]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/gpu/drm/drm_edid.c
ec6474b01dbcd841804c001aa0499bc42103916e
[mirror_ubuntu-zesty-kernel.git] / drivers / gpu / drm / drm_edid.c
1 /*
2 * Copyright (c) 2006 Luc Verhaegen (quirks list)
3 * Copyright (c) 2007-2008 Intel Corporation
4 * Jesse Barnes <jesse.barnes@intel.com>
5 * Copyright 2010 Red Hat, Inc.
6 *
7 * DDC probing routines (drm_ddc_read & drm_do_probe_ddc_edid) originally from
8 * FB layer.
9 * Copyright (C) 2006 Dennis Munsie <dmunsie@cecropia.com>
10 *
11 * Permission is hereby granted, free of charge, to any person obtaining a
12 * copy of this software and associated documentation files (the "Software"),
13 * to deal in the Software without restriction, including without limitation
14 * the rights to use, copy, modify, merge, publish, distribute, sub license,
15 * and/or sell copies of the Software, and to permit persons to whom the
16 * Software is furnished to do so, subject to the following conditions:
17 *
18 * The above copyright notice and this permission notice (including the
19 * next paragraph) shall be included in all copies or substantial portions
20 * of the Software.
21 *
22 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
23 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
24 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
25 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
26 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
27 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
28 * DEALINGS IN THE SOFTWARE.
29 */
30 #include <linux/kernel.h>
31 #include <linux/slab.h>
32 #include <linux/hdmi.h>
33 #include <linux/i2c.h>
34 #include <linux/module.h>
35 #include <linux/vga_switcheroo.h>
36 #include <drm/drmP.h>
37 #include <drm/drm_edid.h>
38 #include <drm/drm_displayid.h>
39
40 #define version_greater(edid, maj, min) \
41 (((edid)->version > (maj)) || \
42 ((edid)->version == (maj) && (edid)->revision > (min)))
43
44 #define EDID_EST_TIMINGS 16
45 #define EDID_STD_TIMINGS 8
46 #define EDID_DETAILED_TIMINGS 4
47
48 /*
49 * EDID blocks out in the wild have a variety of bugs, try to collect
50 * them here (note that userspace may work around broken monitors first,
51 * but fixes should make their way here so that the kernel "just works"
52 * on as many displays as possible).
53 */
54
55 /* First detailed mode wrong, use largest 60Hz mode */
56 #define EDID_QUIRK_PREFER_LARGE_60 (1 << 0)
57 /* Reported 135MHz pixel clock is too high, needs adjustment */
58 #define EDID_QUIRK_135_CLOCK_TOO_HIGH (1 << 1)
59 /* Prefer the largest mode at 75 Hz */
60 #define EDID_QUIRK_PREFER_LARGE_75 (1 << 2)
61 /* Detail timing is in cm not mm */
62 #define EDID_QUIRK_DETAILED_IN_CM (1 << 3)
63 /* Detailed timing descriptors have bogus size values, so just take the
64 * maximum size and use that.
65 */
66 #define EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE (1 << 4)
67 /* Monitor forgot to set the first detailed is preferred bit. */
68 #define EDID_QUIRK_FIRST_DETAILED_PREFERRED (1 << 5)
69 /* use +hsync +vsync for detailed mode */
70 #define EDID_QUIRK_DETAILED_SYNC_PP (1 << 6)
71 /* Force reduced-blanking timings for detailed modes */
72 #define EDID_QUIRK_FORCE_REDUCED_BLANKING (1 << 7)
73 /* Force 8bpc */
74 #define EDID_QUIRK_FORCE_8BPC (1 << 8)
75 /* Force 12bpc */
76 #define EDID_QUIRK_FORCE_12BPC (1 << 9)
77 /* Force 6bpc */
78 #define EDID_QUIRK_FORCE_6BPC (1 << 10)
79
80 struct detailed_mode_closure {
81 struct drm_connector *connector;
82 struct edid *edid;
83 bool preferred;
84 u32 quirks;
85 int modes;
86 };
87
88 #define LEVEL_DMT 0
89 #define LEVEL_GTF 1
90 #define LEVEL_GTF2 2
91 #define LEVEL_CVT 3
92
93 static struct edid_quirk {
94 char vendor[4];
95 int product_id;
96 u32 quirks;
97 } edid_quirk_list[] = {
98 /* Acer AL1706 */
99 { "ACR", 44358, EDID_QUIRK_PREFER_LARGE_60 },
100 /* Acer F51 */
101 { "API", 0x7602, EDID_QUIRK_PREFER_LARGE_60 },
102 /* Unknown Acer */
103 { "ACR", 2423, EDID_QUIRK_FIRST_DETAILED_PREFERRED },
104
105 /* AEO model 0 reports 8 bpc, but is a 6 bpc panel */
106 { "AEO", 0, EDID_QUIRK_FORCE_6BPC },
107
108 /* Belinea 10 15 55 */
109 { "MAX", 1516, EDID_QUIRK_PREFER_LARGE_60 },
110 { "MAX", 0x77e, EDID_QUIRK_PREFER_LARGE_60 },
111
112 /* Envision Peripherals, Inc. EN-7100e */
113 { "EPI", 59264, EDID_QUIRK_135_CLOCK_TOO_HIGH },
114 /* Envision EN2028 */
115 { "EPI", 8232, EDID_QUIRK_PREFER_LARGE_60 },
116
117 /* Funai Electronics PM36B */
118 { "FCM", 13600, EDID_QUIRK_PREFER_LARGE_75 |
119 EDID_QUIRK_DETAILED_IN_CM },
120
121 /* LG Philips LCD LP154W01-A5 */
122 { "LPL", 0, EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE },
123 { "LPL", 0x2a00, EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE },
124
125 /* Philips 107p5 CRT */
126 { "PHL", 57364, EDID_QUIRK_FIRST_DETAILED_PREFERRED },
127
128 /* Proview AY765C */
129 { "PTS", 765, EDID_QUIRK_FIRST_DETAILED_PREFERRED },
130
131 /* Samsung SyncMaster 205BW. Note: irony */
132 { "SAM", 541, EDID_QUIRK_DETAILED_SYNC_PP },
133 /* Samsung SyncMaster 22[5-6]BW */
134 { "SAM", 596, EDID_QUIRK_PREFER_LARGE_60 },
135 { "SAM", 638, EDID_QUIRK_PREFER_LARGE_60 },
136
137 /* Sony PVM-2541A does up to 12 bpc, but only reports max 8 bpc */
138 { "SNY", 0x2541, EDID_QUIRK_FORCE_12BPC },
139
140 /* ViewSonic VA2026w */
141 { "VSC", 5020, EDID_QUIRK_FORCE_REDUCED_BLANKING },
142
143 /* Medion MD 30217 PG */
144 { "MED", 0x7b8, EDID_QUIRK_PREFER_LARGE_75 },
145
146 /* Panel in Samsung NP700G7A-S01PL notebook reports 6bpc */
147 { "SEC", 0xd033, EDID_QUIRK_FORCE_8BPC },
148
149 /* Rotel RSX-1058 forwards sink's EDID but only does HDMI 1.1*/
150 { "ETR", 13896, EDID_QUIRK_FORCE_8BPC },
151 };
152
153 /*
154 * Autogenerated from the DMT spec.
155 * This table is copied from xfree86/modes/xf86EdidModes.c.
156 */
157 static const struct drm_display_mode drm_dmt_modes[] = {
158 /* 0x01 - 640x350@85Hz */
159 { DRM_MODE("640x350", DRM_MODE_TYPE_DRIVER, 31500, 640, 672,
160 736, 832, 0, 350, 382, 385, 445, 0,
161 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
162 /* 0x02 - 640x400@85Hz */
163 { DRM_MODE("640x400", DRM_MODE_TYPE_DRIVER, 31500, 640, 672,
164 736, 832, 0, 400, 401, 404, 445, 0,
165 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
166 /* 0x03 - 720x400@85Hz */
167 { DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 35500, 720, 756,
168 828, 936, 0, 400, 401, 404, 446, 0,
169 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
170 /* 0x04 - 640x480@60Hz */
171 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
172 752, 800, 0, 480, 490, 492, 525, 0,
173 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
174 /* 0x05 - 640x480@72Hz */
175 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 664,
176 704, 832, 0, 480, 489, 492, 520, 0,
177 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
178 /* 0x06 - 640x480@75Hz */
179 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 656,
180 720, 840, 0, 480, 481, 484, 500, 0,
181 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
182 /* 0x07 - 640x480@85Hz */
183 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 36000, 640, 696,
184 752, 832, 0, 480, 481, 484, 509, 0,
185 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
186 /* 0x08 - 800x600@56Hz */
187 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 36000, 800, 824,
188 896, 1024, 0, 600, 601, 603, 625, 0,
189 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
190 /* 0x09 - 800x600@60Hz */
191 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840,
192 968, 1056, 0, 600, 601, 605, 628, 0,
193 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
194 /* 0x0a - 800x600@72Hz */
195 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 50000, 800, 856,
196 976, 1040, 0, 600, 637, 643, 666, 0,
197 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
198 /* 0x0b - 800x600@75Hz */
199 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 49500, 800, 816,
200 896, 1056, 0, 600, 601, 604, 625, 0,
201 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
202 /* 0x0c - 800x600@85Hz */
203 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 56250, 800, 832,
204 896, 1048, 0, 600, 601, 604, 631, 0,
205 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
206 /* 0x0d - 800x600@120Hz RB */
207 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 73250, 800, 848,
208 880, 960, 0, 600, 603, 607, 636, 0,
209 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
210 /* 0x0e - 848x480@60Hz */
211 { DRM_MODE("848x480", DRM_MODE_TYPE_DRIVER, 33750, 848, 864,
212 976, 1088, 0, 480, 486, 494, 517, 0,
213 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
214 /* 0x0f - 1024x768@43Hz, interlace */
215 { DRM_MODE("1024x768i", DRM_MODE_TYPE_DRIVER, 44900, 1024, 1032,
216 1208, 1264, 0, 768, 768, 776, 817, 0,
217 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
218 DRM_MODE_FLAG_INTERLACE) },
219 /* 0x10 - 1024x768@60Hz */
220 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048,
221 1184, 1344, 0, 768, 771, 777, 806, 0,
222 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
223 /* 0x11 - 1024x768@70Hz */
224 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 75000, 1024, 1048,
225 1184, 1328, 0, 768, 771, 777, 806, 0,
226 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
227 /* 0x12 - 1024x768@75Hz */
228 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 78750, 1024, 1040,
229 1136, 1312, 0, 768, 769, 772, 800, 0,
230 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
231 /* 0x13 - 1024x768@85Hz */
232 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 94500, 1024, 1072,
233 1168, 1376, 0, 768, 769, 772, 808, 0,
234 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
235 /* 0x14 - 1024x768@120Hz RB */
236 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 115500, 1024, 1072,
237 1104, 1184, 0, 768, 771, 775, 813, 0,
238 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
239 /* 0x15 - 1152x864@75Hz */
240 { DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216,
241 1344, 1600, 0, 864, 865, 868, 900, 0,
242 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
243 /* 0x55 - 1280x720@60Hz */
244 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390,
245 1430, 1650, 0, 720, 725, 730, 750, 0,
246 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
247 /* 0x16 - 1280x768@60Hz RB */
248 { DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 68250, 1280, 1328,
249 1360, 1440, 0, 768, 771, 778, 790, 0,
250 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
251 /* 0x17 - 1280x768@60Hz */
252 { DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 79500, 1280, 1344,
253 1472, 1664, 0, 768, 771, 778, 798, 0,
254 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
255 /* 0x18 - 1280x768@75Hz */
256 { DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 102250, 1280, 1360,
257 1488, 1696, 0, 768, 771, 778, 805, 0,
258 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
259 /* 0x19 - 1280x768@85Hz */
260 { DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 117500, 1280, 1360,
261 1496, 1712, 0, 768, 771, 778, 809, 0,
262 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
263 /* 0x1a - 1280x768@120Hz RB */
264 { DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 140250, 1280, 1328,
265 1360, 1440, 0, 768, 771, 778, 813, 0,
266 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
267 /* 0x1b - 1280x800@60Hz RB */
268 { DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 71000, 1280, 1328,
269 1360, 1440, 0, 800, 803, 809, 823, 0,
270 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
271 /* 0x1c - 1280x800@60Hz */
272 { DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 83500, 1280, 1352,
273 1480, 1680, 0, 800, 803, 809, 831, 0,
274 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
275 /* 0x1d - 1280x800@75Hz */
276 { DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 106500, 1280, 1360,
277 1488, 1696, 0, 800, 803, 809, 838, 0,
278 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
279 /* 0x1e - 1280x800@85Hz */
280 { DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 122500, 1280, 1360,
281 1496, 1712, 0, 800, 803, 809, 843, 0,
282 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
283 /* 0x1f - 1280x800@120Hz RB */
284 { DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 146250, 1280, 1328,
285 1360, 1440, 0, 800, 803, 809, 847, 0,
286 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
287 /* 0x20 - 1280x960@60Hz */
288 { DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1376,
289 1488, 1800, 0, 960, 961, 964, 1000, 0,
290 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
291 /* 0x21 - 1280x960@85Hz */
292 { DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1344,
293 1504, 1728, 0, 960, 961, 964, 1011, 0,
294 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
295 /* 0x22 - 1280x960@120Hz RB */
296 { DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 175500, 1280, 1328,
297 1360, 1440, 0, 960, 963, 967, 1017, 0,
298 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
299 /* 0x23 - 1280x1024@60Hz */
300 { DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1328,
301 1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
302 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
303 /* 0x24 - 1280x1024@75Hz */
304 { DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 135000, 1280, 1296,
305 1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
306 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
307 /* 0x25 - 1280x1024@85Hz */
308 { DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 157500, 1280, 1344,
309 1504, 1728, 0, 1024, 1025, 1028, 1072, 0,
310 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
311 /* 0x26 - 1280x1024@120Hz RB */
312 { DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 187250, 1280, 1328,
313 1360, 1440, 0, 1024, 1027, 1034, 1084, 0,
314 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
315 /* 0x27 - 1360x768@60Hz */
316 { DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 85500, 1360, 1424,
317 1536, 1792, 0, 768, 771, 777, 795, 0,
318 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
319 /* 0x28 - 1360x768@120Hz RB */
320 { DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 148250, 1360, 1408,
321 1440, 1520, 0, 768, 771, 776, 813, 0,
322 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
323 /* 0x51 - 1366x768@60Hz */
324 { DRM_MODE("1366x768", DRM_MODE_TYPE_DRIVER, 85500, 1366, 1436,
325 1579, 1792, 0, 768, 771, 774, 798, 0,
326 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
327 /* 0x56 - 1366x768@60Hz */
328 { DRM_MODE("1366x768", DRM_MODE_TYPE_DRIVER, 72000, 1366, 1380,
329 1436, 1500, 0, 768, 769, 772, 800, 0,
330 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
331 /* 0x29 - 1400x1050@60Hz RB */
332 { DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 101000, 1400, 1448,
333 1480, 1560, 0, 1050, 1053, 1057, 1080, 0,
334 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
335 /* 0x2a - 1400x1050@60Hz */
336 { DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 121750, 1400, 1488,
337 1632, 1864, 0, 1050, 1053, 1057, 1089, 0,
338 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
339 /* 0x2b - 1400x1050@75Hz */
340 { DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 156000, 1400, 1504,
341 1648, 1896, 0, 1050, 1053, 1057, 1099, 0,
342 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
343 /* 0x2c - 1400x1050@85Hz */
344 { DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 179500, 1400, 1504,
345 1656, 1912, 0, 1050, 1053, 1057, 1105, 0,
346 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
347 /* 0x2d - 1400x1050@120Hz RB */
348 { DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 208000, 1400, 1448,
349 1480, 1560, 0, 1050, 1053, 1057, 1112, 0,
350 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
351 /* 0x2e - 1440x900@60Hz RB */
352 { DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 88750, 1440, 1488,
353 1520, 1600, 0, 900, 903, 909, 926, 0,
354 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
355 /* 0x2f - 1440x900@60Hz */
356 { DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 106500, 1440, 1520,
357 1672, 1904, 0, 900, 903, 909, 934, 0,
358 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
359 /* 0x30 - 1440x900@75Hz */
360 { DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 136750, 1440, 1536,
361 1688, 1936, 0, 900, 903, 909, 942, 0,
362 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
363 /* 0x31 - 1440x900@85Hz */
364 { DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 157000, 1440, 1544,
365 1696, 1952, 0, 900, 903, 909, 948, 0,
366 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
367 /* 0x32 - 1440x900@120Hz RB */
368 { DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 182750, 1440, 1488,
369 1520, 1600, 0, 900, 903, 909, 953, 0,
370 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
371 /* 0x53 - 1600x900@60Hz */
372 { DRM_MODE("1600x900", DRM_MODE_TYPE_DRIVER, 108000, 1600, 1624,
373 1704, 1800, 0, 900, 901, 904, 1000, 0,
374 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
375 /* 0x33 - 1600x1200@60Hz */
376 { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 162000, 1600, 1664,
377 1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
378 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
379 /* 0x34 - 1600x1200@65Hz */
380 { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 175500, 1600, 1664,
381 1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
382 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
383 /* 0x35 - 1600x1200@70Hz */
384 { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 189000, 1600, 1664,
385 1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
386 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
387 /* 0x36 - 1600x1200@75Hz */
388 { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 202500, 1600, 1664,
389 1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
390 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
391 /* 0x37 - 1600x1200@85Hz */
392 { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 229500, 1600, 1664,
393 1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
394 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
395 /* 0x38 - 1600x1200@120Hz RB */
396 { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 268250, 1600, 1648,
397 1680, 1760, 0, 1200, 1203, 1207, 1271, 0,
398 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
399 /* 0x39 - 1680x1050@60Hz RB */
400 { DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 119000, 1680, 1728,
401 1760, 1840, 0, 1050, 1053, 1059, 1080, 0,
402 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
403 /* 0x3a - 1680x1050@60Hz */
404 { DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 146250, 1680, 1784,
405 1960, 2240, 0, 1050, 1053, 1059, 1089, 0,
406 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
407 /* 0x3b - 1680x1050@75Hz */
408 { DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 187000, 1680, 1800,
409 1976, 2272, 0, 1050, 1053, 1059, 1099, 0,
410 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
411 /* 0x3c - 1680x1050@85Hz */
412 { DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 214750, 1680, 1808,
413 1984, 2288, 0, 1050, 1053, 1059, 1105, 0,
414 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
415 /* 0x3d - 1680x1050@120Hz RB */
416 { DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 245500, 1680, 1728,
417 1760, 1840, 0, 1050, 1053, 1059, 1112, 0,
418 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
419 /* 0x3e - 1792x1344@60Hz */
420 { DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 204750, 1792, 1920,
421 2120, 2448, 0, 1344, 1345, 1348, 1394, 0,
422 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
423 /* 0x3f - 1792x1344@75Hz */
424 { DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 261000, 1792, 1888,
425 2104, 2456, 0, 1344, 1345, 1348, 1417, 0,
426 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
427 /* 0x40 - 1792x1344@120Hz RB */
428 { DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 333250, 1792, 1840,
429 1872, 1952, 0, 1344, 1347, 1351, 1423, 0,
430 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
431 /* 0x41 - 1856x1392@60Hz */
432 { DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 218250, 1856, 1952,
433 2176, 2528, 0, 1392, 1393, 1396, 1439, 0,
434 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
435 /* 0x42 - 1856x1392@75Hz */
436 { DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 288000, 1856, 1984,
437 2208, 2560, 0, 1392, 1393, 1396, 1500, 0,
438 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
439 /* 0x43 - 1856x1392@120Hz RB */
440 { DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 356500, 1856, 1904,
441 1936, 2016, 0, 1392, 1395, 1399, 1474, 0,
442 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
443 /* 0x52 - 1920x1080@60Hz */
444 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
445 2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
446 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
447 /* 0x44 - 1920x1200@60Hz RB */
448 { DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 154000, 1920, 1968,
449 2000, 2080, 0, 1200, 1203, 1209, 1235, 0,
450 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
451 /* 0x45 - 1920x1200@60Hz */
452 { DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 193250, 1920, 2056,
453 2256, 2592, 0, 1200, 1203, 1209, 1245, 0,
454 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
455 /* 0x46 - 1920x1200@75Hz */
456 { DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 245250, 1920, 2056,
457 2264, 2608, 0, 1200, 1203, 1209, 1255, 0,
458 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
459 /* 0x47 - 1920x1200@85Hz */
460 { DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 281250, 1920, 2064,
461 2272, 2624, 0, 1200, 1203, 1209, 1262, 0,
462 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
463 /* 0x48 - 1920x1200@120Hz RB */
464 { DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 317000, 1920, 1968,
465 2000, 2080, 0, 1200, 1203, 1209, 1271, 0,
466 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
467 /* 0x49 - 1920x1440@60Hz */
468 { DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 234000, 1920, 2048,
469 2256, 2600, 0, 1440, 1441, 1444, 1500, 0,
470 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
471 /* 0x4a - 1920x1440@75Hz */
472 { DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2064,
473 2288, 2640, 0, 1440, 1441, 1444, 1500, 0,
474 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
475 /* 0x4b - 1920x1440@120Hz RB */
476 { DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 380500, 1920, 1968,
477 2000, 2080, 0, 1440, 1443, 1447, 1525, 0,
478 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
479 /* 0x54 - 2048x1152@60Hz */
480 { DRM_MODE("2048x1152", DRM_MODE_TYPE_DRIVER, 162000, 2048, 2074,
481 2154, 2250, 0, 1152, 1153, 1156, 1200, 0,
482 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
483 /* 0x4c - 2560x1600@60Hz RB */
484 { DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 268500, 2560, 2608,
485 2640, 2720, 0, 1600, 1603, 1609, 1646, 0,
486 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
487 /* 0x4d - 2560x1600@60Hz */
488 { DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 348500, 2560, 2752,
489 3032, 3504, 0, 1600, 1603, 1609, 1658, 0,
490 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
491 /* 0x4e - 2560x1600@75Hz */
492 { DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 443250, 2560, 2768,
493 3048, 3536, 0, 1600, 1603, 1609, 1672, 0,
494 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
495 /* 0x4f - 2560x1600@85Hz */
496 { DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 505250, 2560, 2768,
497 3048, 3536, 0, 1600, 1603, 1609, 1682, 0,
498 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
499 /* 0x50 - 2560x1600@120Hz RB */
500 { DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 552750, 2560, 2608,
501 2640, 2720, 0, 1600, 1603, 1609, 1694, 0,
502 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
503 /* 0x57 - 4096x2160@60Hz RB */
504 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 556744, 4096, 4104,
505 4136, 4176, 0, 2160, 2208, 2216, 2222, 0,
506 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
507 /* 0x58 - 4096x2160@59.94Hz RB */
508 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 556188, 4096, 4104,
509 4136, 4176, 0, 2160, 2208, 2216, 2222, 0,
510 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
511 };
512
513 /*
514 * These more or less come from the DMT spec. The 720x400 modes are
515 * inferred from historical 80x25 practice. The 640x480@67 and 832x624@75
516 * modes are old-school Mac modes. The EDID spec says the 1152x864@75 mode
517 * should be 1152x870, again for the Mac, but instead we use the x864 DMT
518 * mode.
