]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/gpu/drm/drm_drv.c
Merge branch 'for-linus' of git://git.kernel.dk/linux-block
[mirror_ubuntu-artful-kernel.git] / drivers / gpu / drm / drm_drv.c
1 /*
2 * Created: Fri Jan 19 10:48:35 2001 by faith@acm.org
3 *
4 * Copyright 2001 VA Linux Systems, Inc., Sunnyvale, California.
5 * All Rights Reserved.
6 *
7 * Author Rickard E. (Rik) Faith <faith@valinux.com>
8 *
9 * Permission is hereby granted, free of charge, to any person obtaining a
10 * copy of this software and associated documentation files (the "Software"),
11 * to deal in the Software without restriction, including without limitation
12 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
13 * and/or sell copies of the Software, and to permit persons to whom the
14 * Software is furnished to do so, subject to the following conditions:
15 *
16 * The above copyright notice and this permission notice (including the next
17 * paragraph) shall be included in all copies or substantial portions of the
18 * Software.
19 *
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
23 * PRECISION INSIGHT AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
24 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
25 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
26 * DEALINGS IN THE SOFTWARE.
27 */
28
29 #include <linux/debugfs.h>
30 #include <linux/fs.h>
31 #include <linux/module.h>
32 #include <linux/moduleparam.h>
33 #include <linux/mount.h>
34 #include <linux/slab.h>
35
36 #include <drm/drm_drv.h>
37 #include <drm/drmP.h>
38
39 #include "drm_crtc_internal.h"
40 #include "drm_legacy.h"
41 #include "drm_internal.h"
42 #include "drm_crtc_internal.h"
43
44 /*
45 * drm_debug: Enable debug output.
46 * Bitmask of DRM_UT_x. See include/drm/drmP.h for details.
47 */
48 unsigned int drm_debug = 0;
49 EXPORT_SYMBOL(drm_debug);
50
51 MODULE_AUTHOR("Gareth Hughes, Leif Delgass, José Fonseca, Jon Smirl");
52 MODULE_DESCRIPTION("DRM shared core routines");
53 MODULE_LICENSE("GPL and additional rights");
54 MODULE_PARM_DESC(debug, "Enable debug output, where each bit enables a debug category.\n"
55 "\t\tBit 0 (0x01) will enable CORE messages (drm core code)\n"
56 "\t\tBit 1 (0x02) will enable DRIVER messages (drm controller code)\n"
57 "\t\tBit 2 (0x04) will enable KMS messages (modesetting code)\n"
58 "\t\tBit 3 (0x08) will enable PRIME messages (prime code)\n"
59 "\t\tBit 4 (0x10) will enable ATOMIC messages (atomic code)\n"
60 "\t\tBit 5 (0x20) will enable VBL messages (vblank code)");
61 module_param_named(debug, drm_debug, int, 0600);
62
63 static DEFINE_SPINLOCK(drm_minor_lock);
64 static struct idr drm_minors_idr;
65
66 static struct dentry *drm_debugfs_root;
67
68 #define DRM_PRINTK_FMT "[" DRM_NAME ":%s]%s %pV"
69
70 void drm_dev_printk(const struct device *dev, const char *level,
71 unsigned int category, const char *function_name,
72 const char *prefix, const char *format, ...)
73 {
74 struct va_format vaf;
75 va_list args;
76
77 if (category != DRM_UT_NONE && !(drm_debug & category))
78 return;
79
80 va_start(args, format);
81 vaf.fmt = format;
82 vaf.va = &args;
83
84 if (dev)
85 dev_printk(level, dev, DRM_PRINTK_FMT, function_name, prefix,
86 &vaf);
87 else
88 printk("%s" DRM_PRINTK_FMT, level, function_name, prefix, &vaf);
89
90 va_end(args);
91 }
92 EXPORT_SYMBOL(drm_dev_printk);
93
94 void drm_printk(const char *level, unsigned int category,
95 const char *format, ...)
96 {
97 struct va_format vaf;
98 va_list args;
99
100 if (category != DRM_UT_NONE && !(drm_debug & category))
101 return;
102
103 va_start(args, format);
104 vaf.fmt = format;
105 vaf.va = &args;
106
107 printk("%s" "[" DRM_NAME ":%ps]%s %pV",
108 level, __builtin_return_address(0),
109 strcmp(level, KERN_ERR) == 0 ? " *ERROR*" : "", &vaf);
110
111 va_end(args);
112 }
113 EXPORT_SYMBOL(drm_printk);
114
115 /*
116 * DRM Minors
117 * A DRM device can provide several char-dev interfaces on the DRM-Major. Each
118 * of them is represented by a drm_minor object. Depending on the capabilities
119 * of the device-driver, different interfaces are registered.
