]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/gpu/drm/i2c/tda998x_drv.c
Merge tag 'md/3.20-fixes' of git://neil.brown.name/md
[mirror_ubuntu-zesty-kernel.git] / drivers / gpu / drm / i2c / tda998x_drv.c
1 /*
2 * Copyright (C) 2012 Texas Instruments
3 * Author: Rob Clark <robdclark@gmail.com>
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 as published by
7 * the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 *
14 * You should have received a copy of the GNU General Public License along with
15 * this program. If not, see <http://www.gnu.org/licenses/>.
16 */
17
18 #include <linux/component.h>
19 #include <linux/hdmi.h>
20 #include <linux/module.h>
21 #include <linux/irq.h>
22 #include <sound/asoundef.h>
23
24 #include <drm/drmP.h>
25 #include <drm/drm_crtc_helper.h>
26 #include <drm/drm_encoder_slave.h>
27 #include <drm/drm_edid.h>
28 #include <drm/i2c/tda998x.h>
29
30 #define DBG(fmt, ...) DRM_DEBUG(fmt"\n", ##__VA_ARGS__)
31
32 struct tda998x_priv {
33 struct i2c_client *cec;
34 struct i2c_client *hdmi;
35 struct mutex mutex;
36 struct delayed_work dwork;
37 uint16_t rev;
38 uint8_t current_page;
39 int dpms;
40 bool is_hdmi_sink;
41 u8 vip_cntrl_0;
42 u8 vip_cntrl_1;
43 u8 vip_cntrl_2;
44 struct tda998x_encoder_params params;
45
46 wait_queue_head_t wq_edid;
47 volatile int wq_edid_wait;
48 struct drm_encoder *encoder;
49 };
50
51 #define to_tda998x_priv(x) ((struct tda998x_priv *)to_encoder_slave(x)->slave_priv)
52
53 /* The TDA9988 series of devices use a paged register scheme.. to simplify
54 * things we encode the page # in upper bits of the register #. To read/
55 * write a given register, we need to make sure CURPAGE register is set
56 * appropriately. Which implies reads/writes are not atomic. Fun!
57 */
58
59 #define REG(page, addr) (((page) << 8) | (addr))
60 #define REG2ADDR(reg) ((reg) & 0xff)
61 #define REG2PAGE(reg) (((reg) >> 8) & 0xff)
62
63 #define REG_CURPAGE 0xff /* write */
64
65
66 /* Page 00h: General Control */
67 #define REG_VERSION_LSB REG(0x00, 0x00) /* read */
68 #define REG_MAIN_CNTRL0 REG(0x00, 0x01) /* read/write */
69 # define MAIN_CNTRL0_SR (1 << 0)
70 # define MAIN_CNTRL0_DECS (1 << 1)
71 # define MAIN_CNTRL0_DEHS (1 << 2)
72 # define MAIN_CNTRL0_CECS (1 << 3)
73 # define MAIN_CNTRL0_CEHS (1 << 4)
74 # define MAIN_CNTRL0_SCALER (1 << 7)
75 #define REG_VERSION_MSB REG(0x00, 0x02) /* read */
76 #define REG_SOFTRESET REG(0x00, 0x0a) /* write */
77 # define SOFTRESET_AUDIO (1 << 0)
78 # define SOFTRESET_I2C_MASTER (1 << 1)
79 #define REG_DDC_DISABLE REG(0x00, 0x0b) /* read/write */
80 #define REG_CCLK_ON REG(0x00, 0x0c) /* read/write */
81 #define REG_I2C_MASTER REG(0x00, 0x0d) /* read/write */
82 # define I2C_MASTER_DIS_MM (1 << 0)
83 # define I2C_MASTER_DIS_FILT (1 << 1)
84 # define I2C_MASTER_APP_STRT_LAT (1 << 2)
85 #define REG_FEAT_POWERDOWN REG(0x00, 0x0e) /* read/write */
86 # define FEAT_POWERDOWN_SPDIF (1 << 3)
87 #define REG_INT_FLAGS_0 REG(0x00, 0x0f) /* read/write */
88 #define REG_INT_FLAGS_1 REG(0x00, 0x10) /* read/write */
89 #define REG_INT_FLAGS_2 REG(0x00, 0x11) /* read/write */
90 # define INT_FLAGS_2_EDID_BLK_RD (1 << 1)
91 #define REG_ENA_ACLK REG(0x00, 0x16) /* read/write */
92 #define REG_ENA_VP_0 REG(0x00, 0x18) /* read/write */
93 #define REG_ENA_VP_1 REG(0x00, 0x19) /* read/write */
94 #define REG_ENA_VP_2 REG(0x00, 0x1a) /* read/write */
95 #define REG_ENA_AP REG(0x00, 0x1e) /* read/write */
96 #define REG_VIP_CNTRL_0 REG(0x00, 0x20) /* write */
97 # define VIP_CNTRL_0_MIRR_A (1 << 7)
98 # define VIP_CNTRL_0_SWAP_A(x) (((x) & 7) << 4)
99 # define VIP_CNTRL_0_MIRR_B (1 << 3)
100 # define VIP_CNTRL_0_SWAP_B(x) (((x) & 7) << 0)
101 #define REG_VIP_CNTRL_1 REG(0x00, 0x21) /* write */
102 # define VIP_CNTRL_1_MIRR_C (1 << 7)
103 # define VIP_CNTRL_1_SWAP_C(x) (((x) & 7) << 4)
104 # define VIP_CNTRL_1_MIRR_D (1 << 3)
105 # define VIP_CNTRL_1_SWAP_D(x) (((x) & 7) << 0)
106 #define REG_VIP_CNTRL_2 REG(0x00, 0x22) /* write */
107 # define VIP_CNTRL_2_MIRR_E (1 << 7)
108 # define VIP_CNTRL_2_SWAP_E(x) (((x) & 7) << 4)
109 # define VIP_CNTRL_2_MIRR_F (1 << 3)
110 # define VIP_CNTRL_2_SWAP_F(x) (((x) & 7) << 0)
111 #define REG_VIP_CNTRL_3 REG(0x00, 0x23) /* write */
112 # define VIP_CNTRL_3_X_TGL (1 << 0)
113 # define VIP_CNTRL_3_H_TGL (1 << 1)
114 # define VIP_CNTRL_3_V_TGL (1 << 2)
115 # define VIP_CNTRL_3_EMB (1 << 3)
116 # define VIP_CNTRL_3_SYNC_DE (1 << 4)
117 # define VIP_CNTRL_3_SYNC_HS (1 << 5)
118 # define VIP_CNTRL_3_DE_INT (1 << 6)
119 # define VIP_CNTRL_3_EDGE (1 << 7)
120 #define REG_VIP_CNTRL_4 REG(0x00, 0x24) /* write */
121 # define VIP_CNTRL_4_BLC(x) (((x) & 3) << 0)
122 # define VIP_CNTRL_4_BLANKIT(x) (((x) & 3) << 2)
123 # define VIP_CNTRL_4_CCIR656 (1 << 4)
124 # define VIP_CNTRL_4_656_ALT (1 << 5)
125 # define VIP_CNTRL_4_TST_656 (1 << 6)
126 # define VIP_CNTRL_4_TST_PAT (1 << 7)
127 #define REG_VIP_CNTRL_5 REG(0x00, 0x25) /* write */
128 # define VIP_CNTRL_5_CKCASE (1 << 0)
129 # define VIP_CNTRL_5_SP_CNT(x) (((x) & 3) << 1)
130 #define REG_MUX_AP REG(0x00, 0x26) /* read/write */
131 # define MUX_AP_SELECT_I2S 0x64
132 # define MUX_AP_SELECT_SPDIF 0x40
133 #define REG_MUX_VP_VIP_OUT REG(0x00, 0x27) /* read/write */
134 #define REG_MAT_CONTRL REG(0x00, 0x80) /* write */
135 # define MAT_CONTRL_MAT_SC(x) (((x) & 3) << 0)
136 # define MAT_CONTRL_MAT_BP (1 << 2)
137 #define REG_VIDFORMAT REG(0x00, 0xa0) /* write */
138 #define REG_REFPIX_MSB REG(0x00, 0xa1) /* write */
139 #define REG_REFPIX_LSB REG(0x00, 0xa2) /* write */
140 #define REG_REFLINE_MSB REG(0x00, 0xa3) /* write */
141 #define REG_REFLINE_LSB REG(0x00, 0xa4) /* write */
142 #define REG_NPIX_MSB REG(0x00, 0xa5) /* write */
143 #define REG_NPIX_LSB REG(0x00, 0xa6) /* write */
144 #define REG_NLINE_MSB REG(0x00, 0xa7) /* write */
145 #define REG_NLINE_LSB REG(0x00, 0xa8) /* write */
146 #define REG_VS_LINE_STRT_1_MSB REG(0x00, 0xa9) /* write */
147 #define REG_VS_LINE_STRT_1_LSB REG(0x00, 0xaa) /* write */
148 #define REG_VS_PIX_STRT_1_MSB REG(0x00, 0xab) /* write */
149 #define REG_VS_PIX_STRT_1_LSB REG(0x00, 0xac) /* write */
150 #define REG_VS_LINE_END_1_MSB REG(0x00, 0xad) /* write */
151 #define REG_VS_LINE_END_1_LSB REG(0x00, 0xae) /* write */
152 #define REG_VS_PIX_END_1_MSB REG(0x00, 0xaf) /* write */
153 #define REG_VS_PIX_END_1_LSB REG(0x00, 0xb0) /* write */
