]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/gpu/drm/drm_drv.c
iommu/vt-d: Don't over-free page table directories
[mirror_ubuntu-artful-kernel.git] / drivers / gpu / drm / drm_drv.c
1 /*
2 * Created: Fri Jan 19 10:48:35 2001 by faith@acm.org
3 *
4 * Copyright 2001 VA Linux Systems, Inc., Sunnyvale, California.
5 * All Rights Reserved.
6 *
7 * Author Rickard E. (Rik) Faith <faith@valinux.com>
8 *
9 * Permission is hereby granted, free of charge, to any person obtaining a
10 * copy of this software and associated documentation files (the "Software"),
11 * to deal in the Software without restriction, including without limitation
12 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
13 * and/or sell copies of the Software, and to permit persons to whom the
14 * Software is furnished to do so, subject to the following conditions:
15 *
16 * The above copyright notice and this permission notice (including the next
17 * paragraph) shall be included in all copies or substantial portions of the
18 * Software.
19 *
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
23 * PRECISION INSIGHT AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
24 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
25 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
26 * DEALINGS IN THE SOFTWARE.
27 */
28
29 #include <linux/debugfs.h>
30 #include <linux/fs.h>
31 #include <linux/module.h>
32 #include <linux/moduleparam.h>
33 #include <linux/mount.h>
34 #include <linux/slab.h>
35
36 #include <drm/drm_drv.h>
37 #include <drm/drmP.h>
38
39 #include "drm_crtc_internal.h"
40 #include "drm_legacy.h"
41 #include "drm_internal.h"
42 #include "drm_crtc_internal.h"
43
44 /*
45 * drm_debug: Enable debug output.
46 * Bitmask of DRM_UT_x. See include/drm/drmP.h for details.
47 */
48 unsigned int drm_debug = 0;
49 EXPORT_SYMBOL(drm_debug);
50
51 MODULE_AUTHOR("Gareth Hughes, Leif Delgass, José Fonseca, Jon Smirl");
52 MODULE_DESCRIPTION("DRM shared core routines");
53 MODULE_LICENSE("GPL and additional rights");
54 MODULE_PARM_DESC(debug, "Enable debug output, where each bit enables a debug category.\n"
55 "\t\tBit 0 (0x01) will enable CORE messages (drm core code)\n"
56 "\t\tBit 1 (0x02) will enable DRIVER messages (drm controller code)\n"
57 "\t\tBit 2 (0x04) will enable KMS messages (modesetting code)\n"
58 "\t\tBit 3 (0x08) will enable PRIME messages (prime code)\n"
59 "\t\tBit 4 (0x10) will enable ATOMIC messages (atomic code)\n"
60 "\t\tBit 5 (0x20) will enable VBL messages (vblank code)");
61 module_param_named(debug, drm_debug, int, 0600);
62
63 static DEFINE_SPINLOCK(drm_minor_lock);
64 static struct idr drm_minors_idr;
65
66 static struct dentry *drm_debugfs_root;
67
68 #define DRM_PRINTK_FMT "[" DRM_NAME ":%s]%s %pV"
69
70 void drm_dev_printk(const struct device *dev, const char *level,
71 unsigned int category, const char *function_name,
72 const char *prefix, const char *format, ...)
73 {
74 struct va_format vaf;
75 va_list args;
76
77 if (category != DRM_UT_NONE && !(drm_debug & category))
78 return;
79
80 va_start(args, format);
81 vaf.fmt = format;
82 vaf.va = &args;
83
84 if (dev)
85 dev_printk(level, dev, DRM_PRINTK_FMT, function_name, prefix,
86 &vaf);
87 else
88 printk("%s" DRM_PRINTK_FMT, level, function_name, prefix, &vaf);
89
90 va_end(args);
91 }
92 EXPORT_SYMBOL(drm_dev_printk);
93
94 void drm_printk(const char *level, unsigned int category,
95 const char *format, ...)