519 *
520 * The DMT modes have been fact-checked; the rest are mild guesses.
521 */
522 static const struct drm_display_mode edid_est_modes[] = {
523 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840,
524 968, 1056, 0, 600, 601, 605, 628, 0,
525 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@60Hz */
526 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 36000, 800, 824,
527 896, 1024, 0, 600, 601, 603, 625, 0,
528 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@56Hz */
529 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 656,
530 720, 840, 0, 480, 481, 484, 500, 0,
531 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@75Hz */
532 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 664,
533 704, 832, 0, 480, 489, 492, 520, 0,
534 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@72Hz */
535 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 30240, 640, 704,
536 768, 864, 0, 480, 483, 486, 525, 0,
537 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@67Hz */
538 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
539 752, 800, 0, 480, 490, 492, 525, 0,
540 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@60Hz */
541 { DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 35500, 720, 738,
542 846, 900, 0, 400, 421, 423, 449, 0,
543 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 720x400@88Hz */
544 { DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 28320, 720, 738,
545 846, 900, 0, 400, 412, 414, 449, 0,
546 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 720x400@70Hz */
547 { DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 135000, 1280, 1296,
548 1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
549 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1280x1024@75Hz */
550 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 78750, 1024, 1040,
551 1136, 1312, 0, 768, 769, 772, 800, 0,
552 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1024x768@75Hz */
553 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 75000, 1024, 1048,
554 1184, 1328, 0, 768, 771, 777, 806, 0,
555 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 1024x768@70Hz */
556 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048,
557 1184, 1344, 0, 768, 771, 777, 806, 0,
558 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 1024x768@60Hz */
559 { DRM_MODE("1024x768i", DRM_MODE_TYPE_DRIVER,44900, 1024, 1032,
560 1208, 1264, 0, 768, 768, 776, 817, 0,
561 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_INTERLACE) }, /* 1024x768@43Hz */
562 { DRM_MODE("832x624", DRM_MODE_TYPE_DRIVER, 57284, 832, 864,
563 928, 1152, 0, 624, 625, 628, 667, 0,
564 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 832x624@75Hz */
565 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 49500, 800, 816,
566 896, 1056, 0, 600, 601, 604, 625, 0,
567 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@75Hz */
568 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 50000, 800, 856,
569 976, 1040, 0, 600, 637, 643, 666, 0,
570 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@72Hz */
571 { DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216,
572 1344, 1600, 0, 864, 865, 868, 900, 0,
573 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1152x864@75Hz */
574 };
575
576 struct minimode {
577 short w;
578 short h;
579 short r;
580 short rb;
581 };
582
583 static const struct minimode est3_modes[] = {
584 /* byte 6 */
585 { 640, 350, 85, 0 },
586 { 640, 400, 85, 0 },
587 { 720, 400, 85, 0 },
588 { 640, 480, 85, 0 },
589 { 848, 480, 60, 0 },
590 { 800, 600, 85, 0 },
591 { 1024, 768, 85, 0 },
592 { 1152, 864, 75, 0 },
593 /* byte 7 */
594 { 1280, 768, 60, 1 },
595 { 1280, 768, 60, 0 },
596 { 1280, 768, 75, 0 },
597 { 1280, 768, 85, 0 },
598 { 1280, 960, 60, 0 },
599 { 1280, 960, 85, 0 },
600 { 1280, 1024, 60, 0 },
601 { 1280, 1024, 85, 0 },
602 /* byte 8 */
603 { 1360, 768, 60, 0 },
604 { 1440, 900, 60, 1 },
605 { 1440, 900, 60, 0 },
606 { 1440, 900, 75, 0 },
607 { 1440, 900, 85, 0 },
608 { 1400, 1050, 60, 1 },
609 { 1400, 1050, 60, 0 },
610 { 1400, 1050, 75, 0 },
611 /* byte 9 */
612 { 1400, 1050, 85, 0 },
613 { 1680, 1050, 60, 1 },
614 { 1680, 1050, 60, 0 },
615 { 1680, 1050, 75, 0 },
616 { 1680, 1050, 85, 0 },
617 { 1600, 1200, 60, 0 },
618 { 1600, 1200, 65, 0 },
619 { 1600, 1200, 70, 0 },
620 /* byte 10 */
621 { 1600, 1200, 75, 0 },
622 { 1600, 1200, 85, 0 },
623 { 1792, 1344, 60, 0 },
624 { 1792, 1344, 75, 0 },
625 { 1856, 1392, 60, 0 },
626 { 1856, 1392, 75, 0 },
627 { 1920, 1200, 60, 1 },
628 { 1920, 1200, 60, 0 },
629 /* byte 11 */
630 { 1920, 1200, 75, 0 },
631 { 1920, 1200, 85, 0 },
632 { 1920, 1440, 60, 0 },
633 { 1920, 1440, 75, 0 },
634 };
635
636 static const struct minimode extra_modes[] = {
637 { 1024, 576, 60, 0 },
638 { 1366, 768, 60, 0 },
639 { 1600, 900, 60, 0 },
640 { 1680, 945, 60, 0 },
641 { 1920, 1080, 60, 0 },
642 { 2048, 1152, 60, 0 },
643 { 2048, 1536, 60, 0 },
644 };
645
646 /*
647 * Probably taken from CEA-861 spec.
648 * This table is converted from xorg's hw/xfree86/modes/xf86EdidModes.c.
649 *
650 * Index using the VIC.
651 */
652 static const struct drm_display_mode edid_cea_modes[] = {
653 /* 0 - dummy, VICs start at 1 */
654 { },
655 /* 1 - 640x480@60Hz */
656 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
657 752, 800, 0, 480, 490, 492, 525, 0,
658 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
659 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
660 /* 2 - 720x480@60Hz */
661 { DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 27000, 720, 736,
662 798, 858, 0, 480, 489, 495, 525, 0,
663 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
664 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
665 /* 3 - 720x480@60Hz */
666 { DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 27000, 720, 736,
667 798, 858, 0, 480, 489, 495, 525, 0,
668 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
669 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
670 /* 4 - 1280x720@60Hz */
671 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390,
672 1430, 1650, 0, 720, 725, 730, 750, 0,
673 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
674 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
675 /* 5 - 1920x1080i@60Hz */
676 { DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
677 2052, 2200, 0, 1080, 1084, 1094, 1125, 0,
678 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
679 DRM_MODE_FLAG_INTERLACE),
680 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
681 /* 6 - 720(1440)x480i@60Hz */
682 { DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
683 801, 858, 0, 480, 488, 494, 525, 0,
684 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
685 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
686 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
687 /* 7 - 720(1440)x480i@60Hz */
688 { DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
689 801, 858, 0, 480, 488, 494, 525, 0,
690 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
691 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
692 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
693 /* 8 - 720(1440)x240@60Hz */
694 { DRM_MODE("720x240", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
695 801, 858, 0, 240, 244, 247, 262, 0,
696 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
697 DRM_MODE_FLAG_DBLCLK),
698 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
699 /* 9 - 720(1440)x240@60Hz */
700 { DRM_MODE("720x240", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
701 801, 858, 0, 240, 244, 247, 262, 0,
702 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
703 DRM_MODE_FLAG_DBLCLK),
704 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
705 /* 10 - 2880x480i@60Hz */
706 { DRM_MODE("2880x480i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
707 3204, 3432, 0, 480, 488, 494, 525, 0,
708 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
709 DRM_MODE_FLAG_INTERLACE),
710 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
711 /* 11 - 2880x480i@60Hz */
712 { DRM_MODE("2880x480i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
713 3204, 3432, 0, 480, 488, 494, 525, 0,
714 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
715 DRM_MODE_FLAG_INTERLACE),
716 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
717 /* 12 - 2880x240@60Hz */
718 { DRM_MODE("2880x240", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
719 3204, 3432, 0, 240, 244, 247, 262, 0,
720 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
721 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
722 /* 13 - 2880x240@60Hz */
723 { DRM_MODE("2880x240", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
724 3204, 3432, 0, 240, 244, 247, 262, 0,
725 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
726 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
727 /* 14 - 1440x480@60Hz */
728 { DRM_MODE("1440x480", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1472,
729 1596, 1716, 0, 480, 489, 495, 525, 0,
730 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
731 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
732 /* 15 - 1440x480@60Hz */
733 { DRM_MODE("1440x480", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1472,
734 1596, 1716, 0, 480, 489, 495, 525, 0,
735 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
736 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
737 /* 16 - 1920x1080@60Hz */
738 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
739 2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
740 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
741 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
742 /* 17 - 720x576@50Hz */
743 { DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
744 796, 864, 0, 576, 581, 586, 625, 0,
745 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
746 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
747 /* 18 - 720x576@50Hz */
748 { DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
749 796, 864, 0, 576, 581, 586, 625, 0,
750 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
751 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
752 /* 19 - 1280x720@50Hz */
753 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1720,
754 1760, 1980, 0, 720, 725, 730, 750, 0,
755 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
756 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
757 /* 20 - 1920x1080i@50Hz */
758 { DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
759 2492, 2640, 0, 1080, 1084, 1094, 1125, 0,
760 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
761 DRM_MODE_FLAG_INTERLACE),
762 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
763 /* 21 - 720(1440)x576i@50Hz */
764 { DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
765 795, 864, 0, 576, 580, 586, 625, 0,
766 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
767 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
768 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
769 /* 22 - 720(1440)x576i@50Hz */
770 { DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
771 795, 864, 0, 576, 580, 586, 625, 0,
772 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
773 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
774 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
775 /* 23 - 720(1440)x288@50Hz */
776 { DRM_MODE("720x288", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
777 795, 864, 0, 288, 290, 293, 312, 0,
778 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
779 DRM_MODE_FLAG_DBLCLK),
780 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
781 /* 24 - 720(1440)x288@50Hz */
782 { DRM_MODE("720x288", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
783 795, 864, 0, 288, 290, 293, 312, 0,
784 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
785 DRM_MODE_FLAG_DBLCLK),
786 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
787 /* 25 - 2880x576i@50Hz */
788 { DRM_MODE("2880x576i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
789 3180, 3456, 0, 576, 580, 586, 625, 0,
790 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
791 DRM_MODE_FLAG_INTERLACE),
792 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
793 /* 26 - 2880x576i@50Hz */
794 { DRM_MODE("2880x576i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
795 3180, 3456, 0, 576, 580, 586, 625, 0,
796 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
797 DRM_MODE_FLAG_INTERLACE),
798 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
799 /* 27 - 2880x288@50Hz */
800 { DRM_MODE("2880x288", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
801 3180, 3456, 0, 288, 290, 293, 312, 0,
802 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
803 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
804 /* 28 - 2880x288@50Hz */
805 { DRM_MODE("2880x288", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
806 3180, 3456, 0, 288, 290, 293, 312, 0,
807 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
808 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
809 /* 29 - 1440x576@50Hz */
810 { DRM_MODE("1440x576", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464,
811 1592, 1728, 0, 576, 581, 586, 625, 0,
812 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
813 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
814 /* 30 - 1440x576@50Hz */
815 { DRM_MODE("1440x576", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464,
816 1592, 1728, 0, 576, 581, 586, 625, 0,
817 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
818 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
819 /* 31 - 1920x1080@50Hz */
820 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
821 2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
822 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
823 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
824 /* 32 - 1920x1080@24Hz */
825 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2558,
826 2602, 2750, 0, 1080, 1084, 1089, 1125, 0,
827 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
828 .vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
829 /* 33 - 1920x1080@25Hz */
830 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
831 2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
832 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
833 .vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
834 /* 34 - 1920x1080@30Hz */
835 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
836 2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
837 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
838 .vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
839 /* 35 - 2880x480@60Hz */
840 { DRM_MODE("2880x480", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2944,
841 3192, 3432, 0, 480, 489, 495, 525, 0,
842 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
843 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
844 /* 36 - 2880x480@60Hz */
845 { DRM_MODE("2880x480", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2944,
846 3192, 3432, 0, 480, 489, 495, 525, 0,
847 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
848 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
849 /* 37 - 2880x576@50Hz */
850 { DRM_MODE("2880x576", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2928,
851 3184, 3456, 0, 576, 581, 586, 625, 0,
852 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
853 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
854 /* 38 - 2880x576@50Hz */
855 { DRM_MODE("2880x576", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2928,
856 3184, 3456, 0, 576, 581, 586, 625, 0,
857 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
858 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
859 /* 39 - 1920x1080i@50Hz */
860 { DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 72000, 1920, 1952,
861 2120, 2304, 0, 1080, 1126, 1136, 1250, 0,
862 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC |
863 DRM_MODE_FLAG_INTERLACE),
864 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
865 /* 40 - 1920x1080i@100Hz */
866 { DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
867 2492, 2640, 0, 1080, 1084, 1094, 1125, 0,
868 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
869 DRM_MODE_FLAG_INTERLACE),
870 .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
871 /* 41 - 1280x720@100Hz */
872 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1720,
873 1760, 1980, 0, 720, 725, 730, 750, 0,
874 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
875 .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
876 /* 42 - 720x576@100Hz */
877 { DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
878 796, 864, 0, 576, 581, 586, 625, 0,
879 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
880 .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
881 /* 43 - 720x576@100Hz */
882 { DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
883 796, 864, 0, 576, 581, 586, 625, 0,
884 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
885 .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
886 /* 44 - 720(1440)x576i@100Hz */
887 { DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
888 795, 864, 0, 576, 580, 586, 625, 0,
889 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
890 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
891 .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
892 /* 45 - 720(1440)x576i@100Hz */
893 { DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
894 795, 864, 0, 576, 580, 586, 625, 0,
895 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
896 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
897 .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
898 /* 46 - 1920x1080i@120Hz */
899 { DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
900 2052, 2200, 0, 1080, 1084, 1094, 1125, 0,
901 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
902 DRM_MODE_FLAG_INTERLACE),
903 .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
904 /* 47 - 1280x720@120Hz */
905 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1390,
906 1430, 1650, 0, 720, 725, 730, 750, 0,
907 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
908 .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
909 /* 48 - 720x480@120Hz */
910 { DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 54000, 720, 736,
911 798, 858, 0, 480, 489, 495, 525, 0,
912 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
913 .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
914 /* 49 - 720x480@120Hz */
915 { DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 54000, 720, 736,
916 798, 858, 0, 480, 489, 495, 525, 0,
917 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
918 .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
919 /* 50 - 720(1440)x480i@120Hz */
920 { DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 27000, 720, 739,
921 801, 858, 0, 480, 488, 494, 525, 0,
922 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
923 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
924 .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
925 /* 51 - 720(1440)x480i@120Hz */
926 { DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 27000, 720, 739,
927 801, 858, 0, 480, 488, 494, 525, 0,
928 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
929 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
930 .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
931 /* 52 - 720x576@200Hz */
932 { DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 108000, 720, 732,
933 796, 864, 0, 576, 581, 586, 625, 0,
934 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
935 .vrefresh = 200, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
936 /* 53 - 720x576@200Hz */
937 { DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 108000, 720, 732,
938 796, 864, 0, 576, 581, 586, 625, 0,
939 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
940 .vrefresh = 200, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
941 /* 54 - 720(1440)x576i@200Hz */
942 { DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
943 795, 864, 0, 576, 580, 586, 625, 0,
944 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
945 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
946 .vrefresh = 200, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
947 /* 55 - 720(1440)x576i@200Hz */
948 { DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
949 795, 864, 0, 576, 580, 586, 625, 0,
950 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
951 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
952 .vrefresh = 200, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
953 /* 56 - 720x480@240Hz */
954 { DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 108000, 720, 736,
955 798, 858, 0, 480, 489, 495, 525, 0,
956 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
957 .vrefresh = 240, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
958 /* 57 - 720x480@240Hz */
959 { DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 108000, 720, 736,
960 798, 858, 0, 480, 489, 495, 525, 0,
961 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
962 .vrefresh = 240, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
963 /* 58 - 720(1440)x480i@240Hz */
964 { DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 54000, 720, 739,
965 801, 858, 0, 480, 488, 494, 525, 0,
966 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
967 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
968 .vrefresh = 240, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
969 /* 59 - 720(1440)x480i@240Hz */
970 { DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 54000, 720, 739,
971 801, 858, 0, 480, 488, 494, 525, 0,
972 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
973 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
974 .vrefresh = 240, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
975 /* 60 - 1280x720@24Hz */
976 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 59400, 1280, 3040,
977 3080, 3300, 0, 720, 725, 730, 750, 0,
978 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
979 .vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
980 /* 61 - 1280x720@25Hz */
981 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3700,
982 3740, 3960, 0, 720, 725, 730, 750, 0,
983 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
984 .vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
985 /* 62 - 1280x720@30Hz */
986 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3040,
987 3080, 3300, 0, 720, 725, 730, 750, 0,
988 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
989 .vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
990 /* 63 - 1920x1080@120Hz */
991 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2008,
992 2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
993 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
994 .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
995 /* 64 - 1920x1080@100Hz */
996 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2448,
997 2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
998 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
999 .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1000 };
1001
1002 /*
1003 * HDMI 1.4 4k modes. Index using the VIC.
1004 */
1005 static const struct drm_display_mode edid_4k_modes[] = {
1006 /* 0 - dummy, VICs start at 1 */
1007 { },
1008 /* 1 - 3840x2160@30Hz */
1009 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000,
1010 3840, 4016, 4104, 4400, 0,
1011 2160, 2168, 2178, 2250, 0,
1012 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1013 .vrefresh = 30, },
1014 /* 2 - 3840x2160@25Hz */
1015 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000,
1016 3840, 4896, 4984, 5280, 0,
1017 2160, 2168, 2178, 2250, 0,
1018 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1019 .vrefresh = 25, },
1020 /* 3 - 3840x2160@24Hz */
1021 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000,
1022 3840, 5116, 5204, 5500, 0,
1023 2160, 2168, 2178, 2250, 0,
1024 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1025 .vrefresh = 24, },
1026 /* 4 - 4096x2160@24Hz (SMPTE) */
1027 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000,
1028 4096, 5116, 5204, 5500, 0,
1029 2160, 2168, 2178, 2250, 0,
1030 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1031 .vrefresh = 24, },
1032 };
1033
1034 /*** DDC fetch and block validation ***/
1035
1036 static const u8 edid_header[] = {
1037 0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00
1038 };
1039
1040 /**
1041 * drm_edid_header_is_valid - sanity check the header of the base EDID block
1042 * @raw_edid: pointer to raw base EDID block
1043 *
1044 * Sanity check the header of the base EDID block.
1045 *
1046 * Return: 8 if the header is perfect, down to 0 if it's totally wrong.
