]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - drivers/gpu/drm/amd/powerplay/hwmgr/tonga_processpptables.c
ASoC: fix ABE_TWL6040 dependency
[mirror_ubuntu-eoan-kernel.git] / drivers / gpu / drm / amd / powerplay / hwmgr / tonga_processpptables.c
1 /*
2 * Copyright 2015 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 */
23 #include <linux/module.h>
24 #include <linux/slab.h>
25 #include <linux/fb.h>
26
27 #include "tonga_processpptables.h"
28 #include "ppatomctrl.h"
29 #include "atombios.h"
30 #include "pp_debug.h"
31 #include "hwmgr.h"
32 #include "cgs_common.h"
33 #include "tonga_pptable.h"
34
35 /**
36 * Private Function used during initialization.
37 * @param hwmgr Pointer to the hardware manager.
38 * @param setIt A flag indication if the capability should be set (TRUE) or reset (FALSE).
39 * @param cap Which capability to set/reset.
40 */
41 static void set_hw_cap(struct pp_hwmgr *hwmgr, bool setIt, enum phm_platform_caps cap)
42 {
43 if (setIt)
44 phm_cap_set(hwmgr->platform_descriptor.platformCaps, cap);
45 else
46 phm_cap_unset(hwmgr->platform_descriptor.platformCaps, cap);
47 }
48
49
50 /**
51 * Private Function used during initialization.
52 * @param hwmgr Pointer to the hardware manager.
53 * @param powerplay_caps the bit array (from BIOS) of capability bits.
54 * @exception the current implementation always returns 1.
55 */
56 static int set_platform_caps(struct pp_hwmgr *hwmgr, uint32_t powerplay_caps)
57 {
58 PP_ASSERT_WITH_CODE((~powerplay_caps & ____RETIRE16____),
59 "ATOM_PP_PLATFORM_CAP_ASPM_L1 is not supported!", continue);
60 PP_ASSERT_WITH_CODE((~powerplay_caps & ____RETIRE64____),
61 "ATOM_PP_PLATFORM_CAP_GEMINIPRIMARY is not supported!", continue);
62 PP_ASSERT_WITH_CODE((~powerplay_caps & ____RETIRE512____),
63 "ATOM_PP_PLATFORM_CAP_SIDEPORTCONTROL is not supported!", continue);
64 PP_ASSERT_WITH_CODE((~powerplay_caps & ____RETIRE1024____),
65 "ATOM_PP_PLATFORM_CAP_TURNOFFPLL_ASPML1 is not supported!", continue);
66 PP_ASSERT_WITH_CODE((~powerplay_caps & ____RETIRE2048____),
67 "ATOM_PP_PLATFORM_CAP_HTLINKCONTROL is not supported!", continue);
68
69 set_hw_cap(
70 hwmgr,
71 0 != (powerplay_caps & ATOM_TONGA_PP_PLATFORM_CAP_POWERPLAY),
72 PHM_PlatformCaps_PowerPlaySupport
73 );
74
75 set_hw_cap(
76 hwmgr,
77 0 != (powerplay_caps & ATOM_TONGA_PP_PLATFORM_CAP_SBIOSPOWERSOURCE),
78 PHM_PlatformCaps_BiosPowerSourceControl
79 );
80
81 set_hw_cap(
82 hwmgr,
83 0 != (powerplay_caps & ATOM_TONGA_PP_PLATFORM_CAP_HARDWAREDC),
84 PHM_PlatformCaps_AutomaticDCTransition
85 );
86
87 set_hw_cap(
88 hwmgr,
89 0 != (powerplay_caps & ATOM_TONGA_PP_PLATFORM_CAP_MVDD_CONTROL),
90 PHM_PlatformCaps_EnableMVDDControl
91 );
92
93 set_hw_cap(
94 hwmgr,
95 0 != (powerplay_caps & ATOM_TONGA_PP_PLATFORM_CAP_VDDCI_CONTROL),
96 PHM_PlatformCaps_ControlVDDCI
97 );
98
99 set_hw_cap(
100 hwmgr,
101 0 != (powerplay_caps & ATOM_TONGA_PP_PLATFORM_CAP_VDDGFX_CONTROL),
102 PHM_PlatformCaps_ControlVDDGFX
103 );
104
105 set_hw_cap(
106 hwmgr,
107 0 != (powerplay_caps & ATOM_TONGA_PP_PLATFORM_CAP_BACO),
108 PHM_PlatformCaps_BACO
109 );
110
111 set_hw_cap(
112 hwmgr,
113 0 != (powerplay_caps & ATOM_TONGA_PP_PLATFORM_CAP_DISABLE_VOLTAGE_ISLAND),
114 PHM_PlatformCaps_DisableVoltageIsland
115 );
116
117 set_hw_cap(
118 hwmgr,
119 0 != (powerplay_caps & ATOM_TONGA_PP_PLATFORM_COMBINE_PCC_WITH_THERMAL_SIGNAL),
120 PHM_PlatformCaps_CombinePCCWithThermalSignal
121 );
122
123 set_hw_cap(
124 hwmgr,
125 0 != (powerplay_caps & ATOM_TONGA_PLATFORM_LOAD_POST_PRODUCTION_FIRMWARE),
126 PHM_PlatformCaps_LoadPostProductionFirmware
127 );
128
129 return 0;
130 }
131
132 /**
133 * Private Function to get the PowerPlay Table Address.
134 */
135 const void *get_powerplay_table(struct pp_hwmgr *hwmgr)
136 {
137 int index = GetIndexIntoMasterTable(DATA, PowerPlayInfo);
138
139 u16 size;
140 u8 frev, crev;
141 void *table_address = (void *)hwmgr->soft_pp_table;
142
143 if (!table_address) {
144 table_address = (ATOM_Tonga_POWERPLAYTABLE *)
145 cgs_atom_get_data_table(hwmgr->device,
146 index, &size, &frev, &crev);
147 hwmgr->soft_pp_table = table_address; /*Cache the result in RAM.*/
148 hwmgr->soft_pp_table_size = size;
149 }
150
151 return table_address;
152 }
153
154 static int get_vddc_lookup_table(
155 struct pp_hwmgr *hwmgr,
156 phm_ppt_v1_voltage_lookup_table **lookup_table,
157 const ATOM_Tonga_Voltage_Lookup_Table *vddc_lookup_pp_tables,
158 uint32_t max_levels
159 )
160 {
161 uint32_t table_size, i;
162 phm_ppt_v1_voltage_lookup_table *table;
163
164 PP_ASSERT_WITH_CODE((0 != vddc_lookup_pp_tables->ucNumEntries),
165 "Invalid CAC Leakage PowerPlay Table!", return 1);
166
167 table_size = sizeof(uint32_t) +
168 sizeof(phm_ppt_v1_voltage_lookup_record) * max_levels;
169
170 table = (phm_ppt_v1_voltage_lookup_table *)
171 kzalloc(table_size, GFP_KERNEL);
172
173 if (NULL == table)
174 return -ENOMEM;
175
176 memset(table, 0x00, table_size);
177
178 table->count = vddc_lookup_pp_tables->ucNumEntries;
179
180 for (i = 0; i < vddc_lookup_pp_tables->ucNumEntries; i++) {
181 table->entries[i].us_calculated = 0;
182 table->entries[i].us_vdd =
183 vddc_lookup_pp_tables->entries[i].usVdd;
184 table->entries[i].us_cac_low =
185 vddc_lookup_pp_tables->entries[i].usCACLow;
186 table->entries[i].us_cac_mid =
187 vddc_lookup_pp_tables->entries[i].usCACMid;
188 table->entries[i].us_cac_high =
189 vddc_lookup_pp_tables->entries[i].usCACHigh;
190 }
191
192 *lookup_table = table;
193
194 return 0;
195 }
196
197 /**
198 * Private Function used during initialization.