154 #define REG_VS_LINE_STRT_2_MSB REG(0x00, 0xb1) /* write */
155 #define REG_VS_LINE_STRT_2_LSB REG(0x00, 0xb2) /* write */
156 #define REG_VS_PIX_STRT_2_MSB REG(0x00, 0xb3) /* write */
157 #define REG_VS_PIX_STRT_2_LSB REG(0x00, 0xb4) /* write */
158 #define REG_VS_LINE_END_2_MSB REG(0x00, 0xb5) /* write */
159 #define REG_VS_LINE_END_2_LSB REG(0x00, 0xb6) /* write */
160 #define REG_VS_PIX_END_2_MSB REG(0x00, 0xb7) /* write */
161 #define REG_VS_PIX_END_2_LSB REG(0x00, 0xb8) /* write */
162 #define REG_HS_PIX_START_MSB REG(0x00, 0xb9) /* write */
163 #define REG_HS_PIX_START_LSB REG(0x00, 0xba) /* write */
164 #define REG_HS_PIX_STOP_MSB REG(0x00, 0xbb) /* write */
165 #define REG_HS_PIX_STOP_LSB REG(0x00, 0xbc) /* write */
166 #define REG_VWIN_START_1_MSB REG(0x00, 0xbd) /* write */
167 #define REG_VWIN_START_1_LSB REG(0x00, 0xbe) /* write */
168 #define REG_VWIN_END_1_MSB REG(0x00, 0xbf) /* write */
169 #define REG_VWIN_END_1_LSB REG(0x00, 0xc0) /* write */
170 #define REG_VWIN_START_2_MSB REG(0x00, 0xc1) /* write */
171 #define REG_VWIN_START_2_LSB REG(0x00, 0xc2) /* write */
172 #define REG_VWIN_END_2_MSB REG(0x00, 0xc3) /* write */
173 #define REG_VWIN_END_2_LSB REG(0x00, 0xc4) /* write */
174 #define REG_DE_START_MSB REG(0x00, 0xc5) /* write */
175 #define REG_DE_START_LSB REG(0x00, 0xc6) /* write */
176 #define REG_DE_STOP_MSB REG(0x00, 0xc7) /* write */
177 #define REG_DE_STOP_LSB REG(0x00, 0xc8) /* write */
178 #define REG_TBG_CNTRL_0 REG(0x00, 0xca) /* write */
179 # define TBG_CNTRL_0_TOP_TGL (1 << 0)
180 # define TBG_CNTRL_0_TOP_SEL (1 << 1)
181 # define TBG_CNTRL_0_DE_EXT (1 << 2)
182 # define TBG_CNTRL_0_TOP_EXT (1 << 3)
183 # define TBG_CNTRL_0_FRAME_DIS (1 << 5)
184 # define TBG_CNTRL_0_SYNC_MTHD (1 << 6)
185 # define TBG_CNTRL_0_SYNC_ONCE (1 << 7)
186 #define REG_TBG_CNTRL_1 REG(0x00, 0xcb) /* write */
187 # define TBG_CNTRL_1_H_TGL (1 << 0)
188 # define TBG_CNTRL_1_V_TGL (1 << 1)
189 # define TBG_CNTRL_1_TGL_EN (1 << 2)
190 # define TBG_CNTRL_1_X_EXT (1 << 3)
191 # define TBG_CNTRL_1_H_EXT (1 << 4)
192 # define TBG_CNTRL_1_V_EXT (1 << 5)
193 # define TBG_CNTRL_1_DWIN_DIS (1 << 6)
194 #define REG_ENABLE_SPACE REG(0x00, 0xd6) /* write */
195 #define REG_HVF_CNTRL_0 REG(0x00, 0xe4) /* write */
196 # define HVF_CNTRL_0_SM (1 << 7)
197 # define HVF_CNTRL_0_RWB (1 << 6)
198 # define HVF_CNTRL_0_PREFIL(x) (((x) & 3) << 2)
199 # define HVF_CNTRL_0_INTPOL(x) (((x) & 3) << 0)
200 #define REG_HVF_CNTRL_1 REG(0x00, 0xe5) /* write */
201 # define HVF_CNTRL_1_FOR (1 << 0)
202 # define HVF_CNTRL_1_YUVBLK (1 << 1)
203 # define HVF_CNTRL_1_VQR(x) (((x) & 3) << 2)
204 # define HVF_CNTRL_1_PAD(x) (((x) & 3) << 4)
205 # define HVF_CNTRL_1_SEMI_PLANAR (1 << 6)
206 #define REG_RPT_CNTRL REG(0x00, 0xf0) /* write */
207 #define REG_I2S_FORMAT REG(0x00, 0xfc) /* read/write */
208 # define I2S_FORMAT(x) (((x) & 3) << 0)
209 #define REG_AIP_CLKSEL REG(0x00, 0xfd) /* write */
210 # define AIP_CLKSEL_AIP_SPDIF (0 << 3)
211 # define AIP_CLKSEL_AIP_I2S (1 << 3)
212 # define AIP_CLKSEL_FS_ACLK (0 << 0)
213 # define AIP_CLKSEL_FS_MCLK (1 << 0)
214 # define AIP_CLKSEL_FS_FS64SPDIF (2 << 0)
215
216 /* Page 02h: PLL settings */
217 #define REG_PLL_SERIAL_1 REG(0x02, 0x00) /* read/write */
218 # define PLL_SERIAL_1_SRL_FDN (1 << 0)
219 # define PLL_SERIAL_1_SRL_IZ(x) (((x) & 3) << 1)
220 # define PLL_SERIAL_1_SRL_MAN_IZ (1 << 6)
221 #define REG_PLL_SERIAL_2 REG(0x02, 0x01) /* read/write */
222 # define PLL_SERIAL_2_SRL_NOSC(x) ((x) << 0)
223 # define PLL_SERIAL_2_SRL_PR(x) (((x) & 0xf) << 4)
224 #define REG_PLL_SERIAL_3 REG(0x02, 0x02) /* read/write */
225 # define PLL_SERIAL_3_SRL_CCIR (1 << 0)
226 # define PLL_SERIAL_3_SRL_DE (1 << 2)
227 # define PLL_SERIAL_3_SRL_PXIN_SEL (1 << 4)
228 #define REG_SERIALIZER REG(0x02, 0x03) /* read/write */
229 #define REG_BUFFER_OUT REG(0x02, 0x04) /* read/write */
230 #define REG_PLL_SCG1 REG(0x02, 0x05) /* read/write */
231 #define REG_PLL_SCG2 REG(0x02, 0x06) /* read/write */
232 #define REG_PLL_SCGN1 REG(0x02, 0x07) /* read/write */
233 #define REG_PLL_SCGN2 REG(0x02, 0x08) /* read/write */
234 #define REG_PLL_SCGR1 REG(0x02, 0x09) /* read/write */
235 #define REG_PLL_SCGR2 REG(0x02, 0x0a) /* read/write */
236 #define REG_AUDIO_DIV REG(0x02, 0x0e) /* read/write */
237 # define AUDIO_DIV_SERCLK_1 0
238 # define AUDIO_DIV_SERCLK_2 1
239 # define AUDIO_DIV_SERCLK_4 2
240 # define AUDIO_DIV_SERCLK_8 3
241 # define AUDIO_DIV_SERCLK_16 4
242 # define AUDIO_DIV_SERCLK_32 5
243 #define REG_SEL_CLK REG(0x02, 0x11) /* read/write */
244 # define SEL_CLK_SEL_CLK1 (1 << 0)
245 # define SEL_CLK_SEL_VRF_CLK(x) (((x) & 3) << 1)
246 # define SEL_CLK_ENA_SC_CLK (1 << 3)
247 #define REG_ANA_GENERAL REG(0x02, 0x12) /* read/write */
248
249
250 /* Page 09h: EDID Control */
251 #define REG_EDID_DATA_0 REG(0x09, 0x00) /* read */
252 /* next 127 successive registers are the EDID block */
253 #define REG_EDID_CTRL REG(0x09, 0xfa) /* read/write */
254 #define REG_DDC_ADDR REG(0x09, 0xfb) /* read/write */
255 #define REG_DDC_OFFS REG(0x09, 0xfc) /* read/write */
256 #define REG_DDC_SEGM_ADDR REG(0x09, 0xfd) /* read/write */
257 #define REG_DDC_SEGM REG(0x09, 0xfe) /* read/write */
258
259
260 /* Page 10h: information frames and packets */
261 #define REG_IF1_HB0 REG(0x10, 0x20) /* read/write */
262 #define REG_IF2_HB0 REG(0x10, 0x40) /* read/write */
263 #define REG_IF3_HB0 REG(0x10, 0x60) /* read/write */
264 #define REG_IF4_HB0 REG(0x10, 0x80) /* read/write */
265 #define REG_IF5_HB0 REG(0x10, 0xa0) /* read/write */
266
267
268 /* Page 11h: audio settings and content info packets */
269 #define REG_AIP_CNTRL_0 REG(0x11, 0x00) /* read/write */
270 # define AIP_CNTRL_0_RST_FIFO (1 << 0)
271 # define AIP_CNTRL_0_SWAP (1 << 1)
272 # define AIP_CNTRL_0_LAYOUT (1 << 2)
273 # define AIP_CNTRL_0_ACR_MAN (1 << 5)
274 # define AIP_CNTRL_0_RST_CTS (1 << 6)
275 #define REG_CA_I2S REG(0x11, 0x01) /* read/write */
276 # define CA_I2S_CA_I2S(x) (((x) & 31) << 0)
277 # define CA_I2S_HBR_CHSTAT (1 << 6)
278 #define REG_LATENCY_RD REG(0x11, 0x04) /* read/write */
279 #define REG_ACR_CTS_0 REG(0x11, 0x05) /* read/write */
280 #define REG_ACR_CTS_1 REG(0x11, 0x06) /* read/write */
281 #define REG_ACR_CTS_2 REG(0x11, 0x07) /* read/write */
282 #define REG_ACR_N_0 REG(0x11, 0x08) /* read/write */