96 {
97 struct va_format vaf;
98 va_list args;
99
100 if (category != DRM_UT_NONE && !(drm_debug & category))
101 return;
102
103 va_start(args, format);
104 vaf.fmt = format;
105 vaf.va = &args;
106
107 printk("%s" "[" DRM_NAME ":%ps]%s %pV",
108 level, __builtin_return_address(0),
109 strcmp(level, KERN_ERR) == 0 ? " *ERROR*" : "", &vaf);
110
111 va_end(args);
112 }
113 EXPORT_SYMBOL(drm_printk);
114
115 /*
116 * DRM Minors
117 * A DRM device can provide several char-dev interfaces on the DRM-Major. Each
118 * of them is represented by a drm_minor object. Depending on the capabilities
119 * of the device-driver, different interfaces are registered.
120 *
121 * Minors can be accessed via dev->$minor_name. This pointer is either
122 * NULL or a valid drm_minor pointer and stays valid as long as the device is
123 * valid. This means, DRM minors have the same life-time as the underlying
124 * device. However, this doesn't mean that the minor is active. Minors are
125 * registered and unregistered dynamically according to device-state.
126 */
127
128 static struct drm_minor **drm_minor_get_slot(struct drm_device *dev,
129 unsigned int type)
130 {
131 switch (type) {
132 case DRM_MINOR_PRIMARY:
133 return &dev->primary;
134 case DRM_MINOR_RENDER:
135 return &dev->render;
136 case DRM_MINOR_CONTROL:
137 return &dev->control;
138 default:
139 return NULL;
140 }
141 }
142
143 static int drm_minor_alloc(struct drm_device *dev, unsigned int type)
144 {
145 struct drm_minor *minor;
146 unsigned long flags;
147 int r;
148
149 minor = kzalloc(sizeof(*minor), GFP_KERNEL);
150 if (!minor)
151 return -ENOMEM;
152
153 minor->type = type;
154 minor->dev = dev;
155
156 idr_preload(GFP_KERNEL);
157 spin_lock_irqsave(&drm_minor_lock, flags);
158 r = idr_alloc(&drm_minors_idr,
159 NULL,
160 64 * type,
161 64 * (type + 1),
162 GFP_NOWAIT);
163 spin_unlock_irqrestore(&drm_minor_lock, flags);
164 idr_preload_end();
165
166 if (r < 0)
167 goto err_free;
168
169 minor->index = r;
170
171 minor->kdev = drm_sysfs_minor_alloc(minor);
172 if (IS_ERR(minor->kdev)) {
173 r = PTR_ERR(minor->kdev);
174 goto err_index;
175 }
176
177 *drm_minor_get_slot(dev, type) = minor;
178 return 0;
179
180 err_index:
181 spin_lock_irqsave(&drm_minor_lock, flags);
182 idr_remove(&drm_minors_idr, minor->index);
183 spin_unlock_irqrestore(&drm_minor_lock, flags);
184 err_free:
185 kfree(minor);
186 return r;
187 }
188
189 static void drm_minor_free(struct drm_device *dev, unsigned int type)
190 {
191 struct drm_minor **slot, *minor;
192 unsigned long flags;
193
194 slot = drm_minor_get_slot(dev, type);
195 minor = *slot;
196 if (!minor)
197 return;
198
199 put_device(minor->kdev);
200
201 spin_lock_irqsave(&drm_minor_lock, flags);
202 idr_remove(&drm_minors_idr, minor->index);
203 spin_unlock_irqrestore(&drm_minor_lock, flags);
204
205 kfree(minor);
206 *slot = NULL;
207 }
208
209 static int drm_minor_register(struct drm_device *dev, unsigned int type)
210 {
211 struct drm_minor *minor;
212 unsigned long flags;
213 int ret;
214
215 DRM_DEBUG("\n");
216
217 minor = *drm_minor_get_slot(dev, type);
218 if (!minor)
219 return 0;
220
221 ret = drm_debugfs_init(minor, minor->index, drm_debugfs_root);
222 if (ret) {
223 DRM_ERROR("DRM: Failed to initialize /sys/kernel/debug/dri.\n");
224 return ret;
225 }
226
227 ret = device_add(minor->kdev);
228 if (ret)
229 goto err_debugfs;
230
231 /* replace NULL with @minor so lookups will succeed from now on */
232 spin_lock_irqsave(&drm_minor_lock, flags);
233 idr_replace(&drm_minors_idr, minor, minor->index);
234 spin_unlock_irqrestore(&drm_minor_lock, flags);
235
236 DRM_DEBUG("new minor registered %d\n", minor->index);
237 return 0;
238
239 err_debugfs:
240 drm_debugfs_cleanup(minor);
241 return ret;
