]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/gpu/drm/drm_drv.c
Merge tag 'drm-qemu-20160921' of git://git.kraxel.org/linux into drm-next
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / drm_drv.c
1 /*
2 * Created: Fri Jan 19 10:48:35 2001 by faith@acm.org
3 *
4 * Copyright 2001 VA Linux Systems, Inc., Sunnyvale, California.
5 * All Rights Reserved.
6 *
7 * Author Rickard E. (Rik) Faith <faith@valinux.com>
8 *
9 * Permission is hereby granted, free of charge, to any person obtaining a
10 * copy of this software and associated documentation files (the "Software"),
11 * to deal in the Software without restriction, including without limitation
12 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
13 * and/or sell copies of the Software, and to permit persons to whom the
14 * Software is furnished to do so, subject to the following conditions:
15 *
16 * The above copyright notice and this permission notice (including the next
17 * paragraph) shall be included in all copies or substantial portions of the
18 * Software.
19 *
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
23 * PRECISION INSIGHT AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
24 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
25 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
26 * DEALINGS IN THE SOFTWARE.
27 */
28
29 #include <linux/debugfs.h>
30 #include <linux/fs.h>
31 #include <linux/module.h>
32 #include <linux/moduleparam.h>
33 #include <linux/mount.h>
34 #include <linux/slab.h>
35 #include <drm/drmP.h>
36 #include "drm_crtc_internal.h"
37 #include "drm_legacy.h"
38 #include "drm_internal.h"
39 #include "drm_crtc_internal.h"
40
41 /*
42 * drm_debug: Enable debug output.
43 * Bitmask of DRM_UT_x. See include/drm/drmP.h for details.
44 */
45 unsigned int drm_debug = 0;
46 EXPORT_SYMBOL(drm_debug);
47
48 MODULE_AUTHOR("Gareth Hughes, Leif Delgass, José Fonseca, Jon Smirl");
49 MODULE_DESCRIPTION("DRM shared core routines");
50 MODULE_LICENSE("GPL and additional rights");
51 MODULE_PARM_DESC(debug, "Enable debug output, where each bit enables a debug category.\n"
52 "\t\tBit 0 (0x01) will enable CORE messages (drm core code)\n"
53 "\t\tBit 1 (0x02) will enable DRIVER messages (drm controller code)\n"
54 "\t\tBit 2 (0x04) will enable KMS messages (modesetting code)\n"
55 "\t\tBit 3 (0x08) will enable PRIME messages (prime code)\n"
56 "\t\tBit 4 (0x10) will enable ATOMIC messages (atomic code)\n"
57 "\t\tBit 5 (0x20) will enable VBL messages (vblank code)");
58 module_param_named(debug, drm_debug, int, 0600);
59
60 static DEFINE_SPINLOCK(drm_minor_lock);
61 static struct idr drm_minors_idr;
62
63 static struct dentry *drm_debugfs_root;
64
65 #define DRM_PRINTK_FMT "[" DRM_NAME ":%s]%s %pV"
66
67 void drm_dev_printk(const struct device *dev, const char *level,
68 unsigned int category, const char *function_name,
69 const char *prefix, const char *format, ...)
70 {
71 struct va_format vaf;
72 va_list args;
73
74 if (category != DRM_UT_NONE && !(drm_debug & category))
75 return;
76
77 va_start(args, format);
78 vaf.fmt = format;
79 vaf.va = &args;
80
81 if (dev)
82 dev_printk(level, dev, DRM_PRINTK_FMT, function_name, prefix,
83 &vaf);
84 else
85 printk("%s" DRM_PRINTK_FMT, level, function_name, prefix, &vaf);
86
87 va_end(args);
88 }
89 EXPORT_SYMBOL(drm_dev_printk);
90
91 void drm_printk(const char *level, unsigned int category,
92 const char *function_name, const char *prefix,
93 const char *format, ...)
94 {
95 struct va_format vaf;
96 va_list args;
97
98 if (category != DRM_UT_NONE && !(drm_debug & category))
99 return;
100
101 va_start(args, format);
102 vaf.fmt = format;
103 vaf.va = &args;
104
105 printk("%s" DRM_PRINTK_FMT, level, function_name, prefix, &vaf);
106
107 va_end(args);
108 }
109 EXPORT_SYMBOL(drm_printk);
110
111 /*
112 * DRM Minors
113 * A DRM device can provide several char-dev interfaces on the DRM-Major. Each
114 * of them is represented by a drm_minor object. Depending on the capabilities
115 * of the device-driver, different interfaces are registered.