1047 */
1048 int drm_edid_header_is_valid(const u8 *raw_edid)
1049 {
1050 int i, score = 0;
1051
1052 for (i = 0; i < sizeof(edid_header); i++)
1053 if (raw_edid[i] == edid_header[i])
1054 score++;
1055
1056 return score;
1057 }
1058 EXPORT_SYMBOL(drm_edid_header_is_valid);
1059
1060 static int edid_fixup __read_mostly = 6;
1061 module_param_named(edid_fixup, edid_fixup, int, 0400);
1062 MODULE_PARM_DESC(edid_fixup,
1063 "Minimum number of valid EDID header bytes (0-8, default 6)");
1064
1065 static void drm_get_displayid(struct drm_connector *connector,
1066 struct edid *edid);
1067
1068 static int drm_edid_block_checksum(const u8 *raw_edid)
1069 {
1070 int i;
1071 u8 csum = 0;
1072 for (i = 0; i < EDID_LENGTH; i++)
1073 csum += raw_edid[i];
1074
1075 return csum;
1076 }
1077
1078 static bool drm_edid_is_zero(const u8 *in_edid, int length)
1079 {
1080 if (memchr_inv(in_edid, 0, length))
1081 return false;
1082
1083 return true;
1084 }
1085
1086 /**
1087 * drm_edid_block_valid - Sanity check the EDID block (base or extension)
1088 * @raw_edid: pointer to raw EDID block
1089 * @block: type of block to validate (0 for base, extension otherwise)
1090 * @print_bad_edid: if true, dump bad EDID blocks to the console
1091 * @edid_corrupt: if true, the header or checksum is invalid
1092 *
1093 * Validate a base or extension EDID block and optionally dump bad blocks to
1094 * the console.
1095 *
1096 * Return: True if the block is valid, false otherwise.
1097 */
1098 bool drm_edid_block_valid(u8 *raw_edid, int block, bool print_bad_edid,
1099 bool *edid_corrupt)
1100 {
1101 u8 csum;
1102 struct edid *edid = (struct edid *)raw_edid;
1103
1104 if (WARN_ON(!raw_edid))
1105 return false;
1106
1107 if (edid_fixup > 8 || edid_fixup < 0)
1108 edid_fixup = 6;
1109
1110 if (block == 0) {
1111 int score = drm_edid_header_is_valid(raw_edid);
1112 if (score == 8) {
1113 if (edid_corrupt)
1114 *edid_corrupt = false;
1115 } else if (score >= edid_fixup) {
1116 /* Displayport Link CTS Core 1.2 rev1.1 test 4.2.2.6
1117 * The corrupt flag needs to be set here otherwise, the
1118 * fix-up code here will correct the problem, the
1119 * checksum is correct and the test fails
1120 */
1121 if (edid_corrupt)
1122 *edid_corrupt = true;
1123 DRM_DEBUG("Fixing EDID header, your hardware may be failing\n");
1124 memcpy(raw_edid, edid_header, sizeof(edid_header));
1125 } else {
1126 if (edid_corrupt)
1127 *edid_corrupt = true;
1128 goto bad;
1129 }
1130 }
1131
1132 csum = drm_edid_block_checksum(raw_edid);
1133 if (csum) {
1134 if (print_bad_edid) {
1135 DRM_ERROR("EDID checksum is invalid, remainder is %d\n", csum);
1136 }
1137
1138 if (edid_corrupt)
1139 *edid_corrupt = true;
1140
1141 /* allow CEA to slide through, switches mangle this */
1142 if (raw_edid[0] != 0x02)
1143 goto bad;
1144 }
1145
1146 /* per-block-type checks */
1147 switch (raw_edid[0]) {
1148 case 0: /* base */
1149 if (edid->version != 1) {
1150 DRM_ERROR("EDID has major version %d, instead of 1\n", edid->version);
1151 goto bad;
1152 }
1153
1154 if (edid->revision > 4)
1155 DRM_DEBUG("EDID minor > 4, assuming backward compatibility\n");
1156 break;
1157
1158 default:
1159 break;
1160 }
1161
1162 return true;
1163
1164 bad:
1165 if (print_bad_edid) {
1166 if (drm_edid_is_zero(raw_edid, EDID_LENGTH)) {
1167 printk(KERN_ERR "EDID block is all zeroes\n");
1168 } else {
1169 printk(KERN_ERR "Raw EDID:\n");
1170 print_hex_dump(KERN_ERR, " \t", DUMP_PREFIX_NONE, 16, 1,
1171 raw_edid, EDID_LENGTH, false);
1172 }
1173 }
1174 return false;
1175 }
1176 EXPORT_SYMBOL(drm_edid_block_valid);
1177
1178 /**
1179 * drm_edid_is_valid - sanity check EDID data
1180 * @edid: EDID data
1181 *
1182 * Sanity-check an entire EDID record (including extensions)
1183 *
1184 * Return: True if the EDID data is valid, false otherwise.
1185 */
1186 bool drm_edid_is_valid(struct edid *edid)
1187 {
1188 int i;
1189 u8 *raw = (u8 *)edid;
1190
1191 if (!edid)
1192 return false;
1193
1194 for (i = 0; i <= edid->extensions; i++)
1195 if (!drm_edid_block_valid(raw + i * EDID_LENGTH, i, true, NULL))
1196 return false;
1197
1198 return true;
1199 }
1200 EXPORT_SYMBOL(drm_edid_is_valid);
1201
1202 #define DDC_SEGMENT_ADDR 0x30
1203 /**
1204 * drm_do_probe_ddc_edid() - get EDID information via I2C
1205 * @data: I2C device adapter
1206 * @buf: EDID data buffer to be filled
1207 * @block: 128 byte EDID block to start fetching from
1208 * @len: EDID data buffer length to fetch
1209 *
1210 * Try to fetch EDID information by calling I2C driver functions.
1211 *
1212 * Return: 0 on success or -1 on failure.
1213 */
1214 static int
1215 drm_do_probe_ddc_edid(void *data, u8 *buf, unsigned int block, size_t len)
1216 {
1217 struct i2c_adapter *adapter = data;
1218 unsigned char start = block * EDID_LENGTH;
1219 unsigned char segment = block >> 1;
1220 unsigned char xfers = segment ? 3 : 2;
1221 int ret, retries = 5;
1222
1223 /*
1224 * The core I2C driver will automatically retry the transfer if the
1225 * adapter reports EAGAIN. However, we find that bit-banging transfers
1226 * are susceptible to errors under a heavily loaded machine and
1227 * generate spurious NAKs and timeouts. Retrying the transfer
1228 * of the individual block a few times seems to overcome this.
1229 */
1230 do {
1231 struct i2c_msg msgs[] = {
1232 {
1233 .addr = DDC_SEGMENT_ADDR,
1234 .flags = 0,
1235 .len = 1,
1236 .buf = &segment,
1237 }, {
1238 .addr = DDC_ADDR,
1239 .flags = 0,
1240 .len = 1,
1241 .buf = &start,
1242 }, {
1243 .addr = DDC_ADDR,
1244 .flags = I2C_M_RD,
1245 .len = len,
1246 .buf = buf,
1247 }
1248 };
1249
1250 /*
1251 * Avoid sending the segment addr to not upset non-compliant
1252 * DDC monitors.
1253 */
1254 ret = i2c_transfer(adapter, &msgs[3 - xfers], xfers);
1255
1256 if (ret == -ENXIO) {
1257 DRM_DEBUG_KMS("drm: skipping non-existent adapter %s\n",
1258 adapter->name);
1259 break;
1260 }
1261 } while (ret != xfers && --retries);
1262
1263 return ret == xfers ? 0 : -1;
1264 }
1265
1266 static void connector_bad_edid(struct drm_connector *connector,
1267 u8 *edid, int num_blocks)
1268 {
1269 int i;
1270
1271 if (connector->bad_edid_counter++ && !(drm_debug & DRM_UT_KMS))
1272 return;
1273
1274 dev_warn(connector->dev->dev,
1275 "%s: EDID is invalid:\n",
1276 connector->name);
1277 for (i = 0; i < num_blocks; i++) {
1278 u8 *block = edid + i * EDID_LENGTH;
1279 char prefix[20];
1280
1281 if (drm_edid_is_zero(block, EDID_LENGTH))
1282 sprintf(prefix, "\t[%02x] ZERO ", i);
1283 else if (!drm_edid_block_valid(block, i, false, NULL))
1284 sprintf(prefix, "\t[%02x] BAD ", i);
1285 else
1286 sprintf(prefix, "\t[%02x] GOOD ", i);
1287
1288 print_hex_dump(KERN_WARNING,
1289 prefix, DUMP_PREFIX_NONE, 16, 1,
1290 block, EDID_LENGTH, false);
1291 }
1292 }
1293
1294 /**
1295 * drm_do_get_edid - get EDID data using a custom EDID block read function
1296 * @connector: connector we're probing
1297 * @get_edid_block: EDID block read function
1298 * @data: private data passed to the block read function
1299 *
1300 * When the I2C adapter connected to the DDC bus is hidden behind a device that
1301 * exposes a different interface to read EDID blocks this function can be used
1302 * to get EDID data using a custom block read function.
1303 *
1304 * As in the general case the DDC bus is accessible by the kernel at the I2C
1305 * level, drivers must make all reasonable efforts to expose it as an I2C
1306 * adapter and use drm_get_edid() instead of abusing this function.
1307 *
1308 * Return: Pointer to valid EDID or NULL if we couldn't find any.
1309 */
1310 struct edid *drm_do_get_edid(struct drm_connector *connector,
1311 int (*get_edid_block)(void *data, u8 *buf, unsigned int block,
1312 size_t len),
1313 void *data)
1314 {
1315 int i, j = 0, valid_extensions = 0;
1316 u8 *edid, *new;
1317
1318 if ((edid = kmalloc(EDID_LENGTH, GFP_KERNEL)) == NULL)
1319 return NULL;
1320
1321 /* base block fetch */
1322 for (i = 0; i < 4; i++) {
1323 if (get_edid_block(data, edid, 0, EDID_LENGTH))
1324 goto out;
1325 if (drm_edid_block_valid(edid, 0, false,
1326 &connector->edid_corrupt))
1327 break;
1328 if (i == 0 && drm_edid_is_zero(edid, EDID_LENGTH)) {
1329 connector->null_edid_counter++;
1330 goto carp;
1331 }
1332 }
1333 if (i == 4)
1334 goto carp;
1335
1336 /* if there's no extensions, we're done */
1337 valid_extensions = edid[0x7e];
1338 if (valid_extensions == 0)
1339 return (struct edid *)edid;
1340
1341 new = krealloc(edid, (valid_extensions + 1) * EDID_LENGTH, GFP_KERNEL);
1342 if (!new)
1343 goto out;
1344 edid = new;
1345
1346 for (j = 1; j <= edid[0x7e]; j++) {
1347 u8 *block = edid + j * EDID_LENGTH;
1348
1349 for (i = 0; i < 4; i++) {
1350 if (get_edid_block(data, block, j, EDID_LENGTH))
1351 goto out;
1352 if (drm_edid_block_valid(block, j, false, NULL))
1353 break;
1354 }
1355
1356 if (i == 4)
1357 valid_extensions--;
1358 }
1359
1360 if (valid_extensions != edid[0x7e]) {
1361 u8 *base;
1362
1363 connector_bad_edid(connector, edid, edid[0x7e] + 1);
1364
1365 edid[EDID_LENGTH-1] += edid[0x7e] - valid_extensions;
1366 edid[0x7e] = valid_extensions;
1367
1368 new = kmalloc((valid_extensions + 1) * EDID_LENGTH, GFP_KERNEL);
1369 if (!new)
1370 goto out;
1371
1372 base = new;
1373 for (i = 0; i <= edid[0x7e]; i++) {
1374 u8 *block = edid + i * EDID_LENGTH;
1375
1376 if (!drm_edid_block_valid(block, i, false, NULL))
1377 continue;
1378
1379 memcpy(base, block, EDID_LENGTH);
1380 base += EDID_LENGTH;
1381 }
1382
1383 kfree(edid);
1384 edid = new;
1385 }
1386
1387 return (struct edid *)edid;
1388
1389 carp:
1390 connector_bad_edid(connector, edid, 1);
1391 out:
1392 kfree(edid);
1393 return NULL;
1394 }
1395 EXPORT_SYMBOL_GPL(drm_do_get_edid);
1396
1397 /**
1398 * drm_probe_ddc() - probe DDC presence
1399 * @adapter: I2C adapter to probe
1400 *
1401 * Return: True on success, false on failure.
1402 */
1403 bool
1404 drm_probe_ddc(struct i2c_adapter *adapter)
1405 {
1406 unsigned char out;
1407
1408 return (drm_do_probe_ddc_edid(adapter, &out, 0, 1) == 0);
1409 }
1410 EXPORT_SYMBOL(drm_probe_ddc);
1411
1412 /**
1413 * drm_get_edid - get EDID data, if available
1414 * @connector: connector we're probing
1415 * @adapter: I2C adapter to use for DDC
1416 *
1417 * Poke the given I2C channel to grab EDID data if possible. If found,
1418 * attach it to the connector.
1419 *
1420 * Return: Pointer to valid EDID or NULL if we couldn't find any.
1421 */
1422 struct edid *drm_get_edid(struct drm_connector *connector,
1423 struct i2c_adapter *adapter)
1424 {
1425 struct edid *edid;
1426
1427 if (!drm_probe_ddc(adapter))
1428 return NULL;
1429
1430 edid = drm_do_get_edid(connector, drm_do_probe_ddc_edid, adapter);
1431 if (edid)
1432 drm_get_displayid(connector, edid);
1433 return edid;
1434 }
1435 EXPORT_SYMBOL(drm_get_edid);
1436
1437 /**
1438 * drm_get_edid_switcheroo - get EDID data for a vga_switcheroo output
1439 * @connector: connector we're probing
1440 * @adapter: I2C adapter to use for DDC
1441 *
1442 * Wrapper around drm_get_edid() for laptops with dual GPUs using one set of
1443 * outputs. The wrapper adds the requisite vga_switcheroo calls to temporarily
1444 * switch DDC to the GPU which is retrieving EDID.
1445 *
1446 * Return: Pointer to valid EDID or %NULL if we couldn't find any.
1447 */
1448 struct edid *drm_get_edid_switcheroo(struct drm_connector *connector,
1449 struct i2c_adapter *adapter)
1450 {
1451 struct pci_dev *pdev = connector->dev->pdev;
1452 struct edid *edid;
1453
1454 vga_switcheroo_lock_ddc(pdev);
1455 edid = drm_get_edid(connector, adapter);
1456 vga_switcheroo_unlock_ddc(pdev);
1457
1458 return edid;
1459 }
1460 EXPORT_SYMBOL(drm_get_edid_switcheroo);
1461
1462 /**
1463 * drm_edid_duplicate - duplicate an EDID and the extensions
1464 * @edid: EDID to duplicate
1465 *
1466 * Return: Pointer to duplicated EDID or NULL on allocation failure.
1467 */
1468 struct edid *drm_edid_duplicate(const struct edid *edid)
1469 {
1470 return kmemdup(edid, (edid->extensions + 1) * EDID_LENGTH, GFP_KERNEL);
1471 }
1472 EXPORT_SYMBOL(drm_edid_duplicate);
1473
1474 /*** EDID parsing ***/
1475
1476 /**
1477 * edid_vendor - match a string against EDID's obfuscated vendor field
1478 * @edid: EDID to match
1479 * @vendor: vendor string
1480 *
1481 * Returns true if @vendor is in @edid, false otherwise
1482 */
1483 static bool edid_vendor(struct edid *edid, char *vendor)
1484 {
1485 char edid_vendor[3];
1486
1487 edid_vendor[0] = ((edid->mfg_id[0] & 0x7c) >> 2) + '@';
1488 edid_vendor[1] = (((edid->mfg_id[0] & 0x3) << 3) |
1489 ((edid->mfg_id[1] & 0xe0) >> 5)) + '@';
1490 edid_vendor[2] = (edid->mfg_id[1] & 0x1f) + '@';
1491
1492 return !strncmp(edid_vendor, vendor, 3);
1493 }
1494
1495 /**
1496 * edid_get_quirks - return quirk flags for a given EDID
1497 * @edid: EDID to process
1498 *
1499 * This tells subsequent routines what fixes they need to apply.
1500 */
1501 static u32 edid_get_quirks(struct edid *edid)
1502 {
1503 struct edid_quirk *quirk;
1504 int i;
1505
1506 for (i = 0; i < ARRAY_SIZE(edid_quirk_list); i++) {
1507 quirk = &edid_quirk_list[i];
1508
1509 if (edid_vendor(edid, quirk->vendor) &&
1510 (EDID_PRODUCT_ID(edid) == quirk->product_id))
1511 return quirk->quirks;
1512 }
1513
1514 return 0;
1515 }
1516
1517 #define MODE_SIZE(m) ((m)->hdisplay * (m)->vdisplay)
1518 #define MODE_REFRESH_DIFF(c,t) (abs((c) - (t)))
1519
1520 /**
1521 * edid_fixup_preferred - set preferred modes based on quirk list
1522 * @connector: has mode list to fix up
1523 * @quirks: quirks list
1524 *
1525 * Walk the mode list for @connector, clearing the preferred status
1526 * on existing modes and setting it anew for the right mode ala @quirks.
1527 */
1528 static void edid_fixup_preferred(struct drm_connector *connector,
1529 u32 quirks)
1530 {
1531 struct drm_display_mode *t, *cur_mode, *preferred_mode;
1532 int target_refresh = 0;
1533 int cur_vrefresh, preferred_vrefresh;
1534
1535 if (list_empty(&connector->probed_modes))
1536 return;
1537
1538 if (quirks & EDID_QUIRK_PREFER_LARGE_60)
1539 target_refresh = 60;
1540 if (quirks & EDID_QUIRK_PREFER_LARGE_75)
1541 target_refresh = 75;
1542
1543 preferred_mode = list_first_entry(&connector->probed_modes,
1544 struct drm_display_mode, head);
1545
1546 list_for_each_entry_safe(cur_mode, t, &connector->probed_modes, head) {
1547 cur_mode->type &= ~DRM_MODE_TYPE_PREFERRED;
1548
1549 if (cur_mode == preferred_mode)
1550 continue;
1551
1552 /* Largest mode is preferred */
1553 if (MODE_SIZE(cur_mode) > MODE_SIZE(preferred_mode))
1554 preferred_mode = cur_mode;
1555
1556 cur_vrefresh = cur_mode->vrefresh ?
1557 cur_mode->vrefresh : drm_mode_vrefresh(cur_mode);
1558 preferred_vrefresh = preferred_mode->vrefresh ?
1559 preferred_mode->vrefresh : drm_mode_vrefresh(preferred_mode);
1560 /* At a given size, try to get closest to target refresh */
1561 if ((MODE_SIZE(cur_mode) == MODE_SIZE(preferred_mode)) &&
1562 MODE_REFRESH_DIFF(cur_vrefresh, target_refresh) <
1563 MODE_REFRESH_DIFF(preferred_vrefresh, target_refresh)) {
1564 preferred_mode = cur_mode;
1565 }
1566 }
1567
1568 preferred_mode->type |= DRM_MODE_TYPE_PREFERRED;
1569 }
1570
1571 static bool
1572 mode_is_rb(const struct drm_display_mode *mode)
1573 {
1574 return (mode->htotal - mode->hdisplay == 160) &&
1575 (mode->hsync_end - mode->hdisplay == 80) &&
1576 (mode->hsync_end - mode->hsync_start == 32) &&
1577 (mode->vsync_start - mode->vdisplay == 3);
1578 }
1579
1580 /*
1581 * drm_mode_find_dmt - Create a copy of a mode if present in DMT
1582 * @dev: Device to duplicate against
1583 * @hsize: Mode width
1584 * @vsize: Mode height
1585 * @fresh: Mode refresh rate
1586 * @rb: Mode reduced-blanking-ness
1587 *
1588 * Walk the DMT mode list looking for a match for the given parameters.
1589 *
1590 * Return: A newly allocated copy of the mode, or NULL if not found.
