]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/gpu/drm/gma500/cdv_intel_dp.c
Merge tag 'rdma-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/roland...
[mirror_ubuntu-artful-kernel.git] / drivers / gpu / drm / gma500 / cdv_intel_dp.c
1 /*
2 * Copyright © 2012 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Keith Packard <keithp@keithp.com>
25 *
26 */
27
28 #include <linux/i2c.h>
29 #include <linux/slab.h>
30 #include <linux/module.h>
31 #include <drm/drmP.h>
32 #include <drm/drm_crtc.h>
33 #include <drm/drm_crtc_helper.h>
34 #include "psb_drv.h"
35 #include "psb_intel_drv.h"
36 #include "psb_intel_reg.h"
37 #include "gma_display.h"
38 #include <drm/drm_dp_helper.h>
39
40 /**
41 * struct i2c_algo_dp_aux_data - driver interface structure for i2c over dp
42 * aux algorithm
43 * @running: set by the algo indicating whether an i2c is ongoing or whether
44 * the i2c bus is quiescent
45 * @address: i2c target address for the currently ongoing transfer
46 * @aux_ch: driver callback to transfer a single byte of the i2c payload
47 */
48 struct i2c_algo_dp_aux_data {
49 bool running;
50 u16 address;
51 int (*aux_ch) (struct i2c_adapter *adapter,
52 int mode, uint8_t write_byte,
53 uint8_t *read_byte);
54 };
55
56 /* Run a single AUX_CH I2C transaction, writing/reading data as necessary */
57 static int
58 i2c_algo_dp_aux_transaction(struct i2c_adapter *adapter, int mode,
59 uint8_t write_byte, uint8_t *read_byte)
60 {
61 struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
62 int ret;
63
64 ret = (*algo_data->aux_ch)(adapter, mode,
65 write_byte, read_byte);
66 return ret;
67 }
68
69 /*
70 * I2C over AUX CH
71 */
72
73 /*
74 * Send the address. If the I2C link is running, this 'restarts'
75 * the connection with the new address, this is used for doing
76 * a write followed by a read (as needed for DDC)
77 */
78 static int
79 i2c_algo_dp_aux_address(struct i2c_adapter *adapter, u16 address, bool reading)
80 {
81 struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
82 int mode = MODE_I2C_START;
83 int ret;
84
85 if (reading)
86 mode |= MODE_I2C_READ;
87 else
88 mode |= MODE_I2C_WRITE;
89 algo_data->address = address;
90 algo_data->running = true;
91 ret = i2c_algo_dp_aux_transaction(adapter, mode, 0, NULL);
92 return ret;
93 }
94
95 /*
96 * Stop the I2C transaction. This closes out the link, sending
97 * a bare address packet with the MOT bit turned off
98 */
99 static void
100 i2c_algo_dp_aux_stop(struct i2c_adapter *adapter, bool reading)
101 {
102 struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
103 int mode = MODE_I2C_STOP;
104
105 if (reading)
106 mode |= MODE_I2C_READ;
107 else
108 mode |= MODE_I2C_WRITE;
109 if (algo_data->running) {
110 (void) i2c_algo_dp_aux_transaction(adapter, mode, 0, NULL);
111 algo_data->running = false;
112 }
113 }
114
115 /*
116 * Write a single byte to the current I2C address, the
117 * the I2C link must be running or this returns -EIO
118 */
119 static int
120 i2c_algo_dp_aux_put_byte(struct i2c_adapter *adapter, u8 byte)
121 {
122 struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
123 int ret;
124
125 if (!algo_data->running)
126 return -EIO;
127
128 ret = i2c_algo_dp_aux_transaction(adapter, MODE_I2C_WRITE, byte, NULL);
129 return ret;
130 }
131
132 /*
133 * Read a single byte from the current I2C address, the
134 * I2C link must be running or this returns -EIO
135 */
136 static int
137 i2c_algo_dp_aux_get_byte(struct i2c_adapter *adapter, u8 *byte_ret)
138 {
139 struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
140 int ret;
141
142 if (!algo_data->running)
143 return -EIO;
144
145 ret = i2c_algo_dp_aux_transaction(adapter, MODE_I2C_READ, 0, byte_ret);
146 return ret;
147 }
148
149 static int
150 i2c_algo_dp_aux_xfer(struct i2c_adapter *adapter,
151 struct i2c_msg *msgs,
152 int num)
153 {
154 int ret = 0;
155 bool reading = false;
156 int m;
157 int b;
158
159 for (m = 0; m < num; m++) {
160 u16 len = msgs[m].len;
161 u8 *buf = msgs[m].buf;
162 reading = (msgs[m].flags & I2C_M_RD) != 0;
163 ret = i2c_algo_dp_aux_address(adapter, msgs[m].addr, reading);
164 if (ret < 0)
165 break;
166 if (reading) {
167 for (b = 0; b < len; b++) {
168 ret = i2c_algo_dp_aux_get_byte(adapter, &buf[b]);
169 if (ret < 0)
170 break;
171 }
172 } else {
173 for (b = 0; b < len; b++) {
174 ret = i2c_algo_dp_aux_put_byte(adapter, buf[b]);
175 if (ret < 0)
176 break;
177 }
178 }
179 if (ret < 0)
180 break;
181 }
182 if (ret >= 0)
183 ret = num;
184 i2c_algo_dp_aux_stop(adapter, reading);
185 DRM_DEBUG_KMS("dp_aux_xfer return %d\n", ret);
186 return ret;
187 }
188
189 static u32
190 i2c_algo_dp_aux_functionality(struct i2c_adapter *adapter)
191 {
192 return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL |
193 I2C_FUNC_SMBUS_READ_BLOCK_DATA |
194 I2C_FUNC_SMBUS_BLOCK_PROC_CALL |
195 I2C_FUNC_10BIT_ADDR;
196 }
197
198 static const struct i2c_algorithm i2c_dp_aux_algo = {
199 .master_xfer = i2c_algo_dp_aux_xfer,
200 .functionality = i2c_algo_dp_aux_functionality,
201 };
202
203 static void
204 i2c_dp_aux_reset_bus(struct i2c_adapter *adapter)
205 {
206 (void) i2c_algo_dp_aux_address(adapter, 0, false);
207 (void) i2c_algo_dp_aux_stop(adapter, false);
208 }
209
210 static int
211 i2c_dp_aux_prepare_bus(struct i2c_adapter *adapter)
212 {
213 adapter->algo = &i2c_dp_aux_algo;
214 adapter->retries = 3;
215 i2c_dp_aux_reset_bus(adapter);
216 return 0;
217 }
218
219 /*
220 * FIXME: This is the old dp aux helper, gma500 is the last driver that needs to
221 * be ported over to the new helper code in drm_dp_helper.c like i915 or radeon.
222 */
223 static int __deprecated
224 i2c_dp_aux_add_bus(struct i2c_adapter *adapter)
225 {
226 int error;
227
228 error = i2c_dp_aux_prepare_bus(adapter);
229 if (error)
230 return error;
231 error = i2c_add_adapter(adapter);
232 return error;
233 }
234
235 #define _wait_for(COND, MS, W) ({ \
236 unsigned long timeout__ = jiffies + msecs_to_jiffies(MS); \
237 int ret__ = 0; \
238 while (! (COND)) { \
239 if (time_after(jiffies, timeout__)) { \
240 ret__ = -ETIMEDOUT; \
241 break; \
242 } \
243 if (W && !in_dbg_master()) msleep(W); \
244 } \
245 ret__; \
246 })
247
248 #define wait_for(COND, MS) _wait_for(COND, MS, 1)
249
250 #define DP_LINK_STATUS_SIZE 6
251 #define DP_LINK_CHECK_TIMEOUT (10 * 1000)
252
253 #define DP_LINK_CONFIGURATION_SIZE 9
254
255 #define CDV_FAST_LINK_TRAIN 1
256
257 struct cdv_intel_dp {
258 uint32_t output_reg;
259 uint32_t DP;
260 uint8_t link_configuration[DP_LINK_CONFIGURATION_SIZE];
261 bool has_audio;
262 int force_audio;
263 uint32_t color_range;
264 uint8_t link_bw;
265 uint8_t lane_count;
266 uint8_t dpcd[4];
267 struct gma_encoder *encoder;
268 struct i2c_adapter adapter;
269 struct i2c_algo_dp_aux_data algo;
270 uint8_t train_set[4];
271 uint8_t link_status[DP_LINK_STATUS_SIZE];
272 int panel_power_up_delay;
273 int panel_power_down_delay;
274 int panel_power_cycle_delay;
275 int backlight_on_delay;
276 int backlight_off_delay;
277 struct drm_display_mode *panel_fixed_mode; /* for eDP */
278 bool panel_on;
279 };
280
281 struct ddi_regoff {
282 uint32_t PreEmph1;
283 uint32_t PreEmph2;
284 uint32_t VSwing1;
285 uint32_t VSwing2;
286 uint32_t VSwing3;
287 uint32_t VSwing4;
288 uint32_t VSwing5;
289 };
290
291 static struct ddi_regoff ddi_DP_train_table[] = {
292 {.PreEmph1 = 0x812c, .PreEmph2 = 0x8124, .VSwing1 = 0x8154,
293 .VSwing2 = 0x8148, .VSwing3 = 0x814C, .VSwing4 = 0x8150,
294 .VSwing5 = 0x8158,},
295 {.PreEmph1 = 0x822c, .PreEmph2 = 0x8224, .VSwing1 = 0x8254,
296 .VSwing2 = 0x8248, .VSwing3 = 0x824C, .VSwing4 = 0x8250,
297 .VSwing5 = 0x8258,},
298 };
299
300 static uint32_t dp_vswing_premph_table[] = {
301 0x55338954, 0x4000,
302 0x554d8954, 0x2000,
303 0x55668954, 0,
304 0x559ac0d4, 0x6000,
305 };
306 /**
307 * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
308 * @intel_dp: DP struct
309 *
310 * If a CPU or PCH DP output is attached to an eDP panel, this function
311 * will return true, and false otherwise.
