]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - drivers/gpu/drm/amd/powerplay/hwmgr/vega10_hwmgr.c
Merge branches 'for-5.1/upstream-fixes', 'for-5.2/core', 'for-5.2/ish', 'for-5.2...
[mirror_ubuntu-kernels.git] / drivers / gpu / drm / amd / powerplay / hwmgr / vega10_hwmgr.c
1 /*
2 * Copyright 2016 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 */
23
24 #include <linux/delay.h>
25 #include <linux/fb.h>
26 #include <linux/module.h>
27 #include <linux/slab.h>
28
29 #include "hwmgr.h"
30 #include "amd_powerplay.h"
31 #include "hardwaremanager.h"
32 #include "ppatomfwctrl.h"
33 #include "atomfirmware.h"
34 #include "cgs_common.h"
35 #include "vega10_powertune.h"
36 #include "smu9.h"
37 #include "smu9_driver_if.h"
38 #include "vega10_inc.h"
39 #include "soc15_common.h"
40 #include "pppcielanes.h"
41 #include "vega10_hwmgr.h"
42 #include "vega10_smumgr.h"
43 #include "vega10_processpptables.h"
44 #include "vega10_pptable.h"
45 #include "vega10_thermal.h"
46 #include "pp_debug.h"
47 #include "amd_pcie_helpers.h"
48 #include "ppinterrupt.h"
49 #include "pp_overdriver.h"
50 #include "pp_thermal.h"
51 #include "vega10_baco.h"
52
53 #include "smuio/smuio_9_0_offset.h"
54 #include "smuio/smuio_9_0_sh_mask.h"
55
56 #define HBM_MEMORY_CHANNEL_WIDTH 128
57
58 static const uint32_t channel_number[] = {1, 2, 0, 4, 0, 8, 0, 16, 2};
59
60 #define mmDF_CS_AON0_DramBaseAddress0 0x0044
61 #define mmDF_CS_AON0_DramBaseAddress0_BASE_IDX 0
62
63 //DF_CS_AON0_DramBaseAddress0
64 #define DF_CS_AON0_DramBaseAddress0__AddrRngVal__SHIFT 0x0
65 #define DF_CS_AON0_DramBaseAddress0__LgcyMmioHoleEn__SHIFT 0x1
66 #define DF_CS_AON0_DramBaseAddress0__IntLvNumChan__SHIFT 0x4
67 #define DF_CS_AON0_DramBaseAddress0__IntLvAddrSel__SHIFT 0x8
68 #define DF_CS_AON0_DramBaseAddress0__DramBaseAddr__SHIFT 0xc
69 #define DF_CS_AON0_DramBaseAddress0__AddrRngVal_MASK 0x00000001L
70 #define DF_CS_AON0_DramBaseAddress0__LgcyMmioHoleEn_MASK 0x00000002L
71 #define DF_CS_AON0_DramBaseAddress0__IntLvNumChan_MASK 0x000000F0L
72 #define DF_CS_AON0_DramBaseAddress0__IntLvAddrSel_MASK 0x00000700L
73 #define DF_CS_AON0_DramBaseAddress0__DramBaseAddr_MASK 0xFFFFF000L
74
75 typedef enum {
76 CLK_SMNCLK = 0,
77 CLK_SOCCLK,
78 CLK_MP0CLK,
79 CLK_MP1CLK,
80 CLK_LCLK,
81 CLK_DCEFCLK,
82 CLK_VCLK,
83 CLK_DCLK,
84 CLK_ECLK,
85 CLK_UCLK,
86 CLK_GFXCLK,
87 CLK_COUNT,
88 } CLOCK_ID_e;
89
90 static const ULONG PhwVega10_Magic = (ULONG)(PHM_VIslands_Magic);
91
92 struct vega10_power_state *cast_phw_vega10_power_state(
93 struct pp_hw_power_state *hw_ps)
94 {
95 PP_ASSERT_WITH_CODE((PhwVega10_Magic == hw_ps->magic),
96 "Invalid Powerstate Type!",
97 return NULL;);
98
99 return (struct vega10_power_state *)hw_ps;
100 }
101
102 const struct vega10_power_state *cast_const_phw_vega10_power_state(
103 const struct pp_hw_power_state *hw_ps)
104 {
105 PP_ASSERT_WITH_CODE((PhwVega10_Magic == hw_ps->magic),
106 "Invalid Powerstate Type!",
107 return NULL;);
108
109 return (const struct vega10_power_state *)hw_ps;
110 }
111
112 static void vega10_set_default_registry_data(struct pp_hwmgr *hwmgr)
113 {
114 struct vega10_hwmgr *data = hwmgr->backend;
115
116 data->registry_data.sclk_dpm_key_disabled =
117 hwmgr->feature_mask & PP_SCLK_DPM_MASK ? false : true;
118 data->registry_data.socclk_dpm_key_disabled =
119 hwmgr->feature_mask & PP_SOCCLK_DPM_MASK ? false : true;
120 data->registry_data.mclk_dpm_key_disabled =
121 hwmgr->feature_mask & PP_MCLK_DPM_MASK ? false : true;
122 data->registry_data.pcie_dpm_key_disabled =
123 hwmgr->feature_mask & PP_PCIE_DPM_MASK ? false : true;
124
125 data->registry_data.dcefclk_dpm_key_disabled =
126 hwmgr->feature_mask & PP_DCEFCLK_DPM_MASK ? false : true;
127
128 if (hwmgr->feature_mask & PP_POWER_CONTAINMENT_MASK) {
129 data->registry_data.power_containment_support = 1;
130 data->registry_data.enable_pkg_pwr_tracking_feature = 1;
131 data->registry_data.enable_tdc_limit_feature = 1;
132 }
133
134 data->registry_data.clock_stretcher_support =
135 hwmgr->feature_mask & PP_CLOCK_STRETCH_MASK ? true : false;
136
137 data->registry_data.ulv_support =
138 hwmgr->feature_mask & PP_ULV_MASK ? true : false;
139
140 data->registry_data.sclk_deep_sleep_support =
141 hwmgr->feature_mask & PP_SCLK_DEEP_SLEEP_MASK ? true : false;
142
143 data->registry_data.disable_water_mark = 0;
144
145 data->registry_data.fan_control_support = 1;
146 data->registry_data.thermal_support = 1;
147 data->registry_data.fw_ctf_enabled = 1;
148
149 data->registry_data.avfs_support =
150 hwmgr->feature_mask & PP_AVFS_MASK ? true : false;
151 data->registry_data.led_dpm_enabled = 1;
152
153 data->registry_data.vr0hot_enabled = 1;
154 data->registry_data.vr1hot_enabled = 1;
155 data->registry_data.regulator_hot_gpio_support = 1;
156
157 data->registry_data.didt_support = 1;
158 if (data->registry_data.didt_support) {
159 data->registry_data.didt_mode = 6;
160 data->registry_data.sq_ramping_support = 1;
161 data->registry_data.db_ramping_support = 0;
162 data->registry_data.td_ramping_support = 0;
163 data->registry_data.tcp_ramping_support = 0;
164 data->registry_data.dbr_ramping_support = 0;
165 data->registry_data.edc_didt_support = 1;
166 data->registry_data.gc_didt_support = 0;
167 data->registry_data.psm_didt_support = 0;
168 }
169
170 data->display_voltage_mode = PPVEGA10_VEGA10DISPLAYVOLTAGEMODE_DFLT;
171 data->dcef_clk_quad_eqn_a = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT;
172 data->dcef_clk_quad_eqn_b = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT;
173 data->dcef_clk_quad_eqn_c = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT;
174 data->disp_clk_quad_eqn_a = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT;
175 data->disp_clk_quad_eqn_b = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT;
176 data->disp_clk_quad_eqn_c = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT;
177 data->pixel_clk_quad_eqn_a = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT;
178 data->pixel_clk_quad_eqn_b = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT;
179 data->pixel_clk_quad_eqn_c = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT;
180 data->phy_clk_quad_eqn_a = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT;
181 data->phy_clk_quad_eqn_b = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT;
182 data->phy_clk_quad_eqn_c = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT;
183
184 data->gfxclk_average_alpha = PPVEGA10_VEGA10GFXCLKAVERAGEALPHA_DFLT;
185 data->socclk_average_alpha = PPVEGA10_VEGA10SOCCLKAVERAGEALPHA_DFLT;
186 data->uclk_average_alpha = PPVEGA10_VEGA10UCLKCLKAVERAGEALPHA_DFLT;
187 data->gfx_activity_average_alpha = PPVEGA10_VEGA10GFXACTIVITYAVERAGEALPHA_DFLT;
188 }
189
190 static int vega10_set_features_platform_caps(struct pp_hwmgr *hwmgr)
191 {
192 struct vega10_hwmgr *data = hwmgr->backend;
193 struct phm_ppt_v2_information *table_info =
194 (struct phm_ppt_v2_information *)hwmgr->pptable;
195 struct amdgpu_device *adev = hwmgr->adev;
196
197 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
198 PHM_PlatformCaps_SclkDeepSleep);
199
200 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
201 PHM_PlatformCaps_DynamicPatchPowerState);
202
203 if (data->vddci_control == VEGA10_VOLTAGE_CONTROL_NONE)
204 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
205 PHM_PlatformCaps_ControlVDDCI);
206
207 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
208 PHM_PlatformCaps_EnableSMU7ThermalManagement);
209
210 if (adev->pg_flags & AMD_PG_SUPPORT_UVD)
211 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
212 PHM_PlatformCaps_UVDPowerGating);
213
214 if (adev->pg_flags & AMD_PG_SUPPORT_VCE)
215 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
216 PHM_PlatformCaps_VCEPowerGating);
217
218 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
219 PHM_PlatformCaps_UnTabledHardwareInterface);
220
221 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
222 PHM_PlatformCaps_FanSpeedInTableIsRPM);
223
224 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
225 PHM_PlatformCaps_ODFuzzyFanControlSupport);
226
227 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
228 PHM_PlatformCaps_DynamicPowerManagement);
229
230 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
231 PHM_PlatformCaps_SMC);
232
233 /* power tune caps */
234 /* assume disabled */
235 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
236 PHM_PlatformCaps_PowerContainment);
237 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
238 PHM_PlatformCaps_DiDtSupport);
239 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
240 PHM_PlatformCaps_SQRamping);
241 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
242 PHM_PlatformCaps_DBRamping);
243 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
244 PHM_PlatformCaps_TDRamping);
245 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
246 PHM_PlatformCaps_TCPRamping);
247 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
248 PHM_PlatformCaps_DBRRamping);
249 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
250 PHM_PlatformCaps_DiDtEDCEnable);
251 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
252 PHM_PlatformCaps_GCEDC);
253 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
254 PHM_PlatformCaps_PSM);
255
256 if (data->registry_data.didt_support) {
257 phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_DiDtSupport);
258 if (data->registry_data.sq_ramping_support)
259 phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SQRamping);
260 if (data->registry_data.db_ramping_support)
261 phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_DBRamping);
262 if (data->registry_data.td_ramping_support)
263 phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_TDRamping);
264 if (data->registry_data.tcp_ramping_support)
265 phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_TCPRamping);
266 if (data->registry_data.dbr_ramping_support)
267 phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_DBRRamping);
268 if (data->registry_data.edc_didt_support)
269 phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_DiDtEDCEnable);
270 if (data->registry_data.gc_didt_support)
271 phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_GCEDC);
272 if (data->registry_data.psm_didt_support)
273 phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_PSM);
274 }
275
276 if (data->registry_data.power_containment_support)
277 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
278 PHM_PlatformCaps_PowerContainment);
279 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
280 PHM_PlatformCaps_CAC);
281
282 if (table_info->tdp_table->usClockStretchAmount &&
283 data->registry_data.clock_stretcher_support)
284 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
285 PHM_PlatformCaps_ClockStretcher);
286
287 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
288 PHM_PlatformCaps_RegulatorHot);
289 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
290 PHM_PlatformCaps_AutomaticDCTransition);
291
292 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
293 PHM_PlatformCaps_UVDDPM);
294 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
295 PHM_PlatformCaps_VCEDPM);
296
297 return 0;
298 }
299
300 static int vega10_odn_initial_default_setting(struct pp_hwmgr *hwmgr)
301 {
302 struct vega10_hwmgr *data = hwmgr->backend;
303 struct phm_ppt_v2_information *table_info =
304 (struct phm_ppt_v2_information *)(hwmgr->pptable);
305 struct vega10_odn_dpm_table *odn_table = &(data->odn_dpm_table);
306 struct vega10_odn_vddc_lookup_table *od_lookup_table;
307 struct phm_ppt_v1_voltage_lookup_table *vddc_lookup_table;
308 struct phm_ppt_v1_clock_voltage_dependency_table *dep_table[3];
309 struct phm_ppt_v1_clock_voltage_dependency_table *od_table[3];
310 struct pp_atomfwctrl_avfs_parameters avfs_params = {0};
311 uint32_t i;
312 int result;
313
314 result = pp_atomfwctrl_get_avfs_information(hwmgr, &avfs_params);
315 if (!result) {
316 data->odn_dpm_table.max_vddc = avfs_params.ulMaxVddc;
317 data->odn_dpm_table.min_vddc = avfs_params.ulMinVddc;
318 }
319
320 od_lookup_table = &odn_table->vddc_lookup_table;
321 vddc_lookup_table = table_info->vddc_lookup_table;
322
323 for (i = 0; i < vddc_lookup_table->count; i++)
324 od_lookup_table->entries[i].us_vdd = vddc_lookup_table->entries[i].us_vdd;
325
326 od_lookup_table->count = vddc_lookup_table->count;
327
328 dep_table[0] = table_info->vdd_dep_on_sclk;
329 dep_table[1] = table_info->vdd_dep_on_mclk;
330 dep_table[2] = table_info->vdd_dep_on_socclk;
331 od_table[0] = (struct phm_ppt_v1_clock_voltage_dependency_table *)&odn_table->vdd_dep_on_sclk;
332 od_table[1] = (struct phm_ppt_v1_clock_voltage_dependency_table *)&odn_table->vdd_dep_on_mclk;
333 od_table[2] = (struct phm_ppt_v1_clock_voltage_dependency_table *)&odn_table->vdd_dep_on_socclk;
334
335 for (i = 0; i < 3; i++)
336 smu_get_voltage_dependency_table_ppt_v1(dep_table[i], od_table[i]);
337
338 if (odn_table->max_vddc == 0 || odn_table->max_vddc > 2000)
339 odn_table->max_vddc = dep_table[0]->entries[dep_table[0]->count - 1].vddc;
340 if (odn_table->min_vddc == 0 || odn_table->min_vddc > 2000)
341 odn_table->min_vddc = dep_table[0]->entries[0].vddc;
342
343 i = od_table[2]->count - 1;
344 od_table[2]->entries[i].clk = hwmgr->platform_descriptor.overdriveLimit.memoryClock > od_table[2]->entries[i].clk ?
345 hwmgr->platform_descriptor.overdriveLimit.memoryClock :
346 od_table[2]->entries[i].clk;
347 od_table[2]->entries[i].vddc = odn_table->max_vddc > od_table[2]->entries[i].vddc ?
348 odn_table->max_vddc :
349 od_table[2]->entries[i].vddc;
350
351 return 0;
352 }
353
354 static void vega10_init_dpm_defaults(struct pp_hwmgr *hwmgr)
355 {
356 struct vega10_hwmgr *data = hwmgr->backend;
357 int i;
358 uint32_t sub_vendor_id, hw_revision;
359 struct amdgpu_device *adev = hwmgr->adev;
360
361 vega10_initialize_power_tune_defaults(hwmgr);
362
363 for (i = 0; i < GNLD_FEATURES_MAX; i++) {
364 data->smu_features[i].smu_feature_id = 0xffff;
365 data->smu_features[i].smu_feature_bitmap = 1 << i;
366 data->smu_features[i].enabled = false;
367 data->smu_features[i].supported = false;
368 }
369
370 data->smu_features[GNLD_DPM_PREFETCHER].smu_feature_id =
371 FEATURE_DPM_PREFETCHER_BIT;
372 data->smu_features[GNLD_DPM_GFXCLK].smu_feature_id =
373 FEATURE_DPM_GFXCLK_BIT;
374 data->smu_features[GNLD_DPM_UCLK].smu_feature_id =
375 FEATURE_DPM_UCLK_BIT;
376 data->smu_features[GNLD_DPM_SOCCLK].smu_feature_id =
377 FEATURE_DPM_SOCCLK_BIT;
378 data->smu_features[GNLD_DPM_UVD].smu_feature_id =
379 FEATURE_DPM_UVD_BIT;
380 data->smu_features[GNLD_DPM_VCE].smu_feature_id =
381 FEATURE_DPM_VCE_BIT;
382 data->smu_features[GNLD_DPM_MP0CLK].smu_feature_id =
383 FEATURE_DPM_MP0CLK_BIT;
384 data->smu_features[GNLD_DPM_LINK].smu_feature_id =
385 FEATURE_DPM_LINK_BIT;
386 data->smu_features[GNLD_DPM_DCEFCLK].smu_feature_id =
387 FEATURE_DPM_DCEFCLK_BIT;
388 data->smu_features[GNLD_ULV].smu_feature_id =
389 FEATURE_ULV_BIT;
390 data->smu_features[GNLD_AVFS].smu_feature_id =
391 FEATURE_AVFS_BIT;
392 data->smu_features[GNLD_DS_GFXCLK].smu_feature_id =
393 FEATURE_DS_GFXCLK_BIT;
394 data->smu_features[GNLD_DS_SOCCLK].smu_feature_id =
395 FEATURE_DS_SOCCLK_BIT;
396 data->smu_features[GNLD_DS_LCLK].smu_feature_id =
397 FEATURE_DS_LCLK_BIT;
398 data->smu_features[GNLD_PPT].smu_feature_id =
399 FEATURE_PPT_BIT;
400 data->smu_features[GNLD_TDC].smu_feature_id =
401 FEATURE_TDC_BIT;
402 data->smu_features[GNLD_THERMAL].smu_feature_id =
403 FEATURE_THERMAL_BIT;
404 data->smu_features[GNLD_GFX_PER_CU_CG].smu_feature_id =
405 FEATURE_GFX_PER_CU_CG_BIT;
406 data->smu_features[GNLD_RM].smu_feature_id =
407 FEATURE_RM_BIT;
408 data->smu_features[GNLD_DS_DCEFCLK].smu_feature_id =
409 FEATURE_DS_DCEFCLK_BIT;
410 data->smu_features[GNLD_ACDC].smu_feature_id =
411 FEATURE_ACDC_BIT;
412 data->smu_features[GNLD_VR0HOT].smu_feature_id =
413 FEATURE_VR0HOT_BIT;
414 data->smu_features[GNLD_VR1HOT].smu_feature_id =
415 FEATURE_VR1HOT_BIT;
416 data->smu_features[GNLD_FW_CTF].smu_feature_id =
417 FEATURE_FW_CTF_BIT;
418 data->smu_features[GNLD_LED_DISPLAY].smu_feature_id =
419 FEATURE_LED_DISPLAY_BIT;
420 data->smu_features[GNLD_FAN_CONTROL].smu_feature_id =
421 FEATURE_FAN_CONTROL_BIT;
422 data->smu_features[GNLD_ACG].smu_feature_id = FEATURE_ACG_BIT;
423 data->smu_features[GNLD_DIDT].smu_feature_id = FEATURE_GFX_EDC_BIT;
424 data->smu_features[GNLD_PCC_LIMIT].smu_feature_id = FEATURE_PCC_LIMIT_CONTROL_BIT;
425
426 if (!data->registry_data.prefetcher_dpm_key_disabled)
427 data->smu_features[GNLD_DPM_PREFETCHER].supported = true;
428
429 if (!data->registry_data.sclk_dpm_key_disabled)
430 data->smu_features[GNLD_DPM_GFXCLK].supported = true;
431
432 if (!data->registry_data.mclk_dpm_key_disabled)
433 data->smu_features[GNLD_DPM_UCLK].supported = true;
434
435 if (!data->registry_data.socclk_dpm_key_disabled)
436 data->smu_features[GNLD_DPM_SOCCLK].supported = true;
437
438 if (PP_CAP(PHM_PlatformCaps_UVDDPM))
439 data->smu_features[GNLD_DPM_UVD].supported = true;
440
441 if (PP_CAP(PHM_PlatformCaps_VCEDPM))
442 data->smu_features[GNLD_DPM_VCE].supported = true;
443
444 if (!data->registry_data.pcie_dpm_key_disabled)
445 data->smu_features[GNLD_DPM_LINK].supported = true;
446
447 if (!data->registry_data.dcefclk_dpm_key_disabled)
448 data->smu_features[GNLD_DPM_DCEFCLK].supported = true;
449
450 if (PP_CAP(PHM_PlatformCaps_SclkDeepSleep) &&
451 data->registry_data.sclk_deep_sleep_support) {
452 data->smu_features[GNLD_DS_GFXCLK].supported = true;
453 data->smu_features[GNLD_DS_SOCCLK].supported = true;
454 data->smu_features[GNLD_DS_LCLK].supported = true;
455 data->smu_features[GNLD_DS_DCEFCLK].supported = true;
456 }
457
458 if (data->registry_data.enable_pkg_pwr_tracking_feature)
459 data->smu_features[GNLD_PPT].supported = true;
460
461 if (data->registry_data.enable_tdc_limit_feature)
462 data->smu_features[GNLD_TDC].supported = true;
463
464 if (data->registry_data.thermal_support)
465 data->smu_features[GNLD_THERMAL].supported = true;
466
467 if (data->registry_data.fan_control_support)
468 data->smu_features[GNLD_FAN_CONTROL].supported = true;
469
470 if (data->registry_data.fw_ctf_enabled)
471 data->smu_features[GNLD_FW_CTF].supported = true;
472
473 if (data->registry_data.avfs_support)
474 data->smu_features[GNLD_AVFS].supported = true;
475
476 if (data->registry_data.led_dpm_enabled)
477 data->smu_features[GNLD_LED_DISPLAY].supported = true;
478
479 if (data->registry_data.vr1hot_enabled)
480 data->smu_features[GNLD_VR1HOT].supported = true;
481
482 if (data->registry_data.vr0hot_enabled)
483 data->smu_features[GNLD_VR0HOT].supported = true;
484
485 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetSmuVersion);
486 hwmgr->smu_version = smum_get_argument(hwmgr);
487 /* ACG firmware has major version 5 */
488 if ((hwmgr->smu_version & 0xff000000) == 0x5000000)
489 data->smu_features[GNLD_ACG].supported = true;
490 if (data->registry_data.didt_support)
491 data->smu_features[GNLD_DIDT].supported = true;
492
493 hw_revision = adev->pdev->revision;
494 sub_vendor_id = adev->pdev->subsystem_vendor;
495
496 if ((hwmgr->chip_id == 0x6862 ||
497 hwmgr->chip_id == 0x6861 ||
498 hwmgr->chip_id == 0x6868) &&
499 (hw_revision == 0) &&
500 (sub_vendor_id != 0x1002))
501 data->smu_features[GNLD_PCC_LIMIT].supported = true;
502 }
503
504 #ifdef PPLIB_VEGA10_EVV_SUPPORT
505 static int vega10_get_socclk_for_voltage_evv(struct pp_hwmgr *hwmgr,
506 phm_ppt_v1_voltage_lookup_table *lookup_table,
507 uint16_t virtual_voltage_id, int32_t *socclk)
508 {
509 uint8_t entry_id;
510 uint8_t voltage_id;
511 struct phm_ppt_v2_information *table_info =
512 (struct phm_ppt_v2_information *)(hwmgr->pptable);
513
514 PP_ASSERT_WITH_CODE(lookup_table->count != 0,
515 "Lookup table is empty",
516 return -EINVAL);
517
518 /* search for leakage voltage ID 0xff01 ~ 0xff08 and sclk */
519 for (entry_id = 0; entry_id < table_info->vdd_dep_on_sclk->count; entry_id++) {
520 voltage_id = table_info->vdd_dep_on_socclk->entries[entry_id].vddInd;
521 if (lookup_table->entries[voltage_id].us_vdd == virtual_voltage_id)
522 break;
523 }
524
525 PP_ASSERT_WITH_CODE(entry_id < table_info->vdd_dep_on_socclk->count,
526 "Can't find requested voltage id in vdd_dep_on_socclk table!",
527 return -EINVAL);
528
529 *socclk = table_info->vdd_dep_on_socclk->entries[entry_id].clk;
530
531 return 0;
532 }
533
534 #define ATOM_VIRTUAL_VOLTAGE_ID0 0xff01
535 /**
536 * Get Leakage VDDC based on leakage ID.
537 *
538 * @param hwmgr the address of the powerplay hardware manager.
539 * @return always 0.
540 */
541 static int vega10_get_evv_voltages(struct pp_hwmgr *hwmgr)
542 {
543 struct vega10_hwmgr *data = hwmgr->backend;
544 uint16_t vv_id;
545 uint32_t vddc = 0;
546 uint16_t i, j;
547 uint32_t sclk = 0;
548 struct phm_ppt_v2_information *table_info =
549 (struct phm_ppt_v2_information *)hwmgr->pptable;
550 struct phm_ppt_v1_clock_voltage_dependency_table *socclk_table =
551 table_info->vdd_dep_on_socclk;
552 int result;
553
554 for (i = 0; i < VEGA10_MAX_LEAKAGE_COUNT; i++) {
555 vv_id = ATOM_VIRTUAL_VOLTAGE_ID0 + i;
556
557 if (!vega10_get_socclk_for_voltage_evv(hwmgr,
558 table_info->vddc_lookup_table, vv_id, &sclk)) {
559 if (PP_CAP(PHM_PlatformCaps_ClockStretcher)) {
560 for (j = 1; j < socclk_table->count; j++) {
561 if (socclk_table->entries[j].clk == sclk &&
562 socclk_table->entries[j].cks_enable == 0) {
563 sclk += 5000;
564 break;
565 }
566 }
567 }
568
569 PP_ASSERT_WITH_CODE(!atomctrl_get_voltage_evv_on_sclk_ai(hwmgr,
570 VOLTAGE_TYPE_VDDC, sclk, vv_id, &vddc),
571 "Error retrieving EVV voltage value!",
572 continue);
573
574
575 /* need to make sure vddc is less than 2v or else, it could burn the ASIC. */
576 PP_ASSERT_WITH_CODE((vddc < 2000 && vddc != 0),
577 "Invalid VDDC value", result = -EINVAL;);
578
579 /* the voltage should not be zero nor equal to leakage ID */
580 if (vddc != 0 && vddc != vv_id) {
581 data->vddc_leakage.actual_voltage[data->vddc_leakage.count] = (uint16_t)(vddc/100);
582 data->vddc_leakage.leakage_id[data->vddc_leakage.count] = vv_id;
583 data->vddc_leakage.count++;
584 }
585 }
586 }
587
588 return 0;
589 }
590
591 /**
592 * Change virtual leakage voltage to actual value.
593 *
594 * @param hwmgr the address of the powerplay hardware manager.
595 * @param pointer to changing voltage
596 * @param pointer to leakage table
597 */
598 static void vega10_patch_with_vdd_leakage(struct pp_hwmgr *hwmgr,
599 uint16_t *voltage, struct vega10_leakage_voltage *leakage_table)
600 {
601 uint32_t index;
602
603 /* search for leakage voltage ID 0xff01 ~ 0xff08 */
604 for (index = 0; index < leakage_table->count; index++) {
605 /* if this voltage matches a leakage voltage ID */
606 /* patch with actual leakage voltage */
607 if (leakage_table->leakage_id[index] == *voltage) {
608 *voltage = leakage_table->actual_voltage[index];
609 break;
610 }
611 }
612
613 if (*voltage > ATOM_VIRTUAL_VOLTAGE_ID0)
614 pr_info("Voltage value looks like a Leakage ID but it's not patched\n");
615 }
616
617 /**
618 * Patch voltage lookup table by EVV leakages.
619 *
620 * @param hwmgr the address of the powerplay hardware manager.