120 *
121 * Minors can be accessed via dev->$minor_name. This pointer is either
122 * NULL or a valid drm_minor pointer and stays valid as long as the device is
123 * valid. This means, DRM minors have the same life-time as the underlying
124 * device. However, this doesn't mean that the minor is active. Minors are
125 * registered and unregistered dynamically according to device-state.
126 */
127
128 static struct drm_minor **drm_minor_get_slot(struct drm_device *dev,
129 unsigned int type)
130 {
131 switch (type) {
132 case DRM_MINOR_PRIMARY:
133 return &dev->primary;
134 case DRM_MINOR_RENDER:
135 return &dev->render;
136 case DRM_MINOR_CONTROL:
137 return &dev->control;
138 default:
139 return NULL;
140 }
141 }
142
143 static int drm_minor_alloc(struct drm_device *dev, unsigned int type)
144 {
145 struct drm_minor *minor;
146 unsigned long flags;
147 int r;
148
149 minor = kzalloc(sizeof(*minor), GFP_KERNEL);
150 if (!minor)
151 return -ENOMEM;
152
153 minor->type = type;
154 minor->dev = dev;
155
156 idr_preload(GFP_KERNEL);
157 spin_lock_irqsave(&drm_minor_lock, flags);
158 r = idr_alloc(&drm_minors_idr,
159 NULL,
160 64 * type,
161 64 * (type + 1),
162 GFP_NOWAIT);
163 spin_unlock_irqrestore(&drm_minor_lock, flags);
164 idr_preload_end();
165
166 if (r < 0)
167 goto err_free;
168
169 minor->index = r;
170
171 minor->kdev = drm_sysfs_minor_alloc(minor);
172 if (IS_ERR(minor->kdev)) {
173 r = PTR_ERR(minor->kdev);
174 goto err_index;
175 }
176
177 *drm_minor_get_slot(dev, type) = minor;
178 return 0;
179
180 err_index:
181 spin_lock_irqsave(&drm_minor_lock, flags);
182 idr_remove(&drm_minors_idr, minor->index);
183 spin_unlock_irqrestore(&drm_minor_lock, flags);
184 err_free:
185 kfree(minor);
186 return r;
187 }
188
189 static void drm_minor_free(struct drm_device *dev, unsigned int type)
190 {
191 struct drm_minor **slot, *minor;
192 unsigned long flags;
193
194 slot = drm_minor_get_slot(dev, type);
195 minor = *slot;
196 if (!minor)
197 return;
198
199 put_device(minor->kdev);
200
201 spin_lock_irqsave(&drm_minor_lock, flags);
202 idr_remove(&drm_minors_idr, minor->index);
203 spin_unlock_irqrestore(&drm_minor_lock, flags);
204
205 kfree(minor);
206 *slot = NULL;
207 }
208
209 static int drm_minor_register(struct drm_device *dev, unsigned int type)
210 {
211 struct drm_minor *minor;
212 unsigned long flags;
213 int ret;
214
215 DRM_DEBUG("\n");
216
217 minor = *drm_minor_get_slot(dev, type);
218 if (!minor)
219 return 0;
220
221 ret = drm_debugfs_init(minor, minor->index, drm_debugfs_root);
222 if (ret) {
223 DRM_ERROR("DRM: Failed to initialize /sys/kernel/debug/dri.\n");
224 goto err_debugfs;
225 }
226
227 ret = device_add(minor->kdev);
228 if (ret)
229 goto err_debugfs;
230
231 /* replace NULL with @minor so lookups will succeed from now on */
232 spin_lock_irqsave(&drm_minor_lock, flags);
233 idr_replace(&drm_minors_idr, minor, minor->index);
234 spin_unlock_irqrestore(&drm_minor_lock, flags);
235
236 DRM_DEBUG("new minor registered %d\n", minor->index);
237 return 0;
238
239 err_debugfs:
240 drm_debugfs_cleanup(minor);
241 return ret;
242 }
243
244 static void drm_minor_unregister(struct drm_device *dev, unsigned int type)
245 {
246 struct drm_minor *minor;
247 unsigned long flags;
248
249 minor = *drm_minor_get_slot(dev, type);
250 if (!minor || !device_is_registered(minor->kdev))
251 return;
252
253 /* replace @minor with NULL so lookups will fail from now on */
254 spin_lock_irqsave(&drm_minor_lock, flags);
255 idr_replace(&drm_minors_idr, NULL, minor->index);
256 spin_unlock_irqrestore(&drm_minor_lock, flags);
257
258 device_del(minor->kdev);
259 dev_set_drvdata(minor->kdev, NULL); /* safety belt */
260 drm_debugfs_cleanup(minor);
261 }
262
263 /*
264 * Looks up the given minor-ID and returns the respective DRM-minor object. The
265 * refence-count of the underlying device is increased so you must release this
266 * object with drm_minor_release().
