]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/gpu/drm/gma500/cdv_intel_dp.c
f88a1815d87c4e795492ead6ef1c4c07a4d31b89
[mirror_ubuntu-jammy-kernel.git] / drivers / gpu / drm / gma500 / cdv_intel_dp.c
1 /*
2 * Copyright © 2012 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Keith Packard <keithp@keithp.com>
25 *
26 */
27
28 #include <linux/i2c.h>
29 #include <linux/slab.h>
30 #include <linux/module.h>
31 #include <drm/drmP.h>
32 #include <drm/drm_crtc.h>
33 #include <drm/drm_crtc_helper.h>
34 #include "psb_drv.h"
35 #include "psb_intel_drv.h"
36 #include "psb_intel_reg.h"
37 #include "gma_display.h"
38 #include <drm/drm_dp_helper.h>
39
40 #define _wait_for(COND, MS, W) ({ \
41 unsigned long timeout__ = jiffies + msecs_to_jiffies(MS); \
42 int ret__ = 0; \
43 while (! (COND)) { \
44 if (time_after(jiffies, timeout__)) { \
45 ret__ = -ETIMEDOUT; \
46 break; \
47 } \
48 if (W && !in_dbg_master()) msleep(W); \
49 } \
50 ret__; \
51 })
52
53 #define wait_for(COND, MS) _wait_for(COND, MS, 1)
54
55 #define DP_LINK_STATUS_SIZE 6
56 #define DP_LINK_CHECK_TIMEOUT (10 * 1000)
57
58 #define DP_LINK_CONFIGURATION_SIZE 9
59
60 #define CDV_FAST_LINK_TRAIN 1
61
62 struct cdv_intel_dp {
63 uint32_t output_reg;
64 uint32_t DP;
65 uint8_t link_configuration[DP_LINK_CONFIGURATION_SIZE];
66 bool has_audio;
67 int force_audio;
68 uint32_t color_range;
69 uint8_t link_bw;
70 uint8_t lane_count;
71 uint8_t dpcd[4];
72 struct gma_encoder *encoder;
73 struct i2c_adapter adapter;
74 struct i2c_algo_dp_aux_data algo;
75 uint8_t train_set[4];
76 uint8_t link_status[DP_LINK_STATUS_SIZE];
77 int panel_power_up_delay;
78 int panel_power_down_delay;
79 int panel_power_cycle_delay;
80 int backlight_on_delay;
81 int backlight_off_delay;
82 struct drm_display_mode *panel_fixed_mode; /* for eDP */
83 bool panel_on;
84 };
85
86 struct ddi_regoff {
87 uint32_t PreEmph1;
88 uint32_t PreEmph2;
89 uint32_t VSwing1;
90 uint32_t VSwing2;
91 uint32_t VSwing3;
92 uint32_t VSwing4;
93 uint32_t VSwing5;
94 };
95
96 static struct ddi_regoff ddi_DP_train_table[] = {
97 {.PreEmph1 = 0x812c, .PreEmph2 = 0x8124, .VSwing1 = 0x8154,
98 .VSwing2 = 0x8148, .VSwing3 = 0x814C, .VSwing4 = 0x8150,
99 .VSwing5 = 0x8158,},
100 {.PreEmph1 = 0x822c, .PreEmph2 = 0x8224, .VSwing1 = 0x8254,
101 .VSwing2 = 0x8248, .VSwing3 = 0x824C, .VSwing4 = 0x8250,
102 .VSwing5 = 0x8258,},
103 };
104
105 static uint32_t dp_vswing_premph_table[] = {
106 0x55338954, 0x4000,
107 0x554d8954, 0x2000,
108 0x55668954, 0,
109 0x559ac0d4, 0x6000,
110 };
111 /**
112 * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
113 * @intel_dp: DP struct
114 *
115 * If a CPU or PCH DP output is attached to an eDP panel, this function
116 * will return true, and false otherwise.
117 */
118 static bool is_edp(struct gma_encoder *encoder)
119 {
120 return encoder->type == INTEL_OUTPUT_EDP;
121 }
122
123
124 static void cdv_intel_dp_start_link_train(struct gma_encoder *encoder);
125 static void cdv_intel_dp_complete_link_train(struct gma_encoder *encoder);
126 static void cdv_intel_dp_link_down(struct gma_encoder *encoder);
127
128 static int
129 cdv_intel_dp_max_lane_count(struct gma_encoder *encoder)
130 {
131 struct cdv_intel_dp *intel_dp = encoder->dev_priv;
132 int max_lane_count = 4;
133
134 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
135 max_lane_count = intel_dp->dpcd[DP_MAX_LANE_COUNT] & 0x1f;
136 switch (max_lane_count) {
137 case 1: case 2: case 4:
138 break;
139 default:
140 max_lane_count = 4;
141 }
142 }
143 return max_lane_count;
144 }
145
146 static int
147 cdv_intel_dp_max_link_bw(struct gma_encoder *encoder)
148 {
149 struct cdv_intel_dp *intel_dp = encoder->dev_priv;
150 int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
151
152 switch (max_link_bw) {
153 case DP_LINK_BW_1_62:
154 case DP_LINK_BW_2_7:
155 break;
156 default:
157 max_link_bw = DP_LINK_BW_1_62;
158 break;
159 }
160 return max_link_bw;
161 }
162
163 static int
164 cdv_intel_dp_link_clock(uint8_t link_bw)
165 {
166 if (link_bw == DP_LINK_BW_2_7)
167 return 270000;
168 else
169 return 162000;
170 }
171
172 static int
173 cdv_intel_dp_link_required(int pixel_clock, int bpp)
174 {
175 return (pixel_clock * bpp + 7) / 8;
176 }
177
178 static int
179 cdv_intel_dp_max_data_rate(int max_link_clock, int max_lanes)
180 {
181 return (max_link_clock * max_lanes * 19) / 20;
182 }
183
184 static void cdv_intel_edp_panel_vdd_on(struct gma_encoder *intel_encoder)
185 {
186 struct drm_device *dev = intel_encoder->base.dev;
187 struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
188 u32 pp;
189
190 if (intel_dp->panel_on) {
191 DRM_DEBUG_KMS("Skip VDD on because of panel on\n");
192 return;
193 }
194 DRM_DEBUG_KMS("\n");
195
196 pp = REG_READ(PP_CONTROL);
197
198 pp |= EDP_FORCE_VDD;
199 REG_WRITE(PP_CONTROL, pp);
200 REG_READ(PP_CONTROL);
201 msleep(intel_dp->panel_power_up_delay);
202 }
203
204 static void cdv_intel_edp_panel_vdd_off(struct gma_encoder *intel_encoder)
205 {
206 struct drm_device *dev = intel_encoder->base.dev;
207 u32 pp;
208
209 DRM_DEBUG_KMS("\n");
210 pp = REG_READ(PP_CONTROL);
211
212 pp &= ~EDP_FORCE_VDD;
213 REG_WRITE(PP_CONTROL, pp);
214 REG_READ(PP_CONTROL);
215
216 }
217
218 /* Returns true if the panel was already on when called */
219 static bool cdv_intel_edp_panel_on(struct gma_encoder *intel_encoder)
220 {
221 struct drm_device *dev = intel_encoder->base.dev;
222 struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
223 u32 pp, idle_on_mask = PP_ON | PP_SEQUENCE_NONE;
224
225 if (intel_dp->panel_on)
226 return true;
227
228 DRM_DEBUG_KMS("\n");
229 pp = REG_READ(PP_CONTROL);
230 pp &= ~PANEL_UNLOCK_MASK;
231
232 pp |= (PANEL_UNLOCK_REGS | POWER_TARGET_ON);
233 REG_WRITE(PP_CONTROL, pp);
234 REG_READ(PP_CONTROL);
235
236 if (wait_for(((REG_READ(PP_STATUS) & idle_on_mask) == idle_on_mask), 1000)) {
237 DRM_DEBUG_KMS("Error in Powering up eDP panel, status %x\n", REG_READ(PP_STATUS));
238 intel_dp->panel_on = false;
239 } else
240 intel_dp->panel_on = true;
241 msleep(intel_dp->panel_power_up_delay);
242
243 return false;
244 }
245
246 static void cdv_intel_edp_panel_off (struct gma_encoder *intel_encoder)
247 {
248 struct drm_device *dev = intel_encoder->base.dev;
249 u32 pp, idle_off_mask = PP_ON ;
250 struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
251
252 DRM_DEBUG_KMS("\n");
253
254 pp = REG_READ(PP_CONTROL);
255
256 if ((pp & POWER_TARGET_ON) == 0)
257 return;
258
259 intel_dp->panel_on = false;
260 pp &= ~PANEL_UNLOCK_MASK;
261 /* ILK workaround: disable reset around power sequence */
262
263 pp &= ~POWER_TARGET_ON;
264 pp &= ~EDP_FORCE_VDD;
265 pp &= ~EDP_BLC_ENABLE;
266 REG_WRITE(PP_CONTROL, pp);
267 REG_READ(PP_CONTROL);
268 DRM_DEBUG_KMS("PP_STATUS %x\n", REG_READ(PP_STATUS));
269
270 if (wait_for((REG_READ(PP_STATUS) & idle_off_mask) == 0, 1000)) {
271 DRM_DEBUG_KMS("Error in turning off Panel\n");
272 }
273
274 msleep(intel_dp->panel_power_cycle_delay);
275 DRM_DEBUG_KMS("Over\n");
276 }
277
278 static void cdv_intel_edp_backlight_on (struct gma_encoder *intel_encoder)
279 {
280 struct drm_device *dev = intel_encoder->base.dev;
281 u32 pp;
282
283 DRM_DEBUG_KMS("\n");
284 /*
285 * If we enable the backlight right away following a panel power
286 * on, we may see slight flicker as the panel syncs with the eDP
287 * link. So delay a bit to make sure the image is solid before
288 * allowing it to appear.