621 * @param pointer to voltage lookup table
622 * @param pointer to leakage table
623 * @return always 0
624 */
625 static int vega10_patch_lookup_table_with_leakage(struct pp_hwmgr *hwmgr,
626 phm_ppt_v1_voltage_lookup_table *lookup_table,
627 struct vega10_leakage_voltage *leakage_table)
628 {
629 uint32_t i;
630
631 for (i = 0; i < lookup_table->count; i++)
632 vega10_patch_with_vdd_leakage(hwmgr,
633 &lookup_table->entries[i].us_vdd, leakage_table);
634
635 return 0;
636 }
637
638 static int vega10_patch_clock_voltage_limits_with_vddc_leakage(
639 struct pp_hwmgr *hwmgr, struct vega10_leakage_voltage *leakage_table,
640 uint16_t *vddc)
641 {
642 vega10_patch_with_vdd_leakage(hwmgr, (uint16_t *)vddc, leakage_table);
643
644 return 0;
645 }
646 #endif
647
648 static int vega10_patch_voltage_dependency_tables_with_lookup_table(
649 struct pp_hwmgr *hwmgr)
650 {
651 uint8_t entry_id, voltage_id;
652 unsigned i;
653 struct phm_ppt_v2_information *table_info =
654 (struct phm_ppt_v2_information *)(hwmgr->pptable);
655 struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
656 table_info->mm_dep_table;
657 struct phm_ppt_v1_clock_voltage_dependency_table *mclk_table =
658 table_info->vdd_dep_on_mclk;
659
660 for (i = 0; i < 6; i++) {
661 struct phm_ppt_v1_clock_voltage_dependency_table *vdt;
662 switch (i) {
663 case 0: vdt = table_info->vdd_dep_on_socclk; break;
664 case 1: vdt = table_info->vdd_dep_on_sclk; break;
665 case 2: vdt = table_info->vdd_dep_on_dcefclk; break;
666 case 3: vdt = table_info->vdd_dep_on_pixclk; break;
667 case 4: vdt = table_info->vdd_dep_on_dispclk; break;
668 case 5: vdt = table_info->vdd_dep_on_phyclk; break;
669 }
670
671 for (entry_id = 0; entry_id < vdt->count; entry_id++) {
672 voltage_id = vdt->entries[entry_id].vddInd;
673 vdt->entries[entry_id].vddc =
674 table_info->vddc_lookup_table->entries[voltage_id].us_vdd;
675 }
676 }
677
678 for (entry_id = 0; entry_id < mm_table->count; ++entry_id) {
679 voltage_id = mm_table->entries[entry_id].vddcInd;
680 mm_table->entries[entry_id].vddc =
681 table_info->vddc_lookup_table->entries[voltage_id].us_vdd;
682 }
683
684 for (entry_id = 0; entry_id < mclk_table->count; ++entry_id) {
685 voltage_id = mclk_table->entries[entry_id].vddInd;
686 mclk_table->entries[entry_id].vddc =
687 table_info->vddc_lookup_table->entries[voltage_id].us_vdd;
688 voltage_id = mclk_table->entries[entry_id].vddciInd;
689 mclk_table->entries[entry_id].vddci =
690 table_info->vddci_lookup_table->entries[voltage_id].us_vdd;
691 voltage_id = mclk_table->entries[entry_id].mvddInd;
692 mclk_table->entries[entry_id].mvdd =
693 table_info->vddmem_lookup_table->entries[voltage_id].us_vdd;
694 }
695
696
697 return 0;
698
699 }
700
701 static int vega10_sort_lookup_table(struct pp_hwmgr *hwmgr,
702 struct phm_ppt_v1_voltage_lookup_table *lookup_table)
703 {
704 uint32_t table_size, i, j;
705 struct phm_ppt_v1_voltage_lookup_record tmp_voltage_lookup_record;
706
707 PP_ASSERT_WITH_CODE(lookup_table && lookup_table->count,
708 "Lookup table is empty", return -EINVAL);
709
710 table_size = lookup_table->count;
711
712 /* Sorting voltages */
713 for (i = 0; i < table_size - 1; i++) {
714 for (j = i + 1; j > 0; j--) {
715 if (lookup_table->entries[j].us_vdd <
716 lookup_table->entries[j - 1].us_vdd) {
717 tmp_voltage_lookup_record = lookup_table->entries[j - 1];
718 lookup_table->entries[j - 1] = lookup_table->entries[j];
719 lookup_table->entries[j] = tmp_voltage_lookup_record;
720 }
721 }
722 }
723
724 return 0;
725 }
726
727 static int vega10_complete_dependency_tables(struct pp_hwmgr *hwmgr)
728 {
729 int result = 0;
730 int tmp_result;
731 struct phm_ppt_v2_information *table_info =
732 (struct phm_ppt_v2_information *)(hwmgr->pptable);
733 #ifdef PPLIB_VEGA10_EVV_SUPPORT
734 struct vega10_hwmgr *data = hwmgr->backend;
735
736 tmp_result = vega10_patch_lookup_table_with_leakage(hwmgr,
737 table_info->vddc_lookup_table, &(data->vddc_leakage));
738 if (tmp_result)
739 result = tmp_result;
740
741 tmp_result = vega10_patch_clock_voltage_limits_with_vddc_leakage(hwmgr,
742 &(data->vddc_leakage), &table_info->max_clock_voltage_on_dc.vddc);
743 if (tmp_result)
744 result = tmp_result;
745 #endif
746
747 tmp_result = vega10_patch_voltage_dependency_tables_with_lookup_table(hwmgr);
748 if (tmp_result)
749 result = tmp_result;
750
751 tmp_result = vega10_sort_lookup_table(hwmgr, table_info->vddc_lookup_table);
752 if (tmp_result)
753 result = tmp_result;
754
755 return result;
756 }
757
758 static int vega10_set_private_data_based_on_pptable(struct pp_hwmgr *hwmgr)
759 {
760 struct phm_ppt_v2_information *table_info =
761 (struct phm_ppt_v2_information *)(hwmgr->pptable);
762 struct phm_ppt_v1_clock_voltage_dependency_table *allowed_sclk_vdd_table =
763 table_info->vdd_dep_on_socclk;
764 struct phm_ppt_v1_clock_voltage_dependency_table *allowed_mclk_vdd_table =
765 table_info->vdd_dep_on_mclk;
766
767 PP_ASSERT_WITH_CODE(allowed_sclk_vdd_table,
768 "VDD dependency on SCLK table is missing. This table is mandatory", return -EINVAL);
769 PP_ASSERT_WITH_CODE(allowed_sclk_vdd_table->count >= 1,
770 "VDD dependency on SCLK table is empty. This table is mandatory", return -EINVAL);
771
772 PP_ASSERT_WITH_CODE(allowed_mclk_vdd_table,
773 "VDD dependency on MCLK table is missing. This table is mandatory", return -EINVAL);
774 PP_ASSERT_WITH_CODE(allowed_mclk_vdd_table->count >= 1,
775 "VDD dependency on MCLK table is empty. This table is mandatory", return -EINVAL);
776
777 table_info->max_clock_voltage_on_ac.sclk =
778 allowed_sclk_vdd_table->entries[allowed_sclk_vdd_table->count - 1].clk;
779 table_info->max_clock_voltage_on_ac.mclk =
780 allowed_mclk_vdd_table->entries[allowed_mclk_vdd_table->count - 1].clk;
781 table_info->max_clock_voltage_on_ac.vddc =
782 allowed_sclk_vdd_table->entries[allowed_sclk_vdd_table->count - 1].vddc;
783 table_info->max_clock_voltage_on_ac.vddci =
784 allowed_mclk_vdd_table->entries[allowed_mclk_vdd_table->count - 1].vddci;
785
786 hwmgr->dyn_state.max_clock_voltage_on_ac.sclk =
787 table_info->max_clock_voltage_on_ac.sclk;
788 hwmgr->dyn_state.max_clock_voltage_on_ac.mclk =
789 table_info->max_clock_voltage_on_ac.mclk;
790 hwmgr->dyn_state.max_clock_voltage_on_ac.vddc =
791 table_info->max_clock_voltage_on_ac.vddc;
792 hwmgr->dyn_state.max_clock_voltage_on_ac.vddci =
793 table_info->max_clock_voltage_on_ac.vddci;
794
795 return 0;
796 }
797
798 static int vega10_hwmgr_backend_fini(struct pp_hwmgr *hwmgr)
799 {
800 kfree(hwmgr->dyn_state.vddc_dep_on_dal_pwrl);
801 hwmgr->dyn_state.vddc_dep_on_dal_pwrl = NULL;
802
803 kfree(hwmgr->backend);
804 hwmgr->backend = NULL;
805
806 return 0;
807 }
808
809 static int vega10_hwmgr_backend_init(struct pp_hwmgr *hwmgr)
810 {
811 int result = 0;
812 struct vega10_hwmgr *data;
813 uint32_t config_telemetry = 0;
814 struct pp_atomfwctrl_voltage_table vol_table;
815 struct amdgpu_device *adev = hwmgr->adev;
816
817 data = kzalloc(sizeof(struct vega10_hwmgr), GFP_KERNEL);
818 if (data == NULL)
819 return -ENOMEM;
820
821 hwmgr->backend = data;
822
823 hwmgr->workload_mask = 1 << hwmgr->workload_prority[PP_SMC_POWER_PROFILE_BOOTUP_DEFAULT];
824 hwmgr->power_profile_mode = PP_SMC_POWER_PROFILE_BOOTUP_DEFAULT;
825 hwmgr->default_power_profile_mode = PP_SMC_POWER_PROFILE_BOOTUP_DEFAULT;
826
827 vega10_set_default_registry_data(hwmgr);
828 data->disable_dpm_mask = 0xff;
829
830 /* need to set voltage control types before EVV patching */
831 data->vddc_control = VEGA10_VOLTAGE_CONTROL_NONE;
832 data->mvdd_control = VEGA10_VOLTAGE_CONTROL_NONE;
833 data->vddci_control = VEGA10_VOLTAGE_CONTROL_NONE;
834
835 /* VDDCR_SOC */
836 if (pp_atomfwctrl_is_voltage_controlled_by_gpio_v4(hwmgr,
837 VOLTAGE_TYPE_VDDC, VOLTAGE_OBJ_SVID2)) {
838 if (!pp_atomfwctrl_get_voltage_table_v4(hwmgr,
839 VOLTAGE_TYPE_VDDC, VOLTAGE_OBJ_SVID2,
840 &vol_table)) {
841 config_telemetry = ((vol_table.telemetry_slope << 8) & 0xff00) |
842 (vol_table.telemetry_offset & 0xff);
843 data->vddc_control = VEGA10_VOLTAGE_CONTROL_BY_SVID2;
844 }
845 } else {
846 kfree(hwmgr->backend);
847 hwmgr->backend = NULL;
848 PP_ASSERT_WITH_CODE(false,
849 "VDDCR_SOC is not SVID2!",
850 return -1);
851 }
852
853 /* MVDDC */
854 if (pp_atomfwctrl_is_voltage_controlled_by_gpio_v4(hwmgr,
855 VOLTAGE_TYPE_MVDDC, VOLTAGE_OBJ_SVID2)) {
856 if (!pp_atomfwctrl_get_voltage_table_v4(hwmgr,
857 VOLTAGE_TYPE_MVDDC, VOLTAGE_OBJ_SVID2,
858 &vol_table)) {
859 config_telemetry |=
860 ((vol_table.telemetry_slope << 24) & 0xff000000) |
861 ((vol_table.telemetry_offset << 16) & 0xff0000);
862 data->mvdd_control = VEGA10_VOLTAGE_CONTROL_BY_SVID2;
863 }
864 }
865
866 /* VDDCI_MEM */
867 if (PP_CAP(PHM_PlatformCaps_ControlVDDCI)) {
868 if (pp_atomfwctrl_is_voltage_controlled_by_gpio_v4(hwmgr,
869 VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_GPIO_LUT))
870 data->vddci_control = VEGA10_VOLTAGE_CONTROL_BY_GPIO;
871 }
872
873 data->config_telemetry = config_telemetry;
874
875 vega10_set_features_platform_caps(hwmgr);
876
877 vega10_init_dpm_defaults(hwmgr);
878
879 #ifdef PPLIB_VEGA10_EVV_SUPPORT
880 /* Get leakage voltage based on leakage ID. */
881 PP_ASSERT_WITH_CODE(!vega10_get_evv_voltages(hwmgr),
882 "Get EVV Voltage Failed. Abort Driver loading!",
883 return -1);
884 #endif
885
886 /* Patch our voltage dependency table with actual leakage voltage
887 * We need to perform leakage translation before it's used by other functions
888 */
889 vega10_complete_dependency_tables(hwmgr);
890
891 /* Parse pptable data read from VBIOS */
892 vega10_set_private_data_based_on_pptable(hwmgr);
893
894 data->is_tlu_enabled = false;
895
896 hwmgr->platform_descriptor.hardwareActivityPerformanceLevels =
897 VEGA10_MAX_HARDWARE_POWERLEVELS;
898 hwmgr->platform_descriptor.hardwarePerformanceLevels = 2;
899 hwmgr->platform_descriptor.minimumClocksReductionPercentage = 50;
900
901 hwmgr->platform_descriptor.vbiosInterruptId = 0x20000400; /* IRQ_SOURCE1_SW_INT */
902 /* The true clock step depends on the frequency, typically 4.5 or 9 MHz. Here we use 5. */
903 hwmgr->platform_descriptor.clockStep.engineClock = 500;
904 hwmgr->platform_descriptor.clockStep.memoryClock = 500;
905
906 data->total_active_cus = adev->gfx.cu_info.number;
907 /* Setup default Overdrive Fan control settings */
908 data->odn_fan_table.target_fan_speed =
909 hwmgr->thermal_controller.advanceFanControlParameters.usMaxFanRPM;
910 data->odn_fan_table.target_temperature =
911 hwmgr->thermal_controller.
912 advanceFanControlParameters.ucTargetTemperature;
913 data->odn_fan_table.min_performance_clock =
914 hwmgr->thermal_controller.advanceFanControlParameters.
915 ulMinFanSCLKAcousticLimit;
916 data->odn_fan_table.min_fan_limit =
917 hwmgr->thermal_controller.
918 advanceFanControlParameters.usFanPWMMinLimit *
919 hwmgr->thermal_controller.fanInfo.ulMaxRPM / 100;
920
921 data->mem_channels = (RREG32_SOC15(DF, 0, mmDF_CS_AON0_DramBaseAddress0) &
922 DF_CS_AON0_DramBaseAddress0__IntLvNumChan_MASK) >>
923 DF_CS_AON0_DramBaseAddress0__IntLvNumChan__SHIFT;
924 PP_ASSERT_WITH_CODE(data->mem_channels < ARRAY_SIZE(channel_number),
925 "Mem Channel Index Exceeded maximum!",
926 return -EINVAL);
927
928 return result;
929 }
930
931 static int vega10_init_sclk_threshold(struct pp_hwmgr *hwmgr)
932 {
933 struct vega10_hwmgr *data = hwmgr->backend;
934
935 data->low_sclk_interrupt_threshold = 0;
936
937 return 0;
938 }
939
940 static int vega10_setup_dpm_led_config(struct pp_hwmgr *hwmgr)
941 {
942 struct vega10_hwmgr *data = hwmgr->backend;
943 PPTable_t *pp_table = &(data->smc_state_table.pp_table);
944
945 struct pp_atomfwctrl_voltage_table table;
946 uint8_t i, j;
947 uint32_t mask = 0;
948 uint32_t tmp;
949 int32_t ret = 0;
950
951 ret = pp_atomfwctrl_get_voltage_table_v4(hwmgr, VOLTAGE_TYPE_LEDDPM,
952 VOLTAGE_OBJ_GPIO_LUT, &table);
953
954 if (!ret) {
955 tmp = table.mask_low;
956 for (i = 0, j = 0; i < 32; i++) {
957 if (tmp & 1) {
958 mask |= (uint32_t)(i << (8 * j));
959 if (++j >= 3)
960 break;
961 }
962 tmp >>= 1;
963 }
964 }
965
966 pp_table->LedPin0 = (uint8_t)(mask & 0xff);
967 pp_table->LedPin1 = (uint8_t)((mask >> 8) & 0xff);
968 pp_table->LedPin2 = (uint8_t)((mask >> 16) & 0xff);
969 return 0;
970 }
971
972 static int vega10_setup_asic_task(struct pp_hwmgr *hwmgr)
973 {
974 PP_ASSERT_WITH_CODE(!vega10_init_sclk_threshold(hwmgr),
975 "Failed to init sclk threshold!",
976 return -EINVAL);
977
978 PP_ASSERT_WITH_CODE(!vega10_setup_dpm_led_config(hwmgr),
979 "Failed to set up led dpm config!",
980 return -EINVAL);
981
982 smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_NumOfDisplays, 0);
983
984 return 0;
985 }
986
987 /**
988 * Remove repeated voltage values and create table with unique values.
989 *
990 * @param hwmgr the address of the powerplay hardware manager.
991 * @param vol_table the pointer to changing voltage table
992 * @return 0 in success
993 */
994
995 static int vega10_trim_voltage_table(struct pp_hwmgr *hwmgr,
996 struct pp_atomfwctrl_voltage_table *vol_table)
997 {
998 uint32_t i, j;
999 uint16_t vvalue;
1000 bool found = false;
1001 struct pp_atomfwctrl_voltage_table *table;
1002
1003 PP_ASSERT_WITH_CODE(vol_table,
1004 "Voltage Table empty.", return -EINVAL);
1005 table = kzalloc(sizeof(struct pp_atomfwctrl_voltage_table),
1006 GFP_KERNEL);
1007
1008 if (!table)
1009 return -ENOMEM;
1010
1011 table->mask_low = vol_table->mask_low;
1012 table->phase_delay = vol_table->phase_delay;
1013
1014 for (i = 0; i < vol_table->count; i++) {
1015 vvalue = vol_table->entries[i].value;
1016 found = false;
1017
1018 for (j = 0; j < table->count; j++) {
1019 if (vvalue == table->entries[j].value) {
1020 found = true;
1021 break;
1022 }
1023 }
1024
1025 if (!found) {
1026 table->entries[table->count].value = vvalue;
1027 table->entries[table->count].smio_low =
1028 vol_table->entries[i].smio_low;
1029 table->count++;
1030 }
1031 }
1032
1033 memcpy(vol_table, table, sizeof(struct pp_atomfwctrl_voltage_table));
1034 kfree(table);
1035
1036 return 0;
1037 }
1038
1039 static int vega10_get_mvdd_voltage_table(struct pp_hwmgr *hwmgr,
1040 phm_ppt_v1_clock_voltage_dependency_table *dep_table,
1041 struct pp_atomfwctrl_voltage_table *vol_table)
1042 {
1043 int i;
1044
1045 PP_ASSERT_WITH_CODE(dep_table->count,
1046 "Voltage Dependency Table empty.",
1047 return -EINVAL);
1048
1049 vol_table->mask_low = 0;
1050 vol_table->phase_delay = 0;
1051 vol_table->count = dep_table->count;
1052
1053 for (i = 0; i < vol_table->count; i++) {
1054 vol_table->entries[i].value = dep_table->entries[i].mvdd;
1055 vol_table->entries[i].smio_low = 0;
1056 }
1057
1058 PP_ASSERT_WITH_CODE(!vega10_trim_voltage_table(hwmgr,
1059 vol_table),
1060 "Failed to trim MVDD Table!",
1061 return -1);
1062
1063 return 0;
1064 }
1065
1066 static int vega10_get_vddci_voltage_table(struct pp_hwmgr *hwmgr,
1067 phm_ppt_v1_clock_voltage_dependency_table *dep_table,
1068 struct pp_atomfwctrl_voltage_table *vol_table)
1069 {
1070 uint32_t i;
1071
1072 PP_ASSERT_WITH_CODE(dep_table->count,
1073 "Voltage Dependency Table empty.",
1074 return -EINVAL);
1075
1076 vol_table->mask_low = 0;
1077 vol_table->phase_delay = 0;
1078 vol_table->count = dep_table->count;
1079
1080 for (i = 0; i < dep_table->count; i++) {
1081 vol_table->entries[i].value = dep_table->entries[i].vddci;
1082 vol_table->entries[i].smio_low = 0;
1083 }
1084
1085 PP_ASSERT_WITH_CODE(!vega10_trim_voltage_table(hwmgr, vol_table),
1086 "Failed to trim VDDCI table.",
1087 return -1);
1088
1089 return 0;
1090 }
1091
1092 static int vega10_get_vdd_voltage_table(struct pp_hwmgr *hwmgr,
1093 phm_ppt_v1_clock_voltage_dependency_table *dep_table,
1094 struct pp_atomfwctrl_voltage_table *vol_table)
1095 {
1096 int i;
1097
1098 PP_ASSERT_WITH_CODE(dep_table->count,
1099 "Voltage Dependency Table empty.",
1100 return -EINVAL);
1101
1102 vol_table->mask_low = 0;
1103 vol_table->phase_delay = 0;
1104 vol_table->count = dep_table->count;
1105
1106 for (i = 0; i < vol_table->count; i++) {
1107 vol_table->entries[i].value = dep_table->entries[i].vddc;
1108 vol_table->entries[i].smio_low = 0;
1109 }
1110
1111 return 0;
1112 }
1113
1114 /* ---- Voltage Tables ----
1115 * If the voltage table would be bigger than
1116 * what will fit into the state table on
1117 * the SMC keep only the higher entries.
1118 */
1119 static void vega10_trim_voltage_table_to_fit_state_table(
1120 struct pp_hwmgr *hwmgr,
1121 uint32_t max_vol_steps,
1122 struct pp_atomfwctrl_voltage_table *vol_table)
1123 {
1124 unsigned int i, diff;
1125
1126 if (vol_table->count <= max_vol_steps)
1127 return;
1128
1129 diff = vol_table->count - max_vol_steps;
1130
1131 for (i = 0; i < max_vol_steps; i++)
1132 vol_table->entries[i] = vol_table->entries[i + diff];
1133
1134 vol_table->count = max_vol_steps;
1135 }
1136
1137 /**
1138 * Create Voltage Tables.
1139 *
1140 * @param hwmgr the address of the powerplay hardware manager.
1141 * @return always 0
1142 */
1143 static int vega10_construct_voltage_tables(struct pp_hwmgr *hwmgr)
1144 {
1145 struct vega10_hwmgr *data = hwmgr->backend;
1146 struct phm_ppt_v2_information *table_info =
1147 (struct phm_ppt_v2_information *)hwmgr->pptable;
1148 int result;
1149
1150 if (data->mvdd_control == VEGA10_VOLTAGE_CONTROL_BY_SVID2 ||
1151 data->mvdd_control == VEGA10_VOLTAGE_CONTROL_NONE) {
1152 result = vega10_get_mvdd_voltage_table(hwmgr,
1153 table_info->vdd_dep_on_mclk,
1154 &(data->mvdd_voltage_table));
1155 PP_ASSERT_WITH_CODE(!result,
1156 "Failed to retrieve MVDDC table!",
1157 return result);
1158 }
1159
1160 if (data->vddci_control == VEGA10_VOLTAGE_CONTROL_NONE) {
1161 result = vega10_get_vddci_voltage_table(hwmgr,
1162 table_info->vdd_dep_on_mclk,
1163 &(data->vddci_voltage_table));
1164 PP_ASSERT_WITH_CODE(!result,
1165 "Failed to retrieve VDDCI_MEM table!",
1166 return result);
1167 }
1168
1169 if (data->vddc_control == VEGA10_VOLTAGE_CONTROL_BY_SVID2 ||
1170 data->vddc_control == VEGA10_VOLTAGE_CONTROL_NONE) {
1171 result = vega10_get_vdd_voltage_table(hwmgr,
1172 table_info->vdd_dep_on_sclk,
1173 &(data->vddc_voltage_table));
1174 PP_ASSERT_WITH_CODE(!result,
1175 "Failed to retrieve VDDCR_SOC table!",
1176 return result);
1177 }
1178
1179 PP_ASSERT_WITH_CODE(data->vddc_voltage_table.count <= 16,
1180 "Too many voltage values for VDDC. Trimming to fit state table.",
1181 vega10_trim_voltage_table_to_fit_state_table(hwmgr,
1182 16, &(data->vddc_voltage_table)));
1183
1184 PP_ASSERT_WITH_CODE(data->vddci_voltage_table.count <= 16,
1185 "Too many voltage values for VDDCI. Trimming to fit state table.",
1186 vega10_trim_voltage_table_to_fit_state_table(hwmgr,
1187 16, &(data->vddci_voltage_table)));
1188
1189 PP_ASSERT_WITH_CODE(data->mvdd_voltage_table.count <= 16,
1190 "Too many voltage values for MVDD. Trimming to fit state table.",
1191 vega10_trim_voltage_table_to_fit_state_table(hwmgr,
1192 16, &(data->mvdd_voltage_table)));
1193
1194
1195 return 0;
1196 }
1197
1198 /*
1199 * @fn vega10_init_dpm_state
1200 * @brief Function to initialize all Soft Min/Max and Hard Min/Max to 0xff.
1201 *
1202 * @param dpm_state - the address of the DPM Table to initiailize.
1203 * @return None.
1204 */
1205 static void vega10_init_dpm_state(struct vega10_dpm_state *dpm_state)
1206 {
1207 dpm_state->soft_min_level = 0xff;
1208 dpm_state->soft_max_level = 0xff;
1209 dpm_state->hard_min_level = 0xff;
1210 dpm_state->hard_max_level = 0xff;
1211 }
1212
1213 static void vega10_setup_default_single_dpm_table(struct pp_hwmgr *hwmgr,
1214 struct vega10_single_dpm_table *dpm_table,
1215 struct phm_ppt_v1_clock_voltage_dependency_table *dep_table)
1216 {
1217 int i;
1218
1219 dpm_table->count = 0;
1220
1221 for (i = 0; i < dep_table->count; i++) {
1222 if (i == 0 || dpm_table->dpm_levels[dpm_table->count - 1].value <=
1223 dep_table->entries[i].clk) {
1224 dpm_table->dpm_levels[dpm_table->count].value =
1225 dep_table->entries[i].clk;
1226 dpm_table->dpm_levels[dpm_table->count].enabled = true;
1227 dpm_table->count++;
1228 }
1229 }
1230 }
1231 static int vega10_setup_default_pcie_table(struct pp_hwmgr *hwmgr)
1232 {
1233 struct vega10_hwmgr *data = hwmgr->backend;
1234 struct vega10_pcie_table *pcie_table = &(data->dpm_table.pcie_table);
1235 struct phm_ppt_v2_information *table_info =
1236 (struct phm_ppt_v2_information *)(hwmgr->pptable);
1237 struct phm_ppt_v1_pcie_table *bios_pcie_table =
1238 table_info->pcie_table;
1239 uint32_t i;
1240
1241 PP_ASSERT_WITH_CODE(bios_pcie_table->count,
1242 "Incorrect number of PCIE States from VBIOS!",
1243 return -1);
1244
1245 for (i = 0; i < NUM_LINK_LEVELS; i++) {
1246 if (data->registry_data.pcieSpeedOverride)
1247 pcie_table->pcie_gen[i] =
1248 data->registry_data.pcieSpeedOverride;
1249 else
1250 pcie_table->pcie_gen[i] =
1251 bios_pcie_table->entries[i].gen_speed;
1252
1253 if (data->registry_data.pcieLaneOverride)
1254 pcie_table->pcie_lane[i] = (uint8_t)encode_pcie_lane_width(
1255 data->registry_data.pcieLaneOverride);
1256 else
1257 pcie_table->pcie_lane[i] = (uint8_t)encode_pcie_lane_width(
1258 bios_pcie_table->entries[i].lane_width);
1259 if (data->registry_data.pcieClockOverride)
1260 pcie_table->lclk[i] =
1261 data->registry_data.pcieClockOverride;
1262 else
1263 pcie_table->lclk[i] =
1264 bios_pcie_table->entries[i].pcie_sclk;
1265 }
1266
1267 pcie_table->count = NUM_LINK_LEVELS;
1268
1269 return 0;
1270 }
1271
1272 /*
1273 * This function is to initialize all DPM state tables
1274 * for SMU based on the dependency table.
1275 * Dynamic state patching function will then trim these
1276 * state tables to the allowed range based
1277 * on the power policy or external client requests,
1278 * such as UVD request, etc.
