]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/gpu/drm/i915/display/intel_display.c
drm/i915: Set all unused color plane offsets to ~0xfff again
[mirror_ubuntu-jammy-kernel.git] / drivers / gpu / drm / i915 / display / intel_display.c
1 /*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
27 #include <linux/i2c.h>
28 #include <linux/input.h>
29 #include <linux/intel-iommu.h>
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/dma-resv.h>
33 #include <linux/slab.h>
34
35 #include <drm/drm_atomic.h>
36 #include <drm/drm_atomic_helper.h>
37 #include <drm/drm_atomic_uapi.h>
38 #include <drm/drm_damage_helper.h>
39 #include <drm/drm_dp_helper.h>
40 #include <drm/drm_edid.h>
41 #include <drm/drm_fourcc.h>
42 #include <drm/drm_plane_helper.h>
43 #include <drm/drm_probe_helper.h>
44 #include <drm/drm_rect.h>
45
46 #include "display/intel_crt.h"
47 #include "display/intel_ddi.h"
48 #include "display/intel_dp.h"
49 #include "display/intel_dp_mst.h"
50 #include "display/intel_dpll_mgr.h"
51 #include "display/intel_dsi.h"
52 #include "display/intel_dvo.h"
53 #include "display/intel_gmbus.h"
54 #include "display/intel_hdmi.h"
55 #include "display/intel_lvds.h"
56 #include "display/intel_sdvo.h"
57 #include "display/intel_tv.h"
58 #include "display/intel_vdsc.h"
59
60 #include "gt/intel_rps.h"
61
62 #include "i915_drv.h"
63 #include "i915_trace.h"
64 #include "intel_acpi.h"
65 #include "intel_atomic.h"
66 #include "intel_atomic_plane.h"
67 #include "intel_bw.h"
68 #include "intel_cdclk.h"
69 #include "intel_color.h"
70 #include "intel_csr.h"
71 #include "intel_display_types.h"
72 #include "intel_dp_link_training.h"
73 #include "intel_fbc.h"
74 #include "intel_fbdev.h"
75 #include "intel_fifo_underrun.h"
76 #include "intel_frontbuffer.h"
77 #include "intel_hdcp.h"
78 #include "intel_hotplug.h"
79 #include "intel_overlay.h"
80 #include "intel_pipe_crc.h"
81 #include "intel_pm.h"
82 #include "intel_psr.h"
83 #include "intel_quirks.h"
84 #include "intel_sideband.h"
85 #include "intel_sprite.h"
86 #include "intel_tc.h"
87 #include "intel_vga.h"
88
89 /* Primary plane formats for gen <= 3 */
90 static const u32 i8xx_primary_formats[] = {
91 DRM_FORMAT_C8,
92 DRM_FORMAT_XRGB1555,
93 DRM_FORMAT_RGB565,
94 DRM_FORMAT_XRGB8888,
95 };
96
97 /* Primary plane formats for ivb (no fp16 due to hw issue) */
98 static const u32 ivb_primary_formats[] = {
99 DRM_FORMAT_C8,
100 DRM_FORMAT_RGB565,
101 DRM_FORMAT_XRGB8888,
102 DRM_FORMAT_XBGR8888,
103 DRM_FORMAT_XRGB2101010,
104 DRM_FORMAT_XBGR2101010,
105 };
106
107 /* Primary plane formats for gen >= 4, except ivb */
108 static const u32 i965_primary_formats[] = {
109 DRM_FORMAT_C8,
110 DRM_FORMAT_RGB565,
111 DRM_FORMAT_XRGB8888,
112 DRM_FORMAT_XBGR8888,
113 DRM_FORMAT_XRGB2101010,
114 DRM_FORMAT_XBGR2101010,
115 DRM_FORMAT_XBGR16161616F,
116 };
117
118 /* Primary plane formats for vlv/chv */
119 static const u32 vlv_primary_formats[] = {
120 DRM_FORMAT_C8,
121 DRM_FORMAT_RGB565,
122 DRM_FORMAT_XRGB8888,
123 DRM_FORMAT_XBGR8888,
124 DRM_FORMAT_ARGB8888,
125 DRM_FORMAT_ABGR8888,
