfs_control = smu7_avfs_control,
4705 .disable_smc_firmware_ctf = smu7_thermal_disable_alert,
4706 };
4707
4708 uint8_t smu7_get_sleep_divider_id_from_clock(uint32_t clock,
4709 uint32_t clock_insr)
4710 {
4711 uint8_t i;
4712 uint32_t temp;
4713 uint32_t min = max(clock_insr, (uint32_t)SMU7_MINIMUM_ENGINE_CLOCK);
4714
4715 PP_ASSERT_WITH_CODE((clock >= min), "Engine clock can't satisfy stutter requirement!", return 0);
4716 for (i = SMU7_MAX_DEEPSLEEP_DIVIDER_ID; ; i--) {
4717 temp = clock >> i;
4718
4719 if (temp >= min || i == 0)
4720 break;
4721 }
4722 return i;
4723 }
4724
4725 int smu7_init_function_pointers(struct pp_hwmgr *hwmgr)
4726 {
4727 int ret = 0;
4728
4729 hwmgr->hwmgr_func = &smu7_hwmgr_funcs;
4730 if (hwmgr->pp_table_version == PP_TABLE_V0)
4731 hwmgr->pptable_func = &pptable_funcs;
4732 else if (hwmgr->pp_table_version == PP_TABLE_V1)
4733 hwmgr->pptable_func = &pptable_v1_0_funcs;
4734
4735 return ret;
4736 }
4737