]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/gpu/drm/drm_dp_helper.c
Merge tag 'media/v5.8-3' of git://git.kernel.org/pub/scm/linux/kernel/git/mchehab...
[mirror_ubuntu-jammy-kernel.git] / drivers / gpu / drm / drm_dp_helper.c
1 /*
2 * Copyright © 2009 Keith Packard
3 *
4 * Permission to use, copy, modify, distribute, and sell this software and its
5 * documentation for any purpose is hereby granted without fee, provided that
6 * the above copyright notice appear in all copies and that both that copyright
7 * notice and this permission notice appear in supporting documentation, and
8 * that the name of the copyright holders not be used in advertising or
9 * publicity pertaining to distribution of the software without specific,
10 * written prior permission. The copyright holders make no representations
11 * about the suitability of this software for any purpose. It is provided "as
12 * is" without express or implied warranty.
13 *
14 * THE COPYRIGHT HOLDERS DISCLAIM ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
15 * INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO
16 * EVENT SHALL THE COPYRIGHT HOLDERS BE LIABLE FOR ANY SPECIAL, INDIRECT OR
17 * CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE,
18 * DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
19 * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
20 * OF THIS SOFTWARE.
21 */
22
23 #include <linux/delay.h>
24 #include <linux/errno.h>
25 #include <linux/i2c.h>
26 #include <linux/init.h>
27 #include <linux/kernel.h>
28 #include <linux/module.h>
29 #include <linux/sched.h>
30 #include <linux/seq_file.h>
31
32 #include <drm/drm_dp_helper.h>
33 #include <drm/drm_print.h>
34 #include <drm/drm_vblank.h>
35 #include <drm/drm_dp_mst_helper.h>
36
37 #include "drm_crtc_helper_internal.h"
38
39 /**
40 * DOC: dp helpers
41 *
42 * These functions contain some common logic and helpers at various abstraction
43 * levels to deal with Display Port sink devices and related things like DP aux
44 * channel transfers, EDID reading over DP aux channels, decoding certain DPCD
45 * blocks, ...
46 */
47
48 /* Helpers for DP link training */
49 static u8 dp_link_status(const u8 link_status[DP_LINK_STATUS_SIZE], int r)
50 {
51 return link_status[r - DP_LANE0_1_STATUS];
52 }
53
54 static u8 dp_get_lane_status(const u8 link_status[DP_LINK_STATUS_SIZE],
55 int lane)
56 {
57 int i = DP_LANE0_1_STATUS + (lane >> 1);
58 int s = (lane & 1) * 4;
59 u8 l = dp_link_status(link_status, i);
60 return (l >> s) & 0xf;
61 }
62
63 bool drm_dp_channel_eq_ok(const u8 link_status[DP_LINK_STATUS_SIZE],
64 int lane_count)
65 {
66 u8 lane_align;
67 u8 lane_status;
68 int lane;
69
70 lane_align = dp_link_status(link_status,
71 DP_LANE_ALIGN_STATUS_UPDATED);
72 if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
73 return false;
74 for (lane = 0; lane < lane_count; lane++) {
75 lane_status = dp_get_lane_status(link_status, lane);
76 if ((lane_status & DP_CHANNEL_EQ_BITS) != DP_CHANNEL_EQ_BITS)
77 return false;
78 }
79 return true;
80 }
81 EXPORT_SYMBOL(drm_dp_channel_eq_ok);
82
83 bool drm_dp_clock_recovery_ok(const u8 link_status[DP_LINK_STATUS_SIZE],
84 int lane_count)
85 {
86 int lane;
87 u8 lane_status;
88
89 for (lane = 0; lane < lane_count; lane++) {
90 lane_status = dp_get_lane_status(link_status, lane);
91 if ((lane_status & DP_LANE_CR_DONE) == 0)
92 return false;
93 }
94 return true;
95 }
96 EXPORT_SYMBOL(drm_dp_clock_recovery_ok);
97
98 u8 drm_dp_get_adjust_request_voltage(const u8 link_status[DP_LINK_STATUS_SIZE],
99 int lane)
100 {
101 int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
102 int s = ((lane & 1) ?
103 DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
104 DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
105 u8 l = dp_link_status(link_status, i);
106
107 return ((l >> s) & 0x3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
108 }
109 EXPORT_SYMBOL(drm_dp_get_adjust_request_voltage);
110
111 u8 drm_dp_get_adjust_request_pre_emphasis(const u8 link_status[DP_LINK_STATUS_SIZE],
112 int lane)
113 {
114 int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
115 int s = ((lane & 1) ?
116 DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
117 DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
118 u8 l = dp_link_status(link_status, i);
119
120 return ((l >> s) & 0x3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
121 }
122 EXPORT_SYMBOL(drm_dp_get_adjust_request_pre_emphasis);
123
124 u8 drm_dp_get_adjust_request_post_cursor(const u8 link_status[DP_LINK_STATUS_SIZE],
125 unsigned int lane)
126 {
127 unsigned int offset = DP_ADJUST_REQUEST_POST_CURSOR2;
128 u8 value = dp_link_status(link_status, offset);
129
130 return (value >> (lane << 1)) & 0x3;
131 }
132 EXPORT_SYMBOL(drm_dp_get_adjust_request_post_cursor);
133
134 void drm_dp_link_train_clock_recovery_delay(const u8 dpcd[DP_RECEIVER_CAP_SIZE])
135 {
136 unsigned long rd_interval = dpcd[DP_TRAINING_AUX_RD_INTERVAL] &
137 DP_TRAINING_AUX_RD_MASK;
138
139 if (rd_interval > 4)
140 DRM_DEBUG_KMS("AUX interval %lu, out of range (max 4)\n",
141 rd_interval);
142
143 if (rd_interval == 0 || dpcd[DP_DPCD_REV] >= DP_DPCD_REV_14)
144 rd_interval = 100;
145 else
146 rd_interval *= 4 * USEC_PER_MSEC;
147
148 usleep_range(rd_interval, rd_interval * 2);
149 }
150 EXPORT_SYMBOL(drm_dp_link_train_clock_recovery_delay);
151
152 void drm_dp_link_train_channel_eq_delay(const u8 dpcd[DP_RECEIVER_CAP_SIZE])
153 {
154 unsigned long rd_interval = dpcd[DP_TRAINING_AUX_RD_INTERVAL] &
155 DP_TRAINING_AUX_RD_MASK;
156
157 if (rd_interval > 4)
158 DRM_DEBUG_KMS("AUX interval %lu, out of range (max 4)\n",
159 rd_interval);
160
161 if (rd_interval == 0)
162 rd_interval = 400;
163 else
164 rd_interval *= 4 * USEC_PER_MSEC;
165
166 usleep_range(rd_interval, rd_interval * 2);
167 }
168 EXPORT_SYMBOL(drm_dp_link_train_channel_eq_delay);
169
170 u8 drm_dp_link_rate_to_bw_code(int link_rate)
171 {
172 /* Spec says link_bw = link_rate / 0.27Gbps */
173 return link_rate / 27000;
174 }
175 EXPORT_SYMBOL(drm_dp_link_rate_to_bw_code);
176
177 int drm_dp_bw_code_to_link_rate(u8 link_bw)
178 {
179 /* Spec says link_rate = link_bw * 0.27Gbps */
180 return link_bw * 27000;
181 }
182 EXPORT_SYMBOL(drm_dp_bw_code_to_link_rate);
183
184 #define AUX_RETRY_INTERVAL 500 /* us */
185
186 static inline void
187 drm_dp_dump_access(const struct drm_dp_aux *aux,
188 u8 request, uint offset, void *buffer, int ret)
189 {
190 const char *arrow = request == DP_AUX_NATIVE_READ ? "->" : "<-";
191
192 if (ret > 0)
193 DRM_DEBUG_DP("%s: 0x%05x AUX %s (ret=%3d) %*ph\n",
194 aux->name, offset, arrow, ret, min(ret, 20), buffer);
195 else
196 DRM_DEBUG_DP("%s: 0x%05x AUX %s (ret=%3d)\n",
197 aux->name, offset, arrow, ret);
198 }
199
200 /**
201 * DOC: dp helpers
202 *
203 * The DisplayPort AUX channel is an abstraction to allow generic, driver-
204 * independent access to AUX functionality. Drivers can take advantage of
205 * this by filling in the fields of the drm_dp_aux structure.
206 *
207 * Transactions are described using a hardware-independent drm_dp_aux_msg
208 * structure, which is passed into a driver's .transfer() implementation.
209 * Both native and I2C-over-AUX transactions are supported.
210 */
211
212 static int drm_dp_dpcd_access(struct drm_dp_aux *aux, u8 request,
213 unsigned int offset, void *buffer, size_t size)
214 {
215 struct drm_dp_aux_msg msg;
216 unsigned int retry, native_reply;
217 int err = 0, ret = 0;
218
219 memset(&msg, 0, sizeof(msg));
220 msg.address = offset;
221 msg.request = request;
222 msg.buffer = buffer;
223 msg.size = size;
224
225 mutex_lock(&aux->hw_mutex);
226
227 /*
228 * The specification doesn't give any recommendation on how often to
229 * retry native transactions. We used to retry 7 times like for
230 * aux i2c transactions but real world devices this wasn't
231 * sufficient, bump to 32 which makes Dell 4k monitors happier.