1279 */
1280 static int vega10_setup_default_dpm_tables(struct pp_hwmgr *hwmgr)
1281 {
1282 struct vega10_hwmgr *data = hwmgr->backend;
1283 struct phm_ppt_v2_information *table_info =
1284 (struct phm_ppt_v2_information *)(hwmgr->pptable);
1285 struct vega10_single_dpm_table *dpm_table;
1286 uint32_t i;
1287
1288 struct phm_ppt_v1_clock_voltage_dependency_table *dep_soc_table =
1289 table_info->vdd_dep_on_socclk;
1290 struct phm_ppt_v1_clock_voltage_dependency_table *dep_gfx_table =
1291 table_info->vdd_dep_on_sclk;
1292 struct phm_ppt_v1_clock_voltage_dependency_table *dep_mclk_table =
1293 table_info->vdd_dep_on_mclk;
1294 struct phm_ppt_v1_mm_clock_voltage_dependency_table *dep_mm_table =
1295 table_info->mm_dep_table;
1296 struct phm_ppt_v1_clock_voltage_dependency_table *dep_dcef_table =
1297 table_info->vdd_dep_on_dcefclk;
1298 struct phm_ppt_v1_clock_voltage_dependency_table *dep_pix_table =
1299 table_info->vdd_dep_on_pixclk;
1300 struct phm_ppt_v1_clock_voltage_dependency_table *dep_disp_table =
1301 table_info->vdd_dep_on_dispclk;
1302 struct phm_ppt_v1_clock_voltage_dependency_table *dep_phy_table =
1303 table_info->vdd_dep_on_phyclk;
1304
1305 PP_ASSERT_WITH_CODE(dep_soc_table,
1306 "SOCCLK dependency table is missing. This table is mandatory",
1307 return -EINVAL);
1308 PP_ASSERT_WITH_CODE(dep_soc_table->count >= 1,
1309 "SOCCLK dependency table is empty. This table is mandatory",
1310 return -EINVAL);
1311
1312 PP_ASSERT_WITH_CODE(dep_gfx_table,
1313 "GFXCLK dependency table is missing. This table is mandatory",
1314 return -EINVAL);
1315 PP_ASSERT_WITH_CODE(dep_gfx_table->count >= 1,
1316 "GFXCLK dependency table is empty. This table is mandatory",
1317 return -EINVAL);
1318
1319 PP_ASSERT_WITH_CODE(dep_mclk_table,
1320 "MCLK dependency table is missing. This table is mandatory",
1321 return -EINVAL);
1322 PP_ASSERT_WITH_CODE(dep_mclk_table->count >= 1,
1323 "MCLK dependency table has to have is missing. This table is mandatory",
1324 return -EINVAL);
1325
1326 /* Initialize Sclk DPM table based on allow Sclk values */
1327 dpm_table = &(data->dpm_table.soc_table);
1328 vega10_setup_default_single_dpm_table(hwmgr,
1329 dpm_table,
1330 dep_soc_table);
1331
1332 vega10_init_dpm_state(&(dpm_table->dpm_state));
1333
1334 dpm_table = &(data->dpm_table.gfx_table);
1335 vega10_setup_default_single_dpm_table(hwmgr,
1336 dpm_table,
1337 dep_gfx_table);
1338 if (hwmgr->platform_descriptor.overdriveLimit.engineClock == 0)
1339 hwmgr->platform_descriptor.overdriveLimit.engineClock =
1340 dpm_table->dpm_levels[dpm_table->count-1].value;
1341 vega10_init_dpm_state(&(dpm_table->dpm_state));
1342
1343 /* Initialize Mclk DPM table based on allow Mclk values */
1344 data->dpm_table.mem_table.count = 0;
1345 dpm_table = &(data->dpm_table.mem_table);
1346 vega10_setup_default_single_dpm_table(hwmgr,
1347 dpm_table,
1348 dep_mclk_table);
1349 if (hwmgr->platform_descriptor.overdriveLimit.memoryClock == 0)
1350 hwmgr->platform_descriptor.overdriveLimit.memoryClock =
1351 dpm_table->dpm_levels[dpm_table->count-1].value;
1352 vega10_init_dpm_state(&(dpm_table->dpm_state));
1353
1354 data->dpm_table.eclk_table.count = 0;
1355 dpm_table = &(data->dpm_table.eclk_table);
1356 for (i = 0; i < dep_mm_table->count; i++) {
1357 if (i == 0 || dpm_table->dpm_levels
1358 [dpm_table->count - 1].value <=
1359 dep_mm_table->entries[i].eclk) {
1360 dpm_table->dpm_levels[dpm_table->count].value =
1361 dep_mm_table->entries[i].eclk;
1362 dpm_table->dpm_levels[dpm_table->count].enabled =
1363 (i == 0) ? true : false;
1364 dpm_table->count++;
1365 }
1366 }
1367 vega10_init_dpm_state(&(dpm_table->dpm_state));
1368
1369 data->dpm_table.vclk_table.count = 0;
1370 data->dpm_table.dclk_table.count = 0;
1371 dpm_table = &(data->dpm_table.vclk_table);
1372 for (i = 0; i < dep_mm_table->count; i++) {
1373 if (i == 0 || dpm_table->dpm_levels
1374 [dpm_table->count - 1].value <=
1375 dep_mm_table->entries[i].vclk) {
1376 dpm_table->dpm_levels[dpm_table->count].value =
1377 dep_mm_table->entries[i].vclk;
1378 dpm_table->dpm_levels[dpm_table->count].enabled =
1379 (i == 0) ? true : false;
1380 dpm_table->count++;
1381 }
1382 }
1383 vega10_init_dpm_state(&(dpm_table->dpm_state));
1384
1385 dpm_table = &(data->dpm_table.dclk_table);
1386 for (i = 0; i < dep_mm_table->count; i++) {
1387 if (i == 0 || dpm_table->dpm_levels
1388 [dpm_table->count - 1].value <=
1389 dep_mm_table->entries[i].dclk) {
1390 dpm_table->dpm_levels[dpm_table->count].value =
1391 dep_mm_table->entries[i].dclk;
1392 dpm_table->dpm_levels[dpm_table->count].enabled =
1393 (i == 0) ? true : false;
1394 dpm_table->count++;
1395 }
1396 }
1397 vega10_init_dpm_state(&(dpm_table->dpm_state));
1398
1399 /* Assume there is no headless Vega10 for now */
1400 dpm_table = &(data->dpm_table.dcef_table);
1401 vega10_setup_default_single_dpm_table(hwmgr,
1402 dpm_table,
1403 dep_dcef_table);
1404
1405 vega10_init_dpm_state(&(dpm_table->dpm_state));
1406
1407 dpm_table = &(data->dpm_table.pixel_table);
1408 vega10_setup_default_single_dpm_table(hwmgr,
1409 dpm_table,
1410 dep_pix_table);
1411
1412 vega10_init_dpm_state(&(dpm_table->dpm_state));
1413
1414 dpm_table = &(data->dpm_table.display_table);
1415 vega10_setup_default_single_dpm_table(hwmgr,
1416 dpm_table,
1417 dep_disp_table);
1418
1419 vega10_init_dpm_state(&(dpm_table->dpm_state));
1420
1421 dpm_table = &(data->dpm_table.phy_table);
1422 vega10_setup_default_single_dpm_table(hwmgr,
1423 dpm_table,
1424 dep_phy_table);
1425
1426 vega10_init_dpm_state(&(dpm_table->dpm_state));
1427
1428 vega10_setup_default_pcie_table(hwmgr);
1429
1430 /* save a copy of the default DPM table */
1431 memcpy(&(data->golden_dpm_table), &(data->dpm_table),
1432 sizeof(struct vega10_dpm_table));
1433
1434 return 0;
1435 }
1436
1437 /*
1438 * @fn vega10_populate_ulv_state
1439 * @brief Function to provide parameters for Utral Low Voltage state to SMC.
1440 *
1441 * @param hwmgr - the address of the hardware manager.
1442 * @return Always 0.
1443 */
1444 static int vega10_populate_ulv_state(struct pp_hwmgr *hwmgr)
1445 {
1446 struct vega10_hwmgr *data = hwmgr->backend;
1447 struct phm_ppt_v2_information *table_info =
1448 (struct phm_ppt_v2_information *)(hwmgr->pptable);
1449
1450 data->smc_state_table.pp_table.UlvOffsetVid =
1451 (uint8_t)table_info->us_ulv_voltage_offset;
1452
1453 data->smc_state_table.pp_table.UlvSmnclkDid =
1454 (uint8_t)(table_info->us_ulv_smnclk_did);
1455 data->smc_state_table.pp_table.UlvMp1clkDid =
1456 (uint8_t)(table_info->us_ulv_mp1clk_did);
1457 data->smc_state_table.pp_table.UlvGfxclkBypass =
1458 (uint8_t)(table_info->us_ulv_gfxclk_bypass);
1459 data->smc_state_table.pp_table.UlvPhaseSheddingPsi0 =
1460 (uint8_t)(data->vddc_voltage_table.psi0_enable);
1461 data->smc_state_table.pp_table.UlvPhaseSheddingPsi1 =
1462 (uint8_t)(data->vddc_voltage_table.psi1_enable);
1463
1464 return 0;
1465 }
1466
1467 static int vega10_populate_single_lclk_level(struct pp_hwmgr *hwmgr,
1468 uint32_t lclock, uint8_t *curr_lclk_did)
1469 {
1470 struct pp_atomfwctrl_clock_dividers_soc15 dividers;
1471
1472 PP_ASSERT_WITH_CODE(!pp_atomfwctrl_get_gpu_pll_dividers_vega10(
1473 hwmgr,
1474 COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK,
1475 lclock, &dividers),
1476 "Failed to get LCLK clock settings from VBIOS!",
1477 return -1);
1478
1479 *curr_lclk_did = dividers.ulDid;
1480
1481 return 0;
1482 }
1483
1484 static int vega10_populate_smc_link_levels(struct pp_hwmgr *hwmgr)
1485 {
1486 int result = -1;
1487 struct vega10_hwmgr *data = hwmgr->backend;
1488 PPTable_t *pp_table = &(data->smc_state_table.pp_table);
1489 struct vega10_pcie_table *pcie_table =
1490 &(data->dpm_table.pcie_table);
1491 uint32_t i, j;
1492
1493 for (i = 0; i < pcie_table->count; i++) {
1494 pp_table->PcieGenSpeed[i] = pcie_table->pcie_gen[i];
1495 pp_table->PcieLaneCount[i] = pcie_table->pcie_lane[i];
1496
1497 result = vega10_populate_single_lclk_level(hwmgr,
1498 pcie_table->lclk[i], &(pp_table->LclkDid[i]));
1499 if (result) {
1500 pr_info("Populate LClock Level %d Failed!\n", i);
1501 return result;
1502 }
1503 }
1504
1505 j = i - 1;
1506 while (i < NUM_LINK_LEVELS) {
1507 pp_table->PcieGenSpeed[i] = pcie_table->pcie_gen[j];
1508 pp_table->PcieLaneCount[i] = pcie_table->pcie_lane[j];
1509
1510 result = vega10_populate_single_lclk_level(hwmgr,
1511 pcie_table->lclk[j], &(pp_table->LclkDid[i]));
1512 if (result) {
1513 pr_info("Populate LClock Level %d Failed!\n", i);
1514 return result;
1515 }
1516 i++;
1517 }
1518
1519 return result;
1520 }
1521
1522 /**
1523 * Populates single SMC GFXSCLK structure using the provided engine clock
1524 *
1525 * @param hwmgr the address of the hardware manager
1526 * @param gfx_clock the GFX clock to use to populate the structure.
1527 * @param current_gfxclk_level location in PPTable for the SMC GFXCLK structure.
1528 */
1529
1530 static int vega10_populate_single_gfx_level(struct pp_hwmgr *hwmgr,
1531 uint32_t gfx_clock, PllSetting_t *current_gfxclk_level,
1532 uint32_t *acg_freq)
1533 {
1534 struct phm_ppt_v2_information *table_info =
1535 (struct phm_ppt_v2_information *)(hwmgr->pptable);
1536 struct phm_ppt_v1_clock_voltage_dependency_table *dep_on_sclk;
1537 struct vega10_hwmgr *data = hwmgr->backend;
1538 struct pp_atomfwctrl_clock_dividers_soc15 dividers;
1539 uint32_t gfx_max_clock =
1540 hwmgr->platform_descriptor.overdriveLimit.engineClock;
1541 uint32_t i = 0;
1542
1543 if (hwmgr->od_enabled)
1544 dep_on_sclk = (struct phm_ppt_v1_clock_voltage_dependency_table *)
1545 &(data->odn_dpm_table.vdd_dep_on_sclk);
1546 else
1547 dep_on_sclk = table_info->vdd_dep_on_sclk;
1548
1549 PP_ASSERT_WITH_CODE(dep_on_sclk,
1550 "Invalid SOC_VDD-GFX_CLK Dependency Table!",
1551 return -EINVAL);
1552
1553 if (data->need_update_dpm_table & DPMTABLE_OD_UPDATE_SCLK)
1554 gfx_clock = gfx_clock > gfx_max_clock ? gfx_max_clock : gfx_clock;
1555 else {
1556 for (i = 0; i < dep_on_sclk->count; i++) {
1557 if (dep_on_sclk->entries[i].clk == gfx_clock)
1558 break;
1559 }
1560 PP_ASSERT_WITH_CODE(dep_on_sclk->count > i,
1561 "Cannot find gfx_clk in SOC_VDD-GFX_CLK!",
1562 return -EINVAL);
1563 }
1564
1565 PP_ASSERT_WITH_CODE(!pp_atomfwctrl_get_gpu_pll_dividers_vega10(hwmgr,
1566 COMPUTE_GPUCLK_INPUT_FLAG_GFXCLK,
1567 gfx_clock, &dividers),
1568 "Failed to get GFX Clock settings from VBIOS!",
1569 return -EINVAL);
1570
1571 /* Feedback Multiplier: bit 0:8 int, bit 15:12 post_div, bit 31:16 frac */
1572 current_gfxclk_level->FbMult =
1573 cpu_to_le32(dividers.ulPll_fb_mult);
1574 /* Spread FB Multiplier bit: bit 0:8 int, bit 31:16 frac */
1575 current_gfxclk_level->SsOn = dividers.ucPll_ss_enable;
1576 current_gfxclk_level->SsFbMult =
1577 cpu_to_le32(dividers.ulPll_ss_fbsmult);
1578 current_gfxclk_level->SsSlewFrac =
1579 cpu_to_le16(dividers.usPll_ss_slew_frac);
1580 current_gfxclk_level->Did = (uint8_t)(dividers.ulDid);
1581
1582 *acg_freq = gfx_clock / 100; /* 100 Khz to Mhz conversion */
1583
1584 return 0;
1585 }
1586
1587 /**
1588 * @brief Populates single SMC SOCCLK structure using the provided clock.
1589 *
1590 * @param hwmgr - the address of the hardware manager.
1591 * @param soc_clock - the SOC clock to use to populate the structure.
1592 * @param current_socclk_level - location in PPTable for the SMC SOCCLK structure.
1593 * @return 0 on success..
1594 */
1595 static int vega10_populate_single_soc_level(struct pp_hwmgr *hwmgr,
1596 uint32_t soc_clock, uint8_t *current_soc_did,
1597 uint8_t *current_vol_index)
1598 {
1599 struct vega10_hwmgr *data = hwmgr->backend;
1600 struct phm_ppt_v2_information *table_info =
1601 (struct phm_ppt_v2_information *)(hwmgr->pptable);
1602 struct phm_ppt_v1_clock_voltage_dependency_table *dep_on_soc;
1603 struct pp_atomfwctrl_clock_dividers_soc15 dividers;
1604 uint32_t i;
1605
1606 if (hwmgr->od_enabled) {
1607 dep_on_soc = (struct phm_ppt_v1_clock_voltage_dependency_table *)
1608 &data->odn_dpm_table.vdd_dep_on_socclk;
1609 for (i = 0; i < dep_on_soc->count; i++) {
1610 if (dep_on_soc->entries[i].clk >= soc_clock)
1611 break;
1612 }
1613 } else {
1614 dep_on_soc = table_info->vdd_dep_on_socclk;
1615 for (i = 0; i < dep_on_soc->count; i++) {
1616 if (dep_on_soc->entries[i].clk == soc_clock)
1617 break;
1618 }
1619 }
1620
1621 PP_ASSERT_WITH_CODE(dep_on_soc->count > i,
1622 "Cannot find SOC_CLK in SOC_VDD-SOC_CLK Dependency Table",
1623 return -EINVAL);
1624
1625 PP_ASSERT_WITH_CODE(!pp_atomfwctrl_get_gpu_pll_dividers_vega10(hwmgr,
1626 COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK,
1627 soc_clock, &dividers),
1628 "Failed to get SOC Clock settings from VBIOS!",
1629 return -EINVAL);
1630
1631 *current_soc_did = (uint8_t)dividers.ulDid;
1632 *current_vol_index = (uint8_t)(dep_on_soc->entries[i].vddInd);
1633 return 0;
1634 }
1635
1636 /**
1637 * Populates all SMC SCLK levels' structure based on the trimmed allowed dpm engine clock states
1638 *
1639 * @param hwmgr the address of the hardware manager
1640 */
1641 static int vega10_populate_all_graphic_levels(struct pp_hwmgr *hwmgr)
1642 {
1643 struct vega10_hwmgr *data = hwmgr->backend;
1644 struct phm_ppt_v2_information *table_info =
1645 (struct phm_ppt_v2_information *)(hwmgr->pptable);
1646 PPTable_t *pp_table = &(data->smc_state_table.pp_table);
1647 struct vega10_single_dpm_table *dpm_table = &(data->dpm_table.gfx_table);
1648 int result = 0;
1649 uint32_t i, j;
1650
1651 for (i = 0; i < dpm_table->count; i++) {
1652 result = vega10_populate_single_gfx_level(hwmgr,
1653 dpm_table->dpm_levels[i].value,
1654 &(pp_table->GfxclkLevel[i]),
1655 &(pp_table->AcgFreqTable[i]));
1656 if (result)
1657 return result;
1658 }
1659
1660 j = i - 1;
1661 while (i < NUM_GFXCLK_DPM_LEVELS) {
1662 result = vega10_populate_single_gfx_level(hwmgr,
1663 dpm_table->dpm_levels[j].value,
1664 &(pp_table->GfxclkLevel[i]),
1665 &(pp_table->AcgFreqTable[i]));
1666 if (result)
1667 return result;
1668 i++;
1669 }
1670
1671 pp_table->GfxclkSlewRate =
1672 cpu_to_le16(table_info->us_gfxclk_slew_rate);
1673
1674 dpm_table = &(data->dpm_table.soc_table);
1675 for (i = 0; i < dpm_table->count; i++) {
1676 result = vega10_populate_single_soc_level(hwmgr,
1677 dpm_table->dpm_levels[i].value,
1678 &(pp_table->SocclkDid[i]),
1679 &(pp_table->SocDpmVoltageIndex[i]));
1680 if (result)
1681 return result;
1682 }
1683
1684 j = i - 1;
1685 while (i < NUM_SOCCLK_DPM_LEVELS) {
1686 result = vega10_populate_single_soc_level(hwmgr,
1687 dpm_table->dpm_levels[j].value,
1688 &(pp_table->SocclkDid[i]),
1689 &(pp_table->SocDpmVoltageIndex[i]));
1690 if (result)
1691 return result;
1692 i++;
1693 }
1694
1695 return result;
1696 }
1697
1698 static void vega10_populate_vddc_soc_levels(struct pp_hwmgr *hwmgr)
1699 {
1700 struct vega10_hwmgr *data = hwmgr->backend;
1701 PPTable_t *pp_table = &(data->smc_state_table.pp_table);
1702 struct phm_ppt_v2_information *table_info = hwmgr->pptable;
1703 struct phm_ppt_v1_voltage_lookup_table *vddc_lookup_table;
1704
1705 uint8_t soc_vid = 0;
1706 uint32_t i, max_vddc_level;
1707
1708 if (hwmgr->od_enabled)
1709 vddc_lookup_table = (struct phm_ppt_v1_voltage_lookup_table *)&data->odn_dpm_table.vddc_lookup_table;
1710 else
1711 vddc_lookup_table = table_info->vddc_lookup_table;
1712
1713 max_vddc_level = vddc_lookup_table->count;
1714 for (i = 0; i < max_vddc_level; i++) {
1715 soc_vid = (uint8_t)convert_to_vid(vddc_lookup_table->entries[i].us_vdd);
1716 pp_table->SocVid[i] = soc_vid;
1717 }
1718 while (i < MAX_REGULAR_DPM_NUMBER) {
1719 pp_table->SocVid[i] = soc_vid;
1720 i++;
1721 }
1722 }
1723
1724 /**
1725 * @brief Populates single SMC GFXCLK structure using the provided clock.
1726 *
1727 * @param hwmgr - the address of the hardware manager.
1728 * @param mem_clock - the memory clock to use to populate the structure.
1729 * @return 0 on success..
1730 */
1731 static int vega10_populate_single_memory_level(struct pp_hwmgr *hwmgr,
1732 uint32_t mem_clock, uint8_t *current_mem_vid,
1733 PllSetting_t *current_memclk_level, uint8_t *current_mem_soc_vind)
1734 {
1735 struct vega10_hwmgr *data = hwmgr->backend;
1736 struct phm_ppt_v2_information *table_info =
1737 (struct phm_ppt_v2_information *)(hwmgr->pptable);
1738 struct phm_ppt_v1_clock_voltage_dependency_table *dep_on_mclk;
1739 struct pp_atomfwctrl_clock_dividers_soc15 dividers;
1740 uint32_t mem_max_clock =
1741 hwmgr->platform_descriptor.overdriveLimit.memoryClock;
1742 uint32_t i = 0;
1743
1744 if (hwmgr->od_enabled)
1745 dep_on_mclk = (struct phm_ppt_v1_clock_voltage_dependency_table *)
1746 &data->odn_dpm_table.vdd_dep_on_mclk;
1747 else
1748 dep_on_mclk = table_info->vdd_dep_on_mclk;
1749
1750 PP_ASSERT_WITH_CODE(dep_on_mclk,
1751 "Invalid SOC_VDD-UCLK Dependency Table!",
1752 return -EINVAL);
1753
1754 if (data->need_update_dpm_table & DPMTABLE_OD_UPDATE_MCLK) {
1755 mem_clock = mem_clock > mem_max_clock ? mem_max_clock : mem_clock;
1756 } else {
1757 for (i = 0; i < dep_on_mclk->count; i++) {
1758 if (dep_on_mclk->entries[i].clk == mem_clock)
1759 break;
1760 }
1761 PP_ASSERT_WITH_CODE(dep_on_mclk->count > i,
1762 "Cannot find UCLK in SOC_VDD-UCLK Dependency Table!",
1763 return -EINVAL);
1764 }
1765
1766 PP_ASSERT_WITH_CODE(!pp_atomfwctrl_get_gpu_pll_dividers_vega10(
1767 hwmgr, COMPUTE_GPUCLK_INPUT_FLAG_UCLK, mem_clock, &dividers),
1768 "Failed to get UCLK settings from VBIOS!",
1769 return -1);
1770
1771 *current_mem_vid =
1772 (uint8_t)(convert_to_vid(dep_on_mclk->entries[i].mvdd));
1773 *current_mem_soc_vind =
1774 (uint8_t)(dep_on_mclk->entries[i].vddInd);
1775 current_memclk_level->FbMult = cpu_to_le32(dividers.ulPll_fb_mult);
1776 current_memclk_level->Did = (uint8_t)(dividers.ulDid);
1777
1778 PP_ASSERT_WITH_CODE(current_memclk_level->Did >= 1,
1779 "Invalid Divider ID!",
1780 return -EINVAL);
1781
1782 return 0;
1783 }
1784
1785 /**
1786 * @brief Populates all SMC MCLK levels' structure based on the trimmed allowed dpm memory clock states.
1787 *
1788 * @param pHwMgr - the address of the hardware manager.
1789 * @return PP_Result_OK on success.
1790 */
1791 static int vega10_populate_all_memory_levels(struct pp_hwmgr *hwmgr)
1792 {
1793 struct vega10_hwmgr *data = hwmgr->backend;
1794 PPTable_t *pp_table = &(data->smc_state_table.pp_table);
1795 struct vega10_single_dpm_table *dpm_table =
1796 &(data->dpm_table.mem_table);
1797 int result = 0;
1798 uint32_t i, j;
1799
1800 for (i = 0; i < dpm_table->count; i++) {
1801 result = vega10_populate_single_memory_level(hwmgr,
1802 dpm_table->dpm_levels[i].value,
1803 &(pp_table->MemVid[i]),
1804 &(pp_table->UclkLevel[i]),
1805 &(pp_table->MemSocVoltageIndex[i]));
1806 if (result)
1807 return result;
1808 }
1809
1810 j = i - 1;
1811 while (i < NUM_UCLK_DPM_LEVELS) {
1812 result = vega10_populate_single_memory_level(hwmgr,
1813 dpm_table->dpm_levels[j].value,
1814 &(pp_table->MemVid[i]),
1815 &(pp_table->UclkLevel[i]),
1816 &(pp_table->MemSocVoltageIndex[i]));
1817 if (result)
1818 return result;
1819 i++;
1820 }
1821
1822 pp_table->NumMemoryChannels = (uint16_t)(data->mem_channels);
1823 pp_table->MemoryChannelWidth =
1824 (uint16_t)(HBM_MEMORY_CHANNEL_WIDTH *
1825 channel_number[data->mem_channels]);
1826
1827 pp_table->LowestUclkReservedForUlv =
1828 (uint8_t)(data->lowest_uclk_reserved_for_ulv);
1829
1830 return result;
1831 }
1832
1833 static int vega10_populate_single_display_type(struct pp_hwmgr *hwmgr,
1834 DSPCLK_e disp_clock)
1835 {
1836 struct vega10_hwmgr *data = hwmgr->backend;
1837 PPTable_t *pp_table = &(data->smc_state_table.pp_table);
1838 struct phm_ppt_v2_information *table_info =
1839 (struct phm_ppt_v2_information *)
1840 (hwmgr->pptable);
1841 struct phm_ppt_v1_clock_voltage_dependency_table *dep_table;
1842 uint32_t i;
1843 uint16_t clk = 0, vddc = 0;
1844 uint8_t vid = 0;
1845
1846 switch (disp_clock) {
1847 case DSPCLK_DCEFCLK:
1848 dep_table = table_info->vdd_dep_on_dcefclk;
1849 break;
1850 case DSPCLK_DISPCLK:
1851 dep_table = table_info->vdd_dep_on_dispclk;
1852 break;
1853 case DSPCLK_PIXCLK:
1854 dep_table = table_info->vdd_dep_on_pixclk;
1855 break;
1856 case DSPCLK_PHYCLK:
1857 dep_table = table_info->vdd_dep_on_phyclk;
1858 break;
1859 default:
1860 return -1;
1861 }
1862
1863 PP_ASSERT_WITH_CODE(dep_table->count <= NUM_DSPCLK_LEVELS,
1864 "Number Of Entries Exceeded maximum!",
1865 return -1);
1866
1867 for (i = 0; i < dep_table->count; i++) {
1868 clk = (uint16_t)(dep_table->entries[i].clk / 100);
1869 vddc = table_info->vddc_lookup_table->
1870 entries[dep_table->entries[i].vddInd].us_vdd;
1871 vid = (uint8_t)convert_to_vid(vddc);
1872 pp_table->DisplayClockTable[disp_clock][i].Freq =
1873 cpu_to_le16(clk);
1874 pp_table->DisplayClockTable[disp_clock][i].Vid =
1875 cpu_to_le16(vid);
1876 }
1877
1878 while (i < NUM_DSPCLK_LEVELS) {
1879 pp_table->DisplayClockTable[disp_clock][i].Freq =
1880 cpu_to_le16(clk);
1881 pp_table->DisplayClockTable[disp_clock][i].Vid =
1882 cpu_to_le16(vid);
1883 i++;
1884 }
1885
1886 return 0;
1887 }
1888
1889 static int vega10_populate_all_display_clock_levels(struct pp_hwmgr *hwmgr)
1890 {
1891 uint32_t i;
1892