312 */
313 static bool is_edp(struct gma_encoder *encoder)
314 {
315 return encoder->type == INTEL_OUTPUT_EDP;
316 }
317
318
319 static void cdv_intel_dp_start_link_train(struct gma_encoder *encoder);
320 static void cdv_intel_dp_complete_link_train(struct gma_encoder *encoder);
321 static void cdv_intel_dp_link_down(struct gma_encoder *encoder);
322
323 static int
324 cdv_intel_dp_max_lane_count(struct gma_encoder *encoder)
325 {
326 struct cdv_intel_dp *intel_dp = encoder->dev_priv;
327 int max_lane_count = 4;
328
329 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
330 max_lane_count = intel_dp->dpcd[DP_MAX_LANE_COUNT] & 0x1f;
331 switch (max_lane_count) {
332 case 1: case 2: case 4:
333 break;
334 default:
335 max_lane_count = 4;
336 }
337 }
338 return max_lane_count;
339 }
340
341 static int
342 cdv_intel_dp_max_link_bw(struct gma_encoder *encoder)
343 {
344 struct cdv_intel_dp *intel_dp = encoder->dev_priv;
345 int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
346
347 switch (max_link_bw) {
348 case DP_LINK_BW_1_62:
349 case DP_LINK_BW_2_7:
350 break;
351 default:
352 max_link_bw = DP_LINK_BW_1_62;
353 break;
354 }
355 return max_link_bw;
356 }
357
358 static int
359 cdv_intel_dp_link_clock(uint8_t link_bw)
360 {
361 if (link_bw == DP_LINK_BW_2_7)
362 return 270000;
363 else
364 return 162000;
365 }
366
367 static int
368 cdv_intel_dp_link_required(int pixel_clock, int bpp)
369 {
370 return (pixel_clock * bpp + 7) / 8;
371 }
372
373 static int
374 cdv_intel_dp_max_data_rate(int max_link_clock, int max_lanes)
375 {
376 return (max_link_clock * max_lanes * 19) / 20;
377 }
378
379 static void cdv_intel_edp_panel_vdd_on(struct gma_encoder *intel_encoder)
380 {
381 struct drm_device *dev = intel_encoder->base.dev;
382 struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
383 u32 pp;
384
385 if (intel_dp->panel_on) {
386 DRM_DEBUG_KMS("Skip VDD on because of panel on\n");
387 return;
388 }
389 DRM_DEBUG_KMS("\n");
390
391 pp = REG_READ(PP_CONTROL);
392
393 pp |= EDP_FORCE_VDD;
394 REG_WRITE(PP_CONTROL, pp);
395 REG_READ(PP_CONTROL);
396 msleep(intel_dp->panel_power_up_delay);
397 }
398
399 static void cdv_intel_edp_panel_vdd_off(struct gma_encoder *intel_encoder)
400 {
401 struct drm_device *dev = intel_encoder->base.dev;
402 u32 pp;
403
404 DRM_DEBUG_KMS("\n");
405 pp = REG_READ(PP_CONTROL);
406
407 pp &= ~EDP_FORCE_VDD;
408 REG_WRITE(PP_CONTROL, pp);
409 REG_READ(PP_CONTROL);
410
411 }
412
413 /* Returns true if the panel was already on when called */
414 static bool cdv_intel_edp_panel_on(struct gma_encoder *intel_encoder)
415 {
416 struct drm_device *dev = intel_encoder->base.dev;
417 struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
418 u32 pp, idle_on_mask = PP_ON | PP_SEQUENCE_NONE;
419
420 if (intel_dp->panel_on)
421 return true;
422
423 DRM_DEBUG_KMS("\n");
424 pp = REG_READ(PP_CONTROL);
425 pp &= ~PANEL_UNLOCK_MASK;
426
427 pp |= (PANEL_UNLOCK_REGS | POWER_TARGET_ON);
428 REG_WRITE(PP_CONTROL, pp);
429 REG_READ(PP_CONTROL);
430
431 if (wait_for(((REG_READ(PP_STATUS) & idle_on_mask) == idle_on_mask), 1000)) {
432 DRM_DEBUG_KMS("Error in Powering up eDP panel, status %x\n", REG_READ(PP_STATUS));
433 intel_dp->panel_on = false;
434 } else
435 intel_dp->panel_on = true;
436 msleep(intel_dp->panel_power_up_delay);
437
438 return false;
439 }
440
441 static void cdv_intel_edp_panel_off (struct gma_encoder *intel_encoder)
442 {
443 struct drm_device *dev = intel_encoder->base.dev;
444 u32 pp, idle_off_mask = PP_ON ;
445 struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
446
447 DRM_DEBUG_KMS("\n");
448
449 pp = REG_READ(PP_CONTROL);
450
451 if ((pp & POWER_TARGET_ON) == 0)
452 return;
453
454 intel_dp->panel_on = false;
455 pp &= ~PANEL_UNLOCK_MASK;
456 /* ILK workaround: disable reset around power sequence */
457
458 pp &= ~POWER_TARGET_ON;
459 pp &= ~EDP_FORCE_VDD;
460 pp &= ~EDP_BLC_ENABLE;
461 REG_WRITE(PP_CONTROL, pp);
462 REG_READ(PP_CONTROL);
463 DRM_DEBUG_KMS("PP_STATUS %x\n", REG_READ(PP_STATUS));
464
465 if (wait_for((REG_READ(PP_STATUS) & idle_off_mask) == 0, 1000)) {
466 DRM_DEBUG_KMS("Error in turning off Panel\n");
467 }
468
469 msleep(intel_dp->panel_power_cycle_delay);
470 DRM_DEBUG_KMS("Over\n");
471 }
472
473 static void cdv_intel_edp_backlight_on (struct gma_encoder *intel_encoder)
474 {
475 struct drm_device *dev = intel_encoder->base.dev;
476 u32 pp;
477
478 DRM_DEBUG_KMS("\n");
479 /*
480 * If we enable the backlight right away following a panel power
481 * on, we may see slight flicker as the panel syncs with the eDP
482 * link. So delay a bit to make sure the image is solid before
483 * allowing it to appear.
484 */
485 msleep(300);
486 pp = REG_READ(PP_CONTROL);
487
488 pp |= EDP_BLC_ENABLE;
489 REG_WRITE(PP_CONTROL, pp);
490 gma_backlight_enable(dev);
491 }
492
493 static void cdv_intel_edp_backlight_off (struct gma_encoder *intel_encoder)
494 {
495 struct drm_device *dev = intel_encoder->base.dev;
496 struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
497 u32 pp;
498
499 DRM_DEBUG_KMS("\n");
500 gma_backlight_disable(dev);
501 msleep(10);
502 pp = REG_READ(PP_CONTROL);
503
504 pp &= ~EDP_BLC_ENABLE;
505 REG_WRITE(PP_CONTROL, pp);
506 msleep(intel_dp->backlight_off_delay);
507 }
508
509 static int
510 cdv_intel_dp_mode_valid(struct drm_connector *connector,
511 struct drm_display_mode *mode)
512 {
513 struct gma_encoder *encoder = gma_attached_encoder(connector);
514 struct cdv_intel_dp *intel_dp = encoder->dev_priv;
515 int max_link_clock = cdv_intel_dp_link_clock(cdv_intel_dp_max_link_bw(encoder));
516 int max_lanes = cdv_intel_dp_max_lane_count(encoder);
517 struct drm_psb_private *dev_priv = connector->dev->dev_private;
518
519 if (is_edp(encoder) && intel_dp->panel_fixed_mode) {
520 if (mode->hdisplay > intel_dp->panel_fixed_mode->hdisplay)
521 return MODE_PANEL;
522 if (mode->vdisplay > intel_dp->panel_fixed_mode->vdisplay)
523 return MODE_PANEL;
524 }
525
526 /* only refuse the mode on non eDP since we have seen some weird eDP panels
527 which are outside spec tolerances but somehow work by magic */
528 if (!is_edp(encoder) &&
529 (cdv_intel_dp_link_required(mode->clock, dev_priv->edp.bpp)
530 > cdv_intel_dp_max_data_rate(max_link_clock, max_lanes)))
531 return MODE_CLOCK_HIGH;
532
533 if (is_edp(encoder)) {
534 if (cdv_intel_dp_link_required(mode->clock, 24)
535 > cdv_intel_dp_max_data_rate(max_link_clock, max_lanes))
536 return MODE_CLOCK_HIGH;
537
538 }
539 if (mode->clock < 10000)
540 return MODE_CLOCK_LOW;
541
542 return MODE_OK;
543 }
544
545 static uint32_t
546 pack_aux(uint8_t *src, int src_bytes)
547 {
548 int i;
549 uint32_t v = 0;
550
551 if (src_bytes > 4)
552 src_bytes = 4;
553 for (i = 0; i < src_bytes; i++)
554 v |= ((uint32_t) src[i]) << ((3-i) * 8);
555 return v;
556 }
557
558 static void
559 unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
560 {
561 int i;
562 if (dst_bytes > 4)
563 dst_bytes = 4;
564 for (i = 0; i < dst_bytes; i++)
565 dst[i] = src >> ((3-i) * 8);
566 }
567
568 static int
569 cdv_intel_dp_aux_ch(struct gma_encoder *encoder,
570 uint8_t *send, int send_bytes,
571 uint8_t *recv, int recv_size)
572 {
573 struct cdv_intel_dp *intel_dp = encoder->dev_priv;
574 uint32_t output_reg = intel_dp->output_reg;
575 struct drm_device *dev = encoder->base.dev;
576 uint32_t ch_ctl = output_reg + 0x10;
577 uint32_t ch_data = ch_ctl + 4;
578 int i;
579 int recv_bytes;
580 uint32_t status;
581 uint32_t aux_clock_divider;
582 int try, precharge;
583
584 /* The clock divider is based off the hrawclk,
585 * and would like to run at 2MHz. So, take the
586 * hrawclk value and divide by 2 and use that
587 * On CDV platform it uses 200MHz as hrawclk.
