]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/gpu/drm/bridge/ti-sn65dsi86.c
drm/bridge: ti-sn65dsi86: Properly undo autosuspend
[mirror_ubuntu-jammy-kernel.git] / drivers / gpu / drm / bridge / ti-sn65dsi86.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2018, The Linux Foundation. All rights reserved.
4 * datasheet: https://www.ti.com/lit/ds/symlink/sn65dsi86.pdf
5 */
6
7 #include <linux/auxiliary_bus.h>
8 #include <linux/bits.h>
9 #include <linux/clk.h>
10 #include <linux/debugfs.h>
11 #include <linux/gpio/consumer.h>
12 #include <linux/gpio/driver.h>
13 #include <linux/i2c.h>
14 #include <linux/iopoll.h>
15 #include <linux/module.h>
16 #include <linux/of_graph.h>
17 #include <linux/pm_runtime.h>
18 #include <linux/regmap.h>
19 #include <linux/regulator/consumer.h>
20
21 #include <asm/unaligned.h>
22
23 #include <drm/drm_atomic.h>
24 #include <drm/drm_atomic_helper.h>
25 #include <drm/drm_bridge.h>
26 #include <drm/drm_dp_aux_bus.h>
27 #include <drm/drm_dp_helper.h>
28 #include <drm/drm_mipi_dsi.h>
29 #include <drm/drm_of.h>
30 #include <drm/drm_panel.h>
31 #include <drm/drm_print.h>
32 #include <drm/drm_probe_helper.h>
33
34 #define SN_DEVICE_REV_REG 0x08
35 #define SN_DPPLL_SRC_REG 0x0A
36 #define DPPLL_CLK_SRC_DSICLK BIT(0)
37 #define REFCLK_FREQ_MASK GENMASK(3, 1)
38 #define REFCLK_FREQ(x) ((x) << 1)
39 #define DPPLL_SRC_DP_PLL_LOCK BIT(7)
40 #define SN_PLL_ENABLE_REG 0x0D
41 #define SN_DSI_LANES_REG 0x10
42 #define CHA_DSI_LANES_MASK GENMASK(4, 3)
43 #define CHA_DSI_LANES(x) ((x) << 3)
44 #define SN_DSIA_CLK_FREQ_REG 0x12
45 #define SN_CHA_ACTIVE_LINE_LENGTH_LOW_REG 0x20
46 #define SN_CHA_VERTICAL_DISPLAY_SIZE_LOW_REG 0x24
47 #define SN_CHA_HSYNC_PULSE_WIDTH_LOW_REG 0x2C
48 #define SN_CHA_HSYNC_PULSE_WIDTH_HIGH_REG 0x2D
49 #define CHA_HSYNC_POLARITY BIT(7)
50 #define SN_CHA_VSYNC_PULSE_WIDTH_LOW_REG 0x30
51 #define SN_CHA_VSYNC_PULSE_WIDTH_HIGH_REG 0x31
52 #define CHA_VSYNC_POLARITY BIT(7)
53 #define SN_CHA_HORIZONTAL_BACK_PORCH_REG 0x34
54 #define SN_CHA_VERTICAL_BACK_PORCH_REG 0x36
55 #define SN_CHA_HORIZONTAL_FRONT_PORCH_REG 0x38
56 #define SN_CHA_VERTICAL_FRONT_PORCH_REG 0x3A
57 #define SN_LN_ASSIGN_REG 0x59
58 #define LN_ASSIGN_WIDTH 2
59 #define SN_ENH_FRAME_REG 0x5A
60 #define VSTREAM_ENABLE BIT(3)
61 #define LN_POLRS_OFFSET 4
62 #define LN_POLRS_MASK 0xf0
63 #define SN_DATA_FORMAT_REG 0x5B
64 #define BPP_18_RGB BIT(0)
65 #define SN_HPD_DISABLE_REG 0x5C
66 #define HPD_DISABLE BIT(0)
67 #define SN_GPIO_IO_REG 0x5E
68 #define SN_GPIO_INPUT_SHIFT 4
69 #define SN_GPIO_OUTPUT_SHIFT 0
70 #define SN_GPIO_CTRL_REG 0x5F
71 #define SN_GPIO_MUX_INPUT 0
72 #define SN_GPIO_MUX_OUTPUT 1
73 #define SN_GPIO_MUX_SPECIAL 2
74 #define SN_GPIO_MUX_MASK 0x3
75 #define SN_AUX_WDATA_REG(x) (0x64 + (x))
76 #define SN_AUX_ADDR_19_16_REG 0x74
77 #define SN_AUX_ADDR_15_8_REG 0x75
78 #define SN_AUX_ADDR_7_0_REG 0x76
79 #define SN_AUX_ADDR_MASK GENMASK(19, 0)
80 #define SN_AUX_LENGTH_REG 0x77
81 #define SN_AUX_CMD_REG 0x78
82 #define AUX_CMD_SEND BIT(0)
83 #define AUX_CMD_REQ(x) ((x) << 4)
84 #define SN_AUX_RDATA_REG(x) (0x79 + (x))
85 #define SN_SSC_CONFIG_REG 0x93
86 #define DP_NUM_LANES_MASK GENMASK(5, 4)
87 #define DP_NUM_LANES(x) ((x) << 4)
88 #define SN_DATARATE_CONFIG_REG 0x94
89 #define DP_DATARATE_MASK GENMASK(7, 5)
90 #define DP_DATARATE(x) ((x) << 5)
91 #define SN_ML_TX_MODE_REG 0x96
92 #define ML_TX_MAIN_LINK_OFF 0
93 #define ML_TX_NORMAL_MODE BIT(0)
94 #define SN_AUX_CMD_STATUS_REG 0xF4
95 #define AUX_IRQ_STATUS_AUX_RPLY_TOUT BIT(3)
96 #define AUX_IRQ_STATUS_AUX_SHORT BIT(5)
97 #define AUX_IRQ_STATUS_NAT_I2C_FAIL BIT(6)
98
99 #define MIN_DSI_CLK_FREQ_MHZ 40
100
101 /* fudge factor required to account for 8b/10b encoding */
102 #define DP_CLK_FUDGE_NUM 10
103 #define DP_CLK_FUDGE_DEN 8
104
105 /* Matches DP_AUX_MAX_PAYLOAD_BYTES (for now) */
106 #define SN_AUX_MAX_PAYLOAD_BYTES 16
107
108 #define SN_REGULATOR_SUPPLY_NUM 4
109
110 #define SN_MAX_DP_LANES 4
111 #define SN_NUM_GPIOS 4
112 #define SN_GPIO_PHYSICAL_OFFSET 1
113
114 #define SN_LINK_TRAINING_TRIES 10
115
116 /**
117 * struct ti_sn65dsi86 - Platform data for ti-sn65dsi86 driver.
118 * @bridge_aux: AUX-bus sub device for MIPI-to-eDP bridge functionality.
119 * @gpio_aux: AUX-bus sub device for GPIO controller functionality.
120 * @aux_aux: AUX-bus sub device for eDP AUX channel functionality.
121 *
122 * @dev: Pointer to the top level (i2c) device.
123 * @regmap: Regmap for accessing i2c.
124 * @aux: Our aux channel.
125 * @bridge: Our bridge.
126 * @connector: Our connector.
127 * @host_node: Remote DSI node.
128 * @dsi: Our MIPI DSI source.
129 * @refclk: Our reference clock.
130 * @next_bridge: The bridge on the eDP side.
131 * @enable_gpio: The GPIO we toggle to enable the bridge.
132 * @supplies: Data for bulk enabling/disabling our regulators.
133 * @dp_lanes: Count of dp_lanes we're using.
134 * @ln_assign: Value to program to the LN_ASSIGN register.
135 * @ln_polrs: Value for the 4-bit LN_POLRS field of SN_ENH_FRAME_REG.
136 * @comms_enabled: If true then communication over the aux channel is enabled.
137 * @comms_mutex: Protects modification of comms_enabled.
138 *
139 * @gchip: If we expose our GPIOs, this is used.
140 * @gchip_output: A cache of whether we've set GPIOs to output. This
141 * serves double-duty of keeping track of the direction and
142 * also keeping track of whether we've incremented the
143 * pm_runtime reference count for this pin, which we do
144 * whenever a pin is configured as an output. This is a
145 * bitmap so we can do atomic ops on it without an extra
146 * lock so concurrent users of our 4 GPIOs don't stomp on
147 * each other's read-modify-write.
