]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/gpu/drm/drm_edid.c
Merge tag 'bcm2835-dt-next-2017-03-30' into devicetree/next
[mirror_ubuntu-artful-kernel.git] / drivers / gpu / drm / drm_edid.c
1 /*
2 * Copyright (c) 2006 Luc Verhaegen (quirks list)
3 * Copyright (c) 2007-2008 Intel Corporation
4 * Jesse Barnes <jesse.barnes@intel.com>
5 * Copyright 2010 Red Hat, Inc.
6 *
7 * DDC probing routines (drm_ddc_read & drm_do_probe_ddc_edid) originally from
8 * FB layer.
9 * Copyright (C) 2006 Dennis Munsie <dmunsie@cecropia.com>
10 *
11 * Permission is hereby granted, free of charge, to any person obtaining a
12 * copy of this software and associated documentation files (the "Software"),
13 * to deal in the Software without restriction, including without limitation
14 * the rights to use, copy, modify, merge, publish, distribute, sub license,
15 * and/or sell copies of the Software, and to permit persons to whom the
16 * Software is furnished to do so, subject to the following conditions:
17 *
18 * The above copyright notice and this permission notice (including the
19 * next paragraph) shall be included in all copies or substantial portions
20 * of the Software.
21 *
22 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
23 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
24 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
25 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
26 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
27 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
28 * DEALINGS IN THE SOFTWARE.
29 */
30 #include <linux/kernel.h>
31 #include <linux/slab.h>
32 #include <linux/hdmi.h>
33 #include <linux/i2c.h>
34 #include <linux/module.h>
35 #include <linux/vga_switcheroo.h>
36 #include <drm/drmP.h>
37 #include <drm/drm_edid.h>
38 #include <drm/drm_encoder.h>
39 #include <drm/drm_displayid.h>
40 #include <drm/drm_scdc_helper.h>
41
42 #include "drm_crtc_internal.h"
43
44 #define version_greater(edid, maj, min) \
45 (((edid)->version > (maj)) || \
46 ((edid)->version == (maj) && (edid)->revision > (min)))
47
48 #define EDID_EST_TIMINGS 16
49 #define EDID_STD_TIMINGS 8
50 #define EDID_DETAILED_TIMINGS 4
51
52 /*
53 * EDID blocks out in the wild have a variety of bugs, try to collect
54 * them here (note that userspace may work around broken monitors first,
55 * but fixes should make their way here so that the kernel "just works"
56 * on as many displays as possible).
57 */
58
59 /* First detailed mode wrong, use largest 60Hz mode */
60 #define EDID_QUIRK_PREFER_LARGE_60 (1 << 0)
61 /* Reported 135MHz pixel clock is too high, needs adjustment */
62 #define EDID_QUIRK_135_CLOCK_TOO_HIGH (1 << 1)
63 /* Prefer the largest mode at 75 Hz */
64 #define EDID_QUIRK_PREFER_LARGE_75 (1 << 2)
65 /* Detail timing is in cm not mm */
66 #define EDID_QUIRK_DETAILED_IN_CM (1 << 3)
67 /* Detailed timing descriptors have bogus size values, so just take the
68 * maximum size and use that.
69 */
70 #define EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE (1 << 4)
71 /* Monitor forgot to set the first detailed is preferred bit. */
72 #define EDID_QUIRK_FIRST_DETAILED_PREFERRED (1 << 5)
73 /* use +hsync +vsync for detailed mode */
74 #define EDID_QUIRK_DETAILED_SYNC_PP (1 << 6)
75 /* Force reduced-blanking timings for detailed modes */
76 #define EDID_QUIRK_FORCE_REDUCED_BLANKING (1 << 7)
77 /* Force 8bpc */
78 #define EDID_QUIRK_FORCE_8BPC (1 << 8)
79 /* Force 12bpc */
80 #define EDID_QUIRK_FORCE_12BPC (1 << 9)
81 /* Force 6bpc */
82 #define EDID_QUIRK_FORCE_6BPC (1 << 10)
83 /* Force 10bpc */
84 #define EDID_QUIRK_FORCE_10BPC (1 << 11)
85
86 struct detailed_mode_closure {
87 struct drm_connector *connector;
88 struct edid *edid;
89 bool preferred;
90 u32 quirks;
91 int modes;
92 };
93
94 #define LEVEL_DMT 0
95 #define LEVEL_GTF 1
96 #define LEVEL_GTF2 2
97 #define LEVEL_CVT 3
98
99 static const struct edid_quirk {
100 char vendor[4];
101 int product_id;
102 u32 quirks;
103 } edid_quirk_list[] = {
104 /* Acer AL1706 */
105 { "ACR", 44358, EDID_QUIRK_PREFER_LARGE_60 },
106 /* Acer F51 */
107 { "API", 0x7602, EDID_QUIRK_PREFER_LARGE_60 },
108 /* Unknown Acer */
109 { "ACR", 2423, EDID_QUIRK_FIRST_DETAILED_PREFERRED },
110
111 /* AEO model 0 reports 8 bpc, but is a 6 bpc panel */
112 { "AEO", 0, EDID_QUIRK_FORCE_6BPC },
113
114 /* Belinea 10 15 55 */
115 { "MAX", 1516, EDID_QUIRK_PREFER_LARGE_60 },
116 { "MAX", 0x77e, EDID_QUIRK_PREFER_LARGE_60 },
117
118 /* Envision Peripherals, Inc. EN-7100e */
119 { "EPI", 59264, EDID_QUIRK_135_CLOCK_TOO_HIGH },
120 /* Envision EN2028 */
121 { "EPI", 8232, EDID_QUIRK_PREFER_LARGE_60 },
122
123 /* Funai Electronics PM36B */
124 { "FCM", 13600, EDID_QUIRK_PREFER_LARGE_75 |
125 EDID_QUIRK_DETAILED_IN_CM },
126
127 /* LGD panel of HP zBook 17 G2, eDP 10 bpc, but reports unknown bpc */
128 { "LGD", 764, EDID_QUIRK_FORCE_10BPC },
129
130 /* LG Philips LCD LP154W01-A5 */
131 { "LPL", 0, EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE },
132 { "LPL", 0x2a00, EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE },
133
134 /* Philips 107p5 CRT */
135 { "PHL", 57364, EDID_QUIRK_FIRST_DETAILED_PREFERRED },
136
137 /* Proview AY765C */
138 { "PTS", 765, EDID_QUIRK_FIRST_DETAILED_PREFERRED },
139
140 /* Samsung SyncMaster 205BW. Note: irony */
141 { "SAM", 541, EDID_QUIRK_DETAILED_SYNC_PP },
142 /* Samsung SyncMaster 22[5-6]BW */
143 { "SAM", 596, EDID_QUIRK_PREFER_LARGE_60 },
144 { "SAM", 638, EDID_QUIRK_PREFER_LARGE_60 },
145
146 /* Sony PVM-2541A does up to 12 bpc, but only reports max 8 bpc */
147 { "SNY", 0x2541, EDID_QUIRK_FORCE_12BPC },
148
149 /* ViewSonic VA2026w */
150 { "VSC", 5020, EDID_QUIRK_FORCE_REDUCED_BLANKING },
151
152 /* Medion MD 30217 PG */
153 { "MED", 0x7b8, EDID_QUIRK_PREFER_LARGE_75 },
154
155 /* Panel in Samsung NP700G7A-S01PL notebook reports 6bpc */
156 { "SEC", 0xd033, EDID_QUIRK_FORCE_8BPC },
157
158 /* Rotel RSX-1058 forwards sink's EDID but only does HDMI 1.1*/
159 { "ETR", 13896, EDID_QUIRK_FORCE_8BPC },
160 };
161
162 /*
163 * Autogenerated from the DMT spec.
164 * This table is copied from xfree86/modes/xf86EdidModes.c.
165 */
166 static const struct drm_display_mode drm_dmt_modes[] = {
167 /* 0x01 - 640x350@85Hz */
168 { DRM_MODE("640x350", DRM_MODE_TYPE_DRIVER, 31500, 640, 672,
169 736, 832, 0, 350, 382, 385, 445, 0,
170 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
171 /* 0x02 - 640x400@85Hz */
172 { DRM_MODE("640x400", DRM_MODE_TYPE_DRIVER, 31500, 640, 672,
173 736, 832, 0, 400, 401, 404, 445, 0,
174 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
175 /* 0x03 - 720x400@85Hz */
176 { DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 35500, 720, 756,
177 828, 936, 0, 400, 401, 404, 446, 0,
178 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
179 /* 0x04 - 640x480@60Hz */
180 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
181 752, 800, 0, 480, 490, 492, 525, 0,
182 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
183 /* 0x05 - 640x480@72Hz */
184 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 664,
185 704, 832, 0, 480, 489, 492, 520, 0,
186 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
187 /* 0x06 - 640x480@75Hz */
188 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 656,
189 720, 840, 0, 480, 481, 484, 500, 0,
190 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
191 /* 0x07 - 640x480@85Hz */
192 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 36000, 640, 696,
193 752, 832, 0, 480, 481, 484, 509, 0,
194 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
195 /* 0x08 - 800x600@56Hz */
196 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 36000, 800, 824,
197 896, 1024, 0, 600, 601, 603, 625, 0,
198 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
199 /* 0x09 - 800x600@60Hz */
200 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840,
201 968, 1056, 0, 600, 601, 605, 628, 0,
202 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
203 /* 0x0a - 800x600@72Hz */
204 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 50000, 800, 856,
205 976, 1040, 0, 600, 637, 643, 666, 0,
206 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
207 /* 0x0b - 800x600@75Hz */
208 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 49500, 800, 816,
209 896, 1056, 0, 600, 601, 604, 625, 0,
210 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
211 /* 0x0c - 800x600@85Hz */
212 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 56250, 800, 832,
213 896, 1048, 0, 600, 601, 604, 631, 0,
214 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
215 /* 0x0d - 800x600@120Hz RB */
216 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 73250, 800, 848,
217 880, 960, 0, 600, 603, 607, 636, 0,
218 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
219 /* 0x0e - 848x480@60Hz */
220 { DRM_MODE("848x480", DRM_MODE_TYPE_DRIVER, 33750, 848, 864,
221 976, 1088, 0, 480, 486, 494, 517, 0,
222 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
223 /* 0x0f - 1024x768@43Hz, interlace */
224 { DRM_MODE("1024x768i", DRM_MODE_TYPE_DRIVER, 44900, 1024, 1032,
225 1208, 1264, 0, 768, 768, 776, 817, 0,
226 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
227 DRM_MODE_FLAG_INTERLACE) },
228 /* 0x10 - 1024x768@60Hz */
229 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048,
230 1184, 1344, 0, 768, 771, 777, 806, 0,
231 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
232 /* 0x11 - 1024x768@70Hz */
233 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 75000, 1024, 1048,
234 1184, 1328, 0, 768, 771, 777, 806, 0,
235 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
236 /* 0x12 - 1024x768@75Hz */
237 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 78750, 1024, 1040,
238 1136, 1312, 0, 768, 769, 772, 800, 0,
239 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
240 /* 0x13 - 1024x768@85Hz */
241 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 94500, 1024, 1072,
242 1168, 1376, 0, 768, 769, 772, 808, 0,
243 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
244 /* 0x14 - 1024x768@120Hz RB */
245 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 115500, 1024, 1072,
246 1104, 1184, 0, 768, 771, 775, 813, 0,
247 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
248 /* 0x15 - 1152x864@75Hz */
249 { DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216,
250 1344, 1600, 0, 864, 865, 868, 900, 0,
251 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
252 /* 0x55 - 1280x720@60Hz */
253 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390,
254 1430, 1650, 0, 720, 725, 730, 750, 0,
255 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
256 /* 0x16 - 1280x768@60Hz RB */
257 { DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 68250, 1280, 1328,
258 1360, 1440, 0, 768, 771, 778, 790, 0,
259 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
260 /* 0x17 - 1280x768@60Hz */
261 { DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 79500, 1280, 1344,
262 1472, 1664, 0, 768, 771, 778, 798, 0,
263 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
264 /* 0x18 - 1280x768@75Hz */
265 { DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 102250, 1280, 1360,
266 1488, 1696, 0, 768, 771, 778, 805, 0,
267 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
268 /* 0x19 - 1280x768@85Hz */
269 { DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 117500, 1280, 1360,
270 1496, 1712, 0, 768, 771, 778, 809, 0,
271 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
272 /* 0x1a - 1280x768@120Hz RB */
273 { DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 140250, 1280, 1328,
274 1360, 1440, 0, 768, 771, 778, 813, 0,
275 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
276 /* 0x1b - 1280x800@60Hz RB */
277 { DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 71000, 1280, 1328,
278 1360, 1440, 0, 800, 803, 809, 823, 0,
279 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
280 /* 0x1c - 1280x800@60Hz */
281 { DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 83500, 1280, 1352,
282 1480, 1680, 0, 800, 803, 809, 831, 0,
283 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
284 /* 0x1d - 1280x800@75Hz */
285 { DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 106500, 1280, 1360,
286 1488, 1696, 0, 800, 803, 809, 838, 0,
287 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
288 /* 0x1e - 1280x800@85Hz */
289 { DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 122500, 1280, 1360,
290 1496, 1712, 0, 800, 803, 809, 843, 0,
291 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
292 /* 0x1f - 1280x800@120Hz RB */
293 { DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 146250, 1280, 1328,
294 1360, 1440, 0, 800, 803, 809, 847, 0,
295 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
296 /* 0x20 - 1280x960@60Hz */
297 { DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1376,
298 1488, 1800, 0, 960, 961, 964, 1000, 0,
299 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
300 /* 0x21 - 1280x960@85Hz */
301 { DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1344,
302 1504, 1728, 0, 960, 961, 964, 1011, 0,
303 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
304 /* 0x22 - 1280x960@120Hz RB */
305 { DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 175500, 1280, 1328,
306 1360, 1440, 0, 960, 963, 967, 1017, 0,
307 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
308 /* 0x23 - 1280x1024@60Hz */
309 { DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1328,
310 1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
311 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
312 /* 0x24 - 1280x1024@75Hz */
313 { DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 135000, 1280, 1296,
314 1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
315 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
316 /* 0x25 - 1280x1024@85Hz */
317 { DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 157500, 1280, 1344,
318 1504, 1728, 0, 1024, 1025, 1028, 1072, 0,
319 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
320 /* 0x26 - 1280x1024@120Hz RB */
321 { DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 187250, 1280, 1328,
322 1360, 1440, 0, 1024, 1027, 1034, 1084, 0,
323 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
324 /* 0x27 - 1360x768@60Hz */
325 { DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 85500, 1360, 1424,
326 1536, 1792, 0, 768, 771, 777, 795, 0,
327 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
328 /* 0x28 - 1360x768@120Hz RB */
329 { DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 148250, 1360, 1408,
330 1440, 1520, 0, 768, 771, 776, 813, 0,
331 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
332 /* 0x51 - 1366x768@60Hz */
333 { DRM_MODE("1366x768", DRM_MODE_TYPE_DRIVER, 85500, 1366, 1436,
334 1579, 1792, 0, 768, 771, 774, 798, 0,
335 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
336 /* 0x56 - 1366x768@60Hz */
337 { DRM_MODE("1366x768", DRM_MODE_TYPE_DRIVER, 72000, 1366, 1380,
338 1436, 1500, 0, 768, 769, 772, 800, 0,
339 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
340 /* 0x29 - 1400x1050@60Hz RB */
341 { DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 101000, 1400, 1448,
342 1480, 1560, 0, 1050, 1053, 1057, 1080, 0,
343 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
344 /* 0x2a - 1400x1050@60Hz */
345 { DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 121750, 1400, 1488,
346 1632, 1864, 0, 1050, 1053, 1057, 1089, 0,
347 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
348 /* 0x2b - 1400x1050@75Hz */
349 { DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 156000, 1400, 1504,
350 1648, 1896, 0, 1050, 1053, 1057, 1099, 0,
351 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
352 /* 0x2c - 1400x1050@85Hz */
353 { DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 179500, 1400, 1504,
354 1656, 1912, 0, 1050, 1053, 1057, 1105, 0,
355 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
356 /* 0x2d - 1400x1050@120Hz RB */
357 { DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 208000, 1400, 1448,
358 1480, 1560, 0, 1050, 1053, 1057, 1112, 0,
359 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
360 /* 0x2e - 1440x900@60Hz RB */
361 { DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 88750, 1440, 1488,
362 1520, 1600, 0, 900, 903, 909, 926, 0,
363 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
364 /* 0x2f - 1440x900@60Hz */
365 { DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 106500, 1440, 1520,
366 1672, 1904, 0, 900, 903, 909, 934, 0,
367 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
368 /* 0x30 - 1440x900@75Hz */
369 { DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 136750, 1440, 1536,
370 1688, 1936, 0, 900, 903, 909, 942, 0,
371 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
372 /* 0x31 - 1440x900@85Hz */
373 { DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 157000, 1440, 1544,
374 1696, 1952, 0, 900, 903, 909, 948, 0,
375 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
376 /* 0x32 - 1440x900@120Hz RB */
377 { DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 182750, 1440, 1488,
378 1520, 1600, 0, 900, 903, 909, 953, 0,
379 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
380 /* 0x53 - 1600x900@60Hz */
381 { DRM_MODE("1600x900", DRM_MODE_TYPE_DRIVER, 108000, 1600, 1624,
382 1704, 1800, 0, 900, 901, 904, 1000, 0,
383 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
384 /* 0x33 - 1600x1200@60Hz */
385 { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 162000, 1600, 1664,
386 1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
387 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
388 /* 0x34 - 1600x1200@65Hz */
389 { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 175500, 1600, 1664,
390 1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
391 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
392 /* 0x35 - 1600x1200@70Hz */
393 { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 189000, 1600, 1664,
394 1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
395 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
396 /* 0x36 - 1600x1200@75Hz */
397 { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 202500, 1600, 1664,
398 1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
399 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
400 /* 0x37 - 1600x1200@85Hz */
401 { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 229500, 1600, 1664,
402 1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
403 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
404 /* 0x38 - 1600x1200@120Hz RB */
405 { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 268250, 1600, 1648,
406 1680, 1760, 0, 1200, 1203, 1207, 1271, 0,
407 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
408 /* 0x39 - 1680x1050@60Hz RB */
409 { DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 119000, 1680, 1728,
410 1760, 1840, 0, 1050, 1053, 1059, 1080, 0,
411 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
412 /* 0x3a - 1680x1050@60Hz */
413 { DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 146250, 1680, 1784,
414 1960, 2240, 0, 1050, 1053, 1059, 1089, 0,
415 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
416 /* 0x3b - 1680x1050@75Hz */
417 { DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 187000, 1680, 1800,
418 1976, 2272, 0, 1050, 1053, 1059, 1099, 0,
419 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
420 /* 0x3c - 1680x1050@85Hz */
421 { DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 214750, 1680, 1808,
422 1984, 2288, 0, 1050, 1053, 1059, 1105, 0,
423 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
424 /* 0x3d - 1680x1050@120Hz RB */
425 { DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 245500, 1680, 1728,
426 1760, 1840, 0, 1050, 1053, 1059, 1112, 0,
427 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
428 /* 0x3e - 1792x1344@60Hz */
429 { DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 204750, 1792, 1920,
430 2120, 2448, 0, 1344, 1345, 1348, 1394, 0,
431 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
432 /* 0x3f - 1792x1344@75Hz */
433 { DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 261000, 1792, 1888,
434 2104, 2456, 0, 1344, 1345, 1348, 1417, 0,
435 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
436 /* 0x40 - 1792x1344@120Hz RB */
437 { DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 333250, 1792, 1840,
438 1872, 1952, 0, 1344, 1347, 1351, 1423, 0,
439 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
440 /* 0x41 - 1856x1392@60Hz */
441 { DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 218250, 1856, 1952,
442 2176, 2528, 0, 1392, 1393, 1396, 1439, 0,
443 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
444 /* 0x42 - 1856x1392@75Hz */
445 { DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 288000, 1856, 1984,
446 2208, 2560, 0, 1392, 1393, 1396, 1500, 0,
447 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
448 /* 0x43 - 1856x1392@120Hz RB */
449 { DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 356500, 1856, 1904,
450 1936, 2016, 0, 1392, 1395, 1399, 1474, 0,
451 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
452 /* 0x52 - 1920x1080@60Hz */
453 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
454 2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
455 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
456 /* 0x44 - 1920x1200@60Hz RB */
457 { DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 154000, 1920, 1968,
458 2000, 2080, 0, 1200, 1203, 1209, 1235, 0,
459 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
460 /* 0x45 - 1920x1200@60Hz */
461 { DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 193250, 1920, 2056,
462 2256, 2592, 0, 1200, 1203, 1209, 1245, 0,
463 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
464 /* 0x46 - 1920x1200@75Hz */
465 { DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 245250, 1920, 2056,
466 2264, 2608, 0, 1200, 1203, 1209, 1255, 0,
467 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
468 /* 0x47 - 1920x1200@85Hz */
469 { DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 281250, 1920, 2064,
470 2272, 2624, 0, 1200, 1203, 1209, 1262, 0,
471 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
472 /* 0x48 - 1920x1200@120Hz RB */
473 { DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 317000, 1920, 1968,
474 2000, 2080, 0, 1200, 1203, 1209, 1271, 0,
475 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
476 /* 0x49 - 1920x1440@60Hz */
477 { DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 234000, 1920, 2048,
478 2256, 2600, 0, 1440, 1441, 1444, 1500, 0,
479 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
480 /* 0x4a - 1920x1440@75Hz */
481 { DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2064,
482 2288, 2640, 0, 1440, 1441, 1444, 1500, 0,
483 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
484 /* 0x4b - 1920x1440@120Hz RB */
485 { DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 380500, 1920, 1968,
486 2000, 2080, 0, 1440, 1443, 1447, 1525, 0,
487 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
488 /* 0x54 - 2048x1152@60Hz */
489 { DRM_MODE("2048x1152", DRM_MODE_TYPE_DRIVER, 162000, 2048, 2074,
490 2154, 2250, 0, 1152, 1153, 1156, 1200, 0,
491 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
492 /* 0x4c - 2560x1600@60Hz RB */
493 { DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 268500, 2560, 2608,
494 2640, 2720, 0, 1600, 1603, 1609, 1646, 0,
495 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
496 /* 0x4d - 2560x1600@60Hz */
497 { DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 348500, 2560, 2752,
498 3032, 3504, 0, 1600, 1603, 1609, 1658, 0,
499 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
500 /* 0x4e - 2560x1600@75Hz */
501 { DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 443250, 2560, 2768,
502 3048, 3536, 0, 1600, 1603, 1609, 1672, 0,
503 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
504 /* 0x4f - 2560x1600@85Hz */
505 { DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 505250, 2560, 2768,
506 3048, 3536, 0, 1600, 1603, 1609, 1682, 0,
507 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
508 /* 0x50 - 2560x1600@120Hz RB */
509 { DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 552750, 2560, 2608,
510 2640, 2720, 0, 1600, 1603, 1609, 1694, 0,
511 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
512 /* 0x57 - 4096x2160@60Hz RB */
513 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 556744, 4096, 4104,
514 4136, 4176, 0, 2160, 2208, 2216, 2222, 0,
515 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
516 /* 0x58 - 4096x2160@59.94Hz RB */
517 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 556188, 4096, 4104,
518 4136, 4176, 0, 2160, 2208, 2216, 2222, 0,
519 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
520 };
521
522 /*
523 * These more or less come from the DMT spec. The 720x400 modes are
524 * inferred from historical 80x25 practice. The 640x480@67 and 832x624@75
525 * modes are old-school Mac modes. The EDID spec says the 1152x864@75 mode
526 * should be 1152x870, again for the Mac, but instead we use the x864 DMT
527 * mode.