232 */
233 for (retry = 0; retry < 32; retry++) {
234 if (ret != 0 && ret != -ETIMEDOUT) {
235 usleep_range(AUX_RETRY_INTERVAL,
236 AUX_RETRY_INTERVAL + 100);
237 }
238
239 ret = aux->transfer(aux, &msg);
240 if (ret >= 0) {
241 native_reply = msg.reply & DP_AUX_NATIVE_REPLY_MASK;
242 if (native_reply == DP_AUX_NATIVE_REPLY_ACK) {
243 if (ret == size)
244 goto unlock;
245
246 ret = -EPROTO;
247 } else
248 ret = -EIO;
249 }
250
251 /*
252 * We want the error we return to be the error we received on
253 * the first transaction, since we may get a different error the
254 * next time we retry
255 */
256 if (!err)
257 err = ret;
258 }
259
260 DRM_DEBUG_KMS("Too many retries, giving up. First error: %d\n", err);
261 ret = err;
262
263 unlock:
264 mutex_unlock(&aux->hw_mutex);
265 return ret;
266 }
267
268 /**
269 * drm_dp_dpcd_read() - read a series of bytes from the DPCD
270 * @aux: DisplayPort AUX channel (SST or MST)
271 * @offset: address of the (first) register to read
272 * @buffer: buffer to store the register values
273 * @size: number of bytes in @buffer
274 *
275 * Returns the number of bytes transferred on success, or a negative error
276 * code on failure. -EIO is returned if the request was NAKed by the sink or
277 * if the retry count was exceeded. If not all bytes were transferred, this
278 * function returns -EPROTO. Errors from the underlying AUX channel transfer
279 * function, with the exception of -EBUSY (which causes the transaction to
280 * be retried), are propagated to the caller.
281 */
282 ssize_t drm_dp_dpcd_read(struct drm_dp_aux *aux, unsigned int offset,
283 void *buffer, size_t size)
284 {
285 int ret;
286
287 /*
288 * HP ZR24w corrupts the first DPCD access after entering power save
289 * mode. Eg. on a read, the entire buffer will be filled with the same
290 * byte. Do a throw away read to avoid corrupting anything we care
291 * about. Afterwards things will work correctly until the monitor
292 * gets woken up and subsequently re-enters power save mode.
293 *
294 * The user pressing any button on the monitor is enough to wake it
295 * up, so there is no particularly good place to do the workaround.
296 * We just have to do it before any DPCD access and hope that the
297 * monitor doesn't power down exactly after the throw away read.
298 */
299 if (!aux->is_remote) {
300 ret = drm_dp_dpcd_access(aux, DP_AUX_NATIVE_READ, DP_DPCD_REV,
301 buffer, 1);
302 if (ret != 1)
303 goto out;
304 }
305
306 if (aux->is_remote)
307 ret = drm_dp_mst_dpcd_read(aux, offset, buffer, size);
308 else
309 ret = drm_dp_dpcd_access(aux, DP_AUX_NATIVE_READ, offset,
310 buffer, size);
311
312 out:
313 drm_dp_dump_access(aux, DP_AUX_NATIVE_READ, offset, buffer, ret);
314 return ret;
315 }
316 EXPORT_SYMBOL(drm_dp_dpcd_read);
317
318 /**
319 * drm_dp_dpcd_write() - write a series of bytes to the DPCD
320 * @aux: DisplayPort AUX channel (SST or MST)
321 * @offset: address of the (first) register to write
322 * @buffer: buffer containing the values to write
323 * @size: number of bytes in @buffer
324 *
325 * Returns the number of bytes transferred on success, or a negative error
326 * code on failure. -EIO is returned if the request was NAKed by the sink or
327 * if the retry count was exceeded. If not all bytes were transferred, this
328 * function returns -EPROTO. Errors from the underlying AUX channel transfer
329 * function, with the exception of -EBUSY (which causes the transaction to
330 * be retried), are propagated to the caller.
331 */
332 ssize_t drm_dp_dpcd_write(struct drm_dp_aux *aux, unsigned int offset,
333 void *buffer, size_t size)
334 {
335 int ret;
336
337 if (aux->is_remote)
338 ret = drm_dp_mst_dpcd_write(aux, offset, buffer, size);
339 else
340 ret = drm_dp_dpcd_access(aux, DP_AUX_NATIVE_WRITE, offset,
341 buffer, size);
342
343 drm_dp_dump_access(aux, DP_AUX_NATIVE_WRITE, offset, buffer, ret);
344 return ret;
345 }
346 EXPORT_SYMBOL(drm_dp_dpcd_write);
347
348 /**
349 * drm_dp_dpcd_read_link_status() - read DPCD link status (bytes 0x202-0x207)
350 * @aux: DisplayPort AUX channel
351 * @status: buffer to store the link status in (must be at least 6 bytes)
352 *
353 * Returns the number of bytes transferred on success or a negative error
354 * code on failure.
355 */
356 int drm_dp_dpcd_read_link_status(struct drm_dp_aux *aux,
357 u8 status[DP_LINK_STATUS_SIZE])
358 {
359 return drm_dp_dpcd_read(aux, DP_LANE0_1_STATUS, status,
360 DP_LINK_STATUS_SIZE);
361 }
362 EXPORT_SYMBOL(drm_dp_dpcd_read_link_status);
363
364 /**
365 * drm_dp_send_real_edid_checksum() - send back real edid checksum value
366 * @aux: DisplayPort AUX channel
367 * @real_edid_checksum: real edid checksum for the last block
368 *
369 * Returns:
370 * True on success
371 */
372 bool drm_dp_send_real_edid_checksum(struct drm_dp_aux *aux,
373 u8 real_edid_checksum)
374 {
375 u8 link_edid_read = 0, auto_test_req = 0, test_resp = 0;
376
377 if (drm_dp_dpcd_read(aux, DP_DEVICE_SERVICE_IRQ_VECTOR,
378 &auto_test_req, 1) < 1) {
379 DRM_ERROR("DPCD failed read at register 0x%x\n",
380 DP_DEVICE_SERVICE_IRQ_VECTOR);
381 return false;
382 }
383 auto_test_req &= DP_AUTOMATED_TEST_REQUEST;
384
385 if (drm_dp_dpcd_read(aux, DP_TEST_REQUEST, &link_edid_read, 1) < 1) {
386 DRM_ERROR("DPCD failed read at register 0x%x\n",
387 DP_TEST_REQUEST);
388 return false;
389 }
390 link_edid_read &= DP_TEST_LINK_EDID_READ;
391
392 if (!auto_test_req || !link_edid_read) {
393 DRM_DEBUG_KMS("Source DUT does not support TEST_EDID_READ\n");
394 return false;
395 }
396
397 if (drm_dp_dpcd_write(aux, DP_DEVICE_SERVICE_IRQ_VECTOR,
398 &auto_test_req, 1) < 1) {
399 DRM_ERROR("DPCD failed write at register 0x%x\n",
400 DP_DEVICE_SERVICE_IRQ_VECTOR);
401 return false;
402 }
403
404 /* send back checksum for the last edid extension block data */
405 if (drm_dp_dpcd_write(aux, DP_TEST_EDID_CHECKSUM,
406 &real_edid_checksum, 1) < 1) {
407 DRM_ERROR("DPCD failed write at register 0x%x\n",
408 DP_TEST_EDID_CHECKSUM);
409 return false;
410 }
411
412 test_resp |= DP_TEST_EDID_CHECKSUM_WRITE;
413 if (drm_dp_dpcd_write(aux, DP_TEST_RESPONSE, &test_resp, 1) < 1) {
414 DRM_ERROR("DPCD failed write at register 0x%x\n",
415 DP_TEST_RESPONSE);
416 return false;
417 }
418
419 return true;
420 }
421 EXPORT_SYMBOL(drm_dp_send_real_edid_checksum);
422
423 /**
424 * drm_dp_downstream_max_clock() - extract branch device max
425 * pixel rate for legacy VGA
426 * converter or max TMDS clock
427 * rate for others
428 * @dpcd: DisplayPort configuration data
429 * @port_cap: port capabilities
430 *
431 * Returns max clock in kHz on success or 0 if max clock not defined
432 */
433 int drm_dp_downstream_max_clock(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
434 const u8 port_cap[4])
435 {
436 int type = port_cap[0] & DP_DS_PORT_TYPE_MASK;
437 bool detailed_cap_info = dpcd[DP_DOWNSTREAMPORT_PRESENT] &
438 DP_DETAILED_CAP_INFO_AVAILABLE;
439
440 if (!detailed_cap_info)
441 return 0;
442
443 switch (type) {
444 case DP_DS_PORT_TYPE_VGA:
445 return port_cap[1] * 8 * 1000;
446 case DP_DS_PORT_TYPE_DVI:
447 case DP_DS_PORT_TYPE_HDMI:
448 case DP_DS_PORT_TYPE_DP_DUALMODE:
449 return port_cap[1] * 2500;
450 default:
451 return 0;
452 }
453 }
454 EXPORT_SYMBOL(drm_dp_downstream_max_clock);
455
456 /**
457 * drm_dp_downstream_max_bpc() - extract branch device max
458 * bits per component
459 * @dpcd: DisplayPort configuration data
460 * @port_cap: port capabilities
461 *
462 * Returns max bpc on success or 0 if max bpc not defined