588 *
589 */
590 aux_clock_divider = 200 / 2;
591
592 precharge = 4;
593 if (is_edp(encoder))
594 precharge = 10;
595
596 if (REG_READ(ch_ctl) & DP_AUX_CH_CTL_SEND_BUSY) {
597 DRM_ERROR("dp_aux_ch not started status 0x%08x\n",
598 REG_READ(ch_ctl));
599 return -EBUSY;
600 }
601
602 /* Must try at least 3 times according to DP spec */
603 for (try = 0; try < 5; try++) {
604 /* Load the send data into the aux channel data registers */
605 for (i = 0; i < send_bytes; i += 4)
606 REG_WRITE(ch_data + i,
607 pack_aux(send + i, send_bytes - i));
608
609 /* Send the command and wait for it to complete */
610 REG_WRITE(ch_ctl,
611 DP_AUX_CH_CTL_SEND_BUSY |
612 DP_AUX_CH_CTL_TIME_OUT_400us |
613 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
614 (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
615 (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
616 DP_AUX_CH_CTL_DONE |
617 DP_AUX_CH_CTL_TIME_OUT_ERROR |
618 DP_AUX_CH_CTL_RECEIVE_ERROR);
619 for (;;) {
620 status = REG_READ(ch_ctl);
621 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
622 break;
623 udelay(100);
624 }
625
626 /* Clear done status and any errors */
627 REG_WRITE(ch_ctl,
628 status |
629 DP_AUX_CH_CTL_DONE |
630 DP_AUX_CH_CTL_TIME_OUT_ERROR |
631 DP_AUX_CH_CTL_RECEIVE_ERROR);
632 if (status & DP_AUX_CH_CTL_DONE)
633 break;
634 }
635
636 if ((status & DP_AUX_CH_CTL_DONE) == 0) {
637 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
638 return -EBUSY;
639 }
640
641 /* Check for timeout or receive error.
642 * Timeouts occur when the sink is not connected
643 */
644 if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
645 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
646 return -EIO;
647 }
648
649 /* Timeouts occur when the device isn't connected, so they're
650 * "normal" -- don't fill the kernel log with these */
651 if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
652 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
653 return -ETIMEDOUT;
654 }
655
656 /* Unload any bytes sent back from the other side */
657 recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
658 DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
659 if (recv_bytes > recv_size)
660 recv_bytes = recv_size;
661
662 for (i = 0; i < recv_bytes; i += 4)
663 unpack_aux(REG_READ(ch_data + i),
664 recv + i, recv_bytes - i);
665
666 return recv_bytes;
667 }
668
669 /* Write data to the aux channel in native mode */
670 static int
671 cdv_intel_dp_aux_native_write(struct gma_encoder *encoder,
672 uint16_t address, uint8_t *send, int send_bytes)
673 {
674 int ret;
675 uint8_t msg[20];
676 int msg_bytes;
677 uint8_t ack;
678
679 if (send_bytes > 16)
680 return -1;
681 msg[0] = DP_AUX_NATIVE_WRITE << 4;
682 msg[1] = address >> 8;
683 msg[2] = address & 0xff;
684 msg[3] = send_bytes - 1;
685 memcpy(&msg[4], send, send_bytes);
686 msg_bytes = send_bytes + 4;
687 for (;;) {
688 ret = cdv_intel_dp_aux_ch(encoder, msg, msg_bytes, &ack, 1);
689 if (ret < 0)
690 return ret;
691 ack >>= 4;
692 if ((ack & DP_AUX_NATIVE_REPLY_MASK) == DP_AUX_NATIVE_REPLY_ACK)
693 break;
694 else if ((ack & DP_AUX_NATIVE_REPLY_MASK) == DP_AUX_NATIVE_REPLY_DEFER)
695 udelay(100);
696 else
697 return -EIO;
698 }
699 return send_bytes;
700 }
701
702 /* Write a single byte to the aux channel in native mode */
703 static int
704 cdv_intel_dp_aux_native_write_1(struct gma_encoder *encoder,
705 uint16_t address, uint8_t byte)
706 {
707 return cdv_intel_dp_aux_native_write(encoder, address, &byte, 1);
708 }
709
710 /* read bytes from a native aux channel */
711 static int
712 cdv_intel_dp_aux_native_read(struct gma_encoder *encoder,
713 uint16_t address, uint8_t *recv, int recv_bytes)
714 {
715 uint8_t msg[4];
716 int msg_bytes;
717 uint8_t reply[20];
718 int reply_bytes;
719 uint8_t ack;
720 int ret;
721
722 msg[0] = DP_AUX_NATIVE_READ << 4;
723 msg[1] = address >> 8;
724 msg[2] = address & 0xff;
725 msg[3] = recv_bytes - 1;
726
727 msg_bytes = 4;
728 reply_bytes = recv_bytes + 1;
729
730 for (;;) {
731 ret = cdv_intel_dp_aux_ch(encoder, msg, msg_bytes,
732 reply, reply_bytes);
733 if (ret == 0)
734 return -EPROTO;
735 if (ret < 0)
736 return ret;
737 ack = reply[0] >> 4;
738 if ((ack & DP_AUX_NATIVE_REPLY_MASK) == DP_AUX_NATIVE_REPLY_ACK) {
739 memcpy(recv, reply + 1, ret - 1);
740 return ret - 1;
741 }
742 else if ((ack & DP_AUX_NATIVE_REPLY_MASK) == DP_AUX_NATIVE_REPLY_DEFER)
743 udelay(100);
744 else
745 return -EIO;
746 }
747 }
748
749 static int
750 cdv_intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
751 uint8_t write_byte, uint8_t *read_byte)
752 {
753 struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
754 struct cdv_intel_dp *intel_dp = container_of(adapter,
755 struct cdv_intel_dp,
756 adapter);
757 struct gma_encoder *encoder = intel_dp->encoder;
758 uint16_t address = algo_data->address;
759 uint8_t msg[5];
760 uint8_t reply[2];
761 unsigned retry;
762 int msg_bytes;
763 int reply_bytes;
764 int ret;
765
766 /* Set up the command byte */
767 if (mode & MODE_I2C_READ)
768 msg[0] = DP_AUX_I2C_READ << 4;
769 else
770 msg[0] = DP_AUX_I2C_WRITE << 4;
771
772 if (!(mode & MODE_I2C_STOP))
773 msg[0] |= DP_AUX_I2C_MOT << 4;
774
775 msg[1] = address >> 8;
776 msg[2] = address;
777
778 switch (mode) {
779 case MODE_I2C_WRITE:
780 msg[3] = 0;
781 msg[4] = write_byte;
782 msg_bytes = 5;
783 reply_bytes = 1;
784 break;
785 case MODE_I2C_READ:
786 msg[3] = 0;
787 msg_bytes = 4;
788 reply_bytes = 2;
789 break;
790 default:
791 msg_bytes = 3;
792 reply_bytes = 1;
793 break;
794 }
795
796 for (retry = 0; retry < 5; retry++) {
797 ret = cdv_intel_dp_aux_ch(encoder,
798 msg, msg_bytes,
799 reply, reply_bytes);
800 if (ret < 0) {
801 DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
802 return ret;
803 }
804
805 switch ((reply[0] >> 4) & DP_AUX_NATIVE_REPLY_MASK) {
806 case DP_AUX_NATIVE_REPLY_ACK:
807 /* I2C-over-AUX Reply field is only valid
808 * when paired with AUX ACK.