528 *
529 * The DMT modes have been fact-checked; the rest are mild guesses.
530 */
531 static const struct drm_display_mode edid_est_modes[] = {
532 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840,
533 968, 1056, 0, 600, 601, 605, 628, 0,
534 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@60Hz */
535 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 36000, 800, 824,
536 896, 1024, 0, 600, 601, 603, 625, 0,
537 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@56Hz */
538 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 656,
539 720, 840, 0, 480, 481, 484, 500, 0,
540 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@75Hz */
541 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 664,
542 704, 832, 0, 480, 489, 492, 520, 0,
543 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@72Hz */
544 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 30240, 640, 704,
545 768, 864, 0, 480, 483, 486, 525, 0,
546 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@67Hz */
547 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
548 752, 800, 0, 480, 490, 492, 525, 0,
549 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@60Hz */
550 { DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 35500, 720, 738,
551 846, 900, 0, 400, 421, 423, 449, 0,
552 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 720x400@88Hz */
553 { DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 28320, 720, 738,
554 846, 900, 0, 400, 412, 414, 449, 0,
555 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 720x400@70Hz */
556 { DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 135000, 1280, 1296,
557 1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
558 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1280x1024@75Hz */
559 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 78750, 1024, 1040,
560 1136, 1312, 0, 768, 769, 772, 800, 0,
561 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1024x768@75Hz */
562 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 75000, 1024, 1048,
563 1184, 1328, 0, 768, 771, 777, 806, 0,
564 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 1024x768@70Hz */
565 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048,
566 1184, 1344, 0, 768, 771, 777, 806, 0,
567 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 1024x768@60Hz */
568 { DRM_MODE("1024x768i", DRM_MODE_TYPE_DRIVER,44900, 1024, 1032,
569 1208, 1264, 0, 768, 768, 776, 817, 0,
570 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_INTERLACE) }, /* 1024x768@43Hz */
571 { DRM_MODE("832x624", DRM_MODE_TYPE_DRIVER, 57284, 832, 864,
572 928, 1152, 0, 624, 625, 628, 667, 0,
573 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 832x624@75Hz */
574 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 49500, 800, 816,
575 896, 1056, 0, 600, 601, 604, 625, 0,
576 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@75Hz */
577 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 50000, 800, 856,
578 976, 1040, 0, 600, 637, 643, 666, 0,
579 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@72Hz */
580 { DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216,
581 1344, 1600, 0, 864, 865, 868, 900, 0,
582 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1152x864@75Hz */
583 };
584
585 struct minimode {
586 short w;
587 short h;
588 short r;
589 short rb;
590 };
591
592 static const struct minimode est3_modes[] = {
593 /* byte 6 */
594 { 640, 350, 85, 0 },
595 { 640, 400, 85, 0 },
596 { 720, 400, 85, 0 },
597 { 640, 480, 85, 0 },
598 { 848, 480, 60, 0 },
599 { 800, 600, 85, 0 },
600 { 1024, 768, 85, 0 },
601 { 1152, 864, 75, 0 },
602 /* byte 7 */
603 { 1280, 768, 60, 1 },
604 { 1280, 768, 60, 0 },
605 { 1280, 768, 75, 0 },
606 { 1280, 768, 85, 0 },
607 { 1280, 960, 60, 0 },
608 { 1280, 960, 85, 0 },
609 { 1280, 1024, 60, 0 },
610 { 1280, 1024, 85, 0 },
611 /* byte 8 */
612 { 1360, 768, 60, 0 },
613 { 1440, 900, 60, 1 },
614 { 1440, 900, 60, 0 },
615 { 1440, 900, 75, 0 },
616 { 1440, 900, 85, 0 },
617 { 1400, 1050, 60, 1 },
618 { 1400, 1050, 60, 0 },
619 { 1400, 1050, 75, 0 },
620 /* byte 9 */
621 { 1400, 1050, 85, 0 },
622 { 1680, 1050, 60, 1 },
623 { 1680, 1050, 60, 0 },
624 { 1680, 1050, 75, 0 },
625 { 1680, 1050, 85, 0 },
626 { 1600, 1200, 60, 0 },
627 { 1600, 1200, 65, 0 },
628 { 1600, 1200, 70, 0 },
629 /* byte 10 */
630 { 1600, 1200, 75, 0 },
631 { 1600, 1200, 85, 0 },
632 { 1792, 1344, 60, 0 },
633 { 1792, 1344, 75, 0 },
634 { 1856, 1392, 60, 0 },
635 { 1856, 1392, 75, 0 },
636 { 1920, 1200, 60, 1 },
637 { 1920, 1200, 60, 0 },
638 /* byte 11 */
639 { 1920, 1200, 75, 0 },
640 { 1920, 1200, 85, 0 },
641 { 1920, 1440, 60, 0 },
642 { 1920, 1440, 75, 0 },
643 };
644
645 static const struct minimode extra_modes[] = {
646 { 1024, 576, 60, 0 },
647 { 1366, 768, 60, 0 },
648 { 1600, 900, 60, 0 },
649 { 1680, 945, 60, 0 },
650 { 1920, 1080, 60, 0 },
651 { 2048, 1152, 60, 0 },
652 { 2048, 1536, 60, 0 },
653 };
654
655 /*
656 * Probably taken from CEA-861 spec.
657 * This table is converted from xorg's hw/xfree86/modes/xf86EdidModes.c.
658 *
659 * Index using the VIC.
660 */
661 static const struct drm_display_mode edid_cea_modes[] = {
662 /* 0 - dummy, VICs start at 1 */
663 { },
664 /* 1 - 640x480@60Hz */
665 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
666 752, 800, 0, 480, 490, 492, 525, 0,
667 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
668 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
669 /* 2 - 720x480@60Hz */
670 { DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 27000, 720, 736,
671 798, 858, 0, 480, 489, 495, 525, 0,
672 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
673 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
674 /* 3 - 720x480@60Hz */
675 { DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 27000, 720, 736,
676 798, 858, 0, 480, 489, 495, 525, 0,
677 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
678 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
679 /* 4 - 1280x720@60Hz */
680 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390,
681 1430, 1650, 0, 720, 725, 730, 750, 0,
682 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
683 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
684 /* 5 - 1920x1080i@60Hz */
685 { DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
686 2052, 2200, 0, 1080, 1084, 1094, 1125, 0,
687 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
688 DRM_MODE_FLAG_INTERLACE),
689 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
690 /* 6 - 720(1440)x480i@60Hz */
691 { DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
692 801, 858, 0, 480, 488, 494, 525, 0,
693 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
694 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
695 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
696 /* 7 - 720(1440)x480i@60Hz */
697 { DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
698 801, 858, 0, 480, 488, 494, 525, 0,
699 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
700 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
701 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
702 /* 8 - 720(1440)x240@60Hz */
703 { DRM_MODE("720x240", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
704 801, 858, 0, 240, 244, 247, 262, 0,
705 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
706 DRM_MODE_FLAG_DBLCLK),
707 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
708 /* 9 - 720(1440)x240@60Hz */
709 { DRM_MODE("720x240", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
710 801, 858, 0, 240, 244, 247, 262, 0,
711 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
712 DRM_MODE_FLAG_DBLCLK),
713 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
714 /* 10 - 2880x480i@60Hz */
715 { DRM_MODE("2880x480i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
716 3204, 3432, 0, 480, 488, 494, 525, 0,
717 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
718 DRM_MODE_FLAG_INTERLACE),
719 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
720 /* 11 - 2880x480i@60Hz */
721 { DRM_MODE("2880x480i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
722 3204, 3432, 0, 480, 488, 494, 525, 0,
723 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
724 DRM_MODE_FLAG_INTERLACE),
725 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
726 /* 12 - 2880x240@60Hz */
727 { DRM_MODE("2880x240", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
728 3204, 3432, 0, 240, 244, 247, 262, 0,
729 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
730 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
731 /* 13 - 2880x240@60Hz */
732 { DRM_MODE("2880x240", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
733 3204, 3432, 0, 240, 244, 247, 262, 0,
734 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
735 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
736 /* 14 - 1440x480@60Hz */
737 { DRM_MODE("1440x480", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1472,
738 1596, 1716, 0, 480, 489, 495, 525, 0,
739 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
740 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
741 /* 15 - 1440x480@60Hz */
742 { DRM_MODE("1440x480", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1472,
743 1596, 1716, 0, 480, 489, 495, 525, 0,
744 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
745 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
746 /* 16 - 1920x1080@60Hz */
747 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
748 2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
749 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
750 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
751 /* 17 - 720x576@50Hz */
752 { DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
753 796, 864, 0, 576, 581, 586, 625, 0,
754 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
755 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
756 /* 18 - 720x576@50Hz */
757 { DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
758 796, 864, 0, 576, 581, 586, 625, 0,
759 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
760 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
761 /* 19 - 1280x720@50Hz */
762 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1720,
763 1760, 1980, 0, 720, 725, 730, 750, 0,
764 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
765 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
766 /* 20 - 1920x1080i@50Hz */
767 { DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
768 2492, 2640, 0, 1080, 1084, 1094, 1125, 0,
769 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
770 DRM_MODE_FLAG_INTERLACE),
771 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
772 /* 21 - 720(1440)x576i@50Hz */
773 { DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
774 795, 864, 0, 576, 580, 586, 625, 0,
775 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
776 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
777 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
778 /* 22 - 720(1440)x576i@50Hz */
779 { DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
780 795, 864, 0, 576, 580, 586, 625, 0,
781 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
782 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
783 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
784 /* 23 - 720(1440)x288@50Hz */
785 { DRM_MODE("720x288", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
786 795, 864, 0, 288, 290, 293, 312, 0,
787 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
788 DRM_MODE_FLAG_DBLCLK),
789 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
790 /* 24 - 720(1440)x288@50Hz */
791 { DRM_MODE("720x288", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
792 795, 864, 0, 288, 290, 293, 312, 0,
793 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
794 DRM_MODE_FLAG_DBLCLK),
795 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
796 /* 25 - 2880x576i@50Hz */
797 { DRM_MODE("2880x576i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
798 3180, 3456, 0, 576, 580, 586, 625, 0,
799 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
800 DRM_MODE_FLAG_INTERLACE),
801 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
802 /* 26 - 2880x576i@50Hz */
803 { DRM_MODE("2880x576i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
804 3180, 3456, 0, 576, 580, 586, 625, 0,
805 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
806 DRM_MODE_FLAG_INTERLACE),
807 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
808 /* 27 - 2880x288@50Hz */
809 { DRM_MODE("2880x288", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
810 3180, 3456, 0, 288, 290, 293, 312, 0,
811 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
812 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
813 /* 28 - 2880x288@50Hz */
814 { DRM_MODE("2880x288", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
815 3180, 3456, 0, 288, 290, 293, 312, 0,
816 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
817 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
818 /* 29 - 1440x576@50Hz */
819 { DRM_MODE("1440x576", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464,
820 1592, 1728, 0, 576, 581, 586, 625, 0,
821 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
822 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
823 /* 30 - 1440x576@50Hz */
824 { DRM_MODE("1440x576", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464,
825 1592, 1728, 0, 576, 581, 586, 625, 0,
826 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
827 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
828 /* 31 - 1920x1080@50Hz */
829 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
830 2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
831 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
832 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
833 /* 32 - 1920x1080@24Hz */
834 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2558,
835 2602, 2750, 0, 1080, 1084, 1089, 1125, 0,
836 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
837 .vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
838 /* 33 - 1920x1080@25Hz */
839 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
840 2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
841 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
842 .vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
843 /* 34 - 1920x1080@30Hz */
844 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
845 2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
846 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
847 .vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
848 /* 35 - 2880x480@60Hz */
849 { DRM_MODE("2880x480", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2944,
850 3192, 3432, 0, 480, 489, 495, 525, 0,
851 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
852 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
853 /* 36 - 2880x480@60Hz */
854 { DRM_MODE("2880x480", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2944,
855 3192, 3432, 0, 480, 489, 495, 525, 0,
856 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
857 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
858 /* 37 - 2880x576@50Hz */
859 { DRM_MODE("2880x576", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2928,
860 3184, 3456, 0, 576, 581, 586, 625, 0,
861 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
862 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
863 /* 38 - 2880x576@50Hz */
864 { DRM_MODE("2880x576", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2928,
865 3184, 3456, 0, 576, 581, 586, 625, 0,
866 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
867 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
868 /* 39 - 1920x1080i@50Hz */
869 { DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 72000, 1920, 1952,
870 2120, 2304, 0, 1080, 1126, 1136, 1250, 0,
871 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC |
872 DRM_MODE_FLAG_INTERLACE),
873 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
874 /* 40 - 1920x1080i@100Hz */
875 { DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
876 2492, 2640, 0, 1080, 1084, 1094, 1125, 0,
877 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
878 DRM_MODE_FLAG_INTERLACE),
879 .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
880 /* 41 - 1280x720@100Hz */
881 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1720,
882 1760, 1980, 0, 720, 725, 730, 750, 0,
883 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
884 .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
885 /* 42 - 720x576@100Hz */
886 { DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
887 796, 864, 0, 576, 581, 586, 625, 0,
888 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
889 .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
890 /* 43 - 720x576@100Hz */
891 { DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
892 796, 864, 0, 576, 581, 586, 625, 0,
893 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
894 .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
895 /* 44 - 720(1440)x576i@100Hz */
896 { DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
897 795, 864, 0, 576, 580, 586, 625, 0,
898 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
899 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
900 .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
901 /* 45 - 720(1440)x576i@100Hz */
902 { DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
903 795, 864, 0, 576, 580, 586, 625, 0,
904 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
905 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
906 .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
907 /* 46 - 1920x1080i@120Hz */
908 { DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
909 2052, 2200, 0, 1080, 1084, 1094, 1125, 0,
910 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
911 DRM_MODE_FLAG_INTERLACE),
912 .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
913 /* 47 - 1280x720@120Hz */
914 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1390,
915 1430, 1650, 0, 720, 725, 730, 750, 0,
916 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
917 .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
918 /* 48 - 720x480@120Hz */
919 { DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 54000, 720, 736,
920 798, 858, 0, 480, 489, 495, 525, 0,
921 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
922 .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
923 /* 49 - 720x480@120Hz */
924 { DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 54000, 720, 736,
925 798, 858, 0, 480, 489, 495, 525, 0,
926 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
927 .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
928 /* 50 - 720(1440)x480i@120Hz */
929 { DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 27000, 720, 739,
930 801, 858, 0, 480, 488, 494, 525, 0,
931 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
932 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
933 .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
934 /* 51 - 720(1440)x480i@120Hz */
935 { DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 27000, 720, 739,
936 801, 858, 0, 480, 488, 494, 525, 0,
937 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
938 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
939 .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
940 /* 52 - 720x576@200Hz */
941 { DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 108000, 720, 732,
942 796, 864, 0, 576, 581, 586, 625, 0,
943 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
944 .vrefresh = 200, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
945 /* 53 - 720x576@200Hz */
946 { DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 108000, 720, 732,
947 796, 864, 0, 576, 581, 586, 625, 0,
948 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
949 .vrefresh = 200, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
950 /* 54 - 720(1440)x576i@200Hz */
951 { DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
952 795, 864, 0, 576, 580, 586, 625, 0,
953 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
954 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
955 .vrefresh = 200, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
956 /* 55 - 720(1440)x576i@200Hz */
957 { DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
958 795, 864, 0, 576, 580, 586, 625, 0,
959 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
960 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
961 .vrefresh = 200, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
962 /* 56 - 720x480@240Hz */
963 { DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 108000, 720, 736,
964 798, 858, 0, 480, 489, 495, 525, 0,
965 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
966 .vrefresh = 240, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
967 /* 57 - 720x480@240Hz */
968 { DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 108000, 720, 736,
969 798, 858, 0, 480, 489, 495, 525, 0,
970 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
971 .vrefresh = 240, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
972 /* 58 - 720(1440)x480i@240Hz */
973 { DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 54000, 720, 739,
974 801, 858, 0, 480, 488, 494, 525, 0,
975 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
976 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
977 .vrefresh = 240, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
978 /* 59 - 720(1440)x480i@240Hz */
979 { DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 54000, 720, 739,
980 801, 858, 0, 480, 488, 494, 525, 0,
981 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
982 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
983 .vrefresh = 240, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
984 /* 60 - 1280x720@24Hz */
985 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 59400, 1280, 3040,
986 3080, 3300, 0, 720, 725, 730, 750, 0,
987 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
988 .vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
989 /* 61 - 1280x720@25Hz */
990 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3700,
991 3740, 3960, 0, 720, 725, 730, 750, 0,
992 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
993 .vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
994 /* 62 - 1280x720@30Hz */
995 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3040,
996 3080, 3300, 0, 720, 725, 730, 750, 0,
997 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
998 .vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
999 /* 63 - 1920x1080@120Hz */
1000 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2008,
1001 2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
1002 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1003 .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1004 /* 64 - 1920x1080@100Hz */
1005 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2448,
1006 2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
1007 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1008 .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1009 };
1010
1011 /*
1012 * HDMI 1.4 4k modes. Index using the VIC.
1013 */
1014 static const struct drm_display_mode edid_4k_modes[] = {
1015 /* 0 - dummy, VICs start at 1 */
1016 { },
1017 /* 1 - 3840x2160@30Hz */
1018 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000,
1019 3840, 4016, 4104, 4400, 0,
1020 2160, 2168, 2178, 2250, 0,
1021 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1022 .vrefresh = 30, },
1023 /* 2 - 3840x2160@25Hz */
1024 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000,
1025 3840, 4896, 4984, 5280, 0,
1026 2160, 2168, 2178, 2250, 0,
1027 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1028 .vrefresh = 25, },
1029 /* 3 - 3840x2160@24Hz */
1030 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000,
1031 3840, 5116, 5204, 5500, 0,
1032 2160, 2168, 2178, 2250, 0,
1033 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1034 .vrefresh = 24, },
1035 /* 4 - 4096x2160@24Hz (SMPTE) */
1036 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000,
1037 4096, 5116, 5204, 5500, 0,
1038 2160, 2168, 2178, 2250, 0,
1039 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1040 .vrefresh = 24, },
1041 };
1042
1043 /*** DDC fetch and block validation ***/
1044
1045 static const u8 edid_header[] = {
1046 0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00
1047 };
1048
1049 /**
1050 * drm_edid_header_is_valid - sanity check the header of the base EDID block
1051 * @raw_edid: pointer to raw base EDID block
1052 *
1053 * Sanity check the header of the base EDID block.
1054 *
1055 * Return: 8 if the header is perfect, down to 0 if it's totally wrong.
1056 */
1057 int drm_edid_header_is_valid(const u8 *raw_edid)
1058 {
1059 int i, score = 0;
1060
1061 for (i = 0; i < sizeof(edid_header); i++)
1062 if (raw_edid[i] == edid_header[i])
1063 score++;
1064
1065 return score;
1066 }
1067 EXPORT_SYMBOL(drm_edid_header_is_valid);
1068
1069 static int edid_fixup __read_mostly = 6;
1070 module_param_named(edid_fixup, edid_fixup, int, 0400);
1071 MODULE_PARM_DESC(edid_fixup,
1072 "Minimum number of valid EDID header bytes (0-8, default 6)");
1073
1074 static void drm_get_displayid(struct drm_connector *connector,
1075 struct edid *edid);
1076
1077 static int drm_edid_block_checksum(const u8 *raw_edid)
1078 {
1079 int i;
1080 u8 csum = 0;
1081 for (i = 0; i < EDID_LENGTH; i++)
1082 csum += raw_edid[i];
1083
1084 return csum;
1085 }
1086
1087 static bool drm_edid_is_zero(const u8 *in_edid, int length)
1088 {
1089 if (memchr_inv(in_edid, 0, length))
1090 return false;
1091
1092 return true;
1093 }
1094
1095 /**
1096 * drm_edid_block_valid - Sanity check the EDID block (base or extension)
1097 * @raw_edid: pointer to raw EDID block
1098 * @block: type of block to validate (0 for base, extension otherwise)
1099 * @print_bad_edid: if true, dump bad EDID blocks to the console
1100 * @edid_corrupt: if true, the header or checksum is invalid
1101 *
1102 * Validate a base or extension EDID block and optionally dump bad blocks to
1103 * the console.