283 #define REG_ACR_N_1 REG(0x11, 0x09) /* read/write */
284 #define REG_ACR_N_2 REG(0x11, 0x0a) /* read/write */
285 #define REG_CTS_N REG(0x11, 0x0c) /* read/write */
286 # define CTS_N_K(x) (((x) & 7) << 0)
287 # define CTS_N_M(x) (((x) & 3) << 4)
288 #define REG_ENC_CNTRL REG(0x11, 0x0d) /* read/write */
289 # define ENC_CNTRL_RST_ENC (1 << 0)
290 # define ENC_CNTRL_RST_SEL (1 << 1)
291 # define ENC_CNTRL_CTL_CODE(x) (((x) & 3) << 2)
292 #define REG_DIP_FLAGS REG(0x11, 0x0e) /* read/write */
293 # define DIP_FLAGS_ACR (1 << 0)
294 # define DIP_FLAGS_GC (1 << 1)
295 #define REG_DIP_IF_FLAGS REG(0x11, 0x0f) /* read/write */
296 # define DIP_IF_FLAGS_IF1 (1 << 1)
297 # define DIP_IF_FLAGS_IF2 (1 << 2)
298 # define DIP_IF_FLAGS_IF3 (1 << 3)
299 # define DIP_IF_FLAGS_IF4 (1 << 4)
300 # define DIP_IF_FLAGS_IF5 (1 << 5)
301 #define REG_CH_STAT_B(x) REG(0x11, 0x14 + (x)) /* read/write */
302
303
304 /* Page 12h: HDCP and OTP */
305 #define REG_TX3 REG(0x12, 0x9a) /* read/write */
306 #define REG_TX4 REG(0x12, 0x9b) /* read/write */
307 # define TX4_PD_RAM (1 << 1)
308 #define REG_TX33 REG(0x12, 0xb8) /* read/write */
309 # define TX33_HDMI (1 << 1)
310
311
312 /* Page 13h: Gamut related metadata packets */
313
314
315
316 /* CEC registers: (not paged)
317 */
318 #define REG_CEC_INTSTATUS 0xee /* read */
319 # define CEC_INTSTATUS_CEC (1 << 0)
320 # define CEC_INTSTATUS_HDMI (1 << 1)
321 #define REG_CEC_FRO_IM_CLK_CTRL 0xfb /* read/write */
322 # define CEC_FRO_IM_CLK_CTRL_GHOST_DIS (1 << 7)
323 # define CEC_FRO_IM_CLK_CTRL_ENA_OTP (1 << 6)
324 # define CEC_FRO_IM_CLK_CTRL_IMCLK_SEL (1 << 1)
325 # define CEC_FRO_IM_CLK_CTRL_FRO_DIV (1 << 0)
326 #define REG_CEC_RXSHPDINTENA 0xfc /* read/write */
327 #define REG_CEC_RXSHPDINT 0xfd /* read */
328 #define REG_CEC_RXSHPDLEV 0xfe /* read */
329 # define CEC_RXSHPDLEV_RXSENS (1 << 0)
330 # define CEC_RXSHPDLEV_HPD (1 << 1)
331
332 #define REG_CEC_ENAMODS 0xff /* read/write */
333 # define CEC_ENAMODS_DIS_FRO (1 << 6)
334 # define CEC_ENAMODS_DIS_CCLK (1 << 5)
335 # define CEC_ENAMODS_EN_RXSENS (1 << 2)
336 # define CEC_ENAMODS_EN_HDMI (1 << 1)
337 # define CEC_ENAMODS_EN_CEC (1 << 0)
338
339
340 /* Device versions: */
341 #define TDA9989N2 0x0101
342 #define TDA19989 0x0201
343 #define TDA19989N2 0x0202
344 #define TDA19988 0x0301
345
346 static void
347 cec_write(struct tda998x_priv *priv, uint16_t addr, uint8_t val)
348 {
349 struct i2c_client *client = priv->cec;
350 uint8_t buf[] = {addr, val};
351 int ret;
352
353 ret = i2c_master_send(client, buf, sizeof(buf));
354 if (ret < 0)
355 dev_err(&client->dev, "Error %d writing to cec:0x%x\n", ret, addr);
356 }
357
358 static uint8_t
359 cec_read(struct tda998x_priv *priv, uint8_t addr)
360 {
361 struct i2c_client *client = priv->cec;
362 uint8_t val;
363 int ret;
364
365 ret = i2c_master_send(client, &addr, sizeof(addr));
366 if (ret < 0)
367 goto fail;
368
369 ret = i2c_master_recv(client, &val, sizeof(val));
370 if (ret < 0)
371 goto fail;
372
373 return val;
374
375 fail:
376 dev_err(&client->dev, "Error %d reading from cec:0x%x\n", ret, addr);
377 return 0;
378 }
379
380 static int
381 set_page(struct tda998x_priv *priv, uint16_t reg)
382 {
383 if (REG2PAGE(reg) != priv->current_page) {
384 struct i2c_client *client = priv->hdmi;
385 uint8_t buf[] = {
386 REG_CURPAGE, REG2PAGE(reg)
387 };
388 int ret = i2c_master_send(client, buf, sizeof(buf));
389 if (ret < 0) {
390 dev_err(&client->dev, "setpage %04x err %d\n",
391 reg, ret);
392 return ret;
393 }
394
395 priv->current_page = REG2PAGE(reg);
396 }
397 return 0;
398 }
399
400 static int
401 reg_read_range(struct tda998x_priv *priv, uint16_t reg, char *buf, int cnt)
402 {
403 struct i2c_client *client = priv->hdmi;
404 uint8_t addr = REG2ADDR(reg);
405 int ret;
406
407 mutex_lock(&priv->mutex);
408 ret = set_page(priv, reg);
409 if (ret < 0)
410 goto out;
411
412 ret = i2c_master_send(client, &addr, sizeof(addr));
413 if (ret < 0)
414 goto fail;
415
416 ret = i2c_master_recv(client, buf, cnt);
417 if (ret < 0)
418 goto fail;
419
420 goto out;
421
422 fail:
423 dev_err(&client->dev, "Error %d reading from 0x%x\n", ret, reg);
424 out:
425 mutex_unlock(&priv->mutex);
426 return ret;
427 }
428
429 static void
430 reg_write_range(struct tda998x_priv *priv, uint16_t reg, uint8_t *p, int cnt)
431 {
432 struct i2c_client *client = priv->hdmi;
433 uint8_t buf[cnt+1];
434 int ret;
435
436 buf[0] = REG2ADDR(reg);
437 memcpy(&buf[1], p, cnt);
438
439 mutex_lock(&priv->mutex);
440 ret = set_page(priv, reg);
441 if (ret < 0)
442 goto out;
443
444 ret = i2c_master_send(client, buf, cnt + 1);
445 if (ret < 0)
446 dev_err(&client->dev, "Error %d writing to 0x%x\n", ret, reg);
447 out:
448 mutex_unlock(&priv->mutex);
449 }
450
451 static int
452 reg_read(struct tda998x_priv *priv, uint16_t reg)
453 {
454 uint8_t val = 0;
455 int ret;
456
457 ret = reg_read_range(priv, reg, &val, sizeof(val));
458 if (ret < 0)
459 return ret;
460 return val;
461 }
462
463 static void
464 reg_write(struct tda998x_priv *priv, uint16_t reg, uint8_t val)
465 {
466 struct i2c_client *client = priv->hdmi;
467 uint8_t buf[] = {REG2ADDR(reg), val};
468 int ret;
469
470 mutex_lock(&priv->mutex);
471 ret = set_page(priv, reg);
472 if (ret < 0)
473 goto out;
474
475 ret = i2c_master_send(client, buf, sizeof(buf));
476 if (ret < 0)
477 dev_err(&client->dev, "Error %d writing to 0x%x\n", ret, reg);
478 out:
479 mutex_unlock(&priv->mutex);
480 }
481
482 static void
483 reg_write16(struct tda998x_priv *priv, uint16_t reg, uint16_t val)
484 {
485 struct i2c_client *client = priv->hdmi;
486 uint8_t buf[] = {REG2ADDR(reg), val >> 8, val};
487 int ret;
488
489 mutex_lock(&priv->mutex);
490 ret = set_page(priv, reg);
491 if (ret < 0)
492 goto out;
493
494 ret = i2c_master_send(client, buf, sizeof(buf));
495 if (ret < 0)
496 dev_err(&client->dev, "Error %d writing to 0x%x\n", ret, reg);
497 out:
498 mutex_unlock(&priv->mutex);
499 }
500
501 static void
502 reg_set(struct tda998x_priv *priv, uint16_t reg, uint8_t val)
503 {
504 int old_val;
505
506 old_val = reg_read(priv, reg);
507 if (old_val >= 0)
508 reg_write(priv, reg, old_val | val);
509 }
510
511 static void
512 reg_clear(struct tda998x_priv *priv, uint16_t reg, uint8_t val)
513 {
514 int old_val;
515
516 old_val = reg_read(priv, reg);
517 if (old_val >= 0)