289 */
290 msleep(300);
291 pp = REG_READ(PP_CONTROL);
292
293 pp |= EDP_BLC_ENABLE;
294 REG_WRITE(PP_CONTROL, pp);
295 gma_backlight_enable(dev);
296 }
297
298 static void cdv_intel_edp_backlight_off (struct gma_encoder *intel_encoder)
299 {
300 struct drm_device *dev = intel_encoder->base.dev;
301 struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
302 u32 pp;
303
304 DRM_DEBUG_KMS("\n");
305 gma_backlight_disable(dev);
306 msleep(10);
307 pp = REG_READ(PP_CONTROL);
308
309 pp &= ~EDP_BLC_ENABLE;
310 REG_WRITE(PP_CONTROL, pp);
311 msleep(intel_dp->backlight_off_delay);
312 }
313
314 static int
315 cdv_intel_dp_mode_valid(struct drm_connector *connector,
316 struct drm_display_mode *mode)
317 {
318 struct gma_encoder *encoder = gma_attached_encoder(connector);
319 struct cdv_intel_dp *intel_dp = encoder->dev_priv;
320 int max_link_clock = cdv_intel_dp_link_clock(cdv_intel_dp_max_link_bw(encoder));
321 int max_lanes = cdv_intel_dp_max_lane_count(encoder);
322 struct drm_psb_private *dev_priv = connector->dev->dev_private;
323
324 if (is_edp(encoder) && intel_dp->panel_fixed_mode) {
325 if (mode->hdisplay > intel_dp->panel_fixed_mode->hdisplay)
326 return MODE_PANEL;
327 if (mode->vdisplay > intel_dp->panel_fixed_mode->vdisplay)
328 return MODE_PANEL;
329 }
330
331 /* only refuse the mode on non eDP since we have seen some weird eDP panels
332 which are outside spec tolerances but somehow work by magic */
333 if (!is_edp(encoder) &&
334 (cdv_intel_dp_link_required(mode->clock, dev_priv->edp.bpp)
335 > cdv_intel_dp_max_data_rate(max_link_clock, max_lanes)))
336 return MODE_CLOCK_HIGH;
337
338 if (is_edp(encoder)) {
339 if (cdv_intel_dp_link_required(mode->clock, 24)
340 > cdv_intel_dp_max_data_rate(max_link_clock, max_lanes))
341 return MODE_CLOCK_HIGH;
342
343 }
344 if (mode->clock < 10000)
345 return MODE_CLOCK_LOW;
346
347 return MODE_OK;
348 }
349
350 static uint32_t
351 pack_aux(uint8_t *src, int src_bytes)
352 {
353 int i;
354 uint32_t v = 0;
355
356 if (src_bytes > 4)
357 src_bytes = 4;
358 for (i = 0; i < src_bytes; i++)
359 v |= ((uint32_t) src[i]) << ((3-i) * 8);
360 return v;
361 }
362
363 static void
364 unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
365 {
366 int i;
367 if (dst_bytes > 4)
368 dst_bytes = 4;
369 for (i = 0; i < dst_bytes; i++)
370 dst[i] = src >> ((3-i) * 8);
371 }
372
373 static int
374 cdv_intel_dp_aux_ch(struct gma_encoder *encoder,
375 uint8_t *send, int send_bytes,
376 uint8_t *recv, int recv_size)
377 {
378 struct cdv_intel_dp *intel_dp = encoder->dev_priv;
379 uint32_t output_reg = intel_dp->output_reg;
380 struct drm_device *dev = encoder->base.dev;
381 uint32_t ch_ctl = output_reg + 0x10;
382 uint32_t ch_data = ch_ctl + 4;
383 int i;
384 int recv_bytes;
385 uint32_t status;
386 uint32_t aux_clock_divider;
387 int try, precharge;
388
389 /* The clock divider is based off the hrawclk,
390 * and would like to run at 2MHz. So, take the
391 * hrawclk value and divide by 2 and use that
392 * On CDV platform it uses 200MHz as hrawclk.
393 *
394 */
395 aux_clock_divider = 200 / 2;
396
397 precharge = 4;
398 if (is_edp(encoder))
399 precharge = 10;
400
401 if (REG_READ(ch_ctl) & DP_AUX_CH_CTL_SEND_BUSY) {
402 DRM_ERROR("dp_aux_ch not started status 0x%08x\n",
403 REG_READ(ch_ctl));
404 return -EBUSY;
405 }
406
407 /* Must try at least 3 times according to DP spec */
408 for (try = 0; try < 5; try++) {
409 /* Load the send data into the aux channel data registers */
410 for (i = 0; i < send_bytes; i += 4)
411 REG_WRITE(ch_data + i,
412 pack_aux(send + i, send_bytes - i));
413
414 /* Send the command and wait for it to complete */
415 REG_WRITE(ch_ctl,
416 DP_AUX_CH_CTL_SEND_BUSY |
417 DP_AUX_CH_CTL_TIME_OUT_400us |
418 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
419 (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
420 (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
421 DP_AUX_CH_CTL_DONE |
422 DP_AUX_CH_CTL_TIME_OUT_ERROR |
423 DP_AUX_CH_CTL_RECEIVE_ERROR);
424 for (;;) {
425 status = REG_READ(ch_ctl);
426 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
427 break;
428 udelay(100);
429 }
430
431 /* Clear done status and any errors */
432 REG_WRITE(ch_ctl,
433 status |
434 DP_AUX_CH_CTL_DONE |
435 DP_AUX_CH_CTL_TIME_OUT_ERROR |
436 DP_AUX_CH_CTL_RECEIVE_ERROR);
437 if (status & DP_AUX_CH_CTL_DONE)
438 break;
439 }
440
441 if ((status & DP_AUX_CH_CTL_DONE) == 0) {
442 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
443 return -EBUSY;
444 }
445
446 /* Check for timeout or receive error.