809 */
810 break;
811 case DP_AUX_NATIVE_REPLY_NACK:
812 DRM_DEBUG_KMS("aux_ch native nack\n");
813 return -EREMOTEIO;
814 case DP_AUX_NATIVE_REPLY_DEFER:
815 udelay(100);
816 continue;
817 default:
818 DRM_ERROR("aux_ch invalid native reply 0x%02x\n",
819 reply[0]);
820 return -EREMOTEIO;
821 }
822
823 switch ((reply[0] >> 4) & DP_AUX_I2C_REPLY_MASK) {
824 case DP_AUX_I2C_REPLY_ACK:
825 if (mode == MODE_I2C_READ) {
826 *read_byte = reply[1];
827 }
828 return reply_bytes - 1;
829 case DP_AUX_I2C_REPLY_NACK:
830 DRM_DEBUG_KMS("aux_i2c nack\n");
831 return -EREMOTEIO;
832 case DP_AUX_I2C_REPLY_DEFER:
833 DRM_DEBUG_KMS("aux_i2c defer\n");
834 udelay(100);
835 break;
836 default:
837 DRM_ERROR("aux_i2c invalid reply 0x%02x\n", reply[0]);
838 return -EREMOTEIO;
839 }
840 }
841
842 DRM_ERROR("too many retries, giving up\n");
843 return -EREMOTEIO;
844 }
845
846 static int
847 cdv_intel_dp_i2c_init(struct gma_connector *connector,
848 struct gma_encoder *encoder, const char *name)
849 {
850 struct cdv_intel_dp *intel_dp = encoder->dev_priv;
851 int ret;
852
853 DRM_DEBUG_KMS("i2c_init %s\n", name);
854
855 intel_dp->algo.running = false;
856 intel_dp->algo.address = 0;
857 intel_dp->algo.aux_ch = cdv_intel_dp_i2c_aux_ch;
858
859 memset(&intel_dp->adapter, '\0', sizeof (intel_dp->adapter));
860 intel_dp->adapter.owner = THIS_MODULE;
861 intel_dp->adapter.class = I2C_CLASS_DDC;
862 strncpy (intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1);
863 intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0';
864 intel_dp->adapter.algo_data = &intel_dp->algo;
865 intel_dp->adapter.dev.parent = connector->base.kdev;
866
867 if (is_edp(encoder))
868 cdv_intel_edp_panel_vdd_on(encoder);
869 ret = i2c_dp_aux_add_bus(&intel_dp->adapter);
870 if (is_edp(encoder))
871 cdv_intel_edp_panel_vdd_off(encoder);
872
873 return ret;
874 }
875
876 static void cdv_intel_fixed_panel_mode(struct drm_display_mode *fixed_mode,
877 struct drm_display_mode *adjusted_mode)
878 {
879 adjusted_mode->hdisplay = fixed_mode->hdisplay;
880 adjusted_mode->hsync_start = fixed_mode->hsync_start;
881 adjusted_mode->hsync_end = fixed_mode->hsync_end;
882 adjusted_mode->htotal = fixed_mode->htotal;
883
884 adjusted_mode->vdisplay = fixed_mode->vdisplay;
885 adjusted_mode->vsync_start = fixed_mode->vsync_start;
886 adjusted_mode->vsync_end = fixed_mode->vsync_end;
887 adjusted_mode->vtotal = fixed_mode->vtotal;
888
889 adjusted_mode->clock = fixed_mode->clock;
890
891 drm_mode_set_crtcinfo(adjusted_mode, CRTC_INTERLACE_HALVE_V);
892 }
893
894 static bool
895 cdv_intel_dp_mode_fixup(struct drm_encoder *encoder, const struct drm_display_mode *mode,
896 struct drm_display_mode *adjusted_mode)
897 {
898 struct drm_psb_private *dev_priv = encoder->dev->dev_private;
899 struct gma_encoder *intel_encoder = to_gma_encoder(encoder);
900 struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
901 int lane_count, clock;
902 int max_lane_count = cdv_intel_dp_max_lane_count(intel_encoder);
903 int max_clock = cdv_intel_dp_max_link_bw(intel_encoder) == DP_LINK_BW_2_7 ? 1 : 0;
904 static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
905 int refclock = mode->clock;
906 int bpp = 24;
907
908 if (is_edp(intel_encoder) && intel_dp->panel_fixed_mode) {
909 cdv_intel_fixed_panel_mode(intel_dp->panel_fixed_mode, adjusted_mode);
910 refclock = intel_dp->panel_fixed_mode->clock;
911 bpp = dev_priv->edp.bpp;
912 }
913
914 for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
915 for (clock = max_clock; clock >= 0; clock--) {
916 int link_avail = cdv_intel_dp_max_data_rate(cdv_intel_dp_link_clock(bws[clock]), lane_count);
917
918 if (cdv_intel_dp_link_required(refclock, bpp) <= link_avail) {
919 intel_dp->link_bw = bws[clock];
920 intel_dp->lane_count = lane_count;
921 adjusted_mode->clock = cdv_intel_dp_link_clock(intel_dp->link_bw);
922 DRM_DEBUG_KMS("Display port link bw %02x lane "
923 "count %d clock %d\n",
924 intel_dp->link_bw, intel_dp->lane_count,
925 adjusted_mode->clock);
926 return true;
927 }
928 }
929 }
930 if (is_edp(intel_encoder)) {
931 /* okay we failed just pick the highest */
932 intel_dp->lane_count = max_lane_count;
933 intel_dp->link_bw = bws[max_clock];
934 adjusted_mode->clock = cdv_intel_dp_link_clock(intel_dp->link_bw);
935 DRM_DEBUG_KMS("Force picking display port link bw %02x lane "
936 "count %d clock %d\n",
937 intel_dp->link_bw, intel_dp->lane_count,
938 adjusted_mode->clock);
939
940 return true;
941 }
942 return false;
943 }
944
945 struct cdv_intel_dp_m_n {
946 uint32_t tu;
947 uint32_t gmch_m;
948 uint32_t gmch_n;
949 uint32_t link_m;
950 uint32_t link_n;
951 };
952
953 static void
954 cdv_intel_reduce_ratio(uint32_t *num, uint32_t *den)
955 {
956 /*
957 while (*num > 0xffffff || *den > 0xffffff) {
958 *num >>= 1;
959 *den >>= 1;
960 }*/
961 uint64_t value, m;
962 m = *num;
963 value = m * (0x800000);
964 m = do_div(value, *den);
965 *num = value;
966 *den = 0x800000;
967 }
968
969 static void
970 cdv_intel_dp_compute_m_n(int bpp,
971 int nlanes,
972 int pixel_clock,
973 int link_clock,
974 struct cdv_intel_dp_m_n *m_n)
975 {
976 m_n->tu = 64;
977 m_n->gmch_m = (pixel_clock * bpp + 7) >> 3;
978 m_n->gmch_n = link_clock * nlanes;
979 cdv_intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
980 m_n->link_m = pixel_clock;
981 m_n->link_n = link_clock;
982 cdv_intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
983 }
984
985 void
986 cdv_intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode,
987 struct drm_display_mode *adjusted_mode)
988 {
989 struct drm_device *dev = crtc->dev;
990 struct drm_psb_private *dev_priv = dev->dev_private;
991 struct drm_mode_config *mode_config = &dev->mode_config;
992 struct drm_encoder *encoder;
993 struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
994 int lane_count = 4, bpp = 24;
995 struct cdv_intel_dp_m_n m_n;
996 int pipe = gma_crtc->pipe;
997
998 /*
999 * Find the lane count in the intel_encoder private
1000 */
1001 list_for_each_entry(encoder, &mode_config->encoder_list, head) {
1002 struct gma_encoder *intel_encoder;
1003 struct cdv_intel_dp *intel_dp;
1004
1005 if (encoder->crtc != crtc)
1006 continue;
1007
1008 intel_encoder = to_gma_encoder(encoder);
1009 intel_dp = intel_encoder->dev_priv;
1010 if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT) {
1011 lane_count = intel_dp->lane_count;
1012 break;
1013 } else if (is_edp(intel_encoder)) {
1014 lane_count = intel_dp->lane_count;
1015 bpp = dev_priv->edp.bpp;
1016 break;
1017 }
1018 }
1019
1020 /*
1021 * Compute the GMCH and Link ratios. The '3' here is
1022 * the number of bytes_per_pixel post-LUT, which we always
1023 * set up for 8-bits of R/G/B, or 3 bytes total.
1024 */
1025 cdv_intel_dp_compute_m_n(bpp, lane_count,
1026 mode->clock, adjusted_mode->clock, &m_n);
1027
1028 {
1029 REG_WRITE(PIPE_GMCH_DATA_M(pipe),
1030 ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
1031 m_n.gmch_m);
1032 REG_WRITE(PIPE_GMCH_DATA_N(pipe), m_n.gmch_n);
1033 REG_WRITE(PIPE_DP_LINK_M(pipe), m_n.link_m);
1034 REG_WRITE(PIPE_DP_LINK_N(pipe), m_n.link_n);
1035 }
1036 }
1037
1038 static void
1039 cdv_intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
1040 struct drm_display_mode *adjusted_mode)
1041 {
1042 struct gma_encoder *intel_encoder = to_gma_encoder(encoder);
1043 struct drm_crtc *crtc = encoder->crtc;
1044 struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
1045 struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
1046 struct drm_device *dev = encoder->dev;
1047
1048 intel_dp->DP = DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
1049 intel_dp->DP |= intel_dp->color_range;
1050
1051 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1052 intel_dp->DP |= DP_SYNC_HS_HIGH;
1053 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1054 intel_dp->DP |= DP_SYNC_VS_HIGH;
1055
1056 intel_dp->DP |= DP_LINK_TRAIN_OFF;
1057
1058 switch (intel_dp->lane_count) {
1059 case 1:
1060 intel_dp->DP |= DP_PORT_WIDTH_1;
1061 break;
1062 case 2:
1063 intel_dp->DP |= DP_PORT_WIDTH_2;
1064 break;
1065 case 4:
1066 intel_dp->DP |= DP_PORT_WIDTH_4;
1067 break;
1068 }
1069 if (intel_dp->has_audio)
1070 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
1071
1072 memset(intel_dp->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
1073 intel_dp->link_configuration[0] = intel_dp->link_bw;
1074 intel_dp->link_configuration[1] = intel_dp->lane_count;
1075
1076 /*
1077 * Check for DPCD version > 1.1 and enhanced framing support
1078 */
1079 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
1080 (intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_ENHANCED_FRAME_CAP)) {
1081 intel_dp->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
1082 intel_dp->DP |= DP_ENHANCED_FRAMING;
1083 }
1084
1085 /* CPT DP's pipe select is decided in TRANS_DP_CTL */
1086 if (gma_crtc->pipe == 1)
1087 intel_dp->DP |= DP_PIPEB_SELECT;
1088
1089 REG_WRITE(intel_dp->output_reg, (intel_dp->DP | DP_PORT_EN));
1090 DRM_DEBUG_KMS("DP expected reg is %x\n", intel_dp->DP);
1091 if (is_edp(intel_encoder)) {
1092 uint32_t pfit_control;
1093 cdv_intel_edp_panel_on(intel_encoder);
1094
1095 if (mode->hdisplay != adjusted_mode->hdisplay ||
1096 mode->vdisplay != adjusted_mode->vdisplay)
1097 pfit_control = PFIT_ENABLE;
1098 else
1099 pfit_control = 0;
1100
1101 pfit_control |= gma_crtc->pipe << PFIT_PIPE_SHIFT;
1102
1103 REG_WRITE(PFIT_CONTROL, pfit_control);
1104 }
1105 }
1106
1107
1108 /* If the sink supports it, try to set the power state appropriately */
1109 static void cdv_intel_dp_sink_dpms(struct gma_encoder *encoder, int mode)
1110 {
1111 struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1112 int ret, i;
1113
1114 /* Should have a valid DPCD by this point */
1115 if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
1116 return;
1117
1118 if (mode != DRM_MODE_DPMS_ON) {
1119 ret = cdv_intel_dp_aux_native_write_1(encoder, DP_SET_POWER,
1120 DP_SET_POWER_D3);
1121 if (ret != 1)
1122 DRM_DEBUG_DRIVER("failed to write sink power state\n");
1123 } else {
1124 /*
1125 * When turning on, we need to retry for 1ms to give the sink
1126 * time to wake up.
