]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/gpu/drm/drm_drv.c
drm: cleanup drm_core_{init,exit}()
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / drm_drv.c
1 /*
2 * Created: Fri Jan 19 10:48:35 2001 by faith@acm.org
3 *
4 * Copyright 2001 VA Linux Systems, Inc., Sunnyvale, California.
5 * All Rights Reserved.
6 *
7 * Author Rickard E. (Rik) Faith <faith@valinux.com>
8 *
9 * Permission is hereby granted, free of charge, to any person obtaining a
10 * copy of this software and associated documentation files (the "Software"),
11 * to deal in the Software without restriction, including without limitation
12 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
13 * and/or sell copies of the Software, and to permit persons to whom the
14 * Software is furnished to do so, subject to the following conditions:
15 *
16 * The above copyright notice and this permission notice (including the next
17 * paragraph) shall be included in all copies or substantial portions of the
18 * Software.
19 *
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
23 * PRECISION INSIGHT AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
24 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
25 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
26 * DEALINGS IN THE SOFTWARE.
27 */
28
29 #include <linux/debugfs.h>
30 #include <linux/fs.h>
31 #include <linux/module.h>
32 #include <linux/moduleparam.h>
33 #include <linux/mount.h>
34 #include <linux/slab.h>
35 #include <drm/drmP.h>
36 #include "drm_crtc_internal.h"
37 #include "drm_legacy.h"
38 #include "drm_internal.h"
39 #include "drm_crtc_internal.h"
40
41 /*
42 * drm_debug: Enable debug output.
43 * Bitmask of DRM_UT_x. See include/drm/drmP.h for details.
44 */
45 unsigned int drm_debug = 0;
46 EXPORT_SYMBOL(drm_debug);
47
48 MODULE_AUTHOR("Gareth Hughes, Leif Delgass, José Fonseca, Jon Smirl");
49 MODULE_DESCRIPTION("DRM shared core routines");
50 MODULE_LICENSE("GPL and additional rights");
51 MODULE_PARM_DESC(debug, "Enable debug output, where each bit enables a debug category.\n"
52 "\t\tBit 0 (0x01) will enable CORE messages (drm core code)\n"
53 "\t\tBit 1 (0x02) will enable DRIVER messages (drm controller code)\n"
54 "\t\tBit 2 (0x04) will enable KMS messages (modesetting code)\n"
55 "\t\tBit 3 (0x08) will enable PRIME messages (prime code)\n"
56 "\t\tBit 4 (0x10) will enable ATOMIC messages (atomic code)\n"
57 "\t\tBit 5 (0x20) will enable VBL messages (vblank code)");
58 module_param_named(debug, drm_debug, int, 0600);
59
60 static DEFINE_SPINLOCK(drm_minor_lock);
61 static struct idr drm_minors_idr;
62
63 static struct dentry *drm_debugfs_root;
64
65 #define DRM_PRINTK_FMT "[" DRM_NAME ":%s]%s %pV"
66
67 void drm_dev_printk(const struct device *dev, const char *level,
68 unsigned int category, const char *function_name,
69 const char *prefix, const char *format, ...)
70 {
71 struct va_format vaf;
72 va_list args;
73
74 if (category != DRM_UT_NONE && !(drm_debug & category))
75 return;
76
77 va_start(args, format);
78 vaf.fmt = format;
79 vaf.va = &args;
80
81 if (dev)
82 dev_printk(level, dev, DRM_PRINTK_FMT, function_name, prefix,
83 &vaf);
84 else
85 printk("%s" DRM_PRINTK_FMT, level, function_name, prefix, &vaf);
86
87 va_end(args);
88 }
89 EXPORT_SYMBOL(drm_dev_printk);
90
91 void drm_printk(const char *level, unsigned int category,
92 const char *function_name, const char *prefix,
93 const char *format, ...)
94 {
95 struct va_format vaf;
96 va_list args;
97
98 if (category != DRM_UT_NONE && !(drm_debug & category))
99 return;
100
101 va_start(args, format);
102 vaf.fmt = format;
103 vaf.va = &args;
104
105 printk("%s" DRM_PRINTK_FMT, level, function_name, prefix, &vaf);
106
107 va_end(args);
108 }
109 EXPORT_SYMBOL(drm_printk);
110
111 /*
112 * DRM Minors
113 * A DRM device can provide several char-dev interfaces on the DRM-Major. Each
114 * of them is represented by a drm_minor object. Depending on the capabilities
115 * of the device-driver, different interfaces are registered.