242 }
243
244 static void drm_minor_unregister(struct drm_device *dev, unsigned int type)
245 {
246 struct drm_minor *minor;
247 unsigned long flags;
248
249 minor = *drm_minor_get_slot(dev, type);
250 if (!minor || !device_is_registered(minor->kdev))
251 return;
252
253 /* replace @minor with NULL so lookups will fail from now on */
254 spin_lock_irqsave(&drm_minor_lock, flags);
255 idr_replace(&drm_minors_idr, NULL, minor->index);
256 spin_unlock_irqrestore(&drm_minor_lock, flags);
257
258 device_del(minor->kdev);
259 dev_set_drvdata(minor->kdev, NULL); /* safety belt */
260 drm_debugfs_cleanup(minor);
261 }
262
263 /*
264 * Looks up the given minor-ID and returns the respective DRM-minor object. The
265 * refence-count of the underlying device is increased so you must release this
266 * object with drm_minor_release().
267 *
268 * As long as you hold this minor, it is guaranteed that the object and the
269 * minor->dev pointer will stay valid! However, the device may get unplugged and
270 * unregistered while you hold the minor.
271 */
272 struct drm_minor *drm_minor_acquire(unsigned int minor_id)
273 {
274 struct drm_minor *minor;
275 unsigned long flags;
276
277 spin_lock_irqsave(&drm_minor_lock, flags);
278 minor = idr_find(&drm_minors_idr, minor_id);
279 if (minor)
280 drm_dev_ref(minor->dev);
281 spin_unlock_irqrestore(&drm_minor_lock, flags);
282
283 if (!minor) {
284 return ERR_PTR(-ENODEV);
285 } else if (drm_device_is_unplugged(minor->dev)) {
286 drm_dev_unref(minor->dev);
287 return ERR_PTR(-ENODEV);
288 }
289
290 return minor;
291 }
292
293 void drm_minor_release(struct drm_minor *minor)
294 {
295 drm_dev_unref(minor->dev);
296 }
297
298 /**
299 * DOC: driver instance overview
300 *
301 * A device instance for a drm driver is represented by struct &drm_device. This
302 * is allocated with drm_dev_alloc(), usually from bus-specific ->probe()
303 * callbacks implemented by the driver. The driver then needs to initialize all
304 * the various subsystems for the drm device like memory management, vblank
305 * handling, modesetting support and intial output configuration plus obviously
306 * initialize all the corresponding hardware bits. An important part of this is
307 * also calling drm_dev_set_unique() to set the userspace-visible unique name of
308 * this device instance. Finally when everything is up and running and ready for
309 * userspace the device instance can be published using drm_dev_register().
310 *
311 * There is also deprecated support for initalizing device instances using
312 * bus-specific helpers and the ->load() callback. But due to
313 * backwards-compatibility needs the device instance have to be published too
314 * early, which requires unpretty global locking to make safe and is therefore
315 * only support for existing drivers not yet converted to the new scheme.
316 *
317 * When cleaning up a device instance everything needs to be done in reverse:
318 * First unpublish the device instance with drm_dev_unregister(). Then clean up
319 * any other resources allocated at device initialization and drop the driver's
320 * reference to &drm_device using drm_dev_unref().
321 *
322 * Note that the lifetime rules for &drm_device instance has still a lot of
323 * historical baggage. Hence use the reference counting provided by
324 * drm_dev_ref() and drm_dev_unref() only carefully.
325 *
326 * Also note that embedding of &drm_device is currently not (yet) supported (but
327 * it would be easy to add). Drivers can store driver-private data in the
328 * dev_priv field of &drm_device.
329 */
330
331 /**
332 * drm_put_dev - Unregister and release a DRM device
333 * @dev: DRM device
334 *
335 * Called at module unload time or when a PCI device is unplugged.