148 */
149 struct ti_sn65dsi86 {
150 struct auxiliary_device bridge_aux;
151 struct auxiliary_device gpio_aux;
152 struct auxiliary_device aux_aux;
153
154 struct device *dev;
155 struct regmap *regmap;
156 struct drm_dp_aux aux;
157 struct drm_bridge bridge;
158 struct drm_connector connector;
159 struct device_node *host_node;
160 struct mipi_dsi_device *dsi;
161 struct clk *refclk;
162 struct drm_bridge *next_bridge;
163 struct gpio_desc *enable_gpio;
164 struct regulator_bulk_data supplies[SN_REGULATOR_SUPPLY_NUM];
165 int dp_lanes;
166 u8 ln_assign;
167 u8 ln_polrs;
168 bool comms_enabled;
169 struct mutex comms_mutex;
170
171 #if defined(CONFIG_OF_GPIO)
172 struct gpio_chip gchip;
173 DECLARE_BITMAP(gchip_output, SN_NUM_GPIOS);
174 #endif
175 };
176
177 static const struct regmap_range ti_sn65dsi86_volatile_ranges[] = {
178 { .range_min = 0, .range_max = 0xFF },
179 };
180
181 static const struct regmap_access_table ti_sn_bridge_volatile_table = {
182 .yes_ranges = ti_sn65dsi86_volatile_ranges,
183 .n_yes_ranges = ARRAY_SIZE(ti_sn65dsi86_volatile_ranges),
184 };
185
186 static const struct regmap_config ti_sn65dsi86_regmap_config = {
187 .reg_bits = 8,
188 .val_bits = 8,
189 .volatile_table = &ti_sn_bridge_volatile_table,
190 .cache_type = REGCACHE_NONE,
191 .max_register = 0xFF,
192 };
193
194 static void ti_sn65dsi86_write_u16(struct ti_sn65dsi86 *pdata,
195 unsigned int reg, u16 val)
196 {
197 regmap_write(pdata->regmap, reg, val & 0xFF);
198 regmap_write(pdata->regmap, reg + 1, val >> 8);
199 }
200
201 static u32 ti_sn_bridge_get_dsi_freq(struct ti_sn65dsi86 *pdata)
202 {
203 u32 bit_rate_khz, clk_freq_khz;
204 struct drm_display_mode *mode =
205 &pdata->bridge.encoder->crtc->state->adjusted_mode;
206
207 bit_rate_khz = mode->clock *
208 mipi_dsi_pixel_format_to_bpp(pdata->dsi->format);
209 clk_freq_khz = bit_rate_khz / (pdata->dsi->lanes * 2);
210
211 return clk_freq_khz;
212 }
213
214 /* clk frequencies supported by bridge in Hz in case derived from REFCLK pin */
215 static const u32 ti_sn_bridge_refclk_lut[] = {
216 12000000,
217 19200000,
218 26000000,
219 27000000,
220 38400000,
221 };
222
223 /* clk frequencies supported by bridge in Hz in case derived from DACP/N pin */
224 static const u32 ti_sn_bridge_dsiclk_lut[] = {
225 468000000,
226 384000000,
227 416000000,
228 486000000,
229 460800000,
230 };
231
232 static void ti_sn_bridge_set_refclk_freq(struct ti_sn65dsi86 *pdata)
233 {
234 int i;
235 u32 refclk_rate;
236 const u32 *refclk_lut;
237 size_t refclk_lut_size;
238
239 if (pdata->refclk) {
240 refclk_rate = clk_get_rate(pdata->refclk);
241 refclk_lut = ti_sn_bridge_refclk_lut;
242 refclk_lut_size = ARRAY_SIZE(ti_sn_bridge_refclk_lut);
243 clk_prepare_enable(pdata->refclk);
244 } else {
245 refclk_rate = ti_sn_bridge_get_dsi_freq(pdata) * 1000;
246 refclk_lut = ti_sn_bridge_dsiclk_lut;
247 refclk_lut_size = ARRAY_SIZE(ti_sn_bridge_dsiclk_lut);
248 }
249
250 /* for i equals to refclk_lut_size means default frequency */
251 for (i = 0; i < refclk_lut_size; i++)
252 if (refclk_lut[i] == refclk_rate)
253 break;
254
255 regmap_update_bits(pdata->regmap, SN_DPPLL_SRC_REG, REFCLK_FREQ_MASK,
256 REFCLK_FREQ(i));
257 }
258
259 static void ti_sn65dsi86_enable_comms(struct ti_sn65dsi86 *pdata)
260 {
261 mutex_lock(&pdata->comms_mutex);
262
263 /* configure bridge ref_clk */
264 ti_sn_bridge_set_refclk_freq(pdata);
265
266 /*
267 * HPD on this bridge chip is a bit useless. This is an eDP bridge
268 * so the HPD is an internal signal that's only there to signal that
269 * the panel is done powering up. ...but the bridge chip debounces
270 * this signal by between 100 ms and 400 ms (depending on process,
271 * voltage, and temperate--I measured it at about 200 ms). One
272 * particular panel asserted HPD 84 ms after it was powered on meaning
273 * that we saw HPD 284 ms after power on. ...but the same panel said
274 * that instead of looking at HPD you could just hardcode a delay of
275 * 200 ms. We'll assume that the panel driver will have the hardcoded
276 * delay in its prepare and always disable HPD.
277 *
278 * If HPD somehow makes sense on some future panel we'll have to
279 * change this to be conditional on someone specifying that HPD should
280 * be used.
281 */
282 regmap_update_bits(pdata->regmap, SN_HPD_DISABLE_REG, HPD_DISABLE,
283 HPD_DISABLE);
284
285 pdata->comms_enabled = true;
286
287 mutex_unlock(&pdata->comms_mutex);
288 }
289
290 static void ti_sn65dsi86_disable_comms(struct ti_sn65dsi86 *pdata)
291 {
292 mutex_lock(&pdata->comms_mutex);
293
294 pdata->comms_enabled = false;
295 clk_disable_unprepare(pdata->refclk);
296
297 mutex_unlock(&pdata->comms_mutex);
298 }
299
300 static int __maybe_unused ti_sn65dsi86_resume(struct device *dev)
301 {
302 struct ti_sn65dsi86 *pdata = dev_get_drvdata(dev);
303 int ret;
304
305 ret = regulator_bulk_enable(SN_REGULATOR_SUPPLY_NUM, pdata->supplies);
306 if (ret) {
307 DRM_ERROR("failed to enable supplies %d\n", ret);
308 return ret;
309 }
310
311 /* td2: min 100 us after regulators before enabling the GPIO */
312 usleep_range(100, 110);
313
314 gpiod_set_value(pdata->enable_gpio, 1);
315
316 /*
317 * If we have a reference clock we can enable communication w/ the
318 * panel (including the aux channel) w/out any need for an input clock
319 * so we can do it in resume which lets us read the EDID before
320 * pre_enable(). Without a reference clock we need the MIPI reference
321 * clock so reading early doesn't work.
322 */
323 if (pdata->refclk)
324 ti_sn65dsi86_enable_comms(pdata);
325
326 return ret;
327 }
328
329 static int __maybe_unused ti_sn65dsi86_suspend(struct device *dev)
330 {
331 struct ti_sn65dsi86 *pdata = dev_get_drvdata(dev);
332 int ret;
333
334 if (pdata->refclk)
335 ti_sn65dsi86_disable_comms(pdata);
336
337 gpiod_set_value(pdata->enable_gpio, 0);
338
339 ret = regulator_bulk_disable(SN_REGULATOR_SUPPLY_NUM, pdata->supplies);
340 if (ret)
341 DRM_ERROR("failed to disable supplies %d\n", ret);
342
343 return ret;
344 }
345
346 static const struct dev_pm_ops ti_sn65dsi86_pm_ops = {
347 SET_RUNTIME_PM_OPS(ti_sn65dsi86_suspend, ti_sn65dsi86_resume, NULL)
348 SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
349 pm_runtime_force_resume)
350 };
351
352 static int status_show(struct seq_file *s, void *data)
353 {
354 struct ti_sn65dsi86 *pdata = s->private;
355 unsigned int reg, val;
356
357 seq_puts(s, "STATUS REGISTERS:\n");
358
359 pm_runtime_get_sync(pdata->dev);
360
361 /* IRQ Status Registers, see Table 31 in datasheet */
362 for (reg = 0xf0; reg <= 0xf8; reg++) {
363 regmap_read(pdata->regmap, reg, &val);
364 seq_printf(s, "[0x%02x] = 0x%08x\n", reg, val);
365 }
366
367 pm_runtime_put_autosuspend(pdata->dev);
368
369 return 0;
370 }
371
372 DEFINE_SHOW_ATTRIBUTE(status);
373
374 static void ti_sn65dsi86_debugfs_remove(void *data)
375 {
376 debugfs_remove_recursive(data);
377 }
378
379 static void ti_sn65dsi86_debugfs_init(struct ti_sn65dsi86 *pdata)
380 {
381 struct device *dev = pdata->dev;
382 struct dentry *debugfs;
383 int ret;
384
385 debugfs = debugfs_create_dir(dev_name(dev), NULL);
386
387 /*
388 * We might get an error back if debugfs wasn't enabled in the kernel
389 * so let's just silently return upon failure.