126 DRM_FORMAT_XRGB2101010,
127 DRM_FORMAT_XBGR2101010,
128 DRM_FORMAT_ARGB2101010,
129 DRM_FORMAT_ABGR2101010,
130 DRM_FORMAT_XBGR16161616F,
131 };
132
133 static const u64 i9xx_format_modifiers[] = {
134 I915_FORMAT_MOD_X_TILED,
135 DRM_FORMAT_MOD_LINEAR,
136 DRM_FORMAT_MOD_INVALID
137 };
138
139 /* Cursor formats */
140 static const u32 intel_cursor_formats[] = {
141 DRM_FORMAT_ARGB8888,
142 };
143
144 static const u64 cursor_format_modifiers[] = {
145 DRM_FORMAT_MOD_LINEAR,
146 DRM_FORMAT_MOD_INVALID
147 };
148
149 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
150 struct intel_crtc_state *pipe_config);
151 static void ilk_pch_clock_get(struct intel_crtc *crtc,
152 struct intel_crtc_state *pipe_config);
153
154 static int intel_framebuffer_init(struct intel_framebuffer *ifb,
155 struct drm_i915_gem_object *obj,
156 struct drm_mode_fb_cmd2 *mode_cmd);
157 static void intel_set_pipe_timings(const struct intel_crtc_state *crtc_state);
158 static void intel_set_pipe_src_size(const struct intel_crtc_state *crtc_state);
159 static void intel_cpu_transcoder_set_m_n(const struct intel_crtc_state *crtc_state,
160 const struct intel_link_m_n *m_n,
161 const struct intel_link_m_n *m2_n2);
162 static void i9xx_set_pipeconf(const struct intel_crtc_state *crtc_state);
163 static void ilk_set_pipeconf(const struct intel_crtc_state *crtc_state);
164 static void hsw_set_pipeconf(const struct intel_crtc_state *crtc_state);
165 static void bdw_set_pipemisc(const struct intel_crtc_state *crtc_state);
166 static void vlv_prepare_pll(struct intel_crtc *crtc,
167 const struct intel_crtc_state *pipe_config);
168 static void chv_prepare_pll(struct intel_crtc *crtc,
169 const struct intel_crtc_state *pipe_config);
170 static void skl_pfit_enable(const struct intel_crtc_state *crtc_state);
171 static void ilk_pfit_enable(const struct intel_crtc_state *crtc_state);
172 static void intel_modeset_setup_hw_state(struct drm_device *dev,
173 struct drm_modeset_acquire_ctx *ctx);
174 static struct intel_crtc_state *intel_crtc_state_alloc(struct intel_crtc *crtc);
175
176 struct intel_limit {
177 struct {
178 int min, max;
179 } dot, vco, n, m, m1, m2, p, p1;
180
181 struct {
182 int dot_limit;
183 int p2_slow, p2_fast;
184 } p2;
185 };
186
187 /* returns HPLL frequency in kHz */
188 int vlv_get_hpll_vco(struct drm_i915_private *dev_priv)
189 {
190 int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
191
192 /* Obtain SKU information */
193 hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
194 CCK_FUSE_HPLL_FREQ_MASK;
195
196 return vco_freq[hpll_freq] * 1000;
197 }
198
199 int vlv_get_cck_clock(struct drm_i915_private *dev_priv,
200 const char *name, u32 reg, int ref_freq)
201 {
202 u32 val;
203 int divider;
204
205 val = vlv_cck_read(dev_priv, reg);
206 divider = val & CCK_FREQUENCY_VALUES;
207
208 drm_WARN(&dev_priv->drm, (val & CCK_FREQUENCY_STATUS) !=
209 (divider << CCK_FREQUENCY_STATUS_SHIFT),
210 "%s change in progress\n", name);
211
212 return DIV_ROUND_CLOSEST(ref_freq << 1, divider + 1);
213 }
214