518 reg_write(priv, reg, old_val & ~val);
519 }
520
521 static void
522 tda998x_reset(struct tda998x_priv *priv)
523 {
524 /* reset audio and i2c master: */
525 reg_write(priv, REG_SOFTRESET, SOFTRESET_AUDIO | SOFTRESET_I2C_MASTER);
526 msleep(50);
527 reg_write(priv, REG_SOFTRESET, 0);
528 msleep(50);
529
530 /* reset transmitter: */
531 reg_set(priv, REG_MAIN_CNTRL0, MAIN_CNTRL0_SR);
532 reg_clear(priv, REG_MAIN_CNTRL0, MAIN_CNTRL0_SR);
533
534 /* PLL registers common configuration */
535 reg_write(priv, REG_PLL_SERIAL_1, 0x00);
536 reg_write(priv, REG_PLL_SERIAL_2, PLL_SERIAL_2_SRL_NOSC(1));
537 reg_write(priv, REG_PLL_SERIAL_3, 0x00);
538 reg_write(priv, REG_SERIALIZER, 0x00);
539 reg_write(priv, REG_BUFFER_OUT, 0x00);
540 reg_write(priv, REG_PLL_SCG1, 0x00);
541 reg_write(priv, REG_AUDIO_DIV, AUDIO_DIV_SERCLK_8);
542 reg_write(priv, REG_SEL_CLK, SEL_CLK_SEL_CLK1 | SEL_CLK_ENA_SC_CLK);
543 reg_write(priv, REG_PLL_SCGN1, 0xfa);
544 reg_write(priv, REG_PLL_SCGN2, 0x00);
545 reg_write(priv, REG_PLL_SCGR1, 0x5b);
546 reg_write(priv, REG_PLL_SCGR2, 0x00);
547 reg_write(priv, REG_PLL_SCG2, 0x10);
548
549 /* Write the default value MUX register */
550 reg_write(priv, REG_MUX_VP_VIP_OUT, 0x24);
551 }
552
553 /* handle HDMI connect/disconnect */
554 static void tda998x_hpd(struct work_struct *work)
555 {
556 struct delayed_work *dwork = to_delayed_work(work);
557 struct tda998x_priv *priv =
558 container_of(dwork, struct tda998x_priv, dwork);
559
560 if (priv->encoder && priv->encoder->dev)
561 drm_kms_helper_hotplug_event(priv->encoder->dev);
562 }
563
564 /*
565 * only 2 interrupts may occur: screen plug/unplug and EDID read
566 */
567 static irqreturn_t tda998x_irq_thread(int irq, void *data)
568 {
569 struct tda998x_priv *priv = data;
570 u8 sta, cec, lvl, flag0, flag1, flag2;
571
572 if (!priv)
573 return IRQ_HANDLED;
574 sta = cec_read(priv, REG_CEC_INTSTATUS);
575 cec = cec_read(priv, REG_CEC_RXSHPDINT);
576 lvl = cec_read(priv, REG_CEC_RXSHPDLEV);
577 flag0 = reg_read(priv, REG_INT_FLAGS_0);
578 flag1 = reg_read(priv, REG_INT_FLAGS_1);
579 flag2 = reg_read(priv, REG_INT_FLAGS_2);
580 DRM_DEBUG_DRIVER(
581 "tda irq sta %02x cec %02x lvl %02x f0 %02x f1 %02x f2 %02x\n",
582 sta, cec, lvl, flag0, flag1, flag2);
583 if ((flag2 & INT_FLAGS_2_EDID_BLK_RD) && priv->wq_edid_wait) {
584 priv->wq_edid_wait = 0;
585 wake_up(&priv->wq_edid);
586 } else if (cec != 0) { /* HPD change */
587 schedule_delayed_work(&priv->dwork, HZ/10);
588 }
589 return IRQ_HANDLED;
590 }
591
592 static uint8_t tda998x_cksum(uint8_t *buf, size_t bytes)
593 {
594 int sum = 0;
595
596 while (bytes--)
597 sum -= *buf++;
598 return sum;
599 }
600
601 #define HB(x) (x)
602 #define PB(x) (HB(2) + 1 + (x))
603
604 static void
605 tda998x_write_if(struct tda998x_priv *priv, uint8_t bit, uint16_t addr,
606 uint8_t *buf, size_t size)
607 {
608 buf[PB(0)] = tda998x_cksum(buf, size);
609
610 reg_clear(priv, REG_DIP_IF_FLAGS, bit);
611 reg_write_range(priv, addr, buf, size);
612 reg_set(priv, REG_DIP_IF_FLAGS, bit);
613 }
614
615 static void
616 tda998x_write_aif(struct tda998x_priv *priv, struct tda998x_encoder_params *p)
617 {
618 u8 buf[PB(HDMI_AUDIO_INFOFRAME_SIZE) + 1];
619
620 memset(buf, 0, sizeof(buf));
621 buf[HB(0)] = HDMI_INFOFRAME_TYPE_AUDIO;
622 buf[HB(1)] = 0x01;
623 buf[HB(2)] = HDMI_AUDIO_INFOFRAME_SIZE;
624 buf[PB(1)] = p->audio_frame[1] & 0x07; /* CC */
625 buf[PB(2)] = p->audio_frame[2] & 0x1c; /* SF */
626 buf[PB(4)] = p->audio_frame[4];
627 buf[PB(5)] = p->audio_frame[5] & 0xf8; /* DM_INH + LSV */
628
629 tda998x_write_if(priv, DIP_IF_FLAGS_IF4, REG_IF4_HB0, buf,
630 sizeof(buf));
631 }
632
633 static void
634 tda998x_write_avi(struct tda998x_priv *priv, struct drm_display_mode *mode)
635 {
636 u8 buf[PB(HDMI_AVI_INFOFRAME_SIZE) + 1];
637
638 memset(buf, 0, sizeof(buf));
639 buf[HB(0)] = HDMI_INFOFRAME_TYPE_AVI;
640 buf[HB(1)] = 0x02;
641 buf[HB(2)] = HDMI_AVI_INFOFRAME_SIZE;
642 buf[PB(1)] = HDMI_SCAN_MODE_UNDERSCAN;
643 buf[PB(2)] = HDMI_ACTIVE_ASPECT_PICTURE;
644 buf[PB(3)] = HDMI_QUANTIZATION_RANGE_FULL << 2;
645 buf[PB(4)] = drm_match_cea_mode(mode);
646
647 tda998x_write_if(priv, DIP_IF_FLAGS_IF2, REG_IF2_HB0, buf,
648 sizeof(buf));
649 }
650
651 static void tda998x_audio_mute(struct tda998x_priv *priv, bool on)
652 {
653 if (on) {
654 reg_set(priv, REG_SOFTRESET, SOFTRESET_AUDIO);
655 reg_clear(priv, REG_SOFTRESET, SOFTRESET_AUDIO);
656 reg_set(priv, REG_AIP_CNTRL_0, AIP_CNTRL_0_RST_FIFO);
657 } else {
658 reg_clear(priv, REG_AIP_CNTRL_0, AIP_CNTRL_0_RST_FIFO);
659 }
660 }
661
662 static void
663 tda998x_configure_audio(struct tda998x_priv *priv,
664 struct drm_display_mode *mode, struct tda998x_encoder_params *p)
665 {
666 uint8_t buf[6], clksel_aip, clksel_fs, cts_n, adiv;
667 uint32_t n;
668
669 /* Enable audio ports */
670 reg_write(priv, REG_ENA_AP, p->audio_cfg);
671 reg_write(priv, REG_ENA_ACLK, p->audio_clk_cfg);
672
673 /* Set audio input source */
674 switch (p->audio_format) {
675 case AFMT_SPDIF:
676 reg_write(priv, REG_MUX_AP, MUX_AP_SELECT_SPDIF);
677 clksel_aip = AIP_CLKSEL_AIP_SPDIF;
678 clksel_fs = AIP_CLKSEL_FS_FS64SPDIF;
679 cts_n = CTS_N_M(3) | CTS_N_K(3);
680 break;
681
682 case AFMT_I2S:
683 reg_write(priv, REG_MUX_AP, MUX_AP_SELECT_I2S);
684 clksel_aip = AIP_CLKSEL_AIP_I2S;
685 clksel_fs = AIP_CLKSEL_FS_ACLK;
686 cts_n = CTS_N_M(3) | CTS_N_K(3);
687 break;
688
689 default:
690 BUG();
691 return;
692 }
693
694 reg_write(priv, REG_AIP_CLKSEL, clksel_aip);
695 reg_clear(priv, REG_AIP_CNTRL_0, AIP_CNTRL_0_LAYOUT |
696 AIP_CNTRL_0_ACR_MAN); /* auto CTS */
697 reg_write(priv, REG_CTS_N, cts_n);
698
699 /*
700 * Audio input somehow depends on HDMI line rate which is
701 * related to pixclk. Testing showed that modes with pixclk
702 * >100MHz need a larger divider while <40MHz need the default.
703 * There is no detailed info in the datasheet, so we just
704 * assume 100MHz requires larger divider.
705 */
706 adiv = AUDIO_DIV_SERCLK_8;
707 if (mode->clock > 100000)
708 adiv++; /* AUDIO_DIV_SERCLK_16 */
709
710 /* S/PDIF asks for a larger divider */
711 if (p->audio_format == AFMT_SPDIF)
712 adiv++; /* AUDIO_DIV_SERCLK_16 or _32 */
713
714 reg_write(priv, REG_AUDIO_DIV, adiv);
715
716 /*
717 * This is the approximate value of N, which happens to be
718 * the recommended values for non-coherent clocks.