390 */
391 if (IS_ERR_OR_NULL(debugfs))
392 return;
393
394 ret = devm_add_action_or_reset(dev, ti_sn65dsi86_debugfs_remove, debugfs);
395 if (ret)
396 return;
397
398 debugfs_create_file("status", 0600, debugfs, pdata, &status_fops);
399 }
400
401 /* -----------------------------------------------------------------------------
402 * Auxiliary Devices (*not* AUX)
403 */
404
405 static void ti_sn65dsi86_uninit_aux(void *data)
406 {
407 auxiliary_device_uninit(data);
408 }
409
410 static void ti_sn65dsi86_delete_aux(void *data)
411 {
412 auxiliary_device_delete(data);
413 }
414
415 /*
416 * AUX bus docs say that a non-NULL release is mandatory, but it makes no
417 * sense for the model used here where all of the aux devices are allocated
418 * in the single shared structure. We'll use this noop as a workaround.
419 */
420 static void ti_sn65dsi86_noop(struct device *dev) {}
421
422 static int ti_sn65dsi86_add_aux_device(struct ti_sn65dsi86 *pdata,
423 struct auxiliary_device *aux,
424 const char *name)
425 {
426 struct device *dev = pdata->dev;
427 int ret;
428
429 aux->name = name;
430 aux->dev.parent = dev;
431 aux->dev.release = ti_sn65dsi86_noop;
432 device_set_of_node_from_dev(&aux->dev, dev);
433 ret = auxiliary_device_init(aux);
434 if (ret)
435 return ret;
436 ret = devm_add_action_or_reset(dev, ti_sn65dsi86_uninit_aux, aux);
437 if (ret)
438 return ret;
439
440 ret = auxiliary_device_add(aux);
441 if (ret)
442 return ret;
443 ret = devm_add_action_or_reset(dev, ti_sn65dsi86_delete_aux, aux);
444
445 return ret;
446 }
447
448 /* -----------------------------------------------------------------------------
449 * AUX Adapter
450 */
451
452 static struct ti_sn65dsi86 *aux_to_ti_sn65dsi86(struct drm_dp_aux *aux)
453 {
454 return container_of(aux, struct ti_sn65dsi86, aux);
455 }
456
457 static ssize_t ti_sn_aux_transfer(struct drm_dp_aux *aux,
458 struct drm_dp_aux_msg *msg)
459 {
460 struct ti_sn65dsi86 *pdata = aux_to_ti_sn65dsi86(aux);
461 u32 request = msg->request & ~(DP_AUX_I2C_MOT | DP_AUX_I2C_WRITE_STATUS_UPDATE);
462 u32 request_val = AUX_CMD_REQ(msg->request);
463 u8 *buf = msg->buffer;
464 unsigned int len = msg->size;
465 unsigned int val;
466 int ret;
467 u8 addr_len[SN_AUX_LENGTH_REG + 1 - SN_AUX_ADDR_19_16_REG];
468
469 if (len > SN_AUX_MAX_PAYLOAD_BYTES)
470 return -EINVAL;
471
472 pm_runtime_get_sync(pdata->dev);
473 mutex_lock(&pdata->comms_mutex);
474
475 /*
476 * If someone tries to do a DDC over AUX transaction before pre_enable()
477 * on a device without a dedicated reference clock then we just can't
478 * do it. Fail right away. This prevents non-refclk users from reading
479 * the EDID before enabling the panel but such is life.
480 */
481 if (!pdata->comms_enabled) {
482 ret = -EIO;
483 goto exit;
484 }
485
486 switch (request) {
487 case DP_AUX_NATIVE_WRITE:
488 case DP_AUX_I2C_WRITE:
489 case DP_AUX_NATIVE_READ:
490 case DP_AUX_I2C_READ:
491 regmap_write(pdata->regmap, SN_AUX_CMD_REG, request_val);
492 /* Assume it's good */
493 msg->reply = 0;
494 break;
495 default:
496 ret = -EINVAL;
497 goto exit;
498 }
499
500 BUILD_BUG_ON(sizeof(addr_len) != sizeof(__be32));
501 put_unaligned_be32((msg->address & SN_AUX_ADDR_MASK) << 8 | len,
502 addr_len);
503 regmap_bulk_write(pdata->regmap, SN_AUX_ADDR_19_16_REG, addr_len,
504 ARRAY_SIZE(addr_len));
505
506 if (request == DP_AUX_NATIVE_WRITE || request == DP_AUX_I2C_WRITE)
507 regmap_bulk_write(pdata->regmap, SN_AUX_WDATA_REG(0), buf, len);
508
509 /* Clear old status bits before start so we don't get confused */
510 regmap_write(pdata->regmap, SN_AUX_CMD_STATUS_REG,
511 AUX_IRQ_STATUS_NAT_I2C_FAIL |
512 AUX_IRQ_STATUS_AUX_RPLY_TOUT |
513 AUX_IRQ_STATUS_AUX_SHORT);
514
515 regmap_write(pdata->regmap, SN_AUX_CMD_REG, request_val | AUX_CMD_SEND);
516
517 /* Zero delay loop because i2c transactions are slow already */
518 ret = regmap_read_poll_timeout(pdata->regmap, SN_AUX_CMD_REG, val,
519 !(val & AUX_CMD_SEND), 0, 50 * 1000);
520 if (ret)
521 goto exit;
522
523 ret = regmap_read(pdata->regmap, SN_AUX_CMD_STATUS_REG, &val);
524 if (ret)
525 goto exit;
526
527 if (val & AUX_IRQ_STATUS_AUX_RPLY_TOUT) {
528 /*
529 * The hardware tried the message seven times per the DP spec
530 * but it hit a timeout. We ignore defers here because they're
531 * handled in hardware.
532 */
533 ret = -ETIMEDOUT;
534 goto exit;
535 }
536
537 if (val & AUX_IRQ_STATUS_AUX_SHORT) {
538 ret = regmap_read(pdata->regmap, SN_AUX_LENGTH_REG, &len);
539 if (ret)
540 goto exit;
541 } else if (val & AUX_IRQ_STATUS_NAT_I2C_FAIL) {
542 switch (request) {
543 case DP_AUX_I2C_WRITE:
544 case DP_AUX_I2C_READ:
545 msg->reply |= DP_AUX_I2C_REPLY_NACK;
546 break;
547 case DP_AUX_NATIVE_READ:
548 case DP_AUX_NATIVE_WRITE:
549 msg->reply |= DP_AUX_NATIVE_REPLY_NACK;
550 break;
551 }
552 len = 0;
553 goto exit;
554 }
555
556 if (request != DP_AUX_NATIVE_WRITE && request != DP_AUX_I2C_WRITE && len != 0)
557 ret = regmap_bulk_read(pdata->regmap, SN_AUX_RDATA_REG(0), buf, len);
558
559 exit:
560 mutex_unlock(&pdata->comms_mutex);
561 pm_runtime_mark_last_busy(pdata->dev);
562 pm_runtime_put_autosuspend(pdata->dev);
563
564 if (ret)
565 return ret;
566 return len;
567 }
568
569 static int ti_sn_aux_probe(struct auxiliary_device *adev,
570 const struct auxiliary_device_id *id)
571 {
572 struct ti_sn65dsi86 *pdata = dev_get_drvdata(adev->dev.parent);
573 int ret;
574
575 pdata->aux.name = "ti-sn65dsi86-aux";
576 pdata->aux.dev = &adev->dev;
577 pdata->aux.transfer = ti_sn_aux_transfer;
578 drm_dp_aux_init(&pdata->aux);
579
580 ret = devm_of_dp_aux_populate_ep_devices(&pdata->aux);
581 if (ret)
582 return ret;
583
584 /*
585 * The eDP to MIPI bridge parts don't work until the AUX channel is
586 * setup so we don't add it in the main driver probe, we add it now.
