]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - drivers/gpu/drm/amd/powerplay/smu_v11_0.c
Merge tag 'amd-drm-next-5.8-2020-04-30' of git://people.freedesktop.org/~agd5f/linux...
[mirror_ubuntu-kernels.git] / drivers / gpu / drm / amd / powerplay / smu_v11_0.c
1 /*
2 * Copyright 2019 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 */
22
23 #include <linux/firmware.h>
24 #include <linux/module.h>
25 #include <linux/pci.h>
26
27 #define SMU_11_0_PARTIAL_PPTABLE
28
29 #include "amdgpu.h"
30 #include "amdgpu_smu.h"
31 #include "smu_internal.h"
32 #include "atomfirmware.h"
33 #include "amdgpu_atomfirmware.h"
34 #include "smu_v11_0.h"
35 #include "smu_v11_0_pptable.h"
36 #include "soc15_common.h"
37 #include "atom.h"
38 #include "amd_pcie.h"
39 #include "amdgpu_ras.h"
40
41 #include "asic_reg/thm/thm_11_0_2_offset.h"
42 #include "asic_reg/thm/thm_11_0_2_sh_mask.h"
43 #include "asic_reg/mp/mp_11_0_offset.h"
44 #include "asic_reg/mp/mp_11_0_sh_mask.h"
45 #include "asic_reg/smuio/smuio_11_0_0_offset.h"
46 #include "asic_reg/smuio/smuio_11_0_0_sh_mask.h"
47
48 MODULE_FIRMWARE("amdgpu/vega20_smc.bin");
49 MODULE_FIRMWARE("amdgpu/arcturus_smc.bin");
50 MODULE_FIRMWARE("amdgpu/navi10_smc.bin");
51 MODULE_FIRMWARE("amdgpu/navi14_smc.bin");
52 MODULE_FIRMWARE("amdgpu/navi12_smc.bin");
53
54 #define SMU11_VOLTAGE_SCALE 4
55
56 static int smu_v11_0_send_msg_without_waiting(struct smu_context *smu,
57 uint16_t msg)
58 {
59 struct amdgpu_device *adev = smu->adev;
60 WREG32_SOC15_NO_KIQ(MP1, 0, mmMP1_SMN_C2PMSG_66, msg);
61 return 0;
62 }
63
64 static int smu_v11_0_read_arg(struct smu_context *smu, uint32_t *arg)
65 {
66 struct amdgpu_device *adev = smu->adev;
67
68 *arg = RREG32_SOC15_NO_KIQ(MP1, 0, mmMP1_SMN_C2PMSG_82);
69 return 0;
70 }
71
72 static int smu_v11_0_wait_for_response(struct smu_context *smu)
73 {
74 struct amdgpu_device *adev = smu->adev;
75 uint32_t cur_value, i, timeout = adev->usec_timeout * 10;
76
77 for (i = 0; i < timeout; i++) {
78 cur_value = RREG32_SOC15_NO_KIQ(MP1, 0, mmMP1_SMN_C2PMSG_90);
79 if ((cur_value & MP1_C2PMSG_90__CONTENT_MASK) != 0)
80 return cur_value == 0x1 ? 0 : -EIO;
81
82 udelay(1);
83 }
84
85 /* timeout means wrong logic */
86 if (i == timeout)
87 return -ETIME;
88
89 return RREG32_SOC15_NO_KIQ(MP1, 0, mmMP1_SMN_C2PMSG_90) == 0x1 ? 0 : -EIO;
90 }
91
92 int
93 smu_v11_0_send_msg_with_param(struct smu_context *smu,
94 enum smu_message_type msg,
95 uint32_t param,
96 uint32_t *read_arg)
97 {
98 struct amdgpu_device *adev = smu->adev;
99 int ret = 0, index = 0;
100
101 index = smu_msg_get_index(smu, msg);
102 if (index < 0)
103 return index;
104
105 mutex_lock(&smu->message_lock);
106 ret = smu_v11_0_wait_for_response(smu);
107 if (ret) {
108 pr_err("Msg issuing pre-check failed and "
109 "SMU may be not in the right state!\n");
110 goto out;
111 }
112
113 WREG32_SOC15_NO_KIQ(MP1, 0, mmMP1_SMN_C2PMSG_90, 0);
114
115 WREG32_SOC15_NO_KIQ(MP1, 0, mmMP1_SMN_C2PMSG_82, param);
116
117 smu_v11_0_send_msg_without_waiting(smu, (uint16_t)index);
118
119 ret = smu_v11_0_wait_for_response(smu);
120 if (ret) {
121 pr_err("failed send message: %10s (%d) \tparam: 0x%08x response %#x\n",
122 smu_get_message_name(smu, msg), index, param, ret);
123 goto out;
124 }
125
126 if (read_arg) {
127 ret = smu_v11_0_read_arg(smu, read_arg);
128 if (ret) {
129 pr_err("failed to read message arg: %10s (%d) \tparam: 0x%08x response %#x\n",
130 smu_get_message_name(smu, msg), index, param, ret);
131 goto out;
132 }
133 }
134 out:
135 mutex_unlock(&smu->message_lock);
136 return ret;
137 }
138
139 int smu_v11_0_init_microcode(struct smu_context *smu)
140 {
141 struct amdgpu_device *adev = smu->adev;
142 const char *chip_name;
143 char fw_name[30];
144 int err = 0;
145 const struct smc_firmware_header_v1_0 *hdr;
146 const struct common_firmware_header *header;
147 struct amdgpu_firmware_info *ucode = NULL;
148
149 switch (adev->asic_type) {
150 case CHIP_VEGA20:
151 chip_name = "vega20";
152 break;
153 case CHIP_ARCTURUS:
154 chip_name = "arcturus";
155 break;
156 case CHIP_NAVI10:
157 chip_name = "navi10";
158 break;
159 case CHIP_NAVI14:
160 chip_name = "navi14";
161 break;
162 case CHIP_NAVI12:
163 chip_name = "navi12";
164 break;
165 default:
166 BUG();
167 }
168
169 snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_smc.bin", chip_name);
170
171 err = request_firmware(&adev->pm.fw, fw_name, adev->dev);
172 if (err)
173 goto out;
174 err = amdgpu_ucode_validate(adev->pm.fw);
175 if (err)
176 goto out;
177
178 hdr = (const struct smc_firmware_header_v1_0 *) adev->pm.fw->data;
179 amdgpu_ucode_print_smc_hdr(&hdr->header);
180 adev->pm.fw_version = le32_to_cpu(hdr->header.ucode_version);
181
182 if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP) {
183 ucode = &adev->firmware.ucode[AMDGPU_UCODE_ID_SMC];
184 ucode->ucode_id = AMDGPU_UCODE_ID_SMC;
185 ucode->fw = adev->pm.fw;
186 header = (const struct common_firmware_header *)ucode->fw->data;
187 adev->firmware.fw_size +=
188 ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE);
189 }
190
191 out:
192 if (err) {
193 DRM_ERROR("smu_v11_0: Failed to load firmware \"%s\"\n",
194 fw_name);
195 release_firmware(adev->pm.fw);
196 adev->pm.fw = NULL;
197 }
198 return err;
199 }
200
201 int smu_v11_0_load_microcode(struct smu_context *smu)
202 {
203 struct amdgpu_device *adev = smu->adev;
204 const uint32_t *src;
205 const struct smc_firmware_header_v1_0 *hdr;
206 uint32_t addr_start = MP1_SRAM;
207 uint32_t i;
208 uint32_t smc_fw_size;
209 uint32_t mp1_fw_flags;
210
211 hdr = (const struct smc_firmware_header_v1_0 *) adev->pm.fw->data;
212 src = (const uint32_t *)(adev->pm.fw->data +
213 le32_to_cpu(hdr->header.ucode_array_offset_bytes));
214 smc_fw_size = hdr->header.ucode_size_bytes;
215
216 for (i = 1; i < smc_fw_size/4 - 1; i++) {
217 WREG32_PCIE(addr_start, src[i]);
218 addr_start += 4;
219 }
220
221 WREG32_PCIE(MP1_Public | (smnMP1_PUB_CTRL & 0xffffffff),
222 1 & MP1_SMN_PUB_CTRL__RESET_MASK);
223 WREG32_PCIE(MP1_Public | (smnMP1_PUB_CTRL & 0xffffffff),
224 1 & ~MP1_SMN_PUB_CTRL__RESET_MASK);
225
226 for (i = 0; i < adev->usec_timeout; i++) {
227 mp1_fw_flags = RREG32_PCIE(MP1_Public |
228 (smnMP1_FIRMWARE_FLAGS & 0xffffffff));
229 if ((mp1_fw_flags & MP1_FIRMWARE_FLAGS__INTERRUPTS_ENABLED_MASK) >>
230 MP1_FIRMWARE_FLAGS__INTERRUPTS_ENABLED__SHIFT)
231 break;
232 udelay(1);
233 }
234
235 if (i == adev->usec_timeout)
236 return -ETIME;
237
238 return 0;
239 }
240
241 int smu_v11_0_check_fw_status(struct smu_context *smu)
242 {
243 struct amdgpu_device *adev = smu->adev;
244 uint32_t mp1_fw_flags;
245
246 mp1_fw_flags = RREG32_PCIE(MP1_Public |
247 (smnMP1_FIRMWARE_FLAGS & 0xffffffff));
248
249 if ((mp1_fw_flags & MP1_FIRMWARE_FLAGS__INTERRUPTS_ENABLED_MASK) >>
250 MP1_FIRMWARE_FLAGS__INTERRUPTS_ENABLED__SHIFT)
251 return 0;
252
253 return -EIO;
254 }
255
256 int smu_v11_0_check_fw_version(struct smu_context *smu)
257 {
258 uint32_t if_version = 0xff, smu_version = 0xff;
259 uint16_t smu_major;
260 uint8_t smu_minor, smu_debug;
261 int ret = 0;
262
263 ret = smu_get_smc_version(smu, &if_version, &smu_version);
264 if (ret)
265 return ret;
266
267 smu_major = (smu_version >> 16) & 0xffff;
268 smu_minor = (smu_version >> 8) & 0xff;
269 smu_debug = (smu_version >> 0) & 0xff;
270
271 switch (smu->adev->asic_type) {
272 case CHIP_VEGA20:
273 smu->smc_driver_if_version = SMU11_DRIVER_IF_VERSION_VG20;
274 break;
275 case CHIP_ARCTURUS:
276 smu->smc_driver_if_version = SMU11_DRIVER_IF_VERSION_ARCT;
277 break;
278 case CHIP_NAVI10:
279 smu->smc_driver_if_version = SMU11_DRIVER_IF_VERSION_NV10;
280 break;
281 case CHIP_NAVI12:
282 smu->smc_driver_if_version = SMU11_DRIVER_IF_VERSION_NV12;
283 break;
284 case CHIP_NAVI14:
285 smu->smc_driver_if_version = SMU11_DRIVER_IF_VERSION_NV14;
286 break;
287 default:
288 pr_err("smu unsupported asic type:%d.\n", smu->adev->asic_type);
289 smu->smc_driver_if_version = SMU11_DRIVER_IF_VERSION_INV;
290 break;
291 }
292
293 /*
294 * 1. if_version mismatch is not critical as our fw is designed
295 * to be backward compatible.