215 int vlv_get_cck_clock_hpll(struct drm_i915_private *dev_priv,
216 const char *name, u32 reg)
217 {
218 int hpll;
219
220 vlv_cck_get(dev_priv);
221
222 if (dev_priv->hpll_freq == 0)
223 dev_priv->hpll_freq = vlv_get_hpll_vco(dev_priv);
224
225 hpll = vlv_get_cck_clock(dev_priv, name, reg, dev_priv->hpll_freq);
226
227 vlv_cck_put(dev_priv);
228
229 return hpll;
230 }
231
232 static void intel_update_czclk(struct drm_i915_private *dev_priv)
233 {
234 if (!(IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)))
235 return;
236
237 dev_priv->czclk_freq = vlv_get_cck_clock_hpll(dev_priv, "czclk",
238 CCK_CZ_CLOCK_CONTROL);
239
240 drm_dbg(&dev_priv->drm, "CZ clock rate: %d kHz\n",
241 dev_priv->czclk_freq);
242 }
243
244 /* units of 100MHz */
245 static u32 intel_fdi_link_freq(struct drm_i915_private *dev_priv,
246 const struct intel_crtc_state *pipe_config)
247 {
248 if (HAS_DDI(dev_priv))
249 return pipe_config->port_clock; /* SPLL */
250 else
251 return dev_priv->fdi_pll_freq;
252 }
253
254 static const struct intel_limit intel_limits_i8xx_dac = {
255 .dot = { .min = 25000, .max = 350000 },
256 .vco = { .min = 908000, .max = 1512000 },
257 .n = { .min = 2, .max = 16 },
258 .m = { .min = 96, .max = 140 },
259 .m1 = { .min = 18, .max = 26 },
260 .m2 = { .min = 6, .max = 16 },
261 .p = { .min = 4, .max = 128 },
262 .p1 = { .min = 2, .max = 33 },
263 .p2 = { .dot_limit = 165000,
264 .p2_slow = 4, .p2_fast = 2 },
265 };
266
267 static const struct intel_limit intel_limits_i8xx_dvo = {
268 .dot = { .min = 25000, .max = 350000 },
269 .vco = { .min = 908000, .max = 1512000 },
270 .n = { .min = 2, .max = 16 },
271 .m = { .min = 96, .max = 140 },
272 .m1 = { .min = 18, .max = 26 },
273 .m2 = { .min = 6, .max = 16 },
274 .p = { .min = 4, .max = 128 },
275 .p1 = { .min = 2, .max = 33 },
276 .p2 = { .dot_limit = 165000,
277 .p2_slow = 4, .p2_fast = 4 },
278 };
279
280 static const struct intel_limit intel_limits_i8xx_lvds = {
281 .dot = { .min = 25000, .max = 350000 },
282 .vco = { .min = 908000, .max = 1512000 },
283 .n = { .min = 2, .max = 16 },
284 .m = { .min = 96, .max = 140 },
285 .m1 = { .min = 18, .max = 26 },
286 .m2 = { .min = 6, .max = 16 },
287 .p = { .min = 4, .max = 128 },
288 .p1 = { .min = 1, .max = 6 },
289 .p2 = { .dot_limit = 165000,
290 .p2_slow = 14, .p2_fast = 7 },
291 };
292
293 static const struct intel_limit intel_limits_i9xx_sdvo = {
294 .dot = { .min = 20000, .max = 400000 },
295 .vco = { .min = 1400000, .max = 2800000 },
296 .n = { .min = 1, .max = 6 },
297 .m = { .min = 70, .max = 120 },
298 .m1 = { .min = 8, .max = 18 },
299 .m2 = { .min = 3, .max = 7 },
300 .p = { .min = 5, .max = 80 },
301 .p1 = { .min = 1, .max = 8 },
302 .p2 = { .dot_limit = 200000,
303 .p2_slow = 10, .p2_fast = 5 },
304 };
305
306 static const struct intel_limit intel_limits_i9xx_lvds = {
307 .dot = { .min = 20000, .max = 400000 },
308 .vco = { .min = 1400000, .max = 2800000 },
309 .n = { .min = 1, .max = 6 },
310 .m = { .min = 70, .max = 120 },
311 .m1 = { .min = 8, .max = 18 },
312 .m2 = { .min = 3, .max = 7 },
313 .p = { .min = 7, .max = 98 },