463 */
464 int drm_dp_downstream_max_bpc(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
465 const u8 port_cap[4])
466 {
467 int type = port_cap[0] & DP_DS_PORT_TYPE_MASK;
468 bool detailed_cap_info = dpcd[DP_DOWNSTREAMPORT_PRESENT] &
469 DP_DETAILED_CAP_INFO_AVAILABLE;
470 int bpc;
471
472 if (!detailed_cap_info)
473 return 0;
474
475 switch (type) {
476 case DP_DS_PORT_TYPE_VGA:
477 case DP_DS_PORT_TYPE_DVI:
478 case DP_DS_PORT_TYPE_HDMI:
479 case DP_DS_PORT_TYPE_DP_DUALMODE:
480 bpc = port_cap[2] & DP_DS_MAX_BPC_MASK;
481
482 switch (bpc) {
483 case DP_DS_8BPC:
484 return 8;
485 case DP_DS_10BPC:
486 return 10;
487 case DP_DS_12BPC:
488 return 12;
489 case DP_DS_16BPC:
490 return 16;
491 }
492 /* fall through */
493 default:
494 return 0;
495 }
496 }
497 EXPORT_SYMBOL(drm_dp_downstream_max_bpc);
498
499 /**
500 * drm_dp_downstream_id() - identify branch device
501 * @aux: DisplayPort AUX channel
502 * @id: DisplayPort branch device id
503 *
504 * Returns branch device id on success or NULL on failure
505 */
506 int drm_dp_downstream_id(struct drm_dp_aux *aux, char id[6])
507 {
508 return drm_dp_dpcd_read(aux, DP_BRANCH_ID, id, 6);
509 }
510 EXPORT_SYMBOL(drm_dp_downstream_id);
511
512 /**
513 * drm_dp_downstream_debug() - debug DP branch devices
514 * @m: pointer for debugfs file
515 * @dpcd: DisplayPort configuration data
516 * @port_cap: port capabilities
517 * @aux: DisplayPort AUX channel
518 *
519 */
520 void drm_dp_downstream_debug(struct seq_file *m,
521 const u8 dpcd[DP_RECEIVER_CAP_SIZE],
522 const u8 port_cap[4], struct drm_dp_aux *aux)
523 {
524 bool detailed_cap_info = dpcd[DP_DOWNSTREAMPORT_PRESENT] &
525 DP_DETAILED_CAP_INFO_AVAILABLE;
526 int clk;
527 int bpc;
528 char id[7];
529 int len;
530 uint8_t rev[2];
531 int type = port_cap[0] & DP_DS_PORT_TYPE_MASK;
532 bool branch_device = drm_dp_is_branch(dpcd);
533
534 seq_printf(m, "\tDP branch device present: %s\n",
535 branch_device ? "yes" : "no");
536
537 if (!branch_device)
538 return;
539
540 switch (type) {
541 case DP_DS_PORT_TYPE_DP:
542 seq_puts(m, "\t\tType: DisplayPort\n");
543 break;
544 case DP_DS_PORT_TYPE_VGA:
545 seq_puts(m, "\t\tType: VGA\n");
546 break;
547 case DP_DS_PORT_TYPE_DVI:
548 seq_puts(m, "\t\tType: DVI\n");
549 break;
550 case DP_DS_PORT_TYPE_HDMI:
551 seq_puts(m, "\t\tType: HDMI\n");
552 break;
553 case DP_DS_PORT_TYPE_NON_EDID:
554 seq_puts(m, "\t\tType: others without EDID support\n");
555 break;
556 case DP_DS_PORT_TYPE_DP_DUALMODE:
557 seq_puts(m, "\t\tType: DP++\n");
558 break;
559 case DP_DS_PORT_TYPE_WIRELESS:
560 seq_puts(m, "\t\tType: Wireless\n");
561 break;
562 default:
563 seq_puts(m, "\t\tType: N/A\n");
564 }
565
566 memset(id, 0, sizeof(id));
567 drm_dp_downstream_id(aux, id);
568 seq_printf(m, "\t\tID: %s\n", id);
569
570 len = drm_dp_dpcd_read(aux, DP_BRANCH_HW_REV, &rev[0], 1);
571 if (len > 0)
572 seq_printf(m, "\t\tHW: %d.%d\n",
573 (rev[0] & 0xf0) >> 4, rev[0] & 0xf);
574
575 len = drm_dp_dpcd_read(aux, DP_BRANCH_SW_REV, rev, 2);
576 if (len > 0)
577 seq_printf(m, "\t\tSW: %d.%d\n", rev[0], rev[1]);
578
579 if (detailed_cap_info) {
580 clk = drm_dp_downstream_max_clock(dpcd, port_cap);
581
582 if (clk > 0) {
583 if (type == DP_DS_PORT_TYPE_VGA)
584 seq_printf(m, "\t\tMax dot clock: %d kHz\n", clk);
585 else
586 seq_printf(m, "\t\tMax TMDS clock: %d kHz\n", clk);
587 }
588
589 bpc = drm_dp_downstream_max_bpc(dpcd, port_cap);
590
591 if (bpc > 0)
592 seq_printf(m, "\t\tMax bpc: %d\n", bpc);
593 }
594 }
595 EXPORT_SYMBOL(drm_dp_downstream_debug);
596
597 /*
598 * I2C-over-AUX implementation
599 */
600
601 static u32 drm_dp_i2c_functionality(struct i2c_adapter *adapter)
602 {
603 return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL |
604 I2C_FUNC_SMBUS_READ_BLOCK_DATA |
605 I2C_FUNC_SMBUS_BLOCK_PROC_CALL |
606 I2C_FUNC_10BIT_ADDR;
607 }
608
609 static void drm_dp_i2c_msg_write_status_update(struct drm_dp_aux_msg *msg)
610 {
611 /*
612 * In case of i2c defer or short i2c ack reply to a write,
613 * we need to switch to WRITE_STATUS_UPDATE to drain the
614 * rest of the message
615 */
616 if ((msg->request & ~DP_AUX_I2C_MOT) == DP_AUX_I2C_WRITE) {
617 msg->request &= DP_AUX_I2C_MOT;
618 msg->request |= DP_AUX_I2C_WRITE_STATUS_UPDATE;
619 }
620 }
621
622 #define AUX_PRECHARGE_LEN 10 /* 10 to 16 */
623 #define AUX_SYNC_LEN (16 + 4) /* preamble + AUX_SYNC_END */
624 #define AUX_STOP_LEN 4
625 #define AUX_CMD_LEN 4
626 #define AUX_ADDRESS_LEN 20
627 #define AUX_REPLY_PAD_LEN 4
628 #define AUX_LENGTH_LEN 8
629
630 /*
631 * Calculate the duration of the AUX request/reply in usec. Gives the
632 * "best" case estimate, ie. successful while as short as possible.
633 */
634 static int drm_dp_aux_req_duration(const struct drm_dp_aux_msg *msg)
635 {
636 int len = AUX_PRECHARGE_LEN + AUX_SYNC_LEN + AUX_STOP_LEN +
637 AUX_CMD_LEN + AUX_ADDRESS_LEN + AUX_LENGTH_LEN;
638
639 if ((msg->request & DP_AUX_I2C_READ) == 0)
640 len += msg->size * 8;
641
642 return len;
643 }
644
645 static int drm_dp_aux_reply_duration(const struct drm_dp_aux_msg *msg)
646 {
647 int len = AUX_PRECHARGE_LEN + AUX_SYNC_LEN + AUX_STOP_LEN +
648 AUX_CMD_LEN + AUX_REPLY_PAD_LEN;
649
650 /*
651 * For read we expect what was asked. For writes there will
652 * be 0 or 1 data bytes. Assume 0 for the "best" case.
653 */
654 if (msg->request & DP_AUX_I2C_READ)
655 len += msg->size * 8;
656
657 return len;
658 }
659
660 #define I2C_START_LEN 1
661 #define I2C_STOP_LEN 1
662 #define I2C_ADDR_LEN 9 /* ADDRESS + R/W + ACK/NACK */
663 #define I2C_DATA_LEN 9 /* DATA + ACK/NACK */
664
665 /*
666 * Calculate the length of the i2c transfer in usec, assuming
667 * the i2c bus speed is as specified. Gives the the "worst"
668 * case estimate, ie. successful while as long as possible.
669 * Doesn't account the the "MOT" bit, and instead assumes each
670 * message includes a START, ADDRESS and STOP. Neither does it
671 * account for additional random variables such as clock stretching.
672 */
673 static int drm_dp_i2c_msg_duration(const struct drm_dp_aux_msg *msg,
674 int i2c_speed_khz)
675 {
676 /* AUX bitrate is 1MHz, i2c bitrate as specified */
677 return DIV_ROUND_UP((I2C_START_LEN + I2C_ADDR_LEN +
678 msg->size * I2C_DATA_LEN +
679 I2C_STOP_LEN) * 1000, i2c_speed_khz);
680 }
681
682 /*
683 * Deterine how many retries should be attempted to successfully transfer
684 * the specified message, based on the estimated durations of the
685 * i2c and AUX transfers.
686 */
687 static int drm_dp_i2c_retry_count(const struct drm_dp_aux_msg *msg,
688 int i2c_speed_khz)
689 {
690 int aux_time_us = drm_dp_aux_req_duration(msg) +
691 drm_dp_aux_reply_duration(msg);
692 int i2c_time_us = drm_dp_i2c_msg_duration(msg, i2c_speed_khz);
693
694 return DIV_ROUND_UP(i2c_time_us, aux_time_us + AUX_RETRY_INTERVAL);
695 }
696
697 /*
698 * FIXME currently assumes 10 kHz as some real world devices seem
699 * to require it. We should query/set the speed via DPCD if supported.
700 */
701 static int dp_aux_i2c_speed_khz __read_mostly = 10;
702 module_param_unsafe(dp_aux_i2c_speed_khz, int, 0644);
703 MODULE_PARM_DESC(dp_aux_i2c_speed_khz,
704 "Assumed speed of the i2c bus in kHz, (1-400, default 10)");
705
706 /*
707 * Transfer a single I2C-over-AUX message and handle various error conditions,
708 * retrying the transaction as appropriate. It is assumed that the
709 * &drm_dp_aux.transfer function does not modify anything in the msg other than the
710 * reply field.