199 * Initialize Platform Power Management Parameter table
200 * @param hwmgr Pointer to the hardware manager.
201 * @param atom_ppm_table Pointer to PPM table in VBIOS
202 */
203 static int get_platform_power_management_table(
204 struct pp_hwmgr *hwmgr,
205 ATOM_Tonga_PPM_Table *atom_ppm_table)
206 {
207 struct phm_ppm_table *ptr = kzalloc(sizeof(ATOM_Tonga_PPM_Table), GFP_KERNEL);
208 struct phm_ppt_v1_information *pp_table_information =
209 (struct phm_ppt_v1_information *)(hwmgr->pptable);
210
211 if (NULL == ptr)
212 return -ENOMEM;
213
214 ptr->ppm_design
215 = atom_ppm_table->ucPpmDesign;
216 ptr->cpu_core_number
217 = atom_ppm_table->usCpuCoreNumber;
218 ptr->platform_tdp
219 = atom_ppm_table->ulPlatformTDP;
220 ptr->small_ac_platform_tdp
221 = atom_ppm_table->ulSmallACPlatformTDP;
222 ptr->platform_tdc
223 = atom_ppm_table->ulPlatformTDC;
224 ptr->small_ac_platform_tdc
225 = atom_ppm_table->ulSmallACPlatformTDC;
226 ptr->apu_tdp
227 = atom_ppm_table->ulApuTDP;
228 ptr->dgpu_tdp
229 = atom_ppm_table->ulDGpuTDP;
230 ptr->dgpu_ulv_power
231 = atom_ppm_table->ulDGpuUlvPower;
232 ptr->tj_max
233 = atom_ppm_table->ulTjmax;
234
235 pp_table_information->ppm_parameter_table = ptr;
236
237 return 0;
238 }
239
240 /**
241 * Private Function used during initialization.
242 * Initialize TDP limits for DPM2
243 * @param hwmgr Pointer to the hardware manager.
244 * @param powerplay_table Pointer to the PowerPlay Table.
245 */
246 static int init_dpm_2_parameters(
247 struct pp_hwmgr *hwmgr,
248 const ATOM_Tonga_POWERPLAYTABLE *powerplay_table
249 )
250 {
251 int result = 0;
252 struct phm_ppt_v1_information *pp_table_information = (struct phm_ppt_v1_information *)(hwmgr->pptable);
253 ATOM_Tonga_PPM_Table *atom_ppm_table;
254 uint32_t disable_ppm = 0;
255 uint32_t disable_power_control = 0;
256
257 pp_table_information->us_ulv_voltage_offset =
258 le16_to_cpu(powerplay_table->usUlvVoltageOffset);
259
260 pp_table_information->ppm_parameter_table = NULL;
261 pp_table_information->vddc_lookup_table = NULL;
262 pp_table_information->vddgfx_lookup_table = NULL;
263 /* TDP limits */
264 hwmgr->platform_descriptor.TDPODLimit =
265 le16_to_cpu(powerplay_table->usPowerControlLimit);
266 hwmgr->platform_descriptor.TDPAdjustment = 0;
267 hwmgr->platform_descriptor.VidAdjustment = 0;
268 hwmgr->platform_descriptor.VidAdjustmentPolarity = 0;
269 hwmgr->platform_descriptor.VidMinLimit = 0;
270 hwmgr->platform_descriptor.VidMaxLimit = 1500000;
271 hwmgr->platform_descriptor.VidStep = 6250;
272
273 disable_power_control = 0;
274 if (0 == disable_power_control) {
275 /* enable TDP overdrive (PowerControl) feature as well if supported */
276 if (hwmgr->platform_descriptor.TDPODLimit != 0)
277 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
278 PHM_PlatformCaps_PowerControl);
279 }
280
281 if (0 != powerplay_table->usVddcLookupTableOffset) {
282 const ATOM_Tonga_Voltage_Lookup_Table *pVddcCACTable =
283 (ATOM_Tonga_Voltage_Lookup_Table *)(((unsigned long)powerplay_table) +
284 le16_to_cpu(powerplay_table->usVddcLookupTableOffset));
285
286 result = get_vddc_lookup_table(hwmgr,
287 &pp_table_information->vddc_lookup_table, pVddcCACTable, 16);
288 }
289
290 if (0 != powerplay_table->usVddgfxLookupTableOffset) {
291 const ATOM_Tonga_Voltage_Lookup_Table *pVddgfxCACTable =
292 (ATOM_Tonga_Voltage_Lookup_Table *)(((unsigned long)powerplay_table) +
293 le16_to_cpu(powerplay_table->usVddgfxLookupTableOffset));
294
295 result = get_vddc_lookup_table(hwmgr,
296 &pp_table_information->vddgfx_lookup_table, pVddgfxCACTable, 16);
297 }
298
299 disable_ppm = 0;
300 if (0 == disable_ppm) {
301 atom_ppm_table = (ATOM_Tonga_PPM_Table *)
302 (((unsigned long)powerplay_table) + le16_to_cpu(powerplay_table->usPPMTableOffset));
303
304 if (0 != powerplay_table->usPPMTableOffset) {
305 if (1 == get_platform_power_management_table(hwmgr, atom_ppm_table)) {
306 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
307 PHM_PlatformCaps_EnablePlatformPowerManagement);
308 }
309 }
310 }
311
312 return result;
313 }
314
315 static int get_valid_clk(
316 struct pp_hwmgr *hwmgr,
317 struct phm_clock_array **clk_table,
318 const phm_ppt_v1_clock_voltage_dependency_table * clk_volt_pp_table
319 )
320 {
321 uint32_t table_size, i;
322 struct phm_clock_array *table;
323
324 PP_ASSERT_WITH_CODE((0 != clk_volt_pp_table->count),
325 "Invalid PowerPlay Table!", return -1);
326
327 table_size = sizeof(uint32_t) +
328 sizeof(uint32_t) * clk_volt_pp_table->count;
329
330 table = (struct phm_clock_array *)kzalloc(table_size, GFP_KERNEL);
331
332 if (NULL == table)
333 return -ENOMEM;
334
335 memset(table, 0x00, table_size);
336
337 table->count = (uint32_t)clk_volt_pp_table->count;
338
339 for (i = 0; i < table->count; i++)
340 table->values[i] = (uint32_t)clk_volt_pp_table->entries[i].clk;
341
342 *clk_table = table;
343
344 return 0;
345 }
346
347 static int get_hard_limits(
348 struct pp_hwmgr *hwmgr,
349 struct phm_clock_and_voltage_limits *limits,
350 const ATOM_Tonga_Hard_Limit_Table * limitable
351 )
352 {
353 PP_ASSERT_WITH_CODE((0 != limitable->ucNumEntries), "Invalid PowerPlay Table!", return -1);
354
355 /* currently we always take entries[0] parameters */
356 limits->sclk = (uint32_t)limitable->entries[0].ulSCLKLimit;
357 limits->mclk = (uint32_t)limitable->entries[0].ulMCLKLimit;