267 *
268 * As long as you hold this minor, it is guaranteed that the object and the
269 * minor->dev pointer will stay valid! However, the device may get unplugged and
270 * unregistered while you hold the minor.
271 */
272 struct drm_minor *drm_minor_acquire(unsigned int minor_id)
273 {
274 struct drm_minor *minor;
275 unsigned long flags;
276
277 spin_lock_irqsave(&drm_minor_lock, flags);
278 minor = idr_find(&drm_minors_idr, minor_id);
279 if (minor)
280 drm_dev_ref(minor->dev);
281 spin_unlock_irqrestore(&drm_minor_lock, flags);
282
283 if (!minor) {
284 return ERR_PTR(-ENODEV);
285 } else if (drm_device_is_unplugged(minor->dev)) {
286 drm_dev_unref(minor->dev);
287 return ERR_PTR(-ENODEV);
288 }
289
290 return minor;
291 }
292
293 void drm_minor_release(struct drm_minor *minor)
294 {
295 drm_dev_unref(minor->dev);
296 }
297
298 /**
299 * DOC: driver instance overview
300 *
301 * A device instance for a drm driver is represented by &struct drm_device. This
302 * is allocated with drm_dev_alloc(), usually from bus-specific ->probe()
303 * callbacks implemented by the driver. The driver then needs to initialize all
304 * the various subsystems for the drm device like memory management, vblank
305 * handling, modesetting support and intial output configuration plus obviously
306 * initialize all the corresponding hardware bits. An important part of this is
307 * also calling drm_dev_set_unique() to set the userspace-visible unique name of
308 * this device instance. Finally when everything is up and running and ready for
309 * userspace the device instance can be published using drm_dev_register().
310 *
311 * There is also deprecated support for initalizing device instances using
312 * bus-specific helpers and the &drm_driver.load callback. But due to
313 * backwards-compatibility needs the device instance have to be published too
314 * early, which requires unpretty global locking to make safe and is therefore
315 * only support for existing drivers not yet converted to the new scheme.
316 *
317 * When cleaning up a device instance everything needs to be done in reverse:
318 * First unpublish the device instance with drm_dev_unregister(). Then clean up
319 * any other resources allocated at device initialization and drop the driver's
320 * reference to &drm_device using drm_dev_unref().
321 *
322 * Note that the lifetime rules for &drm_device instance has still a lot of
323 * historical baggage. Hence use the reference counting provided by
324 * drm_dev_ref() and drm_dev_unref() only carefully.
325 *
326 * It is recommended that drivers embed &struct drm_device into their own device
327 * structure, which is supported through drm_dev_init().
328 */
329
330 /**
331 * drm_put_dev - Unregister and release a DRM device
332 * @dev: DRM device
333 *
334 * Called at module unload time or when a PCI device is unplugged.
335 *
336 * Cleans up all DRM device, calling drm_lastclose().
337 *
338 * Note: Use of this function is deprecated. It will eventually go away
339 * completely. Please use drm_dev_unregister() and drm_dev_unref() explicitly
340 * instead to make sure that the device isn't userspace accessible any more
341 * while teardown is in progress, ensuring that userspace can't access an
342 * inconsistent state.