719 */
720 n = 128 * p->audio_sample_rate / 1000;
721
722 /* Write the CTS and N values */
723 buf[0] = 0x44;
724 buf[1] = 0x42;
725 buf[2] = 0x01;
726 buf[3] = n;
727 buf[4] = n >> 8;
728 buf[5] = n >> 16;
729 reg_write_range(priv, REG_ACR_CTS_0, buf, 6);
730
731 /* Set CTS clock reference */
732 reg_write(priv, REG_AIP_CLKSEL, clksel_aip | clksel_fs);
733
734 /* Reset CTS generator */
735 reg_set(priv, REG_AIP_CNTRL_0, AIP_CNTRL_0_RST_CTS);
736 reg_clear(priv, REG_AIP_CNTRL_0, AIP_CNTRL_0_RST_CTS);
737
738 /* Write the channel status */
739 buf[0] = IEC958_AES0_CON_NOT_COPYRIGHT;
740 buf[1] = 0x00;
741 buf[2] = IEC958_AES3_CON_FS_NOTID;
742 buf[3] = IEC958_AES4_CON_ORIGFS_NOTID |
743 IEC958_AES4_CON_MAX_WORDLEN_24;
744 reg_write_range(priv, REG_CH_STAT_B(0), buf, 4);
745
746 tda998x_audio_mute(priv, true);
747 msleep(20);
748 tda998x_audio_mute(priv, false);
749
750 /* Write the audio information packet */
751 tda998x_write_aif(priv, p);
752 }
753
754 /* DRM encoder functions */
755
756 static void tda998x_encoder_set_config(struct tda998x_priv *priv,
757 const struct tda998x_encoder_params *p)
758 {
759 priv->vip_cntrl_0 = VIP_CNTRL_0_SWAP_A(p->swap_a) |
760 (p->mirr_a ? VIP_CNTRL_0_MIRR_A : 0) |
761 VIP_CNTRL_0_SWAP_B(p->swap_b) |
762 (p->mirr_b ? VIP_CNTRL_0_MIRR_B : 0);
763 priv->vip_cntrl_1 = VIP_CNTRL_1_SWAP_C(p->swap_c) |
764 (p->mirr_c ? VIP_CNTRL_1_MIRR_C : 0) |
765 VIP_CNTRL_1_SWAP_D(p->swap_d) |
766 (p->mirr_d ? VIP_CNTRL_1_MIRR_D : 0);
767 priv->vip_cntrl_2 = VIP_CNTRL_2_SWAP_E(p->swap_e) |
768 (p->mirr_e ? VIP_CNTRL_2_MIRR_E : 0) |
769 VIP_CNTRL_2_SWAP_F(p->swap_f) |
770 (p->mirr_f ? VIP_CNTRL_2_MIRR_F : 0);
771
772 priv->params = *p;
773 }
774
775 static void tda998x_encoder_dpms(struct tda998x_priv *priv, int mode)
776 {
777 /* we only care about on or off: */
778 if (mode != DRM_MODE_DPMS_ON)
779 mode = DRM_MODE_DPMS_OFF;
780
781 if (mode == priv->dpms)
782 return;
783
784 switch (mode) {
785 case DRM_MODE_DPMS_ON:
786 /* enable video ports, audio will be enabled later */
787 reg_write(priv, REG_ENA_VP_0, 0xff);
788 reg_write(priv, REG_ENA_VP_1, 0xff);
789 reg_write(priv, REG_ENA_VP_2, 0xff);
790 /* set muxing after enabling ports: */
791 reg_write(priv, REG_VIP_CNTRL_0, priv->vip_cntrl_0);
792 reg_write(priv, REG_VIP_CNTRL_1, priv->vip_cntrl_1);
793 reg_write(priv, REG_VIP_CNTRL_2, priv->vip_cntrl_2);
794 break;
795 case DRM_MODE_DPMS_OFF:
796 /* disable video ports */
797 reg_write(priv, REG_ENA_VP_0, 0x00);
798 reg_write(priv, REG_ENA_VP_1, 0x00);
799 reg_write(priv, REG_ENA_VP_2, 0x00);
800 break;
801 }
802
803 priv->dpms = mode;
804 }
805
806 static void
807 tda998x_encoder_save(struct drm_encoder *encoder)
808 {
809 DBG("");
810 }
811
812 static void
813 tda998x_encoder_restore(struct drm_encoder *encoder)
814 {
815 DBG("");
816 }
817
818 static bool
819 tda998x_encoder_mode_fixup(struct drm_encoder *encoder,
820 const struct drm_display_mode *mode,
821 struct drm_display_mode *adjusted_mode)
822 {
823 return true;
824 }
825
826 static int tda998x_encoder_mode_valid(struct tda998x_priv *priv,
827 struct drm_display_mode *mode)
828 {
829 if (mode->clock > 150000)
830 return MODE_CLOCK_HIGH;
831 if (mode->htotal >= BIT(13))
832 return MODE_BAD_HVALUE;
833 if (mode->vtotal >= BIT(11))
834 return MODE_BAD_VVALUE;
835 return MODE_OK;
836 }
837
838 static void
839 tda998x_encoder_mode_set(struct tda998x_priv *priv,
840 struct drm_display_mode *mode,
841 struct drm_display_mode *adjusted_mode)
842 {
843 uint16_t ref_pix, ref_line, n_pix, n_line;
844 uint16_t hs_pix_s, hs_pix_e;
845 uint16_t vs1_pix_s, vs1_pix_e, vs1_line_s, vs1_line_e;
846 uint16_t vs2_pix_s, vs2_pix_e, vs2_line_s, vs2_line_e;
847 uint16_t vwin1_line_s, vwin1_line_e;
848 uint16_t vwin2_line_s, vwin2_line_e;
849 uint16_t de_pix_s, de_pix_e;
850 uint8_t reg, div, rep;
851
852 /*
853 * Internally TDA998x is using ITU-R BT.656 style sync but
854 * we get VESA style sync. TDA998x is using a reference pixel
855 * relative to ITU to sync to the input frame and for output
856 * sync generation. Currently, we are using reference detection
857 * from HS/VS, i.e. REFPIX/REFLINE denote frame start sync point
858 * which is position of rising VS with coincident rising HS.
859 *
860 * Now there is some issues to take care of:
861 * - HDMI data islands require sync-before-active
862 * - TDA998x register values must be > 0 to be enabled
863 * - REFLINE needs an additional offset of +1
864 * - REFPIX needs an addtional offset of +1 for UYUV and +3 for RGB
865 *
866 * So we add +1 to all horizontal and vertical register values,
867 * plus an additional +3 for REFPIX as we are using RGB input only.
868 */
869 n_pix = mode->htotal;
870 n_line = mode->vtotal;
871
872 hs_pix_e = mode->hsync_end - mode->hdisplay;
873 hs_pix_s = mode->hsync_start - mode->hdisplay;
874 de_pix_e = mode->htotal;
875 de_pix_s = mode->htotal - mode->hdisplay;
876 ref_pix = 3 + hs_pix_s;
877
878 /*
879 * Attached LCD controllers may generate broken sync. Allow
880 * those to adjust the position of the rising VS edge by adding
881 * HSKEW to ref_pix.
882 */
883 if (adjusted_mode->flags & DRM_MODE_FLAG_HSKEW)
884 ref_pix += adjusted_mode->hskew;
885
886 if ((mode->flags & DRM_MODE_FLAG_INTERLACE) == 0) {
887 ref_line = 1 + mode->vsync_start - mode->vdisplay;
888 vwin1_line_s = mode->vtotal - mode->vdisplay - 1;
889 vwin1_line_e = vwin1_line_s + mode->vdisplay;
890 vs1_pix_s = vs1_pix_e = hs_pix_s;
891 vs1_line_s = mode->vsync_start - mode->vdisplay;
892 vs1_line_e = vs1_line_s +
893 mode->vsync_end - mode->vsync_start;
894 vwin2_line_s = vwin2_line_e = 0;
895 vs2_pix_s = vs2_pix_e = 0;
896 vs2_line_s = vs2_line_e = 0;
897 } else {
898 ref_line = 1 + (mode->vsync_start - mode->vdisplay)/2;
899 vwin1_line_s = (mode->vtotal - mode->vdisplay)/2;
900 vwin1_line_e = vwin1_line_s + mode->vdisplay/2;
901 vs1_pix_s = vs1_pix_e = hs_pix_s;
902 vs1_line_s = (mode->vsync_start - mode->vdisplay)/2;
903 vs1_line_e = vs1_line_s +
904 (mode->vsync_end - mode->vsync_start)/2;
905 vwin2_line_s = vwin1_line_s + mode->vtotal/2;
906 vwin2_line_e = vwin2_line_s + mode->vdisplay/2;
907 vs2_pix_s = vs2_pix_e = hs_pix_s + mode->htotal/2;
908 vs2_line_s = vs1_line_s + mode->vtotal/2 ;
909 vs2_line_e = vs2_line_s +
910 (mode->vsync_end - mode->vsync_start)/2;
911 }
912
913 div = 148500 / mode->clock;
914 if (div != 0) {
915 div--;
916 if (div > 3)
917 div = 3;
918 }
919
920 /* mute the audio FIFO: */
921 reg_set(priv, REG_AIP_CNTRL_0, AIP_CNTRL_0_RST_FIFO);
922
923 /* set HDMI HDCP mode off: */
924 reg_write(priv, REG_TBG_CNTRL_1, TBG_CNTRL_1_DWIN_DIS);
925 reg_clear(priv, REG_TX33, TX33_HDMI);
926 reg_write(priv, REG_ENC_CNTRL, ENC_CNTRL_CTL_CODE(0));
927
928 /* no pre-filter or interpolator: */
929 reg_write(priv, REG_HVF_CNTRL_0, HVF_CNTRL_0_PREFIL(0) |
930 HVF_CNTRL_0_INTPOL(0));
931 reg_write(priv, REG_VIP_CNTRL_5, VIP_CNTRL_5_SP_CNT(0));
932 reg_write(priv, REG_VIP_CNTRL_4, VIP_CNTRL_4_BLANKIT(0) |
933 VIP_CNTRL_4_BLC(0));
934
935 reg_clear(priv, REG_PLL_SERIAL_1, PLL_SERIAL_1_SRL_MAN_IZ);
936 reg_clear(priv, REG_PLL_SERIAL_3, PLL_SERIAL_3_SRL_CCIR |
937 PLL_SERIAL_3_SRL_DE);
938 reg_write(priv, REG_SERIALIZER, 0);
939 reg_write(priv, REG_HVF_CNTRL_1, HVF_CNTRL_1_VQR(0));
940
941 /* TODO enable pixel repeat for pixel rates less than 25Msamp/s */