711 *
712 * Returns bytes transferred on success, or a negative error code on failure.
713 */
714 static int drm_dp_i2c_do_msg(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
715 {
716 unsigned int retry, defer_i2c;
717 int ret;
718 /*
719 * DP1.2 sections 2.7.7.1.5.6.1 and 2.7.7.1.6.6.1: A DP Source device
720 * is required to retry at least seven times upon receiving AUX_DEFER
721 * before giving up the AUX transaction.
722 *
723 * We also try to account for the i2c bus speed.
724 */
725 int max_retries = max(7, drm_dp_i2c_retry_count(msg, dp_aux_i2c_speed_khz));
726
727 for (retry = 0, defer_i2c = 0; retry < (max_retries + defer_i2c); retry++) {
728 ret = aux->transfer(aux, msg);
729 if (ret < 0) {
730 if (ret == -EBUSY)
731 continue;
732
733 /*
734 * While timeouts can be errors, they're usually normal
735 * behavior (for instance, when a driver tries to
736 * communicate with a non-existant DisplayPort device).
737 * Avoid spamming the kernel log with timeout errors.
738 */
739 if (ret == -ETIMEDOUT)
740 DRM_DEBUG_KMS_RATELIMITED("transaction timed out\n");
741 else
742 DRM_DEBUG_KMS("transaction failed: %d\n", ret);
743
744 return ret;
745 }
746
747
748 switch (msg->reply & DP_AUX_NATIVE_REPLY_MASK) {
749 case DP_AUX_NATIVE_REPLY_ACK:
750 /*
751 * For I2C-over-AUX transactions this isn't enough, we
752 * need to check for the I2C ACK reply.
753 */
754 break;
755
756 case DP_AUX_NATIVE_REPLY_NACK:
757 DRM_DEBUG_KMS("native nack (result=%d, size=%zu)\n", ret, msg->size);
758 return -EREMOTEIO;
759
760 case DP_AUX_NATIVE_REPLY_DEFER:
761 DRM_DEBUG_KMS("native defer\n");
762 /*
763 * We could check for I2C bit rate capabilities and if
764 * available adjust this interval. We could also be
765 * more careful with DP-to-legacy adapters where a
766 * long legacy cable may force very low I2C bit rates.
767 *
768 * For now just defer for long enough to hopefully be
769 * safe for all use-cases.
770 */
771 usleep_range(AUX_RETRY_INTERVAL, AUX_RETRY_INTERVAL + 100);
772 continue;
773
774 default:
775 DRM_ERROR("invalid native reply %#04x\n", msg->reply);
776 return -EREMOTEIO;
777 }
778
779 switch (msg->reply & DP_AUX_I2C_REPLY_MASK) {
780 case DP_AUX_I2C_REPLY_ACK:
781 /*
782 * Both native ACK and I2C ACK replies received. We
783 * can assume the transfer was successful.
784 */
785 if (ret != msg->size)
786 drm_dp_i2c_msg_write_status_update(msg);
787 return ret;
788
789 case DP_AUX_I2C_REPLY_NACK:
790 DRM_DEBUG_KMS("I2C nack (result=%d, size=%zu)\n",
791 ret, msg->size);
792 aux->i2c_nack_count++;
793 return -EREMOTEIO;
794
795 case DP_AUX_I2C_REPLY_DEFER:
796 DRM_DEBUG_KMS("I2C defer\n");
797 /* DP Compliance Test 4.2.2.5 Requirement:
798 * Must have at least 7 retries for I2C defers on the
799 * transaction to pass this test
800 */
801 aux->i2c_defer_count++;
802 if (defer_i2c < 7)
803 defer_i2c++;
804 usleep_range(AUX_RETRY_INTERVAL, AUX_RETRY_INTERVAL + 100);
805 drm_dp_i2c_msg_write_status_update(msg);
806
807 continue;
808
809 default:
810 DRM_ERROR("invalid I2C reply %#04x\n", msg->reply);
811 return -EREMOTEIO;
812 }
813 }
814
815 DRM_DEBUG_KMS("too many retries, giving up\n");
816 return -EREMOTEIO;
817 }
818
819 static void drm_dp_i2c_msg_set_request(struct drm_dp_aux_msg *msg,
820 const struct i2c_msg *i2c_msg)
821 {
822 msg->request = (i2c_msg->flags & I2C_M_RD) ?
823 DP_AUX_I2C_READ : DP_AUX_I2C_WRITE;
824 if (!(i2c_msg->flags & I2C_M_STOP))
825 msg->request |= DP_AUX_I2C_MOT;
826 }
827
828 /*
829 * Keep retrying drm_dp_i2c_do_msg until all data has been transferred.
830 *
831 * Returns an error code on failure, or a recommended transfer size on success.
832 */
833 static int drm_dp_i2c_drain_msg(struct drm_dp_aux *aux, struct drm_dp_aux_msg *orig_msg)
834 {
835 int err, ret = orig_msg->size;
836 struct drm_dp_aux_msg msg = *orig_msg;
837
838 while (msg.size > 0) {
839 err = drm_dp_i2c_do_msg(aux, &msg);
840 if (err <= 0)
841 return err == 0 ? -EPROTO : err;
842
843 if (err < msg.size && err < ret) {
844 DRM_DEBUG_KMS("Partial I2C reply: requested %zu bytes got %d bytes\n",
845 msg.size, err);
846 ret = err;
847 }
848
849 msg.size -= err;
850 msg.buffer += err;
851 }
852
853 return ret;
854 }
855
856 /*
857 * Bizlink designed DP->DVI-D Dual Link adapters require the I2C over AUX
858 * packets to be as large as possible. If not, the I2C transactions never
859 * succeed. Hence the default is maximum.
860 */
861 static int dp_aux_i2c_transfer_size __read_mostly = DP_AUX_MAX_PAYLOAD_BYTES;
862 module_param_unsafe(dp_aux_i2c_transfer_size, int, 0644);
863 MODULE_PARM_DESC(dp_aux_i2c_transfer_size,
864 "Number of bytes to transfer in a single I2C over DP AUX CH message, (1-16, default 16)");
865
866 static int drm_dp_i2c_xfer(struct i2c_adapter *adapter, struct i2c_msg *msgs,
867 int num)
868 {
869 struct drm_dp_aux *aux = adapter->algo_data;
870 unsigned int i, j;
871 unsigned transfer_size;
872 struct drm_dp_aux_msg msg;
873 int err = 0;
874
875 dp_aux_i2c_transfer_size = clamp(dp_aux_i2c_transfer_size, 1, DP_AUX_MAX_PAYLOAD_BYTES);
876
877 memset(&msg, 0, sizeof(msg));
878
879 for (i = 0; i < num; i++) {
880 msg.address = msgs[i].addr;
881 drm_dp_i2c_msg_set_request(&msg, &msgs[i]);
882 /* Send a bare address packet to start the transaction.
883 * Zero sized messages specify an address only (bare
884 * address) transaction.
885 */
886 msg.buffer = NULL;
887 msg.size = 0;
888 err = drm_dp_i2c_do_msg(aux, &msg);
889
890 /*
891 * Reset msg.request in case in case it got
892 * changed into a WRITE_STATUS_UPDATE.
893 */
894 drm_dp_i2c_msg_set_request(&msg, &msgs[i]);
895
896 if (err < 0)
897 break;
898 /* We want each transaction to be as large as possible, but
899 * we'll go to smaller sizes if the hardware gives us a
900 * short reply.
901 */
902 transfer_size = dp_aux_i2c_transfer_size;
903 for (j = 0; j < msgs[i].len; j += msg.size) {
904 msg.buffer = msgs[i].buf + j;
905 msg.size = min(transfer_size, msgs[i].len - j);
906
907 err = drm_dp_i2c_drain_msg(aux, &msg);
908
909 /*
910 * Reset msg.request in case in case it got
911 * changed into a WRITE_STATUS_UPDATE.
912 */
913 drm_dp_i2c_msg_set_request(&msg, &msgs[i]);
914
915 if (err < 0)
916 break;
917 transfer_size = err;
918 }
919 if (err < 0)
920 break;
921 }
922 if (err >= 0)
923 err = num;
924 /* Send a bare address packet to close out the transaction.
925 * Zero sized messages specify an address only (bare
926 * address) transaction.