1127 */
1128 for (i = 0; i < 3; i++) {
1129 ret = cdv_intel_dp_aux_native_write_1(encoder,
1130 DP_SET_POWER,
1131 DP_SET_POWER_D0);
1132 if (ret == 1)
1133 break;
1134 udelay(1000);
1135 }
1136 }
1137 }
1138
1139 static void cdv_intel_dp_prepare(struct drm_encoder *encoder)
1140 {
1141 struct gma_encoder *intel_encoder = to_gma_encoder(encoder);
1142 int edp = is_edp(intel_encoder);
1143
1144 if (edp) {
1145 cdv_intel_edp_backlight_off(intel_encoder);
1146 cdv_intel_edp_panel_off(intel_encoder);
1147 cdv_intel_edp_panel_vdd_on(intel_encoder);
1148 }
1149 /* Wake up the sink first */
1150 cdv_intel_dp_sink_dpms(intel_encoder, DRM_MODE_DPMS_ON);
1151 cdv_intel_dp_link_down(intel_encoder);
1152 if (edp)
1153 cdv_intel_edp_panel_vdd_off(intel_encoder);
1154 }
1155
1156 static void cdv_intel_dp_commit(struct drm_encoder *encoder)
1157 {
1158 struct gma_encoder *intel_encoder = to_gma_encoder(encoder);
1159 int edp = is_edp(intel_encoder);
1160
1161 if (edp)
1162 cdv_intel_edp_panel_on(intel_encoder);
1163 cdv_intel_dp_start_link_train(intel_encoder);
1164 cdv_intel_dp_complete_link_train(intel_encoder);
1165 if (edp)
1166 cdv_intel_edp_backlight_on(intel_encoder);
1167 }
1168
1169 static void
1170 cdv_intel_dp_dpms(struct drm_encoder *encoder, int mode)
1171 {
1172 struct gma_encoder *intel_encoder = to_gma_encoder(encoder);
1173 struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
1174 struct drm_device *dev = encoder->dev;
1175 uint32_t dp_reg = REG_READ(intel_dp->output_reg);
1176 int edp = is_edp(intel_encoder);
1177
1178 if (mode != DRM_MODE_DPMS_ON) {
1179 if (edp) {
1180 cdv_intel_edp_backlight_off(intel_encoder);
1181 cdv_intel_edp_panel_vdd_on(intel_encoder);
1182 }
1183 cdv_intel_dp_sink_dpms(intel_encoder, mode);
1184 cdv_intel_dp_link_down(intel_encoder);
1185 if (edp) {
1186 cdv_intel_edp_panel_vdd_off(intel_encoder);
1187 cdv_intel_edp_panel_off(intel_encoder);
1188 }
1189 } else {
1190 if (edp)
1191 cdv_intel_edp_panel_on(intel_encoder);
1192 cdv_intel_dp_sink_dpms(intel_encoder, mode);
1193 if (!(dp_reg & DP_PORT_EN)) {
1194 cdv_intel_dp_start_link_train(intel_encoder);
1195 cdv_intel_dp_complete_link_train(intel_encoder);
1196 }
1197 if (edp)
1198 cdv_intel_edp_backlight_on(intel_encoder);
1199 }
1200 }
1201
1202 /*
1203 * Native read with retry for link status and receiver capability reads for
1204 * cases where the sink may still be asleep.
1205 */
1206 static bool
1207 cdv_intel_dp_aux_native_read_retry(struct gma_encoder *encoder, uint16_t address,
1208 uint8_t *recv, int recv_bytes)
1209 {
1210 int ret, i;
1211
1212 /*
1213 * Sinks are *supposed* to come up within 1ms from an off state,
1214 * but we're also supposed to retry 3 times per the spec.
1215 */
1216 for (i = 0; i < 3; i++) {
1217 ret = cdv_intel_dp_aux_native_read(encoder, address, recv,
1218 recv_bytes);
1219 if (ret == recv_bytes)
1220 return true;
1221 udelay(1000);
1222 }
1223
1224 return false;
1225 }
1226
1227 /*
1228 * Fetch AUX CH registers 0x202 - 0x207 which contain
1229 * link status information
1230 */
1231 static bool
1232 cdv_intel_dp_get_link_status(struct gma_encoder *encoder)
1233 {
1234 struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1235 return cdv_intel_dp_aux_native_read_retry(encoder,
1236 DP_LANE0_1_STATUS,
1237 intel_dp->link_status,
1238 DP_LINK_STATUS_SIZE);
1239 }
1240
1241 static uint8_t
1242 cdv_intel_dp_link_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
1243 int r)
1244 {
1245 return link_status[r - DP_LANE0_1_STATUS];
1246 }
1247
1248 static uint8_t
1249 cdv_intel_get_adjust_request_voltage(uint8_t link_status[DP_LINK_STATUS_SIZE],
1250 int lane)
1251 {
1252 int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
1253 int s = ((lane & 1) ?
1254 DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
1255 DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
1256 uint8_t l = cdv_intel_dp_link_status(link_status, i);
1257
1258 return ((l >> s) & 3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
1259 }
1260
1261 static uint8_t
1262 cdv_intel_get_adjust_request_pre_emphasis(uint8_t link_status[DP_LINK_STATUS_SIZE],
1263 int lane)
1264 {
1265 int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
1266 int s = ((lane & 1) ?
1267 DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
1268 DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
1269 uint8_t l = cdv_intel_dp_link_status(link_status, i);
1270
1271 return ((l >> s) & 3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
1272 }
1273
1274
1275 #if 0
1276 static char *voltage_names[] = {
1277 "0.4V", "0.6V", "0.8V", "1.2V"
1278 };
1279 static char *pre_emph_names[] = {
1280 "0dB", "3.5dB", "6dB", "9.5dB"
1281 };
1282 static char *link_train_names[] = {
1283 "pattern 1", "pattern 2", "idle", "off"
1284 };
1285 #endif
1286
1287 #define CDV_DP_VOLTAGE_MAX DP_TRAIN_VOLTAGE_SWING_LEVEL_3
1288 /*
1289 static uint8_t
1290 cdv_intel_dp_pre_emphasis_max(uint8_t voltage_swing)
1291 {
1292 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1293 case DP_TRAIN_VOLTAGE_SWING_400:
1294 return DP_TRAIN_PRE_EMPHASIS_6;
1295 case DP_TRAIN_VOLTAGE_SWING_600:
1296 return DP_TRAIN_PRE_EMPHASIS_6;
1297 case DP_TRAIN_VOLTAGE_SWING_800:
1298 return DP_TRAIN_PRE_EMPHASIS_3_5;
1299 case DP_TRAIN_VOLTAGE_SWING_1200:
1300 default:
1301 return DP_TRAIN_PRE_EMPHASIS_0;
1302 }
1303 }
1304 */
1305 static void
1306 cdv_intel_get_adjust_train(struct gma_encoder *encoder)
1307 {
1308 struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1309 uint8_t v = 0;
1310 uint8_t p = 0;
1311 int lane;
1312
1313 for (lane = 0; lane < intel_dp->lane_count; lane++) {
1314 uint8_t this_v = cdv_intel_get_adjust_request_voltage(intel_dp->link_status, lane);
1315 uint8_t this_p = cdv_intel_get_adjust_request_pre_emphasis(intel_dp->link_status, lane);
1316
1317 if (this_v > v)
1318 v = this_v;
1319 if (this_p > p)
1320 p = this_p;
1321 }
1322
1323 if (v >= CDV_DP_VOLTAGE_MAX)
1324 v = CDV_DP_VOLTAGE_MAX | DP_TRAIN_MAX_SWING_REACHED;
1325
1326 if (p == DP_TRAIN_PRE_EMPHASIS_MASK)
1327 p |= DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
1328
1329 for (lane = 0; lane < 4; lane++)
1330 intel_dp->train_set[lane] = v | p;
1331 }
1332
1333
1334 static uint8_t
1335 cdv_intel_get_lane_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
1336 int lane)
1337 {
1338 int i = DP_LANE0_1_STATUS + (lane >> 1);
1339 int s = (lane & 1) * 4;
1340 uint8_t l = cdv_intel_dp_link_status(link_status, i);
1341
1342 return (l >> s) & 0xf;
1343 }
1344
1345 /* Check for clock recovery is done on all channels */
1346 static bool
1347 cdv_intel_clock_recovery_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
1348 {
1349 int lane;
1350 uint8_t lane_status;
1351
1352 for (lane = 0; lane < lane_count; lane++) {
1353 lane_status = cdv_intel_get_lane_status(link_status, lane);
1354 if ((lane_status & DP_LANE_CR_DONE) == 0)
1355 return false;
1356 }
1357 return true;
1358 }
1359
1360 /* Check to see if channel eq is done on all channels */
1361 #define CHANNEL_EQ_BITS (DP_LANE_CR_DONE|\
1362 DP_LANE_CHANNEL_EQ_DONE|\
1363 DP_LANE_SYMBOL_LOCKED)
1364 static bool
1365 cdv_intel_channel_eq_ok(struct gma_encoder *encoder)
1366 {
1367 struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1368 uint8_t lane_align;
1369 uint8_t lane_status;
1370 int lane;
1371
1372 lane_align = cdv_intel_dp_link_status(intel_dp->link_status,
1373 DP_LANE_ALIGN_STATUS_UPDATED);
1374 if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
1375 return false;
1376 for (lane = 0; lane < intel_dp->lane_count; lane++) {
1377 lane_status = cdv_intel_get_lane_status(intel_dp->link_status, lane);
1378 if ((lane_status & CHANNEL_EQ_BITS) != CHANNEL_EQ_BITS)