587 */
588 return ti_sn65dsi86_add_aux_device(pdata, &pdata->bridge_aux, "bridge");
589 }
590
591 static const struct auxiliary_device_id ti_sn_aux_id_table[] = {
592 { .name = "ti_sn65dsi86.aux", },
593 {},
594 };
595
596 static struct auxiliary_driver ti_sn_aux_driver = {
597 .name = "aux",
598 .probe = ti_sn_aux_probe,
599 .id_table = ti_sn_aux_id_table,
600 };
601
602 /* -----------------------------------------------------------------------------
603 * DRM Connector Operations
604 */
605
606 static struct ti_sn65dsi86 *
607 connector_to_ti_sn65dsi86(struct drm_connector *connector)
608 {
609 return container_of(connector, struct ti_sn65dsi86, connector);
610 }
611
612 static int ti_sn_bridge_connector_get_modes(struct drm_connector *connector)
613 {
614 struct ti_sn65dsi86 *pdata = connector_to_ti_sn65dsi86(connector);
615
616 return drm_bridge_get_modes(pdata->next_bridge, connector);
617 }
618
619 static enum drm_mode_status
620 ti_sn_bridge_connector_mode_valid(struct drm_connector *connector,
621 struct drm_display_mode *mode)
622 {
623 /* maximum supported resolution is 4K at 60 fps */
624 if (mode->clock > 594000)
625 return MODE_CLOCK_HIGH;
626
627 return MODE_OK;
628 }
629
630 static struct drm_connector_helper_funcs ti_sn_bridge_connector_helper_funcs = {
631 .get_modes = ti_sn_bridge_connector_get_modes,
632 .mode_valid = ti_sn_bridge_connector_mode_valid,
633 };
634
635 static const struct drm_connector_funcs ti_sn_bridge_connector_funcs = {
636 .fill_modes = drm_helper_probe_single_connector_modes,
637 .destroy = drm_connector_cleanup,
638 .reset = drm_atomic_helper_connector_reset,
639 .atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state,
640 .atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
641 };
642
643 static int ti_sn_bridge_connector_init(struct ti_sn65dsi86 *pdata)
644 {
645 int ret;
646
647 ret = drm_connector_init(pdata->bridge.dev, &pdata->connector,
648 &ti_sn_bridge_connector_funcs,
649 DRM_MODE_CONNECTOR_eDP);
650 if (ret) {
651 DRM_ERROR("Failed to initialize connector with drm\n");
652 return ret;
653 }
654
655 drm_connector_helper_add(&pdata->connector,
656 &ti_sn_bridge_connector_helper_funcs);
657 drm_connector_attach_encoder(&pdata->connector, pdata->bridge.encoder);
658
659 return 0;
660 }
661
662 /*------------------------------------------------------------------------------
663 * DRM Bridge
664 */
665
666 static struct ti_sn65dsi86 *bridge_to_ti_sn65dsi86(struct drm_bridge *bridge)
667 {
668 return container_of(bridge, struct ti_sn65dsi86, bridge);
669 }
670
671 static int ti_sn_bridge_attach(struct drm_bridge *bridge,
672 enum drm_bridge_attach_flags flags)
673 {
674 int ret, val;
675 struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge);
676 struct mipi_dsi_host *host;
677 struct mipi_dsi_device *dsi;
678 const struct mipi_dsi_device_info info = { .type = "ti_sn_bridge",
679 .channel = 0,
680 .node = NULL,
681 };
682
683 if (flags & DRM_BRIDGE_ATTACH_NO_CONNECTOR) {
684 DRM_ERROR("Fix bridge driver to make connector optional!");
685 return -EINVAL;
686 }
687
688 pdata->aux.drm_dev = bridge->dev;
689 ret = drm_dp_aux_register(&pdata->aux);
690 if (ret < 0) {
691 drm_err(bridge->dev, "Failed to register DP AUX channel: %d\n", ret);
692 return ret;
693 }
694
695 ret = ti_sn_bridge_connector_init(pdata);
696 if (ret < 0)
697 goto err_conn_init;
698
699 /*
700 * TODO: ideally finding host resource and dsi dev registration needs
701 * to be done in bridge probe. But some existing DSI host drivers will
702 * wait for any of the drm_bridge/drm_panel to get added to the global
703 * bridge/panel list, before completing their probe. So if we do the
704 * dsi dev registration part in bridge probe, before populating in
705 * the global bridge list, then it will cause deadlock as dsi host probe
706 * will never complete, neither our bridge probe. So keeping it here
707 * will satisfy most of the existing host drivers. Once the host driver
708 * is fixed we can move the below code to bridge probe safely.
709 */
710 host = of_find_mipi_dsi_host_by_node(pdata->host_node);
711 if (!host) {
712 DRM_ERROR("failed to find dsi host\n");
713 ret = -ENODEV;
714 goto err_dsi_host;
715 }
716
717 dsi = mipi_dsi_device_register_full(host, &info);
718 if (IS_ERR(dsi)) {
719 DRM_ERROR("failed to create dsi device\n");
720 ret = PTR_ERR(dsi);
721 goto err_dsi_host;
722 }
723
724 /* TODO: setting to 4 MIPI lanes always for now */
725 dsi->lanes = 4;
726 dsi->format = MIPI_DSI_FMT_RGB888;
727 dsi->mode_flags = MIPI_DSI_MODE_VIDEO;
728
729 /* check if continuous dsi clock is required or not */
730 pm_runtime_get_sync(pdata->dev);
731 regmap_read(pdata->regmap, SN_DPPLL_SRC_REG, &val);
732 pm_runtime_put_autosuspend(pdata->dev);
733 if (!(val & DPPLL_CLK_SRC_DSICLK))
734 dsi->mode_flags |= MIPI_DSI_CLOCK_NON_CONTINUOUS;
735
736 ret = mipi_dsi_attach(dsi);
737 if (ret < 0) {
738 DRM_ERROR("failed to attach dsi to host\n");
739 goto err_dsi_attach;
740 }
741 pdata->dsi = dsi;
742
743 /* We never want the next bridge to *also* create a connector: */
744 flags |= DRM_BRIDGE_ATTACH_NO_CONNECTOR;
745
746 /* Attach the next bridge */
747 ret = drm_bridge_attach(bridge->encoder, pdata->next_bridge,
748 &pdata->bridge, flags);
749 if (ret < 0)
750 goto err_dsi_detach;
751
752 return 0;
753
754 err_dsi_detach:
755 mipi_dsi_detach(dsi);
756 err_dsi_attach:
757 mipi_dsi_device_unregister(dsi);
758 err_dsi_host:
759 drm_connector_cleanup(&pdata->connector);
760 err_conn_init:
761 drm_dp_aux_unregister(&pdata->aux);
762 return ret;
763 }
764
765 static void ti_sn_bridge_detach(struct drm_bridge *bridge)
766 {
767 drm_dp_aux_unregister(&bridge_to_ti_sn65dsi86(bridge)->aux);
768 }
769
770 static void ti_sn_bridge_disable(struct drm_bridge *bridge)
771 {
772 struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge);
773
774 /* disable video stream */
775 regmap_update_bits(pdata->regmap, SN_ENH_FRAME_REG, VSTREAM_ENABLE, 0);
776 }
777
778 static void ti_sn_bridge_set_dsi_rate(struct ti_sn65dsi86 *pdata)
779 {
780 unsigned int bit_rate_mhz, clk_freq_mhz;
781 unsigned int val;
782 struct drm_display_mode *mode =
783 &pdata->bridge.encoder->crtc->state->adjusted_mode;
784
785 /* set DSIA clk frequency */
786 bit_rate_mhz = (mode->clock / 1000) *
787 mipi_dsi_pixel_format_to_bpp(pdata->dsi->format);
788 clk_freq_mhz = bit_rate_mhz / (pdata->dsi->lanes * 2);
789
790 /* for each increment in val, frequency increases by 5MHz */
791 val = (MIN_DSI_CLK_FREQ_MHZ / 5) +
792 (((clk_freq_mhz - MIN_DSI_CLK_FREQ_MHZ) / 5) & 0xFF);
793 regmap_write(pdata->regmap, SN_DSIA_CLK_FREQ_REG, val);
794 }
795
796 static unsigned int ti_sn_bridge_get_bpp(struct ti_sn65dsi86 *pdata)
797 {
798 if (pdata->connector.display_info.bpc <= 6)
799 return 18;
800 else
801 return 24;
802 }
803
804 /*
805 * LUT index corresponds to register value and
806 * LUT values corresponds to dp data rate supported
807 * by the bridge in Mbps unit.