116 *
117 * Minors can be accessed via dev->$minor_name. This pointer is either
118 * NULL or a valid drm_minor pointer and stays valid as long as the device is
119 * valid. This means, DRM minors have the same life-time as the underlying
120 * device. However, this doesn't mean that the minor is active. Minors are
121 * registered and unregistered dynamically according to device-state.
122 */
123
124 static struct drm_minor **drm_minor_get_slot(struct drm_device *dev,
125 unsigned int type)
126 {
127 switch (type) {
128 case DRM_MINOR_PRIMARY:
129 return &dev->primary;
130 case DRM_MINOR_RENDER:
131 return &dev->render;
132 case DRM_MINOR_CONTROL:
133 return &dev->control;
134 default:
135 return NULL;
136 }
137 }
138
139 static int drm_minor_alloc(struct drm_device *dev, unsigned int type)
140 {
141 struct drm_minor *minor;
142 unsigned long flags;
143 int r;
144
145 minor = kzalloc(sizeof(*minor), GFP_KERNEL);
146 if (!minor)
147 return -ENOMEM;
148
149 minor->type = type;
150 minor->dev = dev;
151
152 idr_preload(GFP_KERNEL);
153 spin_lock_irqsave(&drm_minor_lock, flags);
154 r = idr_alloc(&drm_minors_idr,
155 NULL,
156 64 * type,
157 64 * (type + 1),
158 GFP_NOWAIT);
159 spin_unlock_irqrestore(&drm_minor_lock, flags);
160 idr_preload_end();
161
162 if (r < 0)
163 goto err_free;
164
165 minor->index = r;
166
167 minor->kdev = drm_sysfs_minor_alloc(minor);
168 if (IS_ERR(minor->kdev)) {
169 r = PTR_ERR(minor->kdev);
170 goto err_index;
171 }
172
173 *drm_minor_get_slot(dev, type) = minor;
174 return 0;
175
176 err_index:
177 spin_lock_irqsave(&drm_minor_lock, flags);
178 idr_remove(&drm_minors_idr, minor->index);
179 spin_unlock_irqrestore(&drm_minor_lock, flags);
180 err_free:
181 kfree(minor);
182 return r;
183 }
184
185 static void drm_minor_free(struct drm_device *dev, unsigned int type)
186 {
187 struct drm_minor **slot, *minor;
188 unsigned long flags;
189
190 slot = drm_minor_get_slot(dev, type);
191 minor = *slot;
192 if (!minor)
193 return;
194
195 put_device(minor->kdev);
196
197 spin_lock_irqsave(&drm_minor_lock, flags);
198 idr_remove(&drm_minors_idr, minor->index);
199 spin_unlock_irqrestore(&drm_minor_lock, flags);
200
201 kfree(minor);
202 *slot = NULL;
203 }
204
205 static int drm_minor_register(struct drm_device *dev, unsigned int type)
206 {
207 struct drm_minor *minor;
208 unsigned long flags;
209 int ret;
210
211 DRM_DEBUG("\n");
212
213 minor = *drm_minor_get_slot(dev, type);
214 if (!minor)
215 return 0;
216
217 ret = drm_debugfs_init(minor, minor->index, drm_debugfs_root);
218 if (ret) {
219 DRM_ERROR("DRM: Failed to initialize /sys/kernel/debug/dri.\n");
220 return ret;
221 }
222
223 ret = device_add(minor->kdev);
224 if (ret)
225 goto err_debugfs;
226
227 /* replace NULL with @minor so lookups will succeed from now on */
228 spin_lock_irqsave(&drm_minor_lock, flags);
229 idr_replace(&drm_minors_idr, minor, minor->index);
230 spin_unlock_irqrestore(&drm_minor_lock, flags);
231
232 DRM_DEBUG("new minor registered %d\n", minor->index);
233 return 0;
234
235 err_debugfs:
236 drm_debugfs_cleanup(minor);
237 return ret;
238 }
239
240 static void drm_minor_unregister(struct drm_device *dev, unsigned int type)
241 {
242 struct drm_minor *minor;
243 unsigned long flags;
244
245 minor = *drm_minor_get_slot(dev, type);
246 if (!minor || !device_is_registered(minor->kdev))
247 return;
248
249 /* replace @minor with NULL so lookups will fail from now on */
250 spin_lock_irqsave(&drm_minor_lock, flags);
251 idr_replace(&drm_minors_idr, NULL, minor->index);
252 spin_unlock_irqrestore(&drm_minor_lock, flags);
253
254 device_del(minor->kdev);
255 dev_set_drvdata(minor->kdev, NULL); /* safety belt */
256 drm_debugfs_cleanup(minor);
257 }
258
259 /**
260 * drm_minor_acquire - Acquire a DRM minor
261 * @minor_id: Minor ID of the DRM-minor
262 *
263 * Looks up the given minor-ID and returns the respective DRM-minor object. The
264 * refence-count of the underlying device is increased so you must release this
265 * object with drm_minor_release().