1104 *
1105 * Return: True if the block is valid, false otherwise.
1106 */
1107 bool drm_edid_block_valid(u8 *raw_edid, int block, bool print_bad_edid,
1108 bool *edid_corrupt)
1109 {
1110 u8 csum;
1111 struct edid *edid = (struct edid *)raw_edid;
1112
1113 if (WARN_ON(!raw_edid))
1114 return false;
1115
1116 if (edid_fixup > 8 || edid_fixup < 0)
1117 edid_fixup = 6;
1118
1119 if (block == 0) {
1120 int score = drm_edid_header_is_valid(raw_edid);
1121 if (score == 8) {
1122 if (edid_corrupt)
1123 *edid_corrupt = false;
1124 } else if (score >= edid_fixup) {
1125 /* Displayport Link CTS Core 1.2 rev1.1 test 4.2.2.6
1126 * The corrupt flag needs to be set here otherwise, the
1127 * fix-up code here will correct the problem, the
1128 * checksum is correct and the test fails
1129 */
1130 if (edid_corrupt)
1131 *edid_corrupt = true;
1132 DRM_DEBUG("Fixing EDID header, your hardware may be failing\n");
1133 memcpy(raw_edid, edid_header, sizeof(edid_header));
1134 } else {
1135 if (edid_corrupt)
1136 *edid_corrupt = true;
1137 goto bad;
1138 }
1139 }
1140
1141 csum = drm_edid_block_checksum(raw_edid);
1142 if (csum) {
1143 if (edid_corrupt)
1144 *edid_corrupt = true;
1145
1146 /* allow CEA to slide through, switches mangle this */
1147 if (raw_edid[0] == CEA_EXT) {
1148 DRM_DEBUG("EDID checksum is invalid, remainder is %d\n", csum);
1149 DRM_DEBUG("Assuming a KVM switch modified the CEA block but left the original checksum\n");
1150 } else {
1151 if (print_bad_edid)
1152 DRM_NOTE("EDID checksum is invalid, remainder is %d\n", csum);
1153
1154 goto bad;
1155 }
1156 }
1157
1158 /* per-block-type checks */
1159 switch (raw_edid[0]) {
1160 case 0: /* base */
1161 if (edid->version != 1) {
1162 DRM_NOTE("EDID has major version %d, instead of 1\n", edid->version);
1163 goto bad;
1164 }
1165
1166 if (edid->revision > 4)
1167 DRM_DEBUG("EDID minor > 4, assuming backward compatibility\n");
1168 break;
1169
1170 default:
1171 break;
1172 }
1173
1174 return true;
1175
1176 bad:
1177 if (print_bad_edid) {
1178 if (drm_edid_is_zero(raw_edid, EDID_LENGTH)) {
1179 pr_notice("EDID block is all zeroes\n");
1180 } else {
1181 pr_notice("Raw EDID:\n");
1182 print_hex_dump(KERN_NOTICE,
1183 " \t", DUMP_PREFIX_NONE, 16, 1,
1184 raw_edid, EDID_LENGTH, false);
1185 }
1186 }
1187 return false;
1188 }
1189 EXPORT_SYMBOL(drm_edid_block_valid);
1190
1191 /**
1192 * drm_edid_is_valid - sanity check EDID data
1193 * @edid: EDID data
1194 *
1195 * Sanity-check an entire EDID record (including extensions)
1196 *
1197 * Return: True if the EDID data is valid, false otherwise.
1198 */
1199 bool drm_edid_is_valid(struct edid *edid)
1200 {
1201 int i;
1202 u8 *raw = (u8 *)edid;
1203
1204 if (!edid)
1205 return false;
1206
1207 for (i = 0; i <= edid->extensions; i++)
1208 if (!drm_edid_block_valid(raw + i * EDID_LENGTH, i, true, NULL))
1209 return false;
1210
1211 return true;
1212 }
1213 EXPORT_SYMBOL(drm_edid_is_valid);
1214
1215 #define DDC_SEGMENT_ADDR 0x30
1216 /**
1217 * drm_do_probe_ddc_edid() - get EDID information via I2C
1218 * @data: I2C device adapter
1219 * @buf: EDID data buffer to be filled
1220 * @block: 128 byte EDID block to start fetching from
1221 * @len: EDID data buffer length to fetch
1222 *
1223 * Try to fetch EDID information by calling I2C driver functions.
1224 *
1225 * Return: 0 on success or -1 on failure.
1226 */
1227 static int
1228 drm_do_probe_ddc_edid(void *data, u8 *buf, unsigned int block, size_t len)
1229 {
1230 struct i2c_adapter *adapter = data;
1231 unsigned char start = block * EDID_LENGTH;
1232 unsigned char segment = block >> 1;
1233 unsigned char xfers = segment ? 3 : 2;
1234 int ret, retries = 5;
1235
1236 /*
1237 * The core I2C driver will automatically retry the transfer if the
1238 * adapter reports EAGAIN. However, we find that bit-banging transfers
1239 * are susceptible to errors under a heavily loaded machine and
1240 * generate spurious NAKs and timeouts. Retrying the transfer
1241 * of the individual block a few times seems to overcome this.
1242 */
1243 do {
1244 struct i2c_msg msgs[] = {
1245 {
1246 .addr = DDC_SEGMENT_ADDR,
1247 .flags = 0,
1248 .len = 1,
1249 .buf = &segment,
1250 }, {
1251 .addr = DDC_ADDR,
1252 .flags = 0,
1253 .len = 1,
1254 .buf = &start,
1255 }, {
1256 .addr = DDC_ADDR,
1257 .flags = I2C_M_RD,
1258 .len = len,
1259 .buf = buf,
1260 }
1261 };
1262
1263 /*
1264 * Avoid sending the segment addr to not upset non-compliant
1265 * DDC monitors.
1266 */
1267 ret = i2c_transfer(adapter, &msgs[3 - xfers], xfers);
1268
1269 if (ret == -ENXIO) {
1270 DRM_DEBUG_KMS("drm: skipping non-existent adapter %s\n",
1271 adapter->name);
1272 break;
1273 }
1274 } while (ret != xfers && --retries);
1275
1276 return ret == xfers ? 0 : -1;
1277 }
1278
1279 static void connector_bad_edid(struct drm_connector *connector,
1280 u8 *edid, int num_blocks)
1281 {
1282 int i;
1283
1284 if (connector->bad_edid_counter++ && !(drm_debug & DRM_UT_KMS))
1285 return;
1286
1287 dev_warn(connector->dev->dev,
1288 "%s: EDID is invalid:\n",
1289 connector->name);
1290 for (i = 0; i < num_blocks; i++) {
1291 u8 *block = edid + i * EDID_LENGTH;
1292 char prefix[20];
1293
1294 if (drm_edid_is_zero(block, EDID_LENGTH))
1295 sprintf(prefix, "\t[%02x] ZERO ", i);
1296 else if (!drm_edid_block_valid(block, i, false, NULL))
1297 sprintf(prefix, "\t[%02x] BAD ", i);
1298 else
1299 sprintf(prefix, "\t[%02x] GOOD ", i);
1300
1301 print_hex_dump(KERN_WARNING,
1302 prefix, DUMP_PREFIX_NONE, 16, 1,
1303 block, EDID_LENGTH, false);
1304 }
1305 }
1306
1307 /**
1308 * drm_do_get_edid - get EDID data using a custom EDID block read function
1309 * @connector: connector we're probing
1310 * @get_edid_block: EDID block read function
1311 * @data: private data passed to the block read function
1312 *
1313 * When the I2C adapter connected to the DDC bus is hidden behind a device that
1314 * exposes a different interface to read EDID blocks this function can be used
1315 * to get EDID data using a custom block read function.
1316 *
1317 * As in the general case the DDC bus is accessible by the kernel at the I2C
1318 * level, drivers must make all reasonable efforts to expose it as an I2C
1319 * adapter and use drm_get_edid() instead of abusing this function.
1320 *
1321 * Return: Pointer to valid EDID or NULL if we couldn't find any.
1322 */
1323 struct edid *drm_do_get_edid(struct drm_connector *connector,
1324 int (*get_edid_block)(void *data, u8 *buf, unsigned int block,
1325 size_t len),
1326 void *data)
1327 {
1328 int i, j = 0, valid_extensions = 0;
1329 u8 *edid, *new;
1330
1331 if ((edid = kmalloc(EDID_LENGTH, GFP_KERNEL)) == NULL)
1332 return NULL;
1333
1334 /* base block fetch */
1335 for (i = 0; i < 4; i++) {
1336 if (get_edid_block(data, edid, 0, EDID_LENGTH))
1337 goto out;
1338 if (drm_edid_block_valid(edid, 0, false,
1339 &connector->edid_corrupt))
1340 break;
1341 if (i == 0 && drm_edid_is_zero(edid, EDID_LENGTH)) {
1342 connector->null_edid_counter++;
1343 goto carp;
1344 }
1345 }
1346 if (i == 4)
1347 goto carp;
1348
1349 /* if there's no extensions, we're done */
1350 valid_extensions = edid[0x7e];
1351 if (valid_extensions == 0)
1352 return (struct edid *)edid;
1353
1354 new = krealloc(edid, (valid_extensions + 1) * EDID_LENGTH, GFP_KERNEL);
1355 if (!new)
1356 goto out;
1357 edid = new;
1358
1359 for (j = 1; j <= edid[0x7e]; j++) {
1360 u8 *block = edid + j * EDID_LENGTH;
1361
1362 for (i = 0; i < 4; i++) {
1363 if (get_edid_block(data, block, j, EDID_LENGTH))
1364 goto out;
1365 if (drm_edid_block_valid(block, j, false, NULL))
1366 break;
1367 }
1368
1369 if (i == 4)
1370 valid_extensions--;
1371 }
1372
1373 if (valid_extensions != edid[0x7e]) {
1374 u8 *base;
1375
1376 connector_bad_edid(connector, edid, edid[0x7e] + 1);
1377
1378 edid[EDID_LENGTH-1] += edid[0x7e] - valid_extensions;
1379 edid[0x7e] = valid_extensions;
1380
1381 new = kmalloc((valid_extensions + 1) * EDID_LENGTH, GFP_KERNEL);
1382 if (!new)
1383 goto out;
1384
1385 base = new;
1386 for (i = 0; i <= edid[0x7e]; i++) {
1387 u8 *block = edid + i * EDID_LENGTH;
1388
1389 if (!drm_edid_block_valid(block, i, false, NULL))
1390 continue;
1391
1392 memcpy(base, block, EDID_LENGTH);
1393 base += EDID_LENGTH;
1394 }
1395
1396 kfree(edid);
1397 edid = new;
1398 }
1399
1400 return (struct edid *)edid;
1401
1402 carp:
1403 connector_bad_edid(connector, edid, 1);
1404 out:
1405 kfree(edid);
1406 return NULL;
1407 }
1408 EXPORT_SYMBOL_GPL(drm_do_get_edid);
1409
1410 /**
1411 * drm_probe_ddc() - probe DDC presence
1412 * @adapter: I2C adapter to probe
1413 *
1414 * Return: True on success, false on failure.
1415 */
1416 bool
1417 drm_probe_ddc(struct i2c_adapter *adapter)
1418 {
1419 unsigned char out;
1420
1421 return (drm_do_probe_ddc_edid(adapter, &out, 0, 1) == 0);
1422 }
1423 EXPORT_SYMBOL(drm_probe_ddc);
1424
1425 /**
1426 * drm_get_edid - get EDID data, if available
1427 * @connector: connector we're probing
1428 * @adapter: I2C adapter to use for DDC
1429 *
1430 * Poke the given I2C channel to grab EDID data if possible. If found,
1431 * attach it to the connector.
1432 *
1433 * Return: Pointer to valid EDID or NULL if we couldn't find any.
1434 */
1435 struct edid *drm_get_edid(struct drm_connector *connector,
1436 struct i2c_adapter *adapter)
1437 {
1438 struct edid *edid;
1439
1440 if (connector->force == DRM_FORCE_OFF)
1441 return NULL;
1442
1443 if (connector->force == DRM_FORCE_UNSPECIFIED && !drm_probe_ddc(adapter))
1444 return NULL;
1445
1446 edid = drm_do_get_edid(connector, drm_do_probe_ddc_edid, adapter);
1447 if (edid)
1448 drm_get_displayid(connector, edid);
1449 return edid;
1450 }
1451 EXPORT_SYMBOL(drm_get_edid);
1452
1453 /**
1454 * drm_get_edid_switcheroo - get EDID data for a vga_switcheroo output
1455 * @connector: connector we're probing
1456 * @adapter: I2C adapter to use for DDC
1457 *
1458 * Wrapper around drm_get_edid() for laptops with dual GPUs using one set of
1459 * outputs. The wrapper adds the requisite vga_switcheroo calls to temporarily
1460 * switch DDC to the GPU which is retrieving EDID.
1461 *
1462 * Return: Pointer to valid EDID or %NULL if we couldn't find any.
1463 */
1464 struct edid *drm_get_edid_switcheroo(struct drm_connector *connector,
1465 struct i2c_adapter *adapter)
1466 {
1467 struct pci_dev *pdev = connector->dev->pdev;
1468 struct edid *edid;
1469
1470 vga_switcheroo_lock_ddc(pdev);
1471 edid = drm_get_edid(connector, adapter);
1472 vga_switcheroo_unlock_ddc(pdev);
1473
1474 return edid;
1475 }
1476 EXPORT_SYMBOL(drm_get_edid_switcheroo);
1477
1478 /**
1479 * drm_edid_duplicate - duplicate an EDID and the extensions
1480 * @edid: EDID to duplicate
1481 *
1482 * Return: Pointer to duplicated EDID or NULL on allocation failure.
1483 */
1484 struct edid *drm_edid_duplicate(const struct edid *edid)
1485 {
1486 return kmemdup(edid, (edid->extensions + 1) * EDID_LENGTH, GFP_KERNEL);
1487 }
1488 EXPORT_SYMBOL(drm_edid_duplicate);
1489
1490 /*** EDID parsing ***/
1491
1492 /**
1493 * edid_vendor - match a string against EDID's obfuscated vendor field
1494 * @edid: EDID to match
1495 * @vendor: vendor string
1496 *
1497 * Returns true if @vendor is in @edid, false otherwise
1498 */
1499 static bool edid_vendor(struct edid *edid, const char *vendor)
1500 {
1501 char edid_vendor[3];
1502
1503 edid_vendor[0] = ((edid->mfg_id[0] & 0x7c) >> 2) + '@';
1504 edid_vendor[1] = (((edid->mfg_id[0] & 0x3) << 3) |
1505 ((edid->mfg_id[1] & 0xe0) >> 5)) + '@';
1506 edid_vendor[2] = (edid->mfg_id[1] & 0x1f) + '@';
1507
1508 return !strncmp(edid_vendor, vendor, 3);
1509 }
1510
1511 /**
1512 * edid_get_quirks - return quirk flags for a given EDID
1513 * @edid: EDID to process
1514 *
1515 * This tells subsequent routines what fixes they need to apply.
1516 */
1517 static u32 edid_get_quirks(struct edid *edid)
1518 {
1519 const struct edid_quirk *quirk;
1520 int i;
1521
1522 for (i = 0; i < ARRAY_SIZE(edid_quirk_list); i++) {
1523 quirk = &edid_quirk_list[i];
1524
1525 if (edid_vendor(edid, quirk->vendor) &&
1526 (EDID_PRODUCT_ID(edid) == quirk->product_id))
1527 return quirk->quirks;
1528 }
1529
1530 return 0;
1531 }
1532
1533 #define MODE_SIZE(m) ((m)->hdisplay * (m)->vdisplay)
1534 #define MODE_REFRESH_DIFF(c,t) (abs((c) - (t)))
1535
1536 /**
1537 * edid_fixup_preferred - set preferred modes based on quirk list
1538 * @connector: has mode list to fix up
1539 * @quirks: quirks list
1540 *
1541 * Walk the mode list for @connector, clearing the preferred status
1542 * on existing modes and setting it anew for the right mode ala @quirks.
1543 */
1544 static void edid_fixup_preferred(struct drm_connector *connector,
1545 u32 quirks)
1546 {
1547 struct drm_display_mode *t, *cur_mode, *preferred_mode;
1548 int target_refresh = 0;
1549 int cur_vrefresh, preferred_vrefresh;
1550
1551 if (list_empty(&connector->probed_modes))
1552 return;
1553
1554 if (quirks & EDID_QUIRK_PREFER_LARGE_60)
1555 target_refresh = 60;
1556 if (quirks & EDID_QUIRK_PREFER_LARGE_75)
1557 target_refresh = 75;
1558
1559 preferred_mode = list_first_entry(&connector->probed_modes,
1560 struct drm_display_mode, head);
1561
1562 list_for_each_entry_safe(cur_mode, t, &connector->probed_modes, head) {
1563 cur_mode->type &= ~DRM_MODE_TYPE_PREFERRED;
1564
1565 if (cur_mode == preferred_mode)
1566 continue;
1567
1568 /* Largest mode is preferred */
1569 if (MODE_SIZE(cur_mode) > MODE_SIZE(preferred_mode))
1570 preferred_mode = cur_mode;
1571
1572 cur_vrefresh = cur_mode->vrefresh ?
1573 cur_mode->vrefresh : drm_mode_vrefresh(cur_mode);
1574 preferred_vrefresh = preferred_mode->vrefresh ?
1575 preferred_mode->vrefresh : drm_mode_vrefresh(preferred_mode);
1576 /* At a given size, try to get closest to target refresh */
1577 if ((MODE_SIZE(cur_mode) == MODE_SIZE(preferred_mode)) &&
1578 MODE_REFRESH_DIFF(cur_vrefresh, target_refresh) <
1579 MODE_REFRESH_DIFF(preferred_vrefresh, target_refresh)) {
1580 preferred_mode = cur_mode;
1581 }
1582 }
1583
1584 preferred_mode->type |= DRM_MODE_TYPE_PREFERRED;
1585 }
1586
1587 static bool
1588 mode_is_rb(const struct drm_display_mode *mode)
1589 {
1590 return (mode->htotal - mode->hdisplay == 160) &&
1591 (mode->hsync_end - mode->hdisplay == 80) &&
1592 (mode->hsync_end - mode->hsync_start == 32) &&
1593 (mode->vsync_start - mode->vdisplay == 3);
1594 }
1595
1596 /*
1597 * drm_mode_find_dmt - Create a copy of a mode if present in DMT
1598 * @dev: Device to duplicate against
1599 * @hsize: Mode width
1600 * @vsize: Mode height
1601 * @fresh: Mode refresh rate
1602 * @rb: Mode reduced-blanking-ness
1603 *
1604 * Walk the DMT mode list looking for a match for the given parameters.
1605 *
1606 * Return: A newly allocated copy of the mode, or NULL if not found.
1607 */
1608 struct drm_display_mode *drm_mode_find_dmt(struct drm_device *dev,
1609 int hsize, int vsize, int fresh,
1610 bool rb)
1611 {
1612 int i;
1613
1614 for (i = 0; i < ARRAY_SIZE(drm_dmt_modes); i++) {
1615 const struct drm_display_mode *ptr = &drm_dmt_modes[i];
1616 if (hsize != ptr->hdisplay)
1617 continue;
1618 if (vsize != ptr->vdisplay)
1619 continue;
1620 if (fresh != drm_mode_vrefresh(ptr))
1621 continue;
1622 if (rb != mode_is_rb(ptr))
1623 continue;
1624
1625 return drm_mode_duplicate(dev, ptr);
1626 }
1627
1628 return NULL;
1629 }
1630 EXPORT_SYMBOL(drm_mode_find_dmt);
1631
1632 typedef void detailed_cb(struct detailed_timing *timing, void *closure);
1633
1634 static void
1635 cea_for_each_detailed_block(u8 *ext, detailed_cb *cb, void *closure)
1636 {
1637 int i, n = 0;
1638 u8 d = ext[0x02];
1639 u8 *det_base = ext + d;
1640
1641 n = (127 - d) / 18;
1642 for (i = 0; i < n; i++)
1643 cb((struct detailed_timing *)(det_base + 18 * i), closure);
1644 }
1645
1646 static void
1647 vtb_for_each_detailed_block(u8 *ext, detailed_cb *cb, void *closure)
1648 {
1649 unsigned int i, n = min((int)ext[0x02], 6);
1650 u8 *det_base = ext + 5;
1651
1652 if (ext[0x01] != 1)
1653 return; /* unknown version */
1654
1655 for (i = 0; i < n; i++)
1656 cb((struct detailed_timing *)(det_base + 18 * i), closure);
1657 }
1658
1659 static void
1660 drm_for_each_detailed_block(u8 *raw_edid, detailed_cb *cb, void *closure)
1661 {
1662 int i;
1663 struct edid *edid = (struct edid *)raw_edid;
1664
1665 if (edid == NULL)
1666 return;
1667
1668 for (i = 0; i < EDID_DETAILED_TIMINGS; i++)
1669 cb(&(edid->detailed_timings[i]), closure);
1670
1671 for (i = 1; i <= raw_edid[0x7e]; i++) {
1672 u8 *ext = raw_edid + (i * EDID_LENGTH);
1673 switch (*ext) {
1674 case CEA_EXT:
1675 cea_for_each_detailed_block(ext, cb, closure);
1676 break;
1677 case VTB_EXT:
1678 vtb_for_each_detailed_block(ext, cb, closure);
1679 break;
1680 default:
1681 break;
1682 }
1683 }
1684 }
1685
1686 static void
1687 is_rb(struct detailed_timing *t, void *data)
1688 {
1689 u8 *r = (u8 *)t;
1690 if (r[3] == EDID_DETAIL_MONITOR_RANGE)
1691 if (r[15] & 0x10)
1692 *(bool *)data = true;
1693 }
1694
1695 /* EDID 1.4 defines this explicitly. For EDID 1.3, we guess, badly. */
1696 static bool
1697 drm_monitor_supports_rb(struct edid *edid)
1698 {
1699 if (edid->revision >= 4) {
1700 bool ret = false;
1701 drm_for_each_detailed_block((u8 *)edid, is_rb, &ret);
1702 return ret;
1703 }
1704
1705 return ((edid->input & DRM_EDID_INPUT_DIGITAL) != 0);
1706 }
1707
1708 static void
1709 find_gtf2(struct detailed_timing *t, void *data)
1710 {
1711 u8 *r = (u8 *)t;
1712 if (r[3] == EDID_DETAIL_MONITOR_RANGE && r[10] == 0x02)
1713 *(u8 **)data = r;
1714 }
1715
1716 /* Secondary GTF curve kicks in above some break frequency */
1717 static int
1718 drm_gtf2_hbreak(struct edid *edid)
1719 {
1720 u8 *r = NULL;
1721 drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
1722 return r ? (r[12] * 2) : 0;
1723 }
1724
1725 static int
1726 drm_gtf2_2c(struct edid *edid)
1727 {
1728 u8 *r = NULL;
1729 drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
1730 return r ? r[13] : 0;
1731 }
1732
1733 static int
1734 drm_gtf2_m(struct edid *edid)
1735 {
1736 u8 *r = NULL;
1737 drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
1738 return r ? (r[15] << 8) + r[14] : 0;
1739 }
1740
1741 static int
1742 drm_gtf2_k(struct edid *edid)
1743 {
1744 u8 *r = NULL;
1745 drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
1746 return r ? r[16] : 0;
1747 }
1748
1749 static int
1750 drm_gtf2_2j(struct edid *edid)
1751 {
1752 u8 *r = NULL;
1753 drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
1754 return r ? r[17] : 0;
1755 }
1756
1757 /**
1758 * standard_timing_level - get std. timing level(CVT/GTF/DMT)
1759 * @edid: EDID block to scan
1760 */
1761 static int standard_timing_level(struct edid *edid)
1762 {
1763 if (edid->revision >= 2) {
1764 if (edid->revision >= 4 && (edid->features & DRM_EDID_FEATURE_DEFAULT_GTF))
1765 return LEVEL_CVT;
1766 if (drm_gtf2_hbreak(edid))
1767 return LEVEL_GTF2;
1768 return LEVEL_GTF;
1769 }
1770 return LEVEL_DMT;
1771 }
1772
1773 /*
1774 * 0 is reserved. The spec says 0x01 fill for unused timings. Some old
1775 * monitors fill with ascii space (0x20) instead.