942 rep = 0;
943 reg_write(priv, REG_RPT_CNTRL, 0);
944 reg_write(priv, REG_SEL_CLK, SEL_CLK_SEL_VRF_CLK(0) |
945 SEL_CLK_SEL_CLK1 | SEL_CLK_ENA_SC_CLK);
946
947 reg_write(priv, REG_PLL_SERIAL_2, PLL_SERIAL_2_SRL_NOSC(div) |
948 PLL_SERIAL_2_SRL_PR(rep));
949
950 /* set color matrix bypass flag: */
951 reg_write(priv, REG_MAT_CONTRL, MAT_CONTRL_MAT_BP |
952 MAT_CONTRL_MAT_SC(1));
953
954 /* set BIAS tmds value: */
955 reg_write(priv, REG_ANA_GENERAL, 0x09);
956
957 /*
958 * Sync on rising HSYNC/VSYNC
959 */
960 reg = VIP_CNTRL_3_SYNC_HS;
961
962 /*
963 * TDA19988 requires high-active sync at input stage,
964 * so invert low-active sync provided by master encoder here
965 */
966 if (mode->flags & DRM_MODE_FLAG_NHSYNC)
967 reg |= VIP_CNTRL_3_H_TGL;
968 if (mode->flags & DRM_MODE_FLAG_NVSYNC)
969 reg |= VIP_CNTRL_3_V_TGL;
970 reg_write(priv, REG_VIP_CNTRL_3, reg);
971
972 reg_write(priv, REG_VIDFORMAT, 0x00);
973 reg_write16(priv, REG_REFPIX_MSB, ref_pix);
974 reg_write16(priv, REG_REFLINE_MSB, ref_line);
975 reg_write16(priv, REG_NPIX_MSB, n_pix);
976 reg_write16(priv, REG_NLINE_MSB, n_line);
977 reg_write16(priv, REG_VS_LINE_STRT_1_MSB, vs1_line_s);
978 reg_write16(priv, REG_VS_PIX_STRT_1_MSB, vs1_pix_s);
979 reg_write16(priv, REG_VS_LINE_END_1_MSB, vs1_line_e);
980 reg_write16(priv, REG_VS_PIX_END_1_MSB, vs1_pix_e);
981 reg_write16(priv, REG_VS_LINE_STRT_2_MSB, vs2_line_s);
982 reg_write16(priv, REG_VS_PIX_STRT_2_MSB, vs2_pix_s);
983 reg_write16(priv, REG_VS_LINE_END_2_MSB, vs2_line_e);
984 reg_write16(priv, REG_VS_PIX_END_2_MSB, vs2_pix_e);
985 reg_write16(priv, REG_HS_PIX_START_MSB, hs_pix_s);
986 reg_write16(priv, REG_HS_PIX_STOP_MSB, hs_pix_e);
987 reg_write16(priv, REG_VWIN_START_1_MSB, vwin1_line_s);
988 reg_write16(priv, REG_VWIN_END_1_MSB, vwin1_line_e);
989 reg_write16(priv, REG_VWIN_START_2_MSB, vwin2_line_s);
990 reg_write16(priv, REG_VWIN_END_2_MSB, vwin2_line_e);
991 reg_write16(priv, REG_DE_START_MSB, de_pix_s);
992 reg_write16(priv, REG_DE_STOP_MSB, de_pix_e);
993
994 if (priv->rev == TDA19988) {
995 /* let incoming pixels fill the active space (if any) */
996 reg_write(priv, REG_ENABLE_SPACE, 0x00);
997 }
998
999 /*
1000 * Always generate sync polarity relative to input sync and
1001 * revert input stage toggled sync at output stage
1002 */
1003 reg = TBG_CNTRL_1_DWIN_DIS | TBG_CNTRL_1_TGL_EN;
1004 if (mode->flags & DRM_MODE_FLAG_NHSYNC)
1005 reg |= TBG_CNTRL_1_H_TGL;
1006 if (mode->flags & DRM_MODE_FLAG_NVSYNC)
1007 reg |= TBG_CNTRL_1_V_TGL;
1008 reg_write(priv, REG_TBG_CNTRL_1, reg);
1009
1010 /* must be last register set: */
1011 reg_write(priv, REG_TBG_CNTRL_0, 0);
1012
1013 /* Only setup the info frames if the sink is HDMI */
1014 if (priv->is_hdmi_sink) {
1015 /* We need to turn HDMI HDCP stuff on to get audio through */
1016 reg &= ~TBG_CNTRL_1_DWIN_DIS;
1017 reg_write(priv, REG_TBG_CNTRL_1, reg);
1018 reg_write(priv, REG_ENC_CNTRL, ENC_CNTRL_CTL_CODE(1));
1019 reg_set(priv, REG_TX33, TX33_HDMI);
1020
1021 tda998x_write_avi(priv, adjusted_mode);
1022
1023 if (priv->params.audio_cfg)
1024 tda998x_configure_audio(priv, adjusted_mode,
1025 &priv->params);
1026 }
1027 }
1028
1029 static enum drm_connector_status
1030 tda998x_encoder_detect(struct tda998x_priv *priv)
1031 {
1032 uint8_t val = cec_read(priv, REG_CEC_RXSHPDLEV);
1033
1034 return (val & CEC_RXSHPDLEV_HPD) ? connector_status_connected :
1035 connector_status_disconnected;
1036 }
1037
1038 static int read_edid_block(struct tda998x_priv *priv, uint8_t *buf, int blk)
1039 {
1040 uint8_t offset, segptr;
1041 int ret, i;
1042
1043 offset = (blk & 1) ? 128 : 0;
1044 segptr = blk / 2;
1045
1046 reg_write(priv, REG_DDC_ADDR, 0xa0);
1047 reg_write(priv, REG_DDC_OFFS, offset);
1048 reg_write(priv, REG_DDC_SEGM_ADDR, 0x60);
1049 reg_write(priv, REG_DDC_SEGM, segptr);
1050
1051 /* enable reading EDID: */
1052 priv->wq_edid_wait = 1;
1053 reg_write(priv, REG_EDID_CTRL, 0x1);
1054
1055 /* flag must be cleared by sw: */
1056 reg_write(priv, REG_EDID_CTRL, 0x0);
1057
1058 /* wait for block read to complete: */
1059 if (priv->hdmi->irq) {
1060 i = wait_event_timeout(priv->wq_edid,
1061 !priv->wq_edid_wait,
1062 msecs_to_jiffies(100));
1063 if (i < 0) {
1064 dev_err(&priv->hdmi->dev, "read edid wait err %d\n", i);
1065 return i;
1066 }
1067 } else {
1068 for (i = 100; i > 0; i--) {
1069 msleep(1);
1070 ret = reg_read(priv, REG_INT_FLAGS_2);
1071 if (ret < 0)
1072 return ret;
1073 if (ret & INT_FLAGS_2_EDID_BLK_RD)
1074 break;
1075 }
1076 }
1077
1078 if (i == 0) {
1079 dev_err(&priv->hdmi->dev, "read edid timeout\n");
1080 return -ETIMEDOUT;
1081 }
1082
1083 ret = reg_read_range(priv, REG_EDID_DATA_0, buf, EDID_LENGTH);
1084 if (ret != EDID_LENGTH) {
1085 dev_err(&priv->hdmi->dev, "failed to read edid block %d: %d\n",
1086 blk, ret);
1087 return ret;
1088 }
1089
1090 return 0;
1091 }
1092
1093 static uint8_t *do_get_edid(struct tda998x_priv *priv)
1094 {
1095 int j, valid_extensions = 0;
1096 uint8_t *block, *new;
1097 bool print_bad_edid = drm_debug & DRM_UT_KMS;
1098
1099 if ((block = kmalloc(EDID_LENGTH, GFP_KERNEL)) == NULL)
1100 return NULL;
1101
1102 if (priv->rev == TDA19988)
1103 reg_clear(priv, REG_TX4, TX4_PD_RAM);
1104
1105 /* base block fetch */
1106 if (read_edid_block(priv, block, 0))
1107 goto fail;
1108
1109 if (!drm_edid_block_valid(block, 0, print_bad_edid))
1110 goto fail;
1111
1112 /* if there's no extensions, we're done */
1113 if (block[0x7e] == 0)
1114 goto done;
1115
1116 new = krealloc(block, (block[0x7e] + 1) * EDID_LENGTH, GFP_KERNEL);
1117 if (!new)
1118 goto fail;
1119 block = new;
1120
1121 for (j = 1; j <= block[0x7e]; j++) {
1122 uint8_t *ext_block = block + (valid_extensions + 1) * EDID_LENGTH;
1123 if (read_edid_block(priv, ext_block, j))
1124 goto fail;
1125
1126 if (!drm_edid_block_valid(ext_block, j, print_bad_edid))
1127 goto fail;
1128
1129 valid_extensions++;
1130 }
1131
1132 if (valid_extensions != block[0x7e]) {
1133 block[EDID_LENGTH-1] += block[0x7e] - valid_extensions;
1134 block[0x7e] = valid_extensions;
1135 new = krealloc(block, (valid_extensions + 1) * EDID_LENGTH, GFP_KERNEL);
1136 if (!new)
1137 goto fail;
1138 block = new;
1139 }
1140
1141 done:
1142 if (priv->rev == TDA19988)
1143 reg_set(priv, REG_TX4, TX4_PD_RAM);
1144
1145 return block;
1146
1147 fail:
1148 if (priv->rev == TDA19988)
1149 reg_set(priv, REG_TX4, TX4_PD_RAM);
1150 dev_warn(&priv->hdmi->dev, "failed to read EDID\n");
1151 kfree(block);
1152 return NULL;
1153 }
1154
1155 static int
1156 tda998x_encoder_get_modes(struct tda998x_priv *priv,
1157 struct drm_connector *connector)
1158 {
1159 struct edid *edid = (struct edid *)do_get_edid(priv);
1160 int n = 0;
1161
1162 if (edid) {
1163 drm_mode_connector_update_edid_property(connector, edid);
1164 n = drm_add_edid_modes(connector, edid);
1165 priv->is_hdmi_sink = drm_detect_hdmi_monitor(edid);
1166 kfree(edid);
1167 }
1168
1169 return n;
1170 }
1171
1172 static void tda998x_encoder_set_polling(struct tda998x_priv *priv,
1173 struct drm_connector *connector)
1174 {
1175 if (priv->hdmi->irq)
1176 connector->polled = DRM_CONNECTOR_POLL_HPD;
1177 else
1178 connector->polled = DRM_CONNECTOR_POLL_CONNECT |
1179 DRM_CONNECTOR_POLL_DISCONNECT;
1180 }
1181
1182 static int