116 *
117 * Minors can be accessed via dev->$minor_name. This pointer is either
118 * NULL or a valid drm_minor pointer and stays valid as long as the device is
119 * valid. This means, DRM minors have the same life-time as the underlying
120 * device. However, this doesn't mean that the minor is active. Minors are
121 * registered and unregistered dynamically according to device-state.
122 */
123
124 static struct drm_minor **drm_minor_get_slot(struct drm_device *dev,
125 unsigned int type)
126 {
127 switch (type) {
128 case DRM_MINOR_PRIMARY:
129 return &dev->primary;
130 case DRM_MINOR_RENDER:
131 return &dev->render;
132 case DRM_MINOR_CONTROL:
133 return &dev->control;
134 default:
135 return NULL;
136 }
137 }
138
139 static int drm_minor_alloc(struct drm_device *dev, unsigned int type)
140 {
141 struct drm_minor *minor;
142 unsigned long flags;
143 int r;
144
145 minor = kzalloc(sizeof(*minor), GFP_KERNEL);
146 if (!minor)
147 return -ENOMEM;
148
149 minor->type = type;
150 minor->dev = dev;
151
152 idr_preload(GFP_KERNEL);
153 spin_lock_irqsave(&drm_minor_lock, flags);
154 r = idr_alloc(&drm_minors_idr,
155 NULL,
156 64 * type,
157 64 * (type + 1),
158 GFP_NOWAIT);
159 spin_unlock_irqrestore(&drm_minor_lock, flags);
160 idr_preload_end();
161
162 if (r < 0)
163 goto err_free;
164
165 minor->index = r;
166
167 minor->kdev = drm_sysfs_minor_alloc(minor);
168 if (IS_ERR(minor->kdev)) {
169 r = PTR_ERR(minor->kdev);
170 goto err_index;
171 }
172
173 *drm_minor_get_slot(dev, type) = minor;
174 return 0;
175
176 err_index:
177 spin_lock_irqsave(&drm_minor_lock, flags);
178 idr_remove(&drm_minors_idr, minor->index);
179 spin_unlock_irqrestore(&drm_minor_lock, flags);
180 err_free:
181 kfree(minor);
182 return r;
183 }
184
185 static void drm_minor_free(struct drm_device *dev, unsigned int type)
186 {
187 struct drm_minor **slot, *minor;
188 unsigned long flags;
189
190 slot = drm_minor_get_slot(dev, type);
191 minor = *slot;
192 if (!minor)
193 return;
194
195 put_device(minor->kdev);
196
197 spin_lock_irqsave(&drm_minor_lock, flags);
198 idr_remove(&drm_minors_idr, minor->index);
199 spin_unlock_irqrestore(&drm_minor_lock, flags);
200
201 kfree(minor);
202 *slot = NULL;
203 }
204
205 static int drm_minor_register(struct drm_device *dev, unsigned int type)
206 {
207 struct drm_minor *minor;
208 unsigned long flags;
209 int ret;
210
211 DRM_DEBUG("\n");
212
213 minor = *drm_minor_get_slot(dev, type);
214 if (!minor)
215 return 0;
216
217 ret = drm_debugfs_init(minor, minor->index, drm_debugfs_root);
218 if (ret) {
219 DRM_ERROR("DRM: Failed to initialize /sys/kernel/debug/dri.\n");
220 return ret;
221 }
222
223 ret = device_add(minor->kdev);
224 if (ret)
225 goto err_debugfs;
226
227 /* replace NULL with @minor so lookups will succeed from now on */
228 spin_lock_irqsave(&drm_minor_lock, flags);
229 idr_replace(&drm_minors_idr, minor, minor->index);
230 spin_unlock_irqrestore(&drm_minor_lock, flags);
231
232 DRM_DEBUG("new minor registered %d\n", minor->index);
233 return 0;
234
235 err_debugfs:
236 drm_debugfs_cleanup(minor);
237 return ret;
238 }
239
240 static void drm_minor_unregister(struct drm_device *dev, unsigned int type)
241 {
242 struct drm_minor *minor;
243 unsigned long flags;
244
245 minor = *drm_minor_get_slot(dev, type);
246 if (!minor || !device_is_registered(minor->kdev))
247 return;
248
249 /* replace @minor with NULL so lookups will fail from now on */
250 spin_lock_irqsave(&drm_minor_lock, flags);
251 idr_replace(&drm_minors_idr, NULL, minor->index);
252 spin_unlock_irqrestore(&drm_minor_lock, flags);
253
254 device_del(minor->kdev);
255 dev_set_drvdata(minor->kdev, NULL); /* safety belt */
256 drm_debugfs_cleanup(minor);
257 }
258
259 /**
260 * drm_minor_acquire - Acquire a DRM minor
261 * @minor_id: Minor ID of the DRM-minor
262 *
263 * Looks up the given minor-ID and returns the respective DRM-minor object. The
264 * refence-count of the underlying device is increased so you must release this
265 * object with drm_minor_release().