1591 */
1592 struct drm_display_mode *drm_mode_find_dmt(struct drm_device *dev,
1593 int hsize, int vsize, int fresh,
1594 bool rb)
1595 {
1596 int i;
1597
1598 for (i = 0; i < ARRAY_SIZE(drm_dmt_modes); i++) {
1599 const struct drm_display_mode *ptr = &drm_dmt_modes[i];
1600 if (hsize != ptr->hdisplay)
1601 continue;
1602 if (vsize != ptr->vdisplay)
1603 continue;
1604 if (fresh != drm_mode_vrefresh(ptr))
1605 continue;
1606 if (rb != mode_is_rb(ptr))
1607 continue;
1608
1609 return drm_mode_duplicate(dev, ptr);
1610 }
1611
1612 return NULL;
1613 }
1614 EXPORT_SYMBOL(drm_mode_find_dmt);
1615
1616 typedef void detailed_cb(struct detailed_timing *timing, void *closure);
1617
1618 static void
1619 cea_for_each_detailed_block(u8 *ext, detailed_cb *cb, void *closure)
1620 {
1621 int i, n = 0;
1622 u8 d = ext[0x02];
1623 u8 *det_base = ext + d;
1624
1625 n = (127 - d) / 18;
1626 for (i = 0; i < n; i++)
1627 cb((struct detailed_timing *)(det_base + 18 * i), closure);
1628 }
1629
1630 static void
1631 vtb_for_each_detailed_block(u8 *ext, detailed_cb *cb, void *closure)
1632 {
1633 unsigned int i, n = min((int)ext[0x02], 6);
1634 u8 *det_base = ext + 5;
1635
1636 if (ext[0x01] != 1)
1637 return; /* unknown version */
1638
1639 for (i = 0; i < n; i++)
1640 cb((struct detailed_timing *)(det_base + 18 * i), closure);
1641 }
1642
1643 static void
1644 drm_for_each_detailed_block(u8 *raw_edid, detailed_cb *cb, void *closure)
1645 {
1646 int i;
1647 struct edid *edid = (struct edid *)raw_edid;
1648
1649 if (edid == NULL)
1650 return;
1651
1652 for (i = 0; i < EDID_DETAILED_TIMINGS; i++)
1653 cb(&(edid->detailed_timings[i]), closure);
1654
1655 for (i = 1; i <= raw_edid[0x7e]; i++) {
1656 u8 *ext = raw_edid + (i * EDID_LENGTH);
1657 switch (*ext) {
1658 case CEA_EXT:
1659 cea_for_each_detailed_block(ext, cb, closure);
1660 break;
1661 case VTB_EXT:
1662 vtb_for_each_detailed_block(ext, cb, closure);
1663 break;
1664 default:
1665 break;
1666 }
1667 }
1668 }
1669
1670 static void
1671 is_rb(struct detailed_timing *t, void *data)
1672 {
1673 u8 *r = (u8 *)t;
1674 if (r[3] == EDID_DETAIL_MONITOR_RANGE)
1675 if (r[15] & 0x10)
1676 *(bool *)data = true;
1677 }
1678
1679 /* EDID 1.4 defines this explicitly. For EDID 1.3, we guess, badly. */
1680 static bool
1681 drm_monitor_supports_rb(struct edid *edid)
1682 {
1683 if (edid->revision >= 4) {
1684 bool ret = false;
1685 drm_for_each_detailed_block((u8 *)edid, is_rb, &ret);
1686 return ret;
1687 }
1688
1689 return ((edid->input & DRM_EDID_INPUT_DIGITAL) != 0);
1690 }
1691
1692 static void
1693 find_gtf2(struct detailed_timing *t, void *data)
1694 {
1695 u8 *r = (u8 *)t;
1696 if (r[3] == EDID_DETAIL_MONITOR_RANGE && r[10] == 0x02)
1697 *(u8 **)data = r;
1698 }
1699
1700 /* Secondary GTF curve kicks in above some break frequency */
1701 static int
1702 drm_gtf2_hbreak(struct edid *edid)
1703 {
1704 u8 *r = NULL;
1705 drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
1706 return r ? (r[12] * 2) : 0;
1707 }
1708
1709 static int
1710 drm_gtf2_2c(struct edid *edid)
1711 {
1712 u8 *r = NULL;
1713 drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
1714 return r ? r[13] : 0;
1715 }
1716
1717 static int
1718 drm_gtf2_m(struct edid *edid)
1719 {
1720 u8 *r = NULL;
1721 drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
1722 return r ? (r[15] << 8) + r[14] : 0;
1723 }
1724
1725 static int
1726 drm_gtf2_k(struct edid *edid)
1727 {
1728 u8 *r = NULL;
1729 drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
1730 return r ? r[16] : 0;
1731 }
1732
1733 static int
1734 drm_gtf2_2j(struct edid *edid)
1735 {
1736 u8 *r = NULL;
1737 drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
1738 return r ? r[17] : 0;
1739 }
1740
1741 /**
1742 * standard_timing_level - get std. timing level(CVT/GTF/DMT)
1743 * @edid: EDID block to scan
1744 */
1745 static int standard_timing_level(struct edid *edid)
1746 {
1747 if (edid->revision >= 2) {
1748 if (edid->revision >= 4 && (edid->features & DRM_EDID_FEATURE_DEFAULT_GTF))
1749 return LEVEL_CVT;
1750 if (drm_gtf2_hbreak(edid))
1751 return LEVEL_GTF2;
1752 return LEVEL_GTF;
1753 }
1754 return LEVEL_DMT;
1755 }
1756
1757 /*
1758 * 0 is reserved. The spec says 0x01 fill for unused timings. Some old
1759 * monitors fill with ascii space (0x20) instead.
1760 */
1761 static int
1762 bad_std_timing(u8 a, u8 b)
1763 {
1764 return (a == 0x00 && b == 0x00) ||
1765 (a == 0x01 && b == 0x01) ||
1766 (a == 0x20 && b == 0x20);
1767 }
1768
1769 /**
1770 * drm_mode_std - convert standard mode info (width, height, refresh) into mode
1771 * @connector: connector of for the EDID block
1772 * @edid: EDID block to scan
1773 * @t: standard timing params
1774 *
1775 * Take the standard timing params (in this case width, aspect, and refresh)
1776 * and convert them into a real mode using CVT/GTF/DMT.
1777 */
1778 static struct drm_display_mode *
1779 drm_mode_std(struct drm_connector *connector, struct edid *edid,
1780 struct std_timing *t)
1781 {
1782 struct drm_device *dev = connector->dev;
1783 struct drm_display_mode *m, *mode = NULL;
1784 int hsize, vsize;
1785 int vrefresh_rate;
1786 unsigned aspect_ratio = (t->vfreq_aspect & EDID_TIMING_ASPECT_MASK)
1787 >> EDID_TIMING_ASPECT_SHIFT;
1788 unsigned vfreq = (t->vfreq_aspect & EDID_TIMING_VFREQ_MASK)
1789 >> EDID_TIMING_VFREQ_SHIFT;
1790 int timing_level = standard_timing_level(edid);
1791
1792 if (bad_std_timing(t->hsize, t->vfreq_aspect))
1793 return NULL;
1794
1795 /* According to the EDID spec, the hdisplay = hsize * 8 + 248 */
1796 hsize = t->hsize * 8 + 248;
1797 /* vrefresh_rate = vfreq + 60 */
1798 vrefresh_rate = vfreq + 60;
1799 /* the vdisplay is calculated based on the aspect ratio */
1800 if (aspect_ratio == 0) {
1801 if (edid->revision < 3)
1802 vsize = hsize;
1803 else
1804 vsize = (hsize * 10) / 16;
1805 } else if (aspect_ratio == 1)
1806 vsize = (hsize * 3) / 4;
1807 else if (aspect_ratio == 2)
1808 vsize = (hsize * 4) / 5;
1809 else
1810 vsize = (hsize * 9) / 16;
1811
1812 /* HDTV hack, part 1 */
1813 if (vrefresh_rate == 60 &&
1814 ((hsize == 1360 && vsize == 765) ||
1815 (hsize == 1368 && vsize == 769))) {
1816 hsize = 1366;
1817 vsize = 768;
1818 }
1819
1820 /*
1821 * If this connector already has a mode for this size and refresh
1822 * rate (because it came from detailed or CVT info), use that
1823 * instead. This way we don't have to guess at interlace or
1824 * reduced blanking.
1825 */
1826 list_for_each_entry(m, &connector->probed_modes, head)
1827 if (m->hdisplay == hsize && m->vdisplay == vsize &&
1828 drm_mode_vrefresh(m) == vrefresh_rate)
1829 return NULL;
1830
1831 /* HDTV hack, part 2 */
1832 if (hsize == 1366 && vsize == 768 && vrefresh_rate == 60) {
1833 mode = drm_cvt_mode(dev, 1366, 768, vrefresh_rate, 0, 0,
1834 false);
1835 mode->hdisplay = 1366;
1836 mode->hsync_start = mode->hsync_start - 1;
1837 mode->hsync_end = mode->hsync_end - 1;
1838 return mode;
1839 }
1840
1841 /* check whether it can be found in default mode table */
1842 if (drm_monitor_supports_rb(edid)) {
1843 mode = drm_mode_find_dmt(dev, hsize, vsize, vrefresh_rate,
1844 true);
1845 if (mode)
1846 return mode;
1847 }
1848 mode = drm_mode_find_dmt(dev, hsize, vsize, vrefresh_rate, false);
1849 if (mode)
1850 return mode;
1851
1852 /* okay, generate it */
1853 switch (timing_level) {
1854 case LEVEL_DMT:
1855 break;
1856 case LEVEL_GTF:
1857 mode = drm_gtf_mode(dev, hsize, vsize, vrefresh_rate, 0, 0);
1858 break;
1859 case LEVEL_GTF2:
1860 /*
1861 * This is potentially wrong if there's ever a monitor with
1862 * more than one ranges section, each claiming a different
1863 * secondary GTF curve. Please don't do that.
1864 */
1865 mode = drm_gtf_mode(dev, hsize, vsize, vrefresh_rate, 0, 0);
1866 if (!mode)
1867 return NULL;
1868 if (drm_mode_hsync(mode) > drm_gtf2_hbreak(edid)) {
1869 drm_mode_destroy(dev, mode);
1870 mode = drm_gtf_mode_complex(dev, hsize, vsize,
1871 vrefresh_rate, 0, 0,
1872 drm_gtf2_m(edid),
1873 drm_gtf2_2c(edid),
1874 drm_gtf2_k(edid),
1875 drm_gtf2_2j(edid));
1876 }
1877 break;
1878 case LEVEL_CVT:
1879 mode = drm_cvt_mode(dev, hsize, vsize, vrefresh_rate, 0, 0,
1880 false);
1881 break;
1882 }
1883 return mode;
1884 }
1885
1886 /*
1887 * EDID is delightfully ambiguous about how interlaced modes are to be
1888 * encoded. Our internal representation is of frame height, but some
1889 * HDTV detailed timings are encoded as field height.
1890 *
1891 * The format list here is from CEA, in frame size. Technically we
1892 * should be checking refresh rate too. Whatever.
1893 */
1894 static void
1895 drm_mode_do_interlace_quirk(struct drm_display_mode *mode,
1896 struct detailed_pixel_timing *pt)
1897 {
1898 int i;
1899 static const struct {
1900 int w, h;
1901 } cea_interlaced[] = {
1902 { 1920, 1080 },
1903 { 720, 480 },
1904 { 1440, 480 },
1905 { 2880, 480 },
1906 { 720, 576 },
1907 { 1440, 576 },
1908 { 2880, 576 },
1909 };
1910
1911 if (!(pt->misc & DRM_EDID_PT_INTERLACED))
1912 return;
1913
1914 for (i = 0; i < ARRAY_SIZE(cea_interlaced); i++) {
1915 if ((mode->hdisplay == cea_interlaced[i].w) &&
1916 (mode->vdisplay == cea_interlaced[i].h / 2)) {
1917 mode->vdisplay *= 2;
1918 mode->vsync_start *= 2;
1919 mode->vsync_end *= 2;
1920 mode->vtotal *= 2;
1921 mode->vtotal |= 1;
1922 }
1923 }
1924
1925 mode->flags |= DRM_MODE_FLAG_INTERLACE;
1926 }
1927
1928 /**
1929 * drm_mode_detailed - create a new mode from an EDID detailed timing section
1930 * @dev: DRM device (needed to create new mode)
1931 * @edid: EDID block
1932 * @timing: EDID detailed timing info
1933 * @quirks: quirks to apply
1934 *
1935 * An EDID detailed timing block contains enough info for us to create and
1936 * return a new struct drm_display_mode.
1937 */
1938 static struct drm_display_mode *drm_mode_detailed(struct drm_device *dev,
1939 struct edid *edid,
1940 struct detailed_timing *timing,
1941 u32 quirks)
1942 {
1943 struct drm_display_mode *mode;
1944 struct detailed_pixel_timing *pt = &timing->data.pixel_data;
1945 unsigned hactive = (pt->hactive_hblank_hi & 0xf0) << 4 | pt->hactive_lo;
1946 unsigned vactive = (pt->vactive_vblank_hi & 0xf0) << 4 | pt->vactive_lo;
1947 unsigned hblank = (pt->hactive_hblank_hi & 0xf) << 8 | pt->hblank_lo;
1948 unsigned vblank = (pt->vactive_vblank_hi & 0xf) << 8 | pt->vblank_lo;
1949 unsigned hsync_offset = (pt->hsync_vsync_offset_pulse_width_hi & 0xc0) << 2 | pt->hsync_offset_lo;
1950 unsigned hsync_pulse_width = (pt->hsync_vsync_offset_pulse_width_hi & 0x30) << 4 | pt->hsync_pulse_width_lo;
1951 unsigned vsync_offset = (pt->hsync_vsync_offset_pulse_width_hi & 0xc) << 2 | pt->vsync_offset_pulse_width_lo >> 4;
1952 unsigned vsync_pulse_width = (pt->hsync_vsync_offset_pulse_width_hi & 0x3) << 4 | (pt->vsync_offset_pulse_width_lo & 0xf);
1953
1954 /* ignore tiny modes */
1955 if (hactive < 64 || vactive < 64)
1956 return NULL;
1957
1958 if (pt->misc & DRM_EDID_PT_STEREO) {
1959 DRM_DEBUG_KMS("stereo mode not supported\n");
1960 return NULL;
1961 }
1962 if (!(pt->misc & DRM_EDID_PT_SEPARATE_SYNC)) {
1963 DRM_DEBUG_KMS("composite sync not supported\n");
1964 }
1965
1966 /* it is incorrect if hsync/vsync width is zero */
1967 if (!hsync_pulse_width || !vsync_pulse_width) {
1968 DRM_DEBUG_KMS("Incorrect Detailed timing. "
1969 "Wrong Hsync/Vsync pulse width\n");
1970 return NULL;
1971 }
1972
1973 if (quirks & EDID_QUIRK_FORCE_REDUCED_BLANKING) {
1974 mode = drm_cvt_mode(dev, hactive, vactive, 60, true, false, false);
1975 if (!mode)
1976 return NULL;
1977
1978 goto set_size;
1979 }
1980
1981 mode = drm_mode_create(dev);
1982 if (!mode)
1983 return NULL;
1984
1985 if (quirks & EDID_QUIRK_135_CLOCK_TOO_HIGH)
1986 timing->pixel_clock = cpu_to_le16(1088);
1987
1988 mode->clock = le16_to_cpu(timing->pixel_clock) * 10;
1989
1990 mode->hdisplay = hactive;
1991 mode->hsync_start = mode->hdisplay + hsync_offset;
1992 mode->hsync_end = mode->hsync_start + hsync_pulse_width;
1993 mode->htotal = mode->hdisplay + hblank;
1994
1995 mode->vdisplay = vactive;
1996 mode->vsync_start = mode->vdisplay + vsync_offset;
1997 mode->vsync_end = mode->vsync_start + vsync_pulse_width;
1998 mode->vtotal = mode->vdisplay + vblank;
1999
2000 /* Some EDIDs have bogus h/vtotal values */
2001 if (mode->hsync_end > mode->htotal)
2002 mode->htotal = mode->hsync_end + 1;
2003 if (mode->vsync_end > mode->vtotal)
2004 mode->vtotal = mode->vsync_end + 1;
2005
2006 drm_mode_do_interlace_quirk(mode, pt);
2007
2008 if (quirks & EDID_QUIRK_DETAILED_SYNC_PP) {
2009 pt->misc |= DRM_EDID_PT_HSYNC_POSITIVE | DRM_EDID_PT_VSYNC_POSITIVE;
2010 }
2011
2012 mode->flags |= (pt->misc & DRM_EDID_PT_HSYNC_POSITIVE) ?
2013 DRM_MODE_FLAG_PHSYNC : DRM_MODE_FLAG_NHSYNC;
2014 mode->flags |= (pt->misc & DRM_EDID_PT_VSYNC_POSITIVE) ?
2015 DRM_MODE_FLAG_PVSYNC : DRM_MODE_FLAG_NVSYNC;
2016
2017 set_size:
2018 mode->width_mm = pt->width_mm_lo | (pt->width_height_mm_hi & 0xf0) << 4;
2019 mode->height_mm = pt->height_mm_lo | (pt->width_height_mm_hi & 0xf) << 8;
2020
2021 if (quirks & EDID_QUIRK_DETAILED_IN_CM) {
2022 mode->width_mm *= 10;
2023 mode->height_mm *= 10;
2024 }
2025
2026 if (quirks & EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE) {
2027 mode->width_mm = edid->width_cm * 10;
2028 mode->height_mm = edid->height_cm * 10;
2029 }
2030
2031 mode->type = DRM_MODE_TYPE_DRIVER;
2032 mode->vrefresh = drm_mode_vrefresh(mode);
2033 drm_mode_set_name(mode);
2034
2035 return mode;
2036 }
2037
2038 static bool
2039 mode_in_hsync_range(const struct drm_display_mode *mode,
2040 struct edid *edid, u8 *t)
2041 {
2042 int hsync, hmin, hmax;
2043
2044 hmin = t[7];
2045 if (edid->revision >= 4)
2046 hmin += ((t[4] & 0x04) ? 255 : 0);
2047 hmax = t[8];
2048 if (edid->revision >= 4)
2049 hmax += ((t[4] & 0x08) ? 255 : 0);
2050 hsync = drm_mode_hsync(mode);
2051
2052 return (hsync <= hmax && hsync >= hmin);
2053 }
2054
2055 static bool
2056 mode_in_vsync_range(const struct drm_display_mode *mode,
2057 struct edid *edid, u8 *t)
2058 {
2059 int vsync, vmin, vmax;
2060
2061 vmin = t[5];
2062 if (edid->revision >= 4)
2063 vmin += ((t[4] & 0x01) ? 255 : 0);
2064 vmax = t[6];
2065 if (edid->revision >= 4)
2066 vmax += ((t[4] & 0x02) ? 255 : 0);
2067 vsync = drm_mode_vrefresh(mode);
2068
2069 return (vsync <= vmax && vsync >= vmin);
2070 }
2071
2072 static u32
2073 range_pixel_clock(struct edid *edid, u8 *t)
2074 {
2075 /* unspecified */
2076 if (t[9] == 0 || t[9] == 255)
2077 return 0;
2078
2079 /* 1.4 with CVT support gives us real precision, yay */
2080 if (edid->revision >= 4 && t[10] == 0x04)
2081 return (t[9] * 10000) - ((t[12] >> 2) * 250);
2082
2083 /* 1.3 is pathetic, so fuzz up a bit */
2084 return t[9] * 10000 + 5001;
2085 }
2086
2087 static bool
2088 mode_in_range(const struct drm_display_mode *mode, struct edid *edid,
2089 struct detailed_timing *timing)
2090 {
2091 u32 max_clock;
2092 u8 *t = (u8 *)timing;
2093
2094 if (!mode_in_hsync_range(mode, edid, t))
2095 return false;
2096
2097 if (!mode_in_vsync_range(mode, edid, t))
2098 return false;
2099
2100 if ((max_clock = range_pixel_clock(edid, t)))
2101 if (mode->clock > max_clock)
2102 return false;
2103
2104 /* 1.4 max horizontal check */
2105 if (edid->revision >= 4 && t[10] == 0x04)
2106 if (t[13] && mode->hdisplay > 8 * (t[13] + (256 * (t[12]&0x3))))
2107 return false;
2108
2109 if (mode_is_rb(mode) && !drm_monitor_supports_rb(edid))
2110 return false;
2111
2112 return true;
2113 }
2114
2115 static bool valid_inferred_mode(const struct drm_connector *connector,
2116 const struct drm_display_mode *mode)
2117 {
2118 const struct drm_display_mode *m;
2119 bool ok = false;
2120
2121 list_for_each_entry(m, &connector->probed_modes, head) {
2122 if (mode->hdisplay == m->hdisplay &&
2123 mode->vdisplay == m->vdisplay &&
2124 drm_mode_vrefresh(mode) == drm_mode_vrefresh(m))
2125 return false; /* duplicated */
2126 if (mode->hdisplay <= m->hdisplay &&
2127 mode->vdisplay <= m->vdisplay)
2128 ok = true;
2129 }
2130 return ok;
2131 }
2132
2133 static int
2134 drm_dmt_modes_for_range(struct drm_connector *connector, struct edid *edid,
2135 struct detailed_timing *timing)
2136 {
2137 int i, modes = 0;
2138 struct drm_display_mode *newmode;
2139 struct drm_device *dev = connector->dev;
2140
2141 for (i = 0; i < ARRAY_SIZE(drm_dmt_modes); i++) {
2142 if (mode_in_range(drm_dmt_modes + i, edid, timing) &&
2143 valid_inferred_mode(connector, drm_dmt_modes + i)) {
2144 newmode = drm_mode_duplicate(dev, &drm_dmt_modes[i]);
2145 if (newmode) {
2146 drm_mode_probed_add(connector, newmode);
2147 modes++;
2148 }
2149 }
2150 }
2151
2152 return modes;
2153 }
2154
2155 /* fix up 1366x768 mode from 1368x768;
2156 * GFT/CVT can't express 1366 width which isn't dividable by 8
2157 */
2158 static void fixup_mode_1366x768(struct drm_display_mode *mode)
2159 {
2160 if (mode->hdisplay == 1368 && mode->vdisplay == 768) {
2161 mode->hdisplay = 1366;
2162 mode->hsync_start--;
2163 mode->hsync_end--;
2164 drm_mode_set_name(mode);
2165 }
2166 }
2167
2168 static int
2169 drm_gtf_modes_for_range(struct drm_connector *connector, struct edid *edid,
2170 struct detailed_timing *timing)
2171 {
2172 int i, modes = 0;
2173 struct drm_display_mode *newmode;
2174 struct drm_device *dev = connector->dev;
2175
2176 for (i = 0; i < ARRAY_SIZE(extra_modes); i++) {
2177 const struct minimode *m = &extra_modes[i];
2178 newmode = drm_gtf_mode(dev, m->w, m->h, m->r, 0, 0);
2179 if (!newmode)
2180 return modes;
2181
2182 fixup_mode_1366x768(newmode);
2183 if (!mode_in_range(newmode, edid, timing) ||
2184 !valid_inferred_mode(connector, newmode)) {
2185 drm_mode_destroy(dev, newmode);
2186 continue;
2187 }
2188
2189 drm_mode_probed_add(connector, newmode);
2190 modes++;
2191 }
2192
2193 return modes;
2194 }
2195
2196 static int
2197 drm_cvt_modes_for_range(struct drm_connector *connector, struct edid *edid,
2198 struct detailed_timing *timing)
2199 {
2200 int i, modes = 0;
2201 struct drm_display_mode *newmode;
2202 struct drm_device *dev = connector->dev;
2203 bool rb = drm_monitor_supports_rb(edid);
2204
2205 for (i = 0; i < ARRAY_SIZE(extra_modes); i++) {
2206 const struct minimode *m = &extra_modes[i];
2207 newmode = drm_cvt_mode(dev, m->w, m->h, m->r, rb, 0, 0);
2208 if (!newmode)
2209 return modes;
2210
2211 fixup_mode_1366x768(newmode);
2212 if (!mode_in_range(newmode, edid, timing) ||
2213 !valid_inferred_mode(connector, newmode)) {
2214 drm_mode_destroy(dev, newmode);
2215 continue;
2216 }
2217
2218 drm_mode_probed_add(connector, newmode);
2219 modes++;
2220 }
2221
2222 return modes;
2223 }
2224
2225 static void
2226 do_inferred_modes(struct detailed_timing *timing, void *c)
2227 {
2228 struct detailed_mode_closure *closure = c;
2229 struct detailed_non_pixel *data = &timing->data.other_data;
2230 struct detailed_data_monitor_range *range = &data->data.range;
2231
2232 if (data->type != EDID_DETAIL_MONITOR_RANGE)
2233 return;
2234
2235 closure->modes += drm_dmt_modes_for_range(closure->connector,
2236 closure->edid,
2237 timing);
2238
2239 if (!version_greater(closure->edid, 1, 1))
2240 return; /* GTF not defined yet */
2241
2242 switch (range->flags) {
2243 case 0x02: /* secondary gtf, XXX could do more */
2244 case 0x00: /* default gtf */
2245 closure->modes += drm_gtf_modes_for_range(closure->connector,
2246 closure->edid,
2247 timing);
2248 break;
2249 case 0x04: /* cvt, only in 1.4+ */
2250 if (!version_greater(closure->edid, 1, 3))
2251 break;
2252
2253 closure->modes += drm_cvt_modes_for_range(closure->connector,
2254 closure->edid,
2255 timing);
2256 break;
2257 case 0x01: /* just the ranges, no formula */
2258 default:
2259 break;
2260 }
2261 }
2262
2263 static int
2264 add_inferred_modes(struct drm_connector *connector, struct edid *edid)
2265 {
2266 struct detailed_mode_closure closure = {
2267 .connector = connector,
2268 .edid = edid,
2269 };
2270
2271 if (version_greater(edid, 1, 0))
2272 drm_for_each_detailed_block((u8 *)edid, do_inferred_modes,
2273 &closure);
2274
2275 return closure.modes;
2276 }
2277
2278 static int
2279 drm_est3_modes(struct drm_connector *connector, struct detailed_timing *timing)
2280 {
2281 int i, j, m, modes = 0;
2282 struct drm_display_mode *mode;
2283 u8 *est = ((u8 *)timing) + 6;
2284
2285 for (i = 0; i < 6; i++) {
2286 for (j = 7; j >= 0; j--) {
2287 m = (i * 8) + (7 - j);
2288 if (m >= ARRAY_SIZE(est3_modes))
2289 break;
2290 if (est[i] & (1 << j)) {
2291 mode = drm_mode_find_dmt(connector->dev,
2292 est3_modes[m].w,
2293 est3_modes[m].h,
2294 est3_modes[m].r,
2295 est3_modes[m].rb);
2296 if (mode) {
2297 drm_mode_probed_add(connector, mode);
2298 modes++;
2299 }
2300 }
2301 }
2302 }
2303
2304 return modes;
2305 }
2306
2307 static void
2308 do_established_modes(struct detailed_timing *timing, void *c)
2309 {
2310 struct detailed_mode_closure *closure = c;
2311 struct detailed_non_pixel *data = &timing->data.other_data;
2312
2313 if (data->type == EDID_DETAIL_EST_TIMINGS)
2314 closure->modes += drm_est3_modes(closure->connector, timing);
2315 }
2316
2317 /**
2318 * add_established_modes - get est. modes from EDID and add them
2319 * @connector: connector to add mode(s) to
2320 * @edid: EDID block to scan
2321 *
2322 * Each EDID block contains a bitmap of the supported "established modes" list
2323 * (defined above). Tease them out and add them to the global modes list.