314 .p1 = { .min = 1, .max = 8 },
315 .p2 = { .dot_limit = 112000,
316 .p2_slow = 14, .p2_fast = 7 },
317 };
318
319
320 static const struct intel_limit intel_limits_g4x_sdvo = {
321 .dot = { .min = 25000, .max = 270000 },
322 .vco = { .min = 1750000, .max = 3500000},
323 .n = { .min = 1, .max = 4 },
324 .m = { .min = 104, .max = 138 },
325 .m1 = { .min = 17, .max = 23 },
326 .m2 = { .min = 5, .max = 11 },
327 .p = { .min = 10, .max = 30 },
328 .p1 = { .min = 1, .max = 3},
329 .p2 = { .dot_limit = 270000,
330 .p2_slow = 10,
331 .p2_fast = 10
332 },
333 };
334
335 static const struct intel_limit intel_limits_g4x_hdmi = {
336 .dot = { .min = 22000, .max = 400000 },
337 .vco = { .min = 1750000, .max = 3500000},
338 .n = { .min = 1, .max = 4 },
339 .m = { .min = 104, .max = 138 },
340 .m1 = { .min = 16, .max = 23 },
341 .m2 = { .min = 5, .max = 11 },
342 .p = { .min = 5, .max = 80 },
343 .p1 = { .min = 1, .max = 8},
344 .p2 = { .dot_limit = 165000,
345 .p2_slow = 10, .p2_fast = 5 },
346 };
347
348 static const struct intel_limit intel_limits_g4x_single_channel_lvds = {
349 .dot = { .min = 20000, .max = 115000 },
350 .vco = { .min = 1750000, .max = 3500000 },
351 .n = { .min = 1, .max = 3 },
352 .m = { .min = 104, .max = 138 },
353 .m1 = { .min = 17, .max = 23 },
354 .m2 = { .min = 5, .max = 11 },
355 .p = { .min = 28, .max = 112 },
356 .p1 = { .min = 2, .max = 8 },
357 .p2 = { .dot_limit = 0,
358 .p2_slow = 14, .p2_fast = 14
359 },
360 };
361
362 static const struct intel_limit intel_limits_g4x_dual_channel_lvds = {
363 .dot = { .min = 80000, .max = 224000 },
364 .vco = { .min = 1750000, .max = 3500000 },
365 .n = { .min = 1, .max = 3 },
366 .m = { .min = 104, .max = 138 },
367 .m1 = { .min = 17, .max = 23 },
368 .m2 = { .min = 5, .max = 11 },
369 .p = { .min = 14, .max = 42 },
370 .p1 = { .min = 2, .max = 6 },
371 .p2 = { .dot_limit = 0,
372 .p2_slow = 7, .p2_fast = 7
373 },
374 };
375
376 static const struct intel_limit pnv_limits_sdvo = {
377 .dot = { .min = 20000, .max = 400000},
378 .vco = { .min = 1700000, .max = 3500000 },
379 /* Pineview's Ncounter is a ring counter */
380 .n = { .min = 3, .max = 6 },
381 .m = { .min = 2, .max = 256 },
382 /* Pineview only has one combined m divider, which we treat as m2. */
383 .m1 = { .min = 0, .max = 0 },
384 .m2 = { .min = 0, .max = 254 },
385 .p = { .min = 5, .max = 80 },
386 .p1 = { .min = 1, .max = 8 },
387 .p2 = { .dot_limit = 200000,
388 .p2_slow = 10, .p2_fast = 5 },
389 };
390
391 static const struct intel_limit pnv_limits_lvds = {
392 .dot = { .min = 20000, .max = 400000 },
393 .vco = { .min = 1700000, .max = 3500000 },
394 .n = { .min = 3, .max = 6 },
395 .m = { .min = 2, .max = 256 },
396 .m1 = { .min = 0, .max = 0 },
397 .m2 = { .min = 0, .max = 254 },
398 .p = { .min = 7, .max = 112 },
399 .p1 = { .min = 1, .max = 8 },
400 .p2 = { .dot_limit = 112000,
401 .p2_slow = 14, .p2_fast = 14 },
402 };
403
404 /* Ironlake / Sandybridge
405 *
406 * We calculate clock using (register_value + 2) for N/M1/M2, so here
407 * the range value for them is (actual_value - 2).