1183 tda998x_encoder_set_property(struct drm_encoder *encoder,
1184 struct drm_connector *connector,
1185 struct drm_property *property,
1186 uint64_t val)
1187 {
1188 DBG("");
1189 return 0;
1190 }
1191
1192 static void tda998x_destroy(struct tda998x_priv *priv)
1193 {
1194 /* disable all IRQs and free the IRQ handler */
1195 cec_write(priv, REG_CEC_RXSHPDINTENA, 0);
1196 reg_clear(priv, REG_INT_FLAGS_2, INT_FLAGS_2_EDID_BLK_RD);
1197 if (priv->hdmi->irq) {
1198 free_irq(priv->hdmi->irq, priv);
1199 cancel_delayed_work_sync(&priv->dwork);
1200 }
1201
1202 i2c_unregister_device(priv->cec);
1203 }
1204
1205 /* Slave encoder support */
1206
1207 static void
1208 tda998x_encoder_slave_set_config(struct drm_encoder *encoder, void *params)
1209 {
1210 tda998x_encoder_set_config(to_tda998x_priv(encoder), params);
1211 }
1212
1213 static void tda998x_encoder_slave_destroy(struct drm_encoder *encoder)
1214 {
1215 struct tda998x_priv *priv = to_tda998x_priv(encoder);
1216
1217 tda998x_destroy(priv);
1218 drm_i2c_encoder_destroy(encoder);
1219 kfree(priv);
1220 }
1221
1222 static void tda998x_encoder_slave_dpms(struct drm_encoder *encoder, int mode)
1223 {
1224 tda998x_encoder_dpms(to_tda998x_priv(encoder), mode);
1225 }
1226
1227 static int tda998x_encoder_slave_mode_valid(struct drm_encoder *encoder,
1228 struct drm_display_mode *mode)
1229 {
1230 return tda998x_encoder_mode_valid(to_tda998x_priv(encoder), mode);
1231 }
1232
1233 static void
1234 tda998x_encoder_slave_mode_set(struct drm_encoder *encoder,
1235 struct drm_display_mode *mode,
1236 struct drm_display_mode *adjusted_mode)
1237 {
1238 tda998x_encoder_mode_set(to_tda998x_priv(encoder), mode, adjusted_mode);
1239 }
1240
1241 static enum drm_connector_status
1242 tda998x_encoder_slave_detect(struct drm_encoder *encoder,
1243 struct drm_connector *connector)
1244 {
1245 return tda998x_encoder_detect(to_tda998x_priv(encoder));
1246 }
1247
1248 static int tda998x_encoder_slave_get_modes(struct drm_encoder *encoder,
1249 struct drm_connector *connector)
1250 {
1251 return tda998x_encoder_get_modes(to_tda998x_priv(encoder), connector);
1252 }
1253
1254 static int
1255 tda998x_encoder_slave_create_resources(struct drm_encoder *encoder,
1256 struct drm_connector *connector)
1257 {
1258 tda998x_encoder_set_polling(to_tda998x_priv(encoder), connector);
1259 return 0;
1260 }
1261
1262 static struct drm_encoder_slave_funcs tda998x_encoder_slave_funcs = {
1263 .set_config = tda998x_encoder_slave_set_config,
1264 .destroy = tda998x_encoder_slave_destroy,
1265 .dpms = tda998x_encoder_slave_dpms,
1266 .save = tda998x_encoder_save,
1267 .restore = tda998x_encoder_restore,
1268 .mode_fixup = tda998x_encoder_mode_fixup,
1269 .mode_valid = tda998x_encoder_slave_mode_valid,
1270 .mode_set = tda998x_encoder_slave_mode_set,
1271 .detect = tda998x_encoder_slave_detect,
1272 .get_modes = tda998x_encoder_slave_get_modes,
1273 .create_resources = tda998x_encoder_slave_create_resources,
1274 .set_property = tda998x_encoder_set_property,
1275 };
1276
1277 /* I2C driver functions */
1278
1279 static int tda998x_create(struct i2c_client *client, struct tda998x_priv *priv)
1280 {
1281 struct device_node *np = client->dev.of_node;
1282 u32 video;
1283 int rev_lo, rev_hi, ret;
1284 unsigned short cec_addr;
1285
1286 priv->vip_cntrl_0 = VIP_CNTRL_0_SWAP_A(2) | VIP_CNTRL_0_SWAP_B(3);
1287 priv->vip_cntrl_1 = VIP_CNTRL_1_SWAP_C(0) | VIP_CNTRL_1_SWAP_D(1);
1288 priv->vip_cntrl_2 = VIP_CNTRL_2_SWAP_E(4) | VIP_CNTRL_2_SWAP_F(5);
1289
1290 priv->current_page = 0xff;
1291 priv->hdmi = client;
1292 /* CEC I2C address bound to TDA998x I2C addr by configuration pins */
1293 cec_addr = 0x34 + (client->addr & 0x03);
1294 priv->cec = i2c_new_dummy(client->adapter, cec_addr);
1295 if (!priv->cec)
1296 return -ENODEV;
1297
1298 priv->dpms = DRM_MODE_DPMS_OFF;
1299
1300 mutex_init(&priv->mutex); /* protect the page access */
1301
1302 /* wake up the device: */
1303 cec_write(priv, REG_CEC_ENAMODS,
1304 CEC_ENAMODS_EN_RXSENS | CEC_ENAMODS_EN_HDMI);
1305
1306 tda998x_reset(priv);
1307
1308 /* read version: */
1309 rev_lo = reg_read(priv, REG_VERSION_LSB);
1310 rev_hi = reg_read(priv, REG_VERSION_MSB);
1311 if (rev_lo < 0 || rev_hi < 0) {
1312 ret = rev_lo < 0 ? rev_lo : rev_hi;
1313 goto fail;
1314 }
1315
1316 priv->rev = rev_lo | rev_hi << 8;
1317
1318 /* mask off feature bits: */
1319 priv->rev &= ~0x30; /* not-hdcp and not-scalar bit */
1320
1321 switch (priv->rev) {
1322 case TDA9989N2:
1323 dev_info(&client->dev, "found TDA9989 n2");
1324 break;
1325 case TDA19989:
1326 dev_info(&client->dev, "found TDA19989");
1327 break;
1328 case TDA19989N2:
1329 dev_info(&client->dev, "found TDA19989 n2");
1330 break;
1331 case TDA19988:
1332 dev_info(&client->dev, "found TDA19988");
1333 break;
1334 default:
1335 dev_err(&client->dev, "found unsupported device: %04x\n",
1336 priv->rev);
1337 goto fail;
1338 }
1339
1340 /* after reset, enable DDC: */
1341 reg_write(priv, REG_DDC_DISABLE, 0x00);
1342
1343 /* set clock on DDC channel: */
1344 reg_write(priv, REG_TX3, 39);
1345
1346 /* if necessary, disable multi-master: */
1347 if (priv->rev == TDA19989)
1348 reg_set(priv, REG_I2C_MASTER, I2C_MASTER_DIS_MM);
1349
1350 cec_write(priv, REG_CEC_FRO_IM_CLK_CTRL,
1351 CEC_FRO_IM_CLK_CTRL_GHOST_DIS | CEC_FRO_IM_CLK_CTRL_IMCLK_SEL);
1352
1353 /* initialize the optional IRQ */
1354 if (client->irq) {
1355 int irqf_trigger;
1356
1357 /* init read EDID waitqueue and HDP work */
1358 init_waitqueue_head(&priv->wq_edid);
1359 INIT_DELAYED_WORK(&priv->dwork, tda998x_hpd);
1360
1361 /* clear pending interrupts */
1362 reg_read(priv, REG_INT_FLAGS_0);
1363 reg_read(priv, REG_INT_FLAGS_1);
1364 reg_read(priv, REG_INT_FLAGS_2);
1365
1366 irqf_trigger =
1367 irqd_get_trigger_type(irq_get_irq_data(client->irq));
1368 ret = request_threaded_irq(client->irq, NULL,
1369 tda998x_irq_thread,
1370 irqf_trigger | IRQF_ONESHOT,
1371 "tda998x", priv);
1372 if (ret) {
1373 dev_err(&client->dev,
1374 "failed to request IRQ#%u: %d\n",
1375 client->irq, ret);
1376 goto fail;
1377 }
1378
1379 /* enable HPD irq */
1380 cec_write(priv, REG_CEC_RXSHPDINTENA, CEC_RXSHPDLEV_HPD);
1381 }
1382
1383 /* enable EDID read irq: */
1384 reg_set(priv, REG_INT_FLAGS_2, INT_FLAGS_2_EDID_BLK_RD);
1385
1386 if (!np)
1387 return 0; /* non-DT */
1388
1389 /* get the optional video properties */
1390 ret = of_property_read_u32(np, "video-ports", &video);
1391 if (ret == 0) {
1392 priv->vip_cntrl_0 = video >> 16;
1393 priv->vip_cntrl_1 = video >> 8;
1394 priv->vip_cntrl_2 = video;
1395 }
1396
1397 return 0;
1398
1399 fail:
1400 /* if encoder_init fails, the encoder slave is never registered,
1401 * so cleanup here:
1402 */
1403 if (priv->cec)
1404 i2c_unregister_device(priv->cec);
1405 return -ENXIO;
1406 }
1407
1408 static int tda998x_encoder_init(struct i2c_client *client,
1409 struct drm_device *dev,
1410 struct drm_encoder_slave *encoder_slave)
1411 {
1412 struct tda998x_priv *priv;
1413 int ret;
1414
1415 priv = kzalloc(sizeof(*priv), GFP_KERNEL);
1416 if (!priv)
1417 return -ENOMEM;
1418
1419 priv->encoder = &encoder_slave->base;
1420
1421 ret = tda998x_create(client, priv);
1422 if (ret) {
1423 kfree(priv);
1424 return ret;
1425 }
1426
1427 encoder_slave->slave_priv = priv;
1428 encoder_slave->slave_funcs = &tda998x_encoder_slave_funcs;