358 limits->vddc = (uint16_t)limitable->entries[0].usVddcLimit;
359 limits->vddci = (uint16_t)limitable->entries[0].usVddciLimit;
360 limits->vddgfx = (uint16_t)limitable->entries[0].usVddgfxLimit;
361
362 return 0;
363 }
364
365 static int get_mclk_voltage_dependency_table(
366 struct pp_hwmgr *hwmgr,
367 phm_ppt_v1_clock_voltage_dependency_table **pp_tonga_mclk_dep_table,
368 const ATOM_Tonga_MCLK_Dependency_Table * mclk_dep_table
369 )
370 {
371 uint32_t table_size, i;
372 phm_ppt_v1_clock_voltage_dependency_table *mclk_table;
373
374 PP_ASSERT_WITH_CODE((0 != mclk_dep_table->ucNumEntries),
375 "Invalid PowerPlay Table!", return -1);
376
377 table_size = sizeof(uint32_t) + sizeof(phm_ppt_v1_clock_voltage_dependency_record)
378 * mclk_dep_table->ucNumEntries;
379
380 mclk_table = (phm_ppt_v1_clock_voltage_dependency_table *)
381 kzalloc(table_size, GFP_KERNEL);
382
383 if (NULL == mclk_table)
384 return -ENOMEM;
385
386 memset(mclk_table, 0x00, table_size);
387
388 mclk_table->count = (uint32_t)mclk_dep_table->ucNumEntries;
389
390 for (i = 0; i < mclk_dep_table->ucNumEntries; i++) {
391 mclk_table->entries[i].vddInd =
392 mclk_dep_table->entries[i].ucVddcInd;
393 mclk_table->entries[i].vdd_offset =
394 mclk_dep_table->entries[i].usVddgfxOffset;
395 mclk_table->entries[i].vddci =
396 mclk_dep_table->entries[i].usVddci;
397 mclk_table->entries[i].mvdd =
398 mclk_dep_table->entries[i].usMvdd;
399 mclk_table->entries[i].clk =
400 mclk_dep_table->entries[i].ulMclk;
401 }
402
403 *pp_tonga_mclk_dep_table = mclk_table;
404
405 return 0;
406 }
407
408 static int get_sclk_voltage_dependency_table(
409 struct pp_hwmgr *hwmgr,
410 phm_ppt_v1_clock_voltage_dependency_table **pp_tonga_sclk_dep_table,
411 const ATOM_Tonga_SCLK_Dependency_Table * sclk_dep_table
412 )
413 {
414 uint32_t table_size, i;
415 phm_ppt_v1_clock_voltage_dependency_table *sclk_table;
416
417 PP_ASSERT_WITH_CODE((0 != sclk_dep_table->ucNumEntries),
418 "Invalid PowerPlay Table!", return -1);
419
420 table_size = sizeof(uint32_t) + sizeof(phm_ppt_v1_clock_voltage_dependency_record)
421 * sclk_dep_table->ucNumEntries;
422
423 sclk_table = (phm_ppt_v1_clock_voltage_dependency_table *)
424 kzalloc(table_size, GFP_KERNEL);
425
426 if (NULL == sclk_table)
427 return -ENOMEM;
428
429 memset(sclk_table, 0x00, table_size);
430
431 sclk_table->count = (uint32_t)sclk_dep_table->ucNumEntries;
432
433 for (i = 0; i < sclk_dep_table->ucNumEntries; i++) {
434 sclk_table->entries[i].vddInd =
435 sclk_dep_table->entries[i].ucVddInd;
436 sclk_table->entries[i].vdd_offset =
437 sclk_dep_table->entries[i].usVddcOffset;
438 sclk_table->entries[i].clk =
439 sclk_dep_table->entries[i].ulSclk;
440 sclk_table->entries[i].cks_enable =
441 (((sclk_dep_table->entries[i].ucCKSVOffsetandDisable & 0x80) >> 7) == 0) ? 1 : 0;
442 sclk_table->entries[i].cks_voffset =
443 (sclk_dep_table->entries[i].ucCKSVOffsetandDisable & 0x7F);
444 }
445
446 *pp_tonga_sclk_dep_table = sclk_table;
447
448 return 0;
449 }
450
451 static int get_pcie_table(
452 struct pp_hwmgr *hwmgr,
453 phm_ppt_v1_pcie_table **pp_tonga_pcie_table,
454 const PPTable_Generic_SubTable_Header * pTable
455 )
456 {
457 uint32_t table_size, i, pcie_count;
458 phm_ppt_v1_pcie_table *pcie_table;
459 struct phm_ppt_v1_information *pp_table_information =
460 (struct phm_ppt_v1_information *)(hwmgr->pptable);
461
462 if (pTable->ucRevId < 1) {
463 const ATOM_Tonga_PCIE_Table *atom_pcie_table = (ATOM_Tonga_PCIE_Table *)pTable;
464 PP_ASSERT_WITH_CODE((atom_pcie_table->ucNumEntries != 0),
465 "Invalid PowerPlay Table!", return -1);
466
467 table_size = sizeof(uint32_t) +
468 sizeof(phm_ppt_v1_pcie_record) * atom_pcie_table->ucNumEntries;
469
470 pcie_table = (phm_ppt_v1_pcie_table *)kzalloc(table_size, GFP_KERNEL);
471
472 if (pcie_table == NULL)
473 return -ENOMEM;
474
475 memset(pcie_table, 0x00, table_size);
476
477 /*
478 * Make sure the number of pcie entries are less than or equal to sclk dpm levels.
479 * Since first PCIE entry is for ULV, #pcie has to be <= SclkLevel + 1.
480 */
481 pcie_count = (pp_table_information->vdd_dep_on_sclk->count) + 1;
482 if ((uint32_t)atom_pcie_table->ucNumEntries <= pcie_count)
483 pcie_count = (uint32_t)atom_pcie_table->ucNumEntries;
484 else
485 printk(KERN_ERR "[ powerplay ] Number of Pcie Entries exceed the number of SCLK Dpm Levels! \
486 Disregarding the excess entries... \n");
487
488 pcie_table->count = pcie_count;
489
490 for (i = 0; i < pcie_count; i++) {
491 pcie_table->entries[i].gen_speed =
492 atom_pcie_table->entries[i].ucPCIEGenSpeed;
493 pcie_table->entries[i].lane_width =
494 atom_pcie_table->entries[i].usPCIELaneWidth;
495 }
496
497 *pp_tonga_pcie_table = pcie_table;
498 } else {
499 /* Polaris10/Polaris11 and newer. */
500 const ATOM_Polaris10_PCIE_Table *atom_pcie_table = (ATOM_Polaris10_PCIE_Table *)pTable;
501 PP_ASSERT_WITH_CODE((atom_pcie_table->ucNumEntries != 0),
502 "Invalid PowerPlay Table!", return -1);
503
504 table_size = sizeof(uint32_t) +
505 sizeof(phm_ppt_v1_pcie_record) * atom_pcie_table->ucNumEntries;
506
507 pcie_table = (phm_ppt_v1_pcie_table *)kzalloc(table_size, GFP_KERNEL);
508
509 if (pcie_table == NULL)
510 return -ENOMEM;
511
512 memset(pcie_table, 0x00, table_size);
513
514 /*
515 * Make sure the number of pcie entries are less than or equal to sclk dpm levels.