447 * Timeouts occur when the sink is not connected
448 */
449 if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
450 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
451 return -EIO;
452 }
453
454 /* Timeouts occur when the device isn't connected, so they're
455 * "normal" -- don't fill the kernel log with these */
456 if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
457 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
458 return -ETIMEDOUT;
459 }
460
461 /* Unload any bytes sent back from the other side */
462 recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
463 DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
464 if (recv_bytes > recv_size)
465 recv_bytes = recv_size;
466
467 for (i = 0; i < recv_bytes; i += 4)
468 unpack_aux(REG_READ(ch_data + i),
469 recv + i, recv_bytes - i);
470
471 return recv_bytes;
472 }
473
474 /* Write data to the aux channel in native mode */
475 static int
476 cdv_intel_dp_aux_native_write(struct gma_encoder *encoder,
477 uint16_t address, uint8_t *send, int send_bytes)
478 {
479 int ret;
480 uint8_t msg[20];
481 int msg_bytes;
482 uint8_t ack;
483
484 if (send_bytes > 16)
485 return -1;
486 msg[0] = AUX_NATIVE_WRITE << 4;
487 msg[1] = address >> 8;
488 msg[2] = address & 0xff;
489 msg[3] = send_bytes - 1;
490 memcpy(&msg[4], send, send_bytes);
491 msg_bytes = send_bytes + 4;
492 for (;;) {
493 ret = cdv_intel_dp_aux_ch(encoder, msg, msg_bytes, &ack, 1);
494 if (ret < 0)
495 return ret;
496 if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
497 break;
498 else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
499 udelay(100);
500 else
501 return -EIO;
502 }
503 return send_bytes;
504 }
505
506 /* Write a single byte to the aux channel in native mode */
507 static int
508 cdv_intel_dp_aux_native_write_1(struct gma_encoder *encoder,
509 uint16_t address, uint8_t byte)
510 {
511 return cdv_intel_dp_aux_native_write(encoder, address, &byte, 1);
512 }
513
514 /* read bytes from a native aux channel */
515 static int
516 cdv_intel_dp_aux_native_read(struct gma_encoder *encoder,
517 uint16_t address, uint8_t *recv, int recv_bytes)
518 {
519 uint8_t msg[4];
520 int msg_bytes;
521 uint8_t reply[20];
522 int reply_bytes;
523 uint8_t ack;
524 int ret;
525
526 msg[0] = AUX_NATIVE_READ << 4;
527 msg[1] = address >> 8;
528 msg[2] = address & 0xff;
529 msg[3] = recv_bytes - 1;
530
531 msg_bytes = 4;
532 reply_bytes = recv_bytes + 1;
533
534 for (;;) {
535 ret = cdv_intel_dp_aux_ch(encoder, msg, msg_bytes,
536 reply, reply_bytes);
537 if (ret == 0)
538 return -EPROTO;
539 if (ret < 0)
540 return ret;
541 ack = reply[0];
542 if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
543 memcpy(recv, reply + 1, ret - 1);
544 return ret - 1;
545 }
546 else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
547 udelay(100);
548 else
549 return -EIO;
550 }
551 }
552
553 static int
554 cdv_intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
555 uint8_t write_byte, uint8_t *read_byte)
556 {
557 struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
558 struct cdv_intel_dp *intel_dp = container_of(adapter,
559 struct cdv_intel_dp,
560 adapter);
561 struct gma_encoder *encoder = intel_dp->encoder;
562 uint16_t address = algo_data->address;
563 uint8_t msg[5];
564 uint8_t reply[2];
565 unsigned retry;
566 int msg_bytes;
567 int reply_bytes;
568 int ret;
569
570 /* Set up the command byte */
571 if (mode & MODE_I2C_READ)
572 msg[0] = AUX_I2C_READ << 4;
573 else
574 msg[0] = AUX_I2C_WRITE << 4;
575
576 if (!(mode & MODE_I2C_STOP))
577 msg[0] |= AUX_I2C_MOT << 4;
578
579 msg[1] = address >> 8;
580 msg[2] = address;
581
582 switch (mode) {
583 case MODE_I2C_WRITE:
584 msg[3] = 0;
585 msg[4] = write_byte;
586 msg_bytes = 5;
587 reply_bytes = 1;
588 break;
589 case MODE_I2C_READ:
590 msg[3] = 0;
591 msg_bytes = 4;
592 reply_bytes = 2;
593 break;
594 default:
595 msg_bytes = 3;
596 reply_bytes = 1;
597 break;
598 }
599
600 for (retry = 0; retry < 5; retry++) {
601 ret = cdv_intel_dp_aux_ch(encoder,
602 msg, msg_bytes,
603 reply, reply_bytes);
604 if (ret < 0) {
605 DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
606 return ret;
607 }
608
609 switch (reply[0] & AUX_NATIVE_REPLY_MASK) {
610 case AUX_NATIVE_REPLY_ACK:
611 /* I2C-over-AUX Reply field is only valid
612 * when paired with AUX ACK.
613 */
614 break;
615 case AUX_NATIVE_REPLY_NACK:
616 DRM_DEBUG_KMS("aux_ch native nack\n");
617 return -EREMOTEIO;
618 case AUX_NATIVE_REPLY_DEFER:
619 udelay(100);
620 continue;
621 default:
622 DRM_ERROR("aux_ch invalid native reply 0x%02x\n",
623 reply[0]);
624 return -EREMOTEIO;
625 }
626
627 switch (reply[0] & AUX_I2C_REPLY_MASK) {
628 case AUX_I2C_REPLY_ACK:
629 if (mode == MODE_I2C_READ) {
630 *read_byte = reply[1];
631 }
632 return reply_bytes - 1;
633 case AUX_I2C_REPLY_NACK:
634 DRM_DEBUG_KMS("aux_i2c nack\n");
635 return -EREMOTEIO;
636 case AUX_I2C_REPLY_DEFER:
637 DRM_DEBUG_KMS("aux_i2c defer\n");
638 udelay(100);
639 break;
640 default:
641 DRM_ERROR("aux_i2c invalid reply 0x%02x\n", reply[0]);
642 return -EREMOTEIO;
643 }
644 }
645
646 DRM_ERROR("too many retries, giving up\n");
647 return -EREMOTEIO;
648 }
649
650 static int
651 cdv_intel_dp_i2c_init(struct gma_connector *connector,
652 struct gma_encoder *encoder, const char *name)
653 {
654 struct cdv_intel_dp *intel_dp = encoder->dev_priv;
655 int ret;
656
657 DRM_DEBUG_KMS("i2c_init %s\n", name);
658
659 intel_dp->algo.running = false;
660 intel_dp->algo.address = 0;
661 intel_dp->algo.aux_ch = cdv_intel_dp_i2c_aux_ch;
662
663 memset(&intel_dp->adapter, '\0', sizeof (intel_dp->adapter));
664 intel_dp->adapter.owner = THIS_MODULE;
665 intel_dp->adapter.class = I2C_CLASS_DDC;
666 strncpy (intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1);
667 intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0';
668 intel_dp->adapter.algo_data = &intel_dp->algo;
669 intel_dp->adapter.dev.parent = connector->base.kdev;
670
671 if (is_edp(encoder))
672 cdv_intel_edp_panel_vdd_on(encoder);
673 ret = i2c_dp_aux_add_bus(&intel_dp->adapter);
674 if (is_edp(encoder))
675 cdv_intel_edp_panel_vdd_off(encoder);
676
677 return ret;
678 }
679
680 void cdv_intel_fixed_panel_mode(struct drm_display_mode *fixed_mode,
681 struct drm_display_mode *adjusted_mode)
682 {
683 adjusted_mode->hdisplay = fixed_mode->hdisplay;
684 adjusted_mode->hsync_start = fixed_mode->hsync_start;
685 adjusted_mode->hsync_end = fixed_mode->hsync_end;
686 adjusted_mode->htotal = fixed_mode->htotal;
687
688 adjusted_mode->vdisplay = fixed_mode->vdisplay;
689 adjusted_mode->vsync_start = fixed_mode->vsync_start;
690 adjusted_mode->vsync_end = fixed_mode->vsync_end;
691 adjusted_mode->vtotal = fixed_mode->vtotal;
692
693 adjusted_mode->clock = fixed_mode->clock;
694
695 drm_mode_set_crtcinfo(adjusted_mode, CRTC_INTERLACE_HALVE_V);
696 }
697
698 static bool
699 cdv_intel_dp_mode_fixup(struct drm_encoder *encoder, const struct drm_display_mode *mode,
700 struct drm_display_mode *adjusted_mode)
701 {
702 struct drm_psb_private *dev_priv = encoder->dev->dev_private;
703 struct gma_encoder *intel_encoder = to_gma_encoder(encoder);
704 struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
705 int lane_count, clock;
706 int max_lane_count = cdv_intel_dp_max_lane_count(intel_encoder);
707 int max_clock = cdv_intel_dp_max_link_bw(intel_encoder) == DP_LINK_BW_2_7 ? 1 : 0;
708 static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
709 int refclock = mode->clock;
710 int bpp = 24;
711
712 if (is_edp(intel_encoder) && intel_dp->panel_fixed_mode) {
713 cdv_intel_fixed_panel_mode(intel_dp->panel_fixed_mode, adjusted_mode);
714 refclock = intel_dp->panel_fixed_mode->clock;
715 bpp = dev_priv->edp.bpp;
716 }
717
718 for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
719 for (clock = max_clock; clock >= 0; clock--) {
720 int link_avail = cdv_intel_dp_max_data_rate(cdv_intel_dp_link_clock(bws[clock]), lane_count);
721
722 if (cdv_intel_dp_link_required(refclock, bpp) <= link_avail) {
723 intel_dp->link_bw = bws[clock];
724 intel_dp->lane_count = lane_count;
725 adjusted_mode->clock = cdv_intel_dp_link_clock(intel_dp->link_bw);
726 DRM_DEBUG_KMS("Display port link bw %02x lane "
727 "count %d clock %d\n",
728 intel_dp->link_bw, intel_dp->lane_count,
729 adjusted_mode->clock);
730 return true;
731 }
732 }
733 }
734 if (is_edp(intel_encoder)) {
735 /* okay we failed just pick the highest */
736 intel_dp->lane_count = max_lane_count;
737 intel_dp->link_bw = bws[max_clock];
738 adjusted_mode->clock = cdv_intel_dp_link_clock(intel_dp->link_bw);
739 DRM_DEBUG_KMS("Force picking display port link bw %02x lane "
740 "count %d clock %d\n",
741 intel_dp->link_bw, intel_dp->lane_count,
742 adjusted_mode->clock);
743
744 return true;
745 }
746 return false;
747 }
748
749 struct cdv_intel_dp_m_n {
750 uint32_t tu;
751 uint32_t gmch_m;
752 uint32_t gmch_n;
753 uint32_t link_m;
754 uint32_t link_n;
755 };
756
757 static void
758 cdv_intel_reduce_ratio(uint32_t *num, uint32_t *den)
759 {
760 /*
761 while (*num > 0xffffff || *den > 0xffffff) {
762 *num >>= 1;
763 *den >>= 1;
764 }*/
765 uint64_t value, m;
766 m = *num;
767 value = m * (0x800000);
768 m = do_div(value, *den);
769 *num = value;
770 *den = 0x800000;
771 }
772
773 static void
774 cdv_intel_dp_compute_m_n(int bpp,
775 int nlanes,
776 int pixel_clock,
777 int link_clock,
778 struct cdv_intel_dp_m_n *m_n)
779 {
780 m_n->tu = 64;
781 m_n->gmch_m = (pixel_clock * bpp + 7) >> 3;
782 m_n->gmch_n = link_clock * nlanes;
783 cdv_intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
784 m_n->link_m = pixel_clock;
785 m_n->link_n = link_clock;
786 cdv_intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
787 }
788
789 void
790 cdv_intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode,
791 struct drm_display_mode *adjusted_mode)
792 {
793 struct drm_device *dev = crtc->dev;
794 struct drm_psb_private *dev_priv = dev->dev_private;
795 struct drm_mode_config *mode_config = &dev->mode_config;
796 struct drm_encoder *encoder;
797 struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
798 int lane_count = 4, bpp = 24;
799 struct cdv_intel_dp_m_n m_n;
800 int pipe = gma_crtc->pipe;
801
802 /*
803 * Find the lane count in the intel_encoder private
804 */
805 list_for_each_entry(encoder, &mode_config->encoder_list, head) {
806 struct gma_encoder *intel_encoder;
807 struct cdv_intel_dp *intel_dp;
808
809 if (encoder->crtc != crtc)
810 continue;
811
812 intel_encoder = to_gma_encoder(encoder);
813 intel_dp = intel_encoder->dev_priv;
814 if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT) {
815 lane_count = intel_dp->lane_count;
816 break;
817 } else if (is_edp(intel_encoder)) {
818 lane_count = intel_dp->lane_count;
819 bpp = dev_priv->edp.bpp;
820 break;
821 }
822 }
823
824 /*
825 * Compute the GMCH and Link ratios. The '3' here is
826 * the number of bytes_per_pixel post-LUT, which we always
827 * set up for 8-bits of R/G/B, or 3 bytes total.