927 */
928 msg.request &= ~DP_AUX_I2C_MOT;
929 msg.buffer = NULL;
930 msg.size = 0;
931 (void)drm_dp_i2c_do_msg(aux, &msg);
932
933 return err;
934 }
935
936 static const struct i2c_algorithm drm_dp_i2c_algo = {
937 .functionality = drm_dp_i2c_functionality,
938 .master_xfer = drm_dp_i2c_xfer,
939 };
940
941 static struct drm_dp_aux *i2c_to_aux(struct i2c_adapter *i2c)
942 {
943 return container_of(i2c, struct drm_dp_aux, ddc);
944 }
945
946 static void lock_bus(struct i2c_adapter *i2c, unsigned int flags)
947 {
948 mutex_lock(&i2c_to_aux(i2c)->hw_mutex);
949 }
950
951 static int trylock_bus(struct i2c_adapter *i2c, unsigned int flags)
952 {
953 return mutex_trylock(&i2c_to_aux(i2c)->hw_mutex);
954 }
955
956 static void unlock_bus(struct i2c_adapter *i2c, unsigned int flags)
957 {
958 mutex_unlock(&i2c_to_aux(i2c)->hw_mutex);
959 }
960
961 static const struct i2c_lock_operations drm_dp_i2c_lock_ops = {
962 .lock_bus = lock_bus,
963 .trylock_bus = trylock_bus,
964 .unlock_bus = unlock_bus,
965 };
966
967 static int drm_dp_aux_get_crc(struct drm_dp_aux *aux, u8 *crc)
968 {
969 u8 buf, count;
970 int ret;
971
972 ret = drm_dp_dpcd_readb(aux, DP_TEST_SINK, &buf);
973 if (ret < 0)
974 return ret;
975
976 WARN_ON(!(buf & DP_TEST_SINK_START));
977
978 ret = drm_dp_dpcd_readb(aux, DP_TEST_SINK_MISC, &buf);
979 if (ret < 0)
980 return ret;
981
982 count = buf & DP_TEST_COUNT_MASK;
983 if (count == aux->crc_count)
984 return -EAGAIN; /* No CRC yet */
985
986 aux->crc_count = count;
987
988 /*
989 * At DP_TEST_CRC_R_CR, there's 6 bytes containing CRC data, 2 bytes
990 * per component (RGB or CrYCb).
991 */
992 ret = drm_dp_dpcd_read(aux, DP_TEST_CRC_R_CR, crc, 6);
993 if (ret < 0)
994 return ret;
995
996 return 0;
997 }
998
999 static void drm_dp_aux_crc_work(struct work_struct *work)
1000 {
1001 struct drm_dp_aux *aux = container_of(work, struct drm_dp_aux,
1002 crc_work);
1003 struct drm_crtc *crtc;
1004 u8 crc_bytes[6];
1005 uint32_t crcs[3];
1006 int ret;
1007
1008 if (WARN_ON(!aux->crtc))
1009 return;
1010
1011 crtc = aux->crtc;
1012 while (crtc->crc.opened) {
1013 drm_crtc_wait_one_vblank(crtc);
1014 if (!crtc->crc.opened)
1015 break;
1016
1017 ret = drm_dp_aux_get_crc(aux, crc_bytes);
1018 if (ret == -EAGAIN) {
1019 usleep_range(1000, 2000);
1020 ret = drm_dp_aux_get_crc(aux, crc_bytes);
1021 }
1022
1023 if (ret == -EAGAIN) {
1024 DRM_DEBUG_KMS("Get CRC failed after retrying: %d\n",
1025 ret);
1026 continue;
1027 } else if (ret) {
1028 DRM_DEBUG_KMS("Failed to get a CRC: %d\n", ret);
1029 continue;
1030 }
1031
1032 crcs[0] = crc_bytes[0] | crc_bytes[1] << 8;
1033 crcs[1] = crc_bytes[2] | crc_bytes[3] << 8;
1034 crcs[2] = crc_bytes[4] | crc_bytes[5] << 8;
1035 drm_crtc_add_crc_entry(crtc, false, 0, crcs);
1036 }
1037 }
1038
1039 /**
1040 * drm_dp_remote_aux_init() - minimally initialise a remote aux channel
1041 * @aux: DisplayPort AUX channel
1042 *
1043 * Used for remote aux channel in general. Merely initialize the crc work
1044 * struct.
1045 */
1046 void drm_dp_remote_aux_init(struct drm_dp_aux *aux)
1047 {
1048 INIT_WORK(&aux->crc_work, drm_dp_aux_crc_work);
1049 }
1050 EXPORT_SYMBOL(drm_dp_remote_aux_init);
1051
1052 /**
1053 * drm_dp_aux_init() - minimally initialise an aux channel
1054 * @aux: DisplayPort AUX channel
1055 *
1056 * If you need to use the drm_dp_aux's i2c adapter prior to registering it
1057 * with the outside world, call drm_dp_aux_init() first. You must still
1058 * call drm_dp_aux_register() once the connector has been registered to
1059 * allow userspace access to the auxiliary DP channel.
1060 */
1061 void drm_dp_aux_init(struct drm_dp_aux *aux)
1062 {
1063 mutex_init(&aux->hw_mutex);
1064 mutex_init(&aux->cec.lock);
1065 INIT_WORK(&aux->crc_work, drm_dp_aux_crc_work);
1066
1067 aux->ddc.algo = &drm_dp_i2c_algo;
1068 aux->ddc.algo_data = aux;
1069 aux->ddc.retries = 3;
1070
1071 aux->ddc.lock_ops = &drm_dp_i2c_lock_ops;
1072 }
1073 EXPORT_SYMBOL(drm_dp_aux_init);
1074
1075 /**
1076 * drm_dp_aux_register() - initialise and register aux channel
1077 * @aux: DisplayPort AUX channel
1078 *
1079 * Automatically calls drm_dp_aux_init() if this hasn't been done yet.
1080 * This should only be called when the underlying &struct drm_connector is
1081 * initialiazed already. Therefore the best place to call this is from
1082 * &drm_connector_funcs.late_register. Not that drivers which don't follow this
1083 * will Oops when CONFIG_DRM_DP_AUX_CHARDEV is enabled.
1084 *
1085 * Drivers which need to use the aux channel before that point (e.g. at driver
1086 * load time, before drm_dev_register() has been called) need to call
1087 * drm_dp_aux_init().
1088 *
1089 * Returns 0 on success or a negative error code on failure.
1090 */
1091 int drm_dp_aux_register(struct drm_dp_aux *aux)
1092 {
1093 int ret;
1094
1095 if (!aux->ddc.algo)
1096 drm_dp_aux_init(aux);
1097
1098 aux->ddc.class = I2C_CLASS_DDC;
1099 aux->ddc.owner = THIS_MODULE;
1100 aux->ddc.dev.parent = aux->dev;
1101
1102 strlcpy(aux->ddc.name, aux->name ? aux->name : dev_name(aux->dev),
1103 sizeof(aux->ddc.name));
1104
1105 ret = drm_dp_aux_register_devnode(aux);
1106 if (ret)
1107 return ret;
1108
1109 ret = i2c_add_adapter(&aux->ddc);
1110 if (ret) {
1111 drm_dp_aux_unregister_devnode(aux);
1112 return ret;
1113 }
1114
1115 return 0;
1116 }
1117 EXPORT_SYMBOL(drm_dp_aux_register);
1118
1119 /**
1120 * drm_dp_aux_unregister() - unregister an AUX adapter
1121 * @aux: DisplayPort AUX channel
1122 */
1123 void drm_dp_aux_unregister(struct drm_dp_aux *aux)
1124 {
1125 drm_dp_aux_unregister_devnode(aux);
1126 i2c_del_adapter(&aux->ddc);
1127 }
1128 EXPORT_SYMBOL(drm_dp_aux_unregister);
1129
1130 #define PSR_SETUP_TIME(x) [DP_PSR_SETUP_TIME_ ## x >> DP_PSR_SETUP_TIME_SHIFT] = (x)
1131
1132 /**
1133 * drm_dp_psr_setup_time() - PSR setup in time usec
1134 * @psr_cap: PSR capabilities from DPCD
1135 *
1136 * Returns:
1137 * PSR setup time for the panel in microseconds, negative
1138 * error code on failure.
1139 */
1140 int drm_dp_psr_setup_time(const u8 psr_cap[EDP_PSR_RECEIVER_CAP_SIZE])
1141 {
1142 static const u16 psr_setup_time_us[] = {
1143 PSR_SETUP_TIME(330),
1144 PSR_SETUP_TIME(275),
1145 PSR_SETUP_TIME(220),
1146 PSR_SETUP_TIME(165),
1147 PSR_SETUP_TIME(110),
1148 PSR_SETUP_TIME(55),
1149 PSR_SETUP_TIME(0),
1150 };
1151 int i;
1152
1153 i = (psr_cap[1] & DP_PSR_SETUP_TIME_MASK) >> DP_PSR_SETUP_TIME_SHIFT;
1154 if (i >= ARRAY_SIZE(psr_setup_time_us))
1155 return -EINVAL;
1156
1157 return psr_setup_time_us[i];
1158 }
1159 EXPORT_SYMBOL(drm_dp_psr_setup_time);
1160
1161 #undef PSR_SETUP_TIME
1162
1163 /**
1164 * drm_dp_start_crc() - start capture of frame CRCs
1165 * @aux: DisplayPort AUX channel
1166 * @crtc: CRTC displaying the frames whose CRCs are to be captured
1167 *
1168 * Returns 0 on success or a negative error code on failure.
1169 */
1170 int drm_dp_start_crc(struct drm_dp_aux *aux, struct drm_crtc *crtc)
1171 {
1172 u8 buf;
1173 int ret;
1174
1175 ret = drm_dp_dpcd_readb(aux, DP_TEST_SINK, &buf);
1176 if (ret < 0)
1177 return ret;
1178
1179 ret = drm_dp_dpcd_writeb(aux, DP_TEST_SINK, buf | DP_TEST_SINK_START);
1180 if (ret < 0)
1181 return ret;
1182
1183 aux->crc_count = 0;
1184 aux->crtc = crtc;
1185 schedule_work(&aux->crc_work);
1186
1187 return 0;
1188 }
1189 EXPORT_SYMBOL(drm_dp_start_crc);
1190
1191 /**
1192 * drm_dp_stop_crc() - stop capture of frame CRCs
1193 * @aux: DisplayPort AUX channel
1194 *
1195 * Returns 0 on success or a negative error code on failure.