1893 for (i = 0; i < DSPCLK_COUNT; i++) {
1894 PP_ASSERT_WITH_CODE(!vega10_populate_single_display_type(hwmgr, i),
1895 "Failed to populate Clock in DisplayClockTable!",
1896 return -1);
1897 }
1898
1899 return 0;
1900 }
1901
1902 static int vega10_populate_single_eclock_level(struct pp_hwmgr *hwmgr,
1903 uint32_t eclock, uint8_t *current_eclk_did,
1904 uint8_t *current_soc_vol)
1905 {
1906 struct phm_ppt_v2_information *table_info =
1907 (struct phm_ppt_v2_information *)(hwmgr->pptable);
1908 struct phm_ppt_v1_mm_clock_voltage_dependency_table *dep_table =
1909 table_info->mm_dep_table;
1910 struct pp_atomfwctrl_clock_dividers_soc15 dividers;
1911 uint32_t i;
1912
1913 PP_ASSERT_WITH_CODE(!pp_atomfwctrl_get_gpu_pll_dividers_vega10(hwmgr,
1914 COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK,
1915 eclock, &dividers),
1916 "Failed to get ECLK clock settings from VBIOS!",
1917 return -1);
1918
1919 *current_eclk_did = (uint8_t)dividers.ulDid;
1920
1921 for (i = 0; i < dep_table->count; i++) {
1922 if (dep_table->entries[i].eclk == eclock)
1923 *current_soc_vol = dep_table->entries[i].vddcInd;
1924 }
1925
1926 return 0;
1927 }
1928
1929 static int vega10_populate_smc_vce_levels(struct pp_hwmgr *hwmgr)
1930 {
1931 struct vega10_hwmgr *data = hwmgr->backend;
1932 PPTable_t *pp_table = &(data->smc_state_table.pp_table);
1933 struct vega10_single_dpm_table *dpm_table = &(data->dpm_table.eclk_table);
1934 int result = -EINVAL;
1935 uint32_t i, j;
1936
1937 for (i = 0; i < dpm_table->count; i++) {
1938 result = vega10_populate_single_eclock_level(hwmgr,
1939 dpm_table->dpm_levels[i].value,
1940 &(pp_table->EclkDid[i]),
1941 &(pp_table->VceDpmVoltageIndex[i]));
1942 if (result)
1943 return result;
1944 }
1945
1946 j = i - 1;
1947 while (i < NUM_VCE_DPM_LEVELS) {
1948 result = vega10_populate_single_eclock_level(hwmgr,
1949 dpm_table->dpm_levels[j].value,
1950 &(pp_table->EclkDid[i]),
1951 &(pp_table->VceDpmVoltageIndex[i]));
1952 if (result)
1953 return result;
1954 i++;
1955 }
1956
1957 return result;
1958 }
1959
1960 static int vega10_populate_single_vclock_level(struct pp_hwmgr *hwmgr,
1961 uint32_t vclock, uint8_t *current_vclk_did)
1962 {
1963 struct pp_atomfwctrl_clock_dividers_soc15 dividers;
1964
1965 PP_ASSERT_WITH_CODE(!pp_atomfwctrl_get_gpu_pll_dividers_vega10(hwmgr,
1966 COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK,
1967 vclock, &dividers),
1968 "Failed to get VCLK clock settings from VBIOS!",
1969 return -EINVAL);
1970
1971 *current_vclk_did = (uint8_t)dividers.ulDid;
1972
1973 return 0;
1974 }
1975
1976 static int vega10_populate_single_dclock_level(struct pp_hwmgr *hwmgr,
1977 uint32_t dclock, uint8_t *current_dclk_did)
1978 {
1979 struct pp_atomfwctrl_clock_dividers_soc15 dividers;
1980
1981 PP_ASSERT_WITH_CODE(!pp_atomfwctrl_get_gpu_pll_dividers_vega10(hwmgr,
1982 COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK,
1983 dclock, &dividers),
1984 "Failed to get DCLK clock settings from VBIOS!",
1985 return -EINVAL);
1986
1987 *current_dclk_did = (uint8_t)dividers.ulDid;
1988
1989 return 0;
1990 }
1991
1992 static int vega10_populate_smc_uvd_levels(struct pp_hwmgr *hwmgr)
1993 {
1994 struct vega10_hwmgr *data = hwmgr->backend;
1995 PPTable_t *pp_table = &(data->smc_state_table.pp_table);
1996 struct vega10_single_dpm_table *vclk_dpm_table =
1997 &(data->dpm_table.vclk_table);
1998 struct vega10_single_dpm_table *dclk_dpm_table =
1999 &(data->dpm_table.dclk_table);
2000 struct phm_ppt_v2_information *table_info =
2001 (struct phm_ppt_v2_information *)(hwmgr->pptable);
2002 struct phm_ppt_v1_mm_clock_voltage_dependency_table *dep_table =
2003 table_info->mm_dep_table;
2004 int result = -EINVAL;
2005 uint32_t i, j;
2006
2007 for (i = 0; i < vclk_dpm_table->count; i++) {
2008 result = vega10_populate_single_vclock_level(hwmgr,
2009 vclk_dpm_table->dpm_levels[i].value,
2010 &(pp_table->VclkDid[i]));
2011 if (result)
2012 return result;
2013 }
2014
2015 j = i - 1;
2016 while (i < NUM_UVD_DPM_LEVELS) {
2017 result = vega10_populate_single_vclock_level(hwmgr,
2018 vclk_dpm_table->dpm_levels[j].value,
2019 &(pp_table->VclkDid[i]));
2020 if (result)
2021 return result;
2022 i++;
2023 }
2024
2025 for (i = 0; i < dclk_dpm_table->count; i++) {
2026 result = vega10_populate_single_dclock_level(hwmgr,
2027 dclk_dpm_table->dpm_levels[i].value,
2028 &(pp_table->DclkDid[i]));
2029 if (result)
2030 return result;
2031 }
2032
2033 j = i - 1;
2034 while (i < NUM_UVD_DPM_LEVELS) {
2035 result = vega10_populate_single_dclock_level(hwmgr,
2036 dclk_dpm_table->dpm_levels[j].value,
2037 &(pp_table->DclkDid[i]));
2038 if (result)
2039 return result;
2040 i++;
2041 }
2042
2043 for (i = 0; i < dep_table->count; i++) {
2044 if (dep_table->entries[i].vclk ==
2045 vclk_dpm_table->dpm_levels[i].value &&
2046 dep_table->entries[i].dclk ==
2047 dclk_dpm_table->dpm_levels[i].value)
2048 pp_table->UvdDpmVoltageIndex[i] =
2049 dep_table->entries[i].vddcInd;
2050 else
2051 return -1;
2052 }
2053
2054 j = i - 1;
2055 while (i < NUM_UVD_DPM_LEVELS) {
2056 pp_table->UvdDpmVoltageIndex[i] = dep_table->entries[j].vddcInd;
2057 i++;
2058 }
2059
2060 return 0;
2061 }
2062
2063 static int vega10_populate_clock_stretcher_table(struct pp_hwmgr *hwmgr)
2064 {
2065 struct vega10_hwmgr *data = hwmgr->backend;
2066 PPTable_t *pp_table = &(data->smc_state_table.pp_table);
2067 struct phm_ppt_v2_information *table_info =
2068 (struct phm_ppt_v2_information *)(hwmgr->pptable);
2069 struct phm_ppt_v1_clock_voltage_dependency_table *dep_table =
2070 table_info->vdd_dep_on_sclk;
2071 uint32_t i;
2072
2073 for (i = 0; i < dep_table->count; i++) {
2074 pp_table->CksEnable[i] = dep_table->entries[i].cks_enable;
2075 pp_table->CksVidOffset[i] = (uint8_t)(dep_table->entries[i].cks_voffset
2076 * VOLTAGE_VID_OFFSET_SCALE2 / VOLTAGE_VID_OFFSET_SCALE1);
2077 }
2078
2079 return 0;
2080 }
2081
2082 static int vega10_populate_avfs_parameters(struct pp_hwmgr *hwmgr)
2083 {
2084 struct vega10_hwmgr *data = hwmgr->backend;
2085 PPTable_t *pp_table = &(data->smc_state_table.pp_table);
2086 struct phm_ppt_v2_information *table_info =
2087 (struct phm_ppt_v2_information *)(hwmgr->pptable);
2088 struct phm_ppt_v1_clock_voltage_dependency_table *dep_table =
2089 table_info->vdd_dep_on_sclk;
2090 struct pp_atomfwctrl_avfs_parameters avfs_params = {0};
2091 int result = 0;
2092 uint32_t i;
2093
2094 pp_table->MinVoltageVid = (uint8_t)0xff;
2095 pp_table->MaxVoltageVid = (uint8_t)0;
2096
2097 if (data->smu_features[GNLD_AVFS].supported) {
2098 result = pp_atomfwctrl_get_avfs_information(hwmgr, &avfs_params);
2099 if (!result) {
2100 pp_table->MinVoltageVid = (uint8_t)
2101 convert_to_vid((uint16_t)(avfs_params.ulMinVddc));
2102 pp_table->MaxVoltageVid = (uint8_t)
2103 convert_to_vid((uint16_t)(avfs_params.ulMaxVddc));
2104
2105 pp_table->AConstant[0] = cpu_to_le32(avfs_params.ulMeanNsigmaAcontant0);
2106 pp_table->AConstant[1] = cpu_to_le32(avfs_params.ulMeanNsigmaAcontant1);
2107 pp_table->AConstant[2] = cpu_to_le32(avfs_params.ulMeanNsigmaAcontant2);
2108 pp_table->DC_tol_sigma = cpu_to_le16(avfs_params.usMeanNsigmaDcTolSigma);
2109 pp_table->Platform_mean = cpu_to_le16(avfs_params.usMeanNsigmaPlatformMean);
2110 pp_table->Platform_sigma = cpu_to_le16(avfs_params.usMeanNsigmaDcTolSigma);
2111 pp_table->PSM_Age_CompFactor = cpu_to_le16(avfs_params.usPsmAgeComfactor);
2112
2113 pp_table->BtcGbVdroopTableCksOff.a0 =
2114 cpu_to_le32(avfs_params.ulGbVdroopTableCksoffA0);
2115 pp_table->BtcGbVdroopTableCksOff.a0_shift = 20;
2116 pp_table->BtcGbVdroopTableCksOff.a1 =
2117 cpu_to_le32(avfs_params.ulGbVdroopTableCksoffA1);
2118 pp_table->BtcGbVdroopTableCksOff.a1_shift = 20;
2119 pp_table->BtcGbVdroopTableCksOff.a2 =
2120 cpu_to_le32(avfs_params.ulGbVdroopTableCksoffA2);
2121 pp_table->BtcGbVdroopTableCksOff.a2_shift = 20;
2122
2123 pp_table->OverrideBtcGbCksOn = avfs_params.ucEnableGbVdroopTableCkson;
2124 pp_table->BtcGbVdroopTableCksOn.a0 =
2125 cpu_to_le32(avfs_params.ulGbVdroopTableCksonA0);
2126 pp_table->BtcGbVdroopTableCksOn.a0_shift = 20;
2127 pp_table->BtcGbVdroopTableCksOn.a1 =
2128 cpu_to_le32(avfs_params.ulGbVdroopTableCksonA1);
2129 pp_table->BtcGbVdroopTableCksOn.a1_shift = 20;
2130 pp_table->BtcGbVdroopTableCksOn.a2 =
2131 cpu_to_le32(avfs_params.ulGbVdroopTableCksonA2);
2132 pp_table->BtcGbVdroopTableCksOn.a2_shift = 20;
2133
2134 pp_table->AvfsGbCksOn.m1 =
2135 cpu_to_le32(avfs_params.ulGbFuseTableCksonM1);
2136 pp_table->AvfsGbCksOn.m2 =
2137 cpu_to_le32(avfs_params.ulGbFuseTableCksonM2);
2138 pp_table->AvfsGbCksOn.b =
2139 cpu_to_le32(avfs_params.ulGbFuseTableCksonB);
2140 pp_table->AvfsGbCksOn.m1_shift = 24;
2141 pp_table->AvfsGbCksOn.m2_shift = 12;
2142 pp_table->AvfsGbCksOn.b_shift = 0;
2143
2144 pp_table->OverrideAvfsGbCksOn =
2145 avfs_params.ucEnableGbFuseTableCkson;
2146 pp_table->AvfsGbCksOff.m1 =
2147 cpu_to_le32(avfs_params.ulGbFuseTableCksoffM1);
2148 pp_table->AvfsGbCksOff.m2 =
2149 cpu_to_le32(avfs_params.ulGbFuseTableCksoffM2);
2150 pp_table->AvfsGbCksOff.b =
2151 cpu_to_le32(avfs_params.ulGbFuseTableCksoffB);
2152 pp_table->AvfsGbCksOff.m1_shift = 24;
2153 pp_table->AvfsGbCksOff.m2_shift = 12;
2154 pp_table->AvfsGbCksOff.b_shift = 0;
2155
2156 for (i = 0; i < dep_table->count; i++)
2157 pp_table->StaticVoltageOffsetVid[i] =
2158 convert_to_vid((uint8_t)(dep_table->entries[i].sclk_offset));
2159
2160 if ((PPREGKEY_VEGA10QUADRATICEQUATION_DFLT !=
2161 data->disp_clk_quad_eqn_a) &&
2162 (PPREGKEY_VEGA10QUADRATICEQUATION_DFLT !=
2163 data->disp_clk_quad_eqn_b)) {
2164 pp_table->DisplayClock2Gfxclk[DSPCLK_DISPCLK].m1 =
2165 (int32_t)data->disp_clk_quad_eqn_a;
2166 pp_table->DisplayClock2Gfxclk[DSPCLK_DISPCLK].m2 =
2167 (int32_t)data->disp_clk_quad_eqn_b;
2168 pp_table->DisplayClock2Gfxclk[DSPCLK_DISPCLK].b =
2169 (int32_t)data->disp_clk_quad_eqn_c;
2170 } else {
2171 pp_table->DisplayClock2Gfxclk[DSPCLK_DISPCLK].m1 =
2172 (int32_t)avfs_params.ulDispclk2GfxclkM1;
2173 pp_table->DisplayClock2Gfxclk[DSPCLK_DISPCLK].m2 =
2174 (int32_t)avfs_params.ulDispclk2GfxclkM2;
2175 pp_table->DisplayClock2Gfxclk[DSPCLK_DISPCLK].b =
2176 (int32_t)avfs_params.ulDispclk2GfxclkB;
2177 }
2178
2179 pp_table->DisplayClock2Gfxclk[DSPCLK_DISPCLK].m1_shift = 24;
2180 pp_table->DisplayClock2Gfxclk[DSPCLK_DISPCLK].m2_shift = 12;
2181 pp_table->DisplayClock2Gfxclk[DSPCLK_DISPCLK].b_shift = 12;
2182
2183 if ((PPREGKEY_VEGA10QUADRATICEQUATION_DFLT !=
2184 data->dcef_clk_quad_eqn_a) &&
2185 (PPREGKEY_VEGA10QUADRATICEQUATION_DFLT !=
2186 data->dcef_clk_quad_eqn_b)) {
2187 pp_table->DisplayClock2Gfxclk[DSPCLK_DCEFCLK].m1 =
2188 (int32_t)data->dcef_clk_quad_eqn_a;
2189 pp_table->DisplayClock2Gfxclk[DSPCLK_DCEFCLK].m2 =
2190 (int32_t)data->dcef_clk_quad_eqn_b;
2191 pp_table->DisplayClock2Gfxclk[DSPCLK_DCEFCLK].b =
2192 (int32_t)data->dcef_clk_quad_eqn_c;
2193 } else {
2194 pp_table->DisplayClock2Gfxclk[DSPCLK_DCEFCLK].m1 =
2195 (int32_t)avfs_params.ulDcefclk2GfxclkM1;
2196 pp_table->DisplayClock2Gfxclk[DSPCLK_DCEFCLK].m2 =
2197 (int32_t)avfs_params.ulDcefclk2GfxclkM2;
2198 pp_table->DisplayClock2Gfxclk[DSPCLK_DCEFCLK].b =
2199 (int32_t)avfs_params.ulDcefclk2GfxclkB;
2200 }
2201
2202 pp_table->DisplayClock2Gfxclk[DSPCLK_DCEFCLK].m1_shift = 24;
2203 pp_table->DisplayClock2Gfxclk[DSPCLK_DCEFCLK].m2_shift = 12;
2204 pp_table->DisplayClock2Gfxclk[DSPCLK_DCEFCLK].b_shift = 12;
2205
2206 if ((PPREGKEY_VEGA10QUADRATICEQUATION_DFLT !=
2207 data->pixel_clk_quad_eqn_a) &&
2208 (PPREGKEY_VEGA10QUADRATICEQUATION_DFLT !=
2209 data->pixel_clk_quad_eqn_b)) {
2210 pp_table->DisplayClock2Gfxclk[DSPCLK_PIXCLK].m1 =
2211 (int32_t)data->pixel_clk_quad_eqn_a;
2212 pp_table->DisplayClock2Gfxclk[DSPCLK_PIXCLK].m2 =
2213 (int32_t)data->pixel_clk_quad_eqn_b;
2214 pp_table->DisplayClock2Gfxclk[DSPCLK_PIXCLK].b =
2215 (int32_t)data->pixel_clk_quad_eqn_c;
2216 } else {
2217 pp_table->DisplayClock2Gfxclk[DSPCLK_PIXCLK].m1 =
2218 (int32_t)avfs_params.ulPixelclk2GfxclkM1;
2219 pp_table->DisplayClock2Gfxclk[DSPCLK_PIXCLK].m2 =
2220 (int32_t)avfs_params.ulPixelclk2GfxclkM2;
2221 pp_table->DisplayClock2Gfxclk[DSPCLK_PIXCLK].b =
2222 (int32_t)avfs_params.ulPixelclk2GfxclkB;
2223 }
2224
2225 pp_table->DisplayClock2Gfxclk[DSPCLK_PIXCLK].m1_shift = 24;
2226 pp_table->DisplayClock2Gfxclk[DSPCLK_PIXCLK].m2_shift = 12;
2227 pp_table->DisplayClock2Gfxclk[DSPCLK_PIXCLK].b_shift = 12;
2228 if ((PPREGKEY_VEGA10QUADRATICEQUATION_DFLT !=
2229 data->phy_clk_quad_eqn_a) &&
2230 (PPREGKEY_VEGA10QUADRATICEQUATION_DFLT !=
2231 data->phy_clk_quad_eqn_b)) {
2232 pp_table->DisplayClock2Gfxclk[DSPCLK_PHYCLK].m1 =
2233 (int32_t)data->phy_clk_quad_eqn_a;
2234 pp_table->DisplayClock2Gfxclk[DSPCLK_PHYCLK].m2 =
2235 (int32_t)data->phy_clk_quad_eqn_b;
2236 pp_table->DisplayClock2Gfxclk[DSPCLK_PHYCLK].b =
2237 (int32_t)data->phy_clk_quad_eqn_c;
2238 } else {
2239 pp_table->DisplayClock2Gfxclk[DSPCLK_PHYCLK].m1 =
2240 (int32_t)avfs_params.ulPhyclk2GfxclkM1;
2241 pp_table->DisplayClock2Gfxclk[DSPCLK_PHYCLK].m2 =
2242 (int32_t)avfs_params.ulPhyclk2GfxclkM2;
2243 pp_table->DisplayClock2Gfxclk[DSPCLK_PHYCLK].b =
2244 (int32_t)avfs_params.ulPhyclk2GfxclkB;
2245 }
2246
2247 pp_table->DisplayClock2Gfxclk[DSPCLK_PHYCLK].m1_shift = 24;
2248 pp_table->DisplayClock2Gfxclk[DSPCLK_PHYCLK].m2_shift = 12;
2249 pp_table->DisplayClock2Gfxclk[DSPCLK_PHYCLK].b_shift = 12;
2250
2251 pp_table->AcgBtcGbVdroopTable.a0 = avfs_params.ulAcgGbVdroopTableA0;
2252 pp_table->AcgBtcGbVdroopTable.a0_shift = 20;
2253 pp_table->AcgBtcGbVdroopTable.a1 = avfs_params.ulAcgGbVdroopTableA1;
2254 pp_table->AcgBtcGbVdroopTable.a1_shift = 20;
2255 pp_table->AcgBtcGbVdroopTable.a2 = avfs_params.ulAcgGbVdroopTableA2;
2256 pp_table->AcgBtcGbVdroopTable.a2_shift = 20;
2257
2258 pp_table->AcgAvfsGb.m1 = avfs_params.ulAcgGbFuseTableM1;
2259 pp_table->AcgAvfsGb.m2 = avfs_params.ulAcgGbFuseTableM2;
2260 pp_table->AcgAvfsGb.b = avfs_params.ulAcgGbFuseTableB;
2261 pp_table->AcgAvfsGb.m1_shift = 0;
2262 pp_table->AcgAvfsGb.m2_shift = 0;
2263 pp_table->AcgAvfsGb.b_shift = 0;
2264
2265 } else {
2266 data->smu_features[GNLD_AVFS].supported = false;
2267 }
2268 }
2269
2270 return 0;
2271 }
2272
2273 static int vega10_acg_enable(struct pp_hwmgr *hwmgr)
2274 {
2275 struct vega10_hwmgr *data = hwmgr->backend;
2276 uint32_t agc_btc_response;
2277
2278 if (data->smu_features[GNLD_ACG].supported) {
2279 if (0 == vega10_enable_smc_features(hwmgr, true,
2280 data->smu_features[GNLD_DPM_PREFETCHER].smu_feature_bitmap))
2281 data->smu_features[GNLD_DPM_PREFETCHER].enabled = true;
2282
2283 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_InitializeAcg);
2284
2285 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_RunAcgBtc);
2286 agc_btc_response = smum_get_argument(hwmgr);
2287
2288 if (1 == agc_btc_response) {
2289 if (1 == data->acg_loop_state)
2290 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_RunAcgInClosedLoop);
2291 else if (2 == data->acg_loop_state)
2292 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_RunAcgInOpenLoop);
2293 if (0 == vega10_enable_smc_features(hwmgr, true,
2294 data->smu_features[GNLD_ACG].smu_feature_bitmap))
2295 data->smu_features[GNLD_ACG].enabled = true;
2296 } else {
2297 pr_info("[ACG_Enable] ACG BTC Returned Failed Status!\n");
2298 data->smu_features[GNLD_ACG].enabled = false;
2299 }
2300 }
2301
2302 return 0;
2303 }
2304
2305 static int vega10_acg_disable(struct pp_hwmgr *hwmgr)
2306 {
2307 struct vega10_hwmgr *data = hwmgr->backend;
2308
2309 if (data->smu_features[GNLD_ACG].supported &&
2310 data->smu_features[GNLD_ACG].enabled)
2311 if (!vega10_enable_smc_features(hwmgr, false,
2312 data->smu_features[GNLD_ACG].smu_feature_bitmap))
2313 data->smu_features[GNLD_ACG].enabled = false;
2314
2315 return 0;
2316 }
2317
2318 static int vega10_populate_gpio_parameters(struct pp_hwmgr *hwmgr)
2319 {
2320 struct vega10_hwmgr *data = hwmgr->backend;
2321 PPTable_t *pp_table = &(data->smc_state_table.pp_table);
2322 struct pp_atomfwctrl_gpio_parameters gpio_params = {0};
2323 int result;
2324
2325 result = pp_atomfwctrl_get_gpio_information(hwmgr, &gpio_params);
2326 if (!result) {
2327 if (PP_CAP(PHM_PlatformCaps_RegulatorHot) &&
2328 data->registry_data.regulator_hot_gpio_support) {
2329 pp_table->VR0HotGpio = gpio_params.ucVR0HotGpio;
2330 pp_table->VR0HotPolarity = gpio_params.ucVR0HotPolarity;
2331 pp_table->VR1HotGpio = gpio_params.ucVR1HotGpio;
2332 pp_table->VR1HotPolarity = gpio_params.ucVR1HotPolarity;
2333 } else {
2334 pp_table->VR0HotGpio = 0;
2335 pp_table->VR0HotPolarity = 0;
2336 pp_table->VR1HotGpio = 0;
2337 pp_table->VR1HotPolarity = 0;
2338 }
2339
2340 if (PP_CAP(PHM_PlatformCaps_AutomaticDCTransition) &&
2341 data->registry_data.ac_dc_switch_gpio_support) {
2342 pp_table->AcDcGpio = gpio_params.ucAcDcGpio;
2343 pp_table->AcDcPolarity = gpio_params.ucAcDcPolarity;
2344 } else {
2345 pp_table->AcDcGpio = 0;
2346 pp_table->AcDcPolarity = 0;
2347 }
2348 }
2349
2350 return result;
2351 }
2352
2353 static int vega10_avfs_enable(struct pp_hwmgr *hwmgr, bool enable)
2354 {
2355 struct vega10_hwmgr *data = hwmgr->backend;
2356
2357 if (data->smu_features[GNLD_AVFS].supported) {
2358 if (enable) {
2359 PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
2360 true,
2361 data->smu_features[GNLD_AVFS].smu_feature_bitmap),
2362 "[avfs_control] Attempt to Enable AVFS feature Failed!",
2363 return -1);
2364 data->smu_features[GNLD_AVFS].enabled = true;
2365 } else {
2366 PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
2367 false,
2368 data->smu_features[GNLD_AVFS].smu_feature_bitmap),
2369 "[avfs_control] Attempt to Disable AVFS feature Failed!",
2370 return -1);
2371 data->smu_features[GNLD_AVFS].enabled = false;
2372 }
2373 }
2374
2375 return 0;
2376 }
2377
2378 static int vega10_update_avfs(struct pp_hwmgr *hwmgr)
2379 {
2380 struct vega10_hwmgr *data = hwmgr->backend;
2381
2382 if (data->need_update_dpm_table & DPMTABLE_OD_UPDATE_VDDC) {
2383 vega10_avfs_enable(hwmgr, false);
2384 } else if (data->need_update_dpm_table) {
2385 vega10_avfs_enable(hwmgr, false);
2386 vega10_avfs_enable(hwmgr, true);
2387 } else {
2388 vega10_avfs_enable(hwmgr, true);
2389 }
2390
2391 return 0;
2392 }
2393
2394 static int vega10_populate_and_upload_avfs_fuse_override(struct pp_hwmgr *hwmgr)
2395 {
2396 int result = 0;
2397
2398 uint64_t serial_number = 0;
2399 uint32_t top32, bottom32;
2400 struct phm_fuses_default fuse;
2401
2402 struct vega10_hwmgr *data = hwmgr->backend;
2403 AvfsFuseOverride_t *avfs_fuse_table = &(data->smc_state_table.avfs_fuse_override_table);
2404
2405 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_ReadSerialNumTop32);
2406 top32 = smum_get_argument(hwmgr);
2407
2408 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_ReadSerialNumBottom32);
2409 bottom32 = smum_get_argument(hwmgr);
2410
2411 serial_number = ((uint64_t)bottom32 << 32) | top32;
2412
2413 if (pp_override_get_default_fuse_value(serial_number, &fuse) == 0) {
2414 avfs_fuse_table->VFT0_b = fuse.VFT0_b;
2415 avfs_fuse_table->VFT0_m1 = fuse.VFT0_m1;
2416 avfs_fuse_table->VFT0_m2 = fuse.VFT0_m2;
2417 avfs_fuse_table->VFT1_b = fuse.VFT1_b;
2418 avfs_fuse_table->VFT1_m1 = fuse.VFT1_m1;
2419 avfs_fuse_table->VFT1_m2 = fuse.VFT1_m2;
2420 avfs_fuse_table->VFT2_b = fuse.VFT2_b;
2421 avfs_fuse_table->VFT2_m1 = fuse.VFT2_m1;
2422 avfs_fuse_table->VFT2_m2 = fuse.VFT2_m2;
2423 result = smum_smc_table_manager(hwmgr, (uint8_t *)avfs_fuse_table,
2424 AVFSFUSETABLE, false);
2425 PP_ASSERT_WITH_CODE(!result,
2426 "Failed to upload FuseOVerride!",
2427 );
2428 }
2429
2430 return result;
2431 }
2432
2433 static void vega10_check_dpm_table_updated(struct pp_hwmgr *hwmgr)
2434 {
2435 struct vega10_hwmgr *data = hwmgr->backend;
2436 struct vega10_odn_dpm_table *odn_table = &(data->odn_dpm_table);
2437 struct phm_ppt_v2_information *table_info = hwmgr->pptable;
2438 struct phm_ppt_v1_clock_voltage_dependency_table *dep_table;
2439 struct phm_ppt_v1_clock_voltage_dependency_table *odn_dep_table;
2440 uint32_t i;
2441
2442 dep_table = table_info->vdd_dep_on_mclk;
2443 odn_dep_table = (struct phm_ppt_v1_clock_voltage_dependency_table *)&(odn_table->vdd_dep_on_mclk);
2444
2445 for (i = 0; i < dep_table->count; i++) {
2446 if (dep_table->entries[i].vddc != odn_dep_table->entries[i].vddc) {
2447 data->need_update_dpm_table |= DPMTABLE_OD_UPDATE_VDDC | DPMTABLE_OD_UPDATE_MCLK;
2448 return;
2449 }
2450 }
2451
2452 dep_table = table_info->vdd_dep_on_sclk;
2453 odn_dep_table = (struct phm_ppt_v1_clock_voltage_dependency_table *)&(odn_table->vdd_dep_on_sclk);
2454 for (i = 0; i < dep_table->count; i++) {
2455 if (dep_table->entries[i].vddc != odn_dep_table->entries[i].vddc) {
2456 data->need_update_dpm_table |= DPMTABLE_OD_UPDATE_VDDC | DPMTABLE_OD_UPDATE_SCLK;
2457 return;
2458 }
2459 }
2460
2461 if (data->need_update_dpm_table & DPMTABLE_OD_UPDATE_VDDC) {
2462 data->need_update_dpm_table &= ~DPMTABLE_OD_UPDATE_VDDC;
2463 data->need_update_dpm_table |= DPMTABLE_OD_UPDATE_SCLK | DPMTABLE_OD_UPDATE_MCLK;
2464 }
2465 }
2466
2467 /**
2468 * Initializes the SMC table and uploads it
2469 *
2470 * @param hwmgr the address of the powerplay hardware manager.