336 *
337 * Cleans up all DRM device, calling drm_lastclose().
338 *
339 * Note: Use of this function is deprecated. It will eventually go away
340 * completely. Please use drm_dev_unregister() and drm_dev_unref() explicitly
341 * instead to make sure that the device isn't userspace accessible any more
342 * while teardown is in progress, ensuring that userspace can't access an
343 * inconsistent state.
344 */
345 void drm_put_dev(struct drm_device *dev)
346 {
347 DRM_DEBUG("\n");
348
349 if (!dev) {
350 DRM_ERROR("cleanup called no dev\n");
351 return;
352 }
353
354 drm_dev_unregister(dev);
355 drm_dev_unref(dev);
356 }
357 EXPORT_SYMBOL(drm_put_dev);
358
359 void drm_unplug_dev(struct drm_device *dev)
360 {
361 /* for a USB device */
362 drm_dev_unregister(dev);
363
364 mutex_lock(&drm_global_mutex);
365
366 drm_device_set_unplugged(dev);
367
368 if (dev->open_count == 0) {
369 drm_put_dev(dev);
370 }
371 mutex_unlock(&drm_global_mutex);
372 }
373 EXPORT_SYMBOL(drm_unplug_dev);
374
375 /*
376 * DRM internal mount
377 * We want to be able to allocate our own "struct address_space" to control
378 * memory-mappings in VRAM (or stolen RAM, ...). However, core MM does not allow
379 * stand-alone address_space objects, so we need an underlying inode. As there
380 * is no way to allocate an independent inode easily, we need a fake internal
381 * VFS mount-point.
382 *
383 * The drm_fs_inode_new() function allocates a new inode, drm_fs_inode_free()
384 * frees it again. You are allowed to use iget() and iput() to get references to
385 * the inode. But each drm_fs_inode_new() call must be paired with exactly one
386 * drm_fs_inode_free() call (which does not have to be the last iput()).
387 * We use drm_fs_inode_*() to manage our internal VFS mount-point and share it
388 * between multiple inode-users. You could, technically, call
389 * iget() + drm_fs_inode_free() directly after alloc and sometime later do an
390 * iput(), but this way you'd end up with a new vfsmount for each inode.
391 */
392
393 static int drm_fs_cnt;
394 static struct vfsmount *drm_fs_mnt;
395
396 static const struct dentry_operations drm_fs_dops = {
397 .d_dname = simple_dname,
398 };
399
400 static const struct super_operations drm_fs_sops = {
401 .statfs = simple_statfs,
402 };
403
404 static struct dentry *drm_fs_mount(struct file_system_type *fs_type, int flags,
405 const char *dev_name, void *data)
406 {
407 return mount_pseudo(fs_type,
408 "drm:",
409 &drm_fs_sops,
410 &drm_fs_dops,
411 0x010203ff);
412 }
413
414 static struct file_system_type drm_fs_type = {
415 .name = "drm",
416 .owner = THIS_MODULE,
417 .mount = drm_fs_mount,
418 .kill_sb = kill_anon_super,
419 };
420
421 static struct inode *drm_fs_inode_new(void)
422 {
423 struct inode *inode;
424 int r;
425
426 r = simple_pin_fs(&drm_fs_type, &drm_fs_mnt, &drm_fs_cnt);
427 if (r < 0) {
428 DRM_ERROR("Cannot mount pseudo fs: %d\n", r);
429 return ERR_PTR(r);
430 }
431
432 inode = alloc_anon_inode(drm_fs_mnt->mnt_sb);
433 if (IS_ERR(inode))
434 simple_release_fs(&drm_fs_mnt, &drm_fs_cnt);
435
436 return inode;
437 }
438
439 static void drm_fs_inode_free(struct inode *inode)
440 {
441 if (inode) {
442 iput(inode);
443 simple_release_fs(&drm_fs_mnt, &drm_fs_cnt);
444 }
445 }
446
447 /**
448 * drm_dev_init - Initialise new DRM device
449 * @dev: DRM device
450 * @driver: DRM driver
451 * @parent: Parent device object
452 *
453 * Initialize a new DRM device. No device registration is done.