343 */
344 void drm_put_dev(struct drm_device *dev)
345 {
346 DRM_DEBUG("\n");
347
348 if (!dev) {
349 DRM_ERROR("cleanup called no dev\n");
350 return;
351 }
352
353 drm_dev_unregister(dev);
354 drm_dev_unref(dev);
355 }
356 EXPORT_SYMBOL(drm_put_dev);
357
358 void drm_unplug_dev(struct drm_device *dev)
359 {
360 /* for a USB device */
361 if (drm_core_check_feature(dev, DRIVER_MODESET))
362 drm_modeset_unregister_all(dev);
363
364 drm_minor_unregister(dev, DRM_MINOR_PRIMARY);
365 drm_minor_unregister(dev, DRM_MINOR_RENDER);
366 drm_minor_unregister(dev, DRM_MINOR_CONTROL);
367
368 mutex_lock(&drm_global_mutex);
369
370 drm_device_set_unplugged(dev);
371
372 if (dev->open_count == 0) {
373 drm_put_dev(dev);
374 }
375 mutex_unlock(&drm_global_mutex);
376 }
377 EXPORT_SYMBOL(drm_unplug_dev);
378
379 /*
380 * DRM internal mount
381 * We want to be able to allocate our own "struct address_space" to control
382 * memory-mappings in VRAM (or stolen RAM, ...). However, core MM does not allow
383 * stand-alone address_space objects, so we need an underlying inode. As there
384 * is no way to allocate an independent inode easily, we need a fake internal
385 * VFS mount-point.
386 *
387 * The drm_fs_inode_new() function allocates a new inode, drm_fs_inode_free()
388 * frees it again. You are allowed to use iget() and iput() to get references to
389 * the inode. But each drm_fs_inode_new() call must be paired with exactly one
390 * drm_fs_inode_free() call (which does not have to be the last iput()).
391 * We use drm_fs_inode_*() to manage our internal VFS mount-point and share it
392 * between multiple inode-users. You could, technically, call
393 * iget() + drm_fs_inode_free() directly after alloc and sometime later do an
394 * iput(), but this way you'd end up with a new vfsmount for each inode.
395 */
396
397 static int drm_fs_cnt;
398 static struct vfsmount *drm_fs_mnt;
399
400 static const struct dentry_operations drm_fs_dops = {
401 .d_dname = simple_dname,
402 };
403
404 static const struct super_operations drm_fs_sops = {
405 .statfs = simple_statfs,
406 };
407
408 static struct dentry *drm_fs_mount(struct file_system_type *fs_type, int flags,
409 const char *dev_name, void *data)
410 {
411 return mount_pseudo(fs_type,
412 "drm:",
413 &drm_fs_sops,
414 &drm_fs_dops,
415 0x010203ff);
416 }
417
418 static struct file_system_type drm_fs_type = {
419 .name = "drm",
420 .owner = THIS_MODULE,
421 .mount = drm_fs_mount,
422 .kill_sb = kill_anon_super,
423 };
424
425 static struct inode *drm_fs_inode_new(void)
426 {
427 struct inode *inode;
428 int r;
429
430 r = simple_pin_fs(&drm_fs_type, &drm_fs_mnt, &drm_fs_cnt);
431 if (r < 0) {
432 DRM_ERROR("Cannot mount pseudo fs: %d\n", r);
433 return ERR_PTR(r);
434 }
435
436 inode = alloc_anon_inode(drm_fs_mnt->mnt_sb);
437 if (IS_ERR(inode))
438 simple_release_fs(&drm_fs_mnt, &drm_fs_cnt);
439
440 return inode;
441 }
442
443 static void drm_fs_inode_free(struct inode *inode)
444 {
445 if (inode) {
446 iput(inode);
447 simple_release_fs(&drm_fs_mnt, &drm_fs_cnt);
448 }
449 }
450
451 /**
452 * drm_dev_init - Initialise new DRM device
453 * @dev: DRM device
454 * @driver: DRM driver
455 * @parent: Parent device object
456 *
457 * Initialize a new DRM device. No device registration is done.
458 * Call drm_dev_register() to advertice the device to user space and register it
459 * with other core subsystems. This should be done last in the device
460 * initialization sequence to make sure userspace can't access an inconsistent
461 * state.
462 *
463 * The initial ref-count of the object is 1. Use drm_dev_ref() and
464 * drm_dev_unref() to take and drop further ref-counts.
465 *
466 * Note that for purely virtual devices @parent can be NULL.