266 *
267 * As long as you hold this minor, it is guaranteed that the object and the
268 * minor->dev pointer will stay valid! However, the device may get unplugged and
269 * unregistered while you hold the minor.
270 *
271 * Returns:
272 * Pointer to minor-object with increased device-refcount, or PTR_ERR on
273 * failure.
274 */
275 struct drm_minor *drm_minor_acquire(unsigned int minor_id)
276 {
277 struct drm_minor *minor;
278 unsigned long flags;
279
280 spin_lock_irqsave(&drm_minor_lock, flags);
281 minor = idr_find(&drm_minors_idr, minor_id);
282 if (minor)
283 drm_dev_ref(minor->dev);
284 spin_unlock_irqrestore(&drm_minor_lock, flags);
285
286 if (!minor) {
287 return ERR_PTR(-ENODEV);
288 } else if (drm_device_is_unplugged(minor->dev)) {
289 drm_dev_unref(minor->dev);
290 return ERR_PTR(-ENODEV);
291 }
292
293 return minor;
294 }
295
296 /**
297 * drm_minor_release - Release DRM minor
298 * @minor: Pointer to DRM minor object
299 *
300 * Release a minor that was previously acquired via drm_minor_acquire().
301 */
302 void drm_minor_release(struct drm_minor *minor)
303 {
304 drm_dev_unref(minor->dev);
305 }
306
307 /**
308 * DOC: driver instance overview
309 *
310 * A device instance for a drm driver is represented by struct &drm_device. This
311 * is allocated with drm_dev_alloc(), usually from bus-specific ->probe()
312 * callbacks implemented by the driver. The driver then needs to initialize all
313 * the various subsystems for the drm device like memory management, vblank
314 * handling, modesetting support and intial output configuration plus obviously
315 * initialize all the corresponding hardware bits. Finally when everything is up
316 * and running and ready for userspace the device instance can be published
317 * using drm_dev_register().
318 *
319 * There is also deprecated support for initalizing device instances using
320 * bus-specific helpers and the ->load() callback. But due to
321 * backwards-compatibility needs the device instance have to be published too
322 * early, which requires unpretty global locking to make safe and is therefore
323 * only support for existing drivers not yet converted to the new scheme.
324 *
325 * When cleaning up a device instance everything needs to be done in reverse:
326 * First unpublish the device instance with drm_dev_unregister(). Then clean up
327 * any other resources allocated at device initialization and drop the driver's
328 * reference to &drm_device using drm_dev_unref().
329 *
330 * Note that the lifetime rules for &drm_device instance has still a lot of
331 * historical baggage. Hence use the reference counting provided by
332 * drm_dev_ref() and drm_dev_unref() only carefully.
333 *
334 * Also note that embedding of &drm_device is currently not (yet) supported (but
335 * it would be easy to add). Drivers can store driver-private data in the
336 * dev_priv field of &drm_device.
337 */
338
339 static int drm_dev_set_unique(struct drm_device *dev, const char *name)
340 {
341 if (!name)
342 return -EINVAL;
343
344 kfree(dev->unique);
345 dev->unique = kstrdup(name, GFP_KERNEL);
346
347 return dev->unique ? 0 : -ENOMEM;
348 }
349
350 /**
351 * drm_put_dev - Unregister and release a DRM device
352 * @dev: DRM device
353 *
354 * Called at module unload time or when a PCI device is unplugged.
355 *
356 * Cleans up all DRM device, calling drm_lastclose().
357 *
358 * Note: Use of this function is deprecated. It will eventually go away
359 * completely. Please use drm_dev_unregister() and drm_dev_unref() explicitly
360 * instead to make sure that the device isn't userspace accessible any more
361 * while teardown is in progress, ensuring that userspace can't access an
362 * inconsistent state.