1429
1430 return 0;
1431 }
1432
1433 struct tda998x_priv2 {
1434 struct tda998x_priv base;
1435 struct drm_encoder encoder;
1436 struct drm_connector connector;
1437 };
1438
1439 #define conn_to_tda998x_priv2(x) \
1440 container_of(x, struct tda998x_priv2, connector);
1441
1442 #define enc_to_tda998x_priv2(x) \
1443 container_of(x, struct tda998x_priv2, encoder);
1444
1445 static void tda998x_encoder2_dpms(struct drm_encoder *encoder, int mode)
1446 {
1447 struct tda998x_priv2 *priv = enc_to_tda998x_priv2(encoder);
1448
1449 tda998x_encoder_dpms(&priv->base, mode);
1450 }
1451
1452 static void tda998x_encoder_prepare(struct drm_encoder *encoder)
1453 {
1454 tda998x_encoder2_dpms(encoder, DRM_MODE_DPMS_OFF);
1455 }
1456
1457 static void tda998x_encoder_commit(struct drm_encoder *encoder)
1458 {
1459 tda998x_encoder2_dpms(encoder, DRM_MODE_DPMS_ON);
1460 }
1461
1462 static void tda998x_encoder2_mode_set(struct drm_encoder *encoder,
1463 struct drm_display_mode *mode,
1464 struct drm_display_mode *adjusted_mode)
1465 {
1466 struct tda998x_priv2 *priv = enc_to_tda998x_priv2(encoder);
1467
1468 tda998x_encoder_mode_set(&priv->base, mode, adjusted_mode);
1469 }
1470
1471 static const struct drm_encoder_helper_funcs tda998x_encoder_helper_funcs = {
1472 .dpms = tda998x_encoder2_dpms,
1473 .save = tda998x_encoder_save,
1474 .restore = tda998x_encoder_restore,
1475 .mode_fixup = tda998x_encoder_mode_fixup,
1476 .prepare = tda998x_encoder_prepare,
1477 .commit = tda998x_encoder_commit,
1478 .mode_set = tda998x_encoder2_mode_set,
1479 };
1480
1481 static void tda998x_encoder_destroy(struct drm_encoder *encoder)
1482 {
1483 struct tda998x_priv2 *priv = enc_to_tda998x_priv2(encoder);
1484
1485 tda998x_destroy(&priv->base);
1486 drm_encoder_cleanup(encoder);
1487 }
1488
1489 static const struct drm_encoder_funcs tda998x_encoder_funcs = {
1490 .destroy = tda998x_encoder_destroy,
1491 };
1492
1493 static int tda998x_connector_get_modes(struct drm_connector *connector)
1494 {
1495 struct tda998x_priv2 *priv = conn_to_tda998x_priv2(connector);
1496
1497 return tda998x_encoder_get_modes(&priv->base, connector);
1498 }
1499
1500 static int tda998x_connector_mode_valid(struct drm_connector *connector,
1501 struct drm_display_mode *mode)
1502 {
1503 struct tda998x_priv2 *priv = conn_to_tda998x_priv2(connector);
1504
1505 return tda998x_encoder_mode_valid(&priv->base, mode);
1506 }
1507
1508 static struct drm_encoder *
1509 tda998x_connector_best_encoder(struct drm_connector *connector)
1510 {
1511 struct tda998x_priv2 *priv = conn_to_tda998x_priv2(connector);
1512
1513 return &priv->encoder;
1514 }
1515
1516 static
1517 const struct drm_connector_helper_funcs tda998x_connector_helper_funcs = {
1518 .get_modes = tda998x_connector_get_modes,
1519 .mode_valid = tda998x_connector_mode_valid,
1520 .best_encoder = tda998x_connector_best_encoder,
1521 };
1522
1523 static enum drm_connector_status
1524 tda998x_connector_detect(struct drm_connector *connector, bool force)
1525 {
1526 struct tda998x_priv2 *priv = conn_to_tda998x_priv2(connector);
1527
1528 return tda998x_encoder_detect(&priv->base);
1529 }
1530
1531 static void tda998x_connector_destroy(struct drm_connector *connector)
1532 {
1533 drm_connector_unregister(connector);
1534 drm_connector_cleanup(connector);
1535 }
1536
1537 static const struct drm_connector_funcs tda998x_connector_funcs = {
1538 .dpms = drm_helper_connector_dpms,
1539 .fill_modes = drm_helper_probe_single_connector_modes,
1540 .detect = tda998x_connector_detect,
1541 .destroy = tda998x_connector_destroy,
1542 };
1543
1544 static int tda998x_bind(struct device *dev, struct device *master, void *data)
1545 {
1546 struct tda998x_encoder_params *params = dev->platform_data;
1547 struct i2c_client *client = to_i2c_client(dev);
1548 struct drm_device *drm = data;
1549 struct tda998x_priv2 *priv;
1550 int ret;
1551
1552 priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
1553 if (!priv)
1554 return -ENOMEM;
1555
1556 dev_set_drvdata(dev, priv);
1557
1558 priv->base.encoder = &priv->encoder;
1559 priv->connector.interlace_allowed = 1;
1560 priv->encoder.possible_crtcs = 1 << 0;
1561
1562 ret = tda998x_create(client, &priv->base);
1563 if (ret)
1564 return ret;
1565
1566 if (!dev->of_node && params)
1567 tda998x_encoder_set_config(&priv->base, params);
1568
1569 tda998x_encoder_set_polling(&priv->base, &priv->connector);
1570
1571 drm_encoder_helper_add(&priv->encoder, &tda998x_encoder_helper_funcs);
1572 ret = drm_encoder_init(drm, &priv->encoder, &tda998x_encoder_funcs,
1573 DRM_MODE_ENCODER_TMDS);
1574 if (ret)
1575 goto err_encoder;
1576
1577 drm_connector_helper_add(&priv->connector,
1578 &tda998x_connector_helper_funcs);
1579 ret = drm_connector_init(drm, &priv->connector,
1580 &tda998x_connector_funcs,
1581 DRM_MODE_CONNECTOR_HDMIA);
1582 if (ret)
1583 goto err_connector;
1584
1585 ret = drm_connector_register(&priv->connector);
1586 if (ret)
1587 goto err_sysfs;
1588
1589 priv->connector.encoder = &priv->encoder;
1590 drm_mode_connector_attach_encoder(&priv->connector, &priv->encoder);
1591
1592 return 0;
1593
1594 err_sysfs:
1595 drm_connector_cleanup(&priv->connector);
1596 err_connector:
1597 drm_encoder_cleanup(&priv->encoder);
1598 err_encoder:
1599 tda998x_destroy(&priv->base);
1600 return ret;
1601 }
1602
1603 static void tda998x_unbind(struct device *dev, struct device *master,
1604 void *data)
1605 {
1606 struct tda998x_priv2 *priv = dev_get_drvdata(dev);
1607
1608 drm_connector_cleanup(&priv->connector);
1609 drm_encoder_cleanup(&priv->encoder);
1610 tda998x_destroy(&priv->base);
1611 }
1612
1613 static const struct component_ops tda998x_ops = {
1614 .bind = tda998x_bind,
1615 .unbind = tda998x_unbind,
1616 };
1617
1618 static int
1619 tda998x_probe(struct i2c_client *client, const struct i2c_device_id *id)
1620 {
1621 return component_add(&client->dev, &tda998x_ops);
1622 }
1623
1624 static int tda998x_remove(struct i2c_client *client)
1625 {
1626 component_del(&client->dev, &tda998x_ops);
1627 return 0;
1628 }
1629
1630 #ifdef CONFIG_OF
1631 static const struct of_device_id tda998x_dt_ids[] = {
1632 { .compatible = "nxp,tda998x", },
1633 { }
1634 };
1635 MODULE_DEVICE_TABLE(of, tda998x_dt_ids);
1636 #endif
1637
1638 static struct i2c_device_id tda998x_ids[] = {
1639 { "tda998x", 0 },
1640 { }
1641 };
1642 MODULE_DEVICE_TABLE(i2c, tda998x_ids);
1643
1644 static struct drm_i2c_encoder_driver tda998x_driver = {
1645 .i2c_driver = {
1646 .probe = tda998x_probe,
1647 .remove = tda998x_remove,
1648 .driver = {
1649 .name = "tda998x",
1650 .of_match_table = of_match_ptr(tda998x_dt_ids),
1651 },
1652 .id_table = tda998x_ids,
1653 },
1654 .encoder_init = tda998x_encoder_init,
1655 };
1656
1657 /* Module initialization */
1658
1659 static int __init
1660 tda998x_init(void)
1661 {
1662 DBG("");
1663 return drm_i2c_encoder_register(THIS_MODULE, &tda998x_driver);
1664 }
1665
1666 static void __exit
1667 tda998x_exit(void)
1668 {
1669 DBG("");
1670 drm_i2c_encoder_unregister(&tda998x_driver);
1671 }
1672
1673 MODULE_AUTHOR("Rob Clark <robdclark@gmail.com");
1674 MODULE_DESCRIPTION("NXP Semiconductors TDA998X HDMI Encoder");
1675 MODULE_LICENSE("GPL");
1676
1677 module_init(tda998x_init);
1678 module_exit(tda998x_exit);