]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/gpu/drm/drm_drv.c
Merge remote-tracking branch 'mkp-scsi/4.9/scsi-fixes' into fixes
[mirror_ubuntu-artful-kernel.git] / drivers / gpu / drm / drm_drv.c
1 /*
2 * Created: Fri Jan 19 10:48:35 2001 by faith@acm.org
3 *
4 * Copyright 2001 VA Linux Systems, Inc., Sunnyvale, California.
5 * All Rights Reserved.
6 *
7 * Author Rickard E. (Rik) Faith <faith@valinux.com>
8 *
9 * Permission is hereby granted, free of charge, to any person obtaining a
10 * copy of this software and associated documentation files (the "Software"),
11 * to deal in the Software without restriction, including without limitation
12 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
13 * and/or sell copies of the Software, and to permit persons to whom the
14 * Software is furnished to do so, subject to the following conditions:
15 *
16 * The above copyright notice and this permission notice (including the next
17 * paragraph) shall be included in all copies or substantial portions of the
18 * Software.
19 *
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
23 * PRECISION INSIGHT AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
24 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
25 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
26 * DEALINGS IN THE SOFTWARE.
27 */
28
29 #include <linux/debugfs.h>
30 #include <linux/fs.h>
31 #include <linux/module.h>
32 #include <linux/moduleparam.h>
33 #include <linux/mount.h>
34 #include <linux/slab.h>
35 #include <drm/drmP.h>
36 #include "drm_crtc_internal.h"
37 #include "drm_legacy.h"
38 #include "drm_internal.h"
39 #include "drm_crtc_internal.h"
40
41 /*
42 * drm_debug: Enable debug output.
43 * Bitmask of DRM_UT_x. See include/drm/drmP.h for details.
44 */
45 unsigned int drm_debug = 0;
46 EXPORT_SYMBOL(drm_debug);
47
48 MODULE_AUTHOR("Gareth Hughes, Leif Delgass, José Fonseca, Jon Smirl");
49 MODULE_DESCRIPTION("DRM shared core routines");
50 MODULE_LICENSE("GPL and additional rights");
51 MODULE_PARM_DESC(debug, "Enable debug output, where each bit enables a debug category.\n"
52 "\t\tBit 0 (0x01) will enable CORE messages (drm core code)\n"
53 "\t\tBit 1 (0x02) will enable DRIVER messages (drm controller code)\n"
54 "\t\tBit 2 (0x04) will enable KMS messages (modesetting code)\n"
55 "\t\tBit 3 (0x08) will enable PRIME messages (prime code)\n"
56 "\t\tBit 4 (0x10) will enable ATOMIC messages (atomic code)\n"
57 "\t\tBit 5 (0x20) will enable VBL messages (vblank code)");
58 module_param_named(debug, drm_debug, int, 0600);
59
60 static DEFINE_SPINLOCK(drm_minor_lock);
61 static struct idr drm_minors_idr;
62
63 static struct dentry *drm_debugfs_root;
64
65 #define DRM_PRINTK_FMT "[" DRM_NAME ":%s]%s %pV"
66
67 void drm_dev_printk(const struct device *dev, const char *level,
68 unsigned int category, const char *function_name,
69 const char *prefix, const char *format, ...)
70 {
71 struct va_format vaf;
72 va_list args;
73
74 if (category != DRM_UT_NONE && !(drm_debug & category))
75 return;
76
77 va_start(args, format);
78 vaf.fmt = format;
79 vaf.va = &args;
80
81 if (dev)
82 dev_printk(level, dev, DRM_PRINTK_FMT, function_name, prefix,
83 &vaf);
84 else
85 printk("%s" DRM_PRINTK_FMT, level, function_name, prefix, &vaf);
86
87 va_end(args);
88 }
89 EXPORT_SYMBOL(drm_dev_printk);
90
91 void drm_printk(const char *level, unsigned int category,
92 const char *format, ...)