363 */
364 void drm_put_dev(struct drm_device *dev)
365 {
366 DRM_DEBUG("\n");
367
368 if (!dev) {
369 DRM_ERROR("cleanup called no dev\n");
370 return;
371 }
372
373 drm_dev_unregister(dev);
374 drm_dev_unref(dev);
375 }
376 EXPORT_SYMBOL(drm_put_dev);
377
378 void drm_unplug_dev(struct drm_device *dev)
379 {
380 /* for a USB device */
381 drm_dev_unregister(dev);
382
383 mutex_lock(&drm_global_mutex);
384
385 drm_device_set_unplugged(dev);
386
387 if (dev->open_count == 0) {
388 drm_put_dev(dev);
389 }
390 mutex_unlock(&drm_global_mutex);
391 }
392 EXPORT_SYMBOL(drm_unplug_dev);
393
394 /*
395 * DRM internal mount
396 * We want to be able to allocate our own "struct address_space" to control
397 * memory-mappings in VRAM (or stolen RAM, ...). However, core MM does not allow
398 * stand-alone address_space objects, so we need an underlying inode. As there
399 * is no way to allocate an independent inode easily, we need a fake internal
400 * VFS mount-point.
401 *
402 * The drm_fs_inode_new() function allocates a new inode, drm_fs_inode_free()
403 * frees it again. You are allowed to use iget() and iput() to get references to
404 * the inode. But each drm_fs_inode_new() call must be paired with exactly one
405 * drm_fs_inode_free() call (which does not have to be the last iput()).
406 * We use drm_fs_inode_*() to manage our internal VFS mount-point and share it
407 * between multiple inode-users. You could, technically, call
408 * iget() + drm_fs_inode_free() directly after alloc and sometime later do an
409 * iput(), but this way you'd end up with a new vfsmount for each inode.
410 */
411
412 static int drm_fs_cnt;
413 static struct vfsmount *drm_fs_mnt;
414
415 static const struct dentry_operations drm_fs_dops = {
416 .d_dname = simple_dname,
417 };
418
419 static const struct super_operations drm_fs_sops = {
420 .statfs = simple_statfs,
421 };
422
423 static struct dentry *drm_fs_mount(struct file_system_type *fs_type, int flags,
424 const char *dev_name, void *data)
425 {
426 return mount_pseudo(fs_type,
427 "drm:",
428 &drm_fs_sops,
429 &drm_fs_dops,
430 0x010203ff);
431 }
432
433 static struct file_system_type drm_fs_type = {
434 .name = "drm",
435 .owner = THIS_MODULE,
436 .mount = drm_fs_mount,
437 .kill_sb = kill_anon_super,
438 };
439
440 static struct inode *drm_fs_inode_new(void)
441 {
442 struct inode *inode;
443 int r;
444
445 r = simple_pin_fs(&drm_fs_type, &drm_fs_mnt, &drm_fs_cnt);
446 if (r < 0) {
447 DRM_ERROR("Cannot mount pseudo fs: %d\n", r);
448 return ERR_PTR(r);
449 }
450
451 inode = alloc_anon_inode(drm_fs_mnt->mnt_sb);
452 if (IS_ERR(inode))
453 simple_release_fs(&drm_fs_mnt, &drm_fs_cnt);
454
455 return inode;
456 }
457
458 static void drm_fs_inode_free(struct inode *inode)
459 {
460 if (inode) {
461 iput(inode);
462 simple_release_fs(&drm_fs_mnt, &drm_fs_cnt);
463 }
464 }
465
466 /**
467 * drm_dev_init - Initialise new DRM device
468 * @dev: DRM device
469 * @driver: DRM driver
470 * @parent: Parent device object
471 *
472 * Initialize a new DRM device. No device registration is done.
473 * Call drm_dev_register() to advertice the device to user space and register it
474 * with other core subsystems. This should be done last in the device
475 * initialization sequence to make sure userspace can't access an inconsistent
476 * state.
477 *
478 * The initial ref-count of the object is 1. Use drm_dev_ref() and
479 * drm_dev_unref() to take and drop further ref-counts.
480 *
481 * Note that for purely virtual devices @parent can be NULL.
482 *
483 * Drivers that do not want to allocate their own device struct
484 * embedding struct &drm_device can call drm_dev_alloc() instead.
485 *
486 * RETURNS:
487 * 0 on success, or error code on failure.