266 *
267 * As long as you hold this minor, it is guaranteed that the object and the
268 * minor->dev pointer will stay valid! However, the device may get unplugged and
269 * unregistered while you hold the minor.
270 *
271 * Returns:
272 * Pointer to minor-object with increased device-refcount, or PTR_ERR on
273 * failure.
274 */
275 struct drm_minor *drm_minor_acquire(unsigned int minor_id)
276 {
277 struct drm_minor *minor;
278 unsigned long flags;
279
280 spin_lock_irqsave(&drm_minor_lock, flags);
281 minor = idr_find(&drm_minors_idr, minor_id);
282 if (minor)
283 drm_dev_ref(minor->dev);
284 spin_unlock_irqrestore(&drm_minor_lock, flags);
285
286 if (!minor) {
287 return ERR_PTR(-ENODEV);
288 } else if (drm_device_is_unplugged(minor->dev)) {
289 drm_dev_unref(minor->dev);
290 return ERR_PTR(-ENODEV);
291 }
292
293 return minor;
294 }
295
296 /**
297 * drm_minor_release - Release DRM minor
298 * @minor: Pointer to DRM minor object
299 *
300 * Release a minor that was previously acquired via drm_minor_acquire().
301 */
302 void drm_minor_release(struct drm_minor *minor)
303 {
304 drm_dev_unref(minor->dev);
305 }
306
307 /**
308 * DOC: driver instance overview
309 *
310 * A device instance for a drm driver is represented by struct &drm_device. This
311 * is allocated with drm_dev_alloc(), usually from bus-specific ->probe()
312 * callbacks implemented by the driver. The driver then needs to initialize all
313 * the various subsystems for the drm device like memory management, vblank
314 * handling, modesetting support and intial output configuration plus obviously
315 * initialize all the corresponding hardware bits. Finally when everything is up
316 * and running and ready for userspace the device instance can be published
317 * using drm_dev_register().
318 *
319 * There is also deprecated support for initalizing device instances using
320 * bus-specific helpers and the ->load() callback. But due to
321 * backwards-compatibility needs the device instance have to be published too
322 * early, which requires unpretty global locking to make safe and is therefore
323 * only support for existing drivers not yet converted to the new scheme.
324 *
325 * When cleaning up a device instance everything needs to be done in reverse:
326 * First unpublish the device instance with drm_dev_unregister(). Then clean up
327 * any other resources allocated at device initialization and drop the driver's
328 * reference to &drm_device using drm_dev_unref().
329 *
330 * Note that the lifetime rules for &drm_device instance has still a lot of
331 * historical baggage. Hence use the reference counting provided by
332 * drm_dev_ref() and drm_dev_unref() only carefully.
333 *
334 * Also note that embedding of &drm_device is currently not (yet) supported (but
335 * it would be easy to add). Drivers can store driver-private data in the
336 * dev_priv field of &drm_device.
337 */
338
339 static int drm_dev_set_unique(struct drm_device *dev, const char *name)
340 {
341 kfree(dev->unique);
342 dev->unique = kstrdup(name, GFP_KERNEL);
343
344 return dev->unique ? 0 : -ENOMEM;
345 }
346
347 /**
348 * drm_put_dev - Unregister and release a DRM device
349 * @dev: DRM device
350 *
351 * Called at module unload time or when a PCI device is unplugged.
352 *
353 * Cleans up all DRM device, calling drm_lastclose().
354 *
355 * Note: Use of this function is deprecated. It will eventually go away
356 * completely. Please use drm_dev_unregister() and drm_dev_unref() explicitly
357 * instead to make sure that the device isn't userspace accessible any more
358 * while teardown is in progress, ensuring that userspace can't access an
359 * inconsistent state.