93 {
94 struct va_format vaf;
95 va_list args;
96
97 if (category != DRM_UT_NONE && !(drm_debug & category))
98 return;
99
100 va_start(args, format);
101 vaf.fmt = format;
102 vaf.va = &args;
103
104 printk("%s" "[" DRM_NAME ":%ps]%s %pV",
105 level, __builtin_return_address(0),
106 strcmp(level, KERN_ERR) == 0 ? " *ERROR*" : "", &vaf);
107
108 va_end(args);
109 }
110 EXPORT_SYMBOL(drm_printk);
111
112 /*
113 * DRM Minors
114 * A DRM device can provide several char-dev interfaces on the DRM-Major. Each
115 * of them is represented by a drm_minor object. Depending on the capabilities
116 * of the device-driver, different interfaces are registered.
117 *
118 * Minors can be accessed via dev->$minor_name. This pointer is either
119 * NULL or a valid drm_minor pointer and stays valid as long as the device is
120 * valid. This means, DRM minors have the same life-time as the underlying
121 * device. However, this doesn't mean that the minor is active. Minors are
122 * registered and unregistered dynamically according to device-state.
123 */
124
125 static struct drm_minor **drm_minor_get_slot(struct drm_device *dev,
126 unsigned int type)
127 {
128 switch (type) {
129 case DRM_MINOR_PRIMARY:
130 return &dev->primary;
131 case DRM_MINOR_RENDER:
132 return &dev->render;
133 case DRM_MINOR_CONTROL:
134 return &dev->control;
135 default:
136 return NULL;
137 }
138 }
139
140 static int drm_minor_alloc(struct drm_device *dev, unsigned int type)
141 {
142 struct drm_minor *minor;
143 unsigned long flags;
144 int r;
145
146 minor = kzalloc(sizeof(*minor), GFP_KERNEL);
147 if (!minor)
148 return -ENOMEM;
149
150 minor->type = type;
151 minor->dev = dev;
152
153 idr_preload(GFP_KERNEL);
154 spin_lock_irqsave(&drm_minor_lock, flags);
155 r = idr_alloc(&drm_minors_idr,
156 NULL,
157 64 * type,
158 64 * (type + 1),
159 GFP_NOWAIT);
160 spin_unlock_irqrestore(&drm_minor_lock, flags);
161 idr_preload_end();
162
163 if (r < 0)
164 goto err_free;
165
166 minor->index = r;
167
168 minor->kdev = drm_sysfs_minor_alloc(minor);
169 if (IS_ERR(minor->kdev)) {
170 r = PTR_ERR(minor->kdev);
171 goto err_index;
172 }
173
174 *drm_minor_get_slot(dev, type) = minor;
175 return 0;
176
177 err_index:
178 spin_lock_irqsave(&drm_minor_lock, flags);
179 idr_remove(&drm_minors_idr, minor->index);
180 spin_unlock_irqrestore(&drm_minor_lock, flags);
181 err_free:
182 kfree(minor);
183 return r;
184 }
185
186 static void drm_minor_free(struct drm_device *dev, unsigned int type)
187 {
188 struct drm_minor **slot, *minor;
189 unsigned long flags;
190
191 slot = drm_minor_get_slot(dev, type);
192 minor = *slot;
193 if (!minor)
194 return;
195
196 put_device(minor->kdev);
197
198 spin_lock_irqsave(&drm_minor_lock, flags);
199 idr_remove(&drm_minors_idr, minor->index);
200 spin_unlock_irqrestore(&drm_minor_lock, flags);
201
202 kfree(minor);
203 *slot = NULL;
204 }
205
206 static int drm_minor_register(struct drm_device *dev, unsigned int type)
207 {
208 struct drm_minor *minor;
209 unsigned long flags;
210 int ret;
211
212 DRM_DEBUG("\n");
213
214 minor = *drm_minor_get_slot(dev, type);
215 if (!minor)
216 return 0;
217
218 ret = drm_debugfs_init(minor, minor->index, drm_debugfs_root);
219 if (ret) {