454 * Call drm_dev_register() to advertice the device to user space and register it
455 * with other core subsystems. This should be done last in the device
456 * initialization sequence to make sure userspace can't access an inconsistent
457 * state.
458 *
459 * The initial ref-count of the object is 1. Use drm_dev_ref() and
460 * drm_dev_unref() to take and drop further ref-counts.
461 *
462 * Note that for purely virtual devices @parent can be NULL.
463 *
464 * Drivers that do not want to allocate their own device struct
465 * embedding struct &drm_device can call drm_dev_alloc() instead.
466 *
467 * RETURNS:
468 * 0 on success, or error code on failure.
469 */
470 int drm_dev_init(struct drm_device *dev,
471 struct drm_driver *driver,
472 struct device *parent)
473 {
474 int ret;
475
476 kref_init(&dev->ref);
477 dev->dev = parent;
478 dev->driver = driver;
479
480 INIT_LIST_HEAD(&dev->filelist);
481 INIT_LIST_HEAD(&dev->ctxlist);
482 INIT_LIST_HEAD(&dev->vmalist);
483 INIT_LIST_HEAD(&dev->maplist);
484 INIT_LIST_HEAD(&dev->vblank_event_list);
485
486 spin_lock_init(&dev->buf_lock);
487 spin_lock_init(&dev->event_lock);
488 mutex_init(&dev->struct_mutex);
489 mutex_init(&dev->filelist_mutex);
490 mutex_init(&dev->ctxlist_mutex);
491 mutex_init(&dev->master_mutex);
492
493 dev->anon_inode = drm_fs_inode_new();
494 if (IS_ERR(dev->anon_inode)) {
495 ret = PTR_ERR(dev->anon_inode);
496 DRM_ERROR("Cannot allocate anonymous inode: %d\n", ret);
497 goto err_free;
498 }
499
500 if (drm_core_check_feature(dev, DRIVER_RENDER)) {
501 ret = drm_minor_alloc(dev, DRM_MINOR_RENDER);
502 if (ret)
503 goto err_minors;
504 }
505
506 ret = drm_minor_alloc(dev, DRM_MINOR_PRIMARY);
507 if (ret)
508 goto err_minors;
509
510 ret = drm_ht_create(&dev->map_hash, 12);
511 if (ret)
512 goto err_minors;
513
514 drm_legacy_ctxbitmap_init(dev);
515
516 if (drm_core_check_feature(dev, DRIVER_GEM)) {
517 ret = drm_gem_init(dev);
518 if (ret) {
519 DRM_ERROR("Cannot initialize graphics execution manager (GEM)\n");
520 goto err_ctxbitmap;
521 }
522 }
523
524 /* Use the parent device name as DRM device unique identifier, but fall
525 * back to the driver name for virtual devices like vgem. */
526 ret = drm_dev_set_unique(dev, parent ? dev_name(parent) : driver->name);
527 if (ret)
528 goto err_setunique;
529
530 return 0;
531
532 err_setunique:
533 if (drm_core_check_feature(dev, DRIVER_GEM))
534 drm_gem_destroy(dev);
535 err_ctxbitmap:
536 drm_legacy_ctxbitmap_cleanup(dev);
537 drm_ht_remove(&dev->map_hash);
538 err_minors:
539 drm_minor_free(dev, DRM_MINOR_PRIMARY);
540 drm_minor_free(dev, DRM_MINOR_RENDER);
541 drm_minor_free(dev, DRM_MINOR_CONTROL);
542 drm_fs_inode_free(dev->anon_inode);
543 err_free:
544 mutex_destroy(&dev->master_mutex);
545 mutex_destroy(&dev->ctxlist_mutex);
546 mutex_destroy(&dev->filelist_mutex);
547 mutex_destroy(&dev->struct_mutex);
548 return ret;
549 }
550 EXPORT_SYMBOL(drm_dev_init);
551
552 /**
553 * drm_dev_alloc - Allocate new DRM device
554 * @driver: DRM driver to allocate device for
555 * @parent: Parent device object
556 *
557 * Allocate and initialize a new DRM device. No device registration is done.