360 */
361 void drm_put_dev(struct drm_device *dev)
362 {
363 DRM_DEBUG("\n");
364
365 if (!dev) {
366 DRM_ERROR("cleanup called no dev\n");
367 return;
368 }
369
370 drm_dev_unregister(dev);
371 drm_dev_unref(dev);
372 }
373 EXPORT_SYMBOL(drm_put_dev);
374
375 void drm_unplug_dev(struct drm_device *dev)
376 {
377 /* for a USB device */
378 drm_dev_unregister(dev);
379
380 mutex_lock(&drm_global_mutex);
381
382 drm_device_set_unplugged(dev);
383
384 if (dev->open_count == 0) {
385 drm_put_dev(dev);
386 }
387 mutex_unlock(&drm_global_mutex);
388 }
389 EXPORT_SYMBOL(drm_unplug_dev);
390
391 /*
392 * DRM internal mount
393 * We want to be able to allocate our own "struct address_space" to control
394 * memory-mappings in VRAM (or stolen RAM, ...). However, core MM does not allow
395 * stand-alone address_space objects, so we need an underlying inode. As there
396 * is no way to allocate an independent inode easily, we need a fake internal
397 * VFS mount-point.
398 *
399 * The drm_fs_inode_new() function allocates a new inode, drm_fs_inode_free()
400 * frees it again. You are allowed to use iget() and iput() to get references to
401 * the inode. But each drm_fs_inode_new() call must be paired with exactly one
402 * drm_fs_inode_free() call (which does not have to be the last iput()).
403 * We use drm_fs_inode_*() to manage our internal VFS mount-point and share it
404 * between multiple inode-users. You could, technically, call
405 * iget() + drm_fs_inode_free() directly after alloc and sometime later do an
406 * iput(), but this way you'd end up with a new vfsmount for each inode.
407 */
408
409 static int drm_fs_cnt;
410 static struct vfsmount *drm_fs_mnt;
411
412 static const struct dentry_operations drm_fs_dops = {
413 .d_dname = simple_dname,
414 };
415
416 static const struct super_operations drm_fs_sops = {
417 .statfs = simple_statfs,
418 };
419
420 static struct dentry *drm_fs_mount(struct file_system_type *fs_type, int flags,
421 const char *dev_name, void *data)
422 {
423 return mount_pseudo(fs_type,
424 "drm:",
425 &drm_fs_sops,
426 &drm_fs_dops,
427 0x010203ff);
428 }
429
430 static struct file_system_type drm_fs_type = {
431 .name = "drm",
432 .owner = THIS_MODULE,
433 .mount = drm_fs_mount,
434 .kill_sb = kill_anon_super,
435 };
436
437 static struct inode *drm_fs_inode_new(void)
438 {
439 struct inode *inode;
440 int r;
441
442 r = simple_pin_fs(&drm_fs_type, &drm_fs_mnt, &drm_fs_cnt);
443 if (r < 0) {
444 DRM_ERROR("Cannot mount pseudo fs: %d\n", r);
445 return ERR_PTR(r);
446 }
447
448 inode = alloc_anon_inode(drm_fs_mnt->mnt_sb);
449 if (IS_ERR(inode))
450 simple_release_fs(&drm_fs_mnt, &drm_fs_cnt);
451
452 return inode;
453 }
454
455 static void drm_fs_inode_free(struct inode *inode)
456 {
457 if (inode) {
458 iput(inode);
459 simple_release_fs(&drm_fs_mnt, &drm_fs_cnt);
460 }
461 }
462
463 /**
464 * drm_dev_init - Initialise new DRM device
465 * @dev: DRM device
466 * @driver: DRM driver
467 * @parent: Parent device object
468 *
469 * Initialize a new DRM device. No device registration is done.
470 * Call drm_dev_register() to advertice the device to user space and register it
471 * with other core subsystems. This should be done last in the device
472 * initialization sequence to make sure userspace can't access an inconsistent
473 * state.
474 *
475 * The initial ref-count of the object is 1. Use drm_dev_ref() and
476 * drm_dev_unref() to take and drop further ref-counts.
477 *
478 * Note that for purely virtual devices @parent can be NULL.
479 *
480 * Drivers that do not want to allocate their own device struct
481 * embedding struct &drm_device can call drm_dev_alloc() instead.
482 *
483 * RETURNS:
484 * 0 on success, or error code on failure.