1379 return false;
1380 }
1381 return true;
1382 }
1383
1384 static bool
1385 cdv_intel_dp_set_link_train(struct gma_encoder *encoder,
1386 uint32_t dp_reg_value,
1387 uint8_t dp_train_pat)
1388 {
1389
1390 struct drm_device *dev = encoder->base.dev;
1391 int ret;
1392 struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1393
1394 REG_WRITE(intel_dp->output_reg, dp_reg_value);
1395 REG_READ(intel_dp->output_reg);
1396
1397 ret = cdv_intel_dp_aux_native_write_1(encoder,
1398 DP_TRAINING_PATTERN_SET,
1399 dp_train_pat);
1400
1401 if (ret != 1) {
1402 DRM_DEBUG_KMS("Failure in setting link pattern %x\n",
1403 dp_train_pat);
1404 return false;
1405 }
1406
1407 return true;
1408 }
1409
1410
1411 static bool
1412 cdv_intel_dplink_set_level(struct gma_encoder *encoder,
1413 uint8_t dp_train_pat)
1414 {
1415
1416 int ret;
1417 struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1418
1419 ret = cdv_intel_dp_aux_native_write(encoder,
1420 DP_TRAINING_LANE0_SET,
1421 intel_dp->train_set,
1422 intel_dp->lane_count);
1423
1424 if (ret != intel_dp->lane_count) {
1425 DRM_DEBUG_KMS("Failure in setting level %d, lane_cnt= %d\n",
1426 intel_dp->train_set[0], intel_dp->lane_count);
1427 return false;
1428 }
1429 return true;
1430 }
1431
1432 static void
1433 cdv_intel_dp_set_vswing_premph(struct gma_encoder *encoder, uint8_t signal_level)
1434 {
1435 struct drm_device *dev = encoder->base.dev;
1436 struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1437 struct ddi_regoff *ddi_reg;
1438 int vswing, premph, index;
1439
1440 if (intel_dp->output_reg == DP_B)
1441 ddi_reg = &ddi_DP_train_table[0];
1442 else
1443 ddi_reg = &ddi_DP_train_table[1];
1444
1445 vswing = (signal_level & DP_TRAIN_VOLTAGE_SWING_MASK);
1446 premph = ((signal_level & DP_TRAIN_PRE_EMPHASIS_MASK)) >>
1447 DP_TRAIN_PRE_EMPHASIS_SHIFT;
1448
1449 if (vswing + premph > 3)
1450 return;
1451 #ifdef CDV_FAST_LINK_TRAIN
1452 return;
1453 #endif
1454 DRM_DEBUG_KMS("Test2\n");
1455 //return ;
1456 cdv_sb_reset(dev);
1457 /* ;Swing voltage programming
1458 ;gfx_dpio_set_reg(0xc058, 0x0505313A) */
1459 cdv_sb_write(dev, ddi_reg->VSwing5, 0x0505313A);
1460
1461 /* ;gfx_dpio_set_reg(0x8154, 0x43406055) */
1462 cdv_sb_write(dev, ddi_reg->VSwing1, 0x43406055);
1463
1464 /* ;gfx_dpio_set_reg(0x8148, 0x55338954)
1465 * The VSwing_PreEmph table is also considered based on the vswing/premp
1466 */
1467 index = (vswing + premph) * 2;
1468 if (premph == 1 && vswing == 1) {
1469 cdv_sb_write(dev, ddi_reg->VSwing2, 0x055738954);
1470 } else
1471 cdv_sb_write(dev, ddi_reg->VSwing2, dp_vswing_premph_table[index]);
1472
1473 /* ;gfx_dpio_set_reg(0x814c, 0x40802040) */
1474 if ((vswing + premph) == DP_TRAIN_VOLTAGE_SWING_LEVEL_3)
1475 cdv_sb_write(dev, ddi_reg->VSwing3, 0x70802040);
1476 else
1477 cdv_sb_write(dev, ddi_reg->VSwing3, 0x40802040);
1478
1479 /* ;gfx_dpio_set_reg(0x8150, 0x2b405555) */
1480 /* cdv_sb_write(dev, ddi_reg->VSwing4, 0x2b405555); */
1481
1482 /* ;gfx_dpio_set_reg(0x8154, 0xc3406055) */
1483 cdv_sb_write(dev, ddi_reg->VSwing1, 0xc3406055);
1484
1485 /* ;Pre emphasis programming
1486 * ;gfx_dpio_set_reg(0xc02c, 0x1f030040)
1487 */
1488 cdv_sb_write(dev, ddi_reg->PreEmph1, 0x1f030040);
1489
1490 /* ;gfx_dpio_set_reg(0x8124, 0x00004000) */
1491 index = 2 * premph + 1;
1492 cdv_sb_write(dev, ddi_reg->PreEmph2, dp_vswing_premph_table[index]);
1493 return;
1494 }
1495
1496
1497 /* Enable corresponding port and start training pattern 1 */
1498 static void
1499 cdv_intel_dp_start_link_train(struct gma_encoder *encoder)
1500 {
1501 struct drm_device *dev = encoder->base.dev;
1502 struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1503 int i;
1504 uint8_t voltage;
1505 bool clock_recovery = false;
1506 int tries;
1507 u32 reg;
1508 uint32_t DP = intel_dp->DP;
1509
1510 DP |= DP_PORT_EN;
1511 DP &= ~DP_LINK_TRAIN_MASK;
1512
1513 reg = DP;
1514 reg |= DP_LINK_TRAIN_PAT_1;
1515 /* Enable output, wait for it to become active */
1516 REG_WRITE(intel_dp->output_reg, reg);
1517 REG_READ(intel_dp->output_reg);
1518 gma_wait_for_vblank(dev);
1519
1520 DRM_DEBUG_KMS("Link config\n");
1521 /* Write the link configuration data */
1522 cdv_intel_dp_aux_native_write(encoder, DP_LINK_BW_SET,
1523 intel_dp->link_configuration,
1524 2);
1525
1526 memset(intel_dp->train_set, 0, 4);
1527 voltage = 0;
1528 tries = 0;
1529 clock_recovery = false;
1530
1531 DRM_DEBUG_KMS("Start train\n");
1532 reg = DP | DP_LINK_TRAIN_PAT_1;
1533
1534
1535 for (;;) {
1536 /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1537 DRM_DEBUG_KMS("DP Link Train Set %x, Link_config %x, %x\n",
1538 intel_dp->train_set[0],
1539 intel_dp->link_configuration[0],
1540 intel_dp->link_configuration[1]);
1541
1542 if (!cdv_intel_dp_set_link_train(encoder, reg, DP_TRAINING_PATTERN_1)) {
1543 DRM_DEBUG_KMS("Failure in aux-transfer setting pattern 1\n");
1544 }
1545 cdv_intel_dp_set_vswing_premph(encoder, intel_dp->train_set[0]);
1546 /* Set training pattern 1 */
1547
1548 cdv_intel_dplink_set_level(encoder, DP_TRAINING_PATTERN_1);
1549
1550 udelay(200);
1551 if (!cdv_intel_dp_get_link_status(encoder))
1552 break;
1553
1554 DRM_DEBUG_KMS("DP Link status %x, %x, %x, %x, %x, %x\n",
1555 intel_dp->link_status[0], intel_dp->link_status[1], intel_dp->link_status[2],
1556 intel_dp->link_status[3], intel_dp->link_status[4], intel_dp->link_status[5]);
1557
1558 if (cdv_intel_clock_recovery_ok(intel_dp->link_status, intel_dp->lane_count)) {
1559 DRM_DEBUG_KMS("PT1 train is done\n");
1560 clock_recovery = true;
1561 break;
1562 }
1563
1564 /* Check to see if we've tried the max voltage */
1565 for (i = 0; i < intel_dp->lane_count; i++)
1566 if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
1567 break;
1568 if (i == intel_dp->lane_count)
1569 break;
1570
1571 /* Check to see if we've tried the same voltage 5 times */
1572 if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
1573 ++tries;
1574 if (tries == 5)
1575 break;
1576 } else
1577 tries = 0;
1578 voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
1579
1580 /* Compute new intel_dp->train_set as requested by target */
1581 cdv_intel_get_adjust_train(encoder);
1582
1583 }
1584
1585 if (!clock_recovery) {
1586 DRM_DEBUG_KMS("failure in DP patter 1 training, train set %x\n", intel_dp->train_set[0]);
1587 }
1588
1589 intel_dp->DP = DP;
1590 }
1591
1592 static void
1593 cdv_intel_dp_complete_link_train(struct gma_encoder *encoder)
1594 {
1595 struct drm_device *dev = encoder->base.dev;
1596 struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1597 bool channel_eq = false;
1598 int tries, cr_tries;
1599 u32 reg;
1600 uint32_t DP = intel_dp->DP;
1601
1602 /* channel equalization */
1603 tries = 0;
1604 cr_tries = 0;
1605 channel_eq = false;
1606
1607 DRM_DEBUG_KMS("\n");
1608 reg = DP | DP_LINK_TRAIN_PAT_2;
1609
1610 for (;;) {
1611
1612 DRM_DEBUG_KMS("DP Link Train Set %x, Link_config %x, %x\n",
1613 intel_dp->train_set[0],
1614 intel_dp->link_configuration[0],
1615 intel_dp->link_configuration[1]);
1616 /* channel eq pattern */
1617
1618 if (!cdv_intel_dp_set_link_train(encoder, reg,
1619 DP_TRAINING_PATTERN_2)) {
1620 DRM_DEBUG_KMS("Failure in aux-transfer setting pattern 2\n");
1621 }
1622 /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1623
1624 if (cr_tries > 5) {
1625 DRM_ERROR("failed to train DP, aborting\n");
1626 cdv_intel_dp_link_down(encoder);
1627 break;
1628 }
1629
1630 cdv_intel_dp_set_vswing_premph(encoder, intel_dp->train_set[0]);
1631
1632 cdv_intel_dplink_set_level(encoder, DP_TRAINING_PATTERN_2);
1633
1634 udelay(1000);
1635 if (!cdv_intel_dp_get_link_status(encoder))
1636 break;
1637
1638 DRM_DEBUG_KMS("DP Link status %x, %x, %x, %x, %x, %x\n",