467 *
468 * Drivers that do not want to allocate their own device struct
469 * embedding &struct drm_device can call drm_dev_alloc() instead. For drivers
470 * that do embed &struct drm_device it must be placed first in the overall
471 * structure, and the overall structure must be allocated using kmalloc(): The
472 * drm core's release function unconditionally calls kfree() on the @dev pointer
473 * when the final reference is released. To override this behaviour, and so
474 * allow embedding of the drm_device inside the driver's device struct at an
475 * arbitrary offset, you must supply a &drm_driver.release callback and control
476 * the finalization explicitly.
477 *
478 * RETURNS:
479 * 0 on success, or error code on failure.
480 */
481 int drm_dev_init(struct drm_device *dev,
482 struct drm_driver *driver,
483 struct device *parent)
484 {
485 int ret;
486
487 kref_init(&dev->ref);
488 dev->dev = parent;
489 dev->driver = driver;
490
491 INIT_LIST_HEAD(&dev->filelist);
492 INIT_LIST_HEAD(&dev->ctxlist);
493 INIT_LIST_HEAD(&dev->vmalist);
494 INIT_LIST_HEAD(&dev->maplist);
495 INIT_LIST_HEAD(&dev->vblank_event_list);
496
497 spin_lock_init(&dev->buf_lock);
498 spin_lock_init(&dev->event_lock);
499 mutex_init(&dev->struct_mutex);
500 mutex_init(&dev->filelist_mutex);
501 mutex_init(&dev->ctxlist_mutex);
502 mutex_init(&dev->master_mutex);
503
504 dev->anon_inode = drm_fs_inode_new();
505 if (IS_ERR(dev->anon_inode)) {
506 ret = PTR_ERR(dev->anon_inode);
507 DRM_ERROR("Cannot allocate anonymous inode: %d\n", ret);
508 goto err_free;
509 }
510
511 if (drm_core_check_feature(dev, DRIVER_RENDER)) {
512 ret = drm_minor_alloc(dev, DRM_MINOR_RENDER);
513 if (ret)
514 goto err_minors;
515 }
516
517 ret = drm_minor_alloc(dev, DRM_MINOR_PRIMARY);
518 if (ret)
519 goto err_minors;
520
521 ret = drm_ht_create(&dev->map_hash, 12);
522 if (ret)
523 goto err_minors;
524
525 drm_legacy_ctxbitmap_init(dev);
526
527 if (drm_core_check_feature(dev, DRIVER_GEM)) {
528 ret = drm_gem_init(dev);
529 if (ret) {
530 DRM_ERROR("Cannot initialize graphics execution manager (GEM)\n");
531 goto err_ctxbitmap;
532 }
533 }
534
535 /* Use the parent device name as DRM device unique identifier, but fall
536 * back to the driver name for virtual devices like vgem. */
537 ret = drm_dev_set_unique(dev, parent ? dev_name(parent) : driver->name);
538 if (ret)
539 goto err_setunique;
540
541 return 0;
542
543 err_setunique:
544 if (drm_core_check_feature(dev, DRIVER_GEM))
545 drm_gem_destroy(dev);
546 err_ctxbitmap:
547 drm_legacy_ctxbitmap_cleanup(dev);
548 drm_ht_remove(&dev->map_hash);
549 err_minors:
550 drm_minor_free(dev, DRM_MINOR_PRIMARY);
551 drm_minor_free(dev, DRM_MINOR_RENDER);
552 drm_minor_free(dev, DRM_MINOR_CONTROL);
553 drm_fs_inode_free(dev->anon_inode);
554 err_free:
555 mutex_destroy(&dev->master_mutex);
556 mutex_destroy(&dev->ctxlist_mutex);
557 mutex_destroy(&dev->filelist_mutex);
558 mutex_destroy(&dev->struct_mutex);
559 return ret;
560 }
561 EXPORT_SYMBOL(drm_dev_init);
562
563 /**
564 * drm_dev_fini - Finalize a dead DRM device
565 * @dev: DRM device
566 *
567 * Finalize a dead DRM device. This is the converse to drm_dev_init() and
568 * frees up all data allocated by it. All driver private data should be
569 * finalized first. Note that this function does not free the @dev, that is
570 * left to the caller.
571 *
572 * The ref-count of @dev must be zero, and drm_dev_fini() should only be called
573 * from a &drm_driver.release callback.