1776 */
1777 static int
1778 bad_std_timing(u8 a, u8 b)
1779 {
1780 return (a == 0x00 && b == 0x00) ||
1781 (a == 0x01 && b == 0x01) ||
1782 (a == 0x20 && b == 0x20);
1783 }
1784
1785 /**
1786 * drm_mode_std - convert standard mode info (width, height, refresh) into mode
1787 * @connector: connector of for the EDID block
1788 * @edid: EDID block to scan
1789 * @t: standard timing params
1790 *
1791 * Take the standard timing params (in this case width, aspect, and refresh)
1792 * and convert them into a real mode using CVT/GTF/DMT.
1793 */
1794 static struct drm_display_mode *
1795 drm_mode_std(struct drm_connector *connector, struct edid *edid,
1796 struct std_timing *t)
1797 {
1798 struct drm_device *dev = connector->dev;
1799 struct drm_display_mode *m, *mode = NULL;
1800 int hsize, vsize;
1801 int vrefresh_rate;
1802 unsigned aspect_ratio = (t->vfreq_aspect & EDID_TIMING_ASPECT_MASK)
1803 >> EDID_TIMING_ASPECT_SHIFT;
1804 unsigned vfreq = (t->vfreq_aspect & EDID_TIMING_VFREQ_MASK)
1805 >> EDID_TIMING_VFREQ_SHIFT;
1806 int timing_level = standard_timing_level(edid);
1807
1808 if (bad_std_timing(t->hsize, t->vfreq_aspect))
1809 return NULL;
1810
1811 /* According to the EDID spec, the hdisplay = hsize * 8 + 248 */
1812 hsize = t->hsize * 8 + 248;
1813 /* vrefresh_rate = vfreq + 60 */
1814 vrefresh_rate = vfreq + 60;
1815 /* the vdisplay is calculated based on the aspect ratio */
1816 if (aspect_ratio == 0) {
1817 if (edid->revision < 3)
1818 vsize = hsize;
1819 else
1820 vsize = (hsize * 10) / 16;
1821 } else if (aspect_ratio == 1)
1822 vsize = (hsize * 3) / 4;
1823 else if (aspect_ratio == 2)
1824 vsize = (hsize * 4) / 5;
1825 else
1826 vsize = (hsize * 9) / 16;
1827
1828 /* HDTV hack, part 1 */
1829 if (vrefresh_rate == 60 &&
1830 ((hsize == 1360 && vsize == 765) ||
1831 (hsize == 1368 && vsize == 769))) {
1832 hsize = 1366;
1833 vsize = 768;
1834 }
1835
1836 /*
1837 * If this connector already has a mode for this size and refresh
1838 * rate (because it came from detailed or CVT info), use that
1839 * instead. This way we don't have to guess at interlace or
1840 * reduced blanking.
1841 */
1842 list_for_each_entry(m, &connector->probed_modes, head)
1843 if (m->hdisplay == hsize && m->vdisplay == vsize &&
1844 drm_mode_vrefresh(m) == vrefresh_rate)
1845 return NULL;
1846
1847 /* HDTV hack, part 2 */
1848 if (hsize == 1366 && vsize == 768 && vrefresh_rate == 60) {
1849 mode = drm_cvt_mode(dev, 1366, 768, vrefresh_rate, 0, 0,
1850 false);
1851 mode->hdisplay = 1366;
1852 mode->hsync_start = mode->hsync_start - 1;
1853 mode->hsync_end = mode->hsync_end - 1;
1854 return mode;
1855 }
1856
1857 /* check whether it can be found in default mode table */
1858 if (drm_monitor_supports_rb(edid)) {
1859 mode = drm_mode_find_dmt(dev, hsize, vsize, vrefresh_rate,
1860 true);
1861 if (mode)
1862 return mode;
1863 }
1864 mode = drm_mode_find_dmt(dev, hsize, vsize, vrefresh_rate, false);
1865 if (mode)
1866 return mode;
1867
1868 /* okay, generate it */
1869 switch (timing_level) {
1870 case LEVEL_DMT:
1871 break;
1872 case LEVEL_GTF:
1873 mode = drm_gtf_mode(dev, hsize, vsize, vrefresh_rate, 0, 0);
1874 break;
1875 case LEVEL_GTF2:
1876 /*
1877 * This is potentially wrong if there's ever a monitor with
1878 * more than one ranges section, each claiming a different
1879 * secondary GTF curve. Please don't do that.
1880 */
1881 mode = drm_gtf_mode(dev, hsize, vsize, vrefresh_rate, 0, 0);
1882 if (!mode)
1883 return NULL;
1884 if (drm_mode_hsync(mode) > drm_gtf2_hbreak(edid)) {
1885 drm_mode_destroy(dev, mode);
1886 mode = drm_gtf_mode_complex(dev, hsize, vsize,
1887 vrefresh_rate, 0, 0,
1888 drm_gtf2_m(edid),
1889 drm_gtf2_2c(edid),
1890 drm_gtf2_k(edid),
1891 drm_gtf2_2j(edid));
1892 }
1893 break;
1894 case LEVEL_CVT:
1895 mode = drm_cvt_mode(dev, hsize, vsize, vrefresh_rate, 0, 0,
1896 false);
1897 break;
1898 }
1899 return mode;
1900 }
1901
1902 /*
1903 * EDID is delightfully ambiguous about how interlaced modes are to be
1904 * encoded. Our internal representation is of frame height, but some
1905 * HDTV detailed timings are encoded as field height.
1906 *
1907 * The format list here is from CEA, in frame size. Technically we
1908 * should be checking refresh rate too. Whatever.
1909 */
1910 static void
1911 drm_mode_do_interlace_quirk(struct drm_display_mode *mode,
1912 struct detailed_pixel_timing *pt)
1913 {
1914 int i;
1915 static const struct {
1916 int w, h;
1917 } cea_interlaced[] = {
1918 { 1920, 1080 },
1919 { 720, 480 },
1920 { 1440, 480 },
1921 { 2880, 480 },
1922 { 720, 576 },
1923 { 1440, 576 },
1924 { 2880, 576 },
1925 };
1926
1927 if (!(pt->misc & DRM_EDID_PT_INTERLACED))
1928 return;
1929
1930 for (i = 0; i < ARRAY_SIZE(cea_interlaced); i++) {
1931 if ((mode->hdisplay == cea_interlaced[i].w) &&
1932 (mode->vdisplay == cea_interlaced[i].h / 2)) {
1933 mode->vdisplay *= 2;
1934 mode->vsync_start *= 2;
1935 mode->vsync_end *= 2;
1936 mode->vtotal *= 2;
1937 mode->vtotal |= 1;
1938 }
1939 }
1940
1941 mode->flags |= DRM_MODE_FLAG_INTERLACE;
1942 }
1943
1944 /**
1945 * drm_mode_detailed - create a new mode from an EDID detailed timing section
1946 * @dev: DRM device (needed to create new mode)
1947 * @edid: EDID block
1948 * @timing: EDID detailed timing info
1949 * @quirks: quirks to apply
1950 *
1951 * An EDID detailed timing block contains enough info for us to create and
1952 * return a new struct drm_display_mode.
1953 */
1954 static struct drm_display_mode *drm_mode_detailed(struct drm_device *dev,
1955 struct edid *edid,
1956 struct detailed_timing *timing,
1957 u32 quirks)
1958 {
1959 struct drm_display_mode *mode;
1960 struct detailed_pixel_timing *pt = &timing->data.pixel_data;
1961 unsigned hactive = (pt->hactive_hblank_hi & 0xf0) << 4 | pt->hactive_lo;
1962 unsigned vactive = (pt->vactive_vblank_hi & 0xf0) << 4 | pt->vactive_lo;
1963 unsigned hblank = (pt->hactive_hblank_hi & 0xf) << 8 | pt->hblank_lo;
1964 unsigned vblank = (pt->vactive_vblank_hi & 0xf) << 8 | pt->vblank_lo;
1965 unsigned hsync_offset = (pt->hsync_vsync_offset_pulse_width_hi & 0xc0) << 2 | pt->hsync_offset_lo;
1966 unsigned hsync_pulse_width = (pt->hsync_vsync_offset_pulse_width_hi & 0x30) << 4 | pt->hsync_pulse_width_lo;
1967 unsigned vsync_offset = (pt->hsync_vsync_offset_pulse_width_hi & 0xc) << 2 | pt->vsync_offset_pulse_width_lo >> 4;
1968 unsigned vsync_pulse_width = (pt->hsync_vsync_offset_pulse_width_hi & 0x3) << 4 | (pt->vsync_offset_pulse_width_lo & 0xf);
1969
1970 /* ignore tiny modes */
1971 if (hactive < 64 || vactive < 64)
1972 return NULL;
1973
1974 if (pt->misc & DRM_EDID_PT_STEREO) {
1975 DRM_DEBUG_KMS("stereo mode not supported\n");
1976 return NULL;
1977 }
1978 if (!(pt->misc & DRM_EDID_PT_SEPARATE_SYNC)) {
1979 DRM_DEBUG_KMS("composite sync not supported\n");
1980 }
1981
1982 /* it is incorrect if hsync/vsync width is zero */
1983 if (!hsync_pulse_width || !vsync_pulse_width) {
1984 DRM_DEBUG_KMS("Incorrect Detailed timing. "
1985 "Wrong Hsync/Vsync pulse width\n");
1986 return NULL;
1987 }
1988
1989 if (quirks & EDID_QUIRK_FORCE_REDUCED_BLANKING) {
1990 mode = drm_cvt_mode(dev, hactive, vactive, 60, true, false, false);
1991 if (!mode)
1992 return NULL;
1993
1994 goto set_size;
1995 }
1996
1997 mode = drm_mode_create(dev);
1998 if (!mode)
1999 return NULL;
2000
2001 if (quirks & EDID_QUIRK_135_CLOCK_TOO_HIGH)
2002 timing->pixel_clock = cpu_to_le16(1088);
2003
2004 mode->clock = le16_to_cpu(timing->pixel_clock) * 10;
2005
2006 mode->hdisplay = hactive;
2007 mode->hsync_start = mode->hdisplay + hsync_offset;
2008 mode->hsync_end = mode->hsync_start + hsync_pulse_width;
2009 mode->htotal = mode->hdisplay + hblank;
2010
2011 mode->vdisplay = vactive;
2012 mode->vsync_start = mode->vdisplay + vsync_offset;
2013 mode->vsync_end = mode->vsync_start + vsync_pulse_width;
2014 mode->vtotal = mode->vdisplay + vblank;
2015
2016 /* Some EDIDs have bogus h/vtotal values */
2017 if (mode->hsync_end > mode->htotal)
2018 mode->htotal = mode->hsync_end + 1;
2019 if (mode->vsync_end > mode->vtotal)
2020 mode->vtotal = mode->vsync_end + 1;
2021
2022 drm_mode_do_interlace_quirk(mode, pt);
2023
2024 if (quirks & EDID_QUIRK_DETAILED_SYNC_PP) {
2025 pt->misc |= DRM_EDID_PT_HSYNC_POSITIVE | DRM_EDID_PT_VSYNC_POSITIVE;
2026 }
2027
2028 mode->flags |= (pt->misc & DRM_EDID_PT_HSYNC_POSITIVE) ?
2029 DRM_MODE_FLAG_PHSYNC : DRM_MODE_FLAG_NHSYNC;
2030 mode->flags |= (pt->misc & DRM_EDID_PT_VSYNC_POSITIVE) ?
2031 DRM_MODE_FLAG_PVSYNC : DRM_MODE_FLAG_NVSYNC;
2032
2033 set_size:
2034 mode->width_mm = pt->width_mm_lo | (pt->width_height_mm_hi & 0xf0) << 4;
2035 mode->height_mm = pt->height_mm_lo | (pt->width_height_mm_hi & 0xf) << 8;
2036
2037 if (quirks & EDID_QUIRK_DETAILED_IN_CM) {
2038 mode->width_mm *= 10;
2039 mode->height_mm *= 10;
2040 }
2041
2042 if (quirks & EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE) {
2043 mode->width_mm = edid->width_cm * 10;
2044 mode->height_mm = edid->height_cm * 10;
2045 }
2046
2047 mode->type = DRM_MODE_TYPE_DRIVER;
2048 mode->vrefresh = drm_mode_vrefresh(mode);
2049 drm_mode_set_name(mode);
2050
2051 return mode;
2052 }
2053
2054 static bool
2055 mode_in_hsync_range(const struct drm_display_mode *mode,
2056 struct edid *edid, u8 *t)
2057 {
2058 int hsync, hmin, hmax;
2059
2060 hmin = t[7];
2061 if (edid->revision >= 4)
2062 hmin += ((t[4] & 0x04) ? 255 : 0);
2063 hmax = t[8];
2064 if (edid->revision >= 4)
2065 hmax += ((t[4] & 0x08) ? 255 : 0);
2066 hsync = drm_mode_hsync(mode);
2067
2068 return (hsync <= hmax && hsync >= hmin);
2069 }
2070
2071 static bool
2072 mode_in_vsync_range(const struct drm_display_mode *mode,
2073 struct edid *edid, u8 *t)
2074 {
2075 int vsync, vmin, vmax;
2076
2077 vmin = t[5];
2078 if (edid->revision >= 4)
2079 vmin += ((t[4] & 0x01) ? 255 : 0);
2080 vmax = t[6];
2081 if (edid->revision >= 4)
2082 vmax += ((t[4] & 0x02) ? 255 : 0);
2083 vsync = drm_mode_vrefresh(mode);
2084
2085 return (vsync <= vmax && vsync >= vmin);
2086 }
2087
2088 static u32
2089 range_pixel_clock(struct edid *edid, u8 *t)
2090 {
2091 /* unspecified */
2092 if (t[9] == 0 || t[9] == 255)
2093 return 0;
2094
2095 /* 1.4 with CVT support gives us real precision, yay */
2096 if (edid->revision >= 4 && t[10] == 0x04)
2097 return (t[9] * 10000) - ((t[12] >> 2) * 250);
2098
2099 /* 1.3 is pathetic, so fuzz up a bit */
2100 return t[9] * 10000 + 5001;
2101 }
2102
2103 static bool
2104 mode_in_range(const struct drm_display_mode *mode, struct edid *edid,
2105 struct detailed_timing *timing)
2106 {
2107 u32 max_clock;
2108 u8 *t = (u8 *)timing;
2109
2110 if (!mode_in_hsync_range(mode, edid, t))
2111 return false;
2112
2113 if (!mode_in_vsync_range(mode, edid, t))
2114 return false;
2115
2116 if ((max_clock = range_pixel_clock(edid, t)))
2117 if (mode->clock > max_clock)
2118 return false;
2119
2120 /* 1.4 max horizontal check */
2121 if (edid->revision >= 4 && t[10] == 0x04)
2122 if (t[13] && mode->hdisplay > 8 * (t[13] + (256 * (t[12]&0x3))))
2123 return false;
2124
2125 if (mode_is_rb(mode) && !drm_monitor_supports_rb(edid))
2126 return false;
2127
2128 return true;
2129 }
2130
2131 static bool valid_inferred_mode(const struct drm_connector *connector,
2132 const struct drm_display_mode *mode)
2133 {
2134 const struct drm_display_mode *m;
2135 bool ok = false;
2136
2137 list_for_each_entry(m, &connector->probed_modes, head) {
2138 if (mode->hdisplay == m->hdisplay &&
2139 mode->vdisplay == m->vdisplay &&
2140 drm_mode_vrefresh(mode) == drm_mode_vrefresh(m))
2141 return false; /* duplicated */
2142 if (mode->hdisplay <= m->hdisplay &&
2143 mode->vdisplay <= m->vdisplay)
2144 ok = true;
2145 }
2146 return ok;
2147 }
2148
2149 static int
2150 drm_dmt_modes_for_range(struct drm_connector *connector, struct edid *edid,
2151 struct detailed_timing *timing)
2152 {
2153 int i, modes = 0;
2154 struct drm_display_mode *newmode;
2155 struct drm_device *dev = connector->dev;
2156
2157 for (i = 0; i < ARRAY_SIZE(drm_dmt_modes); i++) {
2158 if (mode_in_range(drm_dmt_modes + i, edid, timing) &&
2159 valid_inferred_mode(connector, drm_dmt_modes + i)) {
2160 newmode = drm_mode_duplicate(dev, &drm_dmt_modes[i]);
2161 if (newmode) {
2162 drm_mode_probed_add(connector, newmode);
2163 modes++;
2164 }
2165 }
2166 }
2167
2168 return modes;
2169 }
2170
2171 /* fix up 1366x768 mode from 1368x768;
2172 * GFT/CVT can't express 1366 width which isn't dividable by 8
2173 */
2174 void drm_mode_fixup_1366x768(struct drm_display_mode *mode)
2175 {
2176 if (mode->hdisplay == 1368 && mode->vdisplay == 768) {
2177 mode->hdisplay = 1366;
2178 mode->hsync_start--;
2179 mode->hsync_end--;
2180 drm_mode_set_name(mode);
2181 }
2182 }
2183
2184 static int
2185 drm_gtf_modes_for_range(struct drm_connector *connector, struct edid *edid,
2186 struct detailed_timing *timing)
2187 {
2188 int i, modes = 0;
2189 struct drm_display_mode *newmode;
2190 struct drm_device *dev = connector->dev;
2191
2192 for (i = 0; i < ARRAY_SIZE(extra_modes); i++) {
2193 const struct minimode *m = &extra_modes[i];
2194 newmode = drm_gtf_mode(dev, m->w, m->h, m->r, 0, 0);
2195 if (!newmode)
2196 return modes;
2197
2198 drm_mode_fixup_1366x768(newmode);
2199 if (!mode_in_range(newmode, edid, timing) ||
2200 !valid_inferred_mode(connector, newmode)) {
2201 drm_mode_destroy(dev, newmode);
2202 continue;
2203 }
2204
2205 drm_mode_probed_add(connector, newmode);
2206 modes++;
2207 }
2208
2209 return modes;
2210 }
2211
2212 static int
2213 drm_cvt_modes_for_range(struct drm_connector *connector, struct edid *edid,
2214 struct detailed_timing *timing)
2215 {
2216 int i, modes = 0;
2217 struct drm_display_mode *newmode;
2218 struct drm_device *dev = connector->dev;
2219 bool rb = drm_monitor_supports_rb(edid);
2220
2221 for (i = 0; i < ARRAY_SIZE(extra_modes); i++) {
2222 const struct minimode *m = &extra_modes[i];
2223 newmode = drm_cvt_mode(dev, m->w, m->h, m->r, rb, 0, 0);
2224 if (!newmode)
2225 return modes;
2226
2227 drm_mode_fixup_1366x768(newmode);
2228 if (!mode_in_range(newmode, edid, timing) ||
2229 !valid_inferred_mode(connector, newmode)) {
2230 drm_mode_destroy(dev, newmode);
2231 continue;
2232 }
2233
2234 drm_mode_probed_add(connector, newmode);
2235 modes++;
2236 }
2237
2238 return modes;
2239 }
2240
2241 static void
2242 do_inferred_modes(struct detailed_timing *timing, void *c)
2243 {
2244 struct detailed_mode_closure *closure = c;
2245 struct detailed_non_pixel *data = &timing->data.other_data;
2246 struct detailed_data_monitor_range *range = &data->data.range;
2247
2248 if (data->type != EDID_DETAIL_MONITOR_RANGE)
2249 return;
2250
2251 closure->modes += drm_dmt_modes_for_range(closure->connector,
2252 closure->edid,
2253 timing);
2254
2255 if (!version_greater(closure->edid, 1, 1))
2256 return; /* GTF not defined yet */
2257
2258 switch (range->flags) {
2259 case 0x02: /* secondary gtf, XXX could do more */
2260 case 0x00: /* default gtf */
2261 closure->modes += drm_gtf_modes_for_range(closure->connector,
2262 closure->edid,
2263 timing);
2264 break;
2265 case 0x04: /* cvt, only in 1.4+ */
2266 if (!version_greater(closure->edid, 1, 3))
2267 break;
2268
2269 closure->modes += drm_cvt_modes_for_range(closure->connector,
2270 closure->edid,
2271 timing);
2272 break;
2273 case 0x01: /* just the ranges, no formula */
2274 default:
2275 break;
2276 }
2277 }
2278
2279 static int
2280 add_inferred_modes(struct drm_connector *connector, struct edid *edid)
2281 {
2282 struct detailed_mode_closure closure = {
2283 .connector = connector,
2284 .edid = edid,
2285 };
2286
2287 if (version_greater(edid, 1, 0))
2288 drm_for_each_detailed_block((u8 *)edid, do_inferred_modes,
2289 &closure);
2290
2291 return closure.modes;
2292 }
2293
2294 static int
2295 drm_est3_modes(struct drm_connector *connector, struct detailed_timing *timing)
2296 {
2297 int i, j, m, modes = 0;
2298 struct drm_display_mode *mode;
2299 u8 *est = ((u8 *)timing) + 6;
2300
2301 for (i = 0; i < 6; i++) {
2302 for (j = 7; j >= 0; j--) {
2303 m = (i * 8) + (7 - j);
2304 if (m >= ARRAY_SIZE(est3_modes))
2305 break;
2306 if (est[i] & (1 << j)) {
2307 mode = drm_mode_find_dmt(connector->dev,
2308 est3_modes[m].w,
2309 est3_modes[m].h,
2310 est3_modes[m].r,
2311 est3_modes[m].rb);
2312 if (mode) {
2313 drm_mode_probed_add(connector, mode);
2314 modes++;
2315 }
2316 }
2317 }
2318 }
2319
2320 return modes;
2321 }
2322
2323 static void
2324 do_established_modes(struct detailed_timing *timing, void *c)
2325 {
2326 struct detailed_mode_closure *closure = c;
2327 struct detailed_non_pixel *data = &timing->data.other_data;
2328
2329 if (data->type == EDID_DETAIL_EST_TIMINGS)
2330 closure->modes += drm_est3_modes(closure->connector, timing);
2331 }
2332
2333 /**
2334 * add_established_modes - get est. modes from EDID and add them
2335 * @connector: connector to add mode(s) to
2336 * @edid: EDID block to scan
2337 *
2338 * Each EDID block contains a bitmap of the supported "established modes" list
2339 * (defined above). Tease them out and add them to the global modes list.