296 * 2. New fw usually brings some optimizations. But that's visible
297 * only on the paired driver.
298 * Considering above, we just leave user a warning message instead
299 * of halt driver loading.
300 */
301 if (if_version != smu->smc_driver_if_version) {
302 pr_info("smu driver if version = 0x%08x, smu fw if version = 0x%08x, "
303 "smu fw version = 0x%08x (%d.%d.%d)\n",
304 smu->smc_driver_if_version, if_version,
305 smu_version, smu_major, smu_minor, smu_debug);
306 pr_warn("SMU driver if version not matched\n");
307 }
308
309 return ret;
310 }
311
312 static int smu_v11_0_set_pptable_v2_0(struct smu_context *smu, void **table, uint32_t *size)
313 {
314 struct amdgpu_device *adev = smu->adev;
315 uint32_t ppt_offset_bytes;
316 const struct smc_firmware_header_v2_0 *v2;
317
318 v2 = (const struct smc_firmware_header_v2_0 *) adev->pm.fw->data;
319
320 ppt_offset_bytes = le32_to_cpu(v2->ppt_offset_bytes);
321 *size = le32_to_cpu(v2->ppt_size_bytes);
322 *table = (uint8_t *)v2 + ppt_offset_bytes;
323
324 return 0;
325 }
326
327 static int smu_v11_0_set_pptable_v2_1(struct smu_context *smu, void **table,
328 uint32_t *size, uint32_t pptable_id)
329 {
330 struct amdgpu_device *adev = smu->adev;
331 const struct smc_firmware_header_v2_1 *v2_1;
332 struct smc_soft_pptable_entry *entries;
333 uint32_t pptable_count = 0;
334 int i = 0;
335
336 v2_1 = (const struct smc_firmware_header_v2_1 *) adev->pm.fw->data;
337 entries = (struct smc_soft_pptable_entry *)
338 ((uint8_t *)v2_1 + le32_to_cpu(v2_1->pptable_entry_offset));
339 pptable_count = le32_to_cpu(v2_1->pptable_count);
340 for (i = 0; i < pptable_count; i++) {
341 if (le32_to_cpu(entries[i].id) == pptable_id) {
342 *table = ((uint8_t *)v2_1 + le32_to_cpu(entries[i].ppt_offset_bytes));
343 *size = le32_to_cpu(entries[i].ppt_size_bytes);
344 break;
345 }
346 }
347
348 if (i == pptable_count)
349 return -EINVAL;
350
351 return 0;
352 }
353
354 int smu_v11_0_setup_pptable(struct smu_context *smu)
355 {
356 struct amdgpu_device *adev = smu->adev;
357 const struct smc_firmware_header_v1_0 *hdr;
358 int ret, index;
359 uint32_t size = 0;
360 uint16_t atom_table_size;
361 uint8_t frev, crev;
362 void *table;
363 uint16_t version_major, version_minor;
364
365 hdr = (const struct smc_firmware_header_v1_0 *) adev->pm.fw->data;
366 version_major = le16_to_cpu(hdr->header.header_version_major);
367 version_minor = le16_to_cpu(hdr->header.header_version_minor);
368 if (version_major == 2 && smu->smu_table.boot_values.pp_table_id > 0) {
369 pr_info("use driver provided pptable %d\n", smu->smu_table.boot_values.pp_table_id);
370 switch (version_minor) {
371 case 0:
372 ret = smu_v11_0_set_pptable_v2_0(smu, &table, &size);
373 break;
374 case 1:
375 ret = smu_v11_0_set_pptable_v2_1(smu, &table, &size,
376 smu->smu_table.boot_values.pp_table_id);
377 break;
378 default:
379 ret = -EINVAL;
380 break;
381 }
382 if (ret)
383 return ret;
384
385 } else {
386 pr_info("use vbios provided pptable\n");
387 index = get_index_into_master_table(atom_master_list_of_data_tables_v2_1,
388 powerplayinfo);
389
390 ret = smu_get_atom_data_table(smu, index, &atom_table_size, &frev, &crev,
391 (uint8_t **)&table);
392 if (ret)
393 return ret;
394 size = atom_table_size;
395 }
396
397 if (!smu->smu_table.power_play_table)
398 smu->smu_table.power_play_table = table;
399 if (!smu->smu_table.power_play_table_size)
400 smu->smu_table.power_play_table_size = size;
401
402 return 0;
403 }
404
405 static int smu_v11_0_init_dpm_context(struct smu_context *smu)
406 {
407 struct smu_dpm_context *smu_dpm = &smu->smu_dpm;
408
409 if (smu_dpm->dpm_context || smu_dpm->dpm_context_size != 0)
410 return -EINVAL;
411
412 return smu_alloc_dpm_context(smu);
413 }
414
415 static int smu_v11_0_fini_dpm_context(struct smu_context *smu)
416 {
417 struct smu_dpm_context *smu_dpm = &smu->smu_dpm;
418
419 if (!smu_dpm->dpm_context || smu_dpm->dpm_context_size == 0)
420 return -EINVAL;
421
422 kfree(smu_dpm->dpm_context);
423 kfree(smu_dpm->golden_dpm_context);
424 kfree(smu_dpm->dpm_current_power_state);
425 kfree(smu_dpm->dpm_request_power_state);
426 smu_dpm->dpm_context = NULL;
427 smu_dpm->golden_dpm_context = NULL;
428 smu_dpm->dpm_context_size = 0;
429 smu_dpm->dpm_current_power_state = NULL;
430 smu_dpm->dpm_request_power_state = NULL;
431
432 return 0;
433 }
434
435 int smu_v11_0_init_smc_tables(struct smu_context *smu)
436 {
437 struct smu_table_context *smu_table = &smu->smu_table;
438 struct smu_table *tables = NULL;
439 int ret = 0;
440
441 if (smu_table->tables)
442 return -EINVAL;
443
444 tables = kcalloc(SMU_TABLE_COUNT, sizeof(struct smu_table),
445 GFP_KERNEL);
446 if (!tables)
447 return -ENOMEM;
448
449 smu_table->tables = tables;
450
451 ret = smu_tables_init(smu, tables);
452 if (ret)
453 return ret;
454
455 ret = smu_v11_0_init_dpm_context(smu);
456 if (ret)
457 return ret;
458
459 return 0;
460 }
461
462 int smu_v11_0_fini_smc_tables(struct smu_context *smu)
463 {
464 struct smu_table_context *smu_table = &smu->smu_table;
465 int ret = 0;
466
467 if (!smu_table->tables)
468 return -EINVAL;
469
470 kfree(smu_table->tables);
471 kfree(smu_table->metrics_table);
472 kfree(smu_table->watermarks_table);
473 smu_table->tables = NULL;
474 smu_table->metrics_table = NULL;
475 smu_table->watermarks_table = NULL;
476 smu_table->metrics_time = 0;
477
478 ret = smu_v11_0_fini_dpm_context(smu);
479 if (ret)
480 return ret;
481 return 0;
482 }
483
484 int smu_v11_0_init_power(struct smu_context *smu)
485 {
486 struct smu_power_context *smu_power = &smu->smu_power;
487
488 if (smu_power->power_context || smu_power->power_context_size != 0)
489 return -EINVAL;
490
491 smu_power->power_context = kzalloc(sizeof(struct smu_11_0_dpm_context),
492 GFP_KERNEL);
493 if (!smu_power->power_context)
494 return -ENOMEM;
495 smu_power->power_context_size = sizeof(struct smu_11_0_dpm_context);
496
497 return 0;
498 }
499
500 int smu_v11_0_fini_power(struct smu_context *smu)
501 {
502 struct smu_power_context *smu_power = &smu->smu_power;
503
504 if (!smu_power->power_context || smu_power->power_context_size == 0)
505 return -EINVAL;
506
507 kfree(smu_power->power_context);
508 smu_power->power_context = NULL;
509 smu_power->power_context_size = 0;
510
511 return 0;
512 }
513
514 int smu_v11_0_get_vbios_bootup_values(struct smu_context *smu)
515 {
516 int ret, index;
517 uint16_t size;
518 uint8_t frev, crev;
519 struct atom_common_table_header *header;
520 struct atom_firmware_info_v3_3 *v_3_3;
521 struct atom_firmware_info_v3_1 *v_3_1;
522
523 index = get_index_into_master_table(atom_master_list_of_data_tables_v2_1,
524 firmwareinfo);
525
526 ret = smu_get_atom_data_table(smu, index, &size, &frev, &crev,
527 (uint8_t **)&header);
528 if (ret)
529 return ret;
530
531 if (header->format_revision != 3) {
532 pr_err("unknown atom_firmware_info version! for smu11\n");
533 return -EINVAL;
534 }
535
536 switch (header->content_revision) {
537 case 0:
538 case 1:
539 case 2:
540 v_3_1 = (struct atom_firmware_info_v3_1 *)header;
541 smu->smu_table.boot_values.revision = v_3_1->firmware_revision;