408 */
409 static const struct intel_limit ilk_limits_dac = {
410 .dot = { .min = 25000, .max = 350000 },
411 .vco = { .min = 1760000, .max = 3510000 },
412 .n = { .min = 1, .max = 5 },
413 .m = { .min = 79, .max = 127 },
414 .m1 = { .min = 12, .max = 22 },
415 .m2 = { .min = 5, .max = 9 },
416 .p = { .min = 5, .max = 80 },
417 .p1 = { .min = 1, .max = 8 },
418 .p2 = { .dot_limit = 225000,
419 .p2_slow = 10, .p2_fast = 5 },
420 };
421
422 static const struct intel_limit ilk_limits_single_lvds = {
423 .dot = { .min = 25000, .max = 350000 },
424 .vco = { .min = 1760000, .max = 3510000 },
425 .n = { .min = 1, .max = 3 },
426 .m = { .min = 79, .max = 118 },
427 .m1 = { .min = 12, .max = 22 },
428 .m2 = { .min = 5, .max = 9 },
429 .p = { .min = 28, .max = 112 },
430 .p1 = { .min = 2, .max = 8 },
431 .p2 = { .dot_limit = 225000,
432 .p2_slow = 14, .p2_fast = 14 },
433 };
434
435 static const struct intel_limit ilk_limits_dual_lvds = {
436 .dot = { .min = 25000, .max = 350000 },
437 .vco = { .min = 1760000, .max = 3510000 },
438 .n = { .min = 1, .max = 3 },
439 .m = { .min = 79, .max = 127 },
440 .m1 = { .min = 12, .max = 22 },
441 .m2 = { .min = 5, .max = 9 },
442 .p = { .min = 14, .max = 56 },
443 .p1 = { .min = 2, .max = 8 },
444 .p2 = { .dot_limit = 225000,
445 .p2_slow = 7, .p2_fast = 7 },
446 };
447
448 /* LVDS 100mhz refclk limits. */
449 static const struct intel_limit ilk_limits_single_lvds_100m = {
450 .dot = { .min = 25000, .max = 350000 },
451 .vco = { .min = 1760000, .max = 3510000 },
452 .n = { .min = 1, .max = 2 },
453 .m = { .min = 79, .max = 126 },
454 .m1 = { .min = 12, .max = 22 },
455 .m2 = { .min = 5, .max = 9 },
456 .p = { .min = 28, .max = 112 },
457 .p1 = { .min = 2, .max = 8 },
458 .p2 = { .dot_limit = 225000,
459 .p2_slow = 14, .p2_fast = 14 },
460 };
461
462 static const struct intel_limit ilk_limits_dual_lvds_100m = {
463 .dot = { .min = 25000, .max = 350000 },
464 .vco = { .min = 1760000, .max = 3510000 },
465 .n = { .min = 1, .max = 3 },
466 .m = { .min = 79, .max = 126 },
467 .m1 = { .min = 12, .max = 22 },
468 .m2 = { .min = 5, .max = 9 },
469 .p = { .min = 14, .max = 42 },
470 .p1 = { .min = 2, .max = 6 },
471 .p2 = { .dot_limit = 225000,
472 .p2_slow = 7, .p2_fast = 7 },
473 };
474
475 static const struct intel_limit intel_limits_vlv = {
476 /*
477 * These are the data rate limits (measured in fast clocks)
478 * since those are the strictest limits we have. The fast
479 * clock and actual rate limits are more relaxed, so checking
480 * them would make no difference.
481 */
482 .dot = { .min = 25000 * 5, .max = 270000 * 5 },
483 .vco = { .min = 4000000, .max = 6000000 },
484 .n = { .min = 1, .max = 7 },
485 .m1 = { .min = 2, .max = 3 },
486 .m2 = { .min = 11, .max = 156 },
487 .p1 = { .min = 2, .max = 3 },
488 .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
489 };
490
491 static const struct intel_limit intel_limits_chv = {
492 /*
493 * These are the data rate limits (measured in fast clocks)
494 * since those are the strictest limits we have. The fast
495 * clock and actual rate limits are more relaxed, so checking
496 * them would make no difference.