2340 */
2341 static int
2342 add_established_modes(struct drm_connector *connector, struct edid *edid)
2343 {
2344 struct drm_device *dev = connector->dev;
2345 unsigned long est_bits = edid->established_timings.t1 |
2346 (edid->established_timings.t2 << 8) |
2347 ((edid->established_timings.mfg_rsvd & 0x80) << 9);
2348 int i, modes = 0;
2349 struct detailed_mode_closure closure = {
2350 .connector = connector,
2351 .edid = edid,
2352 };
2353
2354 for (i = 0; i <= EDID_EST_TIMINGS; i++) {
2355 if (est_bits & (1<<i)) {
2356 struct drm_display_mode *newmode;
2357 newmode = drm_mode_duplicate(dev, &edid_est_modes[i]);
2358 if (newmode) {
2359 drm_mode_probed_add(connector, newmode);
2360 modes++;
2361 }
2362 }
2363 }
2364
2365 if (version_greater(edid, 1, 0))
2366 drm_for_each_detailed_block((u8 *)edid,
2367 do_established_modes, &closure);
2368
2369 return modes + closure.modes;
2370 }
2371
2372 static void
2373 do_standard_modes(struct detailed_timing *timing, void *c)
2374 {
2375 struct detailed_mode_closure *closure = c;
2376 struct detailed_non_pixel *data = &timing->data.other_data;
2377 struct drm_connector *connector = closure->connector;
2378 struct edid *edid = closure->edid;
2379
2380 if (data->type == EDID_DETAIL_STD_MODES) {
2381 int i;
2382 for (i = 0; i < 6; i++) {
2383 struct std_timing *std;
2384 struct drm_display_mode *newmode;
2385
2386 std = &data->data.timings[i];
2387 newmode = drm_mode_std(connector, edid, std);
2388 if (newmode) {
2389 drm_mode_probed_add(connector, newmode);
2390 closure->modes++;
2391 }
2392 }
2393 }
2394 }
2395
2396 /**
2397 * add_standard_modes - get std. modes from EDID and add them
2398 * @connector: connector to add mode(s) to
2399 * @edid: EDID block to scan
2400 *
2401 * Standard modes can be calculated using the appropriate standard (DMT,
2402 * GTF or CVT. Grab them from @edid and add them to the list.
2403 */
2404 static int
2405 add_standard_modes(struct drm_connector *connector, struct edid *edid)
2406 {
2407 int i, modes = 0;
2408 struct detailed_mode_closure closure = {
2409 .connector = connector,
2410 .edid = edid,
2411 };
2412
2413 for (i = 0; i < EDID_STD_TIMINGS; i++) {
2414 struct drm_display_mode *newmode;
2415
2416 newmode = drm_mode_std(connector, edid,
2417 &edid->standard_timings[i]);
2418 if (newmode) {
2419 drm_mode_probed_add(connector, newmode);
2420 modes++;
2421 }
2422 }
2423
2424 if (version_greater(edid, 1, 0))
2425 drm_for_each_detailed_block((u8 *)edid, do_standard_modes,
2426 &closure);
2427
2428 /* XXX should also look for standard codes in VTB blocks */
2429
2430 return modes + closure.modes;
2431 }
2432
2433 static int drm_cvt_modes(struct drm_connector *connector,
2434 struct detailed_timing *timing)
2435 {
2436 int i, j, modes = 0;
2437 struct drm_display_mode *newmode;
2438 struct drm_device *dev = connector->dev;
2439 struct cvt_timing *cvt;
2440 const int rates[] = { 60, 85, 75, 60, 50 };
2441 const u8 empty[3] = { 0, 0, 0 };
2442
2443 for (i = 0; i < 4; i++) {
2444 int uninitialized_var(width), height;
2445 cvt = &(timing->data.other_data.data.cvt[i]);
2446
2447 if (!memcmp(cvt->code, empty, 3))
2448 continue;
2449
2450 height = (cvt->code[0] + ((cvt->code[1] & 0xf0) << 4) + 1) * 2;
2451 switch (cvt->code[1] & 0x0c) {
2452 case 0x00:
2453 width = height * 4 / 3;
2454 break;
2455 case 0x04:
2456 width = height * 16 / 9;
2457 break;
2458 case 0x08:
2459 width = height * 16 / 10;
2460 break;
2461 case 0x0c:
2462 width = height * 15 / 9;
2463 break;
2464 }
2465
2466 for (j = 1; j < 5; j++) {
2467 if (cvt->code[2] & (1 << j)) {
2468 newmode = drm_cvt_mode(dev, width, height,
2469 rates[j], j == 0,
2470 false, false);
2471 if (newmode) {
2472 drm_mode_probed_add(connector, newmode);
2473 modes++;
2474 }
2475 }
2476 }
2477 }
2478
2479 return modes;
2480 }
2481
2482 static void
2483 do_cvt_mode(struct detailed_timing *timing, void *c)
2484 {
2485 struct detailed_mode_closure *closure = c;
2486 struct detailed_non_pixel *data = &timing->data.other_data;
2487
2488 if (data->type == EDID_DETAIL_CVT_3BYTE)
2489 closure->modes += drm_cvt_modes(closure->connector, timing);
2490 }
2491
2492 static int
2493 add_cvt_modes(struct drm_connector *connector, struct edid *edid)
2494 {
2495 struct detailed_mode_closure closure = {
2496 .connector = connector,
2497 .edid = edid,
2498 };
2499
2500 if (version_greater(edid, 1, 2))
2501 drm_for_each_detailed_block((u8 *)edid, do_cvt_mode, &closure);
2502
2503 /* XXX should also look for CVT codes in VTB blocks */
2504
2505 return closure.modes;
2506 }
2507
2508 static void fixup_detailed_cea_mode_clock(struct drm_display_mode *mode);
2509
2510 static void
2511 do_detailed_mode(struct detailed_timing *timing, void *c)
2512 {
2513 struct detailed_mode_closure *closure = c;
2514 struct drm_display_mode *newmode;
2515
2516 if (timing->pixel_clock) {
2517 newmode = drm_mode_detailed(closure->connector->dev,
2518 closure->edid, timing,
2519 closure->quirks);
2520 if (!newmode)
2521 return;
2522
2523 if (closure->preferred)
2524 newmode->type |= DRM_MODE_TYPE_PREFERRED;
2525
2526 /*
2527 * Detailed modes are limited to 10kHz pixel clock resolution,
2528 * so fix up anything that looks like CEA/HDMI mode, but the clock
2529 * is just slightly off.
2530 */
2531 fixup_detailed_cea_mode_clock(newmode);
2532
2533 drm_mode_probed_add(closure->connector, newmode);
2534 closure->modes++;
2535 closure->preferred = 0;
2536 }
2537 }
2538
2539 /*
2540 * add_detailed_modes - Add modes from detailed timings
2541 * @connector: attached connector
2542 * @edid: EDID block to scan
2543 * @quirks: quirks to apply
2544 */
2545 static int
2546 add_detailed_modes(struct drm_connector *connector, struct edid *edid,
2547 u32 quirks)
2548 {
2549 struct detailed_mode_closure closure = {
2550 .connector = connector,
2551 .edid = edid,
2552 .preferred = 1,
2553 .quirks = quirks,
2554 };
2555
2556 if (closure.preferred && !version_greater(edid, 1, 3))
2557 closure.preferred =
2558 (edid->features & DRM_EDID_FEATURE_PREFERRED_TIMING);
2559
2560 drm_for_each_detailed_block((u8 *)edid, do_detailed_mode, &closure);
2561
2562 return closure.modes;
2563 }
2564
2565 #define AUDIO_BLOCK 0x01
2566 #define VIDEO_BLOCK 0x02
2567 #define VENDOR_BLOCK 0x03
2568 #define SPEAKER_BLOCK 0x04
2569 #define VIDEO_CAPABILITY_BLOCK 0x07
2570 #define EDID_BASIC_AUDIO (1 << 6)
2571 #define EDID_CEA_YCRCB444 (1 << 5)
2572 #define EDID_CEA_YCRCB422 (1 << 4)
2573 #define EDID_CEA_VCDB_QS (1 << 6)
2574
2575 /*
2576 * Search EDID for CEA extension block.
2577 */
2578 static u8 *drm_find_edid_extension(struct edid *edid, int ext_id)
2579 {
2580 u8 *edid_ext = NULL;
2581 int i;
2582
2583 /* No EDID or EDID extensions */
2584 if (edid == NULL || edid->extensions == 0)
2585 return NULL;
2586
2587 /* Find CEA extension */
2588 for (i = 0; i < edid->extensions; i++) {
2589 edid_ext = (u8 *)edid + EDID_LENGTH * (i + 1);
2590 if (edid_ext[0] == ext_id)
2591 break;
2592 }
2593
2594 if (i == edid->extensions)
2595 return NULL;
2596
2597 return edid_ext;
2598 }
2599
2600 static u8 *drm_find_cea_extension(struct edid *edid)
2601 {
2602 return drm_find_edid_extension(edid, CEA_EXT);
2603 }
2604
2605 static u8 *drm_find_displayid_extension(struct edid *edid)
2606 {
2607 return drm_find_edid_extension(edid, DISPLAYID_EXT);
2608 }
2609
2610 /*
2611 * Calculate the alternate clock for the CEA mode
2612 * (60Hz vs. 59.94Hz etc.)
2613 */
2614 static unsigned int
2615 cea_mode_alternate_clock(const struct drm_display_mode *cea_mode)
2616 {
2617 unsigned int clock = cea_mode->clock;
2618
2619 if (cea_mode->vrefresh % 6 != 0)
2620 return clock;
2621
2622 /*
2623 * edid_cea_modes contains the 59.94Hz
2624 * variant for 240 and 480 line modes,
2625 * and the 60Hz variant otherwise.
2626 */
2627 if (cea_mode->vdisplay == 240 || cea_mode->vdisplay == 480)
2628 clock = DIV_ROUND_CLOSEST(clock * 1001, 1000);
2629 else
2630 clock = DIV_ROUND_CLOSEST(clock * 1000, 1001);
2631
2632 return clock;
2633 }
2634
2635 static bool
2636 cea_mode_alternate_timings(u8 vic, struct drm_display_mode *mode)
2637 {
2638 /*
2639 * For certain VICs the spec allows the vertical
2640 * front porch to vary by one or two lines.
2641 *
2642 * cea_modes[] stores the variant with the shortest
2643 * vertical front porch. We can adjust the mode to
2644 * get the other variants by simply increasing the
2645 * vertical front porch length.
2646 */
2647 BUILD_BUG_ON(edid_cea_modes[8].vtotal != 262 ||
2648 edid_cea_modes[9].vtotal != 262 ||
2649 edid_cea_modes[12].vtotal != 262 ||
2650 edid_cea_modes[13].vtotal != 262 ||
2651 edid_cea_modes[23].vtotal != 312 ||
2652 edid_cea_modes[24].vtotal != 312 ||
2653 edid_cea_modes[27].vtotal != 312 ||
2654 edid_cea_modes[28].vtotal != 312);
2655
2656 if (((vic == 8 || vic == 9 ||
2657 vic == 12 || vic == 13) && mode->vtotal < 263) ||
2658 ((vic == 23 || vic == 24 ||
2659 vic == 27 || vic == 28) && mode->vtotal < 314)) {
2660 mode->vsync_start++;
2661 mode->vsync_end++;
2662 mode->vtotal++;
2663
2664 return true;
2665 }
2666
2667 return false;
2668 }
2669
2670 static u8 drm_match_cea_mode_clock_tolerance(const struct drm_display_mode *to_match,
2671 unsigned int clock_tolerance)
2672 {
2673 u8 vic;
2674
2675 if (!to_match->clock)
2676 return 0;
2677
2678 for (vic = 1; vic < ARRAY_SIZE(edid_cea_modes); vic++) {
2679 struct drm_display_mode cea_mode = edid_cea_modes[vic];
2680 unsigned int clock1, clock2;
2681
2682 /* Check both 60Hz and 59.94Hz */
2683 clock1 = cea_mode.clock;
2684 clock2 = cea_mode_alternate_clock(&cea_mode);
2685
2686 if (abs(to_match->clock - clock1) > clock_tolerance &&
2687 abs(to_match->clock - clock2) > clock_tolerance)
2688 continue;
2689
2690 do {
2691 if (drm_mode_equal_no_clocks_no_stereo(to_match, &cea_mode))
2692 return vic;
2693 } while (cea_mode_alternate_timings(vic, &cea_mode));
2694 }
2695
2696 return 0;
2697 }
2698
2699 /**
2700 * drm_match_cea_mode - look for a CEA mode matching given mode
2701 * @to_match: display mode
2702 *
2703 * Return: The CEA Video ID (VIC) of the mode or 0 if it isn't a CEA-861
2704 * mode.
2705 */
2706 u8 drm_match_cea_mode(const struct drm_display_mode *to_match)
2707 {
2708 u8 vic;
2709
2710 if (!to_match->clock)
2711 return 0;
2712
2713 for (vic = 1; vic < ARRAY_SIZE(edid_cea_modes); vic++) {
2714 struct drm_display_mode cea_mode = edid_cea_modes[vic];
2715 unsigned int clock1, clock2;
2716
2717 /* Check both 60Hz and 59.94Hz */
2718 clock1 = cea_mode.clock;
2719 clock2 = cea_mode_alternate_clock(&cea_mode);
2720
2721 if (KHZ2PICOS(to_match->clock) != KHZ2PICOS(clock1) &&
2722 KHZ2PICOS(to_match->clock) != KHZ2PICOS(clock2))
2723 continue;
2724
2725 do {
2726 if (drm_mode_equal_no_clocks_no_stereo(to_match, &cea_mode))
2727 return vic;
2728 } while (cea_mode_alternate_timings(vic, &cea_mode));
2729 }
2730
2731 return 0;
2732 }
2733 EXPORT_SYMBOL(drm_match_cea_mode);
2734
2735 static bool drm_valid_cea_vic(u8 vic)
2736 {
2737 return vic > 0 && vic < ARRAY_SIZE(edid_cea_modes);
2738 }
2739
2740 /**
2741 * drm_get_cea_aspect_ratio - get the picture aspect ratio corresponding to
2742 * the input VIC from the CEA mode list
2743 * @video_code: ID given to each of the CEA modes
2744 *
2745 * Returns picture aspect ratio
2746 */
2747 enum hdmi_picture_aspect drm_get_cea_aspect_ratio(const u8 video_code)
2748 {
2749 return edid_cea_modes[video_code].picture_aspect_ratio;
2750 }
2751 EXPORT_SYMBOL(drm_get_cea_aspect_ratio);
2752
2753 /*
2754 * Calculate the alternate clock for HDMI modes (those from the HDMI vendor
2755 * specific block).
2756 *
2757 * It's almost like cea_mode_alternate_clock(), we just need to add an
2758 * exception for the VIC 4 mode (4096x2160@24Hz): no alternate clock for this
2759 * one.
2760 */
2761 static unsigned int
2762 hdmi_mode_alternate_clock(const struct drm_display_mode *hdmi_mode)
2763 {
2764 if (hdmi_mode->vdisplay == 4096 && hdmi_mode->hdisplay == 2160)
2765 return hdmi_mode->clock;
2766
2767 return cea_mode_alternate_clock(hdmi_mode);
2768 }
2769
2770 static u8 drm_match_hdmi_mode_clock_tolerance(const struct drm_display_mode *to_match,
2771 unsigned int clock_tolerance)
2772 {
2773 u8 vic;
2774
2775 if (!to_match->clock)
2776 return 0;
2777
2778 for (vic = 1; vic < ARRAY_SIZE(edid_4k_modes); vic++) {
2779 const struct drm_display_mode *hdmi_mode = &edid_4k_modes[vic];
2780 unsigned int clock1, clock2;
2781
2782 /* Make sure to also match alternate clocks */
2783 clock1 = hdmi_mode->clock;
2784 clock2 = hdmi_mode_alternate_clock(hdmi_mode);
2785
2786 if (abs(to_match->clock - clock1) > clock_tolerance &&
2787 abs(to_match->clock - clock2) > clock_tolerance)
2788 continue;
2789
2790 if (drm_mode_equal_no_clocks(to_match, hdmi_mode))
2791 return vic;
2792 }
2793
2794 return 0;
2795 }
2796
2797 /*
2798 * drm_match_hdmi_mode - look for a HDMI mode matching given mode
2799 * @to_match: display mode
2800 *
2801 * An HDMI mode is one defined in the HDMI vendor specific block.
2802 *
2803 * Returns the HDMI Video ID (VIC) of the mode or 0 if it isn't one.
2804 */
2805 static u8 drm_match_hdmi_mode(const struct drm_display_mode *to_match)
2806 {
2807 u8 vic;
2808
2809 if (!to_match->clock)
2810 return 0;
2811
2812 for (vic = 1; vic < ARRAY_SIZE(edid_4k_modes); vic++) {
2813 const struct drm_display_mode *hdmi_mode = &edid_4k_modes[vic];
2814 unsigned int clock1, clock2;
2815
2816 /* Make sure to also match alternate clocks */
2817 clock1 = hdmi_mode->clock;
2818 clock2 = hdmi_mode_alternate_clock(hdmi_mode);
2819
2820 if ((KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock1) ||
2821 KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock2)) &&
2822 drm_mode_equal_no_clocks_no_stereo(to_match, hdmi_mode))
2823 return vic;
2824 }
2825 return 0;
2826 }
2827
2828 static bool drm_valid_hdmi_vic(u8 vic)
2829 {
2830 return vic > 0 && vic < ARRAY_SIZE(edid_4k_modes);
2831 }
2832
2833 static int
2834 add_alternate_cea_modes(struct drm_connector *connector, struct edid *edid)
2835 {
2836 struct drm_device *dev = connector->dev;
2837 struct drm_display_mode *mode, *tmp;
2838 LIST_HEAD(list);
2839 int modes = 0;
2840
2841 /* Don't add CEA modes if the CEA extension block is missing */
2842 if (!drm_find_cea_extension(edid))
2843 return 0;
2844
2845 /*
2846 * Go through all probed modes and create a new mode
2847 * with the alternate clock for certain CEA modes.
2848 */
2849 list_for_each_entry(mode, &connector->probed_modes, head) {
2850 const struct drm_display_mode *cea_mode = NULL;
2851 struct drm_display_mode *newmode;
2852 u8 vic = drm_match_cea_mode(mode);
2853 unsigned int clock1, clock2;
2854
2855 if (drm_valid_cea_vic(vic)) {
2856 cea_mode = &edid_cea_modes[vic];
2857 clock2 = cea_mode_alternate_clock(cea_mode);
2858 } else {
2859 vic = drm_match_hdmi_mode(mode);
2860 if (drm_valid_hdmi_vic(vic)) {
2861 cea_mode = &edid_4k_modes[vic];
2862 clock2 = hdmi_mode_alternate_clock(cea_mode);
2863 }
2864 }
2865
2866 if (!cea_mode)
2867 continue;
2868
2869 clock1 = cea_mode->clock;
2870
2871 if (clock1 == clock2)
2872 continue;
2873
2874 if (mode->clock != clock1 && mode->clock != clock2)
2875 continue;
2876
2877 newmode = drm_mode_duplicate(dev, cea_mode);
2878 if (!newmode)
2879 continue;
2880
2881 /* Carry over the stereo flags */
2882 newmode->flags |= mode->flags & DRM_MODE_FLAG_3D_MASK;
2883
2884 /*
2885 * The current mode could be either variant. Make
2886 * sure to pick the "other" clock for the new mode.