2324 */
2325 static int
2326 add_established_modes(struct drm_connector *connector, struct edid *edid)
2327 {
2328 struct drm_device *dev = connector->dev;
2329 unsigned long est_bits = edid->established_timings.t1 |
2330 (edid->established_timings.t2 << 8) |
2331 ((edid->established_timings.mfg_rsvd & 0x80) << 9);
2332 int i, modes = 0;
2333 struct detailed_mode_closure closure = {
2334 .connector = connector,
2335 .edid = edid,
2336 };
2337
2338 for (i = 0; i <= EDID_EST_TIMINGS; i++) {
2339 if (est_bits & (1<<i)) {
2340 struct drm_display_mode *newmode;
2341 newmode = drm_mode_duplicate(dev, &edid_est_modes[i]);
2342 if (newmode) {
2343 drm_mode_probed_add(connector, newmode);
2344 modes++;
2345 }
2346 }
2347 }
2348
2349 if (version_greater(edid, 1, 0))
2350 drm_for_each_detailed_block((u8 *)edid,
2351 do_established_modes, &closure);
2352
2353 return modes + closure.modes;
2354 }
2355
2356 static void
2357 do_standard_modes(struct detailed_timing *timing, void *c)
2358 {
2359 struct detailed_mode_closure *closure = c;
2360 struct detailed_non_pixel *data = &timing->data.other_data;
2361 struct drm_connector *connector = closure->connector;
2362 struct edid *edid = closure->edid;
2363
2364 if (data->type == EDID_DETAIL_STD_MODES) {
2365 int i;
2366 for (i = 0; i < 6; i++) {
2367 struct std_timing *std;
2368 struct drm_display_mode *newmode;
2369
2370 std = &data->data.timings[i];
2371 newmode = drm_mode_std(connector, edid, std);
2372 if (newmode) {
2373 drm_mode_probed_add(connector, newmode);
2374 closure->modes++;
2375 }
2376 }
2377 }
2378 }
2379
2380 /**
2381 * add_standard_modes - get std. modes from EDID and add them
2382 * @connector: connector to add mode(s) to
2383 * @edid: EDID block to scan
2384 *
2385 * Standard modes can be calculated using the appropriate standard (DMT,
2386 * GTF or CVT. Grab them from @edid and add them to the list.
2387 */
2388 static int
2389 add_standard_modes(struct drm_connector *connector, struct edid *edid)
2390 {
2391 int i, modes = 0;
2392 struct detailed_mode_closure closure = {
2393 .connector = connector,
2394 .edid = edid,
2395 };
2396
2397 for (i = 0; i < EDID_STD_TIMINGS; i++) {
2398 struct drm_display_mode *newmode;
2399
2400 newmode = drm_mode_std(connector, edid,
2401 &edid->standard_timings[i]);
2402 if (newmode) {
2403 drm_mode_probed_add(connector, newmode);
2404 modes++;
2405 }
2406 }
2407
2408 if (version_greater(edid, 1, 0))
2409 drm_for_each_detailed_block((u8 *)edid, do_standard_modes,
2410 &closure);
2411
2412 /* XXX should also look for standard codes in VTB blocks */
2413
2414 return modes + closure.modes;
2415 }
2416
2417 static int drm_cvt_modes(struct drm_connector *connector,
2418 struct detailed_timing *timing)
2419 {
2420 int i, j, modes = 0;
2421 struct drm_display_mode *newmode;
2422 struct drm_device *dev = connector->dev;
2423 struct cvt_timing *cvt;
2424 const int rates[] = { 60, 85, 75, 60, 50 };
2425 const u8 empty[3] = { 0, 0, 0 };
2426
2427 for (i = 0; i < 4; i++) {
2428 int uninitialized_var(width), height;
2429 cvt = &(timing->data.other_data.data.cvt[i]);
2430
2431 if (!memcmp(cvt->code, empty, 3))
2432 continue;
2433
2434 height = (cvt->code[0] + ((cvt->code[1] & 0xf0) << 4) + 1) * 2;
2435 switch (cvt->code[1] & 0x0c) {
2436 case 0x00:
2437 width = height * 4 / 3;
2438 break;
2439 case 0x04:
2440 width = height * 16 / 9;
2441 break;
2442 case 0x08:
2443 width = height * 16 / 10;
2444 break;
2445 case 0x0c:
2446 width = height * 15 / 9;
2447 break;
2448 }
2449
2450 for (j = 1; j < 5; j++) {
2451 if (cvt->code[2] & (1 << j)) {
2452 newmode = drm_cvt_mode(dev, width, height,
2453 rates[j], j == 0,
2454 false, false);
2455 if (newmode) {
2456 drm_mode_probed_add(connector, newmode);
2457 modes++;
2458 }
2459 }
2460 }
2461 }
2462
2463 return modes;
2464 }
2465
2466 static void
2467 do_cvt_mode(struct detailed_timing *timing, void *c)
2468 {
2469 struct detailed_mode_closure *closure = c;
2470 struct detailed_non_pixel *data = &timing->data.other_data;
2471
2472 if (data->type == EDID_DETAIL_CVT_3BYTE)
2473 closure->modes += drm_cvt_modes(closure->connector, timing);
2474 }
2475
2476 static int
2477 add_cvt_modes(struct drm_connector *connector, struct edid *edid)
2478 {
2479 struct detailed_mode_closure closure = {
2480 .connector = connector,
2481 .edid = edid,
2482 };
2483
2484 if (version_greater(edid, 1, 2))
2485 drm_for_each_detailed_block((u8 *)edid, do_cvt_mode, &closure);
2486
2487 /* XXX should also look for CVT codes in VTB blocks */
2488
2489 return closure.modes;
2490 }
2491
2492 static void fixup_detailed_cea_mode_clock(struct drm_display_mode *mode);
2493
2494 static void
2495 do_detailed_mode(struct detailed_timing *timing, void *c)
2496 {
2497 struct detailed_mode_closure *closure = c;
2498 struct drm_display_mode *newmode;
2499
2500 if (timing->pixel_clock) {
2501 newmode = drm_mode_detailed(closure->connector->dev,
2502 closure->edid, timing,
2503 closure->quirks);
2504 if (!newmode)
2505 return;
2506
2507 if (closure->preferred)
2508 newmode->type |= DRM_MODE_TYPE_PREFERRED;
2509
2510 /*
2511 * Detailed modes are limited to 10kHz pixel clock resolution,
2512 * so fix up anything that looks like CEA/HDMI mode, but the clock
2513 * is just slightly off.
2514 */
2515 fixup_detailed_cea_mode_clock(newmode);
2516
2517 drm_mode_probed_add(closure->connector, newmode);
2518 closure->modes++;
2519 closure->preferred = 0;
2520 }
2521 }
2522
2523 /*
2524 * add_detailed_modes - Add modes from detailed timings
2525 * @connector: attached connector
2526 * @edid: EDID block to scan
2527 * @quirks: quirks to apply
2528 */
2529 static int
2530 add_detailed_modes(struct drm_connector *connector, struct edid *edid,
2531 u32 quirks)
2532 {
2533 struct detailed_mode_closure closure = {
2534 .connector = connector,
2535 .edid = edid,
2536 .preferred = 1,
2537 .quirks = quirks,
2538 };
2539
2540 if (closure.preferred && !version_greater(edid, 1, 3))
2541 closure.preferred =
2542 (edid->features & DRM_EDID_FEATURE_PREFERRED_TIMING);
2543
2544 drm_for_each_detailed_block((u8 *)edid, do_detailed_mode, &closure);
2545
2546 return closure.modes;
2547 }
2548
2549 #define AUDIO_BLOCK 0x01
2550 #define VIDEO_BLOCK 0x02
2551 #define VENDOR_BLOCK 0x03
2552 #define SPEAKER_BLOCK 0x04
2553 #define VIDEO_CAPABILITY_BLOCK 0x07
2554 #define EDID_BASIC_AUDIO (1 << 6)
2555 #define EDID_CEA_YCRCB444 (1 << 5)
2556 #define EDID_CEA_YCRCB422 (1 << 4)
2557 #define EDID_CEA_VCDB_QS (1 << 6)
2558
2559 /*
2560 * Search EDID for CEA extension block.
2561 */
2562 static u8 *drm_find_edid_extension(struct edid *edid, int ext_id)
2563 {
2564 u8 *edid_ext = NULL;
2565 int i;
2566
2567 /* No EDID or EDID extensions */
2568 if (edid == NULL || edid->extensions == 0)
2569 return NULL;
2570
2571 /* Find CEA extension */
2572 for (i = 0; i < edid->extensions; i++) {
2573 edid_ext = (u8 *)edid + EDID_LENGTH * (i + 1);
2574 if (edid_ext[0] == ext_id)
2575 break;
2576 }
2577
2578 if (i == edid->extensions)
2579 return NULL;
2580
2581 return edid_ext;
2582 }
2583
2584 static u8 *drm_find_cea_extension(struct edid *edid)
2585 {
2586 return drm_find_edid_extension(edid, CEA_EXT);
2587 }
2588
2589 static u8 *drm_find_displayid_extension(struct edid *edid)
2590 {
2591 return drm_find_edid_extension(edid, DISPLAYID_EXT);
2592 }
2593
2594 /*
2595 * Calculate the alternate clock for the CEA mode
2596 * (60Hz vs. 59.94Hz etc.)
2597 */
2598 static unsigned int
2599 cea_mode_alternate_clock(const struct drm_display_mode *cea_mode)
2600 {
2601 unsigned int clock = cea_mode->clock;
2602
2603 if (cea_mode->vrefresh % 6 != 0)
2604 return clock;
2605
2606 /*
2607 * edid_cea_modes contains the 59.94Hz
2608 * variant for 240 and 480 line modes,
2609 * and the 60Hz variant otherwise.
2610 */
2611 if (cea_mode->vdisplay == 240 || cea_mode->vdisplay == 480)
2612 clock = DIV_ROUND_CLOSEST(clock * 1001, 1000);
2613 else
2614 clock = DIV_ROUND_CLOSEST(clock * 1000, 1001);
2615
2616 return clock;
2617 }
2618
2619 static bool
2620 cea_mode_alternate_timings(u8 vic, struct drm_display_mode *mode)
2621 {
2622 /*
2623 * For certain VICs the spec allows the vertical
2624 * front porch to vary by one or two lines.
2625 *
2626 * cea_modes[] stores the variant with the shortest
2627 * vertical front porch. We can adjust the mode to
2628 * get the other variants by simply increasing the
2629 * vertical front porch length.
2630 */
2631 BUILD_BUG_ON(edid_cea_modes[8].vtotal != 262 ||
2632 edid_cea_modes[9].vtotal != 262 ||
2633 edid_cea_modes[12].vtotal != 262 ||
2634 edid_cea_modes[13].vtotal != 262 ||
2635 edid_cea_modes[23].vtotal != 312 ||
2636 edid_cea_modes[24].vtotal != 312 ||
2637 edid_cea_modes[27].vtotal != 312 ||
2638 edid_cea_modes[28].vtotal != 312);
2639
2640 if (((vic == 8 || vic == 9 ||
2641 vic == 12 || vic == 13) && mode->vtotal < 263) ||
2642 ((vic == 23 || vic == 24 ||
2643 vic == 27 || vic == 28) && mode->vtotal < 314)) {
2644 mode->vsync_start++;
2645 mode->vsync_end++;
2646 mode->vtotal++;
2647
2648 return true;
2649 }
2650
2651 return false;
2652 }
2653
2654 static u8 drm_match_cea_mode_clock_tolerance(const struct drm_display_mode *to_match,
2655 unsigned int clock_tolerance)
2656 {
2657 u8 vic;
2658
2659 if (!to_match->clock)
2660 return 0;
2661
2662 for (vic = 1; vic < ARRAY_SIZE(edid_cea_modes); vic++) {
2663 struct drm_display_mode cea_mode = edid_cea_modes[vic];
2664 unsigned int clock1, clock2;
2665
2666 /* Check both 60Hz and 59.94Hz */
2667 clock1 = cea_mode.clock;
2668 clock2 = cea_mode_alternate_clock(&cea_mode);
2669
2670 if (abs(to_match->clock - clock1) > clock_tolerance &&
2671 abs(to_match->clock - clock2) > clock_tolerance)
2672 continue;
2673
2674 do {
2675 if (drm_mode_equal_no_clocks_no_stereo(to_match, &cea_mode))
2676 return vic;
2677 } while (cea_mode_alternate_timings(vic, &cea_mode));
2678 }
2679
2680 return 0;
2681 }
2682
2683 /**
2684 * drm_match_cea_mode - look for a CEA mode matching given mode
2685 * @to_match: display mode
2686 *
2687 * Return: The CEA Video ID (VIC) of the mode or 0 if it isn't a CEA-861
2688 * mode.
2689 */
2690 u8 drm_match_cea_mode(const struct drm_display_mode *to_match)
2691 {
2692 u8 vic;
2693
2694 if (!to_match->clock)
2695 return 0;
2696
2697 for (vic = 1; vic < ARRAY_SIZE(edid_cea_modes); vic++) {
2698 struct drm_display_mode cea_mode = edid_cea_modes[vic];
2699 unsigned int clock1, clock2;
2700
2701 /* Check both 60Hz and 59.94Hz */
2702 clock1 = cea_mode.clock;
2703 clock2 = cea_mode_alternate_clock(&cea_mode);
2704
2705 if (KHZ2PICOS(to_match->clock) != KHZ2PICOS(clock1) &&
2706 KHZ2PICOS(to_match->clock) != KHZ2PICOS(clock2))
2707 continue;
2708
2709 do {
2710 if (drm_mode_equal_no_clocks_no_stereo(to_match, &cea_mode))
2711 return vic;
2712 } while (cea_mode_alternate_timings(vic, &cea_mode));
2713 }
2714
2715 return 0;
2716 }
2717 EXPORT_SYMBOL(drm_match_cea_mode);
2718
2719 static bool drm_valid_cea_vic(u8 vic)
2720 {
2721 return vic > 0 && vic < ARRAY_SIZE(edid_cea_modes);
2722 }
2723
2724 /**
2725 * drm_get_cea_aspect_ratio - get the picture aspect ratio corresponding to
2726 * the input VIC from the CEA mode list
2727 * @video_code: ID given to each of the CEA modes
2728 *
2729 * Returns picture aspect ratio
2730 */
2731 enum hdmi_picture_aspect drm_get_cea_aspect_ratio(const u8 video_code)
2732 {
2733 return edid_cea_modes[video_code].picture_aspect_ratio;
2734 }
2735 EXPORT_SYMBOL(drm_get_cea_aspect_ratio);
2736
2737 /*
2738 * Calculate the alternate clock for HDMI modes (those from the HDMI vendor
2739 * specific block).
2740 *
2741 * It's almost like cea_mode_alternate_clock(), we just need to add an
2742 * exception for the VIC 4 mode (4096x2160@24Hz): no alternate clock for this
2743 * one.
2744 */
2745 static unsigned int
2746 hdmi_mode_alternate_clock(const struct drm_display_mode *hdmi_mode)
2747 {
2748 if (hdmi_mode->vdisplay == 4096 && hdmi_mode->hdisplay == 2160)
2749 return hdmi_mode->clock;
2750
2751 return cea_mode_alternate_clock(hdmi_mode);
2752 }
2753
2754 static u8 drm_match_hdmi_mode_clock_tolerance(const struct drm_display_mode *to_match,
2755 unsigned int clock_tolerance)
2756 {
2757 u8 vic;
2758
2759 if (!to_match->clock)
2760 return 0;
2761
2762 for (vic = 1; vic < ARRAY_SIZE(edid_4k_modes); vic++) {
2763 const struct drm_display_mode *hdmi_mode = &edid_4k_modes[vic];
2764 unsigned int clock1, clock2;
2765
2766 /* Make sure to also match alternate clocks */
2767 clock1 = hdmi_mode->clock;
2768 clock2 = hdmi_mode_alternate_clock(hdmi_mode);
2769
2770 if (abs(to_match->clock - clock1) > clock_tolerance &&
2771 abs(to_match->clock - clock2) > clock_tolerance)
2772 continue;
2773
2774 if (drm_mode_equal_no_clocks(to_match, hdmi_mode))
2775 return vic;
2776 }
2777
2778 return 0;
2779 }
2780
2781 /*
2782 * drm_match_hdmi_mode - look for a HDMI mode matching given mode
2783 * @to_match: display mode
2784 *
2785 * An HDMI mode is one defined in the HDMI vendor specific block.