220 DRM_ERROR("DRM: Failed to initialize /sys/kernel/debug/dri.\n");
221 return ret;
222 }
223
224 ret = device_add(minor->kdev);
225 if (ret)
226 goto err_debugfs;
227
228 /* replace NULL with @minor so lookups will succeed from now on */
229 spin_lock_irqsave(&drm_minor_lock, flags);
230 idr_replace(&drm_minors_idr, minor, minor->index);
231 spin_unlock_irqrestore(&drm_minor_lock, flags);
232
233 DRM_DEBUG("new minor registered %d\n", minor->index);
234 return 0;
235
236 err_debugfs:
237 drm_debugfs_cleanup(minor);
238 return ret;
239 }
240
241 static void drm_minor_unregister(struct drm_device *dev, unsigned int type)
242 {
243 struct drm_minor *minor;
244 unsigned long flags;
245
246 minor = *drm_minor_get_slot(dev, type);
247 if (!minor || !device_is_registered(minor->kdev))
248 return;
249
250 /* replace @minor with NULL so lookups will fail from now on */
251 spin_lock_irqsave(&drm_minor_lock, flags);
252 idr_replace(&drm_minors_idr, NULL, minor->index);
253 spin_unlock_irqrestore(&drm_minor_lock, flags);
254
255 device_del(minor->kdev);
256 dev_set_drvdata(minor->kdev, NULL); /* safety belt */
257 drm_debugfs_cleanup(minor);
258 }
259
260 /**
261 * drm_minor_acquire - Acquire a DRM minor
262 * @minor_id: Minor ID of the DRM-minor
263 *
264 * Looks up the given minor-ID and returns the respective DRM-minor object. The
265 * refence-count of the underlying device is increased so you must release this
266 * object with drm_minor_release().
267 *
268 * As long as you hold this minor, it is guaranteed that the object and the
269 * minor->dev pointer will stay valid! However, the device may get unplugged and
270 * unregistered while you hold the minor.
271 *
272 * Returns:
273 * Pointer to minor-object with increased device-refcount, or PTR_ERR on
274 * failure.
275 */
276 struct drm_minor *drm_minor_acquire(unsigned int minor_id)
277 {
278 struct drm_minor *minor;
279 unsigned long flags;
280
281 spin_lock_irqsave(&drm_minor_lock, flags);
282 minor = idr_find(&drm_minors_idr, minor_id);
283 if (minor)
284 drm_dev_ref(minor->dev);
285 spin_unlock_irqrestore(&drm_minor_lock, flags);
286
287 if (!minor) {
288 return ERR_PTR(-ENODEV);
289 } else if (drm_device_is_unplugged(minor->dev)) {
290 drm_dev_unref(minor->dev);
291 return ERR_PTR(-ENODEV);
292 }
293
294 return minor;
295 }
296
297 /**
298 * drm_minor_release - Release DRM minor
299 * @minor: Pointer to DRM minor object
300 *
301 * Release a minor that was previously acquired via drm_minor_acquire().
302 */
303 void drm_minor_release(struct drm_minor *minor)
304 {
305 drm_dev_unref(minor->dev);
306 }
307
308 /**
309 * DOC: driver instance overview
310 *
311 * A device instance for a drm driver is represented by struct &drm_device. This
312 * is allocated with drm_dev_alloc(), usually from bus-specific ->probe()
313 * callbacks implemented by the driver. The driver then needs to initialize all
314 * the various subsystems for the drm device like memory management, vblank
315 * handling, modesetting support and intial output configuration plus obviously
316 * initialize all the corresponding hardware bits. Finally when everything is up
317 * and running and ready for userspace the device instance can be published
318 * using drm_dev_register().