488 */
489 int drm_dev_init(struct drm_device *dev,
490 struct drm_driver *driver,
491 struct device *parent)
492 {
493 int ret;
494
495 kref_init(&dev->ref);
496 dev->dev = parent;
497 dev->driver = driver;
498
499 INIT_LIST_HEAD(&dev->filelist);
500 INIT_LIST_HEAD(&dev->ctxlist);
501 INIT_LIST_HEAD(&dev->vmalist);
502 INIT_LIST_HEAD(&dev->maplist);
503 INIT_LIST_HEAD(&dev->vblank_event_list);
504
505 spin_lock_init(&dev->buf_lock);
506 spin_lock_init(&dev->event_lock);
507 mutex_init(&dev->struct_mutex);
508 mutex_init(&dev->filelist_mutex);
509 mutex_init(&dev->ctxlist_mutex);
510 mutex_init(&dev->master_mutex);
511
512 dev->anon_inode = drm_fs_inode_new();
513 if (IS_ERR(dev->anon_inode)) {
514 ret = PTR_ERR(dev->anon_inode);
515 DRM_ERROR("Cannot allocate anonymous inode: %d\n", ret);
516 goto err_free;
517 }
518
519 if (drm_core_check_feature(dev, DRIVER_MODESET)) {
520 ret = drm_minor_alloc(dev, DRM_MINOR_CONTROL);
521 if (ret)
522 goto err_minors;
523 }
524
525 if (drm_core_check_feature(dev, DRIVER_RENDER)) {
526 ret = drm_minor_alloc(dev, DRM_MINOR_RENDER);
527 if (ret)
528 goto err_minors;
529 }
530
531 ret = drm_minor_alloc(dev, DRM_MINOR_PRIMARY);
532 if (ret)
533 goto err_minors;
534
535 ret = drm_ht_create(&dev->map_hash, 12);
536 if (ret)
537 goto err_minors;
538
539 drm_legacy_ctxbitmap_init(dev);
540
541 if (drm_core_check_feature(dev, DRIVER_GEM)) {
542 ret = drm_gem_init(dev);
543 if (ret) {
544 DRM_ERROR("Cannot initialize graphics execution manager (GEM)\n");
545 goto err_ctxbitmap;
546 }
547 }
548
549 /* Use the parent device name as DRM device unique identifier, but fall
550 * back to the driver name for virtual devices like vgem. */
551 ret = drm_dev_set_unique(dev, parent ? dev_name(parent) : driver->name);
552 if (ret)
553 goto err_setunique;
554
555 return 0;
556
557 err_setunique:
558 if (drm_core_check_feature(dev, DRIVER_GEM))
559 drm_gem_destroy(dev);
560 err_ctxbitmap:
561 drm_legacy_ctxbitmap_cleanup(dev);
562 drm_ht_remove(&dev->map_hash);
563 err_minors:
564 drm_minor_free(dev, DRM_MINOR_PRIMARY);
565 drm_minor_free(dev, DRM_MINOR_RENDER);
566 drm_minor_free(dev, DRM_MINOR_CONTROL);
567 drm_fs_inode_free(dev->anon_inode);
568 err_free:
569 mutex_destroy(&dev->master_mutex);
570 return ret;
571 }
572 EXPORT_SYMBOL(drm_dev_init);
573
574 /**
575 * drm_dev_alloc - Allocate new DRM device
576 * @driver: DRM driver to allocate device for
577 * @parent: Parent device object
578 *
579 * Allocate and initialize a new DRM device. No device registration is done.
580 * Call drm_dev_register() to advertice the device to user space and register it
581 * with other core subsystems. This should be done last in the device
582 * initialization sequence to make sure userspace can't access an inconsistent
583 * state.
584 *
585 * The initial ref-count of the object is 1. Use drm_dev_ref() and
586 * drm_dev_unref() to take and drop further ref-counts.
587 *
588 * Note that for purely virtual devices @parent can be NULL.
589 *
590 * Drivers that wish to subclass or embed struct &drm_device into their
591 * own struct should look at using drm_dev_init() instead.
592 *
593 * RETURNS:
594 * Pointer to new DRM device, or ERR_PTR on failure.