2786 *
2787 * Returns the HDMI Video ID (VIC) of the mode or 0 if it isn't one.
2788 */
2789 static u8 drm_match_hdmi_mode(const struct drm_display_mode *to_match)
2790 {
2791 u8 vic;
2792
2793 if (!to_match->clock)
2794 return 0;
2795
2796 for (vic = 1; vic < ARRAY_SIZE(edid_4k_modes); vic++) {
2797 const struct drm_display_mode *hdmi_mode = &edid_4k_modes[vic];
2798 unsigned int clock1, clock2;
2799
2800 /* Make sure to also match alternate clocks */
2801 clock1 = hdmi_mode->clock;
2802 clock2 = hdmi_mode_alternate_clock(hdmi_mode);
2803
2804 if ((KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock1) ||
2805 KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock2)) &&
2806 drm_mode_equal_no_clocks_no_stereo(to_match, hdmi_mode))
2807 return vic;
2808 }
2809 return 0;
2810 }
2811
2812 static bool drm_valid_hdmi_vic(u8 vic)
2813 {
2814 return vic > 0 && vic < ARRAY_SIZE(edid_4k_modes);
2815 }
2816
2817 static int
2818 add_alternate_cea_modes(struct drm_connector *connector, struct edid *edid)
2819 {
2820 struct drm_device *dev = connector->dev;
2821 struct drm_display_mode *mode, *tmp;
2822 LIST_HEAD(list);
2823 int modes = 0;
2824
2825 /* Don't add CEA modes if the CEA extension block is missing */
2826 if (!drm_find_cea_extension(edid))
2827 return 0;
2828
2829 /*
2830 * Go through all probed modes and create a new mode
2831 * with the alternate clock for certain CEA modes.
2832 */
2833 list_for_each_entry(mode, &connector->probed_modes, head) {
2834 const struct drm_display_mode *cea_mode = NULL;
2835 struct drm_display_mode *newmode;
2836 u8 vic = drm_match_cea_mode(mode);
2837 unsigned int clock1, clock2;
2838
2839 if (drm_valid_cea_vic(vic)) {
2840 cea_mode = &edid_cea_modes[vic];
2841 clock2 = cea_mode_alternate_clock(cea_mode);
2842 } else {
2843 vic = drm_match_hdmi_mode(mode);
2844 if (drm_valid_hdmi_vic(vic)) {
2845 cea_mode = &edid_4k_modes[vic];
2846 clock2 = hdmi_mode_alternate_clock(cea_mode);
2847 }
2848 }
2849
2850 if (!cea_mode)
2851 continue;
2852
2853 clock1 = cea_mode->clock;
2854
2855 if (clock1 == clock2)
2856 continue;
2857
2858 if (mode->clock != clock1 && mode->clock != clock2)
2859 continue;
2860
2861 newmode = drm_mode_duplicate(dev, cea_mode);
2862 if (!newmode)
2863 continue;
2864
2865 /* Carry over the stereo flags */
2866 newmode->flags |= mode->flags & DRM_MODE_FLAG_3D_MASK;
2867
2868 /*
2869 * The current mode could be either variant. Make
2870 * sure to pick the "other" clock for the new mode.
2871 */
2872 if (mode->clock != clock1)
2873 newmode->clock = clock1;
2874 else
2875 newmode->clock = clock2;
2876
2877 list_add_tail(&newmode->head, &list);
2878 }
2879
2880 list_for_each_entry_safe(mode, tmp, &list, head) {
2881 list_del(&mode->head);
2882 drm_mode_probed_add(connector, mode);
2883 modes++;
2884 }
2885
2886 return modes;
2887 }
2888
2889 static struct drm_display_mode *
2890 drm_display_mode_from_vic_index(struct drm_connector *connector,
2891 const u8 *video_db, u8 video_len,
2892 u8 video_index)
2893 {
2894 struct drm_device *dev = connector->dev;
2895 struct drm_display_mode *newmode;
2896 u8 vic;
2897
2898 if (video_db == NULL || video_index >= video_len)
2899 return NULL;
2900
2901 /* CEA modes are numbered 1..127 */
2902 vic = (video_db[video_index] & 127);
2903 if (!drm_valid_cea_vic(vic))
2904 return NULL;
2905
2906 newmode = drm_mode_duplicate(dev, &edid_cea_modes[vic]);
2907 if (!newmode)
2908 return NULL;
2909
2910 newmode->vrefresh = 0;
2911
2912 return newmode;
2913 }
2914
2915 static int
2916 do_cea_modes(struct drm_connector *connector, const u8 *db, u8 len)
2917 {
2918 int i, modes = 0;
2919
2920 for (i = 0; i < len; i++) {
2921 struct drm_display_mode *mode;
2922 mode = drm_display_mode_from_vic_index(connector, db, len, i);
2923 if (mode) {
2924 drm_mode_probed_add(connector, mode);
2925 modes++;
2926 }
2927 }
2928
2929 return modes;
2930 }
2931
2932 struct stereo_mandatory_mode {
2933 int width, height, vrefresh;
2934 unsigned int flags;
2935 };
2936
2937 static const struct stereo_mandatory_mode stereo_mandatory_modes[] = {
2938 { 1920, 1080, 24, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
2939 { 1920, 1080, 24, DRM_MODE_FLAG_3D_FRAME_PACKING },
2940 { 1920, 1080, 50,
2941 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF },
2942 { 1920, 1080, 60,
2943 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF },
2944 { 1280, 720, 50, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
2945 { 1280, 720, 50, DRM_MODE_FLAG_3D_FRAME_PACKING },
2946 { 1280, 720, 60, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
2947 { 1280, 720, 60, DRM_MODE_FLAG_3D_FRAME_PACKING }
2948 };
2949
2950 static bool
2951 stereo_match_mandatory(const struct drm_display_mode *mode,
2952 const struct stereo_mandatory_mode *stereo_mode)
2953 {
2954 unsigned int interlaced = mode->flags & DRM_MODE_FLAG_INTERLACE;
2955
2956 return mode->hdisplay == stereo_mode->width &&
2957 mode->vdisplay == stereo_mode->height &&
2958 interlaced == (stereo_mode->flags & DRM_MODE_FLAG_INTERLACE) &&
2959 drm_mode_vrefresh(mode) == stereo_mode->vrefresh;
2960 }
2961
2962 static int add_hdmi_mandatory_stereo_modes(struct drm_connector *connector)
2963 {
2964 struct drm_device *dev = connector->dev;
2965 const struct drm_display_mode *mode;
2966 struct list_head stereo_modes;
2967 int modes = 0, i;
2968
2969 INIT_LIST_HEAD(&stereo_modes);
2970
2971 list_for_each_entry(mode, &connector->probed_modes, head) {
2972 for (i = 0; i < ARRAY_SIZE(stereo_mandatory_modes); i++) {
2973 const struct stereo_mandatory_mode *mandatory;
2974 struct drm_display_mode *new_mode;
2975
2976 if (!stereo_match_mandatory(mode,
2977 &stereo_mandatory_modes[i]))
2978 continue;
2979
2980 mandatory = &stereo_mandatory_modes[i];
2981 new_mode = drm_mode_duplicate(dev, mode);
2982 if (!new_mode)
2983 continue;
2984
2985 new_mode->flags |= mandatory->flags;
2986 list_add_tail(&new_mode->head, &stereo_modes);
2987 modes++;
2988 }
2989 }
2990
2991 list_splice_tail(&stereo_modes, &connector->probed_modes);
2992
2993 return modes;
2994 }
2995
2996 static int add_hdmi_mode(struct drm_connector *connector, u8 vic)
2997 {
2998 struct drm_device *dev = connector->dev;
2999 struct drm_display_mode *newmode;
3000
3001 if (!drm_valid_hdmi_vic(vic)) {
3002 DRM_ERROR("Unknown HDMI VIC: %d\n", vic);
3003 return 0;
3004 }
3005
3006 newmode = drm_mode_duplicate(dev, &edid_4k_modes[vic]);
3007 if (!newmode)
3008 return 0;
3009
3010 drm_mode_probed_add(connector, newmode);
3011
3012 return 1;
3013 }
3014
3015 static int add_3d_struct_modes(struct drm_connector *connector, u16 structure,
3016 const u8 *video_db, u8 video_len, u8 video_index)
3017 {
3018 struct drm_display_mode *newmode;
3019 int modes = 0;
3020
3021 if (structure & (1 << 0)) {
3022 newmode = drm_display_mode_from_vic_index(connector, video_db,
3023 video_len,
3024 video_index);
3025 if (newmode) {
3026 newmode->flags |= DRM_MODE_FLAG_3D_FRAME_PACKING;
3027 drm_mode_probed_add(connector, newmode);
3028 modes++;
3029 }
3030 }
3031 if (structure & (1 << 6)) {
3032 newmode = drm_display_mode_from_vic_index(connector, video_db,
3033 video_len,
3034 video_index);
3035 if (newmode) {
3036 newmode->flags |= DRM_MODE_FLAG_3D_TOP_AND_BOTTOM;
3037 drm_mode_probed_add(connector, newmode);
3038 modes++;
3039 }
3040 }
3041 if (structure & (1 << 8)) {
3042 newmode = drm_display_mode_from_vic_index(connector, video_db,
3043 video_len,
3044 video_index);
3045 if (newmode) {
3046 newmode->flags |= DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF;
3047 drm_mode_probed_add(connector, newmode);
3048 modes++;
3049 }
3050 }
3051
3052 return modes;
3053 }
3054
3055 /*
3056 * do_hdmi_vsdb_modes - Parse the HDMI Vendor Specific data block
3057 * @connector: connector corresponding to the HDMI sink
3058 * @db: start of the CEA vendor specific block
3059 * @len: length of the CEA block payload, ie. one can access up to db[len]
3060 *
3061 * Parses the HDMI VSDB looking for modes to add to @connector. This function
3062 * also adds the stereo 3d modes when applicable.
3063 */
3064 static int
3065 do_hdmi_vsdb_modes(struct drm_connector *connector, const u8 *db, u8 len,
3066 const u8 *video_db, u8 video_len)
3067 {
3068 int modes = 0, offset = 0, i, multi_present = 0, multi_len;
3069 u8 vic_len, hdmi_3d_len = 0;
3070 u16 mask;
3071 u16 structure_all;
3072
3073 if (len < 8)
3074 goto out;
3075
3076 /* no HDMI_Video_Present */
3077 if (!(db[8] & (1 << 5)))
3078 goto out;
3079
3080 /* Latency_Fields_Present */
3081 if (db[8] & (1 << 7))
3082 offset += 2;
3083
3084 /* I_Latency_Fields_Present */
3085 if (db[8] & (1 << 6))
3086 offset += 2;
3087
3088 /* the declared length is not long enough for the 2 first bytes
3089 * of additional video format capabilities */
3090 if (len < (8 + offset + 2))
3091 goto out;
3092
3093 /* 3D_Present */
3094 offset++;
3095 if (db[8 + offset] & (1 << 7)) {
3096 modes += add_hdmi_mandatory_stereo_modes(connector);
3097
3098 /* 3D_Multi_present */
3099 multi_present = (db[8 + offset] & 0x60) >> 5;
3100 }
3101
3102 offset++;
3103 vic_len = db[8 + offset] >> 5;
3104 hdmi_3d_len = db[8 + offset] & 0x1f;
3105
3106 for (i = 0; i < vic_len && len >= (9 + offset + i); i++) {
3107 u8 vic;
3108
3109 vic = db[9 + offset + i];
3110 modes += add_hdmi_mode(connector, vic);
3111 }
3112 offset += 1 + vic_len;
3113
3114 if (multi_present == 1)
3115 multi_len = 2;
3116 else if (multi_present == 2)
3117 multi_len = 4;
3118 else
3119 multi_len = 0;
3120
3121 if (len < (8 + offset + hdmi_3d_len - 1))
3122 goto out;
3123
3124 if (hdmi_3d_len < multi_len)
3125 goto out;
3126
3127 if (multi_present == 1 || multi_present == 2) {
3128 /* 3D_Structure_ALL */
3129 structure_all = (db[8 + offset] << 8) | db[9 + offset];
3130
3131 /* check if 3D_MASK is present */
3132 if (multi_present == 2)
3133 mask = (db[10 + offset] << 8) | db[11 + offset];
3134 else
3135 mask = 0xffff;
3136
3137 for (i = 0; i < 16; i++) {
3138 if (mask & (1 << i))
3139 modes += add_3d_struct_modes(connector,
3140 structure_all,
3141 video_db,
3142 video_len, i);
3143 }
3144 }
3145
3146 offset += multi_len;
3147
3148 for (i = 0; i < (hdmi_3d_len - multi_len); i++) {
3149 int vic_index;
3150 struct drm_display_mode *newmode = NULL;
3151 unsigned int newflag = 0;
3152 bool detail_present;
3153
3154 detail_present = ((db[8 + offset + i] & 0x0f) > 7);
3155
3156 if (detail_present && (i + 1 == hdmi_3d_len - multi_len))
3157 break;
3158
3159 /* 2D_VIC_order_X */
3160 vic_index = db[8 + offset + i] >> 4;
3161
3162 /* 3D_Structure_X */
3163 switch (db[8 + offset + i] & 0x0f) {
3164 case 0:
3165 newflag = DRM_MODE_FLAG_3D_FRAME_PACKING;
3166 break;
3167 case 6:
3168 newflag = DRM_MODE_FLAG_3D_TOP_AND_BOTTOM;
3169 break;
3170 case 8:
3171 /* 3D_Detail_X */
3172 if ((db[9 + offset + i] >> 4) == 1)
3173 newflag = DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF;
3174 break;
3175 }
3176
3177 if (newflag != 0) {
3178 newmode = drm_display_mode_from_vic_index(connector,
3179 video_db,
3180 video_len,
3181 vic_index);
3182
3183 if (newmode) {
3184 newmode->flags |= newflag;
3185 drm_mode_probed_add(connector, newmode);
3186 modes++;
3187 }
3188 }
3189
3190 if (detail_present)
3191 i++;
3192 }
3193
3194 out:
3195 return modes;
3196 }
3197
3198 static int
3199 cea_db_payload_len(const u8 *db)
3200 {
3201 return db[0] & 0x1f;
3202 }
3203
3204 static int
3205 cea_db_tag(const u8 *db)
3206 {
3207 return db[0] >> 5;
3208 }
3209
3210 static int
3211 cea_revision(const u8 *cea)
3212 {
3213 return cea[1];
3214 }
3215
3216 static int
3217 cea_db_offsets(const u8 *cea, int *start, int *end)
3218 {
3219 /* Data block offset in CEA extension block */
3220 *start = 4;
3221 *end = cea[2];
3222 if (*end == 0)
3223 *end = 127;
3224 if (*end < 4 || *end > 127)
3225 return -ERANGE;
3226 return 0;
3227 }
3228
3229 static bool cea_db_is_hdmi_vsdb(const u8 *db)
3230 {
3231 int hdmi_id;
3232
3233 if (cea_db_tag(db) != VENDOR_BLOCK)
3234 return false;
3235
3236 if (cea_db_payload_len(db) < 5)
3237 return false;
3238
3239 hdmi_id = db[1] | (db[2] << 8) | (db[3] << 16);
3240
3241 return hdmi_id == HDMI_IEEE_OUI;
3242 }
3243
3244 #define for_each_cea_db(cea, i, start, end) \
3245 for ((i) = (start); (i) < (end) && (i) + cea_db_payload_len(&(cea)[(i)]) < (end); (i) += cea_db_payload_len(&(cea)[(i)]) + 1)
3246
3247 static int
3248 add_cea_modes(struct drm_connector *connector, struct edid *edid)
3249 {
3250 const u8 *cea = drm_find_cea_extension(edid);
3251 const u8 *db, *hdmi = NULL, *video = NULL;
3252 u8 dbl, hdmi_len, video_len = 0;
3253 int modes = 0;
3254
3255 if (cea && cea_revision(cea) >= 3) {
3256 int i, start, end;
3257
3258 if (cea_db_offsets(cea, &start, &end))
3259 return 0;
3260
3261 for_each_cea_db(cea, i, start, end) {
3262 db = &cea[i];
3263 dbl = cea_db_payload_len(db);
3264
3265 if (cea_db_tag(db) == VIDEO_BLOCK) {
3266 video = db + 1;
3267 video_len = dbl;
3268 modes += do_cea_modes(connector, video, dbl);
3269 }
3270 else if (cea_db_is_hdmi_vsdb(db)) {
3271 hdmi = db;
3272 hdmi_len = dbl;
3273 }
3274 }
3275 }
3276
3277 /*
3278 * We parse the HDMI VSDB after having added the cea modes as we will
3279 * be patching their flags when the sink supports stereo 3D.
3280 */
3281 if (hdmi)
3282 modes += do_hdmi_vsdb_modes(connector, hdmi, hdmi_len, video,
3283 video_len);
3284
3285 return modes;
3286 }
3287
3288 static void fixup_detailed_cea_mode_clock(struct drm_display_mode *mode)
3289 {
3290 const struct drm_display_mode *cea_mode;
3291 int clock1, clock2, clock;
3292 u8 vic;
3293 const char *type;
3294
3295 /*
3296 * allow 5kHz clock difference either way to account for
3297 * the 10kHz clock resolution limit of detailed timings.
3298 */
3299 vic = drm_match_cea_mode_clock_tolerance(mode, 5);
3300 if (drm_valid_cea_vic(vic)) {
3301 type = "CEA";
3302 cea_mode = &edid_cea_modes[vic];
3303 clock1 = cea_mode->clock;
3304 clock2 = cea_mode_alternate_clock(cea_mode);
3305 } else {
3306 vic = drm_match_hdmi_mode_clock_tolerance(mode, 5);
3307 if (drm_valid_hdmi_vic(vic)) {
3308 type = "HDMI";
3309 cea_mode = &edid_4k_modes[vic];
3310 clock1 = cea_mode->clock;
3311 clock2 = hdmi_mode_alternate_clock(cea_mode);
3312 } else {
3313 return;
3314 }
3315 }
3316
3317 /* pick whichever is closest */
3318 if (abs(mode->clock - clock1) < abs(mode->clock - clock2))
3319 clock = clock1;
3320 else
3321 clock = clock2;
3322
3323 if (mode->clock == clock)
3324 return;
3325
3326 DRM_DEBUG("detailed mode matches %s VIC %d, adjusting clock %d -> %d\n",
3327 type, vic, mode->clock, clock);
3328 mode->clock = clock;
3329 }
3330
3331 static void
3332 drm_parse_hdmi_vsdb_audio(struct drm_connector *connector, const u8 *db)
3333 {
3334 u8 len = cea_db_payload_len(db);
3335
3336 if (len >= 6)
3337 connector->eld[5] |= (db[6] >> 7) << 1; /* Supports_AI */
3338 if (len >= 8) {
3339 connector->latency_present[0] = db[8] >> 7;
3340 connector->latency_present[1] = (db[8] >> 6) & 1;
3341 }
3342 if (len >= 9)
3343 connector->video_latency[0] = db[9];
3344 if (len >= 10)
3345 connector->audio_latency[0] = db[10];
3346 if (len >= 11)
3347 connector->video_latency[1] = db[11];
3348 if (len >= 12)
3349 connector->audio_latency[1] = db[12];
3350
3351 DRM_DEBUG_KMS("HDMI: latency present %d %d, "
3352 "video latency %d %d, "
3353 "audio latency %d %d\n",
3354 connector->latency_present[0],
3355 connector->latency_present[1],
3356 connector->video_latency[0],
3357 connector->video_latency[1],
3358 connector->audio_latency[0],
3359 connector->audio_latency[1]);
3360 }
3361
3362 static void
3363 monitor_name(struct detailed_timing *t, void *data)
3364 {
3365 if (t->data.other_data.type == EDID_DETAIL_MONITOR_NAME)
3366 *(u8 **)data = t->data.other_data.data.str.str;
3367 }
3368
3369 static int get_monitor_name(struct edid *edid, char name[13])
3370 {
3371 char *edid_name = NULL;
3372 int mnl;
3373
3374 if (!edid || !name)
3375 return 0;
3376
3377 drm_for_each_detailed_block((u8 *)edid, monitor_name, &edid_name);
3378 for (mnl = 0; edid_name && mnl < 13; mnl++) {
3379 if (edid_name[mnl] == 0x0a)
3380 break;
3381
3382 name[mnl] = edid_name[mnl];
3383 }
3384
3385 return mnl;
3386 }
3387
3388 /**
3389 * drm_edid_get_monitor_name - fetch the monitor name from the edid
3390 * @edid: monitor EDID information
3391 * @name: pointer to a character array to hold the name of the monitor
3392 * @bufsize: The size of the name buffer (should be at least 14 chars.)