828 */
829 cdv_intel_dp_compute_m_n(bpp, lane_count,
830 mode->clock, adjusted_mode->clock, &m_n);
831
832 {
833 REG_WRITE(PIPE_GMCH_DATA_M(pipe),
834 ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
835 m_n.gmch_m);
836 REG_WRITE(PIPE_GMCH_DATA_N(pipe), m_n.gmch_n);
837 REG_WRITE(PIPE_DP_LINK_M(pipe), m_n.link_m);
838 REG_WRITE(PIPE_DP_LINK_N(pipe), m_n.link_n);
839 }
840 }
841
842 static void
843 cdv_intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
844 struct drm_display_mode *adjusted_mode)
845 {
846 struct gma_encoder *intel_encoder = to_gma_encoder(encoder);
847 struct drm_crtc *crtc = encoder->crtc;
848 struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
849 struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
850 struct drm_device *dev = encoder->dev;
851
852 intel_dp->DP = DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
853 intel_dp->DP |= intel_dp->color_range;
854
855 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
856 intel_dp->DP |= DP_SYNC_HS_HIGH;
857 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
858 intel_dp->DP |= DP_SYNC_VS_HIGH;
859
860 intel_dp->DP |= DP_LINK_TRAIN_OFF;
861
862 switch (intel_dp->lane_count) {
863 case 1:
864 intel_dp->DP |= DP_PORT_WIDTH_1;
865 break;
866 case 2:
867 intel_dp->DP |= DP_PORT_WIDTH_2;
868 break;
869 case 4:
870 intel_dp->DP |= DP_PORT_WIDTH_4;
871 break;
872 }
873 if (intel_dp->has_audio)
874 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
875
876 memset(intel_dp->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
877 intel_dp->link_configuration[0] = intel_dp->link_bw;
878 intel_dp->link_configuration[1] = intel_dp->lane_count;
879
880 /*
881 * Check for DPCD version > 1.1 and enhanced framing support
882 */
883 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
884 (intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_ENHANCED_FRAME_CAP)) {
885 intel_dp->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
886 intel_dp->DP |= DP_ENHANCED_FRAMING;
887 }
888
889 /* CPT DP's pipe select is decided in TRANS_DP_CTL */
890 if (gma_crtc->pipe == 1)
891 intel_dp->DP |= DP_PIPEB_SELECT;
892
893 REG_WRITE(intel_dp->output_reg, (intel_dp->DP | DP_PORT_EN));
894 DRM_DEBUG_KMS("DP expected reg is %x\n", intel_dp->DP);
895 if (is_edp(intel_encoder)) {
896 uint32_t pfit_control;
897 cdv_intel_edp_panel_on(intel_encoder);
898
899 if (mode->hdisplay != adjusted_mode->hdisplay ||
900 mode->vdisplay != adjusted_mode->vdisplay)
901 pfit_control = PFIT_ENABLE;
902 else
903 pfit_control = 0;
904
905 pfit_control |= gma_crtc->pipe << PFIT_PIPE_SHIFT;
906
907 REG_WRITE(PFIT_CONTROL, pfit_control);
908 }
909 }
910
911
912 /* If the sink supports it, try to set the power state appropriately */
913 static void cdv_intel_dp_sink_dpms(struct gma_encoder *encoder, int mode)
914 {
915 struct cdv_intel_dp *intel_dp = encoder->dev_priv;
916 int ret, i;
917
918 /* Should have a valid DPCD by this point */
919 if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
920 return;
921
922 if (mode != DRM_MODE_DPMS_ON) {
923 ret = cdv_intel_dp_aux_native_write_1(encoder, DP_SET_POWER,
924 DP_SET_POWER_D3);
925 if (ret != 1)
926 DRM_DEBUG_DRIVER("failed to write sink power state\n");
927 } else {
928 /*
929 * When turning on, we need to retry for 1ms to give the sink
930 * time to wake up.
931 */
932 for (i = 0; i < 3; i++) {
933 ret = cdv_intel_dp_aux_native_write_1(encoder,
934 DP_SET_POWER,
935 DP_SET_POWER_D0);
936 if (ret == 1)
937 break;
938 udelay(1000);
939 }
940 }
941 }
942
943 static void cdv_intel_dp_prepare(struct drm_encoder *encoder)
944 {
945 struct gma_encoder *intel_encoder = to_gma_encoder(encoder);
946 int edp = is_edp(intel_encoder);
947
948 if (edp) {
949 cdv_intel_edp_backlight_off(intel_encoder);
950 cdv_intel_edp_panel_off(intel_encoder);
951 cdv_intel_edp_panel_vdd_on(intel_encoder);
952 }
953 /* Wake up the sink first */
954 cdv_intel_dp_sink_dpms(intel_encoder, DRM_MODE_DPMS_ON);
955 cdv_intel_dp_link_down(intel_encoder);
956 if (edp)
957 cdv_intel_edp_panel_vdd_off(intel_encoder);
958 }
959
960 static void cdv_intel_dp_commit(struct drm_encoder *encoder)
961 {
962 struct gma_encoder *intel_encoder = to_gma_encoder(encoder);
963 int edp = is_edp(intel_encoder);
964
965 if (edp)
966 cdv_intel_edp_panel_on(intel_encoder);
967 cdv_intel_dp_start_link_train(intel_encoder);
968 cdv_intel_dp_complete_link_train(intel_encoder);
969 if (edp)
970 cdv_intel_edp_backlight_on(intel_encoder);
971 }
972
973 static void
974 cdv_intel_dp_dpms(struct drm_encoder *encoder, int mode)
975 {
976 struct gma_encoder *intel_encoder = to_gma_encoder(encoder);
977 struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
978 struct drm_device *dev = encoder->dev;
979 uint32_t dp_reg = REG_READ(intel_dp->output_reg);
980 int edp = is_edp(intel_encoder);
981
982 if (mode != DRM_MODE_DPMS_ON) {
983 if (edp) {
984 cdv_intel_edp_backlight_off(intel_encoder);
985 cdv_intel_edp_panel_vdd_on(intel_encoder);
986 }
987 cdv_intel_dp_sink_dpms(intel_encoder, mode);
988 cdv_intel_dp_link_down(intel_encoder);
989 if (edp) {
990 cdv_intel_edp_panel_vdd_off(intel_encoder);
991 cdv_intel_edp_panel_off(intel_encoder);
992 }
993 } else {
994 if (edp)
995 cdv_intel_edp_panel_on(intel_encoder);
996 cdv_intel_dp_sink_dpms(intel_encoder, mode);
997 if (!(dp_reg & DP_PORT_EN)) {
998 cdv_intel_dp_start_link_train(intel_encoder);
999 cdv_intel_dp_complete_link_train(intel_encoder);
1000 }
1001 if (edp)
1002 cdv_intel_edp_backlight_on(intel_encoder);
1003 }
1004 }
1005
1006 /*
1007 * Native read with retry for link status and receiver capability reads for
1008 * cases where the sink may still be asleep.
1009 */
1010 static bool
1011 cdv_intel_dp_aux_native_read_retry(struct gma_encoder *encoder, uint16_t address,
1012 uint8_t *recv, int recv_bytes)
1013 {
1014 int ret, i;
1015
1016 /*
1017 * Sinks are *supposed* to come up within 1ms from an off state,
1018 * but we're also supposed to retry 3 times per the spec.