542 smu->smu_table.boot_values.gfxclk = v_3_1->bootup_sclk_in10khz;
543 smu->smu_table.boot_values.uclk = v_3_1->bootup_mclk_in10khz;
544 smu->smu_table.boot_values.socclk = 0;
545 smu->smu_table.boot_values.dcefclk = 0;
546 smu->smu_table.boot_values.vddc = v_3_1->bootup_vddc_mv;
547 smu->smu_table.boot_values.vddci = v_3_1->bootup_vddci_mv;
548 smu->smu_table.boot_values.mvddc = v_3_1->bootup_mvddc_mv;
549 smu->smu_table.boot_values.vdd_gfx = v_3_1->bootup_vddgfx_mv;
550 smu->smu_table.boot_values.cooling_id = v_3_1->coolingsolution_id;
551 smu->smu_table.boot_values.pp_table_id = 0;
552 break;
553 case 3:
554 default:
555 v_3_3 = (struct atom_firmware_info_v3_3 *)header;
556 smu->smu_table.boot_values.revision = v_3_3->firmware_revision;
557 smu->smu_table.boot_values.gfxclk = v_3_3->bootup_sclk_in10khz;
558 smu->smu_table.boot_values.uclk = v_3_3->bootup_mclk_in10khz;
559 smu->smu_table.boot_values.socclk = 0;
560 smu->smu_table.boot_values.dcefclk = 0;
561 smu->smu_table.boot_values.vddc = v_3_3->bootup_vddc_mv;
562 smu->smu_table.boot_values.vddci = v_3_3->bootup_vddci_mv;
563 smu->smu_table.boot_values.mvddc = v_3_3->bootup_mvddc_mv;
564 smu->smu_table.boot_values.vdd_gfx = v_3_3->bootup_vddgfx_mv;
565 smu->smu_table.boot_values.cooling_id = v_3_3->coolingsolution_id;
566 smu->smu_table.boot_values.pp_table_id = v_3_3->pplib_pptable_id;
567 }
568
569 smu->smu_table.boot_values.format_revision = header->format_revision;
570 smu->smu_table.boot_values.content_revision = header->content_revision;
571
572 return 0;
573 }
574
575 int smu_v11_0_get_clk_info_from_vbios(struct smu_context *smu)
576 {
577 int ret, index;
578 struct amdgpu_device *adev = smu->adev;
579 struct atom_get_smu_clock_info_parameters_v3_1 input = {0};
580 struct atom_get_smu_clock_info_output_parameters_v3_1 *output;
581
582 input.clk_id = SMU11_SYSPLL0_SOCCLK_ID;
583 input.command = GET_SMU_CLOCK_INFO_V3_1_GET_CLOCK_FREQ;
584 index = get_index_into_master_table(atom_master_list_of_command_functions_v2_1,
585 getsmuclockinfo);
586
587 ret = amdgpu_atom_execute_table(adev->mode_info.atom_context, index,
588 (uint32_t *)&input);
589 if (ret)
590 return -EINVAL;
591
592 output = (struct atom_get_smu_clock_info_output_parameters_v3_1 *)&input;
593 smu->smu_table.boot_values.socclk = le32_to_cpu(output->atom_smu_outputclkfreq.smu_clock_freq_hz) / 10000;
594
595 memset(&input, 0, sizeof(input));
596 input.clk_id = SMU11_SYSPLL0_DCEFCLK_ID;
597 input.command = GET_SMU_CLOCK_INFO_V3_1_GET_CLOCK_FREQ;
598 index = get_index_into_master_table(atom_master_list_of_command_functions_v2_1,
599 getsmuclockinfo);
600
601 ret = amdgpu_atom_execute_table(adev->mode_info.atom_context, index,
602 (uint32_t *)&input);
603 if (ret)
604 return -EINVAL;
605
606 output = (struct atom_get_smu_clock_info_output_parameters_v3_1 *)&input;
607 smu->smu_table.boot_values.dcefclk = le32_to_cpu(output->atom_smu_outputclkfreq.smu_clock_freq_hz) / 10000;
608
609 memset(&input, 0, sizeof(input));
610 input.clk_id = SMU11_SYSPLL0_ECLK_ID;
611 input.command = GET_SMU_CLOCK_INFO_V3_1_GET_CLOCK_FREQ;
612 index = get_index_into_master_table(atom_master_list_of_command_functions_v2_1,
613 getsmuclockinfo);
614
615 ret = amdgpu_atom_execute_table(adev->mode_info.atom_context, index,
616 (uint32_t *)&input);
617 if (ret)
618 return -EINVAL;
619
620 output = (struct atom_get_smu_clock_info_output_parameters_v3_1 *)&input;
621 smu->smu_table.boot_values.eclk = le32_to_cpu(output->atom_smu_outputclkfreq.smu_clock_freq_hz) / 10000;
622
623 memset(&input, 0, sizeof(input));
624 input.clk_id = SMU11_SYSPLL0_VCLK_ID;
625 input.command = GET_SMU_CLOCK_INFO_V3_1_GET_CLOCK_FREQ;
626 index = get_index_into_master_table(atom_master_list_of_command_functions_v2_1,
627 getsmuclockinfo);
628
629 ret = amdgpu_atom_execute_table(adev->mode_info.atom_context, index,
630 (uint32_t *)&input);
631 if (ret)
632 return -EINVAL;
633
634 output = (struct atom_get_smu_clock_info_output_parameters_v3_1 *)&input;
635 smu->smu_table.boot_values.vclk = le32_to_cpu(output->atom_smu_outputclkfreq.smu_clock_freq_hz) / 10000;
636
637 memset(&input, 0, sizeof(input));
638 input.clk_id = SMU11_SYSPLL0_DCLK_ID;
639 input.command = GET_SMU_CLOCK_INFO_V3_1_GET_CLOCK_FREQ;
640 index = get_index_into_master_table(atom_master_list_of_command_functions_v2_1,
641 getsmuclockinfo);
642
643 ret = amdgpu_atom_execute_table(adev->mode_info.atom_context, index,
644 (uint32_t *)&input);
645 if (ret)
646 return -EINVAL;
647
648 output = (struct atom_get_smu_clock_info_output_parameters_v3_1 *)&input;
649 smu->smu_table.boot_values.dclk = le32_to_cpu(output->atom_smu_outputclkfreq.smu_clock_freq_hz) / 10000;
650
651 if ((smu->smu_table.boot_values.format_revision == 3) &&
652 (smu->smu_table.boot_values.content_revision >= 2)) {
653 memset(&input, 0, sizeof(input));
654 input.clk_id = SMU11_SYSPLL1_0_FCLK_ID;
655 input.syspll_id = SMU11_SYSPLL1_2_ID;
656 input.command = GET_SMU_CLOCK_INFO_V3_1_GET_CLOCK_FREQ;
657 index = get_index_into_master_table(atom_master_list_of_command_functions_v2_1,
658 getsmuclockinfo);
659
660 ret = amdgpu_atom_execute_table(adev->mode_info.atom_context, index,
661 (uint32_t *)&input);
662 if (ret)
663 return -EINVAL;
664
665 output = (struct atom_get_smu_clock_info_output_parameters_v3_1 *)&input;
666 smu->smu_table.boot_values.fclk = le32_to_cpu(output->atom_smu_outputclkfreq.smu_clock_freq_hz) / 10000;
667 }
668
669 return 0;
670 }
671
672 int smu_v11_0_notify_memory_pool_location(struct smu_context *smu)
673 {
674 struct smu_table_context *smu_table = &smu->smu_table;
675 struct smu_table *memory_pool = &smu_table->memory_pool;
676 int ret = 0;
677 uint64_t address;
678 uint32_t address_low, address_high;
679
680 if (memory_pool->size == 0 || memory_pool->cpu_addr == NULL)
681 return ret;
682
683 address = (uintptr_t)memory_pool->cpu_addr;
684 address_high = (uint32_t)upper_32_bits(address);
685 address_low = (uint32_t)lower_32_bits(address);
686
687 ret = smu_send_smc_msg_with_param(smu,
688 SMU_MSG_SetSystemVirtualDramAddrHigh,
689 address_high,
690 NULL);
691 if (ret)
692 return ret;
693 ret = smu_send_smc_msg_with_param(smu,
694 SMU_MSG_SetSystemVirtualDramAddrLow,
695 address_low,
696 NULL);
697 if (ret)
698 return ret;
699
700 address = memory_pool->mc_address;
701 address_high = (uint32_t)upper_32_bits(address);
702 address_low = (uint32_t)lower_32_bits(address);
703
704 ret = smu_send_smc_msg_with_param(smu, SMU_MSG_DramLogSetDramAddrHigh,
705 address_high, NULL);
706 if (ret)
707 return ret;
708 ret = smu_send_smc_msg_with_param(smu, SMU_MSG_DramLogSetDramAddrLow,
709 address_low, NULL);
710 if (ret)
711 return ret;
712 ret = smu_send_smc_msg_with_param(smu, SMU_MSG_DramLogSetDramSize,
713 (uint32_t)memory_pool->size, NULL);
714 if (ret)
715 return ret;
716
717 return ret;
718 }
719
720 int smu_v11_0_check_pptable(struct smu_context *smu)
721 {
722 int ret;
723
724 ret = smu_check_powerplay_table(smu);
725 return ret;
726 }
727
728 int smu_v11_0_parse_pptable(struct smu_context *smu)
729 {