2471 * @param pInput the pointer to input data (PowerState)
2472 * @return always 0
2473 */
2474 static int vega10_init_smc_table(struct pp_hwmgr *hwmgr)
2475 {
2476 int result;
2477 struct vega10_hwmgr *data = hwmgr->backend;
2478 struct phm_ppt_v2_information *table_info =
2479 (struct phm_ppt_v2_information *)(hwmgr->pptable);
2480 PPTable_t *pp_table = &(data->smc_state_table.pp_table);
2481 struct pp_atomfwctrl_voltage_table voltage_table;
2482 struct pp_atomfwctrl_bios_boot_up_values boot_up_values;
2483 struct vega10_odn_dpm_table *odn_table = &(data->odn_dpm_table);
2484
2485 result = vega10_setup_default_dpm_tables(hwmgr);
2486 PP_ASSERT_WITH_CODE(!result,
2487 "Failed to setup default DPM tables!",
2488 return result);
2489
2490 /* initialize ODN table */
2491 if (hwmgr->od_enabled) {
2492 if (odn_table->max_vddc) {
2493 data->need_update_dpm_table |= DPMTABLE_OD_UPDATE_SCLK | DPMTABLE_OD_UPDATE_MCLK;
2494 vega10_check_dpm_table_updated(hwmgr);
2495 } else {
2496 vega10_odn_initial_default_setting(hwmgr);
2497 }
2498 }
2499
2500 pp_atomfwctrl_get_voltage_table_v4(hwmgr, VOLTAGE_TYPE_VDDC,
2501 VOLTAGE_OBJ_SVID2, &voltage_table);
2502 pp_table->MaxVidStep = voltage_table.max_vid_step;
2503
2504 pp_table->GfxDpmVoltageMode =
2505 (uint8_t)(table_info->uc_gfx_dpm_voltage_mode);
2506 pp_table->SocDpmVoltageMode =
2507 (uint8_t)(table_info->uc_soc_dpm_voltage_mode);
2508 pp_table->UclkDpmVoltageMode =
2509 (uint8_t)(table_info->uc_uclk_dpm_voltage_mode);
2510 pp_table->UvdDpmVoltageMode =
2511 (uint8_t)(table_info->uc_uvd_dpm_voltage_mode);
2512 pp_table->VceDpmVoltageMode =
2513 (uint8_t)(table_info->uc_vce_dpm_voltage_mode);
2514 pp_table->Mp0DpmVoltageMode =
2515 (uint8_t)(table_info->uc_mp0_dpm_voltage_mode);
2516
2517 pp_table->DisplayDpmVoltageMode =
2518 (uint8_t)(table_info->uc_dcef_dpm_voltage_mode);
2519
2520 data->vddc_voltage_table.psi0_enable = voltage_table.psi0_enable;
2521 data->vddc_voltage_table.psi1_enable = voltage_table.psi1_enable;
2522
2523 if (data->registry_data.ulv_support &&
2524 table_info->us_ulv_voltage_offset) {
2525 result = vega10_populate_ulv_state(hwmgr);
2526 PP_ASSERT_WITH_CODE(!result,
2527 "Failed to initialize ULV state!",
2528 return result);
2529 }
2530
2531 result = vega10_populate_smc_link_levels(hwmgr);
2532 PP_ASSERT_WITH_CODE(!result,
2533 "Failed to initialize Link Level!",
2534 return result);
2535
2536 result = vega10_populate_all_graphic_levels(hwmgr);
2537 PP_ASSERT_WITH_CODE(!result,
2538 "Failed to initialize Graphics Level!",
2539 return result);
2540
2541 result = vega10_populate_all_memory_levels(hwmgr);
2542 PP_ASSERT_WITH_CODE(!result,
2543 "Failed to initialize Memory Level!",
2544 return result);
2545
2546 vega10_populate_vddc_soc_levels(hwmgr);
2547
2548 result = vega10_populate_all_display_clock_levels(hwmgr);
2549 PP_ASSERT_WITH_CODE(!result,
2550 "Failed to initialize Display Level!",
2551 return result);
2552
2553 result = vega10_populate_smc_vce_levels(hwmgr);
2554 PP_ASSERT_WITH_CODE(!result,
2555 "Failed to initialize VCE Level!",
2556 return result);
2557
2558 result = vega10_populate_smc_uvd_levels(hwmgr);
2559 PP_ASSERT_WITH_CODE(!result,
2560 "Failed to initialize UVD Level!",
2561 return result);
2562
2563 if (data->registry_data.clock_stretcher_support) {
2564 result = vega10_populate_clock_stretcher_table(hwmgr);
2565 PP_ASSERT_WITH_CODE(!result,
2566 "Failed to populate Clock Stretcher Table!",
2567 return result);
2568 }
2569
2570 result = pp_atomfwctrl_get_vbios_bootup_values(hwmgr, &boot_up_values);
2571 if (!result) {
2572 data->vbios_boot_state.vddc = boot_up_values.usVddc;
2573 data->vbios_boot_state.vddci = boot_up_values.usVddci;
2574 data->vbios_boot_state.mvddc = boot_up_values.usMvddc;
2575 data->vbios_boot_state.gfx_clock = boot_up_values.ulGfxClk;
2576 data->vbios_boot_state.mem_clock = boot_up_values.ulUClk;
2577 pp_atomfwctrl_get_clk_information_by_clkid(hwmgr,
2578 SMU9_SYSPLL0_SOCCLK_ID, 0, &boot_up_values.ulSocClk);
2579
2580 pp_atomfwctrl_get_clk_information_by_clkid(hwmgr,
2581 SMU9_SYSPLL0_DCEFCLK_ID, 0, &boot_up_values.ulDCEFClk);
2582
2583 data->vbios_boot_state.soc_clock = boot_up_values.ulSocClk;
2584 data->vbios_boot_state.dcef_clock = boot_up_values.ulDCEFClk;
2585 if (0 != boot_up_values.usVddc) {
2586 smum_send_msg_to_smc_with_parameter(hwmgr,
2587 PPSMC_MSG_SetFloorSocVoltage,
2588 (boot_up_values.usVddc * 4));
2589 data->vbios_boot_state.bsoc_vddc_lock = true;
2590 } else {
2591 data->vbios_boot_state.bsoc_vddc_lock = false;
2592 }
2593 smum_send_msg_to_smc_with_parameter(hwmgr,
2594 PPSMC_MSG_SetMinDeepSleepDcefclk,
2595 (uint32_t)(data->vbios_boot_state.dcef_clock / 100));
2596 }
2597
2598 result = vega10_populate_avfs_parameters(hwmgr);
2599 PP_ASSERT_WITH_CODE(!result,
2600 "Failed to initialize AVFS Parameters!",
2601 return result);
2602
2603 result = vega10_populate_gpio_parameters(hwmgr);
2604 PP_ASSERT_WITH_CODE(!result,
2605 "Failed to initialize GPIO Parameters!",
2606 return result);
2607
2608 pp_table->GfxclkAverageAlpha = (uint8_t)
2609 (data->gfxclk_average_alpha);
2610 pp_table->SocclkAverageAlpha = (uint8_t)
2611 (data->socclk_average_alpha);
2612 pp_table->UclkAverageAlpha = (uint8_t)
2613 (data->uclk_average_alpha);
2614 pp_table->GfxActivityAverageAlpha = (uint8_t)
2615 (data->gfx_activity_average_alpha);
2616
2617 vega10_populate_and_upload_avfs_fuse_override(hwmgr);
2618
2619 result = smum_smc_table_manager(hwmgr, (uint8_t *)pp_table, PPTABLE, false);
2620
2621 PP_ASSERT_WITH_CODE(!result,
2622 "Failed to upload PPtable!", return result);
2623
2624 result = vega10_avfs_enable(hwmgr, true);
2625 PP_ASSERT_WITH_CODE(!result, "Attempt to enable AVFS feature Failed!",
2626 return result);
2627 vega10_acg_enable(hwmgr);
2628
2629 return 0;
2630 }
2631
2632 static int vega10_enable_thermal_protection(struct pp_hwmgr *hwmgr)
2633 {
2634 struct vega10_hwmgr *data = hwmgr->backend;
2635
2636 if (data->smu_features[GNLD_THERMAL].supported) {
2637 if (data->smu_features[GNLD_THERMAL].enabled)
2638 pr_info("THERMAL Feature Already enabled!");
2639
2640 PP_ASSERT_WITH_CODE(
2641 !vega10_enable_smc_features(hwmgr,
2642 true,
2643 data->smu_features[GNLD_THERMAL].smu_feature_bitmap),
2644 "Enable THERMAL Feature Failed!",
2645 return -1);
2646 data->smu_features[GNLD_THERMAL].enabled = true;
2647 }
2648
2649 return 0;
2650 }
2651
2652 static int vega10_disable_thermal_protection(struct pp_hwmgr *hwmgr)
2653 {
2654 struct vega10_hwmgr *data = hwmgr->backend;
2655
2656 if (data->smu_features[GNLD_THERMAL].supported) {
2657 if (!data->smu_features[GNLD_THERMAL].enabled)
2658 pr_info("THERMAL Feature Already disabled!");
2659
2660 PP_ASSERT_WITH_CODE(
2661 !vega10_enable_smc_features(hwmgr,
2662 false,
2663 data->smu_features[GNLD_THERMAL].smu_feature_bitmap),
2664 "disable THERMAL Feature Failed!",
2665 return -1);
2666 data->smu_features[GNLD_THERMAL].enabled = false;
2667 }
2668
2669 return 0;
2670 }
2671
2672 static int vega10_enable_vrhot_feature(struct pp_hwmgr *hwmgr)
2673 {
2674 struct vega10_hwmgr *data = hwmgr->backend;
2675
2676 if (PP_CAP(PHM_PlatformCaps_RegulatorHot)) {
2677 if (data->smu_features[GNLD_VR0HOT].supported) {
2678 PP_ASSERT_WITH_CODE(
2679 !vega10_enable_smc_features(hwmgr,
2680 true,
2681 data->smu_features[GNLD_VR0HOT].smu_feature_bitmap),
2682 "Attempt to Enable VR0 Hot feature Failed!",
2683 return -1);
2684 data->smu_features[GNLD_VR0HOT].enabled = true;
2685 } else {
2686 if (data->smu_features[GNLD_VR1HOT].supported) {
2687 PP_ASSERT_WITH_CODE(
2688 !vega10_enable_smc_features(hwmgr,
2689 true,
2690 data->smu_features[GNLD_VR1HOT].smu_feature_bitmap),
2691 "Attempt to Enable VR0 Hot feature Failed!",
2692 return -1);
2693 data->smu_features[GNLD_VR1HOT].enabled = true;
2694 }
2695 }
2696 }
2697 return 0;
2698 }
2699
2700 static int vega10_enable_ulv(struct pp_hwmgr *hwmgr)
2701 {
2702 struct vega10_hwmgr *data = hwmgr->backend;
2703
2704 if (data->registry_data.ulv_support) {
2705 PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
2706 true, data->smu_features[GNLD_ULV].smu_feature_bitmap),
2707 "Enable ULV Feature Failed!",
2708 return -1);
2709 data->smu_features[GNLD_ULV].enabled = true;
2710 }
2711
2712 return 0;
2713 }
2714
2715 static int vega10_disable_ulv(struct pp_hwmgr *hwmgr)
2716 {
2717 struct vega10_hwmgr *data = hwmgr->backend;
2718
2719 if (data->registry_data.ulv_support) {
2720 PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
2721 false, data->smu_features[GNLD_ULV].smu_feature_bitmap),
2722 "disable ULV Feature Failed!",
2723 return -EINVAL);
2724 data->smu_features[GNLD_ULV].enabled = false;
2725 }
2726
2727 return 0;
2728 }
2729
2730 static int vega10_enable_deep_sleep_master_switch(struct pp_hwmgr *hwmgr)
2731 {
2732 struct vega10_hwmgr *data = hwmgr->backend;
2733
2734 if (data->smu_features[GNLD_DS_GFXCLK].supported) {
2735 PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
2736 true, data->smu_features[GNLD_DS_GFXCLK].smu_feature_bitmap),
2737 "Attempt to Enable DS_GFXCLK Feature Failed!",
2738 return -EINVAL);
2739 data->smu_features[GNLD_DS_GFXCLK].enabled = true;
2740 }
2741
2742 if (data->smu_features[GNLD_DS_SOCCLK].supported) {
2743 PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
2744 true, data->smu_features[GNLD_DS_SOCCLK].smu_feature_bitmap),
2745 "Attempt to Enable DS_SOCCLK Feature Failed!",
2746 return -EINVAL);
2747 data->smu_features[GNLD_DS_SOCCLK].enabled = true;
2748 }
2749
2750 if (data->smu_features[GNLD_DS_LCLK].supported) {
2751 PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
2752 true, data->smu_features[GNLD_DS_LCLK].smu_feature_bitmap),
2753 "Attempt to Enable DS_LCLK Feature Failed!",
2754 return -EINVAL);
2755 data->smu_features[GNLD_DS_LCLK].enabled = true;
2756 }
2757
2758 if (data->smu_features[GNLD_DS_DCEFCLK].supported) {
2759 PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
2760 true, data->smu_features[GNLD_DS_DCEFCLK].smu_feature_bitmap),
2761 "Attempt to Enable DS_DCEFCLK Feature Failed!",
2762 return -EINVAL);
2763 data->smu_features[GNLD_DS_DCEFCLK].enabled = true;
2764 }
2765
2766 return 0;
2767 }
2768
2769 static int vega10_disable_deep_sleep_master_switch(struct pp_hwmgr *hwmgr)
2770 {
2771 struct vega10_hwmgr *data = hwmgr->backend;
2772
2773 if (data->smu_features[GNLD_DS_GFXCLK].supported) {
2774 PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
2775 false, data->smu_features[GNLD_DS_GFXCLK].smu_feature_bitmap),
2776 "Attempt to disable DS_GFXCLK Feature Failed!",
2777 return -EINVAL);
2778 data->smu_features[GNLD_DS_GFXCLK].enabled = false;
2779 }
2780
2781 if (data->smu_features[GNLD_DS_SOCCLK].supported) {
2782 PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
2783 false, data->smu_features[GNLD_DS_SOCCLK].smu_feature_bitmap),
2784 "Attempt to disable DS_ Feature Failed!",
2785 return -EINVAL);
2786 data->smu_features[GNLD_DS_SOCCLK].enabled = false;
2787 }
2788
2789 if (data->smu_features[GNLD_DS_LCLK].supported) {
2790 PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
2791 false, data->smu_features[GNLD_DS_LCLK].smu_feature_bitmap),
2792 "Attempt to disable DS_LCLK Feature Failed!",
2793 return -EINVAL);
2794 data->smu_features[GNLD_DS_LCLK].enabled = false;
2795 }
2796
2797 if (data->smu_features[GNLD_DS_DCEFCLK].supported) {
2798 PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
2799 false, data->smu_features[GNLD_DS_DCEFCLK].smu_feature_bitmap),
2800 "Attempt to disable DS_DCEFCLK Feature Failed!",
2801 return -EINVAL);
2802 data->smu_features[GNLD_DS_DCEFCLK].enabled = false;
2803 }
2804
2805 return 0;
2806 }
2807
2808 static int vega10_stop_dpm(struct pp_hwmgr *hwmgr, uint32_t bitmap)
2809 {
2810 struct vega10_hwmgr *data = hwmgr->backend;
2811 uint32_t i, feature_mask = 0;
2812
2813
2814 if(data->smu_features[GNLD_LED_DISPLAY].supported == true){
2815 PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
2816 false, data->smu_features[GNLD_LED_DISPLAY].smu_feature_bitmap),
2817 "Attempt to disable LED DPM feature failed!", return -EINVAL);
2818 data->smu_features[GNLD_LED_DISPLAY].enabled = false;
2819 }
2820
2821 for (i = 0; i < GNLD_DPM_MAX; i++) {
2822 if (data->smu_features[i].smu_feature_bitmap & bitmap) {
2823 if (data->smu_features[i].supported) {
2824 if (data->smu_features[i].enabled) {
2825 feature_mask |= data->smu_features[i].
2826 smu_feature_bitmap;
2827 data->smu_features[i].enabled = false;
2828 }
2829 }
2830 }
2831 }
2832
2833 vega10_enable_smc_features(hwmgr, false, feature_mask);
2834
2835 return 0;
2836 }
2837
2838 /**
2839 * @brief Tell SMC to enabled the supported DPMs.
2840 *
2841 * @param hwmgr - the address of the powerplay hardware manager.
2842 * @Param bitmap - bitmap for the features to enabled.
2843 * @return 0 on at least one DPM is successfully enabled.
2844 */
2845 static int vega10_start_dpm(struct pp_hwmgr *hwmgr, uint32_t bitmap)
2846 {
2847 struct vega10_hwmgr *data = hwmgr->backend;
2848 uint32_t i, feature_mask = 0;
2849
2850 for (i = 0; i < GNLD_DPM_MAX; i++) {
2851 if (data->smu_features[i].smu_feature_bitmap & bitmap) {
2852 if (data->smu_features[i].supported) {
2853 if (!data->smu_features[i].enabled) {
2854 feature_mask |= data->smu_features[i].
2855 smu_feature_bitmap;
2856 data->smu_features[i].enabled = true;
2857 }
2858 }
2859 }
2860 }
2861
2862 if (vega10_enable_smc_features(hwmgr,
2863 true, feature_mask)) {
2864 for (i = 0; i < GNLD_DPM_MAX; i++) {
2865 if (data->smu_features[i].smu_feature_bitmap &
2866 feature_mask)
2867 data->smu_features[i].enabled = false;
2868 }
2869 }
2870
2871 if(data->smu_features[GNLD_LED_DISPLAY].supported == true){
2872 PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
2873 true, data->smu_features[GNLD_LED_DISPLAY].smu_feature_bitmap),
2874 "Attempt to Enable LED DPM feature Failed!", return -EINVAL);
2875 data->smu_features[GNLD_LED_DISPLAY].enabled = true;
2876 }
2877
2878 if (data->vbios_boot_state.bsoc_vddc_lock) {
2879 smum_send_msg_to_smc_with_parameter(hwmgr,
2880 PPSMC_MSG_SetFloorSocVoltage, 0);
2881 data->vbios_boot_state.bsoc_vddc_lock = false;
2882 }
2883
2884 if (PP_CAP(PHM_PlatformCaps_Falcon_QuickTransition)) {
2885 if (data->smu_features[GNLD_ACDC].supported) {
2886 PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
2887 true, data->smu_features[GNLD_ACDC].smu_feature_bitmap),
2888 "Attempt to Enable DS_GFXCLK Feature Failed!",
2889 return -1);
2890 data->smu_features[GNLD_ACDC].enabled = true;
2891 }
2892 }
2893
2894 return 0;
2895 }
2896
2897 static int vega10_enable_disable_PCC_limit_feature(struct pp_hwmgr *hwmgr, bool enable)
2898 {
2899 struct vega10_hwmgr *data = hwmgr->backend;
2900
2901 if (data->smu_features[GNLD_PCC_LIMIT].supported) {
2902 if (enable == data->smu_features[GNLD_PCC_LIMIT].enabled)
2903 pr_info("GNLD_PCC_LIMIT has been %s \n", enable ? "enabled" : "disabled");
2904 PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
2905 enable, data->smu_features[GNLD_PCC_LIMIT].smu_feature_bitmap),
2906 "Attempt to Enable PCC Limit feature Failed!",
2907 return -EINVAL);
2908 data->smu_features[GNLD_PCC_LIMIT].enabled = enable;
2909 }
2910
2911 return 0;
2912 }
2913
2914 static int vega10_enable_dpm_tasks(struct pp_hwmgr *hwmgr)
2915 {
2916 struct vega10_hwmgr *data = hwmgr->backend;
2917 int tmp_result, result = 0;
2918
2919 vega10_enable_disable_PCC_limit_feature(hwmgr, true);
2920
2921 smum_send_msg_to_smc_with_parameter(hwmgr,
2922 PPSMC_MSG_ConfigureTelemetry, data->config_telemetry);
2923
2924 tmp_result = vega10_construct_voltage_tables(hwmgr);
2925 PP_ASSERT_WITH_CODE(!tmp_result,
2926 "Failed to construct voltage tables!",
2927 result = tmp_result);
2928
2929 tmp_result = vega10_init_smc_table(hwmgr);
2930 PP_ASSERT_WITH_CODE(!tmp_result,
2931 "Failed to initialize SMC table!",
2932 result = tmp_result);
2933
2934 if (PP_CAP(PHM_PlatformCaps_ThermalController)) {
2935 tmp_result = vega10_enable_thermal_protection(hwmgr);
2936 PP_ASSERT_WITH_CODE(!tmp_result,
2937 "Failed to enable thermal protection!",
2938 result = tmp_result);
2939 }
2940
2941 tmp_result = vega10_enable_vrhot_feature(hwmgr);
2942 PP_ASSERT_WITH_CODE(!tmp_result,
2943 "Failed to enable VR hot feature!",
2944 result = tmp_result);
2945
2946 tmp_result = vega10_enable_deep_sleep_master_switch(hwmgr);
2947 PP_ASSERT_WITH_CODE(!tmp_result,
2948 "Failed to enable deep sleep master switch!",
2949 result = tmp_result);
2950
2951 tmp_result = vega10_start_dpm(hwmgr, SMC_DPM_FEATURES);
2952 PP_ASSERT_WITH_CODE(!tmp_result,
2953 "Failed to start DPM!", result = tmp_result);
2954
2955 /* enable didt, do not abort if failed didt */
2956 tmp_result = vega10_enable_didt_config(hwmgr);
2957 PP_ASSERT(!tmp_result,
2958 "Failed to enable didt config!");
2959
2960 tmp_result = vega10_enable_power_containment(hwmgr);
2961 PP_ASSERT_WITH_CODE(!tmp_result,
2962 "Failed to enable power containment!",
2963 result = tmp_result);
2964
2965 tmp_result = vega10_power_control_set_level(hwmgr);
2966 PP_ASSERT_WITH_CODE(!tmp_result,
2967 "Failed to power control set level!",
2968 result = tmp_result);
2969
2970 tmp_result = vega10_enable_ulv(hwmgr);
2971 PP_ASSERT_WITH_CODE(!tmp_result,
2972 "Failed to enable ULV!",
2973 result = tmp_result);
2974
2975 return result;
2976 }
2977
2978 static int vega10_get_power_state_size(struct pp_hwmgr *hwmgr)
2979 {
2980 return sizeof(struct vega10_power_state);
2981 }
2982
2983 static int vega10_get_pp_table_entry_callback_func(struct pp_hwmgr *hwmgr,
2984 void *state, struct pp_power_state *power_state,
2985 void *pp_table, uint32_t classification_flag)
2986 {
2987 ATOM_Vega10_GFXCLK_Dependency_Record_V2 *patom_record_V2;
2988 struct vega10_power_state *vega10_power_state =
2989 cast_phw_vega10_power_state(&(power_state->hardware));
2990 struct vega10_performance_level *performance_level;
2991 ATOM_Vega10_State *state_entry = (ATOM_Vega10_State *)state;
2992 ATOM_Vega10_POWERPLAYTABLE *powerplay_table =
2993 (ATOM_Vega10_POWERPLAYTABLE *)pp_table;
2994 ATOM_Vega10_SOCCLK_Dependency_Table *socclk_dep_table =
2995 (ATOM_Vega10_SOCCLK_Dependency_Table *)
2996 (((unsigned long)powerplay_table) +
2997 le16_to_cpu(powerplay_table->usSocclkDependencyTableOffset));
2998 ATOM_Vega10_GFXCLK_Dependency_Table *gfxclk_dep_table =
2999 (ATOM_Vega10_GFXCLK_Dependency_Table *)
3000 (((unsigned long)powerplay_table) +
3001 le16_to_cpu(powerplay_table->usGfxclkDependencyTableOffset));
3002 ATOM_Vega10_MCLK_Dependency_Table *mclk_dep_table =
3003 (ATOM_Vega10_MCLK_Dependency_Table *)
3004 (((unsigned long)powerplay_table) +
3005 le16_to_cpu(powerplay_table->usMclkDependencyTableOffset));
3006
3007
3008 /* The following fields are not initialized here:
3009 * id orderedList allStatesList
3010 */
3011 power_state->classification.ui_label =
3012 (le16_to_cpu(state_entry->usClassification) &
3013 ATOM_PPLIB_CLASSIFICATION_UI_MASK) >>
3014 ATOM_PPLIB_CLASSIFICATION_UI_SHIFT;
3015 power_state->classification.flags = classification_flag;
3016 /* NOTE: There is a classification2 flag in BIOS
3017 * that is not being used right now
3018 */
3019 power_state->classification.temporary_state = false;
3020 power_state->classification.to_be_deleted = false;
3021
3022 power_state->validation.disallowOnDC =
3023 ((le32_to_cpu(state_entry->ulCapsAndSettings) &
3024 ATOM_Vega10_DISALLOW_ON_DC) != 0);
3025
3026 power_state->display.disableFrameModulation = false;
3027 power_state->display.limitRefreshrate = false;
3028 power_state->display.enableVariBright =
3029 ((le32_to_cpu(state_entry->ulCapsAndSettings) &
3030 ATOM_Vega10_ENABLE_VARIBRIGHT) != 0);
3031
3032 power_state->validation.supportedPowerLevels = 0;
3033 power_state->uvd_clocks.VCLK = 0;
3034 power_state->uvd_clocks.DCLK = 0;
3035 power_state->temperatures.min = 0;
3036 power_state->temperatures.max = 0;
3037
3038 performance_level = &(vega10_power_state->performance_levels
3039 [vega10_power_state->performance_level_count++]);
3040
3041 PP_ASSERT_WITH_CODE(
3042 (vega10_power_state->performance_level_count <
3043 NUM_GFXCLK_DPM_LEVELS),
3044 "Performance levels exceeds SMC limit!",
3045 return -1);
3046
3047 PP_ASSERT_WITH_CODE(
3048 (vega10_power_state->performance_level_count <=
3049 hwmgr->platform_descriptor.
3050 hardwareActivityPerformanceLevels),
3051 "Performance levels exceeds Driver limit!",
3052 return -1);
3053
3054 /* Performance levels are arranged from low to high. */
3055 performance_level->soc_clock = socclk_dep_table->entries
3056 [state_entry->ucSocClockIndexLow].ulClk;
3057 performance_level->gfx_clock = gfxclk_dep_table->entries
3058 [state_entry->ucGfxClockIndexLow].ulClk;
3059 performance_level->mem_clock = mclk_dep_table->entries
3060 [state_entry->ucMemClockIndexLow].ulMemClk;
3061
3062 performance_level = &(vega10_power_state->performance_levels
3063 [vega10_power_state->performance_level_count++]);
3064 performance_level->soc_clock = socclk_dep_table->entries
3065 [state_entry->ucSocClockIndexHigh].ulClk;
3066 if (gfxclk_dep_table->ucRevId == 0) {
3067 performance_level->gfx_clock = gfxclk_dep_table->entries
3068 [state_entry->ucGfxClockIndexHigh].ulClk;
3069 } else if (gfxclk_dep_table->ucRevId == 1) {
3070 patom_record_V2 = (ATOM_Vega10_GFXCLK_Dependency_Record_V2 *)gfxclk_dep_table->entries;
3071 performance_level->gfx_clock = patom_record_V2[state_entry->ucGfxClockIndexHigh].ulClk;
3072 }
3073
3074 performance_level->mem_clock = mclk_dep_table->entries
3075 [state_entry->ucMemClockIndexHigh].ulMemClk;
3076 return 0;
3077 }
3078
3079 static int vega10_get_pp_table_entry(struct pp_hwmgr *hwmgr,
3080 unsigned long entry_index, struct pp_power_state *state)
3081 {
3082 int result;
3083 struct vega10_power_state *ps;
3084
3085 state->hardware.magic = PhwVega10_Magic;
3086
3087 ps = cast_phw_vega10_power_state(&state->hardware);
3088
3089 result = vega10_get_powerplay_table_entry(hwmgr, entry_index, state,
3090 vega10_get_pp_table_entry_callback_func);
3091
3092 /*
3093 * This is the earliest time we have all the dependency table
3094 * and the VBIOS boot state
3095 */
3096 /* set DC compatible flag if this state supports DC */
3097 if (!state->validation.disallowOnDC)
3098 ps->dc_compatible = true;
3099
3100 ps->uvd_clks.vclk = state->uvd_clocks.VCLK;
3101 ps->uvd_clks.dclk = state->uvd_clocks.DCLK;
3102
3103 return 0;
3104 }
3105
3106 static int vega10_patch_boot_state(struct pp_hwmgr *hwmgr,
3107 struct pp_hw_power_state *hw_ps)
3108 {
3109 return 0;
3110 }
3111
3112 static int vega10_apply_state_adjust_rules(struct pp_hwmgr *hwmgr,
3113 struct pp_power_state *request_ps,
3114 const struct pp_power_state *current_ps)
3115 {
3116 struct amdgpu_device *adev = hwmgr->adev;
3117 struct vega10_power_state *vega10_ps =
3118 cast_phw_vega10_power_state(&request_ps->hardware);
3119 uint32_t sclk;
3120 uint32_t mclk;
3121 struct PP_Clocks minimum_clocks = {0};
3122 bool disable_mclk_switching;
3123 bool disable_mclk_switching_for_frame_lock;
3124 bool disable_mclk_switching_for_vr;
3125 bool force_mclk_high;
3126 const struct phm_clock_and_voltage_limits *max_limits;
3127 uint32_t i;
3128 struct vega10_hwmgr *data = hwmgr->backend;
3129 struct phm_ppt_v2_information *table_info =
3130 (struct phm_ppt_v2_information *)(hwmgr->pptable);
3131 int32_t count;
3132 uint32_t stable_pstate_sclk_dpm_percentage;
3133 uint32_t stable_pstate_sclk = 0, stable_pstate_mclk = 0;
3134 uint32_t latency;
3135
3136 data->battery_state = (PP_StateUILabel_Battery ==
3137 request_ps->classification.ui_label);
3138
3139 if (vega10_ps->performance_level_count != 2)
3140 pr_info("VI should always have 2 performance levels");
3141
3142 max_limits = adev->pm.ac_power ?
3143 &(hwmgr->dyn_state.max_clock_voltage_on_ac) :
3144 &(hwmgr->dyn_state.max_clock_voltage_on_dc);
3145
3146 /* Cap clock DPM tables at DC MAX if it is in DC. */
3147 if (!adev->pm.ac_power) {
3148 for (i = 0; i < vega10_ps->performance_level_count; i++) {
3149 if (vega10_ps->performance_levels[i].mem_clock >
3150 max_limits->mclk)
3151 vega10_ps->performance_levels[i].mem_clock =
3152 max_limits->mclk;
3153 if (vega10_ps->performance_levels[i].gfx_clock >
3154 max_limits->sclk)
3155 vega10_ps->performance_levels[i].gfx_clock =
3156 max_limits->sclk;
3157 }
3158 }
3159
3160 /* result = PHM_CheckVBlankTime(hwmgr, &vblankTooShort);*/
3161 minimum_clocks.engineClock = hwmgr->display_config->min_core_set_clock;
3162 minimum_clocks.memoryClock = hwmgr->display_config->min_mem_set_clock;
3163
3164 if (PP_CAP(PHM_PlatformCaps_StablePState)) {
3165 stable_pstate_sclk_dpm_percentage =
3166 data->registry_data.stable_pstate_sclk_dpm_percentage;
3167 PP_ASSERT_WITH_CODE(
3168 data->registry_data.stable_pstate_sclk_dpm_percentage >= 1 &&
3169 data->registry_data.stable_pstate_sclk_dpm_percentage <= 100,
3170 "percent sclk value must range from 1% to 100%, setting default value",
3171 stable_pstate_sclk_dpm_percentage = 75);
3172
3173 max_limits = &(hwmgr->dyn_state.max_clock_voltage_on_ac);
3174 stable_pstate_sclk = (max_limits->sclk *
3175 stable_pstate_sclk_dpm_percentage) / 100;
3176
3177 for (count = table_info->vdd_dep_on_sclk->count - 1;
3178 count >= 0; count--) {
3179 if (stable_pstate_sclk >=
3180 table_info->vdd_dep_on_sclk->entries[count].clk) {
3181 stable_pstate_sclk =
3182 table_info->vdd_dep_on_sclk->entries[count].clk;
3183 break;
3184 }
3185 }
3186
3187 if (count < 0)
3188 stable_pstate_sclk = table_info->vdd_dep_on_sclk->entries[0].clk;
3189
3190 stable_pstate_mclk = max_limits->mclk;
3191
3192 minimum_clocks.engineClock = stable_pstate_sclk;
3193 minimum_clocks.memoryClock = stable_pstate_mclk;
3194 }
3195
3196 disable_mclk_switching_for_frame_lock =
3197 PP_CAP(PHM_PlatformCaps_DisableMclkSwitchingForFrameLock);
3198 disable_mclk_switching_for_vr =
3199 PP_CAP(PHM_PlatformCaps_DisableMclkSwitchForVR);
3200 force_mclk_high = PP_CAP(PHM_PlatformCaps_ForceMclkHigh);
3201
3202 if (hwmgr->display_config->num_display == 0)
3203 disable_mclk_switching = false;
3204 else
3205 disable_mclk_switching = (hwmgr->display_config->num_display > 1) ||
3206 disable_mclk_switching_for_frame_lock ||
3207 disable_mclk_switching_for_vr ||
3208 force_mclk_high;
3209
3210 sclk = vega10_ps->performance_levels[0].gfx_clock;
3211 mclk = vega10_ps->performance_levels[0].mem_clock;
3212
3213 if (sclk < minimum_clocks.engineClock)
3214 sclk = (minimum_clocks.engineClock > max_limits->sclk) ?
3215 max_limits->sclk : minimum_clocks.engineClock;
3216
3217 if (mclk < minimum_clocks.memoryClock)
3218 mclk = (minimum_clocks.memoryClock > max_limits->mclk) ?