574 */
575 void drm_dev_fini(struct drm_device *dev)
576 {
577 drm_vblank_cleanup(dev);
578
579 if (drm_core_check_feature(dev, DRIVER_GEM))
580 drm_gem_destroy(dev);
581
582 drm_legacy_ctxbitmap_cleanup(dev);
583 drm_ht_remove(&dev->map_hash);
584 drm_fs_inode_free(dev->anon_inode);
585
586 drm_minor_free(dev, DRM_MINOR_PRIMARY);
587 drm_minor_free(dev, DRM_MINOR_RENDER);
588 drm_minor_free(dev, DRM_MINOR_CONTROL);
589
590 mutex_destroy(&dev->master_mutex);
591 mutex_destroy(&dev->ctxlist_mutex);
592 mutex_destroy(&dev->filelist_mutex);
593 mutex_destroy(&dev->struct_mutex);
594 kfree(dev->unique);
595 }
596 EXPORT_SYMBOL(drm_dev_fini);
597
598 /**
599 * drm_dev_alloc - Allocate new DRM device
600 * @driver: DRM driver to allocate device for
601 * @parent: Parent device object
602 *
603 * Allocate and initialize a new DRM device. No device registration is done.
604 * Call drm_dev_register() to advertice the device to user space and register it
605 * with other core subsystems. This should be done last in the device
606 * initialization sequence to make sure userspace can't access an inconsistent
607 * state.
608 *
609 * The initial ref-count of the object is 1. Use drm_dev_ref() and
610 * drm_dev_unref() to take and drop further ref-counts.
611 *
612 * Note that for purely virtual devices @parent can be NULL.
613 *
614 * Drivers that wish to subclass or embed &struct drm_device into their
615 * own struct should look at using drm_dev_init() instead.
616 *
617 * RETURNS:
618 * Pointer to new DRM device, or ERR_PTR on failure.
619 */
620 struct drm_device *drm_dev_alloc(struct drm_driver *driver,
621 struct device *parent)
622 {
623 struct drm_device *dev;
624 int ret;
625
626 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
627 if (!dev)
628 return ERR_PTR(-ENOMEM);
629
630 ret = drm_dev_init(dev, driver, parent);
631 if (ret) {
632 kfree(dev);
633 return ERR_PTR(ret);
634 }
635
636 return dev;
637 }
638 EXPORT_SYMBOL(drm_dev_alloc);
639
640 static void drm_dev_release(struct kref *ref)
641 {
642 struct drm_device *dev = container_of(ref, struct drm_device, ref);
643
644 if (dev->driver->release) {
645 dev->driver->release(dev);
646 } else {
647 drm_dev_fini(dev);
648 kfree(dev);
649 }
650 }
651
652 /**
653 * drm_dev_ref - Take reference of a DRM device
654 * @dev: device to take reference of or NULL
655 *
656 * This increases the ref-count of @dev by one. You *must* already own a
657 * reference when calling this. Use drm_dev_unref() to drop this reference
658 * again.
659 *
660 * This function never fails. However, this function does not provide *any*
661 * guarantee whether the device is alive or running. It only provides a
662 * reference to the object and the memory associated with it.
663 */
664 void drm_dev_ref(struct drm_device *dev)
665 {
666 if (dev)
667 kref_get(&dev->ref);
668 }
669 EXPORT_SYMBOL(drm_dev_ref);
670
671 /**
672 * drm_dev_unref - Drop reference of a DRM device
673 * @dev: device to drop reference of or NULL
674 *
675 * This decreases the ref-count of @dev by one. The device is destroyed if the
676 * ref-count drops to zero.
677 */
678 void drm_dev_unref(struct drm_device *dev)
679 {
680 if (dev)
681 kref_put(&dev->ref, drm_dev_release);
682 }
683 EXPORT_SYMBOL(drm_dev_unref);
684
685 static int create_compat_control_link(struct drm_device *dev)
686 {
687 struct drm_minor *minor;
688 char *name;
689 int ret;
690
691 if (!drm_core_check_feature(dev, DRIVER_MODESET))
692 return 0;
693
694 minor = *drm_minor_get_slot(dev, DRM_MINOR_PRIMARY);
695 if (!minor)
696 return 0;
697
698 /*
699 * Some existing userspace out there uses the existing of the controlD*
700 * sysfs files to figure out whether it's a modeset driver. It only does
701 * readdir, hence a symlink is sufficient (and the least confusing
702 * option). Otherwise controlD* is entirely unused.
703 *
704 * Old controlD chardev have been allocated in the range
705 * 64-127.