730 int ret;
731
732 struct smu_table_context *table_context = &smu->smu_table;
733 struct smu_table *table = &table_context->tables[SMU_TABLE_PPTABLE];
734
735 /* during TDR we need to free and alloc the pptable */
736 if (table_context->driver_pptable)
737 kfree(table_context->driver_pptable);
738
739 table_context->driver_pptable = kzalloc(table->size, GFP_KERNEL);
740
741 if (!table_context->driver_pptable)
742 return -ENOMEM;
743
744 ret = smu_store_powerplay_table(smu);
745 if (ret)
746 return -EINVAL;
747
748 ret = smu_append_powerplay_table(smu);
749
750 return ret;
751 }
752
753 int smu_v11_0_populate_smc_pptable(struct smu_context *smu)
754 {
755 int ret;
756
757 ret = smu_set_default_dpm_table(smu);
758
759 return ret;
760 }
761
762 int smu_v11_0_write_pptable(struct smu_context *smu)
763 {
764 struct smu_table_context *table_context = &smu->smu_table;
765 int ret = 0;
766
767 ret = smu_update_table(smu, SMU_TABLE_PPTABLE, 0,
768 table_context->driver_pptable, true);
769
770 return ret;
771 }
772
773 int smu_v11_0_set_deep_sleep_dcefclk(struct smu_context *smu, uint32_t clk)
774 {
775 int ret;
776
777 if (amdgpu_sriov_vf(smu->adev))
778 return 0;
779
780 ret = smu_send_smc_msg_with_param(smu,
781 SMU_MSG_SetMinDeepSleepDcefclk, clk, NULL);
782 if (ret)
783 pr_err("SMU11 attempt to set divider for DCEFCLK Failed!");
784
785 return ret;
786 }
787
788 int smu_v11_0_set_min_dcef_deep_sleep(struct smu_context *smu)
789 {
790 struct smu_table_context *table_context = &smu->smu_table;
791
792 if (!table_context)
793 return -EINVAL;
794
795 return smu_v11_0_set_deep_sleep_dcefclk(smu, table_context->boot_values.dcefclk / 100);
796 }
797
798 int smu_v11_0_set_driver_table_location(struct smu_context *smu)
799 {
800 struct smu_table *driver_table = &smu->smu_table.driver_table;
801 int ret = 0;
802
803 if (driver_table->mc_address) {
804 ret = smu_send_smc_msg_with_param(smu,
805 SMU_MSG_SetDriverDramAddrHigh,
806 upper_32_bits(driver_table->mc_address),
807 NULL);
808 if (!ret)
809 ret = smu_send_smc_msg_with_param(smu,
810 SMU_MSG_SetDriverDramAddrLow,
811 lower_32_bits(driver_table->mc_address),
812 NULL);
813 }
814
815 return ret;
816 }
817
818 int smu_v11_0_set_tool_table_location(struct smu_context *smu)
819 {
820 int ret = 0;
821 struct smu_table *tool_table = &smu->smu_table.tables[SMU_TABLE_PMSTATUSLOG];
822
823 if (amdgpu_sriov_vf(smu->adev))
824 return 0;
825
826 if (tool_table->mc_address) {
827 ret = smu_send_smc_msg_with_param(smu,
828 SMU_MSG_SetToolsDramAddrHigh,
829 upper_32_bits(tool_table->mc_address),
830 NULL);
831 if (!ret)
832 ret = smu_send_smc_msg_with_param(smu,
833 SMU_MSG_SetToolsDramAddrLow,
834 lower_32_bits(tool_table->mc_address),
835 NULL);
836 }
837
838 return ret;
839 }
840
841 int smu_v11_0_init_display_count(struct smu_context *smu, uint32_t count)
842 {
843 int ret = 0;
844
845 if (amdgpu_sriov_vf(smu->adev))
846 return 0;
847
848 if (!smu->pm_enabled)
849 return ret;
850
851 ret = smu_send_smc_msg_with_param(smu, SMU_MSG_NumOfDisplays, count, NULL);
852 return ret;
853 }
854
855
856 int smu_v11_0_set_allowed_mask(struct smu_context *smu)
857 {
858 struct smu_feature *feature = &smu->smu_feature;
859 int ret = 0;
860 uint32_t feature_mask[2];
861
862 if (amdgpu_sriov_vf(smu->adev))
863 return 0;
864
865 mutex_lock(&feature->mutex);
866 if (bitmap_empty(feature->allowed, SMU_FEATURE_MAX) || feature->feature_num < 64)
867 goto failed;
868
869 bitmap_copy((unsigned long *)feature_mask, feature->allowed, 64);
870
871 ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetAllowedFeaturesMaskHigh,
872 feature_mask[1], NULL);
873 if (ret)
874 goto failed;
875
876 ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetAllowedFeaturesMaskLow,
877 feature_mask[0], NULL);
878 if (ret)
879 goto failed;
880
881 failed:
882 mutex_unlock(&feature->mutex);
883 return ret;
884 }
885
886 int smu_v11_0_get_enabled_mask(struct smu_context *smu,
887 uint32_t *feature_mask, uint32_t num)
888 {
889 uint32_t feature_mask_high = 0, feature_mask_low = 0;
890 struct smu_feature *feature = &smu->smu_feature;
891 int ret = 0;
892
893 if (amdgpu_sriov_vf(smu->adev) && !amdgpu_sriov_is_pp_one_vf(smu->adev))
894 return 0;
895
896 if (!feature_mask || num < 2)
897 return -EINVAL;
898
899 if (bitmap_empty(feature->enabled, feature->feature_num)) {
900 ret = smu_send_smc_msg(smu, SMU_MSG_GetEnabledSmuFeaturesHigh, &feature_mask_high);
901 if (ret)
902 return ret;
903
904 ret = smu_send_smc_msg(smu, SMU_MSG_GetEnabledSmuFeaturesLow, &feature_mask_low);
905 if (ret)
906 return ret;
907
908 feature_mask[0] = feature_mask_low;
909 feature_mask[1] = feature_mask_high;
910 } else {
911 bitmap_copy((unsigned long *)feature_mask, feature->enabled,
912 feature->feature_num);
913 }
914
915 return ret;
916 }
917
918 int smu_v11_0_system_features_control(struct smu_context *smu,
919 bool en)
920 {
921 struct smu_feature *feature = &smu->smu_feature;
922 uint32_t feature_mask[2];
923 int ret = 0;
924
925 ret = smu_send_smc_msg(smu, (en ? SMU_MSG_EnableAllSmuFeatures :
926 SMU_MSG_DisableAllSmuFeatures), NULL);
927 if (ret)
928 return ret;
929
930 bitmap_zero(feature->enabled, feature->feature_num);
931 bitmap_zero(feature->supported, feature->feature_num);
932
933 if (en) {
934 ret = smu_feature_get_enabled_mask(smu, feature_mask, 2);
935 if (ret)
936 return ret;
937
938 bitmap_copy(feature->enabled, (unsigned long *)&feature_mask,
939 feature->feature_num);
940 bitmap_copy(feature->supported, (unsigned long *)&feature_mask,
941 feature->feature_num);
942 }
943
944 return ret;
945 }
946
947 int smu_v11_0_notify_display_change(struct smu_context *smu)
948 {
949 int ret = 0;
950
951 if (amdgpu_sriov_vf(smu->adev))
952 return 0;
953
954 if (!smu->pm_enabled)
955 return ret;
956
957 if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_UCLK_BIT) &&
958 smu->adev->gmc.vram_type == AMDGPU_VRAM_TYPE_HBM)
959 ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetUclkFastSwitch, 1, NULL);
960
961 return ret;
962 }
963
964 static int
965 smu_v11_0_get_max_sustainable_clock(struct smu_context *smu, uint32_t *clock,
966 enum smu_clk_type clock_select)
967 {
968 int ret = 0;
969 int clk_id;
970
971 if ((smu_msg_get_index(smu, SMU_MSG_GetDcModeMaxDpmFreq) < 0) ||
972 (smu_msg_get_index(smu, SMU_MSG_GetMaxDpmFreq) < 0))
973 return 0;
974
975 clk_id = smu_clk_get_index(smu, clock_select);
976 if (clk_id < 0)
977 return -EINVAL;
978
979 ret = smu_send_smc_msg_with_param(smu, SMU_MSG_GetDcModeMaxDpmFreq,
980 clk_id << 16, clock);
981 if (ret) {
982 pr_err("[GetMaxSustainableClock] Failed to get max DC clock from SMC!");
983 return ret;
984 }
985
986 if (*clock != 0)
987 return 0;
988
989 /* if DC limit is zero, return AC limit */
990 ret = smu_send_smc_msg_with_param(smu, SMU_MSG_GetMaxDpmFreq,
991 clk_id << 16, clock);
992 if (ret) {
993 pr_err("[GetMaxSustainableClock] failed to get max AC clock from SMC!");
994 return ret;
995 }
996
997 return 0;
998 }
999
1000 int smu_v11_0_init_max_sustainable_clocks(struct smu_context *smu)
1001 {