558 * Call drm_dev_register() to advertice the device to user space and register it
559 * with other core subsystems. This should be done last in the device
560 * initialization sequence to make sure userspace can't access an inconsistent
561 * state.
562 *
563 * The initial ref-count of the object is 1. Use drm_dev_ref() and
564 * drm_dev_unref() to take and drop further ref-counts.
565 *
566 * Note that for purely virtual devices @parent can be NULL.
567 *
568 * Drivers that wish to subclass or embed struct &drm_device into their
569 * own struct should look at using drm_dev_init() instead.
570 *
571 * RETURNS:
572 * Pointer to new DRM device, or ERR_PTR on failure.
573 */
574 struct drm_device *drm_dev_alloc(struct drm_driver *driver,
575 struct device *parent)
576 {
577 struct drm_device *dev;
578 int ret;
579
580 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
581 if (!dev)
582 return ERR_PTR(-ENOMEM);
583
584 ret = drm_dev_init(dev, driver, parent);
585 if (ret) {
586 kfree(dev);
587 return ERR_PTR(ret);
588 }
589
590 return dev;
591 }
592 EXPORT_SYMBOL(drm_dev_alloc);
593
594 static void drm_dev_release(struct kref *ref)
595 {
596 struct drm_device *dev = container_of(ref, struct drm_device, ref);
597
598 if (drm_core_check_feature(dev, DRIVER_GEM))
599 drm_gem_destroy(dev);
600
601 drm_legacy_ctxbitmap_cleanup(dev);
602 drm_ht_remove(&dev->map_hash);
603 drm_fs_inode_free(dev->anon_inode);
604
605 drm_minor_free(dev, DRM_MINOR_PRIMARY);
606 drm_minor_free(dev, DRM_MINOR_RENDER);
607 drm_minor_free(dev, DRM_MINOR_CONTROL);
608
609 mutex_destroy(&dev->master_mutex);
610 mutex_destroy(&dev->ctxlist_mutex);
611 mutex_destroy(&dev->filelist_mutex);
612 mutex_destroy(&dev->struct_mutex);
613 kfree(dev->unique);
614 kfree(dev);
615 }
616
617 /**
618 * drm_dev_ref - Take reference of a DRM device
619 * @dev: device to take reference of or NULL
620 *
621 * This increases the ref-count of @dev by one. You *must* already own a
622 * reference when calling this. Use drm_dev_unref() to drop this reference
623 * again.
624 *
625 * This function never fails. However, this function does not provide *any*
626 * guarantee whether the device is alive or running. It only provides a
627 * reference to the object and the memory associated with it.
628 */
629 void drm_dev_ref(struct drm_device *dev)
630 {
631 if (dev)
632 kref_get(&dev->ref);
633 }
634 EXPORT_SYMBOL(drm_dev_ref);
635
636 /**
637 * drm_dev_unref - Drop reference of a DRM device
638 * @dev: device to drop reference of or NULL
639 *
640 * This decreases the ref-count of @dev by one. The device is destroyed if the
641 * ref-count drops to zero.
642 */
643 void drm_dev_unref(struct drm_device *dev)
644 {
645 if (dev)
646 kref_put(&dev->ref, drm_dev_release);
647 }
648 EXPORT_SYMBOL(drm_dev_unref);
649
650 static int create_compat_control_link(struct drm_device *dev)
651 {
652 struct drm_minor *minor;
653 char *name;
654 int ret;
655
656 if (!drm_core_check_feature(dev, DRIVER_MODESET))
657 return 0;
658
659 minor = *drm_minor_get_slot(dev, DRM_MINOR_PRIMARY);
660 if (!minor)
661 return 0;
662
663 /*
664 * Some existing userspace out there uses the existing of the controlD*
665 * sysfs files to figure out whether it's a modeset driver. It only does
666 * readdir, hence a symlink is sufficient (and the least confusing
667 * option). Otherwise controlD* is entirely unused.
668 *
669 * Old controlD chardev have been allocated in the range
670 * 64-127.