808 */
809 static const unsigned int ti_sn_bridge_dp_rate_lut[] = {
810 0, 1620, 2160, 2430, 2700, 3240, 4320, 5400
811 };
812
813 static int ti_sn_bridge_calc_min_dp_rate_idx(struct ti_sn65dsi86 *pdata)
814 {
815 unsigned int bit_rate_khz, dp_rate_mhz;
816 unsigned int i;
817 struct drm_display_mode *mode =
818 &pdata->bridge.encoder->crtc->state->adjusted_mode;
819
820 /* Calculate minimum bit rate based on our pixel clock. */
821 bit_rate_khz = mode->clock * ti_sn_bridge_get_bpp(pdata);
822
823 /* Calculate minimum DP data rate, taking 80% as per DP spec */
824 dp_rate_mhz = DIV_ROUND_UP(bit_rate_khz * DP_CLK_FUDGE_NUM,
825 1000 * pdata->dp_lanes * DP_CLK_FUDGE_DEN);
826
827 for (i = 1; i < ARRAY_SIZE(ti_sn_bridge_dp_rate_lut) - 1; i++)
828 if (ti_sn_bridge_dp_rate_lut[i] >= dp_rate_mhz)
829 break;
830
831 return i;
832 }
833
834 static unsigned int ti_sn_bridge_read_valid_rates(struct ti_sn65dsi86 *pdata)
835 {
836 unsigned int valid_rates = 0;
837 unsigned int rate_per_200khz;
838 unsigned int rate_mhz;
839 u8 dpcd_val;
840 int ret;
841 int i, j;
842
843 ret = drm_dp_dpcd_readb(&pdata->aux, DP_EDP_DPCD_REV, &dpcd_val);
844 if (ret != 1) {
845 DRM_DEV_ERROR(pdata->dev,
846 "Can't read eDP rev (%d), assuming 1.1\n", ret);
847 dpcd_val = DP_EDP_11;
848 }
849
850 if (dpcd_val >= DP_EDP_14) {
851 /* eDP 1.4 devices must provide a custom table */
852 __le16 sink_rates[DP_MAX_SUPPORTED_RATES];
853
854 ret = drm_dp_dpcd_read(&pdata->aux, DP_SUPPORTED_LINK_RATES,
855 sink_rates, sizeof(sink_rates));
856
857 if (ret != sizeof(sink_rates)) {
858 DRM_DEV_ERROR(pdata->dev,
859 "Can't read supported rate table (%d)\n", ret);
860
861 /* By zeroing we'll fall back to DP_MAX_LINK_RATE. */
862 memset(sink_rates, 0, sizeof(sink_rates));
863 }
864
865 for (i = 0; i < ARRAY_SIZE(sink_rates); i++) {
866 rate_per_200khz = le16_to_cpu(sink_rates[i]);
867
868 if (!rate_per_200khz)
869 break;
870
871 rate_mhz = rate_per_200khz * 200 / 1000;
872 for (j = 0;
873 j < ARRAY_SIZE(ti_sn_bridge_dp_rate_lut);
874 j++) {
875 if (ti_sn_bridge_dp_rate_lut[j] == rate_mhz)
876 valid_rates |= BIT(j);
877 }
878 }
879
880 for (i = 0; i < ARRAY_SIZE(ti_sn_bridge_dp_rate_lut); i++) {
881 if (valid_rates & BIT(i))
882 return valid_rates;
883 }
884 DRM_DEV_ERROR(pdata->dev,
885 "No matching eDP rates in table; falling back\n");
886 }
887
888 /* On older versions best we can do is use DP_MAX_LINK_RATE */
889 ret = drm_dp_dpcd_readb(&pdata->aux, DP_MAX_LINK_RATE, &dpcd_val);
890 if (ret != 1) {
891 DRM_DEV_ERROR(pdata->dev,
892 "Can't read max rate (%d); assuming 5.4 GHz\n",
893 ret);
894 dpcd_val = DP_LINK_BW_5_4;
895 }
896
897 switch (dpcd_val) {
898 default:
899 DRM_DEV_ERROR(pdata->dev,
900 "Unexpected max rate (%#x); assuming 5.4 GHz\n",
901 (int)dpcd_val);
902 fallthrough;
903 case DP_LINK_BW_5_4:
904 valid_rates |= BIT(7);
905 fallthrough;
906 case DP_LINK_BW_2_7:
907 valid_rates |= BIT(4);
908 fallthrough;
909 case DP_LINK_BW_1_62:
910 valid_rates |= BIT(1);
911 break;
912 }
913
914 return valid_rates;
915 }
916
917 static void ti_sn_bridge_set_video_timings(struct ti_sn65dsi86 *pdata)
918 {
919 struct drm_display_mode *mode =
920 &pdata->bridge.encoder->crtc->state->adjusted_mode;
921 u8 hsync_polarity = 0, vsync_polarity = 0;
922
923 if (mode->flags & DRM_MODE_FLAG_PHSYNC)
924 hsync_polarity = CHA_HSYNC_POLARITY;
925 if (mode->flags & DRM_MODE_FLAG_PVSYNC)
926 vsync_polarity = CHA_VSYNC_POLARITY;
927
928 ti_sn65dsi86_write_u16(pdata, SN_CHA_ACTIVE_LINE_LENGTH_LOW_REG,
929 mode->hdisplay);
930 ti_sn65dsi86_write_u16(pdata, SN_CHA_VERTICAL_DISPLAY_SIZE_LOW_REG,
931 mode->vdisplay);
932 regmap_write(pdata->regmap, SN_CHA_HSYNC_PULSE_WIDTH_LOW_REG,
933 (mode->hsync_end - mode->hsync_start) & 0xFF);
934 regmap_write(pdata->regmap, SN_CHA_HSYNC_PULSE_WIDTH_HIGH_REG,
935 (((mode->hsync_end - mode->hsync_start) >> 8) & 0x7F) |
936 hsync_polarity);
937 regmap_write(pdata->regmap, SN_CHA_VSYNC_PULSE_WIDTH_LOW_REG,
938 (mode->vsync_end - mode->vsync_start) & 0xFF);
939 regmap_write(pdata->regmap, SN_CHA_VSYNC_PULSE_WIDTH_HIGH_REG,
940 (((mode->vsync_end - mode->vsync_start) >> 8) & 0x7F) |
941 vsync_polarity);
942
943 regmap_write(pdata->regmap, SN_CHA_HORIZONTAL_BACK_PORCH_REG,
944 (mode->htotal - mode->hsync_end) & 0xFF);
945 regmap_write(pdata->regmap, SN_CHA_VERTICAL_BACK_PORCH_REG,
946 (mode->vtotal - mode->vsync_end) & 0xFF);
947
948 regmap_write(pdata->regmap, SN_CHA_HORIZONTAL_FRONT_PORCH_REG,
949 (mode->hsync_start - mode->hdisplay) & 0xFF);
950 regmap_write(pdata->regmap, SN_CHA_VERTICAL_FRONT_PORCH_REG,
951 (mode->vsync_start - mode->vdisplay) & 0xFF);
952
953 usleep_range(10000, 10500); /* 10ms delay recommended by spec */
954 }
955
956 static unsigned int ti_sn_get_max_lanes(struct ti_sn65dsi86 *pdata)
957 {
958 u8 data;
959 int ret;
960
961 ret = drm_dp_dpcd_readb(&pdata->aux, DP_MAX_LANE_COUNT, &data);
962 if (ret != 1) {
963 DRM_DEV_ERROR(pdata->dev,
964 "Can't read lane count (%d); assuming 4\n", ret);
965 return 4;
966 }
967
968 return data & DP_LANE_COUNT_MASK;
969 }
970
971 static int ti_sn_link_training(struct ti_sn65dsi86 *pdata, int dp_rate_idx,
972 const char **last_err_str)
973 {
974 unsigned int val;
975 int ret;
976 int i;
977
978 /* set dp clk frequency value */
979 regmap_update_bits(pdata->regmap, SN_DATARATE_CONFIG_REG,
980 DP_DATARATE_MASK, DP_DATARATE(dp_rate_idx));
981
982 /* enable DP PLL */
983 regmap_write(pdata->regmap, SN_PLL_ENABLE_REG, 1);
984
985 ret = regmap_read_poll_timeout(pdata->regmap, SN_DPPLL_SRC_REG, val,
986 val & DPPLL_SRC_DP_PLL_LOCK, 1000,
987 50 * 1000);
988 if (ret) {
989 *last_err_str = "DP_PLL_LOCK polling failed";
990 goto exit;
991 }
992
993 /*
994 * We'll try to link train several times. As part of link training
995 * the bridge chip will write DP_SET_POWER_D0 to DP_SET_POWER. If
996 * the panel isn't ready quite it might respond NAK here which means
997 * we need to try again.