2887 */
2888 if (mode->clock != clock1)
2889 newmode->clock = clock1;
2890 else
2891 newmode->clock = clock2;
2892
2893 list_add_tail(&newmode->head, &list);
2894 }
2895
2896 list_for_each_entry_safe(mode, tmp, &list, head) {
2897 list_del(&mode->head);
2898 drm_mode_probed_add(connector, mode);
2899 modes++;
2900 }
2901
2902 return modes;
2903 }
2904
2905 static struct drm_display_mode *
2906 drm_display_mode_from_vic_index(struct drm_connector *connector,
2907 const u8 *video_db, u8 video_len,
2908 u8 video_index)
2909 {
2910 struct drm_device *dev = connector->dev;
2911 struct drm_display_mode *newmode;
2912 u8 vic;
2913
2914 if (video_db == NULL || video_index >= video_len)
2915 return NULL;
2916
2917 /* CEA modes are numbered 1..127 */
2918 vic = (video_db[video_index] & 127);
2919 if (!drm_valid_cea_vic(vic))
2920 return NULL;
2921
2922 newmode = drm_mode_duplicate(dev, &edid_cea_modes[vic]);
2923 if (!newmode)
2924 return NULL;
2925
2926 newmode->vrefresh = 0;
2927
2928 return newmode;
2929 }
2930
2931 static int
2932 do_cea_modes(struct drm_connector *connector, const u8 *db, u8 len)
2933 {
2934 int i, modes = 0;
2935
2936 for (i = 0; i < len; i++) {
2937 struct drm_display_mode *mode;
2938 mode = drm_display_mode_from_vic_index(connector, db, len, i);
2939 if (mode) {
2940 drm_mode_probed_add(connector, mode);
2941 modes++;
2942 }
2943 }
2944
2945 return modes;
2946 }
2947
2948 struct stereo_mandatory_mode {
2949 int width, height, vrefresh;
2950 unsigned int flags;
2951 };
2952
2953 static const struct stereo_mandatory_mode stereo_mandatory_modes[] = {
2954 { 1920, 1080, 24, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
2955 { 1920, 1080, 24, DRM_MODE_FLAG_3D_FRAME_PACKING },
2956 { 1920, 1080, 50,
2957 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF },
2958 { 1920, 1080, 60,
2959 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF },
2960 { 1280, 720, 50, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
2961 { 1280, 720, 50, DRM_MODE_FLAG_3D_FRAME_PACKING },
2962 { 1280, 720, 60, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
2963 { 1280, 720, 60, DRM_MODE_FLAG_3D_FRAME_PACKING }
2964 };
2965
2966 static bool
2967 stereo_match_mandatory(const struct drm_display_mode *mode,
2968 const struct stereo_mandatory_mode *stereo_mode)
2969 {
2970 unsigned int interlaced = mode->flags & DRM_MODE_FLAG_INTERLACE;
2971
2972 return mode->hdisplay == stereo_mode->width &&
2973 mode->vdisplay == stereo_mode->height &&
2974 interlaced == (stereo_mode->flags & DRM_MODE_FLAG_INTERLACE) &&
2975 drm_mode_vrefresh(mode) == stereo_mode->vrefresh;
2976 }
2977
2978 static int add_hdmi_mandatory_stereo_modes(struct drm_connector *connector)
2979 {
2980 struct drm_device *dev = connector->dev;
2981 const struct drm_display_mode *mode;
2982 struct list_head stereo_modes;
2983 int modes = 0, i;
2984
2985 INIT_LIST_HEAD(&stereo_modes);
2986
2987 list_for_each_entry(mode, &connector->probed_modes, head) {
2988 for (i = 0; i < ARRAY_SIZE(stereo_mandatory_modes); i++) {
2989 const struct stereo_mandatory_mode *mandatory;
2990 struct drm_display_mode *new_mode;
2991
2992 if (!stereo_match_mandatory(mode,
2993 &stereo_mandatory_modes[i]))
2994 continue;
2995
2996 mandatory = &stereo_mandatory_modes[i];
2997 new_mode = drm_mode_duplicate(dev, mode);
2998 if (!new_mode)
2999 continue;
3000
3001 new_mode->flags |= mandatory->flags;
3002 list_add_tail(&new_mode->head, &stereo_modes);
3003 modes++;
3004 }
3005 }
3006
3007 list_splice_tail(&stereo_modes, &connector->probed_modes);
3008
3009 return modes;
3010 }
3011
3012 static int add_hdmi_mode(struct drm_connector *connector, u8 vic)
3013 {
3014 struct drm_device *dev = connector->dev;
3015 struct drm_display_mode *newmode;
3016
3017 if (!drm_valid_hdmi_vic(vic)) {
3018 DRM_ERROR("Unknown HDMI VIC: %d\n", vic);
3019 return 0;
3020 }
3021
3022 newmode = drm_mode_duplicate(dev, &edid_4k_modes[vic]);
3023 if (!newmode)
3024 return 0;
3025
3026 drm_mode_probed_add(connector, newmode);
3027
3028 return 1;
3029 }
3030
3031 static int add_3d_struct_modes(struct drm_connector *connector, u16 structure,
3032 const u8 *video_db, u8 video_len, u8 video_index)
3033 {
3034 struct drm_display_mode *newmode;
3035 int modes = 0;
3036
3037 if (structure & (1 << 0)) {
3038 newmode = drm_display_mode_from_vic_index(connector, video_db,
3039 video_len,
3040 video_index);
3041 if (newmode) {
3042 newmode->flags |= DRM_MODE_FLAG_3D_FRAME_PACKING;
3043 drm_mode_probed_add(connector, newmode);
3044 modes++;
3045 }
3046 }
3047 if (structure & (1 << 6)) {
3048 newmode = drm_display_mode_from_vic_index(connector, video_db,
3049 video_len,
3050 video_index);
3051 if (newmode) {
3052 newmode->flags |= DRM_MODE_FLAG_3D_TOP_AND_BOTTOM;
3053 drm_mode_probed_add(connector, newmode);
3054 modes++;
3055 }
3056 }
3057 if (structure & (1 << 8)) {
3058 newmode = drm_display_mode_from_vic_index(connector, video_db,
3059 video_len,
3060 video_index);
3061 if (newmode) {
3062 newmode->flags |= DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF;
3063 drm_mode_probed_add(connector, newmode);
3064 modes++;
3065 }
3066 }
3067
3068 return modes;
3069 }
3070
3071 /*
3072 * do_hdmi_vsdb_modes - Parse the HDMI Vendor Specific data block
3073 * @connector: connector corresponding to the HDMI sink
3074 * @db: start of the CEA vendor specific block
3075 * @len: length of the CEA block payload, ie. one can access up to db[len]
3076 *
3077 * Parses the HDMI VSDB looking for modes to add to @connector. This function
3078 * also adds the stereo 3d modes when applicable.
3079 */
3080 static int
3081 do_hdmi_vsdb_modes(struct drm_connector *connector, const u8 *db, u8 len,
3082 const u8 *video_db, u8 video_len)
3083 {
3084 int modes = 0, offset = 0, i, multi_present = 0, multi_len;
3085 u8 vic_len, hdmi_3d_len = 0;
3086 u16 mask;
3087 u16 structure_all;
3088
3089 if (len < 8)
3090 goto out;
3091
3092 /* no HDMI_Video_Present */
3093 if (!(db[8] & (1 << 5)))
3094 goto out;
3095
3096 /* Latency_Fields_Present */
3097 if (db[8] & (1 << 7))
3098 offset += 2;
3099
3100 /* I_Latency_Fields_Present */
3101 if (db[8] & (1 << 6))
3102 offset += 2;
3103
3104 /* the declared length is not long enough for the 2 first bytes
3105 * of additional video format capabilities */
3106 if (len < (8 + offset + 2))
3107 goto out;
3108
3109 /* 3D_Present */
3110 offset++;
3111 if (db[8 + offset] & (1 << 7)) {
3112 modes += add_hdmi_mandatory_stereo_modes(connector);
3113
3114 /* 3D_Multi_present */
3115 multi_present = (db[8 + offset] & 0x60) >> 5;
3116 }
3117
3118 offset++;
3119 vic_len = db[8 + offset] >> 5;
3120 hdmi_3d_len = db[8 + offset] & 0x1f;
3121
3122 for (i = 0; i < vic_len && len >= (9 + offset + i); i++) {
3123 u8 vic;
3124
3125 vic = db[9 + offset + i];
3126 modes += add_hdmi_mode(connector, vic);
3127 }
3128 offset += 1 + vic_len;
3129
3130 if (multi_present == 1)
3131 multi_len = 2;
3132 else if (multi_present == 2)
3133 multi_len = 4;
3134 else
3135 multi_len = 0;
3136
3137 if (len < (8 + offset + hdmi_3d_len - 1))
3138 goto out;
3139
3140 if (hdmi_3d_len < multi_len)
3141 goto out;
3142
3143 if (multi_present == 1 || multi_present == 2) {
3144 /* 3D_Structure_ALL */
3145 structure_all = (db[8 + offset] << 8) | db[9 + offset];
3146
3147 /* check if 3D_MASK is present */
3148 if (multi_present == 2)
3149 mask = (db[10 + offset] << 8) | db[11 + offset];
3150 else
3151 mask = 0xffff;
3152
3153 for (i = 0; i < 16; i++) {
3154 if (mask & (1 << i))
3155 modes += add_3d_struct_modes(connector,
3156 structure_all,
3157 video_db,
3158 video_len, i);
3159 }
3160 }
3161
3162 offset += multi_len;
3163
3164 for (i = 0; i < (hdmi_3d_len - multi_len); i++) {
3165 int vic_index;
3166 struct drm_display_mode *newmode = NULL;
3167 unsigned int newflag = 0;
3168 bool detail_present;
3169
3170 detail_present = ((db[8 + offset + i] & 0x0f) > 7);
3171
3172 if (detail_present && (i + 1 == hdmi_3d_len - multi_len))
3173 break;
3174
3175 /* 2D_VIC_order_X */
3176 vic_index = db[8 + offset + i] >> 4;
3177
3178 /* 3D_Structure_X */
3179 switch (db[8 + offset + i] & 0x0f) {
3180 case 0:
3181 newflag = DRM_MODE_FLAG_3D_FRAME_PACKING;
3182 break;
3183 case 6:
3184 newflag = DRM_MODE_FLAG_3D_TOP_AND_BOTTOM;
3185 break;
3186 case 8:
3187 /* 3D_Detail_X */
3188 if ((db[9 + offset + i] >> 4) == 1)
3189 newflag = DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF;
3190 break;
3191 }
3192
3193 if (newflag != 0) {
3194 newmode = drm_display_mode_from_vic_index(connector,
3195 video_db,
3196 video_len,
3197 vic_index);
3198
3199 if (newmode) {
3200 newmode->flags |= newflag;
3201 drm_mode_probed_add(connector, newmode);
3202 modes++;
3203 }
3204 }
3205
3206 if (detail_present)
3207 i++;
3208 }
3209
3210 out:
3211 return modes;
3212 }
3213
3214 static int
3215 cea_db_payload_len(const u8 *db)
3216 {
3217 return db[0] & 0x1f;
3218 }
3219
3220 static int
3221 cea_db_tag(const u8 *db)
3222 {
3223 return db[0] >> 5;
3224 }
3225
3226 static int
3227 cea_revision(const u8 *cea)
3228 {
3229 return cea[1];
3230 }
3231
3232 static int
3233 cea_db_offsets(const u8 *cea, int *start, int *end)
3234 {
3235 /* Data block offset in CEA extension block */
3236 *start = 4;
3237 *end = cea[2];
3238 if (*end == 0)
3239 *end = 127;
3240 if (*end < 4 || *end > 127)
3241 return -ERANGE;
3242 return 0;
3243 }
3244
3245 static bool cea_db_is_hdmi_vsdb(const u8 *db)
3246 {
3247 int hdmi_id;
3248
3249 if (cea_db_tag(db) != VENDOR_BLOCK)
3250 return false;
3251
3252 if (cea_db_payload_len(db) < 5)
3253 return false;
3254
3255 hdmi_id = db[1] | (db[2] << 8) | (db[3] << 16);
3256
3257 return hdmi_id == HDMI_IEEE_OUI;
3258 }
3259
3260 static bool cea_db_is_hdmi_forum_vsdb(const u8 *db)
3261 {
3262 unsigned int oui;
3263
3264 if (cea_db_tag(db) != VENDOR_BLOCK)
3265 return false;
3266
3267 if (cea_db_payload_len(db) < 7)
3268 return false;
3269
3270 oui = db[3] << 16 | db[2] << 8 | db[1];
3271
3272 return oui == HDMI_FORUM_IEEE_OUI;
3273 }
3274
3275 #define for_each_cea_db(cea, i, start, end) \
3276 for ((i) = (start); (i) < (end) && (i) + cea_db_payload_len(&(cea)[(i)]) < (end); (i) += cea_db_payload_len(&(cea)[(i)]) + 1)
3277
3278 static int
3279 add_cea_modes(struct drm_connector *connector, struct edid *edid)
3280 {
3281 const u8 *cea = drm_find_cea_extension(edid);
3282 const u8 *db, *hdmi = NULL, *video = NULL;
3283 u8 dbl, hdmi_len, video_len = 0;
3284 int modes = 0;
3285
3286 if (cea && cea_revision(cea) >= 3) {
3287 int i, start, end;
3288
3289 if (cea_db_offsets(cea, &start, &end))
3290 return 0;
3291
3292 for_each_cea_db(cea, i, start, end) {
3293 db = &cea[i];
3294 dbl = cea_db_payload_len(db);
3295
3296 if (cea_db_tag(db) == VIDEO_BLOCK) {
3297 video = db + 1;
3298 video_len = dbl;
3299 modes += do_cea_modes(connector, video, dbl);
3300 }
3301 else if (cea_db_is_hdmi_vsdb(db)) {
3302 hdmi = db;
3303 hdmi_len = dbl;
3304 }
3305 }
3306 }
3307
3308 /*
3309 * We parse the HDMI VSDB after having added the cea modes as we will
3310 * be patching their flags when the sink supports stereo 3D.
3311 */
3312 if (hdmi)
3313 modes += do_hdmi_vsdb_modes(connector, hdmi, hdmi_len, video,
3314 video_len);
3315
3316 return modes;
3317 }
3318
3319 static void fixup_detailed_cea_mode_clock(struct drm_display_mode *mode)
3320 {
3321 const struct drm_display_mode *cea_mode;
3322 int clock1, clock2, clock;
3323 u8 vic;
3324 const char *type;
3325
3326 /*
3327 * allow 5kHz clock difference either way to account for
3328 * the 10kHz clock resolution limit of detailed timings.
3329 */
3330 vic = drm_match_cea_mode_clock_tolerance(mode, 5);
3331 if (drm_valid_cea_vic(vic)) {
3332 type = "CEA";
3333 cea_mode = &edid_cea_modes[vic];
3334 clock1 = cea_mode->clock;
3335 clock2 = cea_mode_alternate_clock(cea_mode);
3336 } else {
3337 vic = drm_match_hdmi_mode_clock_tolerance(mode, 5);
3338 if (drm_valid_hdmi_vic(vic)) {
3339 type = "HDMI";
3340 cea_mode = &edid_4k_modes[vic];
3341 clock1 = cea_mode->clock;
3342 clock2 = hdmi_mode_alternate_clock(cea_mode);
3343 } else {
3344 return;
3345 }
3346 }
3347
3348 /* pick whichever is closest */
3349 if (abs(mode->clock - clock1) < abs(mode->clock - clock2))
3350 clock = clock1;
3351 else
3352 clock = clock2;
3353
3354 if (mode->clock == clock)
3355 return;
3356
3357 DRM_DEBUG("detailed mode matches %s VIC %d, adjusting clock %d -> %d\n",
3358 type, vic, mode->clock, clock);
3359 mode->clock = clock;
3360 }
3361
3362 static void
3363 drm_parse_hdmi_vsdb_audio(struct drm_connector *connector, const u8 *db)
3364 {
3365 u8 len = cea_db_payload_len(db);
3366
3367 if (len >= 6)
3368 connector->eld[5] |= (db[6] >> 7) << 1; /* Supports_AI */
3369 if (len >= 8) {
3370 connector->latency_present[0] = db[8] >> 7;
3371 connector->latency_present[1] = (db[8] >> 6) & 1;
3372 }
3373 if (len >= 9)
3374 connector->video_latency[0] = db[9];
3375 if (len >= 10)
3376 connector->audio_latency[0] = db[10];
3377 if (len >= 11)
3378 connector->video_latency[1] = db[11];
3379 if (len >= 12)
3380 connector->audio_latency[1] = db[12];
3381
3382 DRM_DEBUG_KMS("HDMI: latency present %d %d, "
3383 "video latency %d %d, "
3384 "audio latency %d %d\n",
3385 connector->latency_present[0],
3386 connector->latency_present[1],
3387 connector->video_latency[0],
3388 connector->video_latency[1],
3389 connector->audio_latency[0],
3390 connector->audio_latency[1]);
3391 }
3392
3393 static void
3394 monitor_name(struct detailed_timing *t, void *data)
3395 {
3396 if (t->data.other_data.type == EDID_DETAIL_MONITOR_NAME)
3397 *(u8 **)data = t->data.other_data.data.str.str;
3398 }
3399
3400 static int get_monitor_name(struct edid *edid, char name[13])
3401 {
3402 char *edid_name = NULL;
3403 int mnl;
3404
3405 if (!edid || !name)
3406 return 0;
3407
3408 drm_for_each_detailed_block((u8 *)edid, monitor_name, &edid_name);
3409 for (mnl = 0; edid_name && mnl < 13; mnl++) {
3410 if (edid_name[mnl] == 0x0a)
3411 break;
3412
3413 name[mnl] = edid_name[mnl];
3414 }
3415
3416 return mnl;
3417 }
3418
3419 /**
3420 * drm_edid_get_monitor_name - fetch the monitor name from the edid
3421 * @edid: monitor EDID information
3422 * @name: pointer to a character array to hold the name of the monitor
3423 * @bufsize: The size of the name buffer (should be at least 14 chars.)
3424 *
3425 */
3426 void drm_edid_get_monitor_name(struct edid *edid, char *name, int bufsize)
3427 {
3428 int name_length;
3429 char buf[13];
3430
3431 if (bufsize <= 0)
3432 return;
3433
3434 name_length = min(get_monitor_name(edid, buf), bufsize - 1);
3435 memcpy(name, buf, name_length);
3436 name[name_length] = '\0';
3437 }
3438 EXPORT_SYMBOL(drm_edid_get_monitor_name);
3439
3440 /**
3441 * drm_edid_to_eld - build ELD from EDID
3442 * @connector: connector corresponding to the HDMI/DP sink
3443 * @edid: EDID to parse
3444 *
3445 * Fill the ELD (EDID-Like Data) buffer for passing to the audio driver. The
3446 * Conn_Type, HDCP and Port_ID ELD fields are left for the graphics driver to
3447 * fill in.
3448 */
3449 void drm_edid_to_eld(struct drm_connector *connector, struct edid *edid)
3450 {
3451 uint8_t *eld = connector->eld;
3452 u8 *cea;
3453 u8 *db;
3454 int total_sad_count = 0;
3455 int mnl;
3456 int dbl;
3457
3458 memset(eld, 0, sizeof(connector->eld));
3459
3460 connector->latency_present[0] = false;
3461 connector->latency_present[1] = false;
3462 connector->video_latency[0] = 0;
3463 connector->audio_latency[0] = 0;
3464 connector->video_latency[1] = 0;
3465 connector->audio_latency[1] = 0;
3466
3467 if (!edid)
3468 return;
3469
3470 cea = drm_find_cea_extension(edid);
3471 if (!cea) {
3472 DRM_DEBUG_KMS("ELD: no CEA Extension found\n");
3473 return;
3474 }
3475
3476 mnl = get_monitor_name(edid, eld + 20);
3477
3478 eld[4] = (cea[1] << 5) | mnl;
3479 DRM_DEBUG_KMS("ELD monitor %s\n", eld + 20);
3480
3481 eld[0] = 2 << 3; /* ELD version: 2 */
3482
3483 eld[16] = edid->mfg_id[0];
3484 eld[17] = edid->mfg_id[1];
3485 eld[18] = edid->prod_code[0];
3486 eld[19] = edid->prod_code[1];
3487
3488 if (cea_revision(cea) >= 3) {
3489 int i, start, end;
3490
3491 if (cea_db_offsets(cea, &start, &end)) {
3492 start = 0;
3493 end = 0;
3494 }
3495
3496 for_each_cea_db(cea, i, start, end) {
3497 db = &cea[i];
3498 dbl = cea_db_payload_len(db);
3499
3500 switch (cea_db_tag(db)) {
3501 int sad_count;
3502
3503 case AUDIO_BLOCK:
3504 /* Audio Data Block, contains SADs */
3505 sad_count = min(dbl / 3, 15 - total_sad_count);
3506 if (sad_count >= 1)
3507 memcpy(eld + 20 + mnl + total_sad_count * 3,
3508 &db[1], sad_count * 3);
3509 total_sad_count += sad_count;
3510 break;
3511 case SPEAKER_BLOCK:
3512 /* Speaker Allocation Data Block */
3513 if (dbl >= 1)
3514 eld[7] = db[1];
3515 break;
3516 case VENDOR_BLOCK:
3517 /* HDMI Vendor-Specific Data Block */
3518 if (cea_db_is_hdmi_vsdb(db))
3519 drm_parse_hdmi_vsdb_audio(connector, db);
3520 break;
3521 default:
3522 break;
3523 }
3524 }
3525 }
3526 eld[5] |= total_sad_count << 4;
3527
3528 eld[DRM_ELD_BASELINE_ELD_LEN] =
3529 DIV_ROUND_UP(drm_eld_calc_baseline_block_size(eld), 4);
3530
3531 DRM_DEBUG_KMS("ELD size %d, SAD count %d\n",
3532 drm_eld_size(eld), total_sad_count);
3533 }
3534 EXPORT_SYMBOL(drm_edid_to_eld);
3535
3536 /**
3537 * drm_edid_to_sad - extracts SADs from EDID
3538 * @edid: EDID to parse
3539 * @sads: pointer that will be set to the extracted SADs
3540 *
3541 * Looks for CEA EDID block and extracts SADs (Short Audio Descriptors) from it.