671 */
672 name = kasprintf(GFP_KERNEL, "controlD%d", minor->index + 64);
673 if (!name)
674 return -ENOMEM;
675
676 ret = sysfs_create_link(minor->kdev->kobj.parent,
677 &minor->kdev->kobj,
678 name);
679
680 kfree(name);
681
682 return ret;
683 }
684
685 static void remove_compat_control_link(struct drm_device *dev)
686 {
687 struct drm_minor *minor;
688 char *name;
689
690 if (!drm_core_check_feature(dev, DRIVER_MODESET))
691 return;
692
693 minor = *drm_minor_get_slot(dev, DRM_MINOR_PRIMARY);
694 if (!minor)
695 return;
696
697 name = kasprintf(GFP_KERNEL, "controlD%d", minor->index);
698 if (!name)
699 return;
700
701 sysfs_remove_link(minor->kdev->kobj.parent, name);
702
703 kfree(name);
704 }
705
706 /**
707 * drm_dev_register - Register DRM device
708 * @dev: Device to register
709 * @flags: Flags passed to the driver's .load() function
710 *
711 * Register the DRM device @dev with the system, advertise device to user-space
712 * and start normal device operation. @dev must be allocated via drm_dev_alloc()
713 * previously.
714 *
715 * Never call this twice on any device!
716 *
717 * NOTE: To ensure backward compatibility with existing drivers method this
718 * function calls the ->load() method after registering the device nodes,
719 * creating race conditions. Usage of the ->load() methods is therefore
720 * deprecated, drivers must perform all initialization before calling
721 * drm_dev_register().
722 *
723 * RETURNS:
724 * 0 on success, negative error code on failure.
725 */
726 int drm_dev_register(struct drm_device *dev, unsigned long flags)
727 {
728 int ret;
729
730 mutex_lock(&drm_global_mutex);
731
732 ret = drm_minor_register(dev, DRM_MINOR_CONTROL);
733 if (ret)
734 goto err_minors;
735
736 ret = drm_minor_register(dev, DRM_MINOR_RENDER);
737 if (ret)
738 goto err_minors;
739
740 ret = drm_minor_register(dev, DRM_MINOR_PRIMARY);
741 if (ret)
742 goto err_minors;
743
744 ret = create_compat_control_link(dev);
745 if (ret)
746 goto err_minors;
747
748 if (dev->driver->load) {
749 ret = dev->driver->load(dev, flags);
750 if (ret)
751 goto err_minors;
752 }
753
754 if (drm_core_check_feature(dev, DRIVER_MODESET))
755 drm_modeset_register_all(dev);
756
757 ret = 0;
758 goto out_unlock;
759
760 err_minors:
761 remove_compat_control_link(dev);
762 drm_minor_unregister(dev, DRM_MINOR_PRIMARY);
763 drm_minor_unregister(dev, DRM_MINOR_RENDER);
764 drm_minor_unregister(dev, DRM_MINOR_CONTROL);
765 out_unlock:
766 mutex_unlock(&drm_global_mutex);
767 return ret;
768 }
769 EXPORT_SYMBOL(drm_dev_register);
770
771 /**
772 * drm_dev_unregister - Unregister DRM device
773 * @dev: Device to unregister
774 *
775 * Unregister the DRM device from the system. This does the reverse of
776 * drm_dev_register() but does not deallocate the device. The caller must call
777 * drm_dev_unref() to drop their final reference.
778 *
779 * This should be called first in the device teardown code to make sure
780 * userspace can't access the device instance any more.
781 */
782 void drm_dev_unregister(struct drm_device *dev)
783 {
784 struct drm_map_list *r_list, *list_temp;
785
786 drm_lastclose(dev);
787
788 if (drm_core_check_feature(dev, DRIVER_MODESET))
789 drm_modeset_unregister_all(dev);
790
791 if (dev->driver->unload)
792 dev->driver->unload(dev);
793
794 if (dev->agp)
795 drm_pci_agp_destroy(dev);
796
797 drm_vblank_cleanup(dev);
798
799 list_for_each_entry_safe(r_list, list_temp, &dev->maplist, head)
800 drm_legacy_rmmap(dev, r_list->map);
801
802 remove_compat_control_link(dev);
803 drm_minor_unregister(dev, DRM_MINOR_PRIMARY);
804 drm_minor_unregister(dev, DRM_MINOR_RENDER);
805 drm_minor_unregister(dev, DRM_MINOR_CONTROL);
806 }
807 EXPORT_SYMBOL(drm_dev_unregister);
808
809 /**
810 * drm_dev_set_unique - Set the unique name of a DRM device
811 * @dev: device of which to set the unique name
812 * @name: unique name
813 *
814 * Sets the unique name of a DRM device using the specified string. Drivers
815 * can use this at driver probe time if the unique name of the devices they
816 * drive is static.