595 */
596 struct drm_device *drm_dev_alloc(struct drm_driver *driver,
597 struct device *parent)
598 {
599 struct drm_device *dev;
600 int ret;
601
602 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
603 if (!dev)
604 return ERR_PTR(-ENOMEM);
605
606 ret = drm_dev_init(dev, driver, parent);
607 if (ret) {
608 kfree(dev);
609 return ERR_PTR(ret);
610 }
611
612 return dev;
613 }
614 EXPORT_SYMBOL(drm_dev_alloc);
615
616 static void drm_dev_release(struct kref *ref)
617 {
618 struct drm_device *dev = container_of(ref, struct drm_device, ref);
619
620 if (drm_core_check_feature(dev, DRIVER_GEM))
621 drm_gem_destroy(dev);
622
623 drm_legacy_ctxbitmap_cleanup(dev);
624 drm_ht_remove(&dev->map_hash);
625 drm_fs_inode_free(dev->anon_inode);
626
627 drm_minor_free(dev, DRM_MINOR_PRIMARY);
628 drm_minor_free(dev, DRM_MINOR_RENDER);
629 drm_minor_free(dev, DRM_MINOR_CONTROL);
630
631 mutex_destroy(&dev->master_mutex);
632 kfree(dev->unique);
633 kfree(dev);
634 }
635
636 /**
637 * drm_dev_ref - Take reference of a DRM device
638 * @dev: device to take reference of or NULL
639 *
640 * This increases the ref-count of @dev by one. You *must* already own a
641 * reference when calling this. Use drm_dev_unref() to drop this reference
642 * again.
643 *
644 * This function never fails. However, this function does not provide *any*
645 * guarantee whether the device is alive or running. It only provides a
646 * reference to the object and the memory associated with it.
647 */
648 void drm_dev_ref(struct drm_device *dev)
649 {
650 if (dev)
651 kref_get(&dev->ref);
652 }
653 EXPORT_SYMBOL(drm_dev_ref);
654
655 /**
656 * drm_dev_unref - Drop reference of a DRM device
657 * @dev: device to drop reference of or NULL
658 *
659 * This decreases the ref-count of @dev by one. The device is destroyed if the
660 * ref-count drops to zero.
661 */
662 void drm_dev_unref(struct drm_device *dev)
663 {
664 if (dev)
665 kref_put(&dev->ref, drm_dev_release);
666 }
667 EXPORT_SYMBOL(drm_dev_unref);
668
669 /**
670 * drm_dev_register - Register DRM device
671 * @dev: Device to register
672 * @flags: Flags passed to the driver's .load() function
673 *
674 * Register the DRM device @dev with the system, advertise device to user-space
675 * and start normal device operation. @dev must be allocated via drm_dev_alloc()
676 * previously.
677 *
678 * Never call this twice on any device!
679 *
680 * NOTE: To ensure backward compatibility with existing drivers method this
681 * function calls the ->load() method after registering the device nodes,
682 * creating race conditions. Usage of the ->load() methods is therefore
683 * deprecated, drivers must perform all initialization before calling
684 * drm_dev_register().
685 *
686 * RETURNS:
687 * 0 on success, negative error code on failure.
688 */
689 int drm_dev_register(struct drm_device *dev, unsigned long flags)
690 {
691 int ret;
692
693 mutex_lock(&drm_global_mutex);
694
695 ret = drm_minor_register(dev, DRM_MINOR_CONTROL);
696 if (ret)
697 goto err_minors;
698
699 ret = drm_minor_register(dev, DRM_MINOR_RENDER);
700 if (ret)
701 goto err_minors;
702
703 ret = drm_minor_register(dev, DRM_MINOR_PRIMARY);
704 if (ret)
705 goto err_minors;
706
707 if (dev->driver->load) {
708 ret = dev->driver->load(dev, flags);
709 if (ret)
710 goto err_minors;
711 }
712
713 if (drm_core_check_feature(dev, DRIVER_MODESET))
714 drm_modeset_register_all(dev);
715
716 ret = 0;
717 goto out_unlock;
718
719 err_minors:
720 drm_minor_unregister(dev, DRM_MINOR_PRIMARY);
721 drm_minor_unregister(dev, DRM_MINOR_RENDER);
722 drm_minor_unregister(dev, DRM_MINOR_CONTROL);
723 out_unlock:
724 mutex_unlock(&drm_global_mutex);
725 return ret;
726 }
727 EXPORT_SYMBOL(drm_dev_register);
728
729 /**
730 * drm_dev_unregister - Unregister DRM device
731 * @dev: Device to unregister
732 *
733 * Unregister the DRM device from the system. This does the reverse of
734 * drm_dev_register() but does not deallocate the device. The caller must call
735 * drm_dev_unref() to drop their final reference.