516 * Since first PCIE entry is for ULV, #pcie has to be <= SclkLevel + 1.
517 */
518 pcie_count = (pp_table_information->vdd_dep_on_sclk->count) + 1;
519 if ((uint32_t)atom_pcie_table->ucNumEntries <= pcie_count)
520 pcie_count = (uint32_t)atom_pcie_table->ucNumEntries;
521 else
522 printk(KERN_ERR "[ powerplay ] Number of Pcie Entries exceed the number of SCLK Dpm Levels! \
523 Disregarding the excess entries... \n");
524
525 pcie_table->count = pcie_count;
526
527 for (i = 0; i < pcie_count; i++) {
528 pcie_table->entries[i].gen_speed =
529 atom_pcie_table->entries[i].ucPCIEGenSpeed;
530 pcie_table->entries[i].lane_width =
531 atom_pcie_table->entries[i].usPCIELaneWidth;
532 pcie_table->entries[i].pcie_sclk =
533 atom_pcie_table->entries[i].ulPCIE_Sclk;
534 }
535
536 *pp_tonga_pcie_table = pcie_table;
537 }
538
539 return 0;
540 }
541
542 static int get_cac_tdp_table(
543 struct pp_hwmgr *hwmgr,
544 struct phm_cac_tdp_table **cac_tdp_table,
545 const PPTable_Generic_SubTable_Header * table
546 )
547 {
548 uint32_t table_size;
549 struct phm_cac_tdp_table *tdp_table;
550
551 table_size = sizeof(uint32_t) + sizeof(struct phm_cac_tdp_table);
552 tdp_table = kzalloc(table_size, GFP_KERNEL);
553
554 if (NULL == tdp_table)
555 return -ENOMEM;
556
557 memset(tdp_table, 0x00, table_size);
558
559 hwmgr->dyn_state.cac_dtp_table = kzalloc(table_size, GFP_KERNEL);
560
561 if (NULL == hwmgr->dyn_state.cac_dtp_table) {
562 kfree(tdp_table);
563 return -ENOMEM;
564 }
565
566 memset(hwmgr->dyn_state.cac_dtp_table, 0x00, table_size);
567
568 if (table->ucRevId < 3) {
569 const ATOM_Tonga_PowerTune_Table *tonga_table =
570 (ATOM_Tonga_PowerTune_Table *)table;
571 tdp_table->usTDP = tonga_table->usTDP;
572 tdp_table->usConfigurableTDP =
573 tonga_table->usConfigurableTDP;
574 tdp_table->usTDC = tonga_table->usTDC;
575 tdp_table->usBatteryPowerLimit =
576 tonga_table->usBatteryPowerLimit;
577 tdp_table->usSmallPowerLimit =
578 tonga_table->usSmallPowerLimit;
579 tdp_table->usLowCACLeakage =
580 tonga_table->usLowCACLeakage;
581 tdp_table->usHighCACLeakage =
582 tonga_table->usHighCACLeakage;
583 tdp_table->usMaximumPowerDeliveryLimit =
584 tonga_table->usMaximumPowerDeliveryLimit;
585 tdp_table->usDefaultTargetOperatingTemp =
586 tonga_table->usTjMax;
587 tdp_table->usTargetOperatingTemp =
588 tonga_table->usTjMax; /*Set the initial temp to the same as default */
589 tdp_table->usPowerTuneDataSetID =
590 tonga_table->usPowerTuneDataSetID;
591 tdp_table->usSoftwareShutdownTemp =
592 tonga_table->usSoftwareShutdownTemp;
593 tdp_table->usClockStretchAmount =
594 tonga_table->usClockStretchAmount;
595 } else { /* Fiji and newer */
596 const ATOM_Fiji_PowerTune_Table *fijitable =
597 (ATOM_Fiji_PowerTune_Table *)table;
598 tdp_table->usTDP = fijitable->usTDP;
599 tdp_table->usConfigurableTDP = fijitable->usConfigurableTDP;
600 tdp_table->usTDC = fijitable->usTDC;
601 tdp_table->usBatteryPowerLimit = fijitable->usBatteryPowerLimit;
602 tdp_table->usSmallPowerLimit = fijitable->usSmallPowerLimit;
603 tdp_table->usLowCACLeakage = fijitable->usLowCACLeakage;
604 tdp_table->usHighCACLeakage = fijitable->usHighCACLeakage;
605 tdp_table->usMaximumPowerDeliveryLimit =
606 fijitable->usMaximumPowerDeliveryLimit;
607 tdp_table->usDefaultTargetOperatingTemp =
608 fijitable->usTjMax;
609 tdp_table->usTargetOperatingTemp =
610 fijitable->usTjMax; /*Set the initial temp to the same as default */
611 tdp_table->usPowerTuneDataSetID =
612 fijitable->usPowerTuneDataSetID;
613 tdp_table->usSoftwareShutdownTemp =
614 fijitable->usSoftwareShutdownTemp;
615 tdp_table->usClockStretchAmount =
616 fijitable->usClockStretchAmount;
617 tdp_table->usTemperatureLimitHotspot =
618 fijitable->usTemperatureLimitHotspot;
619 tdp_table->usTemperatureLimitLiquid1 =
620 fijitable->usTemperatureLimitLiquid1;
621 tdp_table->usTemperatureLimitLiquid2 =
622 fijitable->usTemperatureLimitLiquid2;
623 tdp_table->usTemperatureLimitVrVddc =
624 fijitable->usTemperatureLimitVrVddc;
625 tdp_table->usTemperatureLimitVrMvdd =
626 fijitable->usTemperatureLimitVrMvdd;
627 tdp_table->usTemperatureLimitPlx =
628 fijitable->usTemperatureLimitPlx;
629 tdp_table->ucLiquid1_I2C_address =
630 fijitable->ucLiquid1_I2C_address;
631 tdp_table->ucLiquid2_I2C_address =
632 fijitable->ucLiquid2_I2C_address;
633 tdp_table->ucLiquid_I2C_Line =
634 fijitable->ucLiquid_I2C_Line;
635 tdp_table->ucVr_I2C_address = fijitable->ucVr_I2C_address;
636 tdp_table->ucVr_I2C_Line = fijitable->ucVr_I2C_Line;
637 tdp_table->ucPlx_I2C_address = fijitable->ucPlx_I2C_address;
638 tdp_table->ucPlx_I2C_Line = fijitable->ucPlx_I2C_Line;
639 }
640
641 *cac_tdp_table = tdp_table;
642
643 return 0;
644 }
645
646 static int get_mm_clock_voltage_table(
647 struct pp_hwmgr *hwmgr,
648 phm_ppt_v1_mm_clock_voltage_dependency_table **tonga_mm_table,
649 const ATOM_Tonga_MM_Dependency_Table * mm_dependency_table
650 )
651 {
652 uint32_t table_size, i;
653 const ATOM_Tonga_MM_Dependency_Record *mm_dependency_record;
654 phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table;
655
656 PP_ASSERT_WITH_CODE((0 != mm_dependency_table->ucNumEntries),
657 "Invalid PowerPlay Table!", return -1);
658 table_size = sizeof(uint32_t) +
659 sizeof(phm_ppt_v1_mm_clock_voltage_dependency_record)
660 * mm_dependency_table->ucNumEntries;
661 mm_table = (phm_ppt_v1_mm_clock_voltage_dependency_table *)
662 kzalloc(table_size, GFP_KERNEL);
663
664 if (NULL == mm_table)
665 return -ENOMEM;
666
667 memset(mm_table, 0x00, table_size);
668
669 mm_table->count = mm_dependency_table->ucNumEntries;
670
671 for (i = 0; i < mm_dependency_table->ucNumEntries; i++) {
672 mm_dependency_record = &mm_dependency_table->entries[i];
673 mm_table->entries[i].vddcInd = mm_dependency_record->ucVddcInd;
674 mm_table->entries[i].vddgfx_offset = mm_dependency_record->usVddgfxOffset;
675 mm_table->entries[i].aclk = mm_dependency_record->ulAClk;
676 mm_table->entries[i].samclock = mm_dependency_record->ulSAMUClk;
677 mm_table->entries[i].eclk = mm_dependency_record->ulEClk;
678 mm_table->entries[i].vclk = mm_dependency_record->ulVClk;
679 mm_table->entries[i].dclk = mm_dependency_record->ulDClk;
680 }
681
682 *tonga_mm_table = mm_table;
683
684 return 0;
685 }
686
687 /**
688 * Private Function used during initialization.