3542 *
3543 * Note: The returned pointer needs to be freed using kfree().
3544 *
3545 * Return: The number of found SADs or negative number on error.
3546 */
3547 int drm_edid_to_sad(struct edid *edid, struct cea_sad **sads)
3548 {
3549 int count = 0;
3550 int i, start, end, dbl;
3551 u8 *cea;
3552
3553 cea = drm_find_cea_extension(edid);
3554 if (!cea) {
3555 DRM_DEBUG_KMS("SAD: no CEA Extension found\n");
3556 return -ENOENT;
3557 }
3558
3559 if (cea_revision(cea) < 3) {
3560 DRM_DEBUG_KMS("SAD: wrong CEA revision\n");
3561 return -ENOTSUPP;
3562 }
3563
3564 if (cea_db_offsets(cea, &start, &end)) {
3565 DRM_DEBUG_KMS("SAD: invalid data block offsets\n");
3566 return -EPROTO;
3567 }
3568
3569 for_each_cea_db(cea, i, start, end) {
3570 u8 *db = &cea[i];
3571
3572 if (cea_db_tag(db) == AUDIO_BLOCK) {
3573 int j;
3574 dbl = cea_db_payload_len(db);
3575
3576 count = dbl / 3; /* SAD is 3B */
3577 *sads = kcalloc(count, sizeof(**sads), GFP_KERNEL);
3578 if (!*sads)
3579 return -ENOMEM;
3580 for (j = 0; j < count; j++) {
3581 u8 *sad = &db[1 + j * 3];
3582
3583 (*sads)[j].format = (sad[0] & 0x78) >> 3;
3584 (*sads)[j].channels = sad[0] & 0x7;
3585 (*sads)[j].freq = sad[1] & 0x7F;
3586 (*sads)[j].byte2 = sad[2];
3587 }
3588 break;
3589 }
3590 }
3591
3592 return count;
3593 }
3594 EXPORT_SYMBOL(drm_edid_to_sad);
3595
3596 /**
3597 * drm_edid_to_speaker_allocation - extracts Speaker Allocation Data Blocks from EDID
3598 * @edid: EDID to parse
3599 * @sadb: pointer to the speaker block
3600 *
3601 * Looks for CEA EDID block and extracts the Speaker Allocation Data Block from it.
3602 *
3603 * Note: The returned pointer needs to be freed using kfree().
3604 *
3605 * Return: The number of found Speaker Allocation Blocks or negative number on
3606 * error.
3607 */
3608 int drm_edid_to_speaker_allocation(struct edid *edid, u8 **sadb)
3609 {
3610 int count = 0;
3611 int i, start, end, dbl;
3612 const u8 *cea;
3613
3614 cea = drm_find_cea_extension(edid);
3615 if (!cea) {
3616 DRM_DEBUG_KMS("SAD: no CEA Extension found\n");
3617 return -ENOENT;
3618 }
3619
3620 if (cea_revision(cea) < 3) {
3621 DRM_DEBUG_KMS("SAD: wrong CEA revision\n");
3622 return -ENOTSUPP;
3623 }
3624
3625 if (cea_db_offsets(cea, &start, &end)) {
3626 DRM_DEBUG_KMS("SAD: invalid data block offsets\n");
3627 return -EPROTO;
3628 }
3629
3630 for_each_cea_db(cea, i, start, end) {
3631 const u8 *db = &cea[i];
3632
3633 if (cea_db_tag(db) == SPEAKER_BLOCK) {
3634 dbl = cea_db_payload_len(db);
3635
3636 /* Speaker Allocation Data Block */
3637 if (dbl == 3) {
3638 *sadb = kmemdup(&db[1], dbl, GFP_KERNEL);
3639 if (!*sadb)
3640 return -ENOMEM;
3641 count = dbl;
3642 break;
3643 }
3644 }
3645 }
3646
3647 return count;
3648 }
3649 EXPORT_SYMBOL(drm_edid_to_speaker_allocation);
3650
3651 /**
3652 * drm_av_sync_delay - compute the HDMI/DP sink audio-video sync delay
3653 * @connector: connector associated with the HDMI/DP sink
3654 * @mode: the display mode
3655 *
3656 * Return: The HDMI/DP sink's audio-video sync delay in milliseconds or 0 if
3657 * the sink doesn't support audio or video.
3658 */
3659 int drm_av_sync_delay(struct drm_connector *connector,
3660 const struct drm_display_mode *mode)
3661 {
3662 int i = !!(mode->flags & DRM_MODE_FLAG_INTERLACE);
3663 int a, v;
3664
3665 if (!connector->latency_present[0])
3666 return 0;
3667 if (!connector->latency_present[1])
3668 i = 0;
3669
3670 a = connector->audio_latency[i];
3671 v = connector->video_latency[i];
3672
3673 /*
3674 * HDMI/DP sink doesn't support audio or video?
3675 */
3676 if (a == 255 || v == 255)
3677 return 0;
3678
3679 /*
3680 * Convert raw EDID values to millisecond.
3681 * Treat unknown latency as 0ms.
3682 */
3683 if (a)
3684 a = min(2 * (a - 1), 500);
3685 if (v)
3686 v = min(2 * (v - 1), 500);
3687
3688 return max(v - a, 0);
3689 }
3690 EXPORT_SYMBOL(drm_av_sync_delay);
3691
3692 /**
3693 * drm_detect_hdmi_monitor - detect whether monitor is HDMI
3694 * @edid: monitor EDID information
3695 *
3696 * Parse the CEA extension according to CEA-861-B.
3697 *
3698 * Return: True if the monitor is HDMI, false if not or unknown.
3699 */
3700 bool drm_detect_hdmi_monitor(struct edid *edid)
3701 {
3702 u8 *edid_ext;
3703 int i;
3704 int start_offset, end_offset;
3705
3706 edid_ext = drm_find_cea_extension(edid);
3707 if (!edid_ext)
3708 return false;
3709
3710 if (cea_db_offsets(edid_ext, &start_offset, &end_offset))
3711 return false;
3712
3713 /*
3714 * Because HDMI identifier is in Vendor Specific Block,
3715 * search it from all data blocks of CEA extension.
3716 */
3717 for_each_cea_db(edid_ext, i, start_offset, end_offset) {
3718 if (cea_db_is_hdmi_vsdb(&edid_ext[i]))
3719 return true;
3720 }
3721
3722 return false;
3723 }
3724 EXPORT_SYMBOL(drm_detect_hdmi_monitor);
3725
3726 /**
3727 * drm_detect_monitor_audio - check monitor audio capability
3728 * @edid: EDID block to scan
3729 *
3730 * Monitor should have CEA extension block.
3731 * If monitor has 'basic audio', but no CEA audio blocks, it's 'basic
3732 * audio' only. If there is any audio extension block and supported
3733 * audio format, assume at least 'basic audio' support, even if 'basic
3734 * audio' is not defined in EDID.
3735 *
3736 * Return: True if the monitor supports audio, false otherwise.
3737 */
3738 bool drm_detect_monitor_audio(struct edid *edid)
3739 {
3740 u8 *edid_ext;
3741 int i, j;
3742 bool has_audio = false;
3743 int start_offset, end_offset;
3744
3745 edid_ext = drm_find_cea_extension(edid);
3746 if (!edid_ext)
3747 goto end;
3748
3749 has_audio = ((edid_ext[3] & EDID_BASIC_AUDIO) != 0);
3750
3751 if (has_audio) {
3752 DRM_DEBUG_KMS("Monitor has basic audio support\n");
3753 goto end;
3754 }
3755
3756 if (cea_db_offsets(edid_ext, &start_offset, &end_offset))
3757 goto end;
3758
3759 for_each_cea_db(edid_ext, i, start_offset, end_offset) {
3760 if (cea_db_tag(&edid_ext[i]) == AUDIO_BLOCK) {
3761 has_audio = true;
3762 for (j = 1; j < cea_db_payload_len(&edid_ext[i]) + 1; j += 3)
3763 DRM_DEBUG_KMS("CEA audio format %d\n",
3764 (edid_ext[i + j] >> 3) & 0xf);
3765 goto end;
3766 }
3767 }
3768 end:
3769 return has_audio;
3770 }
3771 EXPORT_SYMBOL(drm_detect_monitor_audio);
3772
3773 /**
3774 * drm_rgb_quant_range_selectable - is RGB quantization range selectable?
3775 * @edid: EDID block to scan
3776 *
3777 * Check whether the monitor reports the RGB quantization range selection
3778 * as supported. The AVI infoframe can then be used to inform the monitor
3779 * which quantization range (full or limited) is used.
3780 *
3781 * Return: True if the RGB quantization range is selectable, false otherwise.
3782 */
3783 bool drm_rgb_quant_range_selectable(struct edid *edid)
3784 {
3785 u8 *edid_ext;
3786 int i, start, end;
3787
3788 edid_ext = drm_find_cea_extension(edid);
3789 if (!edid_ext)
3790 return false;
3791
3792 if (cea_db_offsets(edid_ext, &start, &end))
3793 return false;
3794
3795 for_each_cea_db(edid_ext, i, start, end) {
3796 if (cea_db_tag(&edid_ext[i]) == VIDEO_CAPABILITY_BLOCK &&
3797 cea_db_payload_len(&edid_ext[i]) == 2) {
3798 DRM_DEBUG_KMS("CEA VCDB 0x%02x\n", edid_ext[i + 2]);
3799 return edid_ext[i + 2] & EDID_CEA_VCDB_QS;
3800 }
3801 }
3802
3803 return false;
3804 }
3805 EXPORT_SYMBOL(drm_rgb_quant_range_selectable);
3806
3807 /**
3808 * drm_default_rgb_quant_range - default RGB quantization range
3809 * @mode: display mode
3810 *
3811 * Determine the default RGB quantization range for the mode,
3812 * as specified in CEA-861.
3813 *
3814 * Return: The default RGB quantization range for the mode
3815 */
3816 enum hdmi_quantization_range
3817 drm_default_rgb_quant_range(const struct drm_display_mode *mode)
3818 {
3819 /* All CEA modes other than VIC 1 use limited quantization range. */
3820 return drm_match_cea_mode(mode) > 1 ?
3821 HDMI_QUANTIZATION_RANGE_LIMITED :
3822 HDMI_QUANTIZATION_RANGE_FULL;
3823 }
3824 EXPORT_SYMBOL(drm_default_rgb_quant_range);
3825
3826 static void drm_parse_hdmi_forum_vsdb(struct drm_connector *connector,
3827 const u8 *hf_vsdb)
3828 {
3829 struct drm_display_info *display = &connector->display_info;
3830 struct drm_hdmi_info *hdmi = &display->hdmi;
3831
3832 if (hf_vsdb[6] & 0x80) {
3833 hdmi->scdc.supported = true;
3834 if (hf_vsdb[6] & 0x40)
3835 hdmi->scdc.read_request = true;
3836 }
3837
3838 /*
3839 * All HDMI 2.0 monitors must support scrambling at rates > 340 MHz.
3840 * And as per the spec, three factors confirm this:
3841 * * Availability of a HF-VSDB block in EDID (check)
3842 * * Non zero Max_TMDS_Char_Rate filed in HF-VSDB (let's check)
3843 * * SCDC support available (let's check)
3844 * Lets check it out.
3845 */
3846
3847 if (hf_vsdb[5]) {
3848 /* max clock is 5000 KHz times block value */
3849 u32 max_tmds_clock = hf_vsdb[5] * 5000;
3850 struct drm_scdc *scdc = &hdmi->scdc;
3851
3852 if (max_tmds_clock > 340000) {
3853 display->max_tmds_clock = max_tmds_clock;
3854 DRM_DEBUG_KMS("HF-VSDB: max TMDS clock %d kHz\n",
3855 display->max_tmds_clock);
3856 }
3857
3858 if (scdc->supported) {
3859 scdc->scrambling.supported = true;
3860
3861 /* Few sinks support scrambling for cloks < 340M */
3862 if ((hf_vsdb[6] & 0x8))
3863 scdc->scrambling.low_rates = true;
3864 }
3865 }
3866 }
3867
3868 static void drm_parse_hdmi_deep_color_info(struct drm_connector *connector,
3869 const u8 *hdmi)
3870 {
3871 struct drm_display_info *info = &connector->display_info;
3872 unsigned int dc_bpc = 0;
3873
3874 /* HDMI supports at least 8 bpc */
3875 info->bpc = 8;
3876
3877 if (cea_db_payload_len(hdmi) < 6)
3878 return;
3879
3880 if (hdmi[6] & DRM_EDID_HDMI_DC_30) {
3881 dc_bpc = 10;
3882 info->edid_hdmi_dc_modes |= DRM_EDID_HDMI_DC_30;
3883 DRM_DEBUG("%s: HDMI sink does deep color 30.\n",
3884 connector->name);
3885 }
3886
3887 if (hdmi[6] & DRM_EDID_HDMI_DC_36) {
3888 dc_bpc = 12;
3889 info->edid_hdmi_dc_modes |= DRM_EDID_HDMI_DC_36;
3890 DRM_DEBUG("%s: HDMI sink does deep color 36.\n",
3891 connector->name);
3892 }
3893
3894 if (hdmi[6] & DRM_EDID_HDMI_DC_48) {
3895 dc_bpc = 16;
3896 info->edid_hdmi_dc_modes |= DRM_EDID_HDMI_DC_48;
3897 DRM_DEBUG("%s: HDMI sink does deep color 48.\n",
3898 connector->name);
3899 }
3900
3901 if (dc_bpc == 0) {
3902 DRM_DEBUG("%s: No deep color support on this HDMI sink.\n",
3903 connector->name);
3904 return;
3905 }
3906
3907 DRM_DEBUG("%s: Assigning HDMI sink color depth as %d bpc.\n",
3908 connector->name, dc_bpc);
3909 info->bpc = dc_bpc;
3910
3911 /*
3912 * Deep color support mandates RGB444 support for all video
3913 * modes and forbids YCRCB422 support for all video modes per
3914 * HDMI 1.3 spec.
3915 */
3916 info->color_formats = DRM_COLOR_FORMAT_RGB444;
3917
3918 /* YCRCB444 is optional according to spec. */
3919 if (hdmi[6] & DRM_EDID_HDMI_DC_Y444) {
3920 info->color_formats |= DRM_COLOR_FORMAT_YCRCB444;
3921 DRM_DEBUG("%s: HDMI sink does YCRCB444 in deep color.\n",
3922 connector->name);
3923 }
3924
3925 /*
3926 * Spec says that if any deep color mode is supported at all,
3927 * then deep color 36 bit must be supported.
3928 */
3929 if (!(hdmi[6] & DRM_EDID_HDMI_DC_36)) {
3930 DRM_DEBUG("%s: HDMI sink should do DC_36, but does not!\n",
3931 connector->name);
3932 }
3933 }
3934
3935 static void
3936 drm_parse_hdmi_vsdb_video(struct drm_connector *connector, const u8 *db)
3937 {
3938 struct drm_display_info *info = &connector->display_info;
3939 u8 len = cea_db_payload_len(db);
3940
3941 if (len >= 6)
3942 info->dvi_dual = db[6] & 1;
3943 if (len >= 7)
3944 info->max_tmds_clock = db[7] * 5000;
3945
3946 DRM_DEBUG_KMS("HDMI: DVI dual %d, "
3947 "max TMDS clock %d kHz\n",
3948 info->dvi_dual,
3949 info->max_tmds_clock);
3950
3951 drm_parse_hdmi_deep_color_info(connector, db);
3952 }
3953
3954 static void drm_parse_cea_ext(struct drm_connector *connector,
3955 struct edid *edid)
3956 {
3957 struct drm_display_info *info = &connector->display_info;
3958 const u8 *edid_ext;
3959 int i, start, end;
3960
3961 edid_ext = drm_find_cea_extension(edid);
3962 if (!edid_ext)
3963 return;
3964
3965 info->cea_rev = edid_ext[1];
3966
3967 /* The existence of a CEA block should imply RGB support */
3968 info->color_formats = DRM_COLOR_FORMAT_RGB444;
3969 if (edid_ext[3] & EDID_CEA_YCRCB444)
3970 info->color_formats |= DRM_COLOR_FORMAT_YCRCB444;
3971 if (edid_ext[3] & EDID_CEA_YCRCB422)
3972 info->color_formats |= DRM_COLOR_FORMAT_YCRCB422;
3973
3974 if (cea_db_offsets(edid_ext, &start, &end))
3975 return;
3976
3977 for_each_cea_db(edid_ext, i, start, end) {
3978 const u8 *db = &edid_ext[i];
3979
3980 if (cea_db_is_hdmi_vsdb(db))
3981 drm_parse_hdmi_vsdb_video(connector, db);
3982 if (cea_db_is_hdmi_forum_vsdb(db))
3983 drm_parse_hdmi_forum_vsdb(connector, db);
3984 }
3985 }
3986
3987 static void drm_add_display_info(struct drm_connector *connector,
3988 struct edid *edid)
3989 {
3990 struct drm_display_info *info = &connector->display_info;
3991
3992 info->width_mm = edid->width_cm * 10;
3993 info->height_mm = edid->height_cm * 10;
3994
3995 /* driver figures it out in this case */
3996 info->bpc = 0;
3997 info->color_formats = 0;
3998 info->cea_rev = 0;
3999 info->max_tmds_clock = 0;
4000 info->dvi_dual = false;
4001
4002 if (edid->revision < 3)
4003 return;
4004
4005 if (!(edid->input & DRM_EDID_INPUT_DIGITAL))
4006 return;
4007
4008 drm_parse_cea_ext(connector, edid);
4009
4010 /*
4011 * Digital sink with "DFP 1.x compliant TMDS" according to EDID 1.3?
4012 *
4013 * For such displays, the DFP spec 1.0, section 3.10 "EDID support"
4014 * tells us to assume 8 bpc color depth if the EDID doesn't have
4015 * extensions which tell otherwise.