1002 struct smu_11_0_max_sustainable_clocks *max_sustainable_clocks;
1003 int ret = 0;
1004
1005 if (!smu->smu_table.max_sustainable_clocks)
1006 max_sustainable_clocks = kzalloc(sizeof(struct smu_11_0_max_sustainable_clocks),
1007 GFP_KERNEL);
1008 else
1009 max_sustainable_clocks = smu->smu_table.max_sustainable_clocks;
1010
1011 smu->smu_table.max_sustainable_clocks = (void *)max_sustainable_clocks;
1012
1013 max_sustainable_clocks->uclock = smu->smu_table.boot_values.uclk / 100;
1014 max_sustainable_clocks->soc_clock = smu->smu_table.boot_values.socclk / 100;
1015 max_sustainable_clocks->dcef_clock = smu->smu_table.boot_values.dcefclk / 100;
1016 max_sustainable_clocks->display_clock = 0xFFFFFFFF;
1017 max_sustainable_clocks->phy_clock = 0xFFFFFFFF;
1018 max_sustainable_clocks->pixel_clock = 0xFFFFFFFF;
1019
1020 if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_UCLK_BIT)) {
1021 ret = smu_v11_0_get_max_sustainable_clock(smu,
1022 &(max_sustainable_clocks->uclock),
1023 SMU_UCLK);
1024 if (ret) {
1025 pr_err("[%s] failed to get max UCLK from SMC!",
1026 __func__);
1027 return ret;
1028 }
1029 }
1030
1031 if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_SOCCLK_BIT)) {
1032 ret = smu_v11_0_get_max_sustainable_clock(smu,
1033 &(max_sustainable_clocks->soc_clock),
1034 SMU_SOCCLK);
1035 if (ret) {
1036 pr_err("[%s] failed to get max SOCCLK from SMC!",
1037 __func__);
1038 return ret;
1039 }
1040 }
1041
1042 if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_DCEFCLK_BIT)) {
1043 ret = smu_v11_0_get_max_sustainable_clock(smu,
1044 &(max_sustainable_clocks->dcef_clock),
1045 SMU_DCEFCLK);
1046 if (ret) {
1047 pr_err("[%s] failed to get max DCEFCLK from SMC!",
1048 __func__);
1049 return ret;
1050 }
1051
1052 ret = smu_v11_0_get_max_sustainable_clock(smu,
1053 &(max_sustainable_clocks->display_clock),
1054 SMU_DISPCLK);
1055 if (ret) {
1056 pr_err("[%s] failed to get max DISPCLK from SMC!",
1057 __func__);
1058 return ret;
1059 }
1060 ret = smu_v11_0_get_max_sustainable_clock(smu,
1061 &(max_sustainable_clocks->phy_clock),
1062 SMU_PHYCLK);
1063 if (ret) {
1064 pr_err("[%s] failed to get max PHYCLK from SMC!",
1065 __func__);
1066 return ret;
1067 }
1068 ret = smu_v11_0_get_max_sustainable_clock(smu,
1069 &(max_sustainable_clocks->pixel_clock),
1070 SMU_PIXCLK);
1071 if (ret) {
1072 pr_err("[%s] failed to get max PIXCLK from SMC!",
1073 __func__);
1074 return ret;
1075 }
1076 }
1077
1078 if (max_sustainable_clocks->soc_clock < max_sustainable_clocks->uclock)
1079 max_sustainable_clocks->uclock = max_sustainable_clocks->soc_clock;
1080
1081 return 0;
1082 }
1083
1084 uint32_t smu_v11_0_get_max_power_limit(struct smu_context *smu) {
1085 uint32_t od_limit, max_power_limit;
1086 struct smu_11_0_powerplay_table *powerplay_table = NULL;
1087 struct smu_table_context *table_context = &smu->smu_table;
1088 powerplay_table = table_context->power_play_table;
1089
1090 max_power_limit = smu_get_pptable_power_limit(smu);
1091
1092 if (!max_power_limit) {
1093 // If we couldn't get the table limit, fall back on first-read value
1094 if (!smu->default_power_limit)
1095 smu->default_power_limit = smu->power_limit;
1096 max_power_limit = smu->default_power_limit;
1097 }
1098
1099 if (smu->od_enabled) {
1100 od_limit = le32_to_cpu(powerplay_table->overdrive_table.max[SMU_11_0_ODSETTING_POWERPERCENTAGE]);
1101
1102 pr_debug("ODSETTING_POWERPERCENTAGE: %d (default: %d)\n", od_limit, smu->default_power_limit);
1103
1104 max_power_limit *= (100 + od_limit);
1105 max_power_limit /= 100;
1106 }
1107
1108 return max_power_limit;
1109 }
1110
1111 int smu_v11_0_set_power_limit(struct smu_context *smu, uint32_t n)
1112 {
1113 int ret = 0;
1114 uint32_t max_power_limit;
1115
1116 if (amdgpu_sriov_vf(smu->adev))
1117 return 0;
1118
1119 max_power_limit = smu_v11_0_get_max_power_limit(smu);
1120
1121 if (n > max_power_limit) {
1122 pr_err("New power limit (%d) is over the max allowed %d\n",
1123 n,
1124 max_power_limit);
1125 return -EINVAL;
1126 }
1127
1128 if (n == 0)
1129 n = smu->default_power_limit;
1130
1131 if (!smu_feature_is_enabled(smu, SMU_FEATURE_PPT_BIT)) {
1132 pr_err("Setting new power limit is not supported!\n");
1133 return -EOPNOTSUPP;
1134 }
1135
1136 ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetPptLimit, n, NULL);
1137 if (ret) {
1138 pr_err("[%s] Set power limit Failed!\n", __func__);
1139 return ret;
1140 }
1141 smu->power_limit = n;
1142
1143 return 0;
1144 }
1145
1146 int smu_v11_0_get_current_clk_freq(struct smu_context *smu,
1147 enum smu_clk_type clk_id,
1148 uint32_t *value)
1149 {
1150 int ret = 0;
1151 uint32_t freq = 0;
1152 int asic_clk_id;
1153
1154 if (clk_id >= SMU_CLK_COUNT || !value)
1155 return -EINVAL;
1156
1157 asic_clk_id = smu_clk_get_index(smu, clk_id);
1158 if (asic_clk_id < 0)
1159 return -EINVAL;
1160
1161 /* if don't has GetDpmClockFreq Message, try get current clock by SmuMetrics_t */
1162 if (smu_msg_get_index(smu, SMU_MSG_GetDpmClockFreq) < 0)
1163 ret = smu_get_current_clk_freq_by_table(smu, clk_id, &freq);
1164 else {
1165 ret = smu_send_smc_msg_with_param(smu, SMU_MSG_GetDpmClockFreq,
1166 (asic_clk_id << 16), &freq);
1167 if (ret)
1168 return ret;
1169 }
1170
1171 freq *= 100;
1172 *value = freq;
1173
1174 return ret;
1175 }
1176
1177 static int smu_v11_0_set_thermal_range(struct smu_context *smu,
1178 struct smu_temperature_range range)
1179 {
1180 struct amdgpu_device *adev = smu->adev;
1181 int low = SMU_THERMAL_MINIMUM_ALERT_TEMP;
1182 int high = SMU_THERMAL_MAXIMUM_ALERT_TEMP;
1183 uint32_t val;
1184 struct smu_table_context *table_context = &smu->smu_table;
1185 struct smu_11_0_powerplay_table *powerplay_table = table_context->power_play_table;
1186
1187 low = max(SMU_THERMAL_MINIMUM_ALERT_TEMP,
1188 range.min / SMU_TEMPERATURE_UNITS_PER_CENTIGRADES);
1189 high = min((uint16_t)SMU_THERMAL_MAXIMUM_ALERT_TEMP, powerplay_table->software_shutdown_temp);
1190
1191 if (low > high)
1192 return -EINVAL;
1193
1194 val = RREG32_SOC15(THM, 0, mmTHM_THERMAL_INT_CTRL);
1195 val = REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, MAX_IH_CREDIT, 5);
1196 val = REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, THERM_IH_HW_ENA, 1);
1197 val = REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, THERM_INTH_MASK, 0);
1198 val = REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, THERM_INTL_MASK, 0);
1199 val = REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, DIG_THERM_INTH, (high & 0xff));
1200 val = REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, DIG_THERM_INTL, (low & 0xff));
1201 val = val & (~THM_THERMAL_INT_CTRL__THERM_TRIGGER_MASK_MASK);
1202
1203 WREG32_SOC15(THM, 0, mmTHM_THERMAL_INT_CTRL, val);
1204
1205 return 0;
1206 }
1207
1208 static int smu_v11_0_enable_thermal_alert(struct smu_context *smu)
1209 {
1210 struct amdgpu_device *adev = smu->adev;
1211 uint32_t val = 0;
1212
1213 val |= (1 << THM_THERMAL_INT_ENA__THERM_INTH_CLR__SHIFT);
1214 val |= (1 << THM_THERMAL_INT_ENA__THERM_INTL_CLR__SHIFT);
1215 val |= (1 << THM_THERMAL_INT_ENA__THERM_TRIGGER_CLR__SHIFT);
1216