736 *
737 * This should be called first in the device teardown code to make sure
738 * userspace can't access the device instance any more.
739 */
740 void drm_dev_unregister(struct drm_device *dev)
741 {
742 struct drm_map_list *r_list, *list_temp;
743
744 drm_lastclose(dev);
745
746 if (drm_core_check_feature(dev, DRIVER_MODESET))
747 drm_modeset_unregister_all(dev);
748
749 if (dev->driver->unload)
750 dev->driver->unload(dev);
751
752 if (dev->agp)
753 drm_pci_agp_destroy(dev);
754
755 drm_vblank_cleanup(dev);
756
757 list_for_each_entry_safe(r_list, list_temp, &dev->maplist, head)
758 drm_legacy_rmmap(dev, r_list->map);
759
760 drm_minor_unregister(dev, DRM_MINOR_PRIMARY);
761 drm_minor_unregister(dev, DRM_MINOR_RENDER);
762 drm_minor_unregister(dev, DRM_MINOR_CONTROL);
763 }
764 EXPORT_SYMBOL(drm_dev_unregister);
765
766 /*
767 * DRM Core
768 * The DRM core module initializes all global DRM objects and makes them
769 * available to drivers. Once setup, drivers can probe their respective
770 * devices.
771 * Currently, core management includes:
772 * - The "DRM-Global" key/value database
773 * - Global ID management for connectors
774 * - DRM major number allocation
775 * - DRM minor management
776 * - DRM sysfs class
777 * - DRM debugfs root
778 *
779 * Furthermore, the DRM core provides dynamic char-dev lookups. For each
780 * interface registered on a DRM device, you can request minor numbers from DRM
781 * core. DRM core takes care of major-number management and char-dev
782 * registration. A stub ->open() callback forwards any open() requests to the
783 * registered minor.
784 */
785
786 static int drm_stub_open(struct inode *inode, struct file *filp)
787 {
788 const struct file_operations *new_fops;
789 struct drm_minor *minor;
790 int err;
791
792 DRM_DEBUG("\n");
793
794 mutex_lock(&drm_global_mutex);
795 minor = drm_minor_acquire(iminor(inode));
796 if (IS_ERR(minor)) {
797 err = PTR_ERR(minor);
798 goto out_unlock;
799 }
800
801 new_fops = fops_get(minor->dev->driver->fops);
802 if (!new_fops) {
803 err = -ENODEV;
804 goto out_release;
805 }
806
807 replace_fops(filp, new_fops);
808 if (filp->f_op->open)
809 err = filp->f_op->open(inode, filp);
810 else
811 err = 0;
812
813 out_release:
814 drm_minor_release(minor);
815 out_unlock:
816 mutex_unlock(&drm_global_mutex);
817 return err;
818 }
819
820 static const struct file_operations drm_stub_fops = {
821 .owner = THIS_MODULE,
822 .open = drm_stub_open,
823 .llseek = noop_llseek,
824 };
825
826 static void drm_core_exit(void)
827 {
828 unregister_chrdev(DRM_MAJOR, "drm");
829 debugfs_remove(drm_debugfs_root);
830 drm_sysfs_destroy();
831 idr_destroy(&drm_minors_idr);
832 drm_connector_ida_destroy();
833 drm_global_release();
834 }
835
836 static int __init drm_core_init(void)
837 {
838 int ret;
839
840 drm_global_init();
841 drm_connector_ida_init();
842 idr_init(&drm_minors_idr);
843
844 ret = drm_sysfs_init();
845 if (ret < 0) {
846 DRM_ERROR("Cannot create DRM class: %d\n", ret);
847 goto error;
848 }
849
850 drm_debugfs_root = debugfs_create_dir("dri", NULL);
851 if (!drm_debugfs_root) {
852 ret = -ENOMEM;
853 DRM_ERROR("Cannot create debugfs-root: %d\n", ret);
854 goto error;
855 }
856
857 ret = register_chrdev(DRM_MAJOR, "drm", &drm_stub_fops);
858 if (ret < 0)
859 goto error;
860
861 DRM_INFO("Initialized\n");
862 return 0;
863
864 error:
865 drm_core_exit();
866 return ret;
867 }
868
869 module_init(drm_core_init);
870 module_exit(drm_core_exit);