485 */
486 int drm_dev_init(struct drm_device *dev,
487 struct drm_driver *driver,
488 struct device *parent)
489 {
490 int ret;
491
492 kref_init(&dev->ref);
493 dev->dev = parent;
494 dev->driver = driver;
495
496 INIT_LIST_HEAD(&dev->filelist);
497 INIT_LIST_HEAD(&dev->ctxlist);
498 INIT_LIST_HEAD(&dev->vmalist);
499 INIT_LIST_HEAD(&dev->maplist);
500 INIT_LIST_HEAD(&dev->vblank_event_list);
501
502 spin_lock_init(&dev->buf_lock);
503 spin_lock_init(&dev->event_lock);
504 mutex_init(&dev->struct_mutex);
505 mutex_init(&dev->filelist_mutex);
506 mutex_init(&dev->ctxlist_mutex);
507 mutex_init(&dev->master_mutex);
508
509 dev->anon_inode = drm_fs_inode_new();
510 if (IS_ERR(dev->anon_inode)) {
511 ret = PTR_ERR(dev->anon_inode);
512 DRM_ERROR("Cannot allocate anonymous inode: %d\n", ret);
513 goto err_free;
514 }
515
516 if (drm_core_check_feature(dev, DRIVER_MODESET)) {
517 ret = drm_minor_alloc(dev, DRM_MINOR_CONTROL);
518 if (ret)
519 goto err_minors;
520 }
521
522 if (drm_core_check_feature(dev, DRIVER_RENDER)) {
523 ret = drm_minor_alloc(dev, DRM_MINOR_RENDER);
524 if (ret)
525 goto err_minors;
526 }
527
528 ret = drm_minor_alloc(dev, DRM_MINOR_PRIMARY);
529 if (ret)
530 goto err_minors;
531
532 ret = drm_ht_create(&dev->map_hash, 12);
533 if (ret)
534 goto err_minors;
535
536 drm_legacy_ctxbitmap_init(dev);
537
538 if (drm_core_check_feature(dev, DRIVER_GEM)) {
539 ret = drm_gem_init(dev);
540 if (ret) {
541 DRM_ERROR("Cannot initialize graphics execution manager (GEM)\n");
542 goto err_ctxbitmap;
543 }
544 }
545
546 /* Use the parent device name as DRM device unique identifier, but fall
547 * back to the driver name for virtual devices like vgem. */
548 ret = drm_dev_set_unique(dev, parent ? dev_name(parent) : driver->name);
549 if (ret)
550 goto err_setunique;
551
552 return 0;
553
554 err_setunique:
555 if (drm_core_check_feature(dev, DRIVER_GEM))
556 drm_gem_destroy(dev);
557 err_ctxbitmap:
558 drm_legacy_ctxbitmap_cleanup(dev);
559 drm_ht_remove(&dev->map_hash);
560 err_minors:
561 drm_minor_free(dev, DRM_MINOR_PRIMARY);
562 drm_minor_free(dev, DRM_MINOR_RENDER);
563 drm_minor_free(dev, DRM_MINOR_CONTROL);
564 drm_fs_inode_free(dev->anon_inode);
565 err_free:
566 mutex_destroy(&dev->master_mutex);
567 return ret;
568 }
569 EXPORT_SYMBOL(drm_dev_init);
570
571 /**
572 * drm_dev_alloc - Allocate new DRM device
573 * @driver: DRM driver to allocate device for
574 * @parent: Parent device object
575 *
576 * Allocate and initialize a new DRM device. No device registration is done.
577 * Call drm_dev_register() to advertice the device to user space and register it
578 * with other core subsystems. This should be done last in the device
579 * initialization sequence to make sure userspace can't access an inconsistent
580 * state.
581 *
582 * The initial ref-count of the object is 1. Use drm_dev_ref() and
583 * drm_dev_unref() to take and drop further ref-counts.
584 *
585 * Note that for purely virtual devices @parent can be NULL.
586 *
587 * Drivers that wish to subclass or embed struct &drm_device into their
588 * own struct should look at using drm_dev_init() instead.
589 *
590 * RETURNS:
591 * Pointer to new DRM device, or NULL if out of memory.