1639 intel_dp->link_status[0], intel_dp->link_status[1], intel_dp->link_status[2],
1640 intel_dp->link_status[3], intel_dp->link_status[4], intel_dp->link_status[5]);
1641
1642 /* Make sure clock is still ok */
1643 if (!cdv_intel_clock_recovery_ok(intel_dp->link_status, intel_dp->lane_count)) {
1644 cdv_intel_dp_start_link_train(encoder);
1645 cr_tries++;
1646 continue;
1647 }
1648
1649 if (cdv_intel_channel_eq_ok(encoder)) {
1650 DRM_DEBUG_KMS("PT2 train is done\n");
1651 channel_eq = true;
1652 break;
1653 }
1654
1655 /* Try 5 times, then try clock recovery if that fails */
1656 if (tries > 5) {
1657 cdv_intel_dp_link_down(encoder);
1658 cdv_intel_dp_start_link_train(encoder);
1659 tries = 0;
1660 cr_tries++;
1661 continue;
1662 }
1663
1664 /* Compute new intel_dp->train_set as requested by target */
1665 cdv_intel_get_adjust_train(encoder);
1666 ++tries;
1667
1668 }
1669
1670 reg = DP | DP_LINK_TRAIN_OFF;
1671
1672 REG_WRITE(intel_dp->output_reg, reg);
1673 REG_READ(intel_dp->output_reg);
1674 cdv_intel_dp_aux_native_write_1(encoder,
1675 DP_TRAINING_PATTERN_SET, DP_TRAINING_PATTERN_DISABLE);
1676 }
1677
1678 static void
1679 cdv_intel_dp_link_down(struct gma_encoder *encoder)
1680 {
1681 struct drm_device *dev = encoder->base.dev;
1682 struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1683 uint32_t DP = intel_dp->DP;
1684
1685 if ((REG_READ(intel_dp->output_reg) & DP_PORT_EN) == 0)
1686 return;
1687
1688 DRM_DEBUG_KMS("\n");
1689
1690
1691 {
1692 DP &= ~DP_LINK_TRAIN_MASK;
1693 REG_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
1694 }
1695 REG_READ(intel_dp->output_reg);
1696
1697 msleep(17);
1698
1699 REG_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
1700 REG_READ(intel_dp->output_reg);
1701 }
1702
1703 static enum drm_connector_status cdv_dp_detect(struct gma_encoder *encoder)
1704 {
1705 struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1706 enum drm_connector_status status;
1707
1708 status = connector_status_disconnected;
1709 if (cdv_intel_dp_aux_native_read(encoder, 0x000, intel_dp->dpcd,
1710 sizeof (intel_dp->dpcd)) == sizeof (intel_dp->dpcd))
1711 {
1712 if (intel_dp->dpcd[DP_DPCD_REV] != 0)
1713 status = connector_status_connected;
1714 }
1715 if (status == connector_status_connected)
1716 DRM_DEBUG_KMS("DPCD: Rev=%x LN_Rate=%x LN_CNT=%x LN_DOWNSP=%x\n",
1717 intel_dp->dpcd[0], intel_dp->dpcd[1],
1718 intel_dp->dpcd[2], intel_dp->dpcd[3]);
1719 return status;
1720 }
1721
1722 /**
1723 * Uses CRT_HOTPLUG_EN and CRT_HOTPLUG_STAT to detect DP connection.
1724 *
1725 * \return true if DP port is connected.
1726 * \return false if DP port is disconnected.
1727 */
1728 static enum drm_connector_status
1729 cdv_intel_dp_detect(struct drm_connector *connector, bool force)
1730 {
1731 struct gma_encoder *encoder = gma_attached_encoder(connector);
1732 struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1733 enum drm_connector_status status;
1734 struct edid *edid = NULL;
1735 int edp = is_edp(encoder);
1736
1737 intel_dp->has_audio = false;
1738
1739 if (edp)
1740 cdv_intel_edp_panel_vdd_on(encoder);
1741 status = cdv_dp_detect(encoder);
1742 if (status != connector_status_connected) {
1743 if (edp)
1744 cdv_intel_edp_panel_vdd_off(encoder);
1745 return status;
1746 }
1747
1748 if (intel_dp->force_audio) {
1749 intel_dp->has_audio = intel_dp->force_audio > 0;
1750 } else {
1751 edid = drm_get_edid(connector, &intel_dp->adapter);
1752 if (edid) {
1753 intel_dp->has_audio = drm_detect_monitor_audio(edid);
1754 kfree(edid);
1755 }
1756 }
1757 if (edp)
1758 cdv_intel_edp_panel_vdd_off(encoder);
1759
1760 return connector_status_connected;
1761 }
1762
1763 static int cdv_intel_dp_get_modes(struct drm_connector *connector)
1764 {
1765 struct gma_encoder *intel_encoder = gma_attached_encoder(connector);
1766 struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
1767 struct edid *edid = NULL;
1768 int ret = 0;
1769 int edp = is_edp(intel_encoder);
1770
1771
1772 edid = drm_get_edid(connector, &intel_dp->adapter);
1773 if (edid) {
1774 drm_mode_connector_update_edid_property(connector, edid);
1775 ret = drm_add_edid_modes(connector, edid);
1776 kfree(edid);
1777 }
1778
1779 if (is_edp(intel_encoder)) {
1780 struct drm_device *dev = connector->dev;
1781 struct drm_psb_private *dev_priv = dev->dev_private;
1782
1783 cdv_intel_edp_panel_vdd_off(intel_encoder);
1784 if (ret) {
1785 if (edp && !intel_dp->panel_fixed_mode) {
1786 struct drm_display_mode *newmode;
1787 list_for_each_entry(newmode, &connector->probed_modes,
1788 head) {
1789 if (newmode->type & DRM_MODE_TYPE_PREFERRED) {
1790 intel_dp->panel_fixed_mode =
1791 drm_mode_duplicate(dev, newmode);
1792 break;
1793 }
1794 }
1795 }
1796
1797 return ret;
1798 }
1799 if (!intel_dp->panel_fixed_mode && dev_priv->lfp_lvds_vbt_mode) {
1800 intel_dp->panel_fixed_mode =
1801 drm_mode_duplicate(dev, dev_priv->lfp_lvds_vbt_mode);
1802 if (intel_dp->panel_fixed_mode) {
1803 intel_dp->panel_fixed_mode->type |=
1804 DRM_MODE_TYPE_PREFERRED;
1805 }
1806 }
1807 if (intel_dp->panel_fixed_mode != NULL) {
1808 struct drm_display_mode *mode;
1809 mode = drm_mode_duplicate(dev, intel_dp->panel_fixed_mode);
1810 drm_mode_probed_add(connector, mode);
1811 return 1;
1812 }
1813 }
1814
1815 return ret;
1816 }
1817
1818 static bool
1819 cdv_intel_dp_detect_audio(struct drm_connector *connector)
1820 {
1821 struct gma_encoder *encoder = gma_attached_encoder(connector);
1822 struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1823 struct edid *edid;
1824 bool has_audio = false;
1825 int edp = is_edp(encoder);
1826
1827 if (edp)
1828 cdv_intel_edp_panel_vdd_on(encoder);
1829
1830 edid = drm_get_edid(connector, &intel_dp->adapter);
1831 if (edid) {
1832 has_audio = drm_detect_monitor_audio(edid);
1833 kfree(edid);
1834 }
1835 if (edp)
1836 cdv_intel_edp_panel_vdd_off(encoder);
1837
1838 return has_audio;
1839 }
1840
1841 static int
1842 cdv_intel_dp_set_property(struct drm_connector *connector,
1843 struct drm_property *property,
1844 uint64_t val)
1845 {
1846 struct drm_psb_private *dev_priv = connector->dev->dev_private;
1847 struct gma_encoder *encoder = gma_attached_encoder(connector);
1848 struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1849 int ret;
1850
1851 ret = drm_object_property_set_value(&connector->base, property, val);
1852 if (ret)
1853 return ret;
1854
1855 if (property == dev_priv->force_audio_property) {
1856 int i = val;
1857 bool has_audio;
1858
1859 if (i == intel_dp->force_audio)
1860 return 0;
1861
1862 intel_dp->force_audio = i;
1863
1864 if (i == 0)
1865 has_audio = cdv_intel_dp_detect_audio(connector);
1866 else
1867 has_audio = i > 0;
1868
1869 if (has_audio == intel_dp->has_audio)
1870 return 0;
1871
1872 intel_dp->has_audio = has_audio;
1873 goto done;
1874 }
1875
1876 if (property == dev_priv->broadcast_rgb_property) {
1877 if (val == !!intel_dp->color_range)
1878 return 0;
1879
1880 intel_dp->color_range = val ? DP_COLOR_RANGE_16_235 : 0;
1881 goto done;
1882 }
1883
1884 return -EINVAL;
1885
1886 done:
1887 if (encoder->base.crtc) {
1888 struct drm_crtc *crtc = encoder->base.crtc;
1889 drm_crtc_helper_set_mode(crtc, &crtc->mode,
1890 crtc->x, crtc->y,
1891 crtc->primary->fb);
1892 }
1893
1894 return 0;
1895 }
1896
1897 static void
1898 cdv_intel_dp_destroy(struct drm_connector *connector)
1899 {
1900 struct gma_encoder *gma_encoder = gma_attached_encoder(connector);
1901 struct cdv_intel_dp *intel_dp = gma_encoder->dev_priv;
1902
1903 if (is_edp(gma_encoder)) {
1904 /* cdv_intel_panel_destroy_backlight(connector->dev); */
1905 if (intel_dp->panel_fixed_mode) {
1906 kfree(intel_dp->panel_fixed_mode);
1907 intel_dp->panel_fixed_mode = NULL;
1908 }
1909 }