1196 */
1197 int drm_dp_stop_crc(struct drm_dp_aux *aux)
1198 {
1199 u8 buf;
1200 int ret;
1201
1202 ret = drm_dp_dpcd_readb(aux, DP_TEST_SINK, &buf);
1203 if (ret < 0)
1204 return ret;
1205
1206 ret = drm_dp_dpcd_writeb(aux, DP_TEST_SINK, buf & ~DP_TEST_SINK_START);
1207 if (ret < 0)
1208 return ret;
1209
1210 flush_work(&aux->crc_work);
1211 aux->crtc = NULL;
1212
1213 return 0;
1214 }
1215 EXPORT_SYMBOL(drm_dp_stop_crc);
1216
1217 struct dpcd_quirk {
1218 u8 oui[3];
1219 u8 device_id[6];
1220 bool is_branch;
1221 u32 quirks;
1222 };
1223
1224 #define OUI(first, second, third) { (first), (second), (third) }
1225 #define DEVICE_ID(first, second, third, fourth, fifth, sixth) \
1226 { (first), (second), (third), (fourth), (fifth), (sixth) }
1227
1228 #define DEVICE_ID_ANY DEVICE_ID(0, 0, 0, 0, 0, 0)
1229
1230 static const struct dpcd_quirk dpcd_quirk_list[] = {
1231 /* Analogix 7737 needs reduced M and N at HBR2 link rates */
1232 { OUI(0x00, 0x22, 0xb9), DEVICE_ID_ANY, true, BIT(DP_DPCD_QUIRK_CONSTANT_N) },
1233 /* LG LP140WF6-SPM1 eDP panel */
1234 { OUI(0x00, 0x22, 0xb9), DEVICE_ID('s', 'i', 'v', 'a', 'r', 'T'), false, BIT(DP_DPCD_QUIRK_CONSTANT_N) },
1235 /* Apple panels need some additional handling to support PSR */
1236 { OUI(0x00, 0x10, 0xfa), DEVICE_ID_ANY, false, BIT(DP_DPCD_QUIRK_NO_PSR) },
1237 /* CH7511 seems to leave SINK_COUNT zeroed */
1238 { OUI(0x00, 0x00, 0x00), DEVICE_ID('C', 'H', '7', '5', '1', '1'), false, BIT(DP_DPCD_QUIRK_NO_SINK_COUNT) },
1239 /* Synaptics DP1.4 MST hubs can support DSC without virtual DPCD */
1240 { OUI(0x90, 0xCC, 0x24), DEVICE_ID_ANY, true, BIT(DP_DPCD_QUIRK_DSC_WITHOUT_VIRTUAL_DPCD) },
1241 /* Apple MacBookPro 2017 15 inch eDP Retina panel reports too low DP_MAX_LINK_RATE */
1242 { OUI(0x00, 0x10, 0xfa), DEVICE_ID(101, 68, 21, 101, 98, 97), false, BIT(DP_DPCD_QUIRK_CAN_DO_MAX_LINK_RATE_3_24_GBPS) },
1243 };
1244
1245 #undef OUI
1246
1247 /*
1248 * Get a bit mask of DPCD quirks for the sink/branch device identified by
1249 * ident. The quirk data is shared but it's up to the drivers to act on the
1250 * data.
1251 *
1252 * For now, only the OUI (first three bytes) is used, but this may be extended
1253 * to device identification string and hardware/firmware revisions later.
1254 */
1255 static u32
1256 drm_dp_get_quirks(const struct drm_dp_dpcd_ident *ident, bool is_branch)
1257 {
1258 const struct dpcd_quirk *quirk;
1259 u32 quirks = 0;
1260 int i;
1261 u8 any_device[] = DEVICE_ID_ANY;
1262
1263 for (i = 0; i < ARRAY_SIZE(dpcd_quirk_list); i++) {
1264 quirk = &dpcd_quirk_list[i];
1265
1266 if (quirk->is_branch != is_branch)
1267 continue;
1268
1269 if (memcmp(quirk->oui, ident->oui, sizeof(ident->oui)) != 0)
1270 continue;
1271
1272 if (memcmp(quirk->device_id, any_device, sizeof(any_device)) != 0 &&
1273 memcmp(quirk->device_id, ident->device_id, sizeof(ident->device_id)) != 0)
1274 continue;
1275
1276 quirks |= quirk->quirks;
1277 }
1278
1279 return quirks;
1280 }
1281
1282 #undef DEVICE_ID_ANY
1283 #undef DEVICE_ID
1284
1285 struct edid_quirk {
1286 u8 mfg_id[2];
1287 u8 prod_id[2];
1288 u32 quirks;
1289 };
1290
1291 #define MFG(first, second) { (first), (second) }
1292 #define PROD_ID(first, second) { (first), (second) }
1293
1294 /*
1295 * Some devices have unreliable OUIDs where they don't set the device ID
1296 * correctly, and as a result we need to use the EDID for finding additional
1297 * DP quirks in such cases.
1298 */
1299 static const struct edid_quirk edid_quirk_list[] = {
1300 /* Optional 4K AMOLED panel in the ThinkPad X1 Extreme 2nd Generation
1301 * only supports DPCD backlight controls
1302 */
1303 { MFG(0x4c, 0x83), PROD_ID(0x41, 0x41), BIT(DP_QUIRK_FORCE_DPCD_BACKLIGHT) },
1304 /*
1305 * Some Dell CML 2020 systems have panels support both AUX and PWM
1306 * backlight control, and some only support AUX backlight control. All
1307 * said panels start up in AUX mode by default, and we don't have any
1308 * support for disabling HDR mode on these panels which would be
1309 * required to switch to PWM backlight control mode (plus, I'm not
1310 * even sure we want PWM backlight controls over DPCD backlight
1311 * controls anyway...). Until we have a better way of detecting these,
1312 * force DPCD backlight mode on all of them.
1313 */
1314 { MFG(0x06, 0xaf), PROD_ID(0x9b, 0x32), BIT(DP_QUIRK_FORCE_DPCD_BACKLIGHT) },
1315 { MFG(0x06, 0xaf), PROD_ID(0xeb, 0x41), BIT(DP_QUIRK_FORCE_DPCD_BACKLIGHT) },
1316 { MFG(0x4d, 0x10), PROD_ID(0xc7, 0x14), BIT(DP_QUIRK_FORCE_DPCD_BACKLIGHT) },
1317 { MFG(0x4d, 0x10), PROD_ID(0xe6, 0x14), BIT(DP_QUIRK_FORCE_DPCD_BACKLIGHT) },
1318 { MFG(0x4c, 0x83), PROD_ID(0x47, 0x41), BIT(DP_QUIRK_FORCE_DPCD_BACKLIGHT) },
1319 };
1320
1321 #undef MFG
1322 #undef PROD_ID
1323
1324 /**
1325 * drm_dp_get_edid_quirks() - Check the EDID of a DP device to find additional
1326 * DP-specific quirks
1327 * @edid: The EDID to check
1328 *
1329 * While OUIDs are meant to be used to recognize a DisplayPort device, a lot
1330 * of manufacturers don't seem to like following standards and neglect to fill
1331 * the dev-ID in, making it impossible to only use OUIDs for determining
1332 * quirks in some cases. This function can be used to check the EDID and look
1333 * up any additional DP quirks. The bits returned by this function correspond
1334 * to the quirk bits in &drm_dp_quirk.
1335 *
1336 * Returns: a bitmask of quirks, if any. The driver can check this using
1337 * drm_dp_has_quirk().
1338 */
1339 u32 drm_dp_get_edid_quirks(const struct edid *edid)
1340 {
1341 const struct edid_quirk *quirk;
1342 u32 quirks = 0;
1343 int i;
1344
1345 if (!edid)
1346 return 0;
1347
1348 for (i = 0; i < ARRAY_SIZE(edid_quirk_list); i++) {
1349 quirk = &edid_quirk_list[i];
1350 if (memcmp(quirk->mfg_id, edid->mfg_id,
1351 sizeof(edid->mfg_id)) == 0 &&
1352 memcmp(quirk->prod_id, edid->prod_code,
1353 sizeof(edid->prod_code)) == 0)
1354 quirks |= quirk->quirks;
1355 }
1356
1357 DRM_DEBUG_KMS("DP sink: EDID mfg %*phD prod-ID %*phD quirks: 0x%04x\n",
1358 (int)sizeof(edid->mfg_id), edid->mfg_id,
1359 (int)sizeof(edid->prod_code), edid->prod_code, quirks);
1360
1361 return quirks;
1362 }
1363 EXPORT_SYMBOL(drm_dp_get_edid_quirks);
1364
1365 /**
1366 * drm_dp_read_desc - read sink/branch descriptor from DPCD
1367 * @aux: DisplayPort AUX channel
1368 * @desc: Device decriptor to fill from DPCD
1369 * @is_branch: true for branch devices, false for sink devices
1370 *
1371 * Read DPCD 0x400 (sink) or 0x500 (branch) into @desc. Also debug log the
1372 * identification.
1373 *
1374 * Returns 0 on success or a negative error code on failure.