998 */
999 for (i = 0; i < SN_LINK_TRAINING_TRIES; i++) {
1000 /* Semi auto link training mode */
1001 regmap_write(pdata->regmap, SN_ML_TX_MODE_REG, 0x0A);
1002 ret = regmap_read_poll_timeout(pdata->regmap, SN_ML_TX_MODE_REG, val,
1003 val == ML_TX_MAIN_LINK_OFF ||
1004 val == ML_TX_NORMAL_MODE, 1000,
1005 500 * 1000);
1006 if (ret) {
1007 *last_err_str = "Training complete polling failed";
1008 } else if (val == ML_TX_MAIN_LINK_OFF) {
1009 *last_err_str = "Link training failed, link is off";
1010 ret = -EIO;
1011 continue;
1012 }
1013
1014 break;
1015 }
1016
1017 /* If we saw quite a few retries, add a note about it */
1018 if (!ret && i > SN_LINK_TRAINING_TRIES / 2)
1019 DRM_DEV_INFO(pdata->dev, "Link training needed %d retries\n", i);
1020
1021 exit:
1022 /* Disable the PLL if we failed */
1023 if (ret)
1024 regmap_write(pdata->regmap, SN_PLL_ENABLE_REG, 0);
1025
1026 return ret;
1027 }
1028
1029 static void ti_sn_bridge_enable(struct drm_bridge *bridge)
1030 {
1031 struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge);
1032 const char *last_err_str = "No supported DP rate";
1033 unsigned int valid_rates;
1034 int dp_rate_idx;
1035 unsigned int val;
1036 int ret = -EINVAL;
1037 int max_dp_lanes;
1038
1039 max_dp_lanes = ti_sn_get_max_lanes(pdata);
1040 pdata->dp_lanes = min(pdata->dp_lanes, max_dp_lanes);
1041
1042 /* DSI_A lane config */
1043 val = CHA_DSI_LANES(SN_MAX_DP_LANES - pdata->dsi->lanes);
1044 regmap_update_bits(pdata->regmap, SN_DSI_LANES_REG,
1045 CHA_DSI_LANES_MASK, val);
1046
1047 regmap_write(pdata->regmap, SN_LN_ASSIGN_REG, pdata->ln_assign);
1048 regmap_update_bits(pdata->regmap, SN_ENH_FRAME_REG, LN_POLRS_MASK,
1049 pdata->ln_polrs << LN_POLRS_OFFSET);
1050
1051 /* set dsi clk frequency value */
1052 ti_sn_bridge_set_dsi_rate(pdata);
1053
1054 /*
1055 * The SN65DSI86 only supports ASSR Display Authentication method and
1056 * this method is enabled by default. An eDP panel must support this
1057 * authentication method. We need to enable this method in the eDP panel
1058 * at DisplayPort address 0x0010A prior to link training.
1059 */
1060 drm_dp_dpcd_writeb(&pdata->aux, DP_EDP_CONFIGURATION_SET,
1061 DP_ALTERNATE_SCRAMBLER_RESET_ENABLE);
1062
1063 /* Set the DP output format (18 bpp or 24 bpp) */
1064 val = (ti_sn_bridge_get_bpp(pdata) == 18) ? BPP_18_RGB : 0;
1065 regmap_update_bits(pdata->regmap, SN_DATA_FORMAT_REG, BPP_18_RGB, val);
1066
1067 /* DP lane config */
1068 val = DP_NUM_LANES(min(pdata->dp_lanes, 3));
1069 regmap_update_bits(pdata->regmap, SN_SSC_CONFIG_REG, DP_NUM_LANES_MASK,
1070 val);
1071
1072 valid_rates = ti_sn_bridge_read_valid_rates(pdata);
1073
1074 /* Train until we run out of rates */
1075 for (dp_rate_idx = ti_sn_bridge_calc_min_dp_rate_idx(pdata);
1076 dp_rate_idx < ARRAY_SIZE(ti_sn_bridge_dp_rate_lut);
1077 dp_rate_idx++) {
1078 if (!(valid_rates & BIT(dp_rate_idx)))
1079 continue;
1080
1081 ret = ti_sn_link_training(pdata, dp_rate_idx, &last_err_str);
1082 if (!ret)
1083 break;
1084 }
1085 if (ret) {
1086 DRM_DEV_ERROR(pdata->dev, "%s (%d)\n", last_err_str, ret);
1087 return;
1088 }
1089
1090 /* config video parameters */
1091 ti_sn_bridge_set_video_timings(pdata);
1092
1093 /* enable video stream */
1094 regmap_update_bits(pdata->regmap, SN_ENH_FRAME_REG, VSTREAM_ENABLE,
1095 VSTREAM_ENABLE);
1096 }
1097
1098 static void ti_sn_bridge_pre_enable(struct drm_bridge *bridge)
1099 {
1100 struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge);
1101
1102 pm_runtime_get_sync(pdata->dev);
1103
1104 if (!pdata->refclk)
1105 ti_sn65dsi86_enable_comms(pdata);
1106
1107 /* td7: min 100 us after enable before DSI data */
1108 usleep_range(100, 110);
1109 }
1110
1111 static void ti_sn_bridge_post_disable(struct drm_bridge *bridge)
1112 {
1113 struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge);
1114
1115 /* semi auto link training mode OFF */
1116 regmap_write(pdata->regmap, SN_ML_TX_MODE_REG, 0);
1117 /* Num lanes to 0 as per power sequencing in data sheet */
1118 regmap_update_bits(pdata->regmap, SN_SSC_CONFIG_REG, DP_NUM_LANES_MASK, 0);
1119 /* disable DP PLL */
1120 regmap_write(pdata->regmap, SN_PLL_ENABLE_REG, 0);
1121
1122 if (!pdata->refclk)
1123 ti_sn65dsi86_disable_comms(pdata);
1124
1125 pm_runtime_put_sync(pdata->dev);
1126 }
1127
1128 static const struct drm_bridge_funcs ti_sn_bridge_funcs = {
1129 .attach = ti_sn_bridge_attach,
1130 .detach = ti_sn_bridge_detach,
1131 .pre_enable = ti_sn_bridge_pre_enable,
1132 .enable = ti_sn_bridge_enable,
1133 .disable = ti_sn_bridge_disable,
1134 .post_disable = ti_sn_bridge_post_disable,
1135 };
1136
1137 static void ti_sn_bridge_parse_lanes(struct ti_sn65dsi86 *pdata,
1138 struct device_node *np)
1139 {
1140 u32 lane_assignments[SN_MAX_DP_LANES] = { 0, 1, 2, 3 };
1141 u32 lane_polarities[SN_MAX_DP_LANES] = { };
1142 struct device_node *endpoint;
1143 u8 ln_assign = 0;
1144 u8 ln_polrs = 0;
1145 int dp_lanes;
1146 int i;
1147
1148 /*
1149 * Read config from the device tree about lane remapping and lane
1150 * polarities. These are optional and we assume identity map and
1151 * normal polarity if nothing is specified. It's OK to specify just
1152 * data-lanes but not lane-polarities but not vice versa.
1153 *
1154 * Error checking is light (we just make sure we don't crash or
1155 * buffer overrun) and we assume dts is well formed and specifying
1156 * mappings that the hardware supports.
1157 */
1158 endpoint = of_graph_get_endpoint_by_regs(np, 1, -1);
1159 dp_lanes = of_property_count_u32_elems(endpoint, "data-lanes");
1160 if (dp_lanes > 0 && dp_lanes <= SN_MAX_DP_LANES) {
1161 of_property_read_u32_array(endpoint, "data-lanes",
1162 lane_assignments, dp_lanes);
1163 of_property_read_u32_array(endpoint, "lane-polarities",
1164 lane_polarities, dp_lanes);
1165 } else {
1166 dp_lanes = SN_MAX_DP_LANES;
1167 }
1168 of_node_put(endpoint);
1169
1170 /*
1171 * Convert into register format. Loop over all lanes even if
1172 * data-lanes had fewer elements so that we nicely initialize
1173 * the LN_ASSIGN register.