1019 */
1020 for (i = 0; i < 3; i++) {
1021 ret = cdv_intel_dp_aux_native_read(encoder, address, recv,
1022 recv_bytes);
1023 if (ret == recv_bytes)
1024 return true;
1025 udelay(1000);
1026 }
1027
1028 return false;
1029 }
1030
1031 /*
1032 * Fetch AUX CH registers 0x202 - 0x207 which contain
1033 * link status information
1034 */
1035 static bool
1036 cdv_intel_dp_get_link_status(struct gma_encoder *encoder)
1037 {
1038 struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1039 return cdv_intel_dp_aux_native_read_retry(encoder,
1040 DP_LANE0_1_STATUS,
1041 intel_dp->link_status,
1042 DP_LINK_STATUS_SIZE);
1043 }
1044
1045 static uint8_t
1046 cdv_intel_dp_link_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
1047 int r)
1048 {
1049 return link_status[r - DP_LANE0_1_STATUS];
1050 }
1051
1052 static uint8_t
1053 cdv_intel_get_adjust_request_voltage(uint8_t link_status[DP_LINK_STATUS_SIZE],
1054 int lane)
1055 {
1056 int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
1057 int s = ((lane & 1) ?
1058 DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
1059 DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
1060 uint8_t l = cdv_intel_dp_link_status(link_status, i);
1061
1062 return ((l >> s) & 3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
1063 }
1064
1065 static uint8_t
1066 cdv_intel_get_adjust_request_pre_emphasis(uint8_t link_status[DP_LINK_STATUS_SIZE],
1067 int lane)
1068 {
1069 int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
1070 int s = ((lane & 1) ?
1071 DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
1072 DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
1073 uint8_t l = cdv_intel_dp_link_status(link_status, i);
1074
1075 return ((l >> s) & 3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
1076 }
1077
1078
1079 #if 0
1080 static char *voltage_names[] = {
1081 "0.4V", "0.6V", "0.8V", "1.2V"
1082 };
1083 static char *pre_emph_names[] = {
1084 "0dB", "3.5dB", "6dB", "9.5dB"
1085 };
1086 static char *link_train_names[] = {
1087 "pattern 1", "pattern 2", "idle", "off"
1088 };
1089 #endif
1090
1091 #define CDV_DP_VOLTAGE_MAX DP_TRAIN_VOLTAGE_SWING_1200
1092 /*
1093 static uint8_t
1094 cdv_intel_dp_pre_emphasis_max(uint8_t voltage_swing)
1095 {
1096 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1097 case DP_TRAIN_VOLTAGE_SWING_400:
1098 return DP_TRAIN_PRE_EMPHASIS_6;
1099 case DP_TRAIN_VOLTAGE_SWING_600:
1100 return DP_TRAIN_PRE_EMPHASIS_6;
1101 case DP_TRAIN_VOLTAGE_SWING_800:
1102 return DP_TRAIN_PRE_EMPHASIS_3_5;
1103 case DP_TRAIN_VOLTAGE_SWING_1200:
1104 default:
1105 return DP_TRAIN_PRE_EMPHASIS_0;
1106 }
1107 }
1108 */
1109 static void
1110 cdv_intel_get_adjust_train(struct gma_encoder *encoder)
1111 {
1112 struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1113 uint8_t v = 0;
1114 uint8_t p = 0;
1115 int lane;
1116
1117 for (lane = 0; lane < intel_dp->lane_count; lane++) {
1118 uint8_t this_v = cdv_intel_get_adjust_request_voltage(intel_dp->link_status, lane);
1119 uint8_t this_p = cdv_intel_get_adjust_request_pre_emphasis(intel_dp->link_status, lane);
1120
1121 if (this_v > v)
1122 v = this_v;
1123 if (this_p > p)
1124 p = this_p;
1125 }
1126
1127 if (v >= CDV_DP_VOLTAGE_MAX)
1128 v = CDV_DP_VOLTAGE_MAX | DP_TRAIN_MAX_SWING_REACHED;
1129
1130 if (p == DP_TRAIN_PRE_EMPHASIS_MASK)
1131 p |= DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
1132
1133 for (lane = 0; lane < 4; lane++)
1134 intel_dp->train_set[lane] = v | p;
1135 }
1136
1137
1138 static uint8_t
1139 cdv_intel_get_lane_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
1140 int lane)
1141 {
1142 int i = DP_LANE0_1_STATUS + (lane >> 1);
1143 int s = (lane & 1) * 4;
1144 uint8_t l = cdv_intel_dp_link_status(link_status, i);
1145
1146 return (l >> s) & 0xf;
1147 }
1148
1149 /* Check for clock recovery is done on all channels */
1150 static bool
1151 cdv_intel_clock_recovery_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
1152 {
1153 int lane;
1154 uint8_t lane_status;
1155
1156 for (lane = 0; lane < lane_count; lane++) {
1157 lane_status = cdv_intel_get_lane_status(link_status, lane);
1158 if ((lane_status & DP_LANE_CR_DONE) == 0)
1159 return false;
1160 }
1161 return true;
1162 }
1163
1164 /* Check to see if channel eq is done on all channels */
1165 #define CHANNEL_EQ_BITS (DP_LANE_CR_DONE|\
1166 DP_LANE_CHANNEL_EQ_DONE|\
1167 DP_LANE_SYMBOL_LOCKED)
1168 static bool
1169 cdv_intel_channel_eq_ok(struct gma_encoder *encoder)
1170 {
1171 struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1172 uint8_t lane_align;
1173 uint8_t lane_status;
1174 int lane;
1175
1176 lane_align = cdv_intel_dp_link_status(intel_dp->link_status,
1177 DP_LANE_ALIGN_STATUS_UPDATED);
1178 if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
1179 return false;
1180 for (lane = 0; lane < intel_dp->lane_count; lane++) {
1181 lane_status = cdv_intel_get_lane_status(intel_dp->link_status, lane);
1182 if ((lane_status & CHANNEL_EQ_BITS) != CHANNEL_EQ_BITS)
1183 return false;
1184 }
1185 return true;
1186 }
1187
1188 static bool
1189 cdv_intel_dp_set_link_train(struct gma_encoder *encoder,
1190 uint32_t dp_reg_value,
1191 uint8_t dp_train_pat)
1192 {
1193
1194 struct drm_device *dev = encoder->base.dev;
1195 int ret;
1196 struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1197
1198 REG_WRITE(intel_dp->output_reg, dp_reg_value);
1199 REG_READ(intel_dp->output_reg);
1200
1201 ret = cdv_intel_dp_aux_native_write_1(encoder,
1202 DP_TRAINING_PATTERN_SET,
1203 dp_train_pat);
1204
1205 if (ret != 1) {
1206 DRM_DEBUG_KMS("Failure in setting link pattern %x\n",
1207 dp_train_pat);
1208 return false;
1209 }
1210
1211 return true;
1212 }
1213
1214
1215 static bool
1216 cdv_intel_dplink_set_level(struct gma_encoder *encoder,
1217 uint8_t dp_train_pat)
1218 {
1219
1220 int ret;
1221 struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1222
1223 ret = cdv_intel_dp_aux_native_write(encoder,
1224 DP_TRAINING_LANE0_SET,
1225 intel_dp->train_set,
1226 intel_dp->lane_count);
1227
1228 if (ret != intel_dp->lane_count) {
1229 DRM_DEBUG_KMS("Failure in setting level %d, lane_cnt= %d\n",
1230 intel_dp->train_set[0], intel_dp->lane_count);
1231 return false;
1232 }
1233 return true;
1234 }
1235
1236 static void
1237 cdv_intel_dp_set_vswing_premph(struct gma_encoder *encoder, uint8_t signal_level)
1238 {
1239 struct drm_device *dev = encoder->base.dev;
1240 struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1241 struct ddi_regoff *ddi_reg;
1242 int vswing, premph, index;
1243
1244 if (intel_dp->output_reg == DP_B)
1245 ddi_reg = &ddi_DP_train_table[0];
1246 else
1247 ddi_reg = &ddi_DP_train_table[1];
1248
1249 vswing = (signal_level & DP_TRAIN_VOLTAGE_SWING_MASK);
1250 premph = ((signal_level & DP_TRAIN_PRE_EMPHASIS_MASK)) >>
1251 DP_TRAIN_PRE_EMPHASIS_SHIFT;
1252
1253 if (vswing + premph > 3)
1254 return;
1255 #ifdef CDV_FAST_LINK_TRAIN
1256 return;
1257 #endif
1258 DRM_DEBUG_KMS("Test2\n");
1259 //return ;
1260 cdv_sb_reset(dev);
1261 /* ;Swing voltage programming
1262 ;gfx_dpio_set_reg(0xc058, 0x0505313A) */
1263 cdv_sb_write(dev, ddi_reg->VSwing5, 0x0505313A);
1264
1265 /* ;gfx_dpio_set_reg(0x8154, 0x43406055) */
1266 cdv_sb_write(dev, ddi_reg->VSwing1, 0x43406055);
1267
1268 /* ;gfx_dpio_set_reg(0x8148, 0x55338954)
1269 * The VSwing_PreEmph table is also considered based on the vswing/premp
1270 */
1271 index = (vswing + premph) * 2;
1272 if (premph == 1 && vswing == 1) {
1273 cdv_sb_write(dev, ddi_reg->VSwing2, 0x055738954);
1274 } else
1275 cdv_sb_write(dev, ddi_reg->VSwing2, dp_vswing_premph_table[index]);
1276