319 *
320 * There is also deprecated support for initalizing device instances using
321 * bus-specific helpers and the ->load() callback. But due to
322 * backwards-compatibility needs the device instance have to be published too
323 * early, which requires unpretty global locking to make safe and is therefore
324 * only support for existing drivers not yet converted to the new scheme.
325 *
326 * When cleaning up a device instance everything needs to be done in reverse:
327 * First unpublish the device instance with drm_dev_unregister(). Then clean up
328 * any other resources allocated at device initialization and drop the driver's
329 * reference to &drm_device using drm_dev_unref().
330 *
331 * Note that the lifetime rules for &drm_device instance has still a lot of
332 * historical baggage. Hence use the reference counting provided by
333 * drm_dev_ref() and drm_dev_unref() only carefully.
334 *
335 * Also note that embedding of &drm_device is currently not (yet) supported (but
336 * it would be easy to add). Drivers can store driver-private data in the
337 * dev_priv field of &drm_device.
338 */
339
340 static int drm_dev_set_unique(struct drm_device *dev, const char *name)
341 {
342 if (!name)
343 return -EINVAL;
344
345 kfree(dev->unique);
346 dev->unique = kstrdup(name, GFP_KERNEL);
347
348 return dev->unique ? 0 : -ENOMEM;
349 }
350
351 /**
352 * drm_put_dev - Unregister and release a DRM device
353 * @dev: DRM device
354 *
355 * Called at module unload time or when a PCI device is unplugged.
356 *
357 * Cleans up all DRM device, calling drm_lastclose().
358 *
359 * Note: Use of this function is deprecated. It will eventually go away
360 * completely. Please use drm_dev_unregister() and drm_dev_unref() explicitly
361 * instead to make sure that the device isn't userspace accessible any more
362 * while teardown is in progress, ensuring that userspace can't access an
363 * inconsistent state.
364 */
365 void drm_put_dev(struct drm_device *dev)
366 {
367 DRM_DEBUG("\n");
368
369 if (!dev) {
370 DRM_ERROR("cleanup called no dev\n");
371 return;
372 }
373
374 drm_dev_unregister(dev);
375 drm_dev_unref(dev);
376 }
377 EXPORT_SYMBOL(drm_put_dev);
378
379 void drm_unplug_dev(struct drm_device *dev)
380 {
381 /* for a USB device */
382 drm_dev_unregister(dev);
383
384 mutex_lock(&drm_global_mutex);
385
386 drm_device_set_unplugged(dev);
387
388 if (dev->open_count == 0) {
389 drm_put_dev(dev);
390 }
391 mutex_unlock(&drm_global_mutex);
392 }
393 EXPORT_SYMBOL(drm_unplug_dev);
394
395 /*
396 * DRM internal mount
397 * We want to be able to allocate our own "struct address_space" to control
398 * memory-mappings in VRAM (or stolen RAM, ...). However, core MM does not allow
399 * stand-alone address_space objects, so we need an underlying inode. As there
400 * is no way to allocate an independent inode easily, we need a fake internal
401 * VFS mount-point.
402 *
403 * The drm_fs_inode_new() function allocates a new inode, drm_fs_inode_free()
404 * frees it again. You are allowed to use iget() and iput() to get references to
405 * the inode. But each drm_fs_inode_new() call must be paired with exactly one
406 * drm_fs_inode_free() call (which does not have to be the last iput()).
407 * We use drm_fs_inode_*() to manage our internal VFS mount-point and share it
408 * between multiple inode-users. You could, technically, call
409 * iget() + drm_fs_inode_free() directly after alloc and sometime later do an
410 * iput(), but this way you'd end up with a new vfsmount for each inode.