3393 *
3394 */
3395 void drm_edid_get_monitor_name(struct edid *edid, char *name, int bufsize)
3396 {
3397 int name_length;
3398 char buf[13];
3399
3400 if (bufsize <= 0)
3401 return;
3402
3403 name_length = min(get_monitor_name(edid, buf), bufsize - 1);
3404 memcpy(name, buf, name_length);
3405 name[name_length] = '\0';
3406 }
3407 EXPORT_SYMBOL(drm_edid_get_monitor_name);
3408
3409 /**
3410 * drm_edid_to_eld - build ELD from EDID
3411 * @connector: connector corresponding to the HDMI/DP sink
3412 * @edid: EDID to parse
3413 *
3414 * Fill the ELD (EDID-Like Data) buffer for passing to the audio driver. The
3415 * Conn_Type, HDCP and Port_ID ELD fields are left for the graphics driver to
3416 * fill in.
3417 */
3418 void drm_edid_to_eld(struct drm_connector *connector, struct edid *edid)
3419 {
3420 uint8_t *eld = connector->eld;
3421 u8 *cea;
3422 u8 *db;
3423 int total_sad_count = 0;
3424 int mnl;
3425 int dbl;
3426
3427 memset(eld, 0, sizeof(connector->eld));
3428
3429 connector->latency_present[0] = false;
3430 connector->latency_present[1] = false;
3431 connector->video_latency[0] = 0;
3432 connector->audio_latency[0] = 0;
3433 connector->video_latency[1] = 0;
3434 connector->audio_latency[1] = 0;
3435
3436 cea = drm_find_cea_extension(edid);
3437 if (!cea) {
3438 DRM_DEBUG_KMS("ELD: no CEA Extension found\n");
3439 return;
3440 }
3441
3442 mnl = get_monitor_name(edid, eld + 20);
3443
3444 eld[4] = (cea[1] << 5) | mnl;
3445 DRM_DEBUG_KMS("ELD monitor %s\n", eld + 20);
3446
3447 eld[0] = 2 << 3; /* ELD version: 2 */
3448
3449 eld[16] = edid->mfg_id[0];
3450 eld[17] = edid->mfg_id[1];
3451 eld[18] = edid->prod_code[0];
3452 eld[19] = edid->prod_code[1];
3453
3454 if (cea_revision(cea) >= 3) {
3455 int i, start, end;
3456
3457 if (cea_db_offsets(cea, &start, &end)) {
3458 start = 0;
3459 end = 0;
3460 }
3461
3462 for_each_cea_db(cea, i, start, end) {
3463 db = &cea[i];
3464 dbl = cea_db_payload_len(db);
3465
3466 switch (cea_db_tag(db)) {
3467 int sad_count;
3468
3469 case AUDIO_BLOCK:
3470 /* Audio Data Block, contains SADs */
3471 sad_count = min(dbl / 3, 15 - total_sad_count);
3472 if (sad_count >= 1)
3473 memcpy(eld + 20 + mnl + total_sad_count * 3,
3474 &db[1], sad_count * 3);
3475 total_sad_count += sad_count;
3476 break;
3477 case SPEAKER_BLOCK:
3478 /* Speaker Allocation Data Block */
3479 if (dbl >= 1)
3480 eld[7] = db[1];
3481 break;
3482 case VENDOR_BLOCK:
3483 /* HDMI Vendor-Specific Data Block */
3484 if (cea_db_is_hdmi_vsdb(db))
3485 drm_parse_hdmi_vsdb_audio(connector, db);
3486 break;
3487 default:
3488 break;
3489 }
3490 }
3491 }
3492 eld[5] |= total_sad_count << 4;
3493
3494 eld[DRM_ELD_BASELINE_ELD_LEN] =
3495 DIV_ROUND_UP(drm_eld_calc_baseline_block_size(eld), 4);
3496
3497 DRM_DEBUG_KMS("ELD size %d, SAD count %d\n",
3498 drm_eld_size(eld), total_sad_count);
3499 }
3500 EXPORT_SYMBOL(drm_edid_to_eld);
3501
3502 /**
3503 * drm_edid_to_sad - extracts SADs from EDID
3504 * @edid: EDID to parse
3505 * @sads: pointer that will be set to the extracted SADs
3506 *
3507 * Looks for CEA EDID block and extracts SADs (Short Audio Descriptors) from it.
3508 *
3509 * Note: The returned pointer needs to be freed using kfree().
3510 *
3511 * Return: The number of found SADs or negative number on error.
3512 */
3513 int drm_edid_to_sad(struct edid *edid, struct cea_sad **sads)
3514 {
3515 int count = 0;
3516 int i, start, end, dbl;
3517 u8 *cea;
3518
3519 cea = drm_find_cea_extension(edid);
3520 if (!cea) {
3521 DRM_DEBUG_KMS("SAD: no CEA Extension found\n");
3522 return -ENOENT;
3523 }
3524
3525 if (cea_revision(cea) < 3) {
3526 DRM_DEBUG_KMS("SAD: wrong CEA revision\n");
3527 return -ENOTSUPP;
3528 }
3529
3530 if (cea_db_offsets(cea, &start, &end)) {
3531 DRM_DEBUG_KMS("SAD: invalid data block offsets\n");
3532 return -EPROTO;
3533 }
3534
3535 for_each_cea_db(cea, i, start, end) {
3536 u8 *db = &cea[i];
3537
3538 if (cea_db_tag(db) == AUDIO_BLOCK) {
3539 int j;
3540 dbl = cea_db_payload_len(db);
3541
3542 count = dbl / 3; /* SAD is 3B */
3543 *sads = kcalloc(count, sizeof(**sads), GFP_KERNEL);
3544 if (!*sads)
3545 return -ENOMEM;
3546 for (j = 0; j < count; j++) {
3547 u8 *sad = &db[1 + j * 3];
3548
3549 (*sads)[j].format = (sad[0] & 0x78) >> 3;
3550 (*sads)[j].channels = sad[0] & 0x7;
3551 (*sads)[j].freq = sad[1] & 0x7F;
3552 (*sads)[j].byte2 = sad[2];
3553 }
3554 break;
3555 }
3556 }
3557
3558 return count;
3559 }
3560 EXPORT_SYMBOL(drm_edid_to_sad);
3561
3562 /**
3563 * drm_edid_to_speaker_allocation - extracts Speaker Allocation Data Blocks from EDID
3564 * @edid: EDID to parse
3565 * @sadb: pointer to the speaker block
3566 *
3567 * Looks for CEA EDID block and extracts the Speaker Allocation Data Block from it.
3568 *
3569 * Note: The returned pointer needs to be freed using kfree().
3570 *
3571 * Return: The number of found Speaker Allocation Blocks or negative number on
3572 * error.
3573 */
3574 int drm_edid_to_speaker_allocation(struct edid *edid, u8 **sadb)
3575 {
3576 int count = 0;
3577 int i, start, end, dbl;
3578 const u8 *cea;
3579
3580 cea = drm_find_cea_extension(edid);
3581 if (!cea) {
3582 DRM_DEBUG_KMS("SAD: no CEA Extension found\n");
3583 return -ENOENT;
3584 }
3585
3586 if (cea_revision(cea) < 3) {
3587 DRM_DEBUG_KMS("SAD: wrong CEA revision\n");
3588 return -ENOTSUPP;
3589 }
3590
3591 if (cea_db_offsets(cea, &start, &end)) {
3592 DRM_DEBUG_KMS("SAD: invalid data block offsets\n");
3593 return -EPROTO;
3594 }
3595
3596 for_each_cea_db(cea, i, start, end) {
3597 const u8 *db = &cea[i];
3598
3599 if (cea_db_tag(db) == SPEAKER_BLOCK) {
3600 dbl = cea_db_payload_len(db);
3601
3602 /* Speaker Allocation Data Block */
3603 if (dbl == 3) {
3604 *sadb = kmemdup(&db[1], dbl, GFP_KERNEL);
3605 if (!*sadb)
3606 return -ENOMEM;
3607 count = dbl;
3608 break;
3609 }
3610 }
3611 }
3612
3613 return count;
3614 }
3615 EXPORT_SYMBOL(drm_edid_to_speaker_allocation);
3616
3617 /**
3618 * drm_av_sync_delay - compute the HDMI/DP sink audio-video sync delay
3619 * @connector: connector associated with the HDMI/DP sink
3620 * @mode: the display mode
3621 *
3622 * Return: The HDMI/DP sink's audio-video sync delay in milliseconds or 0 if
3623 * the sink doesn't support audio or video.
3624 */
3625 int drm_av_sync_delay(struct drm_connector *connector,
3626 const struct drm_display_mode *mode)
3627 {
3628 int i = !!(mode->flags & DRM_MODE_FLAG_INTERLACE);
3629 int a, v;
3630
3631 if (!connector->latency_present[0])
3632 return 0;
3633 if (!connector->latency_present[1])
3634 i = 0;
3635
3636 a = connector->audio_latency[i];
3637 v = connector->video_latency[i];
3638
3639 /*
3640 * HDMI/DP sink doesn't support audio or video?
3641 */
3642 if (a == 255 || v == 255)
3643 return 0;
3644
3645 /*
3646 * Convert raw EDID values to millisecond.
3647 * Treat unknown latency as 0ms.
3648 */
3649 if (a)
3650 a = min(2 * (a - 1), 500);
3651 if (v)
3652 v = min(2 * (v - 1), 500);
3653
3654 return max(v - a, 0);
3655 }
3656 EXPORT_SYMBOL(drm_av_sync_delay);
3657
3658 /**
3659 * drm_detect_hdmi_monitor - detect whether monitor is HDMI
3660 * @edid: monitor EDID information
3661 *
3662 * Parse the CEA extension according to CEA-861-B.
3663 *
3664 * Return: True if the monitor is HDMI, false if not or unknown.
3665 */
3666 bool drm_detect_hdmi_monitor(struct edid *edid)
3667 {
3668 u8 *edid_ext;
3669 int i;
3670 int start_offset, end_offset;
3671
3672 edid_ext = drm_find_cea_extension(edid);
3673 if (!edid_ext)
3674 return false;
3675
3676 if (cea_db_offsets(edid_ext, &start_offset, &end_offset))
3677 return false;
3678
3679 /*
3680 * Because HDMI identifier is in Vendor Specific Block,
3681 * search it from all data blocks of CEA extension.
3682 */
3683 for_each_cea_db(edid_ext, i, start_offset, end_offset) {
3684 if (cea_db_is_hdmi_vsdb(&edid_ext[i]))
3685 return true;
3686 }
3687
3688 return false;
3689 }
3690 EXPORT_SYMBOL(drm_detect_hdmi_monitor);
3691
3692 /**
3693 * drm_detect_monitor_audio - check monitor audio capability
3694 * @edid: EDID block to scan
3695 *
3696 * Monitor should have CEA extension block.
3697 * If monitor has 'basic audio', but no CEA audio blocks, it's 'basic
3698 * audio' only. If there is any audio extension block and supported
3699 * audio format, assume at least 'basic audio' support, even if 'basic
3700 * audio' is not defined in EDID.
3701 *
3702 * Return: True if the monitor supports audio, false otherwise.
3703 */
3704 bool drm_detect_monitor_audio(struct edid *edid)
3705 {
3706 u8 *edid_ext;
3707 int i, j;
3708 bool has_audio = false;
3709 int start_offset, end_offset;
3710
3711 edid_ext = drm_find_cea_extension(edid);
3712 if (!edid_ext)
3713 goto end;
3714
3715 has_audio = ((edid_ext[3] & EDID_BASIC_AUDIO) != 0);
3716
3717 if (has_audio) {
3718 DRM_DEBUG_KMS("Monitor has basic audio support\n");
3719 goto end;
3720 }
3721
3722 if (cea_db_offsets(edid_ext, &start_offset, &end_offset))
3723 goto end;
3724
3725 for_each_cea_db(edid_ext, i, start_offset, end_offset) {
3726 if (cea_db_tag(&edid_ext[i]) == AUDIO_BLOCK) {
3727 has_audio = true;
3728 for (j = 1; j < cea_db_payload_len(&edid_ext[i]) + 1; j += 3)
3729 DRM_DEBUG_KMS("CEA audio format %d\n",
3730 (edid_ext[i + j] >> 3) & 0xf);
3731 goto end;
3732 }
3733 }
3734 end:
3735 return has_audio;
3736 }
3737 EXPORT_SYMBOL(drm_detect_monitor_audio);
3738
3739 /**
3740 * drm_rgb_quant_range_selectable - is RGB quantization range selectable?
3741 * @edid: EDID block to scan
3742 *
3743 * Check whether the monitor reports the RGB quantization range selection
3744 * as supported. The AVI infoframe can then be used to inform the monitor
3745 * which quantization range (full or limited) is used.
3746 *
3747 * Return: True if the RGB quantization range is selectable, false otherwise.
3748 */
3749 bool drm_rgb_quant_range_selectable(struct edid *edid)
3750 {
3751 u8 *edid_ext;
3752 int i, start, end;
3753
3754 edid_ext = drm_find_cea_extension(edid);
3755 if (!edid_ext)
3756 return false;
3757
3758 if (cea_db_offsets(edid_ext, &start, &end))
3759 return false;
3760
3761 for_each_cea_db(edid_ext, i, start, end) {
3762 if (cea_db_tag(&edid_ext[i]) == VIDEO_CAPABILITY_BLOCK &&
3763 cea_db_payload_len(&edid_ext[i]) == 2) {
3764 DRM_DEBUG_KMS("CEA VCDB 0x%02x\n", edid_ext[i + 2]);
3765 return edid_ext[i + 2] & EDID_CEA_VCDB_QS;
3766 }
3767 }
3768
3769 return false;
3770 }
3771 EXPORT_SYMBOL(drm_rgb_quant_range_selectable);
3772
3773 static void drm_parse_hdmi_deep_color_info(struct drm_connector *connector,
3774 const u8 *hdmi)
3775 {
3776 struct drm_display_info *info = &connector->display_info;
3777 unsigned int dc_bpc = 0;
3778
3779 /* HDMI supports at least 8 bpc */
3780 info->bpc = 8;
3781
3782 if (cea_db_payload_len(hdmi) < 6)
3783 return;
3784
3785 if (hdmi[6] & DRM_EDID_HDMI_DC_30) {
3786 dc_bpc = 10;
3787 info->edid_hdmi_dc_modes |= DRM_EDID_HDMI_DC_30;
3788 DRM_DEBUG("%s: HDMI sink does deep color 30.\n",
3789 connector->name);
3790 }
3791
3792 if (hdmi[6] & DRM_EDID_HDMI_DC_36) {
3793 dc_bpc = 12;
3794 info->edid_hdmi_dc_modes |= DRM_EDID_HDMI_DC_36;
3795 DRM_DEBUG("%s: HDMI sink does deep color 36.\n",
3796 connector->name);
3797 }
3798
3799 if (hdmi[6] & DRM_EDID_HDMI_DC_48) {
3800 dc_bpc = 16;
3801 info->edid_hdmi_dc_modes |= DRM_EDID_HDMI_DC_48;
3802 DRM_DEBUG("%s: HDMI sink does deep color 48.\n",
3803 connector->name);
3804 }
3805
3806 if (dc_bpc == 0) {
3807 DRM_DEBUG("%s: No deep color support on this HDMI sink.\n",
3808 connector->name);
3809 return;
3810 }
3811
3812 DRM_DEBUG("%s: Assigning HDMI sink color depth as %d bpc.\n",
3813 connector->name, dc_bpc);
3814 info->bpc = dc_bpc;
3815
3816 /*
3817 * Deep color support mandates RGB444 support for all video
3818 * modes and forbids YCRCB422 support for all video modes per
3819 * HDMI 1.3 spec.
3820 */
3821 info->color_formats = DRM_COLOR_FORMAT_RGB444;
3822
3823 /* YCRCB444 is optional according to spec. */
3824 if (hdmi[6] & DRM_EDID_HDMI_DC_Y444) {
3825 info->color_formats |= DRM_COLOR_FORMAT_YCRCB444;
3826 DRM_DEBUG("%s: HDMI sink does YCRCB444 in deep color.\n",
3827 connector->name);
3828 }
3829
3830 /*
3831 * Spec says that if any deep color mode is supported at all,
3832 * then deep color 36 bit must be supported.
3833 */
3834 if (!(hdmi[6] & DRM_EDID_HDMI_DC_36)) {
3835 DRM_DEBUG("%s: HDMI sink should do DC_36, but does not!\n",
3836 connector->name);
3837 }
3838 }
3839
3840 static void
3841 drm_parse_hdmi_vsdb_video(struct drm_connector *connector, const u8 *db)
3842 {
3843 struct drm_display_info *info = &connector->display_info;
3844 u8 len = cea_db_payload_len(db);
3845
3846 if (len >= 6)
3847 info->dvi_dual = db[6] & 1;
3848 if (len >= 7)
3849 info->max_tmds_clock = db[7] * 5000;
3850
3851 DRM_DEBUG_KMS("HDMI: DVI dual %d, "
3852 "max TMDS clock %d kHz\n",
3853 info->dvi_dual,
3854 info->max_tmds_clock);
3855
3856 drm_parse_hdmi_deep_color_info(connector, db);
3857 }
3858
3859 static void drm_parse_cea_ext(struct drm_connector *connector,
3860 struct edid *edid)
3861 {
3862 struct drm_display_info *info = &connector->display_info;
3863 const u8 *edid_ext;
3864 int i, start, end;
3865
3866 edid_ext = drm_find_cea_extension(edid);
3867 if (!edid_ext)
3868 return;
3869
3870 info->cea_rev = edid_ext[1];
3871
3872 /* The existence of a CEA block should imply RGB support */
3873 info->color_formats = DRM_COLOR_FORMAT_RGB444;
3874 if (edid_ext[3] & EDID_CEA_YCRCB444)
3875 info->color_formats |= DRM_COLOR_FORMAT_YCRCB444;
3876 if (edid_ext[3] & EDID_CEA_YCRCB422)
3877 info->color_formats |= DRM_COLOR_FORMAT_YCRCB422;
3878
3879 if (cea_db_offsets(edid_ext, &start, &end))
3880 return;
3881
3882 for_each_cea_db(edid_ext, i, start, end) {
3883 const u8 *db = &edid_ext[i];
3884
3885 if (cea_db_is_hdmi_vsdb(db))
3886 drm_parse_hdmi_vsdb_video(connector, db);
3887 }
3888 }
3889
3890 static void drm_add_display_info(struct drm_connector *connector,
3891 struct edid *edid)
3892 {
3893 struct drm_display_info *info = &connector->display_info;
3894
3895 info->width_mm = edid->width_cm * 10;
3896 info->height_mm = edid->height_cm * 10;
3897
3898 /* driver figures it out in this case */
3899 info->bpc = 0;
3900 info->color_formats = 0;
3901 info->cea_rev = 0;
3902 info->max_tmds_clock = 0;
3903 info->dvi_dual = false;
3904
3905 if (edid->revision < 3)
3906 return;
3907
3908 if (!(edid->input & DRM_EDID_INPUT_DIGITAL))
3909 return;
3910
3911 drm_parse_cea_ext(connector, edid);
3912
3913 /*
3914 * Digital sink with "DFP 1.x compliant TMDS" according to EDID 1.3?
3915 *
3916 * For such displays, the DFP spec 1.0, section 3.10 "EDID support"
3917 * tells us to assume 8 bpc color depth if the EDID doesn't have
3918 * extensions which tell otherwise.