689 * Initialize clock voltage dependency
690 * @param hwmgr Pointer to the hardware manager.
691 * @param powerplay_table Pointer to the PowerPlay Table.
692 */
693 static int init_clock_voltage_dependency(
694 struct pp_hwmgr *hwmgr,
695 const ATOM_Tonga_POWERPLAYTABLE *powerplay_table
696 )
697 {
698 int result = 0;
699 struct phm_ppt_v1_information *pp_table_information =
700 (struct phm_ppt_v1_information *)(hwmgr->pptable);
701
702 const ATOM_Tonga_MM_Dependency_Table *mm_dependency_table =
703 (const ATOM_Tonga_MM_Dependency_Table *)(((unsigned long) powerplay_table) +
704 le16_to_cpu(powerplay_table->usMMDependencyTableOffset));
705 const PPTable_Generic_SubTable_Header *pPowerTuneTable =
706 (const PPTable_Generic_SubTable_Header *)(((unsigned long) powerplay_table) +
707 le16_to_cpu(powerplay_table->usPowerTuneTableOffset));
708 const ATOM_Tonga_MCLK_Dependency_Table *mclk_dep_table =
709 (const ATOM_Tonga_MCLK_Dependency_Table *)(((unsigned long) powerplay_table) +
710 le16_to_cpu(powerplay_table->usMclkDependencyTableOffset));
711 const ATOM_Tonga_SCLK_Dependency_Table *sclk_dep_table =
712 (const ATOM_Tonga_SCLK_Dependency_Table *)(((unsigned long) powerplay_table) +
713 le16_to_cpu(powerplay_table->usSclkDependencyTableOffset));
714 const ATOM_Tonga_Hard_Limit_Table *pHardLimits =
715 (const ATOM_Tonga_Hard_Limit_Table *)(((unsigned long) powerplay_table) +
716 le16_to_cpu(powerplay_table->usHardLimitTableOffset));
717 const PPTable_Generic_SubTable_Header *pcie_table =
718 (const PPTable_Generic_SubTable_Header *)(((unsigned long) powerplay_table) +
719 le16_to_cpu(powerplay_table->usPCIETableOffset));
720
721 pp_table_information->vdd_dep_on_sclk = NULL;
722 pp_table_information->vdd_dep_on_mclk = NULL;
723 pp_table_information->mm_dep_table = NULL;
724 pp_table_information->pcie_table = NULL;
725
726 if (powerplay_table->usMMDependencyTableOffset != 0)
727 result = get_mm_clock_voltage_table(hwmgr,
728 &pp_table_information->mm_dep_table, mm_dependency_table);
729
730 if (result == 0 && powerplay_table->usPowerTuneTableOffset != 0)
731 result = get_cac_tdp_table(hwmgr,
732 &pp_table_information->cac_dtp_table, pPowerTuneTable);
733
734 if (result == 0 && powerplay_table->usSclkDependencyTableOffset != 0)
735 result = get_sclk_voltage_dependency_table(hwmgr,
736 &pp_table_information->vdd_dep_on_sclk, sclk_dep_table);
737
738 if (result == 0 && powerplay_table->usMclkDependencyTableOffset != 0)
739 result = get_mclk_voltage_dependency_table(hwmgr,
740 &pp_table_information->vdd_dep_on_mclk, mclk_dep_table);
741
742 if (result == 0 && powerplay_table->usPCIETableOffset != 0)
743 result = get_pcie_table(hwmgr,
744 &pp_table_information->pcie_table, pcie_table);
745
746 if (result == 0 && powerplay_table->usHardLimitTableOffset != 0)
747 result = get_hard_limits(hwmgr,
748 &pp_table_information->max_clock_voltage_on_dc, pHardLimits);
749
750 hwmgr->dyn_state.max_clock_voltage_on_dc.sclk =
751 pp_table_information->max_clock_voltage_on_dc.sclk;
752 hwmgr->dyn_state.max_clock_voltage_on_dc.mclk =
753 pp_table_information->max_clock_voltage_on_dc.mclk;
754 hwmgr->dyn_state.max_clock_voltage_on_dc.vddc =
755 pp_table_information->max_clock_voltage_on_dc.vddc;
756 hwmgr->dyn_state.max_clock_voltage_on_dc.vddci =
757 pp_table_information->max_clock_voltage_on_dc.vddci;
758
759 if (result == 0 && (NULL != pp_table_information->vdd_dep_on_mclk)
760 && (0 != pp_table_information->vdd_dep_on_mclk->count))
761 result = get_valid_clk(hwmgr, &pp_table_information->valid_mclk_values,
762 pp_table_information->vdd_dep_on_mclk);
763
764 if (result == 0 && (NULL != pp_table_information->vdd_dep_on_sclk)
765 && (0 != pp_table_information->vdd_dep_on_sclk->count))
766 result = get_valid_clk(hwmgr, &pp_table_information->valid_sclk_values,
767 pp_table_information->vdd_dep_on_sclk);
768
769 return result;
770 }
771
772 /** Retrieves the (signed) Overdrive limits from VBIOS.
773 * The max engine clock, memory clock and max temperature come from the firmware info table.