4016 */
4017 if ((info->bpc == 0) && (edid->revision < 4) &&
4018 (edid->input & DRM_EDID_DIGITAL_TYPE_DVI)) {
4019 info->bpc = 8;
4020 DRM_DEBUG("%s: Assigning DFP sink color depth as %d bpc.\n",
4021 connector->name, info->bpc);
4022 }
4023
4024 /* Only defined for 1.4 with digital displays */
4025 if (edid->revision < 4)
4026 return;
4027
4028 switch (edid->input & DRM_EDID_DIGITAL_DEPTH_MASK) {
4029 case DRM_EDID_DIGITAL_DEPTH_6:
4030 info->bpc = 6;
4031 break;
4032 case DRM_EDID_DIGITAL_DEPTH_8:
4033 info->bpc = 8;
4034 break;
4035 case DRM_EDID_DIGITAL_DEPTH_10:
4036 info->bpc = 10;
4037 break;
4038 case DRM_EDID_DIGITAL_DEPTH_12:
4039 info->bpc = 12;
4040 break;
4041 case DRM_EDID_DIGITAL_DEPTH_14:
4042 info->bpc = 14;
4043 break;
4044 case DRM_EDID_DIGITAL_DEPTH_16:
4045 info->bpc = 16;
4046 break;
4047 case DRM_EDID_DIGITAL_DEPTH_UNDEF:
4048 default:
4049 info->bpc = 0;
4050 break;
4051 }
4052
4053 DRM_DEBUG("%s: Assigning EDID-1.4 digital sink color depth as %d bpc.\n",
4054 connector->name, info->bpc);
4055
4056 info->color_formats |= DRM_COLOR_FORMAT_RGB444;
4057 if (edid->features & DRM_EDID_FEATURE_RGB_YCRCB444)
4058 info->color_formats |= DRM_COLOR_FORMAT_YCRCB444;
4059 if (edid->features & DRM_EDID_FEATURE_RGB_YCRCB422)
4060 info->color_formats |= DRM_COLOR_FORMAT_YCRCB422;
4061 }
4062
4063 static int validate_displayid(u8 *displayid, int length, int idx)
4064 {
4065 int i;
4066 u8 csum = 0;
4067 struct displayid_hdr *base;
4068
4069 base = (struct displayid_hdr *)&displayid[idx];
4070
4071 DRM_DEBUG_KMS("base revision 0x%x, length %d, %d %d\n",
4072 base->rev, base->bytes, base->prod_id, base->ext_count);
4073
4074 if (base->bytes + 5 > length - idx)
4075 return -EINVAL;
4076 for (i = idx; i <= base->bytes + 5; i++) {
4077 csum += displayid[i];
4078 }
4079 if (csum) {
4080 DRM_NOTE("DisplayID checksum invalid, remainder is %d\n", csum);
4081 return -EINVAL;
4082 }
4083 return 0;
4084 }
4085
4086 static struct drm_display_mode *drm_mode_displayid_detailed(struct drm_device *dev,
4087 struct displayid_detailed_timings_1 *timings)
4088 {
4089 struct drm_display_mode *mode;
4090 unsigned pixel_clock = (timings->pixel_clock[0] |
4091 (timings->pixel_clock[1] << 8) |
4092 (timings->pixel_clock[2] << 16));
4093 unsigned hactive = (timings->hactive[0] | timings->hactive[1] << 8) + 1;
4094 unsigned hblank = (timings->hblank[0] | timings->hblank[1] << 8) + 1;
4095 unsigned hsync = (timings->hsync[0] | (timings->hsync[1] & 0x7f) << 8) + 1;
4096 unsigned hsync_width = (timings->hsw[0] | timings->hsw[1] << 8) + 1;
4097 unsigned vactive = (timings->vactive[0] | timings->vactive[1] << 8) + 1;
4098 unsigned vblank = (timings->vblank[0] | timings->vblank[1] << 8) + 1;
4099 unsigned vsync = (timings->vsync[0] | (timings->vsync[1] & 0x7f) << 8) + 1;
4100 unsigned vsync_width = (timings->vsw[0] | timings->vsw[1] << 8) + 1;
4101 bool hsync_positive = (timings->hsync[1] >> 7) & 0x1;
4102 bool vsync_positive = (timings->vsync[1] >> 7) & 0x1;
4103 mode = drm_mode_create(dev);
4104 if (!mode)
4105 return NULL;
4106
4107 mode->clock = pixel_clock * 10;
4108 mode->hdisplay = hactive;
4109 mode->hsync_start = mode->hdisplay + hsync;
4110 mode->hsync_end = mode->hsync_start + hsync_width;
4111 mode->htotal = mode->hdisplay + hblank;
4112
4113 mode->vdisplay = vactive;
4114 mode->vsync_start = mode->vdisplay + vsync;
4115 mode->vsync_end = mode->vsync_start + vsync_width;
4116 mode->vtotal = mode->vdisplay + vblank;
4117
4118 mode->flags = 0;
4119 mode->flags |= hsync_positive ? DRM_MODE_FLAG_PHSYNC : DRM_MODE_FLAG_NHSYNC;
4120 mode->flags |= vsync_positive ? DRM_MODE_FLAG_PVSYNC : DRM_MODE_FLAG_NVSYNC;
4121 mode->type = DRM_MODE_TYPE_DRIVER;
4122
4123 if (timings->flags & 0x80)
4124 mode->type |= DRM_MODE_TYPE_PREFERRED;
4125 mode->vrefresh = drm_mode_vrefresh(mode);
4126 drm_mode_set_name(mode);
4127
4128 return mode;
4129 }
4130
4131 static int add_displayid_detailed_1_modes(struct drm_connector *connector,
4132 struct displayid_block *block)
4133 {
4134 struct displayid_detailed_timing_block *det = (struct displayid_detailed_timing_block *)block;
4135 int i;
4136 int num_timings;
4137 struct drm_display_mode *newmode;
4138 int num_modes = 0;
4139 /* blocks must be multiple of 20 bytes length */
4140 if (block->num_bytes % 20)
4141 return 0;
4142
4143 num_timings = block->num_bytes / 20;
4144 for (i = 0; i < num_timings; i++) {
4145 struct displayid_detailed_timings_1 *timings = &det->timings[i];
4146
4147 newmode = drm_mode_displayid_detailed(connector->dev, timings);
4148 if (!newmode)
4149 continue;
4150
4151 drm_mode_probed_add(connector, newmode);
4152 num_modes++;
4153 }
4154 return num_modes;
4155 }
4156
4157 static int add_displayid_detailed_modes(struct drm_connector *connector,
4158 struct edid *edid)
4159 {
4160 u8 *displayid;
4161 int ret;
4162 int idx = 1;
4163 int length = EDID_LENGTH;
4164 struct displayid_block *block;
4165 int num_modes = 0;
4166
4167 displayid = drm_find_displayid_extension(edid);
4168 if (!displayid)
4169 return 0;
4170
4171 ret = validate_displayid(displayid, length, idx);
4172 if (ret)
4173 return 0;
4174
4175 idx += sizeof(struct displayid_hdr);
4176 while (block = (struct displayid_block *)&displayid[idx],
4177 idx + sizeof(struct displayid_block) <= length &&
4178 idx + sizeof(struct displayid_block) + block->num_bytes <= length &&
4179 block->num_bytes > 0) {
4180 idx += block->num_bytes + sizeof(struct displayid_block);
4181 switch (block->tag) {
4182 case DATA_BLOCK_TYPE_1_DETAILED_TIMING:
4183 num_modes += add_displayid_detailed_1_modes(connector, block);
4184 break;
4185 }
4186 }
4187 return num_modes;
4188 }
4189
4190 /**
4191 * drm_add_edid_modes - add modes from EDID data, if available
4192 * @connector: connector we're probing
4193 * @edid: EDID data
4194 *
4195 * Add the specified modes to the connector's mode list. Also fills out the
4196 * &drm_display_info structure in @connector with any information which can be
4197 * derived from the edid.
4198 *
4199 * Return: The number of modes added or 0 if we couldn't find any.
4200 */
4201 int drm_add_edid_modes(struct drm_connector *connector, struct edid *edid)
4202 {
4203 int num_modes = 0;
4204 u32 quirks;
4205
4206 if (edid == NULL) {
4207 return 0;
4208 }
4209 if (!drm_edid_is_valid(edid)) {
4210 dev_warn(connector->dev->dev, "%s: EDID invalid.\n",
4211 connector->name);
4212 return 0;
4213 }
4214
4215 quirks = edid_get_quirks(edid);
4216
4217 /*
4218 * EDID spec says modes should be preferred in this order:
4219 * - preferred detailed mode
4220 * - other detailed modes from base block
4221 * - detailed modes from extension blocks
4222 * - CVT 3-byte code modes
4223 * - standard timing codes
4224 * - established timing codes
4225 * - modes inferred from GTF or CVT range information
4226 *
4227 * We get this pretty much right.
4228 *
4229 * XXX order for additional mode types in extension blocks?
4230 */
4231 num_modes += add_detailed_modes(connector, edid, quirks);
4232 num_modes += add_cvt_modes(connector, edid);
4233 num_modes += add_standard_modes(connector, edid);
4234 num_modes += add_established_modes(connector, edid);
4235 num_modes += add_cea_modes(connector, edid);
4236 num_modes += add_alternate_cea_modes(connector, edid);
4237 num_modes += add_displayid_detailed_modes(connector, edid);
4238 if (edid->features & DRM_EDID_FEATURE_DEFAULT_GTF)
4239 num_modes += add_inferred_modes(connector, edid);
4240
4241 if (quirks & (EDID_QUIRK_PREFER_LARGE_60 | EDID_QUIRK_PREFER_LARGE_75))
4242 edid_fixup_preferred(connector, quirks);
4243
4244 drm_add_display_info(connector, edid);
4245
4246 if (quirks & EDID_QUIRK_FORCE_6BPC)
4247 connector->display_info.bpc = 6;
4248
4249 if (quirks & EDID_QUIRK_FORCE_8BPC)
4250 connector->display_info.bpc = 8;
4251
4252 if (quirks & EDID_QUIRK_FORCE_10BPC)
4253 connector->display_info.bpc = 10;
4254
4255 if (quirks & EDID_QUIRK_FORCE_12BPC)
4256 connector->display_info.bpc = 12;
4257
4258 return num_modes;
4259 }
4260 EXPORT_SYMBOL(drm_add_edid_modes);
4261
4262 /**
4263 * drm_add_modes_noedid - add modes for the connectors without EDID
4264 * @connector: connector we're probing
4265 * @hdisplay: the horizontal display limit
4266 * @vdisplay: the vertical display limit
4267 *
4268 * Add the specified modes to the connector's mode list. Only when the
4269 * hdisplay/vdisplay is not beyond the given limit, it will be added.
4270 *
4271 * Return: The number of modes added or 0 if we couldn't find any.
4272 */
4273 int drm_add_modes_noedid(struct drm_connector *connector,
4274 int hdisplay, int vdisplay)
4275 {
4276 int i, count, num_modes = 0;
4277 struct drm_display_mode *mode;
4278 struct drm_device *dev = connector->dev;
4279
4280 count = ARRAY_SIZE(drm_dmt_modes);
4281 if (hdisplay < 0)
4282 hdisplay = 0;
4283 if (vdisplay < 0)
4284 vdisplay = 0;
4285
4286 for (i = 0; i < count; i++) {
4287 const struct drm_display_mode *ptr = &drm_dmt_modes[i];
4288 if (hdisplay && vdisplay) {
4289 /*
4290 * Only when two are valid, they will be used to check
4291 * whether the mode should be added to the mode list of
4292 * the connector.
4293 */
4294 if (ptr->hdisplay > hdisplay ||
4295 ptr->vdisplay > vdisplay)
4296 continue;
4297 }
4298 if (drm_mode_vrefresh(ptr) > 61)
4299 continue;
4300 mode = drm_mode_duplicate(dev, ptr);
4301 if (mode) {
4302 drm_mode_probed_add(connector, mode);
4303 num_modes++;
4304 }
4305 }
4306 return num_modes;
4307 }
4308 EXPORT_SYMBOL(drm_add_modes_noedid);
4309
4310 /**
4311 * drm_set_preferred_mode - Sets the preferred mode of a connector
4312 * @connector: connector whose mode list should be processed
4313 * @hpref: horizontal resolution of preferred mode
4314 * @vpref: vertical resolution of preferred mode
4315 *
4316 * Marks a mode as preferred if it matches the resolution specified by @hpref
4317 * and @vpref.
4318 */
4319 void drm_set_preferred_mode(struct drm_connector *connector,
4320 int hpref, int vpref)
4321 {
4322 struct drm_display_mode *mode;
4323
4324 list_for_each_entry(mode, &connector->probed_modes, head) {
4325 if (mode->hdisplay == hpref &&
4326 mode->vdisplay == vpref)
4327 mode->type |= DRM_MODE_TYPE_PREFERRED;
4328 }
4329 }
4330 EXPORT_SYMBOL(drm_set_preferred_mode);
4331
4332 /**
4333 * drm_hdmi_avi_infoframe_from_display_mode() - fill an HDMI AVI infoframe with
4334 * data from a DRM display mode
4335 * @frame: HDMI AVI infoframe
4336 * @mode: DRM display mode
4337 *
4338 * Return: 0 on success or a negative error code on failure.
4339 */
4340 int
4341 drm_hdmi_avi_infoframe_from_display_mode(struct hdmi_avi_infoframe *frame,
4342 const struct drm_display_mode *mode)
4343 {
4344 int err;
4345
4346 if (!frame || !mode)
4347 return -EINVAL;
4348
4349 err = hdmi_avi_infoframe_init(frame);
4350 if (err < 0)
4351 return err;
4352
4353 if (mode->flags & DRM_MODE_FLAG_DBLCLK)
4354 frame->pixel_repeat = 1;
4355
4356 frame->video_code = drm_match_cea_mode(mode);
4357
4358 frame->picture_aspect = HDMI_PICTURE_ASPECT_NONE;
4359
4360 /*
4361 * Populate picture aspect ratio from either
4362 * user input (if specified) or from the CEA mode list.
4363 */
4364 if (mode->picture_aspect_ratio == HDMI_PICTURE_ASPECT_4_3 ||
4365 mode->picture_aspect_ratio == HDMI_PICTURE_ASPECT_16_9)
4366 frame->picture_aspect = mode->picture_aspect_ratio;
4367 else if (frame->video_code > 0)
4368 frame->picture_aspect = drm_get_cea_aspect_ratio(
4369 frame->video_code);
4370
4371 frame->active_aspect = HDMI_ACTIVE_ASPECT_PICTURE;
4372 frame->scan_mode = HDMI_SCAN_MODE_UNDERSCAN;
4373
4374 return 0;
4375 }
4376 EXPORT_SYMBOL(drm_hdmi_avi_infoframe_from_display_mode);
4377
4378 /**
4379 * drm_hdmi_avi_infoframe_quant_range() - fill the HDMI AVI infoframe
4380 * quantization range information
4381 * @frame: HDMI AVI infoframe
4382 * @mode: DRM display mode
4383 * @rgb_quant_range: RGB quantization range (Q)
4384 * @rgb_quant_range_selectable: Sink support selectable RGB quantization range (QS)
4385 */
4386 void
4387 drm_hdmi_avi_infoframe_quant_range(struct hdmi_avi_infoframe *frame,
4388 const struct drm_display_mode *mode,
4389 enum hdmi_quantization_range rgb_quant_range,
4390 bool rgb_quant_range_selectable)
4391 {
4392 /*
4393 * CEA-861:
4394 * "A Source shall not send a non-zero Q value that does not correspond
4395 * to the default RGB Quantization Range for the transmitted Picture
4396 * unless the Sink indicates support for the Q bit in a Video
4397 * Capabilities Data Block."
4398 *
4399 * HDMI 2.0 recommends sending non-zero Q when it does match the
4400 * default RGB quantization range for the mode, even when QS=0.
4401 */
4402 if (rgb_quant_range_selectable ||
4403 rgb_quant_range == drm_default_rgb_quant_range(mode))
4404 frame->quantization_range = rgb_quant_range;
4405 else
4406 frame->quantization_range = HDMI_QUANTIZATION_RANGE_DEFAULT;
4407
4408 /*
4409 * CEA-861-F:
4410 * "When transmitting any RGB colorimetry, the Source should set the
4411 * YQ-field to match the RGB Quantization Range being transmitted
4412 * (e.g., when Limited Range RGB, set YQ=0 or when Full Range RGB,
4413 * set YQ=1) and the Sink shall ignore the YQ-field."
4414 */
4415 if (rgb_quant_range == HDMI_QUANTIZATION_RANGE_LIMITED)
4416 frame->ycc_quantization_range =
4417 HDMI_YCC_QUANTIZATION_RANGE_LIMITED;
4418 else
4419 frame->ycc_quantization_range =
4420 HDMI_YCC_QUANTIZATION_RANGE_FULL;
4421 }
4422 EXPORT_SYMBOL(drm_hdmi_avi_infoframe_quant_range);
4423
4424 static enum hdmi_3d_structure
4425 s3d_structure_from_display_mode(const struct drm_display_mode *mode)
4426 {
4427 u32 layout = mode->flags & DRM_MODE_FLAG_3D_MASK;
4428
4429 switch (layout) {
4430 case DRM_MODE_FLAG_3D_FRAME_PACKING:
4431 return HDMI_3D_STRUCTURE_FRAME_PACKING;
4432 case DRM_MODE_FLAG_3D_FIELD_ALTERNATIVE:
4433 return HDMI_3D_STRUCTURE_FIELD_ALTERNATIVE;
4434 case DRM_MODE_FLAG_3D_LINE_ALTERNATIVE:
4435 return HDMI_3D_STRUCTURE_LINE_ALTERNATIVE;
4436 case DRM_MODE_FLAG_3D_SIDE_BY_SIDE_FULL:
4437 return HDMI_3D_STRUCTURE_SIDE_BY_SIDE_FULL;
4438 case DRM_MODE_FLAG_3D_L_DEPTH:
4439 return HDMI_3D_STRUCTURE_L_DEPTH;
4440 case DRM_MODE_FLAG_3D_L_DEPTH_GFX_GFX_DEPTH:
4441 return HDMI_3D_STRUCTURE_L_DEPTH_GFX_GFX_DEPTH;
4442 case DRM_MODE_FLAG_3D_TOP_AND_BOTTOM:
4443 return HDMI_3D_STRUCTURE_TOP_AND_BOTTOM;
4444 case DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF:
4445 return HDMI_3D_STRUCTURE_SIDE_BY_SIDE_HALF;
4446 default:
4447 return HDMI_3D_STRUCTURE_INVALID;
4448 }
4449 }
4450
4451 /**
4452 * drm_hdmi_vendor_infoframe_from_display_mode() - fill an HDMI infoframe with
4453 * data from a DRM display mode
4454 * @frame: HDMI vendor infoframe
4455 * @mode: DRM display mode
4456 *
4457 * Note that there's is a need to send HDMI vendor infoframes only when using a
4458 * 4k or stereoscopic 3D mode. So when giving any other mode as input this
4459 * function will return -EINVAL, error that can be safely ignored.
4460 *
4461 * Return: 0 on success or a negative error code on failure.
4462 */
4463 int
4464 drm_hdmi_vendor_infoframe_from_display_mode(struct hdmi_vendor_infoframe *frame,
4465 const struct drm_display_mode *mode)
4466 {
4467 int err;
4468 u32 s3d_flags;
4469 u8 vic;
4470
4471 if (!frame || !mode)
4472 return -EINVAL;
4473
4474 vic = drm_match_hdmi_mode(mode);
4475 s3d_flags = mode->flags & DRM_MODE_FLAG_3D_MASK;
4476
4477 if (!vic && !s3d_flags)
4478 return -EINVAL;
4479
4480 if (vic && s3d_flags)
4481 return -EINVAL;
4482
4483 err = hdmi_vendor_infoframe_init(frame);
4484 if (err < 0)
4485 return err;
4486
4487 if (vic)
4488 frame->vic = vic;
4489 else
4490 frame->s3d_struct = s3d_structure_from_display_mode(mode);
4491
4492 return 0;
4493 }
4494 EXPORT_SYMBOL(drm_hdmi_vendor_infoframe_from_display_mode);
4495
4496 static int drm_parse_tiled_block(struct drm_connector *connector,
4497 struct displayid_block *block)
4498 {
4499 struct displayid_tiled_block *tile = (struct displayid_tiled_block *)block;
4500 u16 w, h;
4501 u8 tile_v_loc, tile_h_loc;
4502 u8 num_v_tile, num_h_tile;
4503 struct drm_tile_group *tg;
4504
4505 w = tile->tile_size[0] | tile->tile_size[1] << 8;
4506 h = tile->tile_size[2] | tile->tile_size[3] << 8;
4507
4508 num_v_tile = (tile->topo[0] & 0xf) | (tile->topo[2] & 0x30);
4509 num_h_tile = (tile->topo[0] >> 4) | ((tile->topo[2] >> 2) & 0x30);
4510 tile_v_loc = (tile->topo[1] & 0xf) | ((tile->topo[2] & 0x3) << 4);
4511 tile_h_loc = (tile->topo[1] >> 4) | (((tile->topo[2] >> 2) & 0x3) << 4);
4512
4513 connector->has_tile = true;
4514 if (tile->tile_cap & 0x80)
4515 connector->tile_is_single_monitor = true;
4516
4517 connector->num_h_tile = num_h_tile + 1;
4518 connector->num_v_tile = num_v_tile + 1;
4519 connector->tile_h_loc = tile_h_loc;
4520 connector->tile_v_loc = tile_v_loc;
4521 connector->tile_h_size = w + 1;
4522 connector->tile_v_size = h + 1;
4523
4524 DRM_DEBUG_KMS("tile cap 0x%x\n", tile->tile_cap);
4525 DRM_DEBUG_KMS("tile_size %d x %d\n", w + 1, h + 1);
4526 DRM_DEBUG_KMS("topo num tiles %dx%d, location %dx%d\n",
4527 num_h_tile + 1, num_v_tile + 1, tile_h_loc, tile_v_loc);
4528 DRM_DEBUG_KMS("vend %c%c%c\n", tile->topology_id[0], tile->topology_id[1], tile->topology_id[2]);
4529
4530 tg = drm_mode_get_tile_group(connector->dev, tile->topology_id);
4531 if (!tg) {
4532 tg = drm_mode_create_tile_group(connector->dev, tile->topology_id);
4533 }
4534 if (!tg)
4535 return -ENOMEM;
4536
4537 if (connector->tile_group != tg) {
4538 /* if we haven't got a pointer,
4539 take the reference, drop ref to old tile group */
4540 if (connector->tile_group) {
4541 drm_mode_put_tile_group(connector->dev, connector->tile_group);
4542 }
4543 connector->tile_group = tg;
4544 } else
4545 /* if same tile group, then release the ref we just took. */
4546 drm_mode_put_tile_group(connector->dev, tg);
4547 return 0;
4548 }
4549
4550 static int drm_parse_display_id(struct drm_connector *connector,
4551 u8 *displayid, int length,
4552 bool is_edid_extension)
4553 {
4554 /* if this is an EDID extension the first byte will be 0x70 */
4555 int idx = 0;
4556 struct displayid_block *block;
4557 int ret;
4558
4559 if (is_edid_extension)
4560 idx = 1;
4561
4562 ret = validate_displayid(displayid, length, idx);
4563 if (ret)
4564 return ret;
4565
4566 idx += sizeof(struct displayid_hdr);
4567 while (block = (struct displayid_block *)&displayid[idx],
4568 idx + sizeof(struct displayid_block) <= length &&
4569 idx + sizeof(struct displayid_block) + block->num_bytes <= length &&
4570 block->num_bytes > 0) {
4571 idx += block->num_bytes + sizeof(struct displayid_block);
4572 DRM_DEBUG_KMS("block id 0x%x, rev %d, len %d\n",
4573 block->tag, block->rev, block->num_bytes);
4574
4575 switch (block->tag) {
4576 case DATA_BLOCK_TILED_DISPLAY:
4577 ret = drm_parse_tiled_block(connector, block);
4578 if (ret)
4579 return ret;
4580 break;
4581 case DATA_BLOCK_TYPE_1_DETAILED_TIMING:
4582 /* handled in mode gathering code. */
4583 break;
4584 default:
4585 DRM_DEBUG_KMS("found DisplayID tag 0x%x, unhandled\n", block->tag);
4586 break;
4587 }
4588 }
4589 return 0;
4590 }
4591
4592 static void drm_get_displayid(struct drm_connector *connector,
4593 struct edid *edid)
4594 {
4595 void *displayid = NULL;
4596 int ret;
4597 connector->has_tile = false;
4598 displayid = drm_find_displayid_extension(edid);
4599 if (!displayid) {
4600 /* drop reference to any tile group we had */
4601 goto out_drop_ref;
4602 }
4603
4604 ret = drm_parse_display_id(connector, displayid, EDID_LENGTH, true);
4605 if (ret < 0)
4606 goto out_drop_ref;
4607 if (!connector->has_tile)
4608 goto out_drop_ref;
4609 return;
4610 out_drop_ref:
4611 if (connector->tile_group) {
4612 drm_mode_put_tile_group(connector->dev, connector->tile_group);
4613 connector->tile_group = NULL;
4614 }
4615 return;
4616 }