3219 max_limits->mclk : minimum_clocks.memoryClock;
3220
3221 vega10_ps->performance_levels[0].gfx_clock = sclk;
3222 vega10_ps->performance_levels[0].mem_clock = mclk;
3223
3224 if (vega10_ps->performance_levels[1].gfx_clock <
3225 vega10_ps->performance_levels[0].gfx_clock)
3226 vega10_ps->performance_levels[0].gfx_clock =
3227 vega10_ps->performance_levels[1].gfx_clock;
3228
3229 if (disable_mclk_switching) {
3230 /* Set Mclk the max of level 0 and level 1 */
3231 if (mclk < vega10_ps->performance_levels[1].mem_clock)
3232 mclk = vega10_ps->performance_levels[1].mem_clock;
3233
3234 /* Find the lowest MCLK frequency that is within
3235 * the tolerable latency defined in DAL
3236 */
3237 latency = hwmgr->display_config->dce_tolerable_mclk_in_active_latency;
3238 for (i = 0; i < data->mclk_latency_table.count; i++) {
3239 if ((data->mclk_latency_table.entries[i].latency <= latency) &&
3240 (data->mclk_latency_table.entries[i].frequency >=
3241 vega10_ps->performance_levels[0].mem_clock) &&
3242 (data->mclk_latency_table.entries[i].frequency <=
3243 vega10_ps->performance_levels[1].mem_clock))
3244 mclk = data->mclk_latency_table.entries[i].frequency;
3245 }
3246 vega10_ps->performance_levels[0].mem_clock = mclk;
3247 } else {
3248 if (vega10_ps->performance_levels[1].mem_clock <
3249 vega10_ps->performance_levels[0].mem_clock)
3250 vega10_ps->performance_levels[0].mem_clock =
3251 vega10_ps->performance_levels[1].mem_clock;
3252 }
3253
3254 if (PP_CAP(PHM_PlatformCaps_StablePState)) {
3255 for (i = 0; i < vega10_ps->performance_level_count; i++) {
3256 vega10_ps->performance_levels[i].gfx_clock = stable_pstate_sclk;
3257 vega10_ps->performance_levels[i].mem_clock = stable_pstate_mclk;
3258 }
3259 }
3260
3261 return 0;
3262 }
3263
3264 static int vega10_find_dpm_states_clocks_in_dpm_table(struct pp_hwmgr *hwmgr, const void *input)
3265 {
3266 struct vega10_hwmgr *data = hwmgr->backend;
3267 const struct phm_set_power_state_input *states =
3268 (const struct phm_set_power_state_input *)input;
3269 const struct vega10_power_state *vega10_ps =
3270 cast_const_phw_vega10_power_state(states->pnew_state);
3271 struct vega10_single_dpm_table *sclk_table = &(data->dpm_table.gfx_table);
3272 uint32_t sclk = vega10_ps->performance_levels
3273 [vega10_ps->performance_level_count - 1].gfx_clock;
3274 struct vega10_single_dpm_table *mclk_table = &(data->dpm_table.mem_table);
3275 uint32_t mclk = vega10_ps->performance_levels
3276 [vega10_ps->performance_level_count - 1].mem_clock;
3277 uint32_t i;
3278
3279 for (i = 0; i < sclk_table->count; i++) {
3280 if (sclk == sclk_table->dpm_levels[i].value)
3281 break;
3282 }
3283
3284 if (i >= sclk_table->count) {
3285 if (sclk > sclk_table->dpm_levels[i-1].value) {
3286 data->need_update_dpm_table |= DPMTABLE_OD_UPDATE_SCLK;
3287 sclk_table->dpm_levels[i-1].value = sclk;
3288 }
3289 }
3290
3291 for (i = 0; i < mclk_table->count; i++) {
3292 if (mclk == mclk_table->dpm_levels[i].value)
3293 break;
3294 }
3295
3296 if (i >= mclk_table->count) {
3297 if (mclk > mclk_table->dpm_levels[i-1].value) {
3298 data->need_update_dpm_table |= DPMTABLE_OD_UPDATE_MCLK;
3299 mclk_table->dpm_levels[i-1].value = mclk;
3300 }
3301 }
3302
3303 if (data->display_timing.num_existing_displays != hwmgr->display_config->num_display)
3304 data->need_update_dpm_table |= DPMTABLE_UPDATE_MCLK;
3305
3306 return 0;
3307 }
3308
3309 static int vega10_populate_and_upload_sclk_mclk_dpm_levels(
3310 struct pp_hwmgr *hwmgr, const void *input)
3311 {
3312 int result = 0;
3313 struct vega10_hwmgr *data = hwmgr->backend;
3314 struct vega10_dpm_table *dpm_table = &data->dpm_table;
3315 struct vega10_odn_dpm_table *odn_table = &data->odn_dpm_table;
3316 struct vega10_odn_clock_voltage_dependency_table *odn_clk_table = &odn_table->vdd_dep_on_sclk;
3317 int count;
3318
3319 if (!data->need_update_dpm_table)
3320 return 0;
3321
3322 if (hwmgr->od_enabled && data->need_update_dpm_table & DPMTABLE_OD_UPDATE_SCLK) {
3323 for (count = 0; count < dpm_table->gfx_table.count; count++)
3324 dpm_table->gfx_table.dpm_levels[count].value = odn_clk_table->entries[count].clk;
3325 }
3326
3327 odn_clk_table = &odn_table->vdd_dep_on_mclk;
3328 if (hwmgr->od_enabled && data->need_update_dpm_table & DPMTABLE_OD_UPDATE_MCLK) {
3329 for (count = 0; count < dpm_table->mem_table.count; count++)
3330 dpm_table->mem_table.dpm_levels[count].value = odn_clk_table->entries[count].clk;
3331 }
3332
3333 if (data->need_update_dpm_table &
3334 (DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_UPDATE_SCLK + DPMTABLE_UPDATE_SOCCLK)) {
3335 result = vega10_populate_all_graphic_levels(hwmgr);
3336 PP_ASSERT_WITH_CODE((0 == result),
3337 "Failed to populate SCLK during PopulateNewDPMClocksStates Function!",
3338 return result);
3339 }
3340
3341 if (data->need_update_dpm_table &
3342 (DPMTABLE_OD_UPDATE_MCLK + DPMTABLE_UPDATE_MCLK)) {
3343 result = vega10_populate_all_memory_levels(hwmgr);
3344 PP_ASSERT_WITH_CODE((0 == result),
3345 "Failed to populate MCLK during PopulateNewDPMClocksStates Function!",
3346 return result);
3347 }
3348
3349 vega10_populate_vddc_soc_levels(hwmgr);
3350
3351 return result;
3352 }
3353
3354 static int vega10_trim_single_dpm_states(struct pp_hwmgr *hwmgr,
3355 struct vega10_single_dpm_table *dpm_table,
3356 uint32_t low_limit, uint32_t high_limit)
3357 {
3358 uint32_t i;
3359
3360 for (i = 0; i < dpm_table->count; i++) {
3361 if ((dpm_table->dpm_levels[i].value < low_limit) ||
3362 (dpm_table->dpm_levels[i].value > high_limit))
3363 dpm_table->dpm_levels[i].enabled = false;
3364 else
3365 dpm_table->dpm_levels[i].enabled = true;
3366 }
3367 return 0;
3368 }
3369
3370 static int vega10_trim_single_dpm_states_with_mask(struct pp_hwmgr *hwmgr,
3371 struct vega10_single_dpm_table *dpm_table,
3372 uint32_t low_limit, uint32_t high_limit,
3373 uint32_t disable_dpm_mask)
3374 {
3375 uint32_t i;
3376
3377 for (i = 0; i < dpm_table->count; i++) {
3378 if ((dpm_table->dpm_levels[i].value < low_limit) ||
3379 (dpm_table->dpm_levels[i].value > high_limit))
3380 dpm_table->dpm_levels[i].enabled = false;
3381 else if (!((1 << i) & disable_dpm_mask))
3382 dpm_table->dpm_levels[i].enabled = false;
3383 else
3384 dpm_table->dpm_levels[i].enabled = true;
3385 }
3386 return 0;
3387 }
3388
3389 static int vega10_trim_dpm_states(struct pp_hwmgr *hwmgr,
3390 const struct vega10_power_state *vega10_ps)
3391 {
3392 struct vega10_hwmgr *data = hwmgr->backend;
3393 uint32_t high_limit_count;
3394
3395 PP_ASSERT_WITH_CODE((vega10_ps->performance_level_count >= 1),
3396 "power state did not have any performance level",
3397 return -1);
3398
3399 high_limit_count = (vega10_ps->performance_level_count == 1) ? 0 : 1;
3400
3401 vega10_trim_single_dpm_states(hwmgr,
3402 &(data->dpm_table.soc_table),
3403 vega10_ps->performance_levels[0].soc_clock,
3404 vega10_ps->performance_levels[high_limit_count].soc_clock);
3405
3406 vega10_trim_single_dpm_states_with_mask(hwmgr,
3407 &(data->dpm_table.gfx_table),
3408 vega10_ps->performance_levels[0].gfx_clock,
3409 vega10_ps->performance_levels[high_limit_count].gfx_clock,
3410 data->disable_dpm_mask);
3411
3412 vega10_trim_single_dpm_states(hwmgr,
3413 &(data->dpm_table.mem_table),
3414 vega10_ps->performance_levels[0].mem_clock,
3415 vega10_ps->performance_levels[high_limit_count].mem_clock);
3416
3417 return 0;
3418 }
3419
3420 static uint32_t vega10_find_lowest_dpm_level(
3421 struct vega10_single_dpm_table *table)
3422 {
3423 uint32_t i;
3424
3425 for (i = 0; i < table->count; i++) {
3426 if (table->dpm_levels[i].enabled)
3427 break;
3428 }
3429
3430 return i;
3431 }
3432
3433 static uint32_t vega10_find_highest_dpm_level(
3434 struct vega10_single_dpm_table *table)
3435 {
3436 uint32_t i = 0;
3437
3438 if (table->count <= MAX_REGULAR_DPM_NUMBER) {
3439 for (i = table->count; i > 0; i--) {
3440 if (table->dpm_levels[i - 1].enabled)
3441 return i - 1;
3442 }
3443 } else {
3444 pr_info("DPM Table Has Too Many Entries!");
3445 return MAX_REGULAR_DPM_NUMBER - 1;
3446 }
3447
3448 return i;
3449 }
3450
3451 static void vega10_apply_dal_minimum_voltage_request(
3452 struct pp_hwmgr *hwmgr)
3453 {
3454 return;
3455 }
3456
3457 static int vega10_get_soc_index_for_max_uclk(struct pp_hwmgr *hwmgr)
3458 {
3459 struct phm_ppt_v1_clock_voltage_dependency_table *vdd_dep_table_on_mclk;
3460 struct phm_ppt_v2_information *table_info =
3461 (struct phm_ppt_v2_information *)(hwmgr->pptable);
3462
3463 vdd_dep_table_on_mclk = table_info->vdd_dep_on_mclk;
3464
3465 return vdd_dep_table_on_mclk->entries[NUM_UCLK_DPM_LEVELS - 1].vddInd + 1;
3466 }
3467
3468 static int vega10_upload_dpm_bootup_level(struct pp_hwmgr *hwmgr)
3469 {
3470 struct vega10_hwmgr *data = hwmgr->backend;
3471 uint32_t socclk_idx;
3472
3473 vega10_apply_dal_minimum_voltage_request(hwmgr);
3474
3475 if (!data->registry_data.sclk_dpm_key_disabled) {
3476 if (data->smc_state_table.gfx_boot_level !=
3477 data->dpm_table.gfx_table.dpm_state.soft_min_level) {
3478 smum_send_msg_to_smc_with_parameter(hwmgr,
3479 PPSMC_MSG_SetSoftMinGfxclkByIndex,
3480 data->smc_state_table.gfx_boot_level);
3481 data->dpm_table.gfx_table.dpm_state.soft_min_level =
3482 data->smc_state_table.gfx_boot_level;
3483 }
3484 }
3485
3486 if (!data->registry_data.mclk_dpm_key_disabled) {
3487 if (data->smc_state_table.mem_boot_level !=
3488 data->dpm_table.mem_table.dpm_state.soft_min_level) {
3489 if (data->smc_state_table.mem_boot_level == NUM_UCLK_DPM_LEVELS - 1) {
3490 socclk_idx = vega10_get_soc_index_for_max_uclk(hwmgr);
3491 smum_send_msg_to_smc_with_parameter(hwmgr,
3492 PPSMC_MSG_SetSoftMinSocclkByIndex,
3493 socclk_idx);
3494 } else {
3495 smum_send_msg_to_smc_with_parameter(hwmgr,
3496 PPSMC_MSG_SetSoftMinUclkByIndex,
3497 data->smc_state_table.mem_boot_level);
3498 }
3499 data->dpm_table.mem_table.dpm_state.soft_min_level =
3500 data->smc_state_table.mem_boot_level;
3501 }
3502 }
3503
3504 if (!data->registry_data.socclk_dpm_key_disabled) {
3505 if (data->smc_state_table.soc_boot_level !=
3506 data->dpm_table.soc_table.dpm_state.soft_min_level) {
3507 smum_send_msg_to_smc_with_parameter(hwmgr,
3508 PPSMC_MSG_SetSoftMinSocclkByIndex,
3509 data->smc_state_table.soc_boot_level);
3510 data->dpm_table.soc_table.dpm_state.soft_min_level =
3511 data->smc_state_table.soc_boot_level;
3512 }
3513 }
3514
3515 return 0;
3516 }
3517
3518 static int vega10_upload_dpm_max_level(struct pp_hwmgr *hwmgr)
3519 {
3520 struct vega10_hwmgr *data = hwmgr->backend;
3521
3522 vega10_apply_dal_minimum_voltage_request(hwmgr);
3523
3524 if (!data->registry_data.sclk_dpm_key_disabled) {
3525 if (data->smc_state_table.gfx_max_level !=
3526 data->dpm_table.gfx_table.dpm_state.soft_max_level) {
3527 smum_send_msg_to_smc_with_parameter(hwmgr,
3528 PPSMC_MSG_SetSoftMaxGfxclkByIndex,
3529 data->smc_state_table.gfx_max_level);
3530 data->dpm_table.gfx_table.dpm_state.soft_max_level =
3531 data->smc_state_table.gfx_max_level;
3532 }
3533 }
3534
3535 if (!data->registry_data.mclk_dpm_key_disabled) {
3536 if (data->smc_state_table.mem_max_level !=
3537 data->dpm_table.mem_table.dpm_state.soft_max_level) {
3538 smum_send_msg_to_smc_with_parameter(hwmgr,
3539 PPSMC_MSG_SetSoftMaxUclkByIndex,
3540 data->smc_state_table.mem_max_level);
3541 data->dpm_table.mem_table.dpm_state.soft_max_level =
3542 data->smc_state_table.mem_max_level;
3543 }
3544 }
3545
3546 if (!data->registry_data.socclk_dpm_key_disabled) {
3547 if (data->smc_state_table.soc_max_level !=
3548 data->dpm_table.soc_table.dpm_state.soft_max_level) {
3549 smum_send_msg_to_smc_with_parameter(hwmgr,
3550 PPSMC_MSG_SetSoftMaxSocclkByIndex,
3551 data->smc_state_table.soc_max_level);
3552 data->dpm_table.soc_table.dpm_state.soft_max_level =
3553 data->smc_state_table.soc_max_level;
3554 }
3555 }
3556
3557 return 0;
3558 }
3559
3560 static int vega10_generate_dpm_level_enable_mask(
3561 struct pp_hwmgr *hwmgr, const void *input)
3562 {
3563 struct vega10_hwmgr *data = hwmgr->backend;
3564 const struct phm_set_power_state_input *states =
3565 (const struct phm_set_power_state_input *)input;
3566 const struct vega10_power_state *vega10_ps =
3567 cast_const_phw_vega10_power_state(states->pnew_state);
3568 int i;
3569
3570 PP_ASSERT_WITH_CODE(!vega10_trim_dpm_states(hwmgr, vega10_ps),
3571 "Attempt to Trim DPM States Failed!",
3572 return -1);
3573
3574 data->smc_state_table.gfx_boot_level =
3575 vega10_find_lowest_dpm_level(&(data->dpm_table.gfx_table));
3576 data->smc_state_table.gfx_max_level =
3577 vega10_find_highest_dpm_level(&(data->dpm_table.gfx_table));
3578 data->smc_state_table.mem_boot_level =
3579 vega10_find_lowest_dpm_level(&(data->dpm_table.mem_table));
3580 data->smc_state_table.mem_max_level =
3581 vega10_find_highest_dpm_level(&(data->dpm_table.mem_table));
3582 data->smc_state_table.soc_boot_level =
3583 vega10_find_lowest_dpm_level(&(data->dpm_table.soc_table));
3584 data->smc_state_table.soc_max_level =
3585 vega10_find_highest_dpm_level(&(data->dpm_table.soc_table));
3586
3587 PP_ASSERT_WITH_CODE(!vega10_upload_dpm_bootup_level(hwmgr),
3588 "Attempt to upload DPM Bootup Levels Failed!",
3589 return -1);
3590 PP_ASSERT_WITH_CODE(!vega10_upload_dpm_max_level(hwmgr),
3591 "Attempt to upload DPM Max Levels Failed!",
3592 return -1);
3593 for(i = data->smc_state_table.gfx_boot_level; i < data->smc_state_table.gfx_max_level; i++)
3594 data->dpm_table.gfx_table.dpm_levels[i].enabled = true;
3595
3596
3597 for(i = data->smc_state_table.mem_boot_level; i < data->smc_state_table.mem_max_level; i++)
3598 data->dpm_table.mem_table.dpm_levels[i].enabled = true;
3599
3600 for (i = data->smc_state_table.soc_boot_level; i < data->smc_state_table.soc_max_level; i++)
3601 data->dpm_table.soc_table.dpm_levels[i].enabled = true;
3602
3603 return 0;
3604 }
3605
3606 int vega10_enable_disable_vce_dpm(struct pp_hwmgr *hwmgr, bool enable)
3607 {
3608 struct vega10_hwmgr *data = hwmgr->backend;
3609
3610 if (data->smu_features[GNLD_DPM_VCE].supported) {
3611 PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
3612 enable,
3613 data->smu_features[GNLD_DPM_VCE].smu_feature_bitmap),
3614 "Attempt to Enable/Disable DPM VCE Failed!",
3615 return -1);
3616 data->smu_features[GNLD_DPM_VCE].enabled = enable;
3617 }
3618
3619 return 0;
3620 }
3621
3622 static int vega10_update_sclk_threshold(struct pp_hwmgr *hwmgr)
3623 {
3624 struct vega10_hwmgr *data = hwmgr->backend;
3625 uint32_t low_sclk_interrupt_threshold = 0;
3626
3627 if (PP_CAP(PHM_PlatformCaps_SclkThrottleLowNotification) &&
3628 (data->low_sclk_interrupt_threshold != 0)) {
3629 low_sclk_interrupt_threshold =
3630 data->low_sclk_interrupt_threshold;
3631
3632 data->smc_state_table.pp_table.LowGfxclkInterruptThreshold =
3633 cpu_to_le32(low_sclk_interrupt_threshold);
3634
3635 /* This message will also enable SmcToHost Interrupt */
3636 smum_send_msg_to_smc_with_parameter(hwmgr,
3637 PPSMC_MSG_SetLowGfxclkInterruptThreshold,
3638 (uint32_t)low_sclk_interrupt_threshold);
3639 }
3640
3641 return 0;
3642 }
3643
3644 static int vega10_set_power_state_tasks(struct pp_hwmgr *hwmgr,
3645 const void *input)
3646 {
3647 int tmp_result, result = 0;
3648 struct vega10_hwmgr *data = hwmgr->backend;
3649 PPTable_t *pp_table = &(data->smc_state_table.pp_table);
3650
3651 tmp_result = vega10_find_dpm_states_clocks_in_dpm_table(hwmgr, input);
3652 PP_ASSERT_WITH_CODE(!tmp_result,
3653 "Failed to find DPM states clocks in DPM table!",
3654 result = tmp_result);
3655
3656 tmp_result = vega10_populate_and_upload_sclk_mclk_dpm_levels(hwmgr, input);
3657 PP_ASSERT_WITH_CODE(!tmp_result,
3658 "Failed to populate and upload SCLK MCLK DPM levels!",
3659 result = tmp_result);
3660
3661 tmp_result = vega10_generate_dpm_level_enable_mask(hwmgr, input);
3662 PP_ASSERT_WITH_CODE(!tmp_result,
3663 "Failed to generate DPM level enabled mask!",
3664 result = tmp_result);
3665
3666 tmp_result = vega10_update_sclk_threshold(hwmgr);
3667 PP_ASSERT_WITH_CODE(!tmp_result,
3668 "Failed to update SCLK threshold!",
3669 result = tmp_result);
3670
3671 result = smum_smc_table_manager(hwmgr, (uint8_t *)pp_table, PPTABLE, false);
3672 PP_ASSERT_WITH_CODE(!result,
3673 "Failed to upload PPtable!", return result);
3674
3675 vega10_update_avfs(hwmgr);
3676
3677 data->need_update_dpm_table &= DPMTABLE_OD_UPDATE_VDDC;
3678
3679 return 0;
3680 }
3681
3682 static uint32_t vega10_dpm_get_sclk(struct pp_hwmgr *hwmgr, bool low)
3683 {
3684 struct pp_power_state *ps;
3685 struct vega10_power_state *vega10_ps;
3686
3687 if (hwmgr == NULL)
3688 return -EINVAL;
3689
3690 ps = hwmgr->request_ps;
3691
3692 if (ps == NULL)
3693 return -EINVAL;
3694
3695 vega10_ps = cast_phw_vega10_power_state(&ps->hardware);
3696
3697 if (low)
3698 return vega10_ps->performance_levels[0].gfx_clock;
3699 else
3700 return vega10_ps->performance_levels
3701 [vega10_ps->performance_level_count - 1].gfx_clock;
3702 }
3703
3704 static uint32_t vega10_dpm_get_mclk(struct pp_hwmgr *hwmgr, bool low)
3705 {
3706 struct pp_power_state *ps;
3707 struct vega10_power_state *vega10_ps;
3708
3709 if (hwmgr == NULL)
3710 return -EINVAL;
3711
3712 ps = hwmgr->request_ps;
3713
3714 if (ps == NULL)
3715 return -EINVAL;
3716
3717 vega10_ps = cast_phw_vega10_power_state(&ps->hardware);
3718
3719 if (low)
3720 return vega10_ps->performance_levels[0].mem_clock;
3721 else
3722 return vega10_ps->performance_levels
3723 [vega10_ps->performance_level_count-1].mem_clock;
3724 }
3725
3726 static int vega10_get_gpu_power(struct pp_hwmgr *hwmgr,
3727 uint32_t *query)
3728 {
3729 uint32_t value;
3730
3731 if (!query)
3732 return -EINVAL;
3733
3734 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetCurrPkgPwr);
3735 value = smum_get_argument(hwmgr);
3736
3737 /* SMC returning actual watts, keep consistent with legacy asics, low 8 bit as 8 fractional bits */
3738 *query = value << 8;
3739
3740 return 0;
3741 }
3742
3743 static int vega10_read_sensor(struct pp_hwmgr *hwmgr, int idx,
3744 void *value, int *size)
3745 {
3746 struct amdgpu_device *adev = hwmgr->adev;
3747 uint32_t sclk_mhz, mclk_idx, activity_percent = 0;
3748 struct vega10_hwmgr *data = hwmgr->backend;
3749 struct vega10_dpm_table *dpm_table = &data->dpm_table;
3750 int ret = 0;
3751 uint32_t val_vid;
3752
3753 switch (idx) {
3754 case AMDGPU_PP_SENSOR_GFX_SCLK:
3755 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetAverageGfxclkActualFrequency);
3756 sclk_mhz = smum_get_argument(hwmgr);
3757 *((uint32_t *)value) = sclk_mhz * 100;
3758 break;
3759 case AMDGPU_PP_SENSOR_GFX_MCLK:
3760 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetCurrentUclkIndex);
3761 mclk_idx = smum_get_argument(hwmgr);
3762 if (mclk_idx < dpm_table->mem_table.count) {
3763 *((uint32_t *)value) = dpm_table->mem_table.dpm_levels[mclk_idx].value;
3764 *size = 4;
3765 } else {
3766 ret = -EINVAL;
3767 }
3768 break;
3769 case AMDGPU_PP_SENSOR_GPU_LOAD:
3770 smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_GetAverageGfxActivity, 0);
3771 activity_percent = smum_get_argument(hwmgr);
3772 *((uint32_t *)value) = activity_percent > 100 ? 100 : activity_percent;
3773 *size = 4;
3774 break;
3775 case AMDGPU_PP_SENSOR_GPU_TEMP:
3776 *((uint32_t *)value) = vega10_thermal_get_temperature(hwmgr);
3777 *size = 4;
3778 break;
3779 case AMDGPU_PP_SENSOR_UVD_POWER:
3780 *((uint32_t *)value) = data->uvd_power_gated ? 0 : 1;
3781 *size = 4;
3782 break;
3783 case AMDGPU_PP_SENSOR_VCE_POWER:
3784 *((uint32_t *)value) = data->vce_power_gated ? 0 : 1;
3785 *size = 4;
3786 break;
3787 case AMDGPU_PP_SENSOR_GPU_POWER:
3788 ret = vega10_get_gpu_power(hwmgr, (uint32_t *)value);
3789 break;
3790 case AMDGPU_PP_SENSOR_VDDGFX:
3791 val_vid = (RREG32_SOC15(SMUIO, 0, mmSMUSVI0_PLANE0_CURRENTVID) &
3792 SMUSVI0_PLANE0_CURRENTVID__CURRENT_SVI0_PLANE0_VID_MASK) >>
3793 SMUSVI0_PLANE0_CURRENTVID__CURRENT_SVI0_PLANE0_VID__SHIFT;
3794 *((uint32_t *)value) = (uint32_t)convert_to_vddc((uint8_t)val_vid);
3795 return 0;
3796 case AMDGPU_PP_SENSOR_ENABLED_SMC_FEATURES_MASK:
3797 ret = vega10_get_enabled_smc_features(hwmgr, (uint64_t *)value);
3798 if (!ret)
3799 *size = 8;
3800 break;
3801 default:
3802 ret = -EINVAL;
3803 break;
3804 }
3805
3806 return ret;
3807 }
3808
3809 static void vega10_notify_smc_display_change(struct pp_hwmgr *hwmgr,
3810 bool has_disp)
3811 {
3812 smum_send_msg_to_smc_with_parameter(hwmgr,
3813 PPSMC_MSG_SetUclkFastSwitch,
3814 has_disp ? 1 : 0);
3815 }
3816
3817 int vega10_display_clock_voltage_request(struct pp_hwmgr *hwmgr,
3818 struct pp_display_clock_request *clock_req)
3819 {
3820 int result = 0;
3821 enum amd_pp_clock_type clk_type = clock_req->clock_type;
3822 uint32_t clk_freq = clock_req->clock_freq_in_khz / 1000;
3823 DSPCLK_e clk_select = 0;
3824 uint32_t clk_request = 0;
3825
3826 switch (clk_type) {
3827 case amd_pp_dcef_clock:
3828 clk_select = DSPCLK_DCEFCLK;
3829 break;
3830 case amd_pp_disp_clock:
3831 clk_select = DSPCLK_DISPCLK;
3832 break;
3833 case amd_pp_pixel_clock:
3834 clk_select = DSPCLK_PIXCLK;
3835 break;
3836 case amd_pp_phy_clock:
3837 clk_select = DSPCLK_PHYCLK;
3838 break;
3839 default:
3840 pr_info("[DisplayClockVoltageRequest]Invalid Clock Type!");
3841 result = -1;
3842 break;
3843 }
3844
3845 if (!result) {
3846 clk_request = (clk_freq << 16) | clk_select;
3847 smum_send_msg_to_smc_with_parameter(hwmgr,
3848 PPSMC_MSG_RequestDisplayClockByFreq,
3849 clk_request);
3850 }
3851
3852 return result;
3853 }
3854
3855 static uint8_t vega10_get_uclk_index(struct pp_hwmgr *hwmgr,
3856 struct phm_ppt_v1_clock_voltage_dependency_table *mclk_table,
3857 uint32_t frequency)
3858 {
3859 uint8_t count;
3860 uint8_t i;
3861
3862 if (mclk_table == NULL || mclk_table->count == 0)
3863 return 0;
3864
3865 count = (uint8_t)(mclk_table->count);
3866
3867 for(i = 0; i < count; i++) {
3868 if(mclk_table->entries[i].clk >= frequency)
3869 return i;
3870 }
3871
3872 return i-1;
3873 }
3874
3875 static int vega10_notify_smc_display_config_after_ps_adjustment(
3876 struct pp_hwmgr *hwmgr)
3877 {
3878 struct vega10_hwmgr *data = hwmgr->backend;
3879 struct vega10_single_dpm_table *dpm_table =
3880 &data->dpm_table.dcef_table;
3881 struct phm_ppt_v2_information *table_info =
3882 (struct phm_ppt_v2_information *)hwmgr->pptable;
3883 struct phm_ppt_v1_clock_voltage_dependency_table *mclk_table = table_info->vdd_dep_on_mclk;
3884 uint32_t idx;
3885 struct PP_Clocks min_clocks = {0};
3886 uint32_t i;
3887 struct pp_display_clock_request clock_req;
3888
3889 if ((hwmgr->display_config->num_display > 1) &&
3890 !hwmgr->display_config->multi_monitor_in_sync &&
3891 !hwmgr->display_config->nb_pstate_switch_disable)
3892 vega10_notify_smc_display_change(hwmgr, false);
3893 else
3894 vega10_notify_smc_display_change(hwmgr, true);
3895
3896 min_clocks.dcefClock = hwmgr->display_config->min_dcef_set_clk;
3897 min_clocks.dcefClockInSR = hwmgr->display_config->min_dcef_deep_sleep_set_clk;
3898 min_clocks.memoryClock = hwmgr->display_config->min_mem_set_clock;
3899
3900 for (i = 0; i < dpm_table->count; i++) {
3901 if (dpm_table->dpm_levels[i].value == min_clocks.dcefClock)
3902 break;
3903 }
3904
3905 if (i < dpm_table->count) {
3906 clock_req.clock_type = amd_pp_dcef_clock;
3907 clock_req.clock_freq_in_khz = dpm_table->dpm_levels[i].value * 10;
3908 if (!vega10_display_clock_voltage_request(hwmgr, &clock_req)) {
3909 smum_send_msg_to_smc_with_parameter(
3910 hwmgr, PPSMC_MSG_SetMinDeepSleepDcefclk,
3911 min_clocks.dcefClockInSR / 100);
3912 } else {
3913 pr_info("Attempt to set Hard Min for DCEFCLK Failed!");
3914 }
3915 } else {
3916 pr_debug("Cannot find requested DCEFCLK!");
3917 }
3918
3919 if (min_clocks.memoryClock != 0) {
3920 idx = vega10_get_uclk_index(hwmgr, mclk_table, min_clocks.memoryClock);
3921 smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetSoftMinUclkByIndex, idx);
3922 data->dpm_table.mem_table.dpm_state.soft_min_level= idx;
3923 }
3924
3925 return 0;
3926 }
3927
3928 static int vega10_force_dpm_highest(struct pp_hwmgr *hwmgr)
3929 {
3930 struct vega10_hwmgr *data = hwmgr->backend;
3931
3932 data->smc_state_table.gfx_boot_level =
3933 data->smc_state_table.gfx_max_level =
3934 vega10_find_highest_dpm_level(&(data->dpm_table.gfx_table));
3935 data->smc_state_table.mem_boot_level =
3936 data->smc_state_table.mem_max_level =
3937 vega10_find_highest_dpm_level(&(data->dpm_table.mem_table));
3938
3939 PP_ASSERT_WITH_CODE(!vega10_upload_dpm_bootup_level(hwmgr),
3940 "Failed to upload boot level to highest!",
3941 return -1);
3942
3943 PP_ASSERT_WITH_CODE(!vega10_upload_dpm_max_level(hwmgr),
3944 "Failed to upload dpm max level to highest!",
3945 return -1);
3946
3947 return 0;
3948 }
3949
3950 static int vega10_force_dpm_lowest(struct pp_hwmgr *hwmgr)
3951 {
3952 struct vega10_hwmgr *data = hwmgr->backend;
3953
3954 data->smc_state_table.gfx_boot_level =
3955 data->smc_state_table.gfx_max_level =
3956 vega10_find_lowest_dpm_level(&(data->dpm_table.gfx_table));
3957 data->smc_state_table.mem_boot_level =
3958 data->smc_state_table.mem_max_level =
3959 vega10_find_lowest_dpm_level(&(data->dpm_table.mem_table));
3960
3961 PP_ASSERT_WITH_CODE(!vega10_upload_dpm_bootup_level(hwmgr),
3962 "Failed to upload boot level to highest!",
3963 return -1);
3964
3965 PP_ASSERT_WITH_CODE(!vega10_upload_dpm_max_level(hwmgr),
3966 "Failed to upload dpm max level to highest!",
3967 return -1);
3968
3969 return 0;
3970
3971 }
3972
3973 static int vega10_unforce_dpm_levels(struct pp_hwmgr *hwmgr)
3974 {
3975 struct vega10_hwmgr *data = hwmgr->backend;
3976
3977 data->smc_state_table.gfx_boot_level =
3978 vega10_find_lowest_dpm_level(&(data->dpm_table.gfx_table));
3979 data->smc_state_table.gfx_max_level =
3980 vega10_find_highest_dpm_level(&(data->dpm_table.gfx_table));
3981 data->smc_state_table.mem_boot_level =
3982 vega10_find_lowest_dpm_level(&(data->dpm_table.mem_table));
3983 data->smc_state_table.mem_max_level =
3984 vega10_find_highest_dpm_level(&(data->dpm_table.mem_table));
3985
3986 PP_ASSERT_WITH_CODE(!vega10_upload_dpm_bootup_level(hwmgr),
3987 "Failed to upload DPM Bootup Levels!",
3988 return -1);
3989
3990 PP_ASSERT_WITH_CODE(!vega10_upload_dpm_max_level(hwmgr),
3991 "Failed to upload DPM Max Levels!",
3992 return -1);
3993 return 0;
3994 }
3995
3996 static int vega10_get_profiling_clk_mask(struct pp_hwmgr *hwmgr, enum amd_dpm_forced_level level,
3997 uint32_t *sclk_mask, uint32_t *mclk_mask, uint32_t *soc_mask)
3998 {
3999 struct phm_ppt_v2_information *table_info =
4000 (struct phm_ppt_v2_information *)(hwmgr->pptable);
4001
4002 if (table_info->vdd_dep_on_sclk->count > VEGA10_UMD_PSTATE_GFXCLK_LEVEL &&
4003 table_info->vdd_dep_on_socclk->count > VEGA10_UMD_PSTATE_SOCCLK_LEVEL &&
4004 table_info->vdd_dep_on_mclk->count > VEGA10_UMD_PSTATE_MCLK_LEVEL) {
4005 *sclk_mask = VEGA10_UMD_PSTATE_GFXCLK_LEVEL;
4006 *soc_mask = VEGA10_UMD_PSTATE_SOCCLK_LEVEL;
4007 *mclk_mask = VEGA10_UMD_PSTATE_MCLK_LEVEL;
4008 hwmgr->pstate_sclk = table_info->vdd_dep_on_sclk->entries[VEGA10_UMD_PSTATE_GFXCLK_LEVEL].clk;
4009 hwmgr->pstate_mclk = table_info->vdd_dep_on_mclk->entries[VEGA10_UMD_PSTATE_MCLK_LEVEL].clk;
4010 }
4011
4012 if (level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK) {
4013 *sclk_mask = 0;
4014 } else if (level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK) {
4015 *mclk_mask = 0;
4016 } else if (level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK) {
4017 *sclk_mask = table_info->vdd_dep_on_sclk->count - 1;
4018 *soc_mask = table_info->vdd_dep_on_socclk->count - 1;
4019 *mclk_mask = table_info->vdd_dep_on_mclk->count - 1;
4020 }
4021 return 0;
4022 }
4023
4024 static void vega10_set_fan_control_mode(struct pp_hwmgr *hwmgr, uint32_t mode)
4025 {
4026 switch (mode) {
4027 case AMD_FAN_CTRL_NONE:
4028 vega10_fan_ctrl_set_fan_speed_percent(hwmgr, 100);
4029 break;
4030 case AMD_FAN_CTRL_MANUAL:
4031 if (PP_CAP(PHM_PlatformCaps_MicrocodeFanControl))
4032 vega10_fan_ctrl_stop_smc_fan_control(hwmgr);
4033 break;
4034 case AMD_FAN_CTRL_AUTO:
4035 if (PP_CAP(PHM_PlatformCaps_MicrocodeFanControl))
4036 vega10_fan_ctrl_start_smc_fan_control(hwmgr);
4037 break;
4038 default:
4039 break;
4040 }
4041 }
4042
4043 static int vega10_force_clock_level(struct pp_hwmgr *hwmgr,
4044 enum pp_clock_type type, uint32_t mask)
4045 {
4046 struct vega10_hwmgr *data = hwmgr->backend;
4047
4048 switch (type) {
4049 case PP_SCLK:
4050 data->smc_state_table.gfx_boot_level = mask ? (ffs(mask) - 1) : 0;
4051 data->smc_state_table.gfx_max_level = mask ? (fls(mask) - 1) : 0;
4052
4053 PP_ASSERT_WITH_CODE(!vega10_upload_dpm_bootup_level(hwmgr),
4054 "Failed to upload boot level to lowest!",
4055 return -EINVAL);
4056
4057 PP_ASSERT_WITH_CODE(!vega10_upload_dpm_max_level(hwmgr),
4058 "Failed to upload dpm max level to highest!",
4059 return -EINVAL);
4060 break;
4061
4062 case PP_MCLK:
4063 data->smc_state_table.mem_boot_level = mask ? (ffs(mask) - 1) : 0;
4064 data->smc_state_table.mem_max_level = mask ? (fls(mask) - 1) : 0;
4065
4066 PP_ASSERT_WITH_CODE(!vega10_upload_dpm_bootup_level(hwmgr),
4067 "Failed to upload boot level to lowest!",
4068 return -EINVAL);
4069
4070 PP_ASSERT_WITH_CODE(!vega10_upload_dpm_max_level(hwmgr),
4071 "Failed to upload dpm max level to highest!",
4072 return -EINVAL);
4073
4074 break;
4075
4076 case PP_SOCCLK:
4077 data->smc_state_table.soc_boot_level = mask ? (ffs(mask) - 1) : 0;
4078 data->smc_state_table.soc_max_level = mask ? (fls(mask) - 1) : 0;
4079
4080 PP_ASSERT_WITH_CODE(!vega10_upload_dpm_bootup_level(hwmgr),
4081 "Failed to upload boot level to lowest!",
4082 return -EINVAL);
4083
4084 PP_ASSERT_WITH_CODE(!vega10_upload_dpm_max_level(hwmgr),
4085 "Failed to upload dpm max level to highest!",
4086 return -EINVAL);
4087
4088 break;
4089
4090 case PP_DCEFCLK:
4091 pr_info("Setting DCEFCLK min/max dpm level is not supported!\n");
4092 break;
4093
4094 case PP_PCIE:
4095 default:
4096 break;
4097 }
4098
4099 return 0;
4100 }
4101
4102 static int vega10_dpm_force_dpm_level(struct pp_hwmgr *hwmgr,
4103 enum amd_dpm_forced_level level)
4104 {
4105 int ret = 0;
4106 uint32_t sclk_mask = 0;
4107 uint32_t mclk_mask = 0;
4108 uint32_t soc_mask = 0;
4109
4110 if (hwmgr->pstate_sclk == 0)
4111 vega10_get_profiling_clk_mask(hwmgr, level, &sclk_mask, &mclk_mask, &soc_mask);
4112
4113 switch (level) {
4114 case AMD_DPM_FORCED_LEVEL_HIGH:
4115 ret = vega10_force_dpm_highest(hwmgr);
4116 break;
4117 case AMD_DPM_FORCED_LEVEL_LOW:
4118 ret = vega10_force_dpm_lowest(hwmgr);
4119 break;
4120 case AMD_DPM_FORCED_LEVEL_AUTO:
4121 ret = vega10_unforce_dpm_levels(hwmgr);
4122 break;
4123 case AMD_DPM_FORCED_LEVEL_PROFILE_STANDARD:
4124 case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK:
4125 case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK:
4126 case AMD_DPM_FORCED_LEVEL_PROFILE_PEAK:
4127 ret = vega10_get_profiling_clk_mask(hwmgr, level, &sclk_mask, &mclk_mask, &soc_mask);
4128 if (ret)
4129 return ret;
4130 vega10_force_clock_level(hwmgr, PP_SCLK, 1<<sclk_mask);
4131 vega10_force_clock_level(hwmgr, PP_MCLK, 1<<mclk_mask);
4132 break;
4133 case AMD_DPM_FORCED_LEVEL_MANUAL:
4134 case AMD_DPM_FORCED_LEVEL_PROFILE_EXIT:
4135 default:
4136 break;
4137 }
4138
4139 if (!ret) {
4140 if (level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK && hwmgr->dpm_level != AMD_DPM_FORCED_LEVEL_PROFILE_PEAK)
4141 vega10_set_fan_control_mode(hwmgr, AMD_FAN_CTRL_NONE);
4142 else if (level != AMD_DPM_FORCED_LEVEL_PROFILE_PEAK && hwmgr->dpm_level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK)
4143 vega10_set_fan_control_mode(hwmgr, AMD_FAN_CTRL_AUTO);
4144 }
4145
4146 return ret;
4147 }
4148
4149 static uint32_t vega10_get_fan_control_mode(struct pp_hwmgr *hwmgr)
4150 {
4151 struct vega10_hwmgr *data = hwmgr->backend;
4152
4153 if (data->smu_features[GNLD_FAN_CONTROL].enabled == false)
4154 return AMD_FAN_CTRL_MANUAL;
4155 else
4156 return AMD_FAN_CTRL_AUTO;
4157 }
4158
4159 static int vega10_get_dal_power_level(struct pp_hwmgr *hwmgr,
4160 struct amd_pp_simple_clock_info *info)
4161 {
4162 struct phm_ppt_v2_information *table_info =
4163 (struct phm_ppt_v2_information *)hwmgr->pptable;
4164 struct phm_clock_and_voltage_limits *max_limits =
4165 &table_info->max_clock_voltage_on_ac;
4166
4167 info->engine_max_clock = max_limits->sclk;
4168 info->memory_max_clock = max_limits->mclk;
4169
4170 return 0;
4171 }
4172
4173 static void vega10_get_sclks(struct pp_hwmgr *hwmgr,
4174 struct pp_clock_levels_with_latency *clocks)
4175 {
4176 struct phm_ppt_v2_information *table_info =
4177 (struct phm_ppt_v2_information *)hwmgr->pptable;
4178 struct phm_ppt_v1_clock_voltage_dependency_table *dep_table =
4179 table_info->vdd_dep_on_sclk;
4180 uint32_t i;
4181
4182 clocks->num_levels = 0;
4183 for (i = 0; i < dep_table->count; i++) {
4184 if (dep_table->entries[i].clk) {
4185 clocks->data[clocks->num_levels].clocks_in_khz =
4186 dep_table->entries[i].clk * 10;
4187 clocks->num_levels++;
4188 }
4189 }
4190
4191 }
4192
4193 static void vega10_get_memclocks(struct pp_hwmgr *hwmgr,
4194 struct pp_clock_levels_with_latency *clocks)
4195 {
4196 struct phm_ppt_v2_information *table_info =
4197 (struct phm_ppt_v2_information *)hwmgr->pptable;
4198 struct phm_ppt_v1_clock_voltage_dependency_table *dep_table =
4199 table_info->vdd_dep_on_mclk;
4200 struct vega10_hwmgr *data = hwmgr->backend;
4201 uint32_t j = 0;
4202 uint32_t i;
4203
4204 for (i = 0; i < dep_table->count; i++) {
4205 if (dep_table->entries[i].clk) {
4206
4207 clocks->data[j].clocks_in_khz =
4208 dep_table->entries[i].clk * 10;
4209 data->mclk_latency_table.entries[j].frequency =
4210 dep_table->entries[i].clk;
4211 clocks->data[j].latency_in_us =
4212 data->mclk_latency_table.entries[j].latency = 25;
4213 j++;
4214 }
4215 }
4216 clocks->num_levels = data->mclk_latency_table.count = j;
4217 }
4218
4219 static void vega10_get_dcefclocks(struct pp_hwmgr *hwmgr,
4220 struct pp_clock_levels_with_latency *clocks)
4221 {
4222 struct phm_ppt_v2_information *table_info =
4223 (struct phm_ppt_v2_information *)hwmgr->pptable;
4224 struct phm_ppt_v1_clock_voltage_dependency_table *dep_table =
4225 table_info->vdd_dep_on_dcefclk;
4226 uint32_t i;
4227
4228 for (i = 0; i < dep_table->count; i++) {
4229 clocks->data[i].clocks_in_khz = dep_table->entries[i].clk * 10;
4230 clocks->data[i].latency_in_us = 0;
4231 clocks->num_levels++;
4232 }
4233 }
4234
4235 static void vega10_get_socclocks(struct pp_hwmgr *hwmgr,
4236 struct pp_clock_levels_with_latency *clocks)
4237 {
4238 struct phm_ppt_v2_information *table_info =
4239 (struct phm_ppt_v2_information *)hwmgr->pptable;
4240 struct phm_ppt_v1_clock_voltage_dependency_table *dep_table =
4241 table_info->vdd_dep_on_socclk;
4242 uint32_t i;
4243
4244 for (i = 0; i < dep_table->count; i++) {
4245 clocks->data[i].clocks_in_khz = dep_table->entries[i].clk * 10;
4246 clocks->data[i].latency_in_us = 0;
4247 clocks->num_levels++;
4248 }
4249 }
4250
4251 static int vega10_get_clock_by_type_with_latency(struct pp_hwmgr *hwmgr,
4252 enum amd_pp_clock_type type,
4253 struct pp_clock_levels_with_latency *clocks)
4254 {
4255 switch (type) {
4256 case amd_pp_sys_clock:
4257 vega10_get_sclks(hwmgr, clocks);
4258 break;
4259 case amd_pp_mem_clock:
4260 vega10_get_memclocks(hwmgr, clocks);
4261 break;
4262 case amd_pp_dcef_clock:
4263 vega10_get_dcefclocks(hwmgr, clocks);
4264 break;
4265 case amd_pp_soc_clock:
4266 vega10_get_socclocks(hwmgr, clocks);
4267 break;
4268 default:
4269 return -1;
4270 }
4271
4272 return 0;
4273 }
4274
4275 static int vega10_get_clock_by_type_with_voltage(struct pp_hwmgr *hwmgr,
4276 enum amd_pp_clock_type type,
4277 struct pp_clock_levels_with_voltage *clocks)
4278 {
4279 struct phm_ppt_v2_information *table_info =
4280 (struct phm_ppt_v2_information *)hwmgr->pptable;
4281 struct phm_ppt_v1_clock_voltage_dependency_table *dep_table;
4282 uint32_t i;
4283
4284 switch (type) {
4285 case amd_pp_mem_clock:
4286 dep_table = table_info->vdd_dep_on_mclk;
4287 break;
4288 case amd_pp_dcef_clock:
4289 dep_table = table_info->vdd_dep_on_dcefclk;
4290 break;
4291 case amd_pp_disp_clock:
4292 dep_table = table_info->vdd_dep_on_dispclk;
4293 break;
4294 case amd_pp_pixel_clock:
4295 dep_table = table_info->vdd_dep_on_pixclk;
4296 break;
4297 case amd_pp_phy_clock:
4298 dep_table = table_info->vdd_dep_on_phyclk;
4299 break;
4300 default:
4301 return -1;
4302 }
4303
4304 for (i = 0; i < dep_table->count; i++) {
4305 clocks->data[i].clocks_in_khz = dep_table->entries[i].clk * 10;
4306 clocks->data[i].voltage_in_mv = (uint32_t)(table_info->vddc_lookup_table->
4307 entries[dep_table->entries[i].vddInd].us_vdd);
4308 clocks->num_levels++;
4309 }
4310
4311 if (i < dep_table->count)
4312 return -1;
4313
4314 return 0;
4315 }
4316
4317 static int vega10_set_watermarks_for_clocks_ranges(struct pp_hwmgr *hwmgr,
4318 void *clock_range)
4319 {
4320 struct vega10_hwmgr *data = hwmgr->backend;
4321 struct dm_pp_wm_sets_with_clock_ranges_soc15 *wm_with_clock_ranges = clock_range;
4322 Watermarks_t *table = &(data->smc_state_table.water_marks_table);
4323 int result = 0;
4324
4325 if (!data->registry_data.disable_water_mark) {
4326 smu_set_watermarks_for_clocks_ranges(table, wm_with_clock_ranges);
4327 data->water_marks_bitmap = WaterMarksExist;
4328 }
4329
4330 return result;
4331 }
4332
4333 static int vega10_get_ppfeature_status(struct pp_hwmgr *hwmgr, char *buf)
4334 {
4335 static const char *ppfeature_name[] = {
4336 "DPM_PREFETCHER",
4337 "GFXCLK_DPM",
4338 "UCLK_DPM",
4339 "SOCCLK_DPM",
4340 "UVD_DPM",
4341 "VCE_DPM",
4342 "ULV",
4343 "MP0CLK_DPM",
4344 "LINK_DPM",
4345 "DCEFCLK_DPM",
4346 "AVFS",
4347 "GFXCLK_DS",
4348 "SOCCLK_DS",
4349 "LCLK_DS",
4350 "PPT",
4351 "TDC",
4352 "THERMAL",
4353 "GFX_PER_CU_CG",
4354 "RM",
4355 "DCEFCLK_DS",
4356 "ACDC",
4357 "VR0HOT",
4358 "VR1HOT",
4359 "FW_CTF",
4360 "LED_DISPLAY",
4361 "FAN_CONTROL",
4362 "FAST_PPT",
4363 "DIDT",
4364 "ACG",
4365 "PCC_LIMIT"};
4366 static const char *output_title[] = {
4367 "FEATURES",
4368 "BITMASK",
4369 "ENABLEMENT"};
4370 uint64_t features_enabled;
4371 int i;
4372 int ret = 0;
4373 int size = 0;
4374
4375 ret = vega10_get_enabled_smc_features(hwmgr, &features_enabled);
4376 PP_ASSERT_WITH_CODE(!ret,
4377 "[EnableAllSmuFeatures] Failed to get enabled smc features!",
4378 return ret);
4379
4380 size += sprintf(buf + size, "Current ppfeatures: 0x%016llx\n", features_enabled);
4381 size += sprintf(buf + size, "%-19s %-22s %s\n",
4382 output_title[0],
4383 output_title[1],
4384 output_title[2]);
4385 for (i = 0; i < GNLD_FEATURES_MAX; i++) {
4386 size += sprintf(buf + size, "%-19s 0x%016llx %6s\n",
4387 ppfeature_name[i],
4388 1ULL << i,
4389 (features_enabled & (1ULL << i)) ? "Y" : "N");
4390 }
4391
4392 return size;
4393 }
4394
4395 static int vega10_set_ppfeature_status(struct pp_hwmgr *hwmgr, uint64_t new_ppfeature_masks)
4396 {
4397 uint64_t features_enabled;
4398 uint64_t features_to_enable;
4399 uint64_t features_to_disable;
4400 int ret = 0;
4401
4402 if (new_ppfeature_masks >= (1ULL << GNLD_FEATURES_MAX))
4403 return -EINVAL;
4404
4405 ret = vega10_get_enabled_smc_features(hwmgr, &features_enabled);
4406 if (ret)
4407 return ret;
4408
4409 features_to_disable =
4410 features_enabled & ~new_ppfeature_masks;
4411 features_to_enable =
4412 ~features_enabled & new_ppfeature_masks;
4413
4414 pr_debug("features_to_disable 0x%llx\n", features_to_disable);
4415 pr_debug("features_to_enable 0x%llx\n", features_to_enable);
4416
4417 if (features_to_disable) {
4418 ret = vega10_enable_smc_features(hwmgr, false, features_to_disable);
4419 if (ret)
4420 return ret;
4421 }
4422
4423 if (features_to_enable) {
4424 ret = vega10_enable_smc_features(hwmgr, true, features_to_enable);
4425 if (ret)
4426 return ret;
4427 }
4428
4429 return 0;
4430 }
4431
4432 static int vega10_print_clock_levels(struct pp_hwmgr *hwmgr,
4433 enum pp_clock_type type, char *buf)
4434 {
4435 struct vega10_hwmgr *data = hwmgr->backend;
4436 struct vega10_single_dpm_table *sclk_table = &(data->dpm_table.gfx_table);
4437 struct vega10_single_dpm_table *mclk_table = &(data->dpm_table.mem_table);
4438 struct vega10_single_dpm_table *soc_table = &(data->dpm_table.soc_table);
4439 struct vega10_single_dpm_table *dcef_table = &(data->dpm_table.dcef_table);
4440 struct vega10_pcie_table *pcie_table = &(data->dpm_table.pcie_table);
4441 struct vega10_odn_clock_voltage_dependency_table *podn_vdd_dep = NULL;
4442
4443 int i, now, size = 0;
4444
4445 switch (type) {
4446 case PP_SCLK:
4447 if (data->registry_data.sclk_dpm_key_disabled)
4448 break;
4449
4450 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetCurrentGfxclkIndex);
4451 now = smum_get_argument(hwmgr);
4452
4453 for (i = 0; i < sclk_table->count; i++)
4454 size += sprintf(buf + size, "%d: %uMhz %s\n",
4455 i, sclk_table->dpm_levels[i].value / 100,
4456 (i == now) ? "*" : "");
4457 break;
4458 case PP_MCLK:
4459 if (data->registry_data.mclk_dpm_key_disabled)
4460 break;
4461
4462 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetCurrentUclkIndex);
4463 now = smum_get_argument(hwmgr);
4464
4465 for (i = 0; i < mclk_table->count; i++)
4466 size += sprintf(buf + size, "%d: %uMhz %s\n",
4467 i, mclk_table->dpm_levels[i].value / 100,
4468 (i == now) ? "*" : "");
4469 break;
4470 case PP_SOCCLK:
4471 if (data->registry_data.socclk_dpm_key_disabled)
4472 break;
4473
4474 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetCurrentSocclkIndex);
4475 now = smum_get_argument(hwmgr);
4476
4477 for (i = 0; i < soc_table->count; i++)
4478 size += sprintf(buf + size, "%d: %uMhz %s\n",
4479 i, soc_table->dpm_levels[i].value / 100,
4480 (i == now) ? "*" : "");
4481 break;
4482 case PP_DCEFCLK:
4483 if (data->registry_data.dcefclk_dpm_key_disabled)
4484 break;
4485
4486 smum_send_msg_to_smc_with_parameter(hwmgr,
4487 PPSMC_MSG_GetClockFreqMHz, CLK_DCEFCLK);
4488 now = smum_get_argument(hwmgr);
4489
4490 for (i = 0; i < dcef_table->count; i++)
4491 size += sprintf(buf + size, "%d: %uMhz %s\n",
4492 i, dcef_table->dpm_levels[i].value / 100,
4493 (dcef_table->dpm_levels[i].value / 100 == now) ?