411 */
412
413 static int drm_fs_cnt;
414 static struct vfsmount *drm_fs_mnt;
415
416 static const struct dentry_operations drm_fs_dops = {
417 .d_dname = simple_dname,
418 };
419
420 static const struct super_operations drm_fs_sops = {
421 .statfs = simple_statfs,
422 };
423
424 static struct dentry *drm_fs_mount(struct file_system_type *fs_type, int flags,
425 const char *dev_name, void *data)
426 {
427 return mount_pseudo(fs_type,
428 "drm:",
429 &drm_fs_sops,
430 &drm_fs_dops,
431 0x010203ff);
432 }
433
434 static struct file_system_type drm_fs_type = {
435 .name = "drm",
436 .owner = THIS_MODULE,
437 .mount = drm_fs_mount,
438 .kill_sb = kill_anon_super,
439 };
440
441 static struct inode *drm_fs_inode_new(void)
442 {
443 struct inode *inode;
444 int r;
445
446 r = simple_pin_fs(&drm_fs_type, &drm_fs_mnt, &drm_fs_cnt);
447 if (r < 0) {
448 DRM_ERROR("Cannot mount pseudo fs: %d\n", r);
449 return ERR_PTR(r);
450 }
451
452 inode = alloc_anon_inode(drm_fs_mnt->mnt_sb);
453 if (IS_ERR(inode))
454 simple_release_fs(&drm_fs_mnt, &drm_fs_cnt);
455
456 return inode;
457 }
458
459 static void drm_fs_inode_free(struct inode *inode)
460 {
461 if (inode) {
462 iput(inode);
463 simple_release_fs(&drm_fs_mnt, &drm_fs_cnt);
464 }
465 }
466
467 /**
468 * drm_dev_init - Initialise new DRM device
469 * @dev: DRM device
470 * @driver: DRM driver
471 * @parent: Parent device object
472 *
473 * Initialize a new DRM device. No device registration is done.
474 * Call drm_dev_register() to advertice the device to user space and register it
475 * with other core subsystems. This should be done last in the device
476 * initialization sequence to make sure userspace can't access an inconsistent
477 * state.
478 *
479 * The initial ref-count of the object is 1. Use drm_dev_ref() and
480 * drm_dev_unref() to take and drop further ref-counts.
481 *
482 * Note that for purely virtual devices @parent can be NULL.
483 *
484 * Drivers that do not want to allocate their own device struct
485 * embedding struct &drm_device can call drm_dev_alloc() instead.
486 *
487 * RETURNS:
488 * 0 on success, or error code on failure.
489 */
490 int drm_dev_init(struct drm_device *dev,
491 struct drm_driver *driver,
492 struct device *parent)
493 {
494 int ret;
495
496 kref_init(&dev->ref);
497 dev->dev = parent;
498 dev->driver = driver;
499
500 INIT_LIST_HEAD(&dev->filelist);
501 INIT_LIST_HEAD(&dev->ctxlist);
502 INIT_LIST_HEAD(&dev->vmalist);
503 INIT_LIST_HEAD(&dev->maplist);
504 INIT_LIST_HEAD(&dev->vblank_event_list);
505
506 spin_lock_init(&dev->buf_lock);
507 spin_lock_init(&dev->event_lock);
508 mutex_init(&dev->struct_mutex);
509 mutex_init(&dev->filelist_mutex);
510 mutex_init(&dev->ctxlist_mutex);
511 mutex_init(&dev->master_mutex);
512
513 dev->anon_inode = drm_fs_inode_new();
514 if (IS_ERR(dev->anon_inode)) {
515 ret = PTR_ERR(dev->anon_inode);
516 DRM_ERROR("Cannot allocate anonymous inode: %d\n", ret);
517 goto err_free;
518 }
519
520 if (drm_core_check_feature(dev, DRIVER_MODESET)) {
521 ret = drm_minor_alloc(dev, DRM_MINOR_CONTROL);
522 if (ret)
523 goto err_minors;
524 }
525
526 if (drm_core_check_feature(dev, DRIVER_RENDER)) {
527 ret = drm_minor_alloc(dev, DRM_MINOR_RENDER);
528 if (ret)
529 goto err_minors;
530 }
531
532 ret = drm_minor_alloc(dev, DRM_MINOR_PRIMARY);