1174 */
1175 for (i = SN_MAX_DP_LANES - 1; i >= 0; i--) {
1176 ln_assign = ln_assign << LN_ASSIGN_WIDTH | lane_assignments[i];
1177 ln_polrs = ln_polrs << 1 | lane_polarities[i];
1178 }
1179
1180 /* Stash in our struct for when we power on */
1181 pdata->dp_lanes = dp_lanes;
1182 pdata->ln_assign = ln_assign;
1183 pdata->ln_polrs = ln_polrs;
1184 }
1185
1186 static int ti_sn_bridge_parse_dsi_host(struct ti_sn65dsi86 *pdata)
1187 {
1188 struct device_node *np = pdata->dev->of_node;
1189
1190 pdata->host_node = of_graph_get_remote_node(np, 0, 0);
1191
1192 if (!pdata->host_node) {
1193 DRM_ERROR("remote dsi host node not found\n");
1194 return -ENODEV;
1195 }
1196
1197 return 0;
1198 }
1199
1200 static int ti_sn_bridge_probe(struct auxiliary_device *adev,
1201 const struct auxiliary_device_id *id)
1202 {
1203 struct ti_sn65dsi86 *pdata = dev_get_drvdata(adev->dev.parent);
1204 struct device_node *np = pdata->dev->of_node;
1205 struct drm_panel *panel;
1206 int ret;
1207
1208 ret = drm_of_find_panel_or_bridge(np, 1, 0, &panel, NULL);
1209 if (ret)
1210 return dev_err_probe(&adev->dev, ret,
1211 "could not find any panel node\n");
1212
1213 pdata->next_bridge = devm_drm_panel_bridge_add(pdata->dev, panel);
1214 if (IS_ERR(pdata->next_bridge)) {
1215 DRM_ERROR("failed to create panel bridge\n");
1216 return PTR_ERR(pdata->next_bridge);
1217 }
1218
1219 ti_sn_bridge_parse_lanes(pdata, np);
1220
1221 ret = ti_sn_bridge_parse_dsi_host(pdata);
1222 if (ret)
1223 return ret;
1224
1225 pdata->bridge.funcs = &ti_sn_bridge_funcs;
1226 pdata->bridge.of_node = np;
1227
1228 drm_bridge_add(&pdata->bridge);
1229
1230 return 0;
1231 }
1232
1233 static void ti_sn_bridge_remove(struct auxiliary_device *adev)
1234 {
1235 struct ti_sn65dsi86 *pdata = dev_get_drvdata(adev->dev.parent);
1236
1237 if (!pdata)
1238 return;
1239
1240 if (pdata->dsi) {
1241 mipi_dsi_detach(pdata->dsi);
1242 mipi_dsi_device_unregister(pdata->dsi);
1243 }
1244
1245 drm_bridge_remove(&pdata->bridge);
1246
1247 of_node_put(pdata->host_node);
1248 }
1249
1250 static const struct auxiliary_device_id ti_sn_bridge_id_table[] = {
1251 { .name = "ti_sn65dsi86.bridge", },
1252 {},
1253 };
1254
1255 static struct auxiliary_driver ti_sn_bridge_driver = {
1256 .name = "bridge",
1257 .probe = ti_sn_bridge_probe,
1258 .remove = ti_sn_bridge_remove,
1259 .id_table = ti_sn_bridge_id_table,
1260 };
1261
1262 /* -----------------------------------------------------------------------------
1263 * GPIO Controller
1264 */
1265
1266 #if defined(CONFIG_OF_GPIO)
1267
1268 static int tn_sn_bridge_of_xlate(struct gpio_chip *chip,
1269 const struct of_phandle_args *gpiospec,
1270 u32 *flags)
1271 {
1272 if (WARN_ON(gpiospec->args_count < chip->of_gpio_n_cells))
1273 return -EINVAL;
1274
1275 if (gpiospec->args[0] > chip->ngpio || gpiospec->args[0] < 1)
1276 return -EINVAL;
1277
1278 if (flags)
1279 *flags = gpiospec->args[1];
1280
1281 return gpiospec->args[0] - SN_GPIO_PHYSICAL_OFFSET;
1282 }
1283
1284 static int ti_sn_bridge_gpio_get_direction(struct gpio_chip *chip,
1285 unsigned int offset)
1286 {
1287 struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip);
1288
1289 /*
1290 * We already have to keep track of the direction because we use
1291 * that to figure out whether we've powered the device. We can
1292 * just return that rather than (maybe) powering up the device
1293 * to ask its direction.
1294 */
1295 return test_bit(offset, pdata->gchip_output) ?
1296 GPIO_LINE_DIRECTION_OUT : GPIO_LINE_DIRECTION_IN;
1297 }
1298
1299 static int ti_sn_bridge_gpio_get(struct gpio_chip *chip, unsigned int offset)
1300 {
1301 struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip);
1302 unsigned int val;
1303 int ret;
1304
1305 /*
1306 * When the pin is an input we don't forcibly keep the bridge
1307 * powered--we just power it on to read the pin. NOTE: part of
1308 * the reason this works is that the bridge defaults (when
1309 * powered back on) to all 4 GPIOs being configured as GPIO input.
1310 * Also note that if something else is keeping the chip powered the
1311 * pm_runtime functions are lightweight increments of a refcount.
1312 */
1313 pm_runtime_get_sync(pdata->dev);
1314 ret = regmap_read(pdata->regmap, SN_GPIO_IO_REG, &val);
1315 pm_runtime_put_autosuspend(pdata->dev);
1316
1317 if (ret)
1318 return ret;
1319
1320 return !!(val & BIT(SN_GPIO_INPUT_SHIFT + offset));
1321 }
1322
1323 static void ti_sn_bridge_gpio_set(struct gpio_chip *chip, unsigned int offset,
1324 int val)
1325 {
1326 struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip);
1327 int ret;
1328
1329 if (!test_bit(offset, pdata->gchip_output)) {
1330 dev_err(pdata->dev, "Ignoring GPIO set while input\n");
1331 return;
1332 }
1333
1334 val &= 1;
1335 ret = regmap_update_bits(pdata->regmap, SN_GPIO_IO_REG,
1336 BIT(SN_GPIO_OUTPUT_SHIFT + offset),
1337 val << (SN_GPIO_OUTPUT_SHIFT + offset));
1338 if (ret)
1339 dev_warn(pdata->dev,
1340 "Failed to set bridge GPIO %u: %d\n", offset, ret);
1341 }
1342
1343 static int ti_sn_bridge_gpio_direction_input(struct gpio_chip *chip,
1344 unsigned int offset)
1345 {
1346 struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip);
1347 int shift = offset * 2;
1348 int ret;
1349
1350 if (!test_and_clear_bit(offset, pdata->gchip_output))
1351 return 0;
1352
1353 ret = regmap_update_bits(pdata->regmap, SN_GPIO_CTRL_REG,
1354 SN_GPIO_MUX_MASK << shift,
1355 SN_GPIO_MUX_INPUT << shift);
1356 if (ret) {
1357 set_bit(offset, pdata->gchip_output);
1358 return ret;
1359 }
1360
1361 /*
1362 * NOTE: if nobody else is powering the device this may fully power
1363 * it off and when it comes back it will have lost all state, but
1364 * that's OK because the default is input and we're now an input.
1365 */
1366 pm_runtime_put_autosuspend(pdata->dev);
1367
1368 return 0;
1369 }
1370
1371 static int ti_sn_bridge_gpio_direction_output(struct gpio_chip *chip,
1372 unsigned int offset, int val)
1373 {
1374 struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip);
1375 int shift = offset * 2;
1376 int ret;
1377
1378 if (test_and_set_bit(offset, pdata->gchip_output))
1379 return 0;
1380
1381 pm_runtime_get_sync(pdata->dev);
1382
1383 /* Set value first to avoid glitching */
1384 ti_sn_bridge_gpio_set(chip, offset, val);
1385
1386 /* Set direction */
1387 ret = regmap_update_bits(pdata->regmap, SN_GPIO_CTRL_REG,
1388 SN_GPIO_MUX_MASK << shift,
1389 SN_GPIO_MUX_OUTPUT << shift);
1390 if (ret) {
1391 clear_bit(offset, pdata->gchip_output);
1392 pm_runtime_put_autosuspend(pdata->dev);
1393 }
1394
1395 return ret;
1396 }
1397
1398 static void ti_sn_bridge_gpio_free(struct gpio_chip *chip, unsigned int offset)
1399 {
1400 /* We won't keep pm_runtime if we're input, so switch there on free */
1401 ti_sn_bridge_gpio_direction_input(chip, offset);
1402 }
1403
1404 static const char * const ti_sn_bridge_gpio_names[SN_NUM_GPIOS] = {
1405 "GPIO1", "GPIO2", "GPIO3", "GPIO4"
1406 };
1407
1408 static int ti_sn_gpio_probe(struct auxiliary_device *adev,
1409 const struct auxiliary_device_id *id)
1410 {
1411 struct ti_sn65dsi86 *pdata = dev_get_drvdata(adev->dev.parent);