1277 /* ;gfx_dpio_set_reg(0x814c, 0x40802040) */
1278 if ((vswing + premph) == DP_TRAIN_VOLTAGE_SWING_1200)
1279 cdv_sb_write(dev, ddi_reg->VSwing3, 0x70802040);
1280 else
1281 cdv_sb_write(dev, ddi_reg->VSwing3, 0x40802040);
1282
1283 /* ;gfx_dpio_set_reg(0x8150, 0x2b405555) */
1284 /* cdv_sb_write(dev, ddi_reg->VSwing4, 0x2b405555); */
1285
1286 /* ;gfx_dpio_set_reg(0x8154, 0xc3406055) */
1287 cdv_sb_write(dev, ddi_reg->VSwing1, 0xc3406055);
1288
1289 /* ;Pre emphasis programming
1290 * ;gfx_dpio_set_reg(0xc02c, 0x1f030040)
1291 */
1292 cdv_sb_write(dev, ddi_reg->PreEmph1, 0x1f030040);
1293
1294 /* ;gfx_dpio_set_reg(0x8124, 0x00004000) */
1295 index = 2 * premph + 1;
1296 cdv_sb_write(dev, ddi_reg->PreEmph2, dp_vswing_premph_table[index]);
1297 return;
1298 }
1299
1300
1301 /* Enable corresponding port and start training pattern 1 */
1302 static void
1303 cdv_intel_dp_start_link_train(struct gma_encoder *encoder)
1304 {
1305 struct drm_device *dev = encoder->base.dev;
1306 struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1307 int i;
1308 uint8_t voltage;
1309 bool clock_recovery = false;
1310 int tries;
1311 u32 reg;
1312 uint32_t DP = intel_dp->DP;
1313
1314 DP |= DP_PORT_EN;
1315 DP &= ~DP_LINK_TRAIN_MASK;
1316
1317 reg = DP;
1318 reg |= DP_LINK_TRAIN_PAT_1;
1319 /* Enable output, wait for it to become active */
1320 REG_WRITE(intel_dp->output_reg, reg);
1321 REG_READ(intel_dp->output_reg);
1322 gma_wait_for_vblank(dev);
1323
1324 DRM_DEBUG_KMS("Link config\n");
1325 /* Write the link configuration data */
1326 cdv_intel_dp_aux_native_write(encoder, DP_LINK_BW_SET,
1327 intel_dp->link_configuration,
1328 2);
1329
1330 memset(intel_dp->train_set, 0, 4);
1331 voltage = 0;
1332 tries = 0;
1333 clock_recovery = false;
1334
1335 DRM_DEBUG_KMS("Start train\n");
1336 reg = DP | DP_LINK_TRAIN_PAT_1;
1337
1338
1339 for (;;) {
1340 /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1341 DRM_DEBUG_KMS("DP Link Train Set %x, Link_config %x, %x\n",
1342 intel_dp->train_set[0],
1343 intel_dp->link_configuration[0],
1344 intel_dp->link_configuration[1]);
1345
1346 if (!cdv_intel_dp_set_link_train(encoder, reg, DP_TRAINING_PATTERN_1)) {
1347 DRM_DEBUG_KMS("Failure in aux-transfer setting pattern 1\n");
1348 }
1349 cdv_intel_dp_set_vswing_premph(encoder, intel_dp->train_set[0]);
1350 /* Set training pattern 1 */
1351
1352 cdv_intel_dplink_set_level(encoder, DP_TRAINING_PATTERN_1);
1353
1354 udelay(200);
1355 if (!cdv_intel_dp_get_link_status(encoder))
1356 break;
1357
1358 DRM_DEBUG_KMS("DP Link status %x, %x, %x, %x, %x, %x\n",
1359 intel_dp->link_status[0], intel_dp->link_status[1], intel_dp->link_status[2],
1360 intel_dp->link_status[3], intel_dp->link_status[4], intel_dp->link_status[5]);
1361
1362 if (cdv_intel_clock_recovery_ok(intel_dp->link_status, intel_dp->lane_count)) {
1363 DRM_DEBUG_KMS("PT1 train is done\n");
1364 clock_recovery = true;
1365 break;
1366 }
1367
1368 /* Check to see if we've tried the max voltage */
1369 for (i = 0; i < intel_dp->lane_count; i++)
1370 if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
1371 break;
1372 if (i == intel_dp->lane_count)
1373 break;
1374
1375 /* Check to see if we've tried the same voltage 5 times */
1376 if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
1377 ++tries;
1378 if (tries == 5)
1379 break;
1380 } else
1381 tries = 0;
1382 voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
1383
1384 /* Compute new intel_dp->train_set as requested by target */
1385 cdv_intel_get_adjust_train(encoder);
1386
1387 }
1388
1389 if (!clock_recovery) {
1390 DRM_DEBUG_KMS("failure in DP patter 1 training, train set %x\n", intel_dp->train_set[0]);
1391 }
1392
1393 intel_dp->DP = DP;
1394 }
1395
1396 static void
1397 cdv_intel_dp_complete_link_train(struct gma_encoder *encoder)
1398 {
1399 struct drm_device *dev = encoder->base.dev;
1400 struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1401 bool channel_eq = false;
1402 int tries, cr_tries;
1403 u32 reg;
1404 uint32_t DP = intel_dp->DP;
1405
1406 /* channel equalization */
1407 tries = 0;
1408 cr_tries = 0;
1409 channel_eq = false;
1410
1411 DRM_DEBUG_KMS("\n");
1412 reg = DP | DP_LINK_TRAIN_PAT_2;
1413
1414 for (;;) {
1415
1416 DRM_DEBUG_KMS("DP Link Train Set %x, Link_config %x, %x\n",
1417 intel_dp->train_set[0],
1418 intel_dp->link_configuration[0],
1419 intel_dp->link_configuration[1]);
1420 /* channel eq pattern */
1421
1422 if (!cdv_intel_dp_set_link_train(encoder, reg,
1423 DP_TRAINING_PATTERN_2)) {
1424 DRM_DEBUG_KMS("Failure in aux-transfer setting pattern 2\n");
1425 }
1426 /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1427
1428 if (cr_tries > 5) {
1429 DRM_ERROR("failed to train DP, aborting\n");
1430 cdv_intel_dp_link_down(encoder);
1431 break;
1432 }
1433
1434 cdv_intel_dp_set_vswing_premph(encoder, intel_dp->train_set[0]);
1435
1436 cdv_intel_dplink_set_level(encoder, DP_TRAINING_PATTERN_2);
1437
1438 udelay(1000);
1439 if (!cdv_intel_dp_get_link_status(encoder))
1440 break;
1441
1442 DRM_DEBUG_KMS("DP Link status %x, %x, %x, %x, %x, %x\n",
1443 intel_dp->link_status[0], intel_dp->link_status[1], intel_dp->link_status[2],
1444 intel_dp->link_status[3], intel_dp->link_status[4], intel_dp->link_status[5]);
1445
1446 /* Make sure clock is still ok */
1447 if (!cdv_intel_clock_recovery_ok(intel_dp->link_status, intel_dp->lane_count)) {
1448 cdv_intel_dp_start_link_train(encoder);
1449 cr_tries++;
1450 continue;
1451 }
1452
1453 if (cdv_intel_channel_eq_ok(encoder)) {
1454 DRM_DEBUG_KMS("PT2 train is done\n");
1455 channel_eq = true;
1456 break;
1457 }
1458
1459 /* Try 5 times, then try clock recovery if that fails */
1460 if (tries > 5) {
1461 cdv_intel_dp_link_down(encoder);
1462 cdv_intel_dp_start_link_train(encoder);
1463 tries = 0;
1464 cr_tries++;
1465 continue;
1466 }
1467
1468 /* Compute new intel_dp->train_set as requested by target */
1469 cdv_intel_get_adjust_train(encoder);
1470 ++tries;
1471
1472 }
1473
1474 reg = DP | DP_LINK_TRAIN_OFF;
1475
1476 REG_WRITE(intel_dp->output_reg, reg);
1477 REG_READ(intel_dp->output_reg);
1478 cdv_intel_dp_aux_native_write_1(encoder,
1479 DP_TRAINING_PATTERN_SET, DP_TRAINING_PATTERN_DISABLE);
1480 }
1481
1482 static void
1483 cdv_intel_dp_link_down(struct gma_encoder *encoder)
1484 {
1485 struct drm_device *dev = encoder->base.dev;
1486 struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1487 uint32_t DP = intel_dp->DP;
1488
1489 if ((REG_READ(intel_dp->output_reg) & DP_PORT_EN) == 0)
1490 return;
1491
1492 DRM_DEBUG_KMS("\n");
1493
1494
1495 {
1496 DP &= ~DP_LINK_TRAIN_MASK;
1497 REG_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
1498 }
1499 REG_READ(intel_dp->output_reg);
1500
1501 msleep(17);
1502
1503 REG_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
1504 REG_READ(intel_dp->output_reg);
1505 }
1506
1507 static enum drm_connector_status cdv_dp_detect(struct gma_encoder *encoder)
1508 {
1509 struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1510 enum drm_connector_status status;
1511
1512 status = connector_status_disconnected;
1513 if (cdv_intel_dp_aux_native_read(encoder, 0x000, intel_dp->dpcd,
1514 sizeof (intel_dp->dpcd)) == sizeof (intel_dp->dpcd))
1515 {
1516 if (intel_dp->dpcd[DP_DPCD_REV] != 0)
1517 status = connector_status_connected;
1518 }
1519 if (status == connector_status_connected)
1520 DRM_DEBUG_KMS("DPCD: Rev=%x LN_Rate=%x LN_CNT=%x LN_DOWNSP=%x\n",
1521 intel_dp->dpcd[0], intel_dp->dpcd[1],
1522 intel_dp->dpcd[2], intel_dp->dpcd[3]);
1523 return status;
1524 }
1525
1526 /**
1527 * Uses CRT_HOTPLUG_EN and CRT_HOTPLUG_STAT to detect DP connection.