497 */
498 .dot = { .min = 25000 * 5, .max = 540000 * 5},
499 .vco = { .min = 4800000, .max = 6480000 },
500 .n = { .min = 1, .max = 1 },
501 .m1 = { .min = 2, .max = 2 },
502 .m2 = { .min = 24 << 22, .max = 175 << 22 },
503 .p1 = { .min = 2, .max = 4 },
504 .p2 = { .p2_slow = 1, .p2_fast = 14 },
505 };
506
507 static const struct intel_limit intel_limits_bxt = {
508 /* FIXME: find real dot limits */
509 .dot = { .min = 0, .max = INT_MAX },
510 .vco = { .min = 4800000, .max = 6700000 },
511 .n = { .min = 1, .max = 1 },
512 .m1 = { .min = 2, .max = 2 },
513 /* FIXME: find real m2 limits */
514 .m2 = { .min = 2 << 22, .max = 255 << 22 },
515 .p1 = { .min = 2, .max = 4 },
516 .p2 = { .p2_slow = 1, .p2_fast = 20 },
517 };
518
519 /* WA Display #0827: Gen9:all */
520 static void
521 skl_wa_827(struct drm_i915_private *dev_priv, enum pipe pipe, bool enable)
522 {
523 if (enable)
524 intel_de_write(dev_priv, CLKGATE_DIS_PSL(pipe),
525 intel_de_read(dev_priv, CLKGATE_DIS_PSL(pipe)) | DUPS1_GATING_DIS | DUPS2_GATING_DIS);
526 else
527 intel_de_write(dev_priv, CLKGATE_DIS_PSL(pipe),
528 intel_de_read(dev_priv, CLKGATE_DIS_PSL(pipe)) & ~(DUPS1_GATING_DIS | DUPS2_GATING_DIS));
529 }
530
531 /* Wa_2006604312:icl,ehl */
532 static void
533 icl_wa_scalerclkgating(struct drm_i915_private *dev_priv, enum pipe pipe,
534 bool enable)
535 {
536 if (enable)
537 intel_de_write(dev_priv, CLKGATE_DIS_PSL(pipe),
538 intel_de_read(dev_priv, CLKGATE_DIS_PSL(pipe)) | DPFR_GATING_DIS);
539 else
540 intel_de_write(dev_priv, CLKGATE_DIS_PSL(pipe),
541 intel_de_read(dev_priv, CLKGATE_DIS_PSL(pipe)) & ~DPFR_GATING_DIS);
542 }
543
544 static bool
545 needs_modeset(const struct intel_crtc_state *state)
546 {
547 return drm_atomic_crtc_needs_modeset(&state->uapi);
548 }
549
550 static bool
551 is_trans_port_sync_slave(const struct intel_crtc_state *crtc_state)
552 {
553 return crtc_state->master_transcoder != INVALID_TRANSCODER;
554 }
555
556 static bool
557 is_trans_port_sync_master(const struct intel_crtc_state *crtc_state)
558 {
559 return crtc_state->sync_mode_slaves_mask != 0;
560 }
561
562 bool
563 is_trans_port_sync_mode(const struct intel_crtc_state *crtc_state)
564 {
565 return is_trans_port_sync_master(crtc_state) ||
566 is_trans_port_sync_slave(crtc_state);
567 }
568
569 /*
570 * Platform specific helpers to calculate the port PLL loopback- (clock.m),
571 * and post-divider (clock.p) values, pre- (clock.vco) and post-divided fast
572 * (clock.dot) clock rates. This fast dot clock is fed to the port's IO logic.
573 * The helpers' return value is the rate of the clock that is fed to the
574 * display engine's pipe which can be the above fast dot clock rate or a
575 * divided-down version of it.