1412 int ret;
1413
1414 /* Only init if someone is going to use us as a GPIO controller */
1415 if (!of_property_read_bool(pdata->dev->of_node, "gpio-controller"))
1416 return 0;
1417
1418 pdata->gchip.label = dev_name(pdata->dev);
1419 pdata->gchip.parent = pdata->dev;
1420 pdata->gchip.owner = THIS_MODULE;
1421 pdata->gchip.of_xlate = tn_sn_bridge_of_xlate;
1422 pdata->gchip.of_gpio_n_cells = 2;
1423 pdata->gchip.free = ti_sn_bridge_gpio_free;
1424 pdata->gchip.get_direction = ti_sn_bridge_gpio_get_direction;
1425 pdata->gchip.direction_input = ti_sn_bridge_gpio_direction_input;
1426 pdata->gchip.direction_output = ti_sn_bridge_gpio_direction_output;
1427 pdata->gchip.get = ti_sn_bridge_gpio_get;
1428 pdata->gchip.set = ti_sn_bridge_gpio_set;
1429 pdata->gchip.can_sleep = true;
1430 pdata->gchip.names = ti_sn_bridge_gpio_names;
1431 pdata->gchip.ngpio = SN_NUM_GPIOS;
1432 pdata->gchip.base = -1;
1433 ret = devm_gpiochip_add_data(&adev->dev, &pdata->gchip, pdata);
1434 if (ret)
1435 dev_err(pdata->dev, "can't add gpio chip\n");
1436
1437 return ret;
1438 }
1439
1440 static const struct auxiliary_device_id ti_sn_gpio_id_table[] = {
1441 { .name = "ti_sn65dsi86.gpio", },
1442 {},
1443 };
1444
1445 MODULE_DEVICE_TABLE(auxiliary, ti_sn_gpio_id_table);
1446
1447 static struct auxiliary_driver ti_sn_gpio_driver = {
1448 .name = "gpio",
1449 .probe = ti_sn_gpio_probe,
1450 .id_table = ti_sn_gpio_id_table,
1451 };
1452
1453 static int __init ti_sn_gpio_register(void)
1454 {
1455 return auxiliary_driver_register(&ti_sn_gpio_driver);
1456 }
1457
1458 static void ti_sn_gpio_unregister(void)
1459 {
1460 auxiliary_driver_unregister(&ti_sn_gpio_driver);
1461 }
1462
1463 #else
1464
1465 static inline int ti_sn_gpio_register(void) { return 0; }
1466 static inline void ti_sn_gpio_unregister(void) {}
1467
1468 #endif
1469
1470 /* -----------------------------------------------------------------------------
1471 * Probe & Remove
1472 */
1473
1474 static void ti_sn65dsi86_runtime_disable(void *data)
1475 {
1476 pm_runtime_dont_use_autosuspend(data);
1477 pm_runtime_disable(data);
1478 }
1479
1480 static int ti_sn65dsi86_parse_regulators(struct ti_sn65dsi86 *pdata)
1481 {
1482 unsigned int i;
1483 const char * const ti_sn_bridge_supply_names[] = {
1484 "vcca", "vcc", "vccio", "vpll",
1485 };
1486
1487 for (i = 0; i < SN_REGULATOR_SUPPLY_NUM; i++)
1488 pdata->supplies[i].supply = ti_sn_bridge_supply_names[i];
1489
1490 return devm_regulator_bulk_get(pdata->dev, SN_REGULATOR_SUPPLY_NUM,
1491 pdata->supplies);
1492 }
1493
1494 static int ti_sn65dsi86_probe(struct i2c_client *client,
1495 const struct i2c_device_id *id)
1496 {
1497 struct device *dev = &client->dev;
1498 struct ti_sn65dsi86 *pdata;
1499 int ret;
1500
1501 if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) {
1502 DRM_ERROR("device doesn't support I2C\n");
1503 return -ENODEV;
1504 }
1505
1506 pdata = devm_kzalloc(dev, sizeof(struct ti_sn65dsi86), GFP_KERNEL);
1507 if (!pdata)
1508 return -ENOMEM;
1509 dev_set_drvdata(dev, pdata);
1510 pdata->dev = dev;
1511
1512 mutex_init(&pdata->comms_mutex);
1513
1514 pdata->regmap = devm_regmap_init_i2c(client,
1515 &ti_sn65dsi86_regmap_config);
1516 if (IS_ERR(pdata->regmap))
1517 return dev_err_probe(dev, PTR_ERR(pdata->regmap),
1518 "regmap i2c init failed\n");
1519
1520 pdata->enable_gpio = devm_gpiod_get_optional(dev, "enable",
1521 GPIOD_OUT_LOW);
1522 if (IS_ERR(pdata->enable_gpio))
1523 return dev_err_probe(dev, PTR_ERR(pdata->enable_gpio),
1524 "failed to get enable gpio from DT\n");
1525
1526 ret = ti_sn65dsi86_parse_regulators(pdata);
1527 if (ret)
1528 return dev_err_probe(dev, ret, "failed to parse regulators\n");
1529
1530 pdata->refclk = devm_clk_get_optional(dev, "refclk");
1531 if (IS_ERR(pdata->refclk))
1532 return dev_err_probe(dev, PTR_ERR(pdata->refclk),
1533 "failed to get reference clock\n");
1534
1535 pm_runtime_enable(dev);
1536 pm_runtime_set_autosuspend_delay(pdata->dev, 500);
1537 pm_runtime_use_autosuspend(pdata->dev);
1538 ret = devm_add_action_or_reset(dev, ti_sn65dsi86_runtime_disable, dev);
1539 if (ret)
1540 return ret;
1541
1542 ti_sn65dsi86_debugfs_init(pdata);
1543
1544 /*
1545 * Break ourselves up into a collection of aux devices. The only real
1546 * motiviation here is to solve the chicken-and-egg problem of probe
1547 * ordering. The bridge wants the panel to be there when it probes.
1548 * The panel wants its HPD GPIO (provided by sn65dsi86 on some boards)
1549 * when it probes. The panel and maybe backlight might want the DDC
1550 * bus. Soon the PWM provided by the bridge chip will have the same
1551 * problem. Having sub-devices allows the some sub devices to finish
1552 * probing even if others return -EPROBE_DEFER and gets us around the
1553 * problems.
1554 */
1555
1556 if (IS_ENABLED(CONFIG_OF_GPIO)) {
1557 ret = ti_sn65dsi86_add_aux_device(pdata, &pdata->gpio_aux, "gpio");
1558 if (ret)
1559 return ret;
1560 }
1561
1562 /*
1563 * NOTE: At the end of the AUX channel probe we'll add the aux device
1564 * for the bridge. This is because the bridge can't be used until the
1565 * AUX channel is there and this is a very simple solution to the
1566 * dependency problem.
1567 */
1568 return ti_sn65dsi86_add_aux_device(pdata, &pdata->aux_aux, "aux");
1569 }
1570
1571 static struct i2c_device_id ti_sn65dsi86_id[] = {
1572 { "ti,sn65dsi86", 0},
1573 {},
1574 };
1575 MODULE_DEVICE_TABLE(i2c, ti_sn65dsi86_id);
1576
1577 static const struct of_device_id ti_sn65dsi86_match_table[] = {
1578 {.compatible = "ti,sn65dsi86"},
1579 {},
1580 };
1581 MODULE_DEVICE_TABLE(of, ti_sn65dsi86_match_table);
1582
1583 static struct i2c_driver ti_sn65dsi86_driver = {
1584 .driver = {
1585 .name = "ti_sn65dsi86",
1586 .of_match_table = ti_sn65dsi86_match_table,
1587 .pm = &ti_sn65dsi86_pm_ops,
1588 },
1589 .probe = ti_sn65dsi86_probe,
1590 .id_table = ti_sn65dsi86_id,
1591 };
1592
1593 static int __init ti_sn65dsi86_init(void)
1594 {
1595 int ret;
1596
1597 ret = i2c_add_driver(&ti_sn65dsi86_driver);
1598 if (ret)
1599 return ret;
1600
1601 ret = ti_sn_gpio_register();
1602 if (ret)
1603 goto err_main_was_registered;
1604
1605 ret = auxiliary_driver_register(&ti_sn_aux_driver);
1606 if (ret)
1607 goto err_gpio_was_registered;
1608
1609 ret = auxiliary_driver_register(&ti_sn_bridge_driver);
1610 if (ret)
1611 goto err_aux_was_registered;
1612
1613 return 0;
1614
1615 err_aux_was_registered:
1616 auxiliary_driver_unregister(&ti_sn_aux_driver);
1617 err_gpio_was_registered:
1618 ti_sn_gpio_unregister();
1619 err_main_was_registered:
1620 i2c_del_driver(&ti_sn65dsi86_driver);
1621
1622 return ret;
1623 }
1624 module_init(ti_sn65dsi86_init);
1625
1626 static void __exit ti_sn65dsi86_exit(void)
1627 {
1628 auxiliary_driver_unregister(&ti_sn_bridge_driver);
1629 auxiliary_driver_unregister(&ti_sn_aux_driver);
1630 ti_sn_gpio_unregister();
1631 i2c_del_driver(&ti_sn65dsi86_driver);
1632 }
1633 module_exit(ti_sn65dsi86_exit);
1634
1635 MODULE_AUTHOR("Sandeep Panda <spanda@codeaurora.org>");
1636 MODULE_DESCRIPTION("sn65dsi86 DSI to eDP bridge driver");
1637 MODULE_LICENSE("GPL v2");