817 *
818 * Return: 0 on success or a negative error code on failure.
819 */
820 int drm_dev_set_unique(struct drm_device *dev, const char *name)
821 {
822 kfree(dev->unique);
823 dev->unique = kstrdup(name, GFP_KERNEL);
824
825 return dev->unique ? 0 : -ENOMEM;
826 }
827 EXPORT_SYMBOL(drm_dev_set_unique);
828
829 /*
830 * DRM Core
831 * The DRM core module initializes all global DRM objects and makes them
832 * available to drivers. Once setup, drivers can probe their respective
833 * devices.
834 * Currently, core management includes:
835 * - The "DRM-Global" key/value database
836 * - Global ID management for connectors
837 * - DRM major number allocation
838 * - DRM minor management
839 * - DRM sysfs class
840 * - DRM debugfs root
841 *
842 * Furthermore, the DRM core provides dynamic char-dev lookups. For each
843 * interface registered on a DRM device, you can request minor numbers from DRM
844 * core. DRM core takes care of major-number management and char-dev
845 * registration. A stub ->open() callback forwards any open() requests to the
846 * registered minor.
847 */
848
849 static int drm_stub_open(struct inode *inode, struct file *filp)
850 {
851 const struct file_operations *new_fops;
852 struct drm_minor *minor;
853 int err;
854
855 DRM_DEBUG("\n");
856
857 mutex_lock(&drm_global_mutex);
858 minor = drm_minor_acquire(iminor(inode));
859 if (IS_ERR(minor)) {
860 err = PTR_ERR(minor);
861 goto out_unlock;
862 }
863
864 new_fops = fops_get(minor->dev->driver->fops);
865 if (!new_fops) {
866 err = -ENODEV;
867 goto out_release;
868 }
869
870 replace_fops(filp, new_fops);
871 if (filp->f_op->open)
872 err = filp->f_op->open(inode, filp);
873 else
874 err = 0;
875
876 out_release:
877 drm_minor_release(minor);
878 out_unlock:
879 mutex_unlock(&drm_global_mutex);
880 return err;
881 }
882
883 static const struct file_operations drm_stub_fops = {
884 .owner = THIS_MODULE,
885 .open = drm_stub_open,
886 .llseek = noop_llseek,
887 };
888
889 static void drm_core_exit(void)
890 {
891 unregister_chrdev(DRM_MAJOR, "drm");
892 debugfs_remove(drm_debugfs_root);
893 drm_sysfs_destroy();
894 idr_destroy(&drm_minors_idr);
895 drm_connector_ida_destroy();
896 drm_global_release();
897 }
898
899 static int __init drm_core_init(void)
900 {
901 int ret;
902
903 drm_global_init();
904 drm_connector_ida_init();
905 idr_init(&drm_minors_idr);
906
907 ret = drm_sysfs_init();
908 if (ret < 0) {
909 DRM_ERROR("Cannot create DRM class: %d\n", ret);
910 goto error;
911 }
912
913 drm_debugfs_root = debugfs_create_dir("dri", NULL);
914 if (!drm_debugfs_root) {
915 ret = -ENOMEM;
916 DRM_ERROR("Cannot create debugfs-root: %d\n", ret);
917 goto error;
918 }
919
920 ret = register_chrdev(DRM_MAJOR, "drm", &drm_stub_fops);
921 if (ret < 0)
922 goto error;
923
924 DRM_INFO("Initialized\n");
925 return 0;
926
927 error:
928 drm_core_exit();
929 return ret;
930 }
931
932 module_init(drm_core_init);
933 module_exit(drm_core_exit);