4494 "*" : "");
4495 break;
4496 case PP_PCIE:
4497 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetCurrentLinkIndex);
4498 now = smum_get_argument(hwmgr);
4499
4500 for (i = 0; i < pcie_table->count; i++)
4501 size += sprintf(buf + size, "%d: %s %s\n", i,
4502 (pcie_table->pcie_gen[i] == 0) ? "2.5GT/s, x1" :
4503 (pcie_table->pcie_gen[i] == 1) ? "5.0GT/s, x16" :
4504 (pcie_table->pcie_gen[i] == 2) ? "8.0GT/s, x16" : "",
4505 (i == now) ? "*" : "");
4506 break;
4507 case OD_SCLK:
4508 if (hwmgr->od_enabled) {
4509 size = sprintf(buf, "%s:\n", "OD_SCLK");
4510 podn_vdd_dep = &data->odn_dpm_table.vdd_dep_on_sclk;
4511 for (i = 0; i < podn_vdd_dep->count; i++)
4512 size += sprintf(buf + size, "%d: %10uMhz %10umV\n",
4513 i, podn_vdd_dep->entries[i].clk / 100,
4514 podn_vdd_dep->entries[i].vddc);
4515 }
4516 break;
4517 case OD_MCLK:
4518 if (hwmgr->od_enabled) {
4519 size = sprintf(buf, "%s:\n", "OD_MCLK");
4520 podn_vdd_dep = &data->odn_dpm_table.vdd_dep_on_mclk;
4521 for (i = 0; i < podn_vdd_dep->count; i++)
4522 size += sprintf(buf + size, "%d: %10uMhz %10umV\n",
4523 i, podn_vdd_dep->entries[i].clk/100,
4524 podn_vdd_dep->entries[i].vddc);
4525 }
4526 break;
4527 case OD_RANGE:
4528 if (hwmgr->od_enabled) {
4529 size = sprintf(buf, "%s:\n", "OD_RANGE");
4530 size += sprintf(buf + size, "SCLK: %7uMHz %10uMHz\n",
4531 data->golden_dpm_table.gfx_table.dpm_levels[0].value/100,
4532 hwmgr->platform_descriptor.overdriveLimit.engineClock/100);
4533 size += sprintf(buf + size, "MCLK: %7uMHz %10uMHz\n",
4534 data->golden_dpm_table.mem_table.dpm_levels[0].value/100,
4535 hwmgr->platform_descriptor.overdriveLimit.memoryClock/100);
4536 size += sprintf(buf + size, "VDDC: %7umV %11umV\n",
4537 data->odn_dpm_table.min_vddc,
4538 data->odn_dpm_table.max_vddc);
4539 }
4540 break;
4541 default:
4542 break;
4543 }
4544 return size;
4545 }
4546
4547 static int vega10_display_configuration_changed_task(struct pp_hwmgr *hwmgr)
4548 {
4549 struct vega10_hwmgr *data = hwmgr->backend;
4550 Watermarks_t *wm_table = &(data->smc_state_table.water_marks_table);
4551 int result = 0;
4552
4553 if ((data->water_marks_bitmap & WaterMarksExist) &&
4554 !(data->water_marks_bitmap & WaterMarksLoaded)) {
4555 result = smum_smc_table_manager(hwmgr, (uint8_t *)wm_table, WMTABLE, false);
4556 PP_ASSERT_WITH_CODE(result, "Failed to update WMTABLE!", return EINVAL);
4557 data->water_marks_bitmap |= WaterMarksLoaded;
4558 }
4559
4560 if (data->water_marks_bitmap & WaterMarksLoaded) {
4561 smum_send_msg_to_smc_with_parameter(hwmgr,
4562 PPSMC_MSG_NumOfDisplays, hwmgr->display_config->num_display);
4563 }
4564
4565 return result;
4566 }
4567
4568 int vega10_enable_disable_uvd_dpm(struct pp_hwmgr *hwmgr, bool enable)
4569 {
4570 struct vega10_hwmgr *data = hwmgr->backend;
4571
4572 if (data->smu_features[GNLD_DPM_UVD].supported) {
4573 PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
4574 enable,
4575 data->smu_features[GNLD_DPM_UVD].smu_feature_bitmap),
4576 "Attempt to Enable/Disable DPM UVD Failed!",
4577 return -1);
4578 data->smu_features[GNLD_DPM_UVD].enabled = enable;
4579 }
4580 return 0;
4581 }
4582
4583 static void vega10_power_gate_vce(struct pp_hwmgr *hwmgr, bool bgate)
4584 {
4585 struct vega10_hwmgr *data = hwmgr->backend;
4586
4587 data->vce_power_gated = bgate;
4588 vega10_enable_disable_vce_dpm(hwmgr, !bgate);
4589 }
4590
4591 static void vega10_power_gate_uvd(struct pp_hwmgr *hwmgr, bool bgate)
4592 {
4593 struct vega10_hwmgr *data = hwmgr->backend;
4594
4595 data->uvd_power_gated = bgate;
4596 vega10_enable_disable_uvd_dpm(hwmgr, !bgate);
4597 }
4598
4599 static inline bool vega10_are_power_levels_equal(
4600 const struct vega10_performance_level *pl1,
4601 const struct vega10_performance_level *pl2)
4602 {
4603 return ((pl1->soc_clock == pl2->soc_clock) &&
4604 (pl1->gfx_clock == pl2->gfx_clock) &&
4605 (pl1->mem_clock == pl2->mem_clock));
4606 }
4607
4608 static int vega10_check_states_equal(struct pp_hwmgr *hwmgr,
4609 const struct pp_hw_power_state *pstate1,
4610 const struct pp_hw_power_state *pstate2, bool *equal)
4611 {
4612 const struct vega10_power_state *psa;
4613 const struct vega10_power_state *psb;
4614 int i;
4615
4616 if (pstate1 == NULL || pstate2 == NULL || equal == NULL)
4617 return -EINVAL;
4618
4619 psa = cast_const_phw_vega10_power_state(pstate1);
4620 psb = cast_const_phw_vega10_power_state(pstate2);
4621 /* If the two states don't even have the same number of performance levels they cannot be the same state. */
4622 if (psa->performance_level_count != psb->performance_level_count) {
4623 *equal = false;
4624 return 0;
4625 }
4626
4627 for (i = 0; i < psa->performance_level_count; i++) {
4628 if (!vega10_are_power_levels_equal(&(psa->performance_levels[i]), &(psb->performance_levels[i]))) {
4629 /* If we have found even one performance level pair that is different the states are different. */
4630 *equal = false;
4631 return 0;
4632 }
4633 }
4634
4635 /* If all performance levels are the same try to use the UVD clocks to break the tie.*/
4636 *equal = ((psa->uvd_clks.vclk == psb->uvd_clks.vclk) && (psa->uvd_clks.dclk == psb->uvd_clks.dclk));
4637 *equal &= ((psa->vce_clks.evclk == psb->vce_clks.evclk) && (psa->vce_clks.ecclk == psb->vce_clks.ecclk));
4638 *equal &= (psa->sclk_threshold == psb->sclk_threshold);
4639
4640 return 0;
4641 }
4642
4643 static bool
4644 vega10_check_smc_update_required_for_display_configuration(struct pp_hwmgr *hwmgr)
4645 {
4646 struct vega10_hwmgr *data = hwmgr->backend;
4647 bool is_update_required = false;
4648
4649 if (data->display_timing.num_existing_displays != hwmgr->display_config->num_display)
4650 is_update_required = true;
4651
4652 if (PP_CAP(PHM_PlatformCaps_SclkDeepSleep)) {
4653 if (data->display_timing.min_clock_in_sr != hwmgr->display_config->min_core_set_clock_in_sr)
4654 is_update_required = true;
4655 }
4656
4657 return is_update_required;
4658 }
4659
4660 static int vega10_disable_dpm_tasks(struct pp_hwmgr *hwmgr)
4661 {
4662 int tmp_result, result = 0;
4663
4664 if (PP_CAP(PHM_PlatformCaps_ThermalController))
4665 vega10_disable_thermal_protection(hwmgr);
4666
4667 tmp_result = vega10_disable_power_containment(hwmgr);
4668 PP_ASSERT_WITH_CODE((tmp_result == 0),
4669 "Failed to disable power containment!", result = tmp_result);
4670
4671 tmp_result = vega10_disable_didt_config(hwmgr);
4672 PP_ASSERT_WITH_CODE((tmp_result == 0),
4673 "Failed to disable didt config!", result = tmp_result);
4674
4675 tmp_result = vega10_avfs_enable(hwmgr, false);
4676 PP_ASSERT_WITH_CODE((tmp_result == 0),
4677 "Failed to disable AVFS!", result = tmp_result);
4678
4679 tmp_result = vega10_stop_dpm(hwmgr, SMC_DPM_FEATURES);
4680 PP_ASSERT_WITH_CODE((tmp_result == 0),
4681 "Failed to stop DPM!", result = tmp_result);
4682
4683 tmp_result = vega10_disable_deep_sleep_master_switch(hwmgr);
4684 PP_ASSERT_WITH_CODE((tmp_result == 0),
4685 "Failed to disable deep sleep!", result = tmp_result);
4686
4687 tmp_result = vega10_disable_ulv(hwmgr);
4688 PP_ASSERT_WITH_CODE((tmp_result == 0),
4689 "Failed to disable ulv!", result = tmp_result);
4690
4691 tmp_result = vega10_acg_disable(hwmgr);
4692 PP_ASSERT_WITH_CODE((tmp_result == 0),
4693 "Failed to disable acg!", result = tmp_result);
4694
4695 vega10_enable_disable_PCC_limit_feature(hwmgr, false);
4696 return result;
4697 }
4698
4699 static int vega10_power_off_asic(struct pp_hwmgr *hwmgr)
4700 {
4701 struct vega10_hwmgr *data = hwmgr->backend;
4702 int result;
4703
4704 result = vega10_disable_dpm_tasks(hwmgr);
4705 PP_ASSERT_WITH_CODE((0 == result),
4706 "[disable_dpm_tasks] Failed to disable DPM!",
4707 );
4708 data->water_marks_bitmap &= ~(WaterMarksLoaded);
4709
4710 return result;
4711 }
4712
4713 static int vega10_get_sclk_od(struct pp_hwmgr *hwmgr)
4714 {
4715 struct vega10_hwmgr *data = hwmgr->backend;
4716 struct vega10_single_dpm_table *sclk_table = &(data->dpm_table.gfx_table);
4717 struct vega10_single_dpm_table *golden_sclk_table =
4718 &(data->golden_dpm_table.gfx_table);
4719 int value = sclk_table->dpm_levels[sclk_table->count - 1].value;
4720 int golden_value = golden_sclk_table->dpm_levels
4721 [golden_sclk_table->count - 1].value;
4722
4723 value -= golden_value;
4724 value = DIV_ROUND_UP(value * 100, golden_value);
4725
4726 return value;
4727 }
4728
4729 static int vega10_set_sclk_od(struct pp_hwmgr *hwmgr, uint32_t value)
4730 {
4731 struct vega10_hwmgr *data = hwmgr->backend;
4732 struct vega10_single_dpm_table *golden_sclk_table =
4733 &(data->golden_dpm_table.gfx_table);
4734 struct pp_power_state *ps;
4735 struct vega10_power_state *vega10_ps;
4736
4737 ps = hwmgr->request_ps;
4738
4739 if (ps == NULL)
4740 return -EINVAL;
4741
4742 vega10_ps = cast_phw_vega10_power_state(&ps->hardware);
4743
4744 vega10_ps->performance_levels
4745 [vega10_ps->performance_level_count - 1].gfx_clock =
4746 golden_sclk_table->dpm_levels
4747 [golden_sclk_table->count - 1].value *
4748 value / 100 +
4749 golden_sclk_table->dpm_levels
4750 [golden_sclk_table->count - 1].value;
4751
4752 if (vega10_ps->performance_levels
4753 [vega10_ps->performance_level_count - 1].gfx_clock >
4754 hwmgr->platform_descriptor.overdriveLimit.engineClock) {
4755 vega10_ps->performance_levels
4756 [vega10_ps->performance_level_count - 1].gfx_clock =
4757 hwmgr->platform_descriptor.overdriveLimit.engineClock;
4758 pr_warn("max sclk supported by vbios is %d\n",
4759 hwmgr->platform_descriptor.overdriveLimit.engineClock);
4760 }
4761 return 0;
4762 }
4763
4764 static int vega10_get_mclk_od(struct pp_hwmgr *hwmgr)
4765 {
4766 struct vega10_hwmgr *data = hwmgr->backend;
4767 struct vega10_single_dpm_table *mclk_table = &(data->dpm_table.mem_table);
4768 struct vega10_single_dpm_table *golden_mclk_table =
4769 &(data->golden_dpm_table.mem_table);
4770 int value = mclk_table->dpm_levels[mclk_table->count - 1].value;
4771 int golden_value = golden_mclk_table->dpm_levels
4772 [golden_mclk_table->count - 1].value;
4773
4774 value -= golden_value;
4775 value = DIV_ROUND_UP(value * 100, golden_value);
4776
4777 return value;
4778 }
4779
4780 static int vega10_set_mclk_od(struct pp_hwmgr *hwmgr, uint32_t value)
4781 {
4782 struct vega10_hwmgr *data = hwmgr->backend;
4783 struct vega10_single_dpm_table *golden_mclk_table =
4784 &(data->golden_dpm_table.mem_table);
4785 struct pp_power_state *ps;
4786 struct vega10_power_state *vega10_ps;
4787
4788 ps = hwmgr->request_ps;
4789
4790 if (ps == NULL)
4791 return -EINVAL;
4792
4793 vega10_ps = cast_phw_vega10_power_state(&ps->hardware);
4794
4795 vega10_ps->performance_levels
4796 [vega10_ps->performance_level_count - 1].mem_clock =
4797 golden_mclk_table->dpm_levels
4798 [golden_mclk_table->count - 1].value *
4799 value / 100 +
4800 golden_mclk_table->dpm_levels
4801 [golden_mclk_table->count - 1].value;
4802
4803 if (vega10_ps->performance_levels
4804 [vega10_ps->performance_level_count - 1].mem_clock >
4805 hwmgr->platform_descriptor.overdriveLimit.memoryClock) {
4806 vega10_ps->performance_levels
4807 [vega10_ps->performance_level_count - 1].mem_clock =
4808 hwmgr->platform_descriptor.overdriveLimit.memoryClock;
4809 pr_warn("max mclk supported by vbios is %d\n",
4810 hwmgr->platform_descriptor.overdriveLimit.memoryClock);
4811 }
4812
4813 return 0;
4814 }
4815
4816 static int vega10_notify_cac_buffer_info(struct pp_hwmgr *hwmgr,
4817 uint32_t virtual_addr_low,
4818 uint32_t virtual_addr_hi,
4819 uint32_t mc_addr_low,
4820 uint32_t mc_addr_hi,
4821 uint32_t size)
4822 {
4823 smum_send_msg_to_smc_with_parameter(hwmgr,
4824 PPSMC_MSG_SetSystemVirtualDramAddrHigh,
4825 virtual_addr_hi);
4826 smum_send_msg_to_smc_with_parameter(hwmgr,
4827 PPSMC_MSG_SetSystemVirtualDramAddrLow,
4828 virtual_addr_low);
4829 smum_send_msg_to_smc_with_parameter(hwmgr,
4830 PPSMC_MSG_DramLogSetDramAddrHigh,
4831 mc_addr_hi);
4832
4833 smum_send_msg_to_smc_with_parameter(hwmgr,
4834 PPSMC_MSG_DramLogSetDramAddrLow,
4835 mc_addr_low);
4836
4837 smum_send_msg_to_smc_with_parameter(hwmgr,
4838 PPSMC_MSG_DramLogSetDramSize,
4839 size);
4840 return 0;
4841 }
4842
4843 static int vega10_get_thermal_temperature_range(struct pp_hwmgr *hwmgr,
4844 struct PP_TemperatureRange *thermal_data)
4845 {
4846 struct phm_ppt_v2_information *table_info =
4847 (struct phm_ppt_v2_information *)hwmgr->pptable;
4848
4849 memcpy(thermal_data, &SMU7ThermalWithDelayPolicy[0], sizeof(struct PP_TemperatureRange));
4850
4851 thermal_data->max = table_info->tdp_table->usSoftwareShutdownTemp *
4852 PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
4853
4854 return 0;
4855 }
4856
4857 static int vega10_get_power_profile_mode(struct pp_hwmgr *hwmgr, char *buf)
4858 {
4859 struct vega10_hwmgr *data = hwmgr->backend;
4860 uint32_t i, size = 0;
4861 static const uint8_t profile_mode_setting[6][4] = {{70, 60, 0, 0,},
4862 {70, 60, 1, 3,},
4863 {90, 60, 0, 0,},
4864 {70, 60, 0, 0,},
4865 {70, 90, 0, 0,},
4866 {30, 60, 0, 6,},
4867 };
4868 static const char *profile_name[7] = {"BOOTUP_DEFAULT",
4869 "3D_FULL_SCREEN",
4870 "POWER_SAVING",
4871 "VIDEO",
4872 "VR",
4873 "COMPUTE",
4874 "CUSTOM"};
4875 static const char *title[6] = {"NUM",
4876 "MODE_NAME",
4877 "BUSY_SET_POINT",
4878 "FPS",
4879 "USE_RLC_BUSY",
4880 "MIN_ACTIVE_LEVEL"};
4881
4882 if (!buf)
4883 return -EINVAL;
4884
4885 size += sprintf(buf + size, "%s %16s %s %s %s %s\n",title[0],
4886 title[1], title[2], title[3], title[4], title[5]);
4887
4888 for (i = 0; i < PP_SMC_POWER_PROFILE_CUSTOM; i++)
4889 size += sprintf(buf + size, "%3d %14s%s: %14d %3d %10d %14d\n",
4890 i, profile_name[i], (i == hwmgr->power_profile_mode) ? "*" : " ",
4891 profile_mode_setting[i][0], profile_mode_setting[i][1],
4892 profile_mode_setting[i][2], profile_mode_setting[i][3]);
4893 size += sprintf(buf + size, "%3d %14s%s: %14d %3d %10d %14d\n", i,
4894 profile_name[i], (i == hwmgr->power_profile_mode) ? "*" : " ",
4895 data->custom_profile_mode[0], data->custom_profile_mode[1],
4896 data->custom_profile_mode[2], data->custom_profile_mode[3]);
4897 return size;
4898 }
4899
4900 static int vega10_set_power_profile_mode(struct pp_hwmgr *hwmgr, long *input, uint32_t size)
4901 {
4902 struct vega10_hwmgr *data = hwmgr->backend;
4903 uint8_t busy_set_point;
4904 uint8_t FPS;
4905 uint8_t use_rlc_busy;
4906 uint8_t min_active_level;
4907
4908 hwmgr->power_profile_mode = input[size];
4909
4910 smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetWorkloadMask,
4911 1<<hwmgr->power_profile_mode);
4912
4913 if (hwmgr->power_profile_mode == PP_SMC_POWER_PROFILE_CUSTOM) {
4914 if (size == 0 || size > 4)
4915 return -EINVAL;
4916
4917 data->custom_profile_mode[0] = busy_set_point = input[0];
4918 data->custom_profile_mode[1] = FPS = input[1];
4919 data->custom_profile_mode[2] = use_rlc_busy = input[2];
4920 data->custom_profile_mode[3] = min_active_level = input[3];
4921 smum_send_msg_to_smc_with_parameter(hwmgr,
4922 PPSMC_MSG_SetCustomGfxDpmParameters,
4923 busy_set_point | FPS<<8 |
4924 use_rlc_busy << 16 | min_active_level<<24);
4925 }
4926
4927 return 0;
4928 }
4929
4930
4931 static bool vega10_check_clk_voltage_valid(struct pp_hwmgr *hwmgr,
4932 enum PP_OD_DPM_TABLE_COMMAND type,
4933 uint32_t clk,
4934 uint32_t voltage)
4935 {
4936 struct vega10_hwmgr *data = hwmgr->backend;
4937 struct vega10_odn_dpm_table *odn_table = &(data->odn_dpm_table);
4938 struct vega10_single_dpm_table *golden_table;
4939
4940 if (voltage < odn_table->min_vddc || voltage > odn_table->max_vddc) {
4941 pr_info("OD voltage is out of range [%d - %d] mV\n", odn_table->min_vddc, odn_table->max_vddc);
4942 return false;
4943 }
4944
4945 if (type == PP_OD_EDIT_SCLK_VDDC_TABLE) {
4946 golden_table = &(data->golden_dpm_table.gfx_table);
4947 if (golden_table->dpm_levels[0].value > clk ||
4948 hwmgr->platform_descriptor.overdriveLimit.engineClock < clk) {
4949 pr_info("OD engine clock is out of range [%d - %d] MHz\n",
4950 golden_table->dpm_levels[0].value/100,
4951 hwmgr->platform_descriptor.overdriveLimit.engineClock/100);
4952 return false;
4953 }
4954 } else if (type == PP_OD_EDIT_MCLK_VDDC_TABLE) {
4955 golden_table = &(data->golden_dpm_table.mem_table);
4956 if (golden_table->dpm_levels[0].value > clk ||
4957 hwmgr->platform_descriptor.overdriveLimit.memoryClock < clk) {
4958 pr_info("OD memory clock is out of range [%d - %d] MHz\n",
4959 golden_table->dpm_levels[0].value/100,
4960 hwmgr->platform_descriptor.overdriveLimit.memoryClock/100);
4961 return false;
4962 }
4963 } else {
4964 return false;
4965 }
4966
4967 return true;
4968 }
4969
4970 static void vega10_odn_update_soc_table(struct pp_hwmgr *hwmgr,
4971 enum PP_OD_DPM_TABLE_COMMAND type)
4972 {
4973 struct vega10_hwmgr *data = hwmgr->backend;
4974 struct phm_ppt_v2_information *table_info = hwmgr->pptable;
4975 struct phm_ppt_v1_clock_voltage_dependency_table *dep_table = table_info->vdd_dep_on_socclk;
4976 struct vega10_single_dpm_table *dpm_table = &data->golden_dpm_table.soc_table;
4977
4978 struct vega10_odn_clock_voltage_dependency_table *podn_vdd_dep_on_socclk =
4979 &data->odn_dpm_table.vdd_dep_on_socclk;
4980 struct vega10_odn_vddc_lookup_table *od_vddc_lookup_table = &data->odn_dpm_table.vddc_lookup_table;
4981
4982 struct vega10_odn_clock_voltage_dependency_table *podn_vdd_dep;
4983 uint8_t i, j;
4984
4985 if (type == PP_OD_EDIT_SCLK_VDDC_TABLE) {
4986 podn_vdd_dep = &data->odn_dpm_table.vdd_dep_on_sclk;
4987 for (i = 0; i < podn_vdd_dep->count - 1; i++)
4988 od_vddc_lookup_table->entries[i].us_vdd = podn_vdd_dep->entries[i].vddc;
4989 if (od_vddc_lookup_table->entries[i].us_vdd < podn_vdd_dep->entries[i].vddc)
4990 od_vddc_lookup_table->entries[i].us_vdd = podn_vdd_dep->entries[i].vddc;
4991 } else if (type == PP_OD_EDIT_MCLK_VDDC_TABLE) {
4992 podn_vdd_dep = &data->odn_dpm_table.vdd_dep_on_mclk;
4993 for (i = 0; i < dpm_table->count; i++) {
4994 for (j = 0; j < od_vddc_lookup_table->count; j++) {
4995 if (od_vddc_lookup_table->entries[j].us_vdd >
4996 podn_vdd_dep->entries[i].vddc)
4997 break;
4998 }
4999 if (j == od_vddc_lookup_table->count) {
5000 od_vddc_lookup_table->entries[j-1].us_vdd =
5001 podn_vdd_dep->entries[i].vddc;
5002 data->need_update_dpm_table |= DPMTABLE_OD_UPDATE_VDDC;
5003 }
5004 podn_vdd_dep->entries[i].vddInd = j;
5005 }
5006 dpm_table = &data->dpm_table.soc_table;
5007 for (i = 0; i < dep_table->count; i++) {
5008 if (dep_table->entries[i].vddInd == podn_vdd_dep->entries[dep_table->count-1].vddInd &&
5009 dep_table->entries[i].clk < podn_vdd_dep->entries[dep_table->count-1].clk) {
5010 data->need_update_dpm_table |= DPMTABLE_UPDATE_SOCCLK;
5011 podn_vdd_dep_on_socclk->entries[i].clk = podn_vdd_dep->entries[dep_table->count-1].clk;
5012 dpm_table->dpm_levels[i].value = podn_vdd_dep_on_socclk->entries[i].clk;
5013 }
5014 }
5015 if (podn_vdd_dep_on_socclk->entries[podn_vdd_dep_on_socclk->count - 1].clk <
5016 podn_vdd_dep->entries[dep_table->count-1].clk) {
5017 data->need_update_dpm_table |= DPMTABLE_UPDATE_SOCCLK;
5018 podn_vdd_dep_on_socclk->entries[podn_vdd_dep_on_socclk->count - 1].clk = podn_vdd_dep->entries[dep_table->count-1].clk;
5019 dpm_table->dpm_levels[podn_vdd_dep_on_socclk->count - 1].value = podn_vdd_dep->entries[dep_table->count-1].clk;
5020 }
5021 if (podn_vdd_dep_on_socclk->entries[podn_vdd_dep_on_socclk->count - 1].vddInd <
5022 podn_vdd_dep->entries[dep_table->count-1].vddInd) {
5023 data->need_update_dpm_table |= DPMTABLE_UPDATE_SOCCLK;
5024 podn_vdd_dep_on_socclk->entries[podn_vdd_dep_on_socclk->count - 1].vddInd = podn_vdd_dep->entries[dep_table->count-1].vddInd;
5025 }
5026 }
5027 }
5028
5029 static int vega10_odn_edit_dpm_table(struct pp_hwmgr *hwmgr,
5030 enum PP_OD_DPM_TABLE_COMMAND type,
5031 long *input, uint32_t size)
5032 {
5033 struct vega10_hwmgr *data = hwmgr->backend;
5034 struct vega10_odn_clock_voltage_dependency_table *podn_vdd_dep_table;
5035 struct vega10_single_dpm_table *dpm_table;
5036
5037 uint32_t input_clk;
5038 uint32_t input_vol;
5039 uint32_t input_level;
5040 uint32_t i;
5041
5042 PP_ASSERT_WITH_CODE(input, "NULL user input for clock and voltage",
5043 return -EINVAL);
5044
5045 if (!hwmgr->od_enabled) {
5046 pr_info("OverDrive feature not enabled\n");
5047 return -EINVAL;
5048 }
5049
5050 if (PP_OD_EDIT_SCLK_VDDC_TABLE == type) {
5051 dpm_table = &data->dpm_table.gfx_table;
5052 podn_vdd_dep_table = &data->odn_dpm_table.vdd_dep_on_sclk;
5053 data->need_update_dpm_table |= DPMTABLE_OD_UPDATE_SCLK;
5054 } else if (PP_OD_EDIT_MCLK_VDDC_TABLE == type) {
5055 dpm_table = &data->dpm_table.mem_table;
5056 podn_vdd_dep_table = &data->odn_dpm_table.vdd_dep_on_mclk;
5057 data->need_update_dpm_table |= DPMTABLE_OD_UPDATE_MCLK;
5058 } else if (PP_OD_RESTORE_DEFAULT_TABLE == type) {
5059 memcpy(&(data->dpm_table), &(data->golden_dpm_table), sizeof(struct vega10_dpm_table));
5060 vega10_odn_initial_default_setting(hwmgr);
5061 return 0;
5062 } else if (PP_OD_COMMIT_DPM_TABLE == type) {
5063 vega10_check_dpm_table_updated(hwmgr);
5064 return 0;
5065 } else {
5066 return -EINVAL;
5067 }
5068
5069 for (i = 0; i < size; i += 3) {
5070 if (i + 3 > size || input[i] >= podn_vdd_dep_table->count) {
5071 pr_info("invalid clock voltage input\n");
5072 return 0;
5073 }
5074 input_level = input[i];
5075 input_clk = input[i+1] * 100;
5076 input_vol = input[i+2];
5077
5078 if (vega10_check_clk_voltage_valid(hwmgr, type, input_clk, input_vol)) {
5079 dpm_table->dpm_levels[input_level].value = input_clk;
5080 podn_vdd_dep_table->entries[input_level].clk = input_clk;
5081 podn_vdd_dep_table->entries[input_level].vddc = input_vol;
5082 } else {
5083 return -EINVAL;
5084 }
5085 }
5086 vega10_odn_update_soc_table(hwmgr, type);
5087 return 0;
5088 }
5089
5090 static int vega10_get_performance_level(struct pp_hwmgr *hwmgr, const struct pp_hw_power_state *state,
5091 PHM_PerformanceLevelDesignation designation, uint32_t index,
5092 PHM_PerformanceLevel *level)
5093 {
5094 const struct vega10_power_state *ps;
5095 struct vega10_hwmgr *data;
5096 uint32_t i;
5097
5098 if (level == NULL || hwmgr == NULL || state == NULL)
5099 return -EINVAL;
5100
5101 data = hwmgr->backend;
5102 ps = cast_const_phw_vega10_power_state(state);
5103
5104 i = index > ps->performance_level_count - 1 ?
5105 ps->performance_level_count - 1 : index;
5106
5107 level->coreClock = ps->performance_levels[i].gfx_clock;
5108 level->memory_clock = ps->performance_levels[i].mem_clock;
5109
5110 return 0;
5111 }
5112
5113 static const struct pp_hwmgr_func vega10_hwmgr_funcs = {
5114 .backend_init = vega10_hwmgr_backend_init,
5115 .backend_fini = vega10_hwmgr_backend_fini,
5116 .asic_setup = vega10_setup_asic_task,
5117 .dynamic_state_management_enable = vega10_enable_dpm_tasks,
5118 .dynamic_state_management_disable = vega10_disable_dpm_tasks,
5119 .get_num_of_pp_table_entries =
5120 vega10_get_number_of_powerplay_table_entries,
5121 .get_power_state_size = vega10_get_power_state_size,
5122 .get_pp_table_entry = vega10_get_pp_table_entry,
5123 .patch_boot_state = vega10_patch_boot_state,
5124 .apply_state_adjust_rules = vega10_apply_state_adjust_rules,
5125 .power_state_set = vega10_set_power_state_tasks,
5126 .get_sclk = vega10_dpm_get_sclk,
5127 .get_mclk = vega10_dpm_get_mclk,
5128 .notify_smc_display_config_after_ps_adjustment =
5129 vega10_notify_smc_display_config_after_ps_adjustment,
5130 .force_dpm_level = vega10_dpm_force_dpm_level,
5131 .stop_thermal_controller = vega10_thermal_stop_thermal_controller,
5132 .get_fan_speed_info = vega10_fan_ctrl_get_fan_speed_info,
5133 .get_fan_speed_percent = vega10_fan_ctrl_get_fan_speed_percent,
5134 .set_fan_speed_percent = vega10_fan_ctrl_set_fan_speed_percent,
5135 .reset_fan_speed_to_default =
5136 vega10_fan_ctrl_reset_fan_speed_to_default,
5137 .get_fan_speed_rpm = vega10_fan_ctrl_get_fan_speed_rpm,
5138 .set_fan_speed_rpm = vega10_fan_ctrl_set_fan_speed_rpm,
5139 .uninitialize_thermal_controller =
5140 vega10_thermal_ctrl_uninitialize_thermal_controller,
5141 .set_fan_control_mode = vega10_set_fan_control_mode,
5142 .get_fan_control_mode = vega10_get_fan_control_mode,
5143 .read_sensor = vega10_read_sensor,
5144 .get_dal_power_level = vega10_get_dal_power_level,
5145 .get_clock_by_type_with_latency = vega10_get_clock_by_type_with_latency,
5146 .get_clock_by_type_with_voltage = vega10_get_clock_by_type_with_voltage,
5147 .set_watermarks_for_clocks_ranges = vega10_set_watermarks_for_clocks_ranges,
5148 .display_clock_voltage_request = vega10_display_clock_voltage_request,
5149 .force_clock_level = vega10_force_clock_level,
5150 .print_clock_levels = vega10_print_clock_levels,
5151 .display_config_changed = vega10_display_configuration_changed_task,
5152 .powergate_uvd = vega10_power_gate_uvd,
5153 .powergate_vce = vega10_power_gate_vce,
5154 .check_states_equal = vega10_check_states_equal,
5155 .check_smc_update_required_for_display_configuration =
5156 vega10_check_smc_update_required_for_display_configuration,
5157 .power_off_asic = vega10_power_off_asic,
5158 .disable_smc_firmware_ctf = vega10_thermal_disable_alert,
5159 .get_sclk_od = vega10_get_sclk_od,
5160 .set_sclk_od = vega10_set_sclk_od,
5161 .get_mclk_od = vega10_get_mclk_od,
5162 .set_mclk_od = vega10_set_mclk_od,
5163 .avfs_control = vega10_avfs_enable,
5164 .notify_cac_buffer_info = vega10_notify_cac_buffer_info,
5165 .get_thermal_temperature_range = vega10_get_thermal_temperature_range,
5166 .register_irq_handlers = smu9_register_irq_handlers,
5167 .start_thermal_controller = vega10_start_thermal_controller,
5168 .get_power_profile_mode = vega10_get_power_profile_mode,
5169 .set_power_profile_mode = vega10_set_power_profile_mode,
5170 .set_power_limit = vega10_set_power_limit,
5171 .odn_edit_dpm_table = vega10_odn_edit_dpm_table,
5172 .get_performance_level = vega10_get_performance_level,
5173 .get_asic_baco_capability = vega10_baco_get_capability,
5174 .get_asic_baco_state = vega10_baco_get_state,
5175 .set_asic_baco_state = vega10_baco_set_state,
5176 .enable_mgpu_fan_boost = vega10_enable_mgpu_fan_boost,
5177 .get_ppfeature_status = vega10_get_ppfeature_status,
5178 .set_ppfeature_status = vega10_set_ppfeature_status,
5179 };
5180
5181 int vega10_hwmgr_init(struct pp_hwmgr *hwmgr)
5182 {
5183 hwmgr->hwmgr_func = &vega10_hwmgr_funcs;
5184 hwmgr->pptable_func = &vega10_pptable_funcs;
5185
5186 return 0;
5187 }