1217 WREG32_SOC15(THM, 0, mmTHM_THERMAL_INT_ENA, val);
1218
1219 return 0;
1220 }
1221
1222 int smu_v11_0_start_thermal_control(struct smu_context *smu)
1223 {
1224 int ret = 0;
1225 struct smu_temperature_range range;
1226 struct amdgpu_device *adev = smu->adev;
1227
1228 memcpy(&range, &smu11_thermal_policy[0], sizeof(struct smu_temperature_range));
1229
1230 ret = smu_get_thermal_temperature_range(smu, &range);
1231 if (ret)
1232 return ret;
1233
1234 if (smu->smu_table.thermal_controller_type) {
1235 ret = smu_v11_0_set_thermal_range(smu, range);
1236 if (ret)
1237 return ret;
1238
1239 ret = smu_v11_0_enable_thermal_alert(smu);
1240 if (ret)
1241 return ret;
1242
1243 ret = smu_set_thermal_fan_table(smu);
1244 if (ret)
1245 return ret;
1246 }
1247
1248 adev->pm.dpm.thermal.min_temp = range.min;
1249 adev->pm.dpm.thermal.max_temp = range.max;
1250 adev->pm.dpm.thermal.max_edge_emergency_temp = range.edge_emergency_max;
1251 adev->pm.dpm.thermal.min_hotspot_temp = range.hotspot_min;
1252 adev->pm.dpm.thermal.max_hotspot_crit_temp = range.hotspot_crit_max;
1253 adev->pm.dpm.thermal.max_hotspot_emergency_temp = range.hotspot_emergency_max;
1254 adev->pm.dpm.thermal.min_mem_temp = range.mem_min;
1255 adev->pm.dpm.thermal.max_mem_crit_temp = range.mem_crit_max;
1256 adev->pm.dpm.thermal.max_mem_emergency_temp = range.mem_emergency_max;
1257
1258 return ret;
1259 }
1260
1261 int smu_v11_0_stop_thermal_control(struct smu_context *smu)
1262 {
1263 struct amdgpu_device *adev = smu->adev;
1264
1265 WREG32_SOC15(THM, 0, mmTHM_THERMAL_INT_ENA, 0);
1266
1267 return 0;
1268 }
1269
1270 static uint16_t convert_to_vddc(uint8_t vid)
1271 {
1272 return (uint16_t) ((6200 - (vid * 25)) / SMU11_VOLTAGE_SCALE);
1273 }
1274
1275 static int smu_v11_0_get_gfx_vdd(struct smu_context *smu, uint32_t *value)
1276 {
1277 struct amdgpu_device *adev = smu->adev;
1278 uint32_t vdd = 0, val_vid = 0;
1279
1280 if (!value)
1281 return -EINVAL;
1282 val_vid = (RREG32_SOC15(SMUIO, 0, mmSMUSVI0_TEL_PLANE0) &
1283 SMUSVI0_TEL_PLANE0__SVI0_PLANE0_VDDCOR_MASK) >>
1284 SMUSVI0_TEL_PLANE0__SVI0_PLANE0_VDDCOR__SHIFT;
1285
1286 vdd = (uint32_t)convert_to_vddc((uint8_t)val_vid);
1287
1288 *value = vdd;
1289
1290 return 0;
1291
1292 }
1293
1294 int smu_v11_0_read_sensor(struct smu_context *smu,
1295 enum amd_pp_sensors sensor,
1296 void *data, uint32_t *size)
1297 {
1298 int ret = 0;
1299
1300 if(!data || !size)
1301 return -EINVAL;
1302
1303 switch (sensor) {
1304 case AMDGPU_PP_SENSOR_GFX_MCLK:
1305 ret = smu_get_current_clk_freq(smu, SMU_UCLK, (uint32_t *)data);
1306 *size = 4;
1307 break;
1308 case AMDGPU_PP_SENSOR_GFX_SCLK:
1309 ret = smu_get_current_clk_freq(smu, SMU_GFXCLK, (uint32_t *)data);
1310 *size = 4;
1311 break;
1312 case AMDGPU_PP_SENSOR_VDDGFX:
1313 ret = smu_v11_0_get_gfx_vdd(smu, (uint32_t *)data);
1314 *size = 4;
1315 break;
1316 case AMDGPU_PP_SENSOR_MIN_FAN_RPM:
1317 *(uint32_t *)data = 0;
1318 *size = 4;
1319 break;
1320 default:
1321 ret = smu_common_read_sensor(smu, sensor, data, size);
1322 break;
1323 }
1324
1325 if (ret)
1326 *size = 0;
1327
1328 return ret;
1329 }
1330
1331 int
1332 smu_v11_0_display_clock_voltage_request(struct smu_context *smu,
1333 struct pp_display_clock_request
1334 *clock_req)
1335 {
1336 enum amd_pp_clock_type clk_type = clock_req->clock_type;
1337 int ret = 0;
1338 enum smu_clk_type clk_select = 0;
1339 uint32_t clk_freq = clock_req->clock_freq_in_khz / 1000;
1340
1341 if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_DCEFCLK_BIT) ||
1342 smu_feature_is_enabled(smu, SMU_FEATURE_DPM_UCLK_BIT)) {
1343 switch (clk_type) {
1344 case amd_pp_dcef_clock:
1345 clk_select = SMU_DCEFCLK;
1346 break;
1347 case amd_pp_disp_clock:
1348 clk_select = SMU_DISPCLK;
1349 break;
1350 case amd_pp_pixel_clock:
1351 clk_select = SMU_PIXCLK;
1352 break;
1353 case amd_pp_phy_clock:
1354 clk_select = SMU_PHYCLK;
1355 break;
1356 case amd_pp_mem_clock:
1357 clk_select = SMU_UCLK;
1358 break;
1359 default:
1360 pr_info("[%s] Invalid Clock Type!", __func__);
1361 ret = -EINVAL;
1362 break;
1363 }
1364
1365 if (ret)
1366 goto failed;
1367
1368 if (clk_select == SMU_UCLK && smu->disable_uclk_switch)
1369 return 0;
1370
1371 ret = smu_set_hard_freq_range(smu, clk_select, clk_freq, 0);
1372
1373 if(clk_select == SMU_UCLK)
1374 smu->hard_min_uclk_req_from_dal = clk_freq;
1375 }
1376
1377 failed:
1378 return ret;
1379 }
1380
1381 int smu_v11_0_gfx_off_control(struct smu_context *smu, bool enable)
1382 {
1383 int ret = 0;
1384 struct amdgpu_device *adev = smu->adev;
1385
1386 switch (adev->asic_type) {
1387 case CHIP_VEGA20:
1388 break;
1389 case CHIP_NAVI10:
1390 case CHIP_NAVI14:
1391 case CHIP_NAVI12:
1392 if (!(adev->pm.pp_feature & PP_GFXOFF_MASK))
1393 return 0;
1394 if (enable)
1395 ret = smu_send_smc_msg(smu, SMU_MSG_AllowGfxOff, NULL);
1396 else
1397 ret = smu_send_smc_msg(smu, SMU_MSG_DisallowGfxOff, NULL);
1398 break;
1399 default:
1400 break;
1401 }
1402
1403 return ret;
1404 }
1405
1406 uint32_t
1407 smu_v11_0_get_fan_control_mode(struct smu_context *smu)
1408 {
1409 if (!smu_feature_is_enabled(smu, SMU_FEATURE_FAN_CONTROL_BIT))
1410 return AMD_FAN_CTRL_MANUAL;
1411 else
1412 return AMD_FAN_CTRL_AUTO;
1413 }
1414
1415 static int
1416 smu_v11_0_auto_fan_control(struct smu_context *smu, bool auto_fan_control)
1417 {
1418 int ret = 0;
1419
1420 if (!smu_feature_is_supported(smu, SMU_FEATURE_FAN_CONTROL_BIT))
1421 return 0;
1422
1423 ret = smu_feature_set_enabled(smu, SMU_FEATURE_FAN_CONTROL_BIT, auto_fan_control);
1424 if (ret)
1425 pr_err("[%s]%s smc FAN CONTROL feature failed!",
1426 __func__, (auto_fan_control ? "Start" : "Stop"));
1427
1428 return ret;
1429 }
1430
1431 static int
1432 smu_v11_0_set_fan_static_mode(struct smu_context *smu, uint32_t mode)
1433 {
1434 struct amdgpu_device *adev = smu->adev;
1435
1436 WREG32_SOC15(THM, 0, mmCG_FDO_CTRL2,
1437 REG_SET_FIELD(RREG32_SOC15(THM, 0, mmCG_FDO_CTRL2),
1438 CG_FDO_CTRL2, TMIN, 0));
1439 WREG32_SOC15(THM, 0, mmCG_FDO_CTRL2,
1440 REG_SET_FIELD(RREG32_SOC15(THM, 0, mmCG_FDO_CTRL2),
1441 CG_FDO_CTRL2, FDO_PWM_MODE, mode));
1442
1443 return 0;
1444 }
1445
1446 int
1447 smu_v11_0_set_fan_speed_percent(struct smu_context *smu, uint32_t speed)
1448 {
1449 struct amdgpu_device *adev = smu->adev;
1450 uint32_t duty100, duty;
1451 uint64_t tmp64;
1452
1453 if (speed > 100)
1454 speed = 100;
1455
1456 if (smu_v11_0_auto_fan_control(smu, 0))
1457 return -EINVAL;
1458
1459 duty100 = REG_GET_FIELD(RREG32_SOC15(THM, 0, mmCG_FDO_CTRL1),
1460 CG_FDO_CTRL1, FMAX_DUTY100);
1461 if (!duty100)
1462 return -EINVAL;
1463
1464 tmp64 = (uint64_t)speed * duty100;
1465 do_div(tmp64, 100);
1466 duty = (uint32_t)tmp64;
1467
1468 WREG32_SOC15(THM, 0, mmCG_FDO_CTRL0,
1469 REG_SET_FIELD(RREG32_SOC15(THM, 0, mmCG_FDO_CTRL0),
1470 CG_FDO_CTRL0, FDO_STATIC_DUTY, duty));
1471
1472 return smu_v11_0_set_fan_static_mode(smu, FDO_PWM_MODE_STATIC);
1473 }
1474
1475 int
1476 smu_v11_0_set_fan_control_mode(struct smu_context *smu,
1477 uint32_t mode)
1478 {
1479 int ret = 0;
1480
1481 switch (mode) {
1482 case AMD_FAN_CTRL_NONE:
1483 ret = smu_v11_0_set_fan_speed_percent(smu, 100);
1484 break;
1485 case AMD_FAN_CTRL_MANUAL:
1486 ret = smu_v11_0_auto_fan_control(smu, 0);
1487 break;
1488 case AMD_FAN_CTRL_AUTO:
1489 ret = smu_v11_0_auto_fan_control(smu, 1);
1490 break;
1491 default:
1492 break;
1493 }
1494
1495 if (ret) {
1496 pr_err("[%s]Set fan control mode failed!", __func__);
1497 return -EINVAL;
1498 }
1499
1500 return ret;
1501 }
1502
1503 int smu_v11_0_set_fan_speed_rpm(struct smu_context *smu,
1504 uint32_t speed)
1505 {
1506 struct amdgpu_device *adev = smu->adev;
1507 int ret;
1508 uint32_t tach_period, crystal_clock_freq;
1509
1510 if (!speed)
1511 return -EINVAL;
1512
1513 ret = smu_v11_0_auto_fan_control(smu, 0);
1514 if (ret)
1515 return ret;
1516
1517 crystal_clock_freq = amdgpu_asic_get_xclk(adev);
1518 tach_period = 60 * crystal_clock_freq * 10000 / (8 * speed);
1519 WREG32_SOC15(THM, 0, mmCG_TACH_CTRL,
1520 REG_SET_FIELD(RREG32_SOC15(THM, 0, mmCG_TACH_CTRL),
1521 CG_TACH_CTRL, TARGET_PERIOD,
1522 tach_period));
1523
1524 ret = smu_v11_0_set_fan_static_mode(smu, FDO_PWM_MODE_STATIC_RPM);
1525
1526 return ret;
1527 }
1528
1529 int smu_v11_0_set_xgmi_pstate(struct smu_context *smu,
1530 uint32_t pstate)
1531 {
1532 int ret = 0;
1533 ret = smu_send_smc_msg_with_param(smu,
1534 SMU_MSG_SetXgmiMode,
1535 pstate ? XGMI_MODE_PSTATE_D0 : XGMI_MODE_PSTATE_D3,
1536 NULL);
1537 return ret;
1538 }
1539
1540 static int smu_v11_0_ack_ac_dc_interrupt(struct smu_context *smu)
1541 {
1542 return smu_send_smc_msg(smu,
1543 SMU_MSG_ReenableAcDcInterrupt,
1544 NULL);
1545 }
1546
1547 #define THM_11_0__SRCID__THM_DIG_THERM_L2H 0 /* ASIC_TEMP > CG_THERMAL_INT.DIG_THERM_INTH */
1548 #define THM_11_0__SRCID__THM_DIG_THERM_H2L 1 /* ASIC_TEMP < CG_THERMAL_INT.DIG_THERM_INTL */
1549
1550 static int smu_v11_0_irq_process(struct amdgpu_device *adev,
1551 struct amdgpu_irq_src *source,
1552 struct amdgpu_iv_entry *entry)
1553 {
1554 uint32_t client_id = entry->client_id;
1555 uint32_t src_id = entry->src_id;
1556
1557 if (client_id == SOC15_IH_CLIENTID_THM) {
1558 switch (src_id) {
1559 case THM_11_0__SRCID__THM_DIG_THERM_L2H:
1560 pr_warn("GPU over temperature range detected on PCIe %d:%d.%d!\n",
1561 PCI_BUS_NUM(adev->pdev->devfn),
1562 PCI_SLOT(adev->pdev->devfn),
1563 PCI_FUNC(adev->pdev->devfn));
1564 break;
1565 case THM_11_0__SRCID__THM_DIG_THERM_H2L:
1566 pr_warn("GPU under temperature range detected on PCIe %d:%d.%d!\n",
1567 PCI_BUS_NUM(adev->pdev->devfn),
1568 PCI_SLOT(adev->pdev->devfn),
1569 PCI_FUNC(adev->pdev->devfn));
1570 break;
1571 default:
1572 pr_warn("GPU under temperature range unknown src id (%d), detected on PCIe %d:%d.%d!\n",
1573 src_id,
1574 PCI_BUS_NUM(adev->pdev->devfn),
1575 PCI_SLOT(adev->pdev->devfn),
1576 PCI_FUNC(adev->pdev->devfn));
1577 break;
1578
1579 }
1580 } else if (client_id == SOC15_IH_CLIENTID_MP1) {
1581 if (src_id == 0xfe)
1582 smu_v11_0_ack_ac_dc_interrupt(&adev->smu);
1583 }
1584
1585 return 0;
1586 }
1587
1588 static const struct amdgpu_irq_src_funcs smu_v11_0_irq_funcs =
1589 {
1590 .process = smu_v11_0_irq_process,
1591 };
1592
1593 int smu_v11_0_register_irq_handler(struct smu_context *smu)
1594 {
1595 struct amdgpu_device *adev = smu->adev;
1596 struct amdgpu_irq_src *irq_src = smu->irq_source;
1597 int ret = 0;
1598
1599 /* already register */
1600 if (irq_src)
1601 return 0;
1602
1603 irq_src = kzalloc(sizeof(struct amdgpu_irq_src), GFP_KERNEL);
1604 if (!irq_src)
1605 return -ENOMEM;
1606 smu->irq_source = irq_src;
1607
1608 irq_src->funcs = &smu_v11_0_irq_funcs;
1609
1610 ret = amdgpu_irq_add_id(adev, SOC15_IH_CLIENTID_THM,
1611 THM_11_0__SRCID__THM_DIG_THERM_L2H,
1612 irq_src);
1613 if (ret)
1614 return ret;
1615
1616 ret = amdgpu_irq_add_id(adev, SOC15_IH_CLIENTID_THM,
1617 THM_11_0__SRCID__THM_DIG_THERM_H2L,
1618 irq_src);
1619 if (ret)
1620 return ret;
1621
1622 ret = amdgpu_irq_add_id(adev, SOC15_IH_CLIENTID_MP1,
1623 0xfe,
1624 irq_src);
1625 if (ret)
1626 return ret;
1627
1628 return ret;
1629 }
1630
1631 int smu_v11_0_get_max_sustainable_clocks_by_dc(struct smu_context *smu,
1632 struct pp_smu_nv_clock_table *max_clocks)
1633 {
1634 struct smu_table_context *table_context = &smu->smu_table;
1635 struct smu_11_0_max_sustainable_clocks *sustainable_clocks = NULL;
1636
1637 if (!max_clocks || !table_context->max_sustainable_clocks)
1638 return -EINVAL;
1639
1640 sustainable_clocks = table_context->max_sustainable_clocks;
1641
1642 max_clocks->dcfClockInKhz =
1643 (unsigned int) sustainable_clocks->dcef_clock * 1000;
1644 max_clocks->displayClockInKhz =
1645 (unsigned int) sustainable_clocks->display_clock * 1000;
1646 max_clocks->phyClockInKhz =
1647 (unsigned int) sustainable_clocks->phy_clock * 1000;
1648 max_clocks->pixelClockInKhz =
1649 (unsigned int) sustainable_clocks->pixel_clock * 1000;
1650 max_clocks->uClockInKhz =
1651 (unsigned int) sustainable_clocks->uclock * 1000;
1652 max_clocks->socClockInKhz =
1653 (unsigned int) sustainable_clocks->soc_clock * 1000;
1654 max_clocks->dscClockInKhz = 0;
1655 max_clocks->dppClockInKhz = 0;
1656 max_clocks->fabricClockInKhz = 0;
1657
1658 return 0;
1659 }
1660
1661 int smu_v11_0_set_azalia_d3_pme(struct smu_context *smu)
1662 {
1663 int ret = 0;
1664
1665 ret = smu_send_smc_msg(smu, SMU_MSG_BacoAudioD3PME, NULL);
1666
1667 return ret;
1668 }
1669
1670 static int smu_v11_0_baco_set_armd3_sequence(struct smu_context *smu, enum smu_v11_0_baco_seq baco_seq)
1671 {
1672 return smu_send_smc_msg_with_param(smu, SMU_MSG_ArmD3, baco_seq, NULL);
1673 }
1674
1675 bool smu_v11_0_baco_is_support(struct smu_context *smu)
1676 {
1677 struct smu_baco_context *smu_baco = &smu->smu_baco;
1678 bool baco_support;
1679
1680 mutex_lock(&smu_baco->mutex);
1681 baco_support = smu_baco->platform_support;
1682 mutex_unlock(&smu_baco->mutex);
1683
1684 if (!baco_support)
1685 return false;
1686
1687 /* Arcturus does not support this bit mask */
1688 if (smu_feature_is_supported(smu, SMU_FEATURE_BACO_BIT) &&
1689 !smu_feature_is_enabled(smu, SMU_FEATURE_BACO_BIT))
1690 return false;
1691
1692 return true;
1693 }
1694
1695 enum smu_baco_state smu_v11_0_baco_get_state(struct smu_context *smu)
1696 {
1697 struct smu_baco_context *smu_baco = &smu->smu_baco;
1698 enum smu_baco_state baco_state;
1699
1700 mutex_lock(&smu_baco->mutex);
1701 baco_state = smu_baco->state;
1702 mutex_unlock(&smu_baco->mutex);
1703
1704 return baco_state;
1705 }
1706
1707 int smu_v11_0_baco_set_state(struct smu_context *smu, enum smu_baco_state state)
1708 {
1709 struct smu_baco_context *smu_baco = &smu->smu_baco;
1710 struct amdgpu_device *adev = smu->adev;
1711 struct amdgpu_ras *ras = amdgpu_ras_get_context(adev);
1712 uint32_t data;
1713 int ret = 0;
1714
1715 if (smu_v11_0_baco_get_state(smu) == state)
1716 return 0;
1717
1718 mutex_lock(&smu_baco->mutex);
1719
1720 if (state == SMU_BACO_STATE_ENTER) {
1721 if (!ras || !ras->supported) {
1722 data = RREG32_SOC15(THM, 0, mmTHM_BACO_CNTL);
1723 data |= 0x80000000;
1724 WREG32_SOC15(THM, 0, mmTHM_BACO_CNTL, data);
1725
1726 ret = smu_send_smc_msg_with_param(smu, SMU_MSG_EnterBaco, 0, NULL);
1727 } else {