592 */
593 struct drm_device *drm_dev_alloc(struct drm_driver *driver,
594 struct device *parent)
595 {
596 struct drm_device *dev;
597 int ret;
598
599 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
600 if (!dev)
601 return NULL;
602
603 ret = drm_dev_init(dev, driver, parent);
604 if (ret) {
605 kfree(dev);
606 return NULL;
607 }
608
609 return dev;
610 }
611 EXPORT_SYMBOL(drm_dev_alloc);
612
613 static void drm_dev_release(struct kref *ref)
614 {
615 struct drm_device *dev = container_of(ref, struct drm_device, ref);
616
617 if (drm_core_check_feature(dev, DRIVER_GEM))
618 drm_gem_destroy(dev);
619
620 drm_legacy_ctxbitmap_cleanup(dev);
621 drm_ht_remove(&dev->map_hash);
622 drm_fs_inode_free(dev->anon_inode);
623
624 drm_minor_free(dev, DRM_MINOR_PRIMARY);
625 drm_minor_free(dev, DRM_MINOR_RENDER);
626 drm_minor_free(dev, DRM_MINOR_CONTROL);
627
628 mutex_destroy(&dev->master_mutex);
629 kfree(dev->unique);
630 kfree(dev);
631 }
632
633 /**
634 * drm_dev_ref - Take reference of a DRM device
635 * @dev: device to take reference of or NULL
636 *
637 * This increases the ref-count of @dev by one. You *must* already own a
638 * reference when calling this. Use drm_dev_unref() to drop this reference
639 * again.
640 *
641 * This function never fails. However, this function does not provide *any*
642 * guarantee whether the device is alive or running. It only provides a
643 * reference to the object and the memory associated with it.
644 */
645 void drm_dev_ref(struct drm_device *dev)
646 {
647 if (dev)
648 kref_get(&dev->ref);
649 }
650 EXPORT_SYMBOL(drm_dev_ref);
651
652 /**
653 * drm_dev_unref - Drop reference of a DRM device
654 * @dev: device to drop reference of or NULL
655 *
656 * This decreases the ref-count of @dev by one. The device is destroyed if the
657 * ref-count drops to zero.
658 */
659 void drm_dev_unref(struct drm_device *dev)
660 {
661 if (dev)
662 kref_put(&dev->ref, drm_dev_release);
663 }
664 EXPORT_SYMBOL(drm_dev_unref);
665
666 /**
667 * drm_dev_register - Register DRM device
668 * @dev: Device to register
669 * @flags: Flags passed to the driver's .load() function
670 *
671 * Register the DRM device @dev with the system, advertise device to user-space
672 * and start normal device operation. @dev must be allocated via drm_dev_alloc()
673 * previously.
674 *
675 * Never call this twice on any device!
676 *
677 * NOTE: To ensure backward compatibility with existing drivers method this
678 * function calls the ->load() method after registering the device nodes,
679 * creating race conditions. Usage of the ->load() methods is therefore
680 * deprecated, drivers must perform all initialization before calling
681 * drm_dev_register().
682 *
683 * RETURNS:
684 * 0 on success, negative error code on failure.
685 */
686 int drm_dev_register(struct drm_device *dev, unsigned long flags)
687 {
688 int ret;
689
690 mutex_lock(&drm_global_mutex);
691
692 ret = drm_minor_register(dev, DRM_MINOR_CONTROL);
693 if (ret)
694 goto err_minors;
695
696 ret = drm_minor_register(dev, DRM_MINOR_RENDER);
697 if (ret)
698 goto err_minors;
699
700 ret = drm_minor_register(dev, DRM_MINOR_PRIMARY);
701 if (ret)
702 goto err_minors;
703
704 if (dev->driver->load) {
705 ret = dev->driver->load(dev, flags);
706 if (ret)
707 goto err_minors;
708 }
709
710 if (drm_core_check_feature(dev, DRIVER_MODESET))
711 drm_modeset_register_all(dev);
712
713 ret = 0;
714 goto out_unlock;
715
716 err_minors:
717 drm_minor_unregister(dev, DRM_MINOR_PRIMARY);
718 drm_minor_unregister(dev, DRM_MINOR_RENDER);
719 drm_minor_unregister(dev, DRM_MINOR_CONTROL);
720 out_unlock:
721 mutex_unlock(&drm_global_mutex);
722 return ret;
723 }
724 EXPORT_SYMBOL(drm_dev_register);
725
726 /**
727 * drm_dev_unregister - Unregister DRM device
728 * @dev: Device to unregister
729 *
730 * Unregister the DRM device from the system. This does the reverse of
731 * drm_dev_register() but does not deallocate the device. The caller must call
732 * drm_dev_unref() to drop their final reference.