1375 */
1376 int drm_dp_read_desc(struct drm_dp_aux *aux, struct drm_dp_desc *desc,
1377 bool is_branch)
1378 {
1379 struct drm_dp_dpcd_ident *ident = &desc->ident;
1380 unsigned int offset = is_branch ? DP_BRANCH_OUI : DP_SINK_OUI;
1381 int ret, dev_id_len;
1382
1383 ret = drm_dp_dpcd_read(aux, offset, ident, sizeof(*ident));
1384 if (ret < 0)
1385 return ret;
1386
1387 desc->quirks = drm_dp_get_quirks(ident, is_branch);
1388
1389 dev_id_len = strnlen(ident->device_id, sizeof(ident->device_id));
1390
1391 DRM_DEBUG_KMS("DP %s: OUI %*phD dev-ID %*pE HW-rev %d.%d SW-rev %d.%d quirks 0x%04x\n",
1392 is_branch ? "branch" : "sink",
1393 (int)sizeof(ident->oui), ident->oui,
1394 dev_id_len, ident->device_id,
1395 ident->hw_rev >> 4, ident->hw_rev & 0xf,
1396 ident->sw_major_rev, ident->sw_minor_rev,
1397 desc->quirks);
1398
1399 return 0;
1400 }
1401 EXPORT_SYMBOL(drm_dp_read_desc);
1402
1403 /**
1404 * drm_dp_dsc_sink_max_slice_count() - Get the max slice count
1405 * supported by the DSC sink.
1406 * @dsc_dpcd: DSC capabilities from DPCD
1407 * @is_edp: true if its eDP, false for DP
1408 *
1409 * Read the slice capabilities DPCD register from DSC sink to get
1410 * the maximum slice count supported. This is used to populate
1411 * the DSC parameters in the &struct drm_dsc_config by the driver.
1412 * Driver creates an infoframe using these parameters to populate
1413 * &struct drm_dsc_pps_infoframe. These are sent to the sink using DSC
1414 * infoframe using the helper function drm_dsc_pps_infoframe_pack()
1415 *
1416 * Returns:
1417 * Maximum slice count supported by DSC sink or 0 its invalid
1418 */
1419 u8 drm_dp_dsc_sink_max_slice_count(const u8 dsc_dpcd[DP_DSC_RECEIVER_CAP_SIZE],
1420 bool is_edp)
1421 {
1422 u8 slice_cap1 = dsc_dpcd[DP_DSC_SLICE_CAP_1 - DP_DSC_SUPPORT];
1423
1424 if (is_edp) {
1425 /* For eDP, register DSC_SLICE_CAPABILITIES_1 gives slice count */
1426 if (slice_cap1 & DP_DSC_4_PER_DP_DSC_SINK)
1427 return 4;
1428 if (slice_cap1 & DP_DSC_2_PER_DP_DSC_SINK)
1429 return 2;
1430 if (slice_cap1 & DP_DSC_1_PER_DP_DSC_SINK)
1431 return 1;
1432 } else {
1433 /* For DP, use values from DSC_SLICE_CAP_1 and DSC_SLICE_CAP2 */
1434 u8 slice_cap2 = dsc_dpcd[DP_DSC_SLICE_CAP_2 - DP_DSC_SUPPORT];
1435
1436 if (slice_cap2 & DP_DSC_24_PER_DP_DSC_SINK)
1437 return 24;
1438 if (slice_cap2 & DP_DSC_20_PER_DP_DSC_SINK)
1439 return 20;
1440 if (slice_cap2 & DP_DSC_16_PER_DP_DSC_SINK)
1441 return 16;
1442 if (slice_cap1 & DP_DSC_12_PER_DP_DSC_SINK)
1443 return 12;
1444 if (slice_cap1 & DP_DSC_10_PER_DP_DSC_SINK)
1445 return 10;
1446 if (slice_cap1 & DP_DSC_8_PER_DP_DSC_SINK)
1447 return 8;
1448 if (slice_cap1 & DP_DSC_6_PER_DP_DSC_SINK)
1449 return 6;
1450 if (slice_cap1 & DP_DSC_4_PER_DP_DSC_SINK)
1451 return 4;
1452 if (slice_cap1 & DP_DSC_2_PER_DP_DSC_SINK)
1453 return 2;
1454 if (slice_cap1 & DP_DSC_1_PER_DP_DSC_SINK)
1455 return 1;
1456 }
1457
1458 return 0;
1459 }
1460 EXPORT_SYMBOL(drm_dp_dsc_sink_max_slice_count);
1461
1462 /**
1463 * drm_dp_dsc_sink_line_buf_depth() - Get the line buffer depth in bits
1464 * @dsc_dpcd: DSC capabilities from DPCD
1465 *
1466 * Read the DSC DPCD register to parse the line buffer depth in bits which is
1467 * number of bits of precision within the decoder line buffer supported by
1468 * the DSC sink. This is used to populate the DSC parameters in the
1469 * &struct drm_dsc_config by the driver.
1470 * Driver creates an infoframe using these parameters to populate
1471 * &struct drm_dsc_pps_infoframe. These are sent to the sink using DSC
1472 * infoframe using the helper function drm_dsc_pps_infoframe_pack()
1473 *
1474 * Returns:
1475 * Line buffer depth supported by DSC panel or 0 its invalid
1476 */
1477 u8 drm_dp_dsc_sink_line_buf_depth(const u8 dsc_dpcd[DP_DSC_RECEIVER_CAP_SIZE])
1478 {
1479 u8 line_buf_depth = dsc_dpcd[DP_DSC_LINE_BUF_BIT_DEPTH - DP_DSC_SUPPORT];
1480
1481 switch (line_buf_depth & DP_DSC_LINE_BUF_BIT_DEPTH_MASK) {
1482 case DP_DSC_LINE_BUF_BIT_DEPTH_9:
1483 return 9;
1484 case DP_DSC_LINE_BUF_BIT_DEPTH_10:
1485 return 10;
1486 case DP_DSC_LINE_BUF_BIT_DEPTH_11:
1487 return 11;
1488 case DP_DSC_LINE_BUF_BIT_DEPTH_12:
1489 return 12;
1490 case DP_DSC_LINE_BUF_BIT_DEPTH_13:
1491 return 13;
1492 case DP_DSC_LINE_BUF_BIT_DEPTH_14:
1493 return 14;
1494 case DP_DSC_LINE_BUF_BIT_DEPTH_15:
1495 return 15;
1496 case DP_DSC_LINE_BUF_BIT_DEPTH_16:
1497 return 16;
1498 case DP_DSC_LINE_BUF_BIT_DEPTH_8:
1499 return 8;
1500 }
1501
1502 return 0;
1503 }
1504 EXPORT_SYMBOL(drm_dp_dsc_sink_line_buf_depth);
1505
1506 /**
1507 * drm_dp_dsc_sink_supported_input_bpcs() - Get all the input bits per component
1508 * values supported by the DSC sink.
1509 * @dsc_dpcd: DSC capabilities from DPCD
1510 * @dsc_bpc: An array to be filled by this helper with supported
1511 * input bpcs.
1512 *
1513 * Read the DSC DPCD from the sink device to parse the supported bits per
1514 * component values. This is used to populate the DSC parameters
1515 * in the &struct drm_dsc_config by the driver.
1516 * Driver creates an infoframe using these parameters to populate
1517 * &struct drm_dsc_pps_infoframe. These are sent to the sink using DSC
1518 * infoframe using the helper function drm_dsc_pps_infoframe_pack()
1519 *
1520 * Returns:
1521 * Number of input BPC values parsed from the DPCD
1522 */
1523 int drm_dp_dsc_sink_supported_input_bpcs(const u8 dsc_dpcd[DP_DSC_RECEIVER_CAP_SIZE],
1524 u8 dsc_bpc[3])
1525 {
1526 int num_bpc = 0;
1527 u8 color_depth = dsc_dpcd[DP_DSC_DEC_COLOR_DEPTH_CAP - DP_DSC_SUPPORT];
1528
1529 if (color_depth & DP_DSC_12_BPC)
1530 dsc_bpc[num_bpc++] = 12;
1531 if (color_depth & DP_DSC_10_BPC)
1532 dsc_bpc[num_bpc++] = 10;
1533 if (color_depth & DP_DSC_8_BPC)
1534 dsc_bpc[num_bpc++] = 8;
1535
1536 return num_bpc;
1537 }
1538 EXPORT_SYMBOL(drm_dp_dsc_sink_supported_input_bpcs);
1539
1540 /**
1541 * drm_dp_get_phy_test_pattern() - get the requested pattern from the sink.
1542 * @aux: DisplayPort AUX channel
1543 * @data: DP phy compliance test parameters.
1544 *
1545 * Returns 0 on success or a negative error code on failure.
1546 */
1547 int drm_dp_get_phy_test_pattern(struct drm_dp_aux *aux,
1548 struct drm_dp_phy_test_params *data)
1549 {
1550 int err;
1551 u8 rate, lanes;
1552
1553 err = drm_dp_dpcd_readb(aux, DP_TEST_LINK_RATE, &rate);
1554 if (err < 0)
1555 return err;
1556 data->link_rate = drm_dp_bw_code_to_link_rate(rate);
1557
1558 err = drm_dp_dpcd_readb(aux, DP_TEST_LANE_COUNT, &lanes);
1559 if (err < 0)
1560 return err;
1561 data->num_lanes = lanes & DP_MAX_LANE_COUNT_MASK;
1562
1563 if (lanes & DP_ENHANCED_FRAME_CAP)
1564 data->enhanced_frame_cap = true;
1565
1566 err = drm_dp_dpcd_readb(aux, DP_PHY_TEST_PATTERN, &data->phy_pattern);
1567 if (err < 0)
1568 return err;
1569
1570 switch (data->phy_pattern) {
1571 case DP_PHY_TEST_PATTERN_80BIT_CUSTOM:
1572 err = drm_dp_dpcd_read(aux, DP_TEST_80BIT_CUSTOM_PATTERN_7_0,
1573 &data->custom80, sizeof(data->custom80));
1574 if (err < 0)
1575 return err;
1576
1577 break;
1578 case DP_PHY_TEST_PATTERN_CP2520:
1579 err = drm_dp_dpcd_read(aux, DP_TEST_HBR2_SCRAMBLER_RESET,
1580 &data->hbr2_reset,
1581 sizeof(data->hbr2_reset));
1582 if (err < 0)
1583 return err;
1584 }
1585
1586 return 0;
1587 }
1588 EXPORT_SYMBOL(drm_dp_get_phy_test_pattern);
1589
1590 /**
1591 * drm_dp_set_phy_test_pattern() - set the pattern to the sink.