774 *
775 * The information is placed into the platform descriptor.
776 *
777 * @param hwmgr source of the VBIOS table and owner of the platform descriptor to be updated.
778 * @param powerplay_table the address of the PowerPlay table.
779 *
780 * @return 1 as long as the firmware info table was present and of a supported version.
781 */
782 static int init_over_drive_limits(
783 struct pp_hwmgr *hwmgr,
784 const ATOM_Tonga_POWERPLAYTABLE *powerplay_table)
785 {
786 hwmgr->platform_descriptor.overdriveLimit.engineClock =
787 le16_to_cpu(powerplay_table->ulMaxODEngineClock);
788 hwmgr->platform_descriptor.overdriveLimit.memoryClock =
789 le16_to_cpu(powerplay_table->ulMaxODMemoryClock);
790
791 hwmgr->platform_descriptor.minOverdriveVDDC = 0;
792 hwmgr->platform_descriptor.maxOverdriveVDDC = 0;
793 hwmgr->platform_descriptor.overdriveVDDCStep = 0;
794
795 if (hwmgr->platform_descriptor.overdriveLimit.engineClock > 0 \
796 && hwmgr->platform_descriptor.overdriveLimit.memoryClock > 0) {
797 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
798 PHM_PlatformCaps_ACOverdriveSupport);
799 }
800
801 return 0;
802 }
803
804 /**
805 * Private Function used during initialization.
806 * Inspect the PowerPlay table for obvious signs of corruption.
807 * @param hwmgr Pointer to the hardware manager.
808 * @param powerplay_table Pointer to the PowerPlay Table.
809 * @exception This implementation always returns 1.
810 */
811 static int init_thermal_controller(
812 struct pp_hwmgr *hwmgr,
813 const ATOM_Tonga_POWERPLAYTABLE *powerplay_table
814 )
815 {
816 const PPTable_Generic_SubTable_Header *fan_table;
817 ATOM_Tonga_Thermal_Controller *thermal_controller;
818
819 thermal_controller = (ATOM_Tonga_Thermal_Controller *)
820 (((unsigned long)powerplay_table) +
821 le16_to_cpu(powerplay_table->usThermalControllerOffset));
822 PP_ASSERT_WITH_CODE((0 != powerplay_table->usThermalControllerOffset),
823 "Thermal controller table not set!", return -1);
824
825 hwmgr->thermal_controller.ucType = thermal_controller->ucType;
826 hwmgr->thermal_controller.ucI2cLine = thermal_controller->ucI2cLine;
827 hwmgr->thermal_controller.ucI2cAddress = thermal_controller->ucI2cAddress;
828
829 hwmgr->thermal_controller.fanInfo.bNoFan =
830 (0 != (thermal_controller->ucFanParameters & ATOM_TONGA_PP_FANPARAMETERS_NOFAN));
831
832 hwmgr->thermal_controller.fanInfo.ucTachometerPulsesPerRevolution =
833 thermal_controller->ucFanParameters &
834 ATOM_TONGA_PP_FANPARAMETERS_TACHOMETER_PULSES_PER_REVOLUTION_MASK;
835
836 hwmgr->thermal_controller.fanInfo.ulMinRPM
837 = thermal_controller->ucFanMinRPM * 100UL;
838 hwmgr->thermal_controller.fanInfo.ulMaxRPM
839 = thermal_controller->ucFanMaxRPM * 100UL;
840
841 set_hw_cap(
842 hwmgr,
843 ATOM_TONGA_PP_THERMALCONTROLLER_NONE != hwmgr->thermal_controller.ucType,
844 PHM_PlatformCaps_ThermalController
845 );
846
847 if (0 == powerplay_table->usFanTableOffset)
848 return 0;
849
850 fan_table = (const PPTable_Generic_SubTable_Header *)
851 (((unsigned long)powerplay_table) +
852 le16_to_cpu(powerplay_table->usFanTableOffset));
853
854 PP_ASSERT_WITH_CODE((0 != powerplay_table->usFanTableOffset),
855 "Fan table not set!", return -1);
856 PP_ASSERT_WITH_CODE((0 < fan_table->ucRevId),
857 "Unsupported fan table format!", return -1);
858
859 hwmgr->thermal_controller.advanceFanControlParameters.ulCycleDelay
860 = 100000;
861 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
862 PHM_PlatformCaps_MicrocodeFanControl);
863
864 if (fan_table->ucRevId < 8) {
865 const ATOM_Tonga_Fan_Table *tonga_fan_table =
866 (ATOM_Tonga_Fan_Table *)fan_table;
867 hwmgr->thermal_controller.advanceFanControlParameters.ucTHyst
868 = tonga_fan_table->ucTHyst;
869 hwmgr->thermal_controller.advanceFanControlParameters.usTMin
870 = tonga_fan_table->usTMin;
871 hwmgr->thermal_controller.advanceFanControlParameters.usTMed
872 = tonga_fan_table->usTMed;
873 hwmgr->thermal_controller.advanceFanControlParameters.usTHigh
874 = tonga_fan_table->usTHigh;
875 hwmgr->thermal_controller.advanceFanControlParameters.usPWMMin
876 = tonga_fan_table->usPWMMin;
877 hwmgr->thermal_controller.advanceFanControlParameters.usPWMMed
878 = tonga_fan_table->usPWMMed;
879 hwmgr->thermal_controller.advanceFanControlParameters.usPWMHigh
880 = tonga_fan_table->usPWMHigh;
881 hwmgr->thermal_controller.advanceFanControlParameters.usTMax
882 = 10900; /* hard coded */
883 hwmgr->thermal_controller.advanceFanControlParameters.usTMax
884 = tonga_fan_table->usTMax;
885 hwmgr->thermal_controller.advanceFanControlParameters.ucFanControlMode
886 = tonga_fan_table->ucFanControlMode;
887 hwmgr->thermal_controller.advanceFanControlParameters.usDefaultMaxFanPWM
888 = tonga_fan_table->usFanPWMMax;
889 hwmgr->thermal_controller.advanceFanControlParameters.usDefaultFanOutputSensitivity
890 = 4836;
891 hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity
892 = tonga_fan_table->usFanOutputSensitivity;
893 hwmgr->thermal_controller.advanceFanControlParameters.usDefaultMaxFanRPM
894 = tonga_fan_table->usFanRPMMax;
895 hwmgr->thermal_controller.advanceFanControlParameters.ulMinFanSCLKAcousticLimit
896 = (tonga_fan_table->ulMinFanSCLKAcousticLimit / 100); /* PPTable stores it in 10Khz unit for 2 decimal places. SMC wants MHz. */
897 hwmgr->thermal_controller.advanceFanControlParameters.ucTargetTemperature
898 = tonga_fan_table->ucTargetTemperature;
899 hwmgr->thermal_controller.advanceFanControlParameters.ucMinimumPWMLimit
900 = tonga_fan_table->ucMinimumPWMLimit;
901 } else {
902 const ATOM_Fiji_Fan_Table *fiji_fan_table =
903 (ATOM_Fiji_Fan_Table *)fan_table;