1528 *
1529 * \return true if DP port is connected.
1530 * \return false if DP port is disconnected.
1531 */
1532 static enum drm_connector_status
1533 cdv_intel_dp_detect(struct drm_connector *connector, bool force)
1534 {
1535 struct gma_encoder *encoder = gma_attached_encoder(connector);
1536 struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1537 enum drm_connector_status status;
1538 struct edid *edid = NULL;
1539 int edp = is_edp(encoder);
1540
1541 intel_dp->has_audio = false;
1542
1543 if (edp)
1544 cdv_intel_edp_panel_vdd_on(encoder);
1545 status = cdv_dp_detect(encoder);
1546 if (status != connector_status_connected) {
1547 if (edp)
1548 cdv_intel_edp_panel_vdd_off(encoder);
1549 return status;
1550 }
1551
1552 if (intel_dp->force_audio) {
1553 intel_dp->has_audio = intel_dp->force_audio > 0;
1554 } else {
1555 edid = drm_get_edid(connector, &intel_dp->adapter);
1556 if (edid) {
1557 intel_dp->has_audio = drm_detect_monitor_audio(edid);
1558 kfree(edid);
1559 }
1560 }
1561 if (edp)
1562 cdv_intel_edp_panel_vdd_off(encoder);
1563
1564 return connector_status_connected;
1565 }
1566
1567 static int cdv_intel_dp_get_modes(struct drm_connector *connector)
1568 {
1569 struct gma_encoder *intel_encoder = gma_attached_encoder(connector);
1570 struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
1571 struct edid *edid = NULL;
1572 int ret = 0;
1573 int edp = is_edp(intel_encoder);
1574
1575
1576 edid = drm_get_edid(connector, &intel_dp->adapter);
1577 if (edid) {
1578 drm_mode_connector_update_edid_property(connector, edid);
1579 ret = drm_add_edid_modes(connector, edid);
1580 kfree(edid);
1581 }
1582
1583 if (is_edp(intel_encoder)) {
1584 struct drm_device *dev = connector->dev;
1585 struct drm_psb_private *dev_priv = dev->dev_private;
1586
1587 cdv_intel_edp_panel_vdd_off(intel_encoder);
1588 if (ret) {
1589 if (edp && !intel_dp->panel_fixed_mode) {
1590 struct drm_display_mode *newmode;
1591 list_for_each_entry(newmode, &connector->probed_modes,
1592 head) {
1593 if (newmode->type & DRM_MODE_TYPE_PREFERRED) {
1594 intel_dp->panel_fixed_mode =
1595 drm_mode_duplicate(dev, newmode);
1596 break;
1597 }
1598 }
1599 }
1600
1601 return ret;
1602 }
1603 if (!intel_dp->panel_fixed_mode && dev_priv->lfp_lvds_vbt_mode) {
1604 intel_dp->panel_fixed_mode =
1605 drm_mode_duplicate(dev, dev_priv->lfp_lvds_vbt_mode);
1606 if (intel_dp->panel_fixed_mode) {
1607 intel_dp->panel_fixed_mode->type |=
1608 DRM_MODE_TYPE_PREFERRED;
1609 }
1610 }
1611 if (intel_dp->panel_fixed_mode != NULL) {
1612 struct drm_display_mode *mode;
1613 mode = drm_mode_duplicate(dev, intel_dp->panel_fixed_mode);
1614 drm_mode_probed_add(connector, mode);
1615 return 1;
1616 }
1617 }
1618
1619 return ret;
1620 }
1621
1622 static bool
1623 cdv_intel_dp_detect_audio(struct drm_connector *connector)
1624 {
1625 struct gma_encoder *encoder = gma_attached_encoder(connector);
1626 struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1627 struct edid *edid;
1628 bool has_audio = false;
1629 int edp = is_edp(encoder);
1630
1631 if (edp)
1632 cdv_intel_edp_panel_vdd_on(encoder);
1633
1634 edid = drm_get_edid(connector, &intel_dp->adapter);
1635 if (edid) {
1636 has_audio = drm_detect_monitor_audio(edid);
1637 kfree(edid);
1638 }
1639 if (edp)
1640 cdv_intel_edp_panel_vdd_off(encoder);
1641
1642 return has_audio;
1643 }
1644
1645 static int
1646 cdv_intel_dp_set_property(struct drm_connector *connector,
1647 struct drm_property *property,
1648 uint64_t val)
1649 {
1650 struct drm_psb_private *dev_priv = connector->dev->dev_private;
1651 struct gma_encoder *encoder = gma_attached_encoder(connector);
1652 struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1653 int ret;
1654
1655 ret = drm_object_property_set_value(&connector->base, property, val);
1656 if (ret)
1657 return ret;
1658
1659 if (property == dev_priv->force_audio_property) {
1660 int i = val;
1661 bool has_audio;
1662
1663 if (i == intel_dp->force_audio)
1664 return 0;
1665
1666 intel_dp->force_audio = i;
1667
1668 if (i == 0)
1669 has_audio = cdv_intel_dp_detect_audio(connector);
1670 else
1671 has_audio = i > 0;
1672
1673 if (has_audio == intel_dp->has_audio)
1674 return 0;
1675
1676 intel_dp->has_audio = has_audio;
1677 goto done;
1678 }
1679
1680 if (property == dev_priv->broadcast_rgb_property) {
1681 if (val == !!intel_dp->color_range)
1682 return 0;
1683
1684 intel_dp->color_range = val ? DP_COLOR_RANGE_16_235 : 0;
1685 goto done;
1686 }
1687
1688 return -EINVAL;
1689
1690 done:
1691 if (encoder->base.crtc) {
1692 struct drm_crtc *crtc = encoder->base.crtc;
1693 drm_crtc_helper_set_mode(crtc, &crtc->mode,
1694 crtc->x, crtc->y,
1695 crtc->fb);
1696 }
1697
1698 return 0;
1699 }
1700
1701 static void
1702 cdv_intel_dp_destroy(struct drm_connector *connector)
1703 {
1704 struct gma_encoder *gma_encoder = gma_attached_encoder(connector);
1705 struct cdv_intel_dp *intel_dp = gma_encoder->dev_priv;
1706
1707 if (is_edp(gma_encoder)) {
1708 /* cdv_intel_panel_destroy_backlight(connector->dev); */
1709 if (intel_dp->panel_fixed_mode) {
1710 kfree(intel_dp->panel_fixed_mode);
1711 intel_dp->panel_fixed_mode = NULL;
1712 }
1713 }
1714 i2c_del_adapter(&intel_dp->adapter);
1715 drm_sysfs_connector_remove(connector);
1716 drm_connector_cleanup(connector);
1717 kfree(connector);
1718 }
1719
1720 static void cdv_intel_dp_encoder_destroy(struct drm_encoder *encoder)
1721 {
1722 drm_encoder_cleanup(encoder);
1723 }
1724
1725 static const struct drm_encoder_helper_funcs cdv_intel_dp_helper_funcs = {
1726 .dpms = cdv_intel_dp_dpms,
1727 .mode_fixup = cdv_intel_dp_mode_fixup,
1728 .prepare = cdv_intel_dp_prepare,
1729 .mode_set = cdv_intel_dp_mode_set,
1730 .commit = cdv_intel_dp_commit,
1731 };
1732
1733 static const struct drm_connector_funcs cdv_intel_dp_connector_funcs = {
1734 .dpms = drm_helper_connector_dpms,
1735 .detect = cdv_intel_dp_detect,
1736 .fill_modes = drm_helper_probe_single_connector_modes,
1737 .set_property = cdv_intel_dp_set_property,
1738 .destroy = cdv_intel_dp_destroy,
1739 };
1740
1741 static const struct drm_connector_helper_funcs cdv_intel_dp_connector_helper_funcs = {
1742 .get_modes = cdv_intel_dp_get_modes,
1743 .mode_valid = cdv_intel_dp_mode_valid,
1744 .best_encoder = gma_best_encoder,
1745 };
1746
1747 static const struct drm_encoder_funcs cdv_intel_dp_enc_funcs = {
1748 .destroy = cdv_intel_dp_encoder_destroy,
1749 };
1750
1751