1592 * @aux: DisplayPort AUX channel
1593 * @data: DP phy compliance test parameters.
1594 *
1595 * Returns 0 on success or a negative error code on failure.
1596 */
1597 int drm_dp_set_phy_test_pattern(struct drm_dp_aux *aux,
1598 struct drm_dp_phy_test_params *data, u8 dp_rev)
1599 {
1600 int err, i;
1601 u8 link_config[2];
1602 u8 test_pattern;
1603
1604 link_config[0] = drm_dp_link_rate_to_bw_code(data->link_rate);
1605 link_config[1] = data->num_lanes;
1606 if (data->enhanced_frame_cap)
1607 link_config[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
1608 err = drm_dp_dpcd_write(aux, DP_LINK_BW_SET, link_config, 2);
1609 if (err < 0)
1610 return err;
1611
1612 test_pattern = data->phy_pattern;
1613 if (dp_rev < 0x12) {
1614 test_pattern = (test_pattern << 2) &
1615 DP_LINK_QUAL_PATTERN_11_MASK;
1616 err = drm_dp_dpcd_writeb(aux, DP_TRAINING_PATTERN_SET,
1617 test_pattern);
1618 if (err < 0)
1619 return err;
1620 } else {
1621 for (i = 0; i < data->num_lanes; i++) {
1622 err = drm_dp_dpcd_writeb(aux,
1623 DP_LINK_QUAL_LANE0_SET + i,
1624 test_pattern);
1625 if (err < 0)
1626 return err;
1627 }
1628 }
1629
1630 return 0;
1631 }
1632 EXPORT_SYMBOL(drm_dp_set_phy_test_pattern);
1633
1634 static const char *dp_pixelformat_get_name(enum dp_pixelformat pixelformat)
1635 {
1636 if (pixelformat < 0 || pixelformat > DP_PIXELFORMAT_RESERVED)
1637 return "Invalid";
1638
1639 switch (pixelformat) {
1640 case DP_PIXELFORMAT_RGB:
1641 return "RGB";
1642 case DP_PIXELFORMAT_YUV444:
1643 return "YUV444";
1644 case DP_PIXELFORMAT_YUV422:
1645 return "YUV422";
1646 case DP_PIXELFORMAT_YUV420:
1647 return "YUV420";
1648 case DP_PIXELFORMAT_Y_ONLY:
1649 return "Y_ONLY";
1650 case DP_PIXELFORMAT_RAW:
1651 return "RAW";
1652 default:
1653 return "Reserved";
1654 }
1655 }
1656
1657 static const char *dp_colorimetry_get_name(enum dp_pixelformat pixelformat,
1658 enum dp_colorimetry colorimetry)
1659 {
1660 if (pixelformat < 0 || pixelformat > DP_PIXELFORMAT_RESERVED)
1661 return "Invalid";
1662
1663 switch (colorimetry) {
1664 case DP_COLORIMETRY_DEFAULT:
1665 switch (pixelformat) {
1666 case DP_PIXELFORMAT_RGB:
1667 return "sRGB";
1668 case DP_PIXELFORMAT_YUV444:
1669 case DP_PIXELFORMAT_YUV422:
1670 case DP_PIXELFORMAT_YUV420:
1671 return "BT.601";
1672 case DP_PIXELFORMAT_Y_ONLY:
1673 return "DICOM PS3.14";
1674 case DP_PIXELFORMAT_RAW:
1675 return "Custom Color Profile";
1676 default:
1677 return "Reserved";
1678 }
1679 case DP_COLORIMETRY_RGB_WIDE_FIXED: /* and DP_COLORIMETRY_BT709_YCC */
1680 switch (pixelformat) {
1681 case DP_PIXELFORMAT_RGB:
1682 return "Wide Fixed";
1683 case DP_PIXELFORMAT_YUV444:
1684 case DP_PIXELFORMAT_YUV422:
1685 case DP_PIXELFORMAT_YUV420:
1686 return "BT.709";
1687 default:
1688 return "Reserved";
1689 }
1690 case DP_COLORIMETRY_RGB_WIDE_FLOAT: /* and DP_COLORIMETRY_XVYCC_601 */
1691 switch (pixelformat) {
1692 case DP_PIXELFORMAT_RGB:
1693 return "Wide Float";
1694 case DP_PIXELFORMAT_YUV444:
1695 case DP_PIXELFORMAT_YUV422:
1696 case DP_PIXELFORMAT_YUV420:
1697 return "xvYCC 601";
1698 default:
1699 return "Reserved";
1700 }
1701 case DP_COLORIMETRY_OPRGB: /* and DP_COLORIMETRY_XVYCC_709 */
1702 switch (pixelformat) {
1703 case DP_PIXELFORMAT_RGB:
1704 return "OpRGB";
1705 case DP_PIXELFORMAT_YUV444:
1706 case DP_PIXELFORMAT_YUV422:
1707 case DP_PIXELFORMAT_YUV420:
1708 return "xvYCC 709";
1709 default:
1710 return "Reserved";
1711 }
1712 case DP_COLORIMETRY_DCI_P3_RGB: /* and DP_COLORIMETRY_SYCC_601 */
1713 switch (pixelformat) {
1714 case DP_PIXELFORMAT_RGB:
1715 return "DCI-P3";
1716 case DP_PIXELFORMAT_YUV444:
1717 case DP_PIXELFORMAT_YUV422:
1718 case DP_PIXELFORMAT_YUV420:
1719 return "sYCC 601";
1720 default:
1721 return "Reserved";
1722 }
1723 case DP_COLORIMETRY_RGB_CUSTOM: /* and DP_COLORIMETRY_OPYCC_601 */
1724 switch (pixelformat) {
1725 case DP_PIXELFORMAT_RGB:
1726 return "Custom Profile";
1727 case DP_PIXELFORMAT_YUV444:
1728 case DP_PIXELFORMAT_YUV422:
1729 case DP_PIXELFORMAT_YUV420:
1730 return "OpYCC 601";
1731 default:
1732 return "Reserved";
1733 }
1734 case DP_COLORIMETRY_BT2020_RGB: /* and DP_COLORIMETRY_BT2020_CYCC */
1735 switch (pixelformat) {
1736 case DP_PIXELFORMAT_RGB:
1737 return "BT.2020 RGB";
1738 case DP_PIXELFORMAT_YUV444:
1739 case DP_PIXELFORMAT_YUV422:
1740 case DP_PIXELFORMAT_YUV420:
1741 return "BT.2020 CYCC";
1742 default:
1743 return "Reserved";
1744 }
1745 case DP_COLORIMETRY_BT2020_YCC:
1746 switch (pixelformat) {
1747 case DP_PIXELFORMAT_YUV444:
1748 case DP_PIXELFORMAT_YUV422:
1749 case DP_PIXELFORMAT_YUV420:
1750 return "BT.2020 YCC";
1751 default:
1752 return "Reserved";
1753 }
1754 default:
1755 return "Invalid";
1756 }
1757 }
1758
1759 static const char *dp_dynamic_range_get_name(enum dp_dynamic_range dynamic_range)
1760 {
1761 switch (dynamic_range) {
1762 case DP_DYNAMIC_RANGE_VESA:
1763 return "VESA range";
1764 case DP_DYNAMIC_RANGE_CTA:
1765 return "CTA range";
1766 default:
1767 return "Invalid";
1768 }
1769 }
1770
1771 static const char *dp_content_type_get_name(enum dp_content_type content_type)
1772 {
1773 switch (content_type) {
1774 case DP_CONTENT_TYPE_NOT_DEFINED:
1775 return "Not defined";
1776 case DP_CONTENT_TYPE_GRAPHICS:
1777 return "Graphics";
1778 case DP_CONTENT_TYPE_PHOTO:
1779 return "Photo";
1780 case DP_CONTENT_TYPE_VIDEO:
1781 return "Video";
1782 case DP_CONTENT_TYPE_GAME:
1783 return "Game";
1784 default:
1785 return "Reserved";
1786 }
1787 }
1788
1789 void drm_dp_vsc_sdp_log(const char *level, struct device *dev,
1790 const struct drm_dp_vsc_sdp *vsc)
1791 {
1792 #define DP_SDP_LOG(fmt, ...) dev_printk(level, dev, fmt, ##__VA_ARGS__)
1793 DP_SDP_LOG("DP SDP: %s, revision %u, length %u\n", "VSC",
1794 vsc->revision, vsc->length);
1795 DP_SDP_LOG(" pixelformat: %s\n",
1796 dp_pixelformat_get_name(vsc->pixelformat));
1797 DP_SDP_LOG(" colorimetry: %s\n",
1798 dp_colorimetry_get_name(vsc->pixelformat, vsc->colorimetry));
1799 DP_SDP_LOG(" bpc: %u\n", vsc->bpc);
1800 DP_SDP_LOG(" dynamic range: %s\n",
1801 dp_dynamic_range_get_name(vsc->dynamic_range));
1802 DP_SDP_LOG(" content type: %s\n",
1803 dp_content_type_get_name(vsc->content_type));
1804 #undef DP_SDP_LOG
1805 }
1806 EXPORT_SYMBOL(drm_dp_vsc_sdp_log);