904 hwmgr->thermal_controller.advanceFanControlParameters.ucTHyst
905 = fiji_fan_table->ucTHyst;
906 hwmgr->thermal_controller.advanceFanControlParameters.usTMin
907 = fiji_fan_table->usTMin;
908 hwmgr->thermal_controller.advanceFanControlParameters.usTMed
909 = fiji_fan_table->usTMed;
910 hwmgr->thermal_controller.advanceFanControlParameters.usTHigh
911 = fiji_fan_table->usTHigh;
912 hwmgr->thermal_controller.advanceFanControlParameters.usPWMMin
913 = fiji_fan_table->usPWMMin;
914 hwmgr->thermal_controller.advanceFanControlParameters.usPWMMed
915 = fiji_fan_table->usPWMMed;
916 hwmgr->thermal_controller.advanceFanControlParameters.usPWMHigh
917 = fiji_fan_table->usPWMHigh;
918 hwmgr->thermal_controller.advanceFanControlParameters.usTMax
919 = fiji_fan_table->usTMax;
920 hwmgr->thermal_controller.advanceFanControlParameters.ucFanControlMode
921 = fiji_fan_table->ucFanControlMode;
922 hwmgr->thermal_controller.advanceFanControlParameters.usDefaultMaxFanPWM
923 = fiji_fan_table->usFanPWMMax;
924 hwmgr->thermal_controller.advanceFanControlParameters.usDefaultFanOutputSensitivity
925 = 4836;
926 hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity
927 = fiji_fan_table->usFanOutputSensitivity;
928 hwmgr->thermal_controller.advanceFanControlParameters.usDefaultMaxFanRPM
929 = fiji_fan_table->usFanRPMMax;
930 hwmgr->thermal_controller.advanceFanControlParameters.ulMinFanSCLKAcousticLimit
931 = (fiji_fan_table->ulMinFanSCLKAcousticLimit / 100); /* PPTable stores it in 10Khz unit for 2 decimal places. SMC wants MHz. */
932 hwmgr->thermal_controller.advanceFanControlParameters.ucTargetTemperature
933 = fiji_fan_table->ucTargetTemperature;
934 hwmgr->thermal_controller.advanceFanControlParameters.ucMinimumPWMLimit
935 = fiji_fan_table->ucMinimumPWMLimit;
936
937 hwmgr->thermal_controller.advanceFanControlParameters.usFanGainEdge
938 = fiji_fan_table->usFanGainEdge;
939 hwmgr->thermal_controller.advanceFanControlParameters.usFanGainHotspot
940 = fiji_fan_table->usFanGainHotspot;
941 hwmgr->thermal_controller.advanceFanControlParameters.usFanGainLiquid
942 = fiji_fan_table->usFanGainLiquid;
943 hwmgr->thermal_controller.advanceFanControlParameters.usFanGainVrVddc
944 = fiji_fan_table->usFanGainVrVddc;
945 hwmgr->thermal_controller.advanceFanControlParameters.usFanGainVrMvdd
946 = fiji_fan_table->usFanGainVrMvdd;
947 hwmgr->thermal_controller.advanceFanControlParameters.usFanGainPlx
948 = fiji_fan_table->usFanGainPlx;
949 hwmgr->thermal_controller.advanceFanControlParameters.usFanGainHbm
950 = fiji_fan_table->usFanGainHbm;
951 }
952
953 return 0;
954 }
955
956 /**
957 * Private Function used during initialization.
958 * Inspect the PowerPlay table for obvious signs of corruption.
959 * @param hwmgr Pointer to the hardware manager.
960 * @param powerplay_table Pointer to the PowerPlay Table.
961 * @exception 2 if the powerplay table is incorrect.
962 */
963 static int check_powerplay_tables(
964 struct pp_hwmgr *hwmgr,
965 const ATOM_Tonga_POWERPLAYTABLE *powerplay_table
966 )
967 {
968 const ATOM_Tonga_State_Array *state_arrays;
969
970 state_arrays = (ATOM_Tonga_State_Array *)(((unsigned long)powerplay_table) +
971 le16_to_cpu(powerplay_table->usStateArrayOffset));
972
973 PP_ASSERT_WITH_CODE((ATOM_Tonga_TABLE_REVISION_TONGA <=
974 powerplay_table->sHeader.ucTableFormatRevision),
975 "Unsupported PPTable format!", return -1);
976 PP_ASSERT_WITH_CODE((0 != powerplay_table->usStateArrayOffset),
977 "State table is not set!", return -1);
978 PP_ASSERT_WITH_CODE((0 < powerplay_table->sHeader.usStructureSize),
979 "Invalid PowerPlay Table!", return -1);
980 PP_ASSERT_WITH_CODE((0 < state_arrays->ucNumEntries),
981 "Invalid PowerPlay Table!", return -1);
982
983 return 0;
984 }
985
986 int tonga_pp_tables_initialize(struct pp_hwmgr *hwmgr)
987 {
988 int result = 0;
989 const ATOM_Tonga_POWERPLAYTABLE *powerplay_table;
990
991 hwmgr->pptable = kzalloc(sizeof(struct phm_ppt_v1_information), GFP_KERNEL);
992
993 PP_ASSERT_WITH_CODE((NULL != hwmgr->pptable),
994 "Failed to allocate hwmgr->pptable!", return -ENOMEM);
995
996 memset(hwmgr->pptable, 0x00, sizeof(struct phm_ppt_v1_information));
997
998 powerplay_table = get_powerplay_table(hwmgr);
999
1000 PP_ASSERT_WITH_CODE((NULL != powerplay_table),
1001 "Missing PowerPlay Table!", return -1);
1002
1003 result = check_powerplay_tables(hwmgr, powerplay_table);
1004
1005 PP_ASSERT_WITH_CODE((result == 0),
1006 "check_powerplay_tables failed", return result);
1007
1008 result = set_platform_caps(hwmgr,
1009 le32_to_cpu(powerplay_table->ulPlatformCaps));
1010
1011 PP_ASSERT_WITH_CODE((result == 0),
1012 "set_platform_caps failed", return result);
1013
1014 result = init_thermal_controller(hwmgr, powerplay_table);
1015
1016 PP_ASSERT_WITH_CODE((result == 0),
1017 "init_thermal_controller failed", return result);
1018
1019 result = init_over_drive_limits(hwmgr, powerplay_table);
1020
1021 PP_ASSERT_WITH_CODE((result == 0),
1022 "init_over_drive_limits failed", return result);
1023
1024 result = init_clock_voltage_dependency(hwmgr, powerplay_table);
1025
1026 PP_ASSERT_WITH_CODE((result == 0),
1027 "init_clock_voltage_dependency failed", return result);
1028
1029 result = init_dpm_2_parameters(hwmgr, powerplay_table);
1030
1031 PP_ASSERT_WITH_CODE((result == 0),
1032 "init_dpm_2_parameters failed", return result);
1033
1034 return result;
1035 }
1036
1037 int tonga_pp_tables_uninitialize(struct pp_hwmgr *hwmgr)
1038 {
1039 int result = 0;
1040 struct phm_ppt_v1_information *pp_table_information =
1041 (struct phm_ppt_v1_information *)(hwmgr->pptable);