533 if (ret)
534 goto err_minors;
535
536 ret = drm_ht_create(&dev->map_hash, 12);
537 if (ret)
538 goto err_minors;
539
540 drm_legacy_ctxbitmap_init(dev);
541
542 if (drm_core_check_feature(dev, DRIVER_GEM)) {
543 ret = drm_gem_init(dev);
544 if (ret) {
545 DRM_ERROR("Cannot initialize graphics execution manager (GEM)\n");
546 goto err_ctxbitmap;
547 }
548 }
549
550 /* Use the parent device name as DRM device unique identifier, but fall
551 * back to the driver name for virtual devices like vgem. */
552 ret = drm_dev_set_unique(dev, parent ? dev_name(parent) : driver->name);
553 if (ret)
554 goto err_setunique;
555
556 return 0;
557
558 err_setunique:
559 if (drm_core_check_feature(dev, DRIVER_GEM))
560 drm_gem_destroy(dev);
561 err_ctxbitmap:
562 drm_legacy_ctxbitmap_cleanup(dev);
563 drm_ht_remove(&dev->map_hash);
564 err_minors:
565 drm_minor_free(dev, DRM_MINOR_PRIMARY);
566 drm_minor_free(dev, DRM_MINOR_RENDER);
567 drm_minor_free(dev, DRM_MINOR_CONTROL);
568 drm_fs_inode_free(dev->anon_inode);
569 err_free:
570 mutex_destroy(&dev->master_mutex);
571 return ret;
572 }
573 EXPORT_SYMBOL(drm_dev_init);
574
575 /**
576 * drm_dev_alloc - Allocate new DRM device
577 * @driver: DRM driver to allocate device for
578 * @parent: Parent device object
579 *
580 * Allocate and initialize a new DRM device. No device registration is done.
581 * Call drm_dev_register() to advertice the device to user space and register it
582 * with other core subsystems. This should be done last in the device
583 * initialization sequence to make sure userspace can't access an inconsistent
584 * state.
585 *
586 * The initial ref-count of the object is 1. Use drm_dev_ref() and
587 * drm_dev_unref() to take and drop further ref-counts.
588 *
589 * Note that for purely virtual devices @parent can be NULL.
590 *
591 * Drivers that wish to subclass or embed struct &drm_device into their
592 * own struct should look at using drm_dev_init() instead.
593 *
594 * RETURNS:
595 * Pointer to new DRM device, or ERR_PTR on failure.
596 */
597 struct drm_device *drm_dev_alloc(struct drm_driver *driver,
598 struct device *parent)
599 {
600 struct drm_device *dev;
601 int ret;
602
603 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
604 if (!dev)
605 return ERR_PTR(-ENOMEM);
606
607 ret = drm_dev_init(dev, driver, parent);
608 if (ret) {
609 kfree(dev);
610 return ERR_PTR(ret);
611 }
612
613 return dev;
614 }
615 EXPORT_SYMBOL(drm_dev_alloc);
616
617 static void drm_dev_release(struct kref *ref)
618 {
619 struct drm_device *dev = container_of(ref, struct drm_device, ref);
620
621 if (drm_core_check_feature(dev, DRIVER_GEM))
622 drm_gem_destroy(dev);
623
624 drm_legacy_ctxbitmap_cleanup(dev);
625 drm_ht_remove(&dev->map_hash);
626 drm_fs_inode_free(dev->anon_inode);
627
628 drm_minor_free(dev, DRM_MINOR_PRIMARY);
629 drm_minor_free(dev, DRM_MINOR_RENDER);
630 drm_minor_free(dev, DRM_MINOR_CONTROL);
631
632 mutex_destroy(&dev->master_mutex);
633 kfree(dev->unique);
634 kfree(dev);
635 }
636
637 /**
638 * drm_dev_ref - Take reference of a DRM device
639 * @dev: device to take reference of or NULL
640 *
641 * This increases the ref-count of @dev by one. You *must* already own a
642 * reference when calling this. Use drm_dev_unref() to drop this reference
643 * again.