1752 static void cdv_intel_dp_add_properties(struct drm_connector *connector)
1753 {
1754 cdv_intel_attach_force_audio_property(connector);
1755 cdv_intel_attach_broadcast_rgb_property(connector);
1756 }
1757
1758 /* check the VBT to see whether the eDP is on DP-D port */
1759 static bool cdv_intel_dpc_is_edp(struct drm_device *dev)
1760 {
1761 struct drm_psb_private *dev_priv = dev->dev_private;
1762 struct child_device_config *p_child;
1763 int i;
1764
1765 if (!dev_priv->child_dev_num)
1766 return false;
1767
1768 for (i = 0; i < dev_priv->child_dev_num; i++) {
1769 p_child = dev_priv->child_dev + i;
1770
1771 if (p_child->dvo_port == PORT_IDPC &&
1772 p_child->device_type == DEVICE_TYPE_eDP)
1773 return true;
1774 }
1775 return false;
1776 }
1777
1778 /* Cedarview display clock gating
1779
1780 We need this disable dot get correct behaviour while enabling
1781 DP/eDP. TODO - investigate if we can turn it back to normality
1782 after enabling */
1783 static void cdv_disable_intel_clock_gating(struct drm_device *dev)
1784 {
1785 u32 reg_value;
1786 reg_value = REG_READ(DSPCLK_GATE_D);
1787
1788 reg_value |= (DPUNIT_PIPEB_GATE_DISABLE |
1789 DPUNIT_PIPEA_GATE_DISABLE |
1790 DPCUNIT_CLOCK_GATE_DISABLE |
1791 DPLSUNIT_CLOCK_GATE_DISABLE |
1792 DPOUNIT_CLOCK_GATE_DISABLE |
1793 DPIOUNIT_CLOCK_GATE_DISABLE);
1794
1795 REG_WRITE(DSPCLK_GATE_D, reg_value);
1796
1797 udelay(500);
1798 }
1799
1800 void
1801 cdv_intel_dp_init(struct drm_device *dev, struct psb_intel_mode_device *mode_dev, int output_reg)
1802 {
1803 struct gma_encoder *gma_encoder;
1804 struct gma_connector *gma_connector;
1805 struct drm_connector *connector;
1806 struct drm_encoder *encoder;
1807 struct cdv_intel_dp *intel_dp;
1808 const char *name = NULL;
1809 int type = DRM_MODE_CONNECTOR_DisplayPort;
1810
1811 gma_encoder = kzalloc(sizeof(struct gma_encoder), GFP_KERNEL);
1812 if (!gma_encoder)
1813 return;
1814 gma_connector = kzalloc(sizeof(struct gma_connector), GFP_KERNEL);
1815 if (!gma_connector)
1816 goto err_connector;
1817 intel_dp = kzalloc(sizeof(struct cdv_intel_dp), GFP_KERNEL);
1818 if (!intel_dp)
1819 goto err_priv;
1820
1821 if ((output_reg == DP_C) && cdv_intel_dpc_is_edp(dev))
1822 type = DRM_MODE_CONNECTOR_eDP;
1823
1824 connector = &gma_connector->base;
1825 encoder = &gma_encoder->base;
1826
1827 drm_connector_init(dev, connector, &cdv_intel_dp_connector_funcs, type);
1828 drm_encoder_init(dev, encoder, &cdv_intel_dp_enc_funcs, DRM_MODE_ENCODER_TMDS);
1829
1830 gma_connector_attach_encoder(gma_connector, gma_encoder);
1831
1832 if (type == DRM_MODE_CONNECTOR_DisplayPort)
1833 gma_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
1834 else
1835 gma_encoder->type = INTEL_OUTPUT_EDP;
1836
1837
1838 gma_encoder->dev_priv=intel_dp;
1839 intel_dp->encoder = gma_encoder;
1840 intel_dp->output_reg = output_reg;
1841
1842 drm_encoder_helper_add(encoder, &cdv_intel_dp_helper_funcs);
1843 drm_connector_helper_add(connector, &cdv_intel_dp_connector_helper_funcs);
1844
1845 connector->polled = DRM_CONNECTOR_POLL_HPD;
1846 connector->interlace_allowed = false;
1847 connector->doublescan_allowed = false;
1848
1849 drm_sysfs_connector_add(connector);
1850
1851 /* Set up the DDC bus. */
1852 switch (output_reg) {
1853 case DP_B:
1854 name = "DPDDC-B";
1855 gma_encoder->ddi_select = (DP_MASK | DDI0_SELECT);
1856 break;
1857 case DP_C:
1858 name = "DPDDC-C";
1859 gma_encoder->ddi_select = (DP_MASK | DDI1_SELECT);
1860 break;
1861 }
1862
1863 cdv_disable_intel_clock_gating(dev);
1864
1865 cdv_intel_dp_i2c_init(gma_connector, gma_encoder, name);
1866 /* FIXME:fail check */
1867 cdv_intel_dp_add_properties(connector);
1868
1869 if (is_edp(gma_encoder)) {
1870 int ret;
1871 struct edp_power_seq cur;
1872 u32 pp_on, pp_off, pp_div;
1873 u32 pwm_ctrl;
1874
1875 pp_on = REG_READ(PP_CONTROL);
1876 pp_on &= ~PANEL_UNLOCK_MASK;
1877 pp_on |= PANEL_UNLOCK_REGS;
1878
1879 REG_WRITE(PP_CONTROL, pp_on);
1880
1881 pwm_ctrl = REG_READ(BLC_PWM_CTL2);
1882 pwm_ctrl |= PWM_PIPE_B;
1883 REG_WRITE(BLC_PWM_CTL2, pwm_ctrl);
1884
1885 pp_on = REG_READ(PP_ON_DELAYS);
1886 pp_off = REG_READ(PP_OFF_DELAYS);
1887 pp_div = REG_READ(PP_DIVISOR);
1888
1889 /* Pull timing values out of registers */
1890 cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
1891 PANEL_POWER_UP_DELAY_SHIFT;
1892
1893 cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
1894 PANEL_LIGHT_ON_DELAY_SHIFT;
1895
1896 cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
1897 PANEL_LIGHT_OFF_DELAY_SHIFT;
1898
1899 cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
1900 PANEL_POWER_DOWN_DELAY_SHIFT;
1901
1902 cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
1903 PANEL_POWER_CYCLE_DELAY_SHIFT);
1904
1905 DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
1906 cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
1907
1908
1909 intel_dp->panel_power_up_delay = cur.t1_t3 / 10;
1910 intel_dp->backlight_on_delay = cur.t8 / 10;
1911 intel_dp->backlight_off_delay = cur.t9 / 10;
1912 intel_dp->panel_power_down_delay = cur.t10 / 10;
1913 intel_dp->panel_power_cycle_delay = (cur.t11_t12 - 1) * 100;
1914
1915 DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
1916 intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
1917 intel_dp->panel_power_cycle_delay);
1918
1919 DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
1920 intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
1921
1922
1923 cdv_intel_edp_panel_vdd_on(gma_encoder);
1924 ret = cdv_intel_dp_aux_native_read(gma_encoder, DP_DPCD_REV,
1925 intel_dp->dpcd,
1926 sizeof(intel_dp->dpcd));
1927 cdv_intel_edp_panel_vdd_off(gma_encoder);
1928 if (ret == 0) {
1929 /* if this fails, presume the device is a ghost */
1930 DRM_INFO("failed to retrieve link info, disabling eDP\n");
1931 cdv_intel_dp_encoder_destroy(encoder);
1932 cdv_intel_dp_destroy(connector);
1933 goto err_priv;
1934 } else {
1935 DRM_DEBUG_KMS("DPCD: Rev=%x LN_Rate=%x LN_CNT=%x LN_DOWNSP=%x\n",
1936 intel_dp->dpcd[0], intel_dp->dpcd[1],
1937 intel_dp->dpcd[2], intel_dp->dpcd[3]);
1938
1939 }
1940 /* The CDV reference driver moves pnale backlight setup into the displays that
1941 have a backlight: this is a good idea and one we should probably adopt, however
1942 we need to migrate all the drivers before we can do that */
1943 /*cdv_intel_panel_setup_backlight(dev); */
1944 }
1945 return;
1946
1947 err_priv:
1948 kfree(gma_connector);
1949 err_connector:
1950 kfree(gma_encoder);
1951 }