1042
1043 if (NULL != hwmgr->soft_pp_table) {
1044 kfree(hwmgr->soft_pp_table);
1045 hwmgr->soft_pp_table = NULL;
1046 }
1047
1048 if (NULL != pp_table_information->vdd_dep_on_sclk)
1049 pp_table_information->vdd_dep_on_sclk = NULL;
1050
1051 if (NULL != pp_table_information->vdd_dep_on_mclk)
1052 pp_table_information->vdd_dep_on_mclk = NULL;
1053
1054 if (NULL != pp_table_information->valid_mclk_values)
1055 pp_table_information->valid_mclk_values = NULL;
1056
1057 if (NULL != pp_table_information->valid_sclk_values)
1058 pp_table_information->valid_sclk_values = NULL;
1059
1060 if (NULL != pp_table_information->vddc_lookup_table)
1061 pp_table_information->vddc_lookup_table = NULL;
1062
1063 if (NULL != pp_table_information->vddgfx_lookup_table)
1064 pp_table_information->vddgfx_lookup_table = NULL;
1065
1066 if (NULL != pp_table_information->mm_dep_table)
1067 pp_table_information->mm_dep_table = NULL;
1068
1069 if (NULL != pp_table_information->cac_dtp_table)
1070 pp_table_information->cac_dtp_table = NULL;
1071
1072 if (NULL != hwmgr->dyn_state.cac_dtp_table)
1073 hwmgr->dyn_state.cac_dtp_table = NULL;
1074
1075 if (NULL != pp_table_information->ppm_parameter_table)
1076 pp_table_information->ppm_parameter_table = NULL;
1077
1078 if (NULL != pp_table_information->pcie_table)
1079 pp_table_information->pcie_table = NULL;
1080
1081 if (NULL != hwmgr->pptable) {
1082 kfree(hwmgr->pptable);
1083 hwmgr->pptable = NULL;
1084 }
1085
1086 return result;
1087 }
1088
1089 const struct pp_table_func tonga_pptable_funcs = {
1090 .pptable_init = tonga_pp_tables_initialize,
1091 .pptable_fini = tonga_pp_tables_uninitialize,
1092 };
1093
1094 int tonga_get_number_of_powerplay_table_entries(struct pp_hwmgr *hwmgr)
1095 {
1096 const ATOM_Tonga_State_Array * state_arrays;
1097 const ATOM_Tonga_POWERPLAYTABLE *pp_table = get_powerplay_table(hwmgr);
1098
1099 PP_ASSERT_WITH_CODE((NULL != pp_table),
1100 "Missing PowerPlay Table!", return -1);
1101 PP_ASSERT_WITH_CODE((pp_table->sHeader.ucTableFormatRevision >=
1102 ATOM_Tonga_TABLE_REVISION_TONGA),
1103 "Incorrect PowerPlay table revision!", return -1);
1104
1105 state_arrays = (ATOM_Tonga_State_Array *)(((unsigned long)pp_table) +
1106 le16_to_cpu(pp_table->usStateArrayOffset));
1107
1108 return (uint32_t)(state_arrays->ucNumEntries);
1109 }
1110
1111 /**
1112 * Private function to convert flags stored in the BIOS to software flags in PowerPlay.
1113 */
1114 static uint32_t make_classification_flags(struct pp_hwmgr *hwmgr,
1115 uint16_t classification, uint16_t classification2)
1116 {
1117 uint32_t result = 0;
1118
1119 if (classification & ATOM_PPLIB_CLASSIFICATION_BOOT)
1120 result |= PP_StateClassificationFlag_Boot;
1121
1122 if (classification & ATOM_PPLIB_CLASSIFICATION_THERMAL)
1123 result |= PP_StateClassificationFlag_Thermal;
1124
1125 if (classification & ATOM_PPLIB_CLASSIFICATION_LIMITEDPOWERSOURCE)
1126 result |= PP_StateClassificationFlag_LimitedPowerSource;
1127
1128 if (classification & ATOM_PPLIB_CLASSIFICATION_REST)
1129 result |= PP_StateClassificationFlag_Rest;
1130
1131 if (classification & ATOM_PPLIB_CLASSIFICATION_FORCED)
1132 result |= PP_StateClassificationFlag_Forced;
1133
1134 if (classification & ATOM_PPLIB_CLASSIFICATION_ACPI)
1135 result |= PP_StateClassificationFlag_ACPI;
1136
1137 if (classification2 & ATOM_PPLIB_CLASSIFICATION2_LIMITEDPOWERSOURCE_2)
1138 result |= PP_StateClassificationFlag_LimitedPowerSource_2;
1139
1140 return result;
1141 }
1142
1143 /**
1144 * Create a Power State out of an entry in the PowerPlay table.
1145 * This function is called by the hardware back-end.
1146 * @param hwmgr Pointer to the hardware manager.
1147 * @param entry_index The index of the entry to be extracted from the table.
1148 * @param power_state The address of the PowerState instance being created.
1149 * @return -1 if the entry cannot be retrieved.
1150 */
1151 int tonga_get_powerplay_table_entry(struct pp_hwmgr *hwmgr,
1152 uint32_t entry_index, struct pp_power_state *power_state,
1153 int (*call_back_func)(struct pp_hwmgr *, void *,
1154 struct pp_power_state *, void *, uint32_t))
1155 {
1156 int result = 0;
1157 const ATOM_Tonga_State_Array * state_arrays;
1158 const ATOM_Tonga_State *state_entry;
1159 const ATOM_Tonga_POWERPLAYTABLE *pp_table = get_powerplay_table(hwmgr);
1160
1161 PP_ASSERT_WITH_CODE((NULL != pp_table), "Missing PowerPlay Table!", return -1;);
1162 power_state->classification.bios_index = entry_index;
1163
1164 if (pp_table->sHeader.ucTableFormatRevision >=
1165 ATOM_Tonga_TABLE_REVISION_TONGA) {
1166 state_arrays = (ATOM_Tonga_State_Array *)(((unsigned long)pp_table) +
1167 le16_to_cpu(pp_table->usStateArrayOffset));
1168
1169 PP_ASSERT_WITH_CODE((0 < pp_table->usStateArrayOffset),
1170 "Invalid PowerPlay Table State Array Offset.", return -1);
1171 PP_ASSERT_WITH_CODE((0 < state_arrays->ucNumEntries),
1172 "Invalid PowerPlay Table State Array.", return -1);
1173 PP_ASSERT_WITH_CODE((entry_index <= state_arrays->ucNumEntries),
1174 "Invalid PowerPlay Table State Array Entry.", return -1);
1175
1176 state_entry = &(state_arrays->states[entry_index]);
1177
1178 result = call_back_func(hwmgr, (void *)state_entry, power_state,
1179 (void *)pp_table,
1180 make_classification_flags(hwmgr,
1181 le16_to_cpu(state_entry->usClassification),
1182 le16_to_cpu(state_entry->usClassification2)));
1183 }
1184
1185 if (!result && (power_state->classification.flags &
1186 PP_StateClassificationFlag_Boot))
1187 result = hwmgr->hwmgr_func->patch_boot_state(hwmgr, &(power_state->hardware));
1188
1189 return result;
1190 }