644 *
645 * This function never fails. However, this function does not provide *any*
646 * guarantee whether the device is alive or running. It only provides a
647 * reference to the object and the memory associated with it.
648 */
649 void drm_dev_ref(struct drm_device *dev)
650 {
651 if (dev)
652 kref_get(&dev->ref);
653 }
654 EXPORT_SYMBOL(drm_dev_ref);
655
656 /**
657 * drm_dev_unref - Drop reference of a DRM device
658 * @dev: device to drop reference of or NULL
659 *
660 * This decreases the ref-count of @dev by one. The device is destroyed if the
661 * ref-count drops to zero.
662 */
663 void drm_dev_unref(struct drm_device *dev)
664 {
665 if (dev)
666 kref_put(&dev->ref, drm_dev_release);
667 }
668 EXPORT_SYMBOL(drm_dev_unref);
669
670 /**
671 * drm_dev_register - Register DRM device
672 * @dev: Device to register
673 * @flags: Flags passed to the driver's .load() function
674 *
675 * Register the DRM device @dev with the system, advertise device to user-space
676 * and start normal device operation. @dev must be allocated via drm_dev_alloc()
677 * previously.
678 *
679 * Never call this twice on any device!
680 *
681 * NOTE: To ensure backward compatibility with existing drivers method this
682 * function calls the ->load() method after registering the device nodes,
683 * creating race conditions. Usage of the ->load() methods is therefore
684 * deprecated, drivers must perform all initialization before calling
685 * drm_dev_register().
686 *
687 * RETURNS:
688 * 0 on success, negative error code on failure.
689 */
690 int drm_dev_register(struct drm_device *dev, unsigned long flags)
691 {
692 int ret;
693
694 mutex_lock(&drm_global_mutex);
695
696 ret = drm_minor_register(dev, DRM_MINOR_CONTROL);
697 if (ret)
698 goto err_minors;
699
700 ret = drm_minor_register(dev, DRM_MINOR_RENDER);
701 if (ret)
702 goto err_minors;
703
704 ret = drm_minor_register(dev, DRM_MINOR_PRIMARY);
705 if (ret)
706 goto err_minors;
707
708 if (dev->driver->load) {
709 ret = dev->driver->load(dev, flags);
710 if (ret)
711 goto err_minors;
712 }
713
714 if (drm_core_check_feature(dev, DRIVER_MODESET))
715 drm_modeset_register_all(dev);
716
717 ret = 0;
718 goto out_unlock;
719
720 err_minors:
721 drm_minor_unregister(dev, DRM_MINOR_PRIMARY);
722 drm_minor_unregister(dev, DRM_MINOR_RENDER);
723 drm_minor_unregister(dev, DRM_MINOR_CONTROL);
724 out_unlock:
725 mutex_unlock(&drm_global_mutex);
726 return ret;
727 }
728 EXPORT_SYMBOL(drm_dev_register);
729
730 /**
731 * drm_dev_unregister - Unregister DRM device
732 * @dev: Device to unregister
733 *
734 * Unregister the DRM device from the system. This does the reverse of
735 * drm_dev_register() but does not deallocate the device. The caller must call
736 * drm_dev_unref() to drop their final reference.
737 *
738 * This should be called first in the device teardown code to make sure
739 * userspace can't access the device instance any more.