3919 */
3920 if ((info->bpc == 0) && (edid->revision < 4) &&
3921 (edid->input & DRM_EDID_DIGITAL_TYPE_DVI)) {
3922 info->bpc = 8;
3923 DRM_DEBUG("%s: Assigning DFP sink color depth as %d bpc.\n",
3924 connector->name, info->bpc);
3925 }
3926
3927 /* Only defined for 1.4 with digital displays */
3928 if (edid->revision < 4)
3929 return;
3930
3931 switch (edid->input & DRM_EDID_DIGITAL_DEPTH_MASK) {
3932 case DRM_EDID_DIGITAL_DEPTH_6:
3933 info->bpc = 6;
3934 break;
3935 case DRM_EDID_DIGITAL_DEPTH_8:
3936 info->bpc = 8;
3937 break;
3938 case DRM_EDID_DIGITAL_DEPTH_10:
3939 info->bpc = 10;
3940 break;
3941 case DRM_EDID_DIGITAL_DEPTH_12:
3942 info->bpc = 12;
3943 break;
3944 case DRM_EDID_DIGITAL_DEPTH_14:
3945 info->bpc = 14;
3946 break;
3947 case DRM_EDID_DIGITAL_DEPTH_16:
3948 info->bpc = 16;
3949 break;
3950 case DRM_EDID_DIGITAL_DEPTH_UNDEF:
3951 default:
3952 info->bpc = 0;
3953 break;
3954 }
3955
3956 DRM_DEBUG("%s: Assigning EDID-1.4 digital sink color depth as %d bpc.\n",
3957 connector->name, info->bpc);
3958
3959 info->color_formats |= DRM_COLOR_FORMAT_RGB444;
3960 if (edid->features & DRM_EDID_FEATURE_RGB_YCRCB444)
3961 info->color_formats |= DRM_COLOR_FORMAT_YCRCB444;
3962 if (edid->features & DRM_EDID_FEATURE_RGB_YCRCB422)
3963 info->color_formats |= DRM_COLOR_FORMAT_YCRCB422;
3964 }
3965
3966 static int validate_displayid(u8 *displayid, int length, int idx)
3967 {
3968 int i;
3969 u8 csum = 0;
3970 struct displayid_hdr *base;
3971
3972 base = (struct displayid_hdr *)&displayid[idx];
3973
3974 DRM_DEBUG_KMS("base revision 0x%x, length %d, %d %d\n",
3975 base->rev, base->bytes, base->prod_id, base->ext_count);
3976
3977 if (base->bytes + 5 > length - idx)
3978 return -EINVAL;
3979 for (i = idx; i <= base->bytes + 5; i++) {
3980 csum += displayid[i];
3981 }
3982 if (csum) {
3983 DRM_ERROR("DisplayID checksum invalid, remainder is %d\n", csum);
3984 return -EINVAL;
3985 }
3986 return 0;
3987 }
3988
3989 static struct drm_display_mode *drm_mode_displayid_detailed(struct drm_device *dev,
3990 struct displayid_detailed_timings_1 *timings)
3991 {
3992 struct drm_display_mode *mode;
3993 unsigned pixel_clock = (timings->pixel_clock[0] |
3994 (timings->pixel_clock[1] << 8) |
3995 (timings->pixel_clock[2] << 16));
3996 unsigned hactive = (timings->hactive[0] | timings->hactive[1] << 8) + 1;
3997 unsigned hblank = (timings->hblank[0] | timings->hblank[1] << 8) + 1;
3998 unsigned hsync = (timings->hsync[0] | (timings->hsync[1] & 0x7f) << 8) + 1;
3999 unsigned hsync_width = (timings->hsw[0] | timings->hsw[1] << 8) + 1;
4000 unsigned vactive = (timings->vactive[0] | timings->vactive[1] << 8) + 1;
4001 unsigned vblank = (timings->vblank[0] | timings->vblank[1] << 8) + 1;
4002 unsigned vsync = (timings->vsync[0] | (timings->vsync[1] & 0x7f) << 8) + 1;
4003 unsigned vsync_width = (timings->vsw[0] | timings->vsw[1] << 8) + 1;
4004 bool hsync_positive = (timings->hsync[1] >> 7) & 0x1;
4005 bool vsync_positive = (timings->vsync[1] >> 7) & 0x1;
4006 mode = drm_mode_create(dev);
4007 if (!mode)
4008 return NULL;
4009
4010 mode->clock = pixel_clock * 10;
4011 mode->hdisplay = hactive;
4012 mode->hsync_start = mode->hdisplay + hsync;
4013 mode->hsync_end = mode->hsync_start + hsync_width;
4014 mode->htotal = mode->hdisplay + hblank;
4015
4016 mode->vdisplay = vactive;
4017 mode->vsync_start = mode->vdisplay + vsync;
4018 mode->vsync_end = mode->vsync_start + vsync_width;
4019 mode->vtotal = mode->vdisplay + vblank;
4020
4021 mode->flags = 0;
4022 mode->flags |= hsync_positive ? DRM_MODE_FLAG_PHSYNC : DRM_MODE_FLAG_NHSYNC;
4023 mode->flags |= vsync_positive ? DRM_MODE_FLAG_PVSYNC : DRM_MODE_FLAG_NVSYNC;
4024 mode->type = DRM_MODE_TYPE_DRIVER;
4025
4026 if (timings->flags & 0x80)
4027 mode->type |= DRM_MODE_TYPE_PREFERRED;
4028 mode->vrefresh = drm_mode_vrefresh(mode);
4029 drm_mode_set_name(mode);
4030
4031 return mode;
4032 }
4033
4034 static int add_displayid_detailed_1_modes(struct drm_connector *connector,
4035 struct displayid_block *block)
4036 {
4037 struct displayid_detailed_timing_block *det = (struct displayid_detailed_timing_block *)block;
4038 int i;
4039 int num_timings;
4040 struct drm_display_mode *newmode;
4041 int num_modes = 0;
4042 /* blocks must be multiple of 20 bytes length */
4043 if (block->num_bytes % 20)
4044 return 0;
4045
4046 num_timings = block->num_bytes / 20;
4047 for (i = 0; i < num_timings; i++) {
4048 struct displayid_detailed_timings_1 *timings = &det->timings[i];
4049
4050 newmode = drm_mode_displayid_detailed(connector->dev, timings);
4051 if (!newmode)
4052 continue;
4053
4054 drm_mode_probed_add(connector, newmode);
4055 num_modes++;
4056 }
4057 return num_modes;
4058 }
4059
4060 static int add_displayid_detailed_modes(struct drm_connector *connector,
4061 struct edid *edid)
4062 {
4063 u8 *displayid;
4064 int ret;
4065 int idx = 1;
4066 int length = EDID_LENGTH;
4067 struct displayid_block *block;
4068 int num_modes = 0;
4069
4070 displayid = drm_find_displayid_extension(edid);
4071 if (!displayid)
4072 return 0;
4073
4074 ret = validate_displayid(displayid, length, idx);
4075 if (ret)
4076 return 0;
4077
4078 idx += sizeof(struct displayid_hdr);
4079 while (block = (struct displayid_block *)&displayid[idx],
4080 idx + sizeof(struct displayid_block) <= length &&
4081 idx + sizeof(struct displayid_block) + block->num_bytes <= length &&
4082 block->num_bytes > 0) {
4083 idx += block->num_bytes + sizeof(struct displayid_block);
4084 switch (block->tag) {
4085 case DATA_BLOCK_TYPE_1_DETAILED_TIMING:
4086 num_modes += add_displayid_detailed_1_modes(connector, block);
4087 break;
4088 }
4089 }
4090 return num_modes;
4091 }
4092
4093 /**
4094 * drm_add_edid_modes - add modes from EDID data, if available
4095 * @connector: connector we're probing
4096 * @edid: EDID data
4097 *
4098 * Add the specified modes to the connector's mode list. Also fills out the
4099 * &drm_display_info structure in @connector with any information which can be
4100 * derived from the edid.
4101 *
4102 * Return: The number of modes added or 0 if we couldn't find any.
4103 */
4104 int drm_add_edid_modes(struct drm_connector *connector, struct edid *edid)
4105 {
4106 int num_modes = 0;
4107 u32 quirks;
4108
4109 if (edid == NULL) {
4110 return 0;
4111 }
4112 if (!drm_edid_is_valid(edid)) {
4113 dev_warn(connector->dev->dev, "%s: EDID invalid.\n",
4114 connector->name);
4115 return 0;
4116 }
4117
4118 quirks = edid_get_quirks(edid);
4119
4120 /*
4121 * EDID spec says modes should be preferred in this order:
4122 * - preferred detailed mode
4123 * - other detailed modes from base block
4124 * - detailed modes from extension blocks
4125 * - CVT 3-byte code modes
4126 * - standard timing codes
4127 * - established timing codes
4128 * - modes inferred from GTF or CVT range information
4129 *
4130 * We get this pretty much right.
4131 *
4132 * XXX order for additional mode types in extension blocks?
4133 */
4134 num_modes += add_detailed_modes(connector, edid, quirks);
4135 num_modes += add_cvt_modes(connector, edid);
4136 num_modes += add_standard_modes(connector, edid);
4137 num_modes += add_established_modes(connector, edid);
4138 num_modes += add_cea_modes(connector, edid);
4139 num_modes += add_alternate_cea_modes(connector, edid);
4140 num_modes += add_displayid_detailed_modes(connector, edid);
4141 if (edid->features & DRM_EDID_FEATURE_DEFAULT_GTF)
4142 num_modes += add_inferred_modes(connector, edid);
4143
4144 if (quirks & (EDID_QUIRK_PREFER_LARGE_60 | EDID_QUIRK_PREFER_LARGE_75))
4145 edid_fixup_preferred(connector, quirks);
4146
4147 drm_add_display_info(connector, edid);
4148
4149 if (quirks & EDID_QUIRK_FORCE_6BPC)
4150 connector->display_info.bpc = 6;
4151
4152 if (quirks & EDID_QUIRK_FORCE_8BPC)
4153 connector->display_info.bpc = 8;
4154
4155 if (quirks & EDID_QUIRK_FORCE_12BPC)
4156 connector->display_info.bpc = 12;
4157
4158 return num_modes;
4159 }
4160 EXPORT_SYMBOL(drm_add_edid_modes);
4161
4162 /**
4163 * drm_add_modes_noedid - add modes for the connectors without EDID
4164 * @connector: connector we're probing
4165 * @hdisplay: the horizontal display limit
4166 * @vdisplay: the vertical display limit
4167 *
4168 * Add the specified modes to the connector's mode list. Only when the
4169 * hdisplay/vdisplay is not beyond the given limit, it will be added.
4170 *
4171 * Return: The number of modes added or 0 if we couldn't find any.
4172 */
4173 int drm_add_modes_noedid(struct drm_connector *connector,
4174 int hdisplay, int vdisplay)
4175 {
4176 int i, count, num_modes = 0;
4177 struct drm_display_mode *mode;
4178 struct drm_device *dev = connector->dev;
4179
4180 count = ARRAY_SIZE(drm_dmt_modes);
4181 if (hdisplay < 0)
4182 hdisplay = 0;
4183 if (vdisplay < 0)
4184 vdisplay = 0;
4185
4186 for (i = 0; i < count; i++) {
4187 const struct drm_display_mode *ptr = &drm_dmt_modes[i];
4188 if (hdisplay && vdisplay) {
4189 /*
4190 * Only when two are valid, they will be used to check
4191 * whether the mode should be added to the mode list of
4192 * the connector.
4193 */
4194 if (ptr->hdisplay > hdisplay ||
4195 ptr->vdisplay > vdisplay)
4196 continue;
4197 }
4198 if (drm_mode_vrefresh(ptr) > 61)
4199 continue;
4200 mode = drm_mode_duplicate(dev, ptr);
4201 if (mode) {
4202 drm_mode_probed_add(connector, mode);
4203 num_modes++;
4204 }
4205 }
4206 return num_modes;
4207 }
4208 EXPORT_SYMBOL(drm_add_modes_noedid);
4209
4210 /**
4211 * drm_set_preferred_mode - Sets the preferred mode of a connector
4212 * @connector: connector whose mode list should be processed
4213 * @hpref: horizontal resolution of preferred mode
4214 * @vpref: vertical resolution of preferred mode
4215 *
4216 * Marks a mode as preferred if it matches the resolution specified by @hpref
4217 * and @vpref.
4218 */
4219 void drm_set_preferred_mode(struct drm_connector *connector,
4220 int hpref, int vpref)
4221 {
4222 struct drm_display_mode *mode;
4223
4224 list_for_each_entry(mode, &connector->probed_modes, head) {
4225 if (mode->hdisplay == hpref &&
4226 mode->vdisplay == vpref)
4227 mode->type |= DRM_MODE_TYPE_PREFERRED;
4228 }
4229 }
4230 EXPORT_SYMBOL(drm_set_preferred_mode);
4231
4232 /**
4233 * drm_hdmi_avi_infoframe_from_display_mode() - fill an HDMI AVI infoframe with
4234 * data from a DRM display mode
4235 * @frame: HDMI AVI infoframe
4236 * @mode: DRM display mode
4237 *
4238 * Return: 0 on success or a negative error code on failure.
4239 */
4240 int
4241 drm_hdmi_avi_infoframe_from_display_mode(struct hdmi_avi_infoframe *frame,
4242 const struct drm_display_mode *mode)
4243 {
4244 int err;
4245
4246 if (!frame || !mode)
4247 return -EINVAL;
4248
4249 err = hdmi_avi_infoframe_init(frame);
4250 if (err < 0)
4251 return err;
4252
4253 if (mode->flags & DRM_MODE_FLAG_DBLCLK)
4254 frame->pixel_repeat = 1;
4255
4256 frame->video_code = drm_match_cea_mode(mode);
4257
4258 frame->picture_aspect = HDMI_PICTURE_ASPECT_NONE;
4259
4260 /*
4261 * Populate picture aspect ratio from either
4262 * user input (if specified) or from the CEA mode list.
4263 */
4264 if (mode->picture_aspect_ratio == HDMI_PICTURE_ASPECT_4_3 ||
4265 mode->picture_aspect_ratio == HDMI_PICTURE_ASPECT_16_9)
4266 frame->picture_aspect = mode->picture_aspect_ratio;
4267 else if (frame->video_code > 0)
4268 frame->picture_aspect = drm_get_cea_aspect_ratio(
4269 frame->video_code);
4270
4271 frame->active_aspect = HDMI_ACTIVE_ASPECT_PICTURE;
4272 frame->scan_mode = HDMI_SCAN_MODE_UNDERSCAN;
4273
4274 return 0;
4275 }
4276 EXPORT_SYMBOL(drm_hdmi_avi_infoframe_from_display_mode);
4277
4278 static enum hdmi_3d_structure
4279 s3d_structure_from_display_mode(const struct drm_display_mode *mode)
4280 {
4281 u32 layout = mode->flags & DRM_MODE_FLAG_3D_MASK;
4282
4283 switch (layout) {
4284 case DRM_MODE_FLAG_3D_FRAME_PACKING:
4285 return HDMI_3D_STRUCTURE_FRAME_PACKING;
4286 case DRM_MODE_FLAG_3D_FIELD_ALTERNATIVE:
4287 return HDMI_3D_STRUCTURE_FIELD_ALTERNATIVE;
4288 case DRM_MODE_FLAG_3D_LINE_ALTERNATIVE:
4289 return HDMI_3D_STRUCTURE_LINE_ALTERNATIVE;
4290 case DRM_MODE_FLAG_3D_SIDE_BY_SIDE_FULL:
4291 return HDMI_3D_STRUCTURE_SIDE_BY_SIDE_FULL;
4292 case DRM_MODE_FLAG_3D_L_DEPTH:
4293 return HDMI_3D_STRUCTURE_L_DEPTH;
4294 case DRM_MODE_FLAG_3D_L_DEPTH_GFX_GFX_DEPTH:
4295 return HDMI_3D_STRUCTURE_L_DEPTH_GFX_GFX_DEPTH;
4296 case DRM_MODE_FLAG_3D_TOP_AND_BOTTOM:
4297 return HDMI_3D_STRUCTURE_TOP_AND_BOTTOM;
4298 case DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF:
4299 return HDMI_3D_STRUCTURE_SIDE_BY_SIDE_HALF;
4300 default:
4301 return HDMI_3D_STRUCTURE_INVALID;
4302 }
4303 }
4304
4305 /**
4306 * drm_hdmi_vendor_infoframe_from_display_mode() - fill an HDMI infoframe with
4307 * data from a DRM display mode
4308 * @frame: HDMI vendor infoframe
4309 * @mode: DRM display mode
4310 *
4311 * Note that there's is a need to send HDMI vendor infoframes only when using a
4312 * 4k or stereoscopic 3D mode. So when giving any other mode as input this
4313 * function will return -EINVAL, error that can be safely ignored.
4314 *
4315 * Return: 0 on success or a negative error code on failure.
4316 */
4317 int
4318 drm_hdmi_vendor_infoframe_from_display_mode(struct hdmi_vendor_infoframe *frame,
4319 const struct drm_display_mode *mode)
4320 {
4321 int err;
4322 u32 s3d_flags;
4323 u8 vic;
4324
4325 if (!frame || !mode)
4326 return -EINVAL;
4327
4328 vic = drm_match_hdmi_mode(mode);
4329 s3d_flags = mode->flags & DRM_MODE_FLAG_3D_MASK;
4330
4331 if (!vic && !s3d_flags)
4332 return -EINVAL;
4333
4334 if (vic && s3d_flags)
4335 return -EINVAL;
4336
4337 err = hdmi_vendor_infoframe_init(frame);
4338 if (err < 0)
4339 return err;
4340
4341 if (vic)
4342 frame->vic = vic;
4343 else
4344 frame->s3d_struct = s3d_structure_from_display_mode(mode);
4345
4346 return 0;
4347 }
4348 EXPORT_SYMBOL(drm_hdmi_vendor_infoframe_from_display_mode);
4349
4350 static int drm_parse_tiled_block(struct drm_connector *connector,
4351 struct displayid_block *block)
4352 {
4353 struct displayid_tiled_block *tile = (struct displayid_tiled_block *)block;
4354 u16 w, h;
4355 u8 tile_v_loc, tile_h_loc;
4356 u8 num_v_tile, num_h_tile;
4357 struct drm_tile_group *tg;
4358
4359 w = tile->tile_size[0] | tile->tile_size[1] << 8;
4360 h = tile->tile_size[2] | tile->tile_size[3] << 8;
4361
4362 num_v_tile = (tile->topo[0] & 0xf) | (tile->topo[2] & 0x30);
4363 num_h_tile = (tile->topo[0] >> 4) | ((tile->topo[2] >> 2) & 0x30);
4364 tile_v_loc = (tile->topo[1] & 0xf) | ((tile->topo[2] & 0x3) << 4);
4365 tile_h_loc = (tile->topo[1] >> 4) | (((tile->topo[2] >> 2) & 0x3) << 4);
4366
4367 connector->has_tile = true;
4368 if (tile->tile_cap & 0x80)
4369 connector->tile_is_single_monitor = true;
4370
4371 connector->num_h_tile = num_h_tile + 1;
4372 connector->num_v_tile = num_v_tile + 1;
4373 connector->tile_h_loc = tile_h_loc;
4374 connector->tile_v_loc = tile_v_loc;
4375 connector->tile_h_size = w + 1;
4376 connector->tile_v_size = h + 1;
4377
4378 DRM_DEBUG_KMS("tile cap 0x%x\n", tile->tile_cap);
4379 DRM_DEBUG_KMS("tile_size %d x %d\n", w + 1, h + 1);
4380 DRM_DEBUG_KMS("topo num tiles %dx%d, location %dx%d\n",
4381 num_h_tile + 1, num_v_tile + 1, tile_h_loc, tile_v_loc);
4382 DRM_DEBUG_KMS("vend %c%c%c\n", tile->topology_id[0], tile->topology_id[1], tile->topology_id[2]);
4383
4384 tg = drm_mode_get_tile_group(connector->dev, tile->topology_id);
4385 if (!tg) {
4386 tg = drm_mode_create_tile_group(connector->dev, tile->topology_id);
4387 }
4388 if (!tg)
4389 return -ENOMEM;
4390
4391 if (connector->tile_group != tg) {
4392 /* if we haven't got a pointer,
4393 take the reference, drop ref to old tile group */
4394 if (connector->tile_group) {
4395 drm_mode_put_tile_group(connector->dev, connector->tile_group);
4396 }
4397 connector->tile_group = tg;
4398 } else
4399 /* if same tile group, then release the ref we just took. */
4400 drm_mode_put_tile_group(connector->dev, tg);
4401 return 0;
4402 }
4403
4404 static int drm_parse_display_id(struct drm_connector *connector,
4405 u8 *displayid, int length,
4406 bool is_edid_extension)
4407 {
4408 /* if this is an EDID extension the first byte will be 0x70 */
4409 int idx = 0;
4410 struct displayid_block *block;
4411 int ret;
4412
4413 if (is_edid_extension)
4414 idx = 1;
4415
4416 ret = validate_displayid(displayid, length, idx);
4417 if (ret)
4418 return ret;
4419
4420 idx += sizeof(struct displayid_hdr);
4421 while (block = (struct displayid_block *)&displayid[idx],
4422 idx + sizeof(struct displayid_block) <= length &&
4423 idx + sizeof(struct displayid_block) + block->num_bytes <= length &&
4424 block->num_bytes > 0) {
4425 idx += block->num_bytes + sizeof(struct displayid_block);
4426 DRM_DEBUG_KMS("block id 0x%x, rev %d, len %d\n",
4427 block->tag, block->rev, block->num_bytes);
4428
4429 switch (block->tag) {
4430 case DATA_BLOCK_TILED_DISPLAY:
4431 ret = drm_parse_tiled_block(connector, block);
4432 if (ret)
4433 return ret;
4434 break;
4435 case DATA_BLOCK_TYPE_1_DETAILED_TIMING:
4436 /* handled in mode gathering code. */
4437 break;
4438 default:
4439 DRM_DEBUG_KMS("found DisplayID tag 0x%x, unhandled\n", block->tag);
4440 break;
4441 }
4442 }
4443 return 0;
4444 }
4445
4446 static void drm_get_displayid(struct drm_connector *connector,
4447 struct edid *edid)
4448 {
4449 void *displayid = NULL;
4450 int ret;
4451 connector->has_tile = false;
4452 displayid = drm_find_displayid_extension(edid);
4453 if (!displayid) {
4454 /* drop reference to any tile group we had */
4455 goto out_drop_ref;
4456 }
4457
4458 ret = drm_parse_display_id(connector, displayid, EDID_LENGTH, true);
4459 if (ret < 0)
4460 goto out_drop_ref;
4461 if (!connector->has_tile)
4462 goto out_drop_ref;
4463 return;
4464 out_drop_ref:
4465 if (connector->tile_group) {
4466 drm_mode_put_tile_group(connector->dev, connector->tile_group);
4467 connector->tile_group = NULL;
4468 }
4469 return;
4470 }