576 */
577 /* m1 is reserved as 0 in Pineview, n is a ring counter */
578 static int pnv_calc_dpll_params(int refclk, struct dpll *clock)
579 {
580 clock->m = clock->m2 + 2;
581 clock->p = clock->p1 * clock->p2;
582 if (WARN_ON(clock->n == 0 || clock->p == 0))
583 return 0;
584 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
585 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
586
587 return clock->dot;
588 }
589
590 static u32 i9xx_dpll_compute_m(struct dpll *dpll)
591 {
592 return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
593 }
594
595 static int i9xx_calc_dpll_params(int refclk, struct dpll *clock)
596 {
597 clock->m = i9xx_dpll_compute_m(clock);
598 clock->p = clock->p1 * clock->p2;
599 if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
600 return 0;
601 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
602 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
603
604 return clock->dot;
605 }
606
607 static int vlv_calc_dpll_params(int refclk, struct dpll *clock)
608 {
609 clock->m = clock->m1 * clock->m2;
610 clock->p = clock->p1 * clock->p2;
611 if (WARN_ON(clock->n == 0 || clock->p == 0))
612 return 0;
613 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
614 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
615
616 return clock->dot / 5;
617 }
618
619 int chv_calc_dpll_params(int refclk, struct dpll *clock)
620 {
621 clock->m = clock->m1 * clock->m2;
622 clock->p = clock->p1 * clock->p2;
623 if (WARN_ON(clock->n == 0 || clock->p == 0))
624 return 0;
625 clock->vco = DIV_ROUND_CLOSEST_ULL(mul_u32_u32(refclk, clock->m),
626 clock->n << 22);
627 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
628
629 return clock->dot / 5;
630 }
631
632 /*
633 * Returns whether the given set of divisors are valid for a given refclk with
634 * the given connectors.
635 */
636 static bool intel_pll_is_valid(struct drm_i915_private *dev_priv,
637 const struct intel_limit *limit,
638 const struct dpll *clock)
639 {
640 if (clock->n < limit->n.min || limit->n.max < clock->n)
641 return false;
642 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
643 return false;
644 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
645 return false;
646 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
647 return false;
648
649 if (!IS_PINEVIEW(dev_priv) && !IS_VALLEYVIEW(dev_priv) &&
650 !IS_CHERRYVIEW(dev_priv) && !IS_GEN9_LP(dev_priv))
651 if (clock->m1 <= clock->m2)
652 return false;
653
654 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) &&
655 !IS_GEN9_LP(dev_priv)) {
656 if (clock->p < limit->p.min || limit->p.max < clock->p)
657 return false;
658 if (clock->m < limit->m.min || limit->m.max < clock->m)
659 return false;
660 }
661
662 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
663 return false;
664 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
665 * connector, etc., rather than just a single range.
666 */
667 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
668 return false;
669
670 return true;
671 }
672
673 static int
674 i9xx_select_p2_div(const struct intel_limit *limit,
675 const struct intel_crtc_state *crtc_state,
676 int target)
677 {
678 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
679
680 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
681 /*
682 * For LVDS just rely on its current settings for dual-channel.
683 * We haven't figured out how to reliably set up different
684 * single/dual channel state, if we even can.
685 */
686 if (intel_is_dual_link_lvds(dev_priv))
687 return limit->p2.p2_fast;
688 else
689 return limit->p2.p2_slow;
690 } else {
691 if (target < limit->p2.dot_limit)
692 return limit->p2.p2_slow;
693 else
694 return limit->p2.p2_fast;
695 }
696 }
697
698 /*
699 * Returns a set of divisors for the desired target clock with the given
700 * refclk, or FALSE. The returned values represent the clock equation:
701 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
702 *
703 * Target and reference clocks are specified in kHz.
704 *
705 * If match_clock is provided, then best_clock P divider must match the P
706 * divider from @match_clock used for LVDS downclocking.
707 */
708 static bool
709 i9xx_find_best_dpll(const struct intel_limit *limit,
710 struct intel_crtc_state *crtc_state,
711 int target, int refclk, struct dpll *match_clock,
712 struct dpll *best_clock)
713 {
714 struct drm_device *dev = crtc_state->uapi.crtc->dev;
715 struct dpll clock;
716 int err = target;
717
718 memset(best_clock, 0, sizeof(*best_clock));
719
720 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
721
722 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
723 clock.m1++) {
724 for (clock.m2 = limit->m2.min;
725 clock.m2 <= limit->m2.max; clock.m2++) {
726 if (clock.m2 >= clock.m1)
727 break;
728 for (clock.n = limit->n.min;
729 clock.n <= limit->n.max; clock.n++) {
730 for (clock.p1 = limit->p1.min;
731 clock.p1 <= limit->p1.max; clock.p1++) {
732 int this_err;
733
734 i9xx_calc_dpll_params(refclk, &clock);
735 if (!intel_pll_is_valid(to_i915(dev),
736 limit,
737 &clock))
738 continue;
739 if (match_clock &&
740 clock.p != match_clock->p)
741 continue;
742
743 this_err = abs(clock.dot - target);
744 if (this_err < err) {
745 *best_clock = clock;
746 err = this_err;
747 }
748 }
749 }
750 }
751 }
752
753 return (err != target);
754 }
755
756 /*
757 * Returns a set of divisors for the desired target clock with the given
758 * refclk, or FALSE. The returned values represent the clock equation:
759 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
760 *
761 * Target and reference clocks are specified in kHz.
762 *
763 * If match_clock is provided, then best_clock P divider must match the P
764 * divider from @match_clock used for LVDS downclocking.
765 */
766 static bool
767 pnv_find_best_dpll(const struct intel_limit *limit,
768 struct intel_crtc_state *crtc_state,
769 int target, int refclk, struct dpll *match_clock,
770 struct dpll *best_clock)
771 {
772 struct drm_device *dev = crtc_state->uapi.crtc->dev;
773 struct dpll clock;
774 int err = target;
775
776 memset(best_clock, 0, sizeof(*best_clock));
777
778 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
779
780 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
781 clock.m1++) {
782 for (clock.m2 = limit->m2.min;
783 clock.m2 <= limit->m2.max; clock.m2++) {
784 for (clock.n = limit->n.min;
785 clock.n <= limit->n.max; clock.n++) {
786 for (clock.p1 = limit->p1.min;
787 clock.p1 <= limit->p1.max; clock.p1++) {
788 int this_err;
789
790 pnv_calc_dpll_params(refclk, &clock);
791 if (!intel_pll_is_valid(to_i915(dev),
792 limit,
793 &clock))
794 continue;
795 if (match_clock &&
796 clock.p != match_clock->p)
797 continue;
798
799 this_err = abs(clock.dot - target);
800 if (this_err < err) {
801 *best_clock = clock;
802 err = this_err;
803 }
804 }
805 }
806 }
807 }
808
809 return (err != target);
810 }
811
812 /*
813 * Returns a set of divisors for the desired target clock with the given
814 * refclk, or FALSE. The returned values represent the clock equation:
815 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
816 *
817 * Target and reference clocks are specified in kHz.
818 *
819 * If match_clock is provided, then best_clock P divider must match the P
820 * divider from @match_clock used for LVDS downclocking.
821 */
822 static bool
823 g4x_find_best_dpll(const struct intel_limit *limit,
824 struct intel_crtc_state *crtc_state,
825 int target, int refclk, struct dpll *match_clock,
826 struct dpll *best_clock)
827 {
828 struct drm_device *dev = crtc_state->uapi.crtc->dev;
829 struct dpll clock;
830 int max_n;
831 bool found = false;
832 /* approximately equals target * 0.00585 */
833 int err_most = (target >> 8) + (target >> 9);
834
835 memset(best_clock, 0, sizeof(*best_clock));
836
837 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
838
839 max_n = limit->n.max;
840 /* based on hardware requirement, prefer smaller n to precision */
841 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
842 /* based on hardware requirement, prefere larger m1,m2 */
843 for (clock.m1 = limit->m1.max;
844 clock.m1 >= limit->m1.min; clock.m1--) {
845 for (clock.m2 = limit->m2.max;
846 clock.m2 >= limit->m2.min; clock.m2--) {
847 for (clock.p1 = limit->p1.max;
848 clock.p1 >= limit->p1.min; clock.p1--) {
849 int this_err;
850
851 i9xx_calc_dpll_params(refclk, &clock);
852 if (!intel_pll_is_valid(to_i915(dev),
853 limit,
854 &clock))
855 continue;
856
857 this_err = abs(clock.dot - target);
858 if (this_err < err_most) {
859 *best_clock = clock;
860 err_most = this_err;
861 max_n = clock.n;
862 found = true;
863 }
864 }
865 }
866 }
867 }
868 return found;
869 }
870
871 /*
872 * Check if the calculated PLL configuration is more optimal compared to the
873 * best