1910 i2c_del_adapter(&intel_dp->adapter);
1911 drm_connector_unregister(connector);
1912 drm_connector_cleanup(connector);
1913 kfree(connector);
1914 }
1915
1916 static void cdv_intel_dp_encoder_destroy(struct drm_encoder *encoder)
1917 {
1918 drm_encoder_cleanup(encoder);
1919 }
1920
1921 static const struct drm_encoder_helper_funcs cdv_intel_dp_helper_funcs = {
1922 .dpms = cdv_intel_dp_dpms,
1923 .mode_fixup = cdv_intel_dp_mode_fixup,
1924 .prepare = cdv_intel_dp_prepare,
1925 .mode_set = cdv_intel_dp_mode_set,
1926 .commit = cdv_intel_dp_commit,
1927 };
1928
1929 static const struct drm_connector_funcs cdv_intel_dp_connector_funcs = {
1930 .dpms = drm_helper_connector_dpms,
1931 .detect = cdv_intel_dp_detect,
1932 .fill_modes = drm_helper_probe_single_connector_modes,
1933 .set_property = cdv_intel_dp_set_property,
1934 .destroy = cdv_intel_dp_destroy,
1935 };
1936
1937 static const struct drm_connector_helper_funcs cdv_intel_dp_connector_helper_funcs = {
1938 .get_modes = cdv_intel_dp_get_modes,
1939 .mode_valid = cdv_intel_dp_mode_valid,
1940 .best_encoder = gma_best_encoder,
1941 };
1942
1943 static const struct drm_encoder_funcs cdv_intel_dp_enc_funcs = {
1944 .destroy = cdv_intel_dp_encoder_destroy,
1945 };
1946
1947
1948 static void cdv_intel_dp_add_properties(struct drm_connector *connector)
1949 {
1950 cdv_intel_attach_force_audio_property(connector);
1951 cdv_intel_attach_broadcast_rgb_property(connector);
1952 }
1953
1954 /* check the VBT to see whether the eDP is on DP-D port */
1955 static bool cdv_intel_dpc_is_edp(struct drm_device *dev)
1956 {
1957 struct drm_psb_private *dev_priv = dev->dev_private;
1958 struct child_device_config *p_child;
1959 int i;
1960
1961 if (!dev_priv->child_dev_num)
1962 return false;
1963
1964 for (i = 0; i < dev_priv->child_dev_num; i++) {
1965 p_child = dev_priv->child_dev + i;
1966
1967 if (p_child->dvo_port == PORT_IDPC &&
1968 p_child->device_type == DEVICE_TYPE_eDP)
1969 return true;
1970 }
1971 return false;
1972 }
1973
1974 /* Cedarview display clock gating
1975
1976 We need this disable dot get correct behaviour while enabling
1977 DP/eDP. TODO - investigate if we can turn it back to normality
1978 after enabling */
1979 static void cdv_disable_intel_clock_gating(struct drm_device *dev)
1980 {
1981 u32 reg_value;
1982 reg_value = REG_READ(DSPCLK_GATE_D);
1983
1984 reg_value |= (DPUNIT_PIPEB_GATE_DISABLE |
1985 DPUNIT_PIPEA_GATE_DISABLE |
1986 DPCUNIT_CLOCK_GATE_DISABLE |
1987 DPLSUNIT_CLOCK_GATE_DISABLE |
1988 DPOUNIT_CLOCK_GATE_DISABLE |
1989 DPIOUNIT_CLOCK_GATE_DISABLE);
1990
1991 REG_WRITE(DSPCLK_GATE_D, reg_value);
1992
1993 udelay(500);
1994 }
1995
1996 void
1997 cdv_intel_dp_init(struct drm_device *dev, struct psb_intel_mode_device *mode_dev, int output_reg)
1998 {
1999 struct gma_encoder *gma_encoder;
2000 struct gma_connector *gma_connector;
2001 struct drm_connector *connector;
2002 struct drm_encoder *encoder;
2003 struct cdv_intel_dp *intel_dp;
2004 const char *name = NULL;
2005 int type = DRM_MODE_CONNECTOR_DisplayPort;
2006
2007 gma_encoder = kzalloc(sizeof(struct gma_encoder), GFP_KERNEL);
2008 if (!gma_encoder)
2009 return;
2010 gma_connector = kzalloc(sizeof(struct gma_connector), GFP_KERNEL);
2011 if (!gma_connector)
2012 goto err_connector;
2013 intel_dp = kzalloc(sizeof(struct cdv_intel_dp), GFP_KERNEL);
2014 if (!intel_dp)
2015 goto err_priv;
2016
2017 if ((output_reg == DP_C) && cdv_intel_dpc_is_edp(dev))
2018 type = DRM_MODE_CONNECTOR_eDP;
2019
2020 connector = &gma_connector->base;
2021 encoder = &gma_encoder->base;
2022
2023 drm_connector_init(dev, connector, &cdv_intel_dp_connector_funcs, type);
2024 drm_encoder_init(dev, encoder, &cdv_intel_dp_enc_funcs, DRM_MODE_ENCODER_TMDS);
2025
2026 gma_connector_attach_encoder(gma_connector, gma_encoder);
2027
2028 if (type == DRM_MODE_CONNECTOR_DisplayPort)
2029 gma_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
2030 else
2031 gma_encoder->type = INTEL_OUTPUT_EDP;
2032
2033
2034 gma_encoder->dev_priv=intel_dp;
2035 intel_dp->encoder = gma_encoder;
2036 intel_dp->output_reg = output_reg;
2037
2038 drm_encoder_helper_add(encoder, &cdv_intel_dp_helper_funcs);
2039 drm_connector_helper_add(connector, &cdv_intel_dp_connector_helper_funcs);
2040
2041 connector->polled = DRM_CONNECTOR_POLL_HPD;
2042 connector->interlace_allowed = false;
2043 connector->doublescan_allowed = false;
2044
2045 drm_connector_register(connector);
2046
2047 /* Set up the DDC bus. */
2048 switch (output_reg) {
2049 case DP_B:
2050 name = "DPDDC-B";
2051 gma_encoder->ddi_select = (DP_MASK | DDI0_SELECT);
2052 break;
2053 case DP_C:
2054 name = "DPDDC-C";
2055 gma_encoder->ddi_select = (DP_MASK | DDI1_SELECT);
2056 break;
2057 }
2058
2059 cdv_disable_intel_clock_gating(dev);
2060
2061 cdv_intel_dp_i2c_init(gma_connector, gma_encoder, name);
2062 /* FIXME:fail check */
2063 cdv_intel_dp_add_properties(connector);
2064
2065 if (is_edp(gma_encoder)) {
2066 int ret;
2067 struct edp_power_seq cur;
2068 u32 pp_on, pp_off, pp_div;
2069 u32 pwm_ctrl;
2070
2071 pp_on = REG_READ(PP_CONTROL);
2072 pp_on &= ~PANEL_UNLOCK_MASK;
2073 pp_on |= PANEL_UNLOCK_REGS;
2074
2075 REG_WRITE(PP_CONTROL, pp_on);
2076
2077 pwm_ctrl = REG_READ(BLC_PWM_CTL2);
2078 pwm_ctrl |= PWM_PIPE_B;
2079 REG_WRITE(BLC_PWM_CTL2, pwm_ctrl);
2080
2081 pp_on = REG_READ(PP_ON_DELAYS);
2082 pp_off = REG_READ(PP_OFF_DELAYS);
2083 pp_div = REG_READ(PP_DIVISOR);
2084
2085 /* Pull timing values out of registers */
2086 cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
2087 PANEL_POWER_UP_DELAY_SHIFT;
2088
2089 cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
2090 PANEL_LIGHT_ON_DELAY_SHIFT;
2091
2092 cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
2093 PANEL_LIGHT_OFF_DELAY_SHIFT;
2094
2095 cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
2096 PANEL_POWER_DOWN_DELAY_SHIFT;
2097
2098 cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
2099 PANEL_POWER_CYCLE_DELAY_SHIFT);
2100
2101 DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
2102 cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
2103
2104
2105 intel_dp->panel_power_up_delay = cur.t1_t3 / 10;
2106 intel_dp->backlight_on_delay = cur.t8 / 10;
2107 intel_dp->backlight_off_delay = cur.t9 / 10;
2108 intel_dp->panel_power_down_delay = cur.t10 / 10;
2109 intel_dp->panel_power_cycle_delay = (cur.t11_t12 - 1) * 100;
2110
2111 DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
2112 intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
2113 intel_dp->panel_power_cycle_delay);
2114
2115 DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
2116 intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
2117
2118
2119 cdv_intel_edp_panel_vdd_on(gma_encoder);
2120 ret = cdv_intel_dp_aux_native_read(gma_encoder, DP_DPCD_REV,
2121 intel_dp->dpcd,
2122 sizeof(intel_dp->dpcd));
2123 cdv_intel_edp_panel_vdd_off(gma_encoder);
2124 if (ret == 0) {
2125 /* if this fails, presume the device is a ghost */
2126 DRM_INFO("failed to retrieve link info, disabling eDP\n");
2127 cdv_intel_dp_encoder_destroy(encoder);
2128 cdv_intel_dp_destroy(connector);
2129 goto err_priv;
2130 } else {
2131 DRM_DEBUG_KMS("DPCD: Rev=%x LN_Rate=%x LN_CNT=%x LN_DOWNSP=%x\n",
2132 intel_dp->dpcd[0], intel_dp->dpcd[1],
2133 intel_dp->dpcd[2], intel_dp->dpcd[3]);
2134
2135 }
2136 /* The CDV reference driver moves pnale backlight setup into the displays that
2137 have a backlight: this is a good idea and one we should probably adopt, however
2138 we need to migrate all the drivers before we can do that */
2139 /*cdv_intel_panel_setup_backlight(dev); */
2140 }
2141 return;
2142
2143 err_priv:
2144 kfree(gma_connector);
2145 err_connector:
2146 kfree(gma_encoder);
2147 }