1728 ret = smu_send_smc_msg_with_param(smu, SMU_MSG_EnterBaco, 1, NULL);
1729 }
1730 } else {
1731 ret = smu_send_smc_msg(smu, SMU_MSG_ExitBaco, NULL);
1732 if (ret)
1733 goto out;
1734
1735 if (ras && ras->supported) {
1736 ret = smu_send_smc_msg(smu, SMU_MSG_PrepareMp1ForUnload, NULL);
1737 if (ret)
1738 goto out;
1739 }
1740
1741 /* clear vbios scratch 6 and 7 for coming asic reinit */
1742 WREG32(adev->bios_scratch_reg_offset + 6, 0);
1743 WREG32(adev->bios_scratch_reg_offset + 7, 0);
1744 }
1745 if (ret)
1746 goto out;
1747
1748 smu_baco->state = state;
1749 out:
1750 mutex_unlock(&smu_baco->mutex);
1751 return ret;
1752 }
1753
1754 int smu_v11_0_baco_enter(struct smu_context *smu)
1755 {
1756 struct amdgpu_device *adev = smu->adev;
1757 int ret = 0;
1758
1759 /* Arcturus does not need this audio workaround */
1760 if (adev->asic_type != CHIP_ARCTURUS) {
1761 ret = smu_v11_0_baco_set_armd3_sequence(smu, BACO_SEQ_BACO);
1762 if (ret)
1763 return ret;
1764 }
1765
1766 ret = smu_v11_0_baco_set_state(smu, SMU_BACO_STATE_ENTER);
1767 if (ret)
1768 return ret;
1769
1770 msleep(10);
1771
1772 return ret;
1773 }
1774
1775 int smu_v11_0_baco_exit(struct smu_context *smu)
1776 {
1777 int ret = 0;
1778
1779 ret = smu_v11_0_baco_set_state(smu, SMU_BACO_STATE_EXIT);
1780 if (ret)
1781 return ret;
1782
1783 return ret;
1784 }
1785
1786 int smu_v11_0_get_dpm_ultimate_freq(struct smu_context *smu, enum smu_clk_type clk_type,
1787 uint32_t *min, uint32_t *max)
1788 {
1789 int ret = 0, clk_id = 0;
1790 uint32_t param = 0;
1791
1792 clk_id = smu_clk_get_index(smu, clk_type);
1793 if (clk_id < 0) {
1794 ret = -EINVAL;
1795 goto failed;
1796 }
1797 param = (clk_id & 0xffff) << 16;
1798
1799 if (max) {
1800 ret = smu_send_smc_msg_with_param(smu, SMU_MSG_GetMaxDpmFreq, param, max);
1801 if (ret)
1802 goto failed;
1803 }
1804
1805 if (min) {
1806 ret = smu_send_smc_msg_with_param(smu, SMU_MSG_GetMinDpmFreq, param, min);
1807 if (ret)
1808 goto failed;
1809 }
1810
1811 failed:
1812 return ret;
1813 }
1814
1815 int smu_v11_0_set_soft_freq_limited_range(struct smu_context *smu, enum smu_clk_type clk_type,
1816 uint32_t min, uint32_t max)
1817 {
1818 int ret = 0, clk_id = 0;
1819 uint32_t param;
1820
1821 clk_id = smu_clk_get_index(smu, clk_type);
1822 if (clk_id < 0)
1823 return clk_id;
1824
1825 if (max > 0) {
1826 param = (uint32_t)((clk_id << 16) | (max & 0xffff));
1827 ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetSoftMaxByFreq,
1828 param, NULL);
1829 if (ret)
1830 return ret;
1831 }
1832
1833 if (min > 0) {
1834 param = (uint32_t)((clk_id << 16) | (min & 0xffff));
1835 ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetSoftMinByFreq,
1836 param, NULL);
1837 if (ret)
1838 return ret;
1839 }
1840
1841 return ret;
1842 }
1843
1844 int smu_v11_0_override_pcie_parameters(struct smu_context *smu)
1845 {
1846 struct amdgpu_device *adev = smu->adev;
1847 uint32_t pcie_gen = 0, pcie_width = 0;
1848 int ret;
1849
1850 if (amdgpu_sriov_vf(smu->adev))
1851 return 0;
1852
1853 if (adev->pm.pcie_gen_mask & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN4)
1854 pcie_gen = 3;
1855 else if (adev->pm.pcie_gen_mask & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN3)
1856 pcie_gen = 2;
1857 else if (adev->pm.pcie_gen_mask & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN2)
1858 pcie_gen = 1;
1859 else if (adev->pm.pcie_gen_mask & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN1)
1860 pcie_gen = 0;
1861
1862 /* Bit 31:16: LCLK DPM level. 0 is DPM0, and 1 is DPM1
1863 * Bit 15:8: PCIE GEN, 0 to 3 corresponds to GEN1 to GEN4
1864 * Bit 7:0: PCIE lane width, 1 to 7 corresponds is x1 to x32
1865 */
1866 if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X16)
1867 pcie_width = 6;
1868 else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X12)
1869 pcie_width = 5;
1870 else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X8)
1871 pcie_width = 4;
1872 else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X4)
1873 pcie_width = 3;
1874 else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X2)
1875 pcie_width = 2;
1876 else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X1)
1877 pcie_width = 1;
1878
1879 ret = smu_update_pcie_parameters(smu, pcie_gen, pcie_width);
1880
1881 if (ret)
1882 pr_err("[%s] Attempt to override pcie params failed!\n", __func__);
1883
1884 return ret;
1885
1886 }
1887
1888 int smu_v11_0_set_default_od_settings(struct smu_context *smu, bool initialize, size_t overdrive_table_size)
1889 {
1890 struct smu_table_context *table_context = &smu->smu_table;
1891 int ret = 0;
1892
1893 if (initialize) {
1894 if (table_context->overdrive_table) {
1895 return -EINVAL;
1896 }
1897 table_context->overdrive_table = kzalloc(overdrive_table_size, GFP_KERNEL);
1898 if (!table_context->overdrive_table) {
1899 return -ENOMEM;
1900 }
1901 ret = smu_update_table(smu, SMU_TABLE_OVERDRIVE, 0, table_context->overdrive_table, false);
1902 if (ret) {
1903 pr_err("Failed to export overdrive table!\n");
1904 return ret;
1905 }
1906 if (!table_context->boot_overdrive_table) {
1907 table_context->boot_overdrive_table = kmemdup(table_context->overdrive_table, overdrive_table_size, GFP_KERNEL);
1908 if (!table_context->boot_overdrive_table) {
1909 return -ENOMEM;
1910 }
1911 }
1912 }
1913 ret = smu_update_table(smu, SMU_TABLE_OVERDRIVE, 0, table_context->overdrive_table, true);
1914 if (ret) {
1915 pr_err("Failed to import overdrive table!\n");
1916 return ret;
1917 }
1918 return ret;
1919 }
1920
1921 int smu_v11_0_set_performance_level(struct smu_context *smu,
1922 enum amd_dpm_forced_level level)
1923 {
1924 int ret = 0;
1925 uint32_t sclk_mask, mclk_mask, soc_mask;
1926
1927 switch (level) {
1928 case AMD_DPM_FORCED_LEVEL_HIGH:
1929 ret = smu_force_dpm_limit_value(smu, true);
1930 break;
1931 case AMD_DPM_FORCED_LEVEL_LOW:
1932 ret = smu_force_dpm_limit_value(smu, false);
1933 break;
1934 case AMD_DPM_FORCED_LEVEL_AUTO:
1935 case AMD_DPM_FORCED_LEVEL_PROFILE_STANDARD:
1936 ret = smu_unforce_dpm_levels(smu);
1937 break;
1938 case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK:
1939 case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK:
1940 case AMD_DPM_FORCED_LEVEL_PROFILE_PEAK:
1941 ret = smu_get_profiling_clk_mask(smu, level,
1942 &sclk_mask,
1943 &mclk_mask,
1944 &soc_mask);
1945 if (ret)
1946 return ret;
1947 smu_force_clk_levels(smu, SMU_SCLK, 1 << sclk_mask, false);
1948 smu_force_clk_levels(smu, SMU_MCLK, 1 << mclk_mask, false);
1949 smu_force_clk_levels(smu, SMU_SOCCLK, 1 << soc_mask, false);
1950 break;
1951 case AMD_DPM_FORCED_LEVEL_MANUAL:
1952 case AMD_DPM_FORCED_LEVEL_PROFILE_EXIT:
1953 default:
1954 break;
1955 }
1956 return ret;
1957 }
1958
1959 int smu_v11_0_set_power_source(struct smu_context *smu,
1960 enum smu_power_src_type power_src)
1961 {
1962 int pwr_source;
1963
1964 pwr_source = smu_power_get_index(smu, (uint32_t)power_src);
1965 if (pwr_source < 0)
1966 return -EINVAL;
1967
1968 return smu_send_smc_msg_with_param(smu,
1969 SMU_MSG_NotifyPowerSource,
1970 pwr_source,
1971 NULL);
1972 }
1973