706 */
707 name = kasprintf(GFP_KERNEL, "controlD%d", minor->index + 64);
708 if (!name)
709 return -ENOMEM;
710
711 ret = sysfs_create_link(minor->kdev->kobj.parent,
712 &minor->kdev->kobj,
713 name);
714
715 kfree(name);
716
717 return ret;
718 }
719
720 static void remove_compat_control_link(struct drm_device *dev)
721 {
722 struct drm_minor *minor;
723 char *name;
724
725 if (!drm_core_check_feature(dev, DRIVER_MODESET))
726 return;
727
728 minor = *drm_minor_get_slot(dev, DRM_MINOR_PRIMARY);
729 if (!minor)
730 return;
731
732 name = kasprintf(GFP_KERNEL, "controlD%d", minor->index);
733 if (!name)
734 return;
735
736 sysfs_remove_link(minor->kdev->kobj.parent, name);
737
738 kfree(name);
739 }
740
741 /**
742 * drm_dev_register - Register DRM device
743 * @dev: Device to register
744 * @flags: Flags passed to the driver's .load() function
745 *
746 * Register the DRM device @dev with the system, advertise device to user-space
747 * and start normal device operation. @dev must be allocated via drm_dev_alloc()
748 * previously.
749 *
750 * Never call this twice on any device!
751 *
752 * NOTE: To ensure backward compatibility with existing drivers method this
753 * function calls the &drm_driver.load method after registering the device
754 * nodes, creating race conditions. Usage of the &drm_driver.load methods is
755 * therefore deprecated, drivers must perform all initialization before calling
756 * drm_dev_register().
757 *
758 * RETURNS:
759 * 0 on success, negative error code on failure.
760 */
761 int drm_dev_register(struct drm_device *dev, unsigned long flags)
762 {
763 struct drm_driver *driver = dev->driver;
764 int ret;
765
766 mutex_lock(&drm_global_mutex);
767
768 ret = drm_minor_register(dev, DRM_MINOR_CONTROL);
769 if (ret)
770 goto err_minors;
771
772 ret = drm_minor_register(dev, DRM_MINOR_RENDER);
773 if (ret)
774 goto err_minors;
775
776 ret = drm_minor_register(dev, DRM_MINOR_PRIMARY);
777 if (ret)
778 goto err_minors;
779
780 ret = create_compat_control_link(dev);
781 if (ret)
782 goto err_minors;
783
784 dev->registered = true;
785
786 if (dev->driver->load) {
787 ret = dev->driver->load(dev, flags);
788 if (ret)
789 goto err_minors;
790 }
791
792 if (drm_core_check_feature(dev, DRIVER_MODESET))
793 drm_modeset_register_all(dev);
794
795 ret = 0;
796
797 DRM_INFO("Initialized %s %d.%d.%d %s for %s on minor %d\n",
798 driver->name, driver->major, driver->minor,
799 driver->patchlevel, driver->date,
800 dev->dev ? dev_name(dev->dev) : "virtual device",
801 dev->primary->index);
802
803 goto out_unlock;
804
805 err_minors:
806 remove_compat_control_link(dev);
807 drm_minor_unregister(dev, DRM_MINOR_PRIMARY);
808 drm_minor_unregister(dev, DRM_MINOR_RENDER);
809 drm_minor_unregister(dev, DRM_MINOR_CONTROL);
810 out_unlock:
811 mutex_unlock(&drm_global_mutex);
812 return ret;
813 }
814 EXPORT_SYMBOL(drm_dev_register);
815
816 /**
817 * drm_dev_unregister - Unregister DRM device
818 * @dev: Device to unregister
819 *
820 * Unregister the DRM device from the system. This does the reverse of
821 * drm_dev_register() but does not deallocate the device. The caller must call
822 * drm_dev_unref() to drop their final reference.
823 *
824 * This should be called first in the device teardown code to make sure
825 * userspace can't access the device instance any more.