740 */
741 void drm_dev_unregister(struct drm_device *dev)
742 {
743 struct drm_map_list *r_list, *list_temp;
744
745 drm_lastclose(dev);
746
747 if (drm_core_check_feature(dev, DRIVER_MODESET))
748 drm_modeset_unregister_all(dev);
749
750 if (dev->driver->unload)
751 dev->driver->unload(dev);
752
753 if (dev->agp)
754 drm_pci_agp_destroy(dev);
755
756 drm_vblank_cleanup(dev);
757
758 list_for_each_entry_safe(r_list, list_temp, &dev->maplist, head)
759 drm_legacy_rmmap(dev, r_list->map);
760
761 drm_minor_unregister(dev, DRM_MINOR_PRIMARY);
762 drm_minor_unregister(dev, DRM_MINOR_RENDER);
763 drm_minor_unregister(dev, DRM_MINOR_CONTROL);
764 }
765 EXPORT_SYMBOL(drm_dev_unregister);
766
767 /*
768 * DRM Core
769 * The DRM core module initializes all global DRM objects and makes them
770 * available to drivers. Once setup, drivers can probe their respective
771 * devices.
772 * Currently, core management includes:
773 * - The "DRM-Global" key/value database
774 * - Global ID management for connectors
775 * - DRM major number allocation
776 * - DRM minor management
777 * - DRM sysfs class
778 * - DRM debugfs root
779 *
780 * Furthermore, the DRM core provides dynamic char-dev lookups. For each
781 * interface registered on a DRM device, you can request minor numbers from DRM
782 * core. DRM core takes care of major-number management and char-dev
783 * registration. A stub ->open() callback forwards any open() requests to the
784 * registered minor.
785 */
786
787 static int drm_stub_open(struct inode *inode, struct file *filp)
788 {
789 const struct file_operations *new_fops;
790 struct drm_minor *minor;
791 int err;
792
793 DRM_DEBUG("\n");
794
795 mutex_lock(&drm_global_mutex);
796 minor = drm_minor_acquire(iminor(inode));
797 if (IS_ERR(minor)) {
798 err = PTR_ERR(minor);
799 goto out_unlock;
800 }
801
802 new_fops = fops_get(minor->dev->driver->fops);
803 if (!new_fops) {
804 err = -ENODEV;
805 goto out_release;
806 }
807
808 replace_fops(filp, new_fops);
809 if (filp->f_op->open)
810 err = filp->f_op->open(inode, filp);
811 else
812 err = 0;
813
814 out_release:
815 drm_minor_release(minor);
816 out_unlock:
817 mutex_unlock(&drm_global_mutex);
818 return err;
819 }
820
821 static const struct file_operations drm_stub_fops = {
822 .owner = THIS_MODULE,
823 .open = drm_stub_open,
824 .llseek = noop_llseek,
825 };
826
827 static void drm_core_exit(void)
828 {
829 unregister_chrdev(DRM_MAJOR, "drm");
830 debugfs_remove(drm_debugfs_root);
831 drm_sysfs_destroy();
832 idr_destroy(&drm_minors_idr);
833 drm_connector_ida_destroy();
834 drm_global_release();
835 }
836
837 static int __init drm_core_init(void)
838 {
839 int ret;
840
841 drm_global_init();
842 drm_connector_ida_init();
843 idr_init(&drm_minors_idr);
844
845 ret = drm_sysfs_init();
846 if (ret < 0) {
847 DRM_ERROR("Cannot create DRM class: %d\n", ret);
848 goto error;
849 }
850
851 drm_debugfs_root = debugfs_create_dir("dri", NULL);
852 if (!drm_debugfs_root) {
853 ret = -ENOMEM;
854 DRM_ERROR("Cannot create debugfs-root: %d\n", ret);
855 goto error;
856 }
857
858 ret = register_chrdev(DRM_MAJOR, "drm", &drm_stub_fops);
859 if (ret < 0)
860 goto error;
861
862 DRM_INFO("Initialized\n");
863 return 0;
864
865 error:
866 drm_core_exit();
867 return ret;
868 }
869
870 module_init(drm_core_init);
871 module_exit(drm_core_exit);