733 *
734 * This should be called first in the device teardown code to make sure
735 * userspace can't access the device instance any more.
736 */
737 void drm_dev_unregister(struct drm_device *dev)
738 {
739 struct drm_map_list *r_list, *list_temp;
740
741 drm_lastclose(dev);
742
743 if (drm_core_check_feature(dev, DRIVER_MODESET))
744 drm_modeset_unregister_all(dev);
745
746 if (dev->driver->unload)
747 dev->driver->unload(dev);
748
749 if (dev->agp)
750 drm_pci_agp_destroy(dev);
751
752 drm_vblank_cleanup(dev);
753
754 list_for_each_entry_safe(r_list, list_temp, &dev->maplist, head)
755 drm_legacy_rmmap(dev, r_list->map);
756
757 drm_minor_unregister(dev, DRM_MINOR_PRIMARY);
758 drm_minor_unregister(dev, DRM_MINOR_RENDER);
759 drm_minor_unregister(dev, DRM_MINOR_CONTROL);
760 }
761 EXPORT_SYMBOL(drm_dev_unregister);
762
763 /*
764 * DRM Core
765 * The DRM core module initializes all global DRM objects and makes them
766 * available to drivers. Once setup, drivers can probe their respective
767 * devices.
768 * Currently, core management includes:
769 * - The "DRM-Global" key/value database
770 * - Global ID management for connectors
771 * - DRM major number allocation
772 * - DRM minor management
773 * - DRM sysfs class
774 * - DRM debugfs root
775 *
776 * Furthermore, the DRM core provides dynamic char-dev lookups. For each
777 * interface registered on a DRM device, you can request minor numbers from DRM
778 * core. DRM core takes care of major-number management and char-dev
779 * registration. A stub ->open() callback forwards any open() requests to the
780 * registered minor.
781 */
782
783 static int drm_stub_open(struct inode *inode, struct file *filp)
784 {
785 const struct file_operations *new_fops;
786 struct drm_minor *minor;
787 int err;
788
789 DRM_DEBUG("\n");
790
791 mutex_lock(&drm_global_mutex);
792 minor = drm_minor_acquire(iminor(inode));
793 if (IS_ERR(minor)) {
794 err = PTR_ERR(minor);
795 goto out_unlock;
796 }
797
798 new_fops = fops_get(minor->dev->driver->fops);
799 if (!new_fops) {
800 err = -ENODEV;
801 goto out_release;
802 }
803
804 replace_fops(filp, new_fops);
805 if (filp->f_op->open)
806 err = filp->f_op->open(inode, filp);
807 else
808 err = 0;
809
810 out_release:
811 drm_minor_release(minor);
812 out_unlock:
813 mutex_unlock(&drm_global_mutex);
814 return err;
815 }
816
817 static const struct file_operations drm_stub_fops = {
818 .owner = THIS_MODULE,
819 .open = drm_stub_open,
820 .llseek = noop_llseek,
821 };
822
823 static void drm_core_exit(void)
824 {
825 unregister_chrdev(DRM_MAJOR, "drm");
826 debugfs_remove(drm_debugfs_root);
827 drm_sysfs_destroy();
828 idr_destroy(&drm_minors_idr);
829 drm_connector_ida_destroy();
830 drm_global_release();
831 }
832
833 static int __init drm_core_init(void)
834 {
835 int ret;
836
837 drm_global_init();
838 drm_connector_ida_init();
839 idr_init(&drm_minors_idr);
840
841 ret = drm_sysfs_init();
842 if (ret < 0) {
843 DRM_ERROR("Cannot create DRM class: %d\n", ret);
844 goto error;
845 }
846
847 drm_debugfs_root = debugfs_create_dir("dri", NULL);
848 if (!drm_debugfs_root) {
849 ret = -ENOMEM;
850 DRM_ERROR("Cannot create debugfs-root: %d\n", ret);
851 goto error;
852 }
853
854 ret = register_chrdev(DRM_MAJOR, "drm", &drm_stub_fops);
855 if (ret < 0)
856 goto error;
857
858 DRM_INFO("Initialized\n");
859 return 0;
860
861 error:
862 drm_core_exit();
863 return ret;
864 }
865
866 module_init(drm_core_init);
867 module_exit(drm_core_exit);