826 */
827 void drm_dev_unregister(struct drm_device *dev)
828 {
829 struct drm_map_list *r_list, *list_temp;
830
831 drm_lastclose(dev);
832
833 dev->registered = false;
834
835 if (drm_core_check_feature(dev, DRIVER_MODESET))
836 drm_modeset_unregister_all(dev);
837
838 if (dev->driver->unload)
839 dev->driver->unload(dev);
840
841 if (dev->agp)
842 drm_pci_agp_destroy(dev);
843
844 list_for_each_entry_safe(r_list, list_temp, &dev->maplist, head)
845 drm_legacy_rmmap(dev, r_list->map);
846
847 remove_compat_control_link(dev);
848 drm_minor_unregister(dev, DRM_MINOR_PRIMARY);
849 drm_minor_unregister(dev, DRM_MINOR_RENDER);
850 drm_minor_unregister(dev, DRM_MINOR_CONTROL);
851 }
852 EXPORT_SYMBOL(drm_dev_unregister);
853
854 /**
855 * drm_dev_set_unique - Set the unique name of a DRM device
856 * @dev: device of which to set the unique name
857 * @name: unique name
858 *
859 * Sets the unique name of a DRM device using the specified string. Drivers
860 * can use this at driver probe time if the unique name of the devices they
861 * drive is static.
862 *
863 * Return: 0 on success or a negative error code on failure.
864 */
865 int drm_dev_set_unique(struct drm_device *dev, const char *name)
866 {
867 kfree(dev->unique);
868 dev->unique = kstrdup(name, GFP_KERNEL);
869
870 return dev->unique ? 0 : -ENOMEM;
871 }
872 EXPORT_SYMBOL(drm_dev_set_unique);
873
874 /*
875 * DRM Core
876 * The DRM core module initializes all global DRM objects and makes them
877 * available to drivers. Once setup, drivers can probe their respective
878 * devices.
879 * Currently, core management includes:
880 * - The "DRM-Global" key/value database
881 * - Global ID management for connectors
882 * - DRM major number allocation
883 * - DRM minor management
884 * - DRM sysfs class
885 * - DRM debugfs root
886 *
887 * Furthermore, the DRM core provides dynamic char-dev lookups. For each
888 * interface registered on a DRM device, you can request minor numbers from DRM
889 * core. DRM core takes care of major-number management and char-dev
890 * registration. A stub ->open() callback forwards any open() requests to the
891 * registered minor.
892 */
893
894 static int drm_stub_open(struct inode *inode, struct file *filp)
895 {
896 const struct file_operations *new_fops;
897 struct drm_minor *minor;
898 int err;
899
900 DRM_DEBUG("\n");
901
902 mutex_lock(&drm_global_mutex);
903 minor = drm_minor_acquire(iminor(inode));
904 if (IS_ERR(minor)) {
905 err = PTR_ERR(minor);
906 goto out_unlock;
907 }
908
909 new_fops = fops_get(minor->dev->driver->fops);
910 if (!new_fops) {
911 err = -ENODEV;
912 goto out_release;
913 }
914
915 replace_fops(filp, new_fops);
916 if (filp->f_op->open)
917 err = filp->f_op->open(inode, filp);
918 else
919 err = 0;
920
921 out_release:
922 drm_minor_release(minor);
923 out_unlock:
924 mutex_unlock(&drm_global_mutex);
925 return err;
926 }
927
928 static const struct file_operations drm_stub_fops = {
929 .owner = THIS_MODULE,
930 .open = drm_stub_open,
931 .llseek = noop_llseek,
932 };
933
934 static void drm_core_exit(void)
935 {
936 unregister_chrdev(DRM_MAJOR, "drm");
937 debugfs_remove(drm_debugfs_root);
938 drm_sysfs_destroy();
939 idr_destroy(&drm_minors_idr);
940 drm_connector_ida_destroy();
941 drm_global_release();
942 }
943
944 static int __init drm_core_init(void)
945 {
946 int ret;
947
948 drm_global_init();
949 drm_connector_ida_init();
950 idr_init(&drm_minors_idr);
951
952 ret = drm_sysfs_init();
953 if (ret < 0) {
954 DRM_ERROR("Cannot create DRM class: %d\n", ret);
955 goto error;
956 }
957
958 drm_debugfs_root = debugfs_create_dir("dri", NULL);
959 if (!drm_debugfs_root) {
960 ret = -ENOMEM;
961 DRM_ERROR("Cannot create debugfs-root: %d\n", ret);
962 goto error;
963 }
964
965 ret = register_chrdev(DRM_MAJOR, "drm", &drm_stub_fops);
966 if (ret < 0)
967 goto error;
968
969 DRM_DEBUG("Initialized\n");
970 return 0;
971
972 error:
973 drm_core_exit();
974 return ret;
975 }
976
977 module_init(drm_core_init);
978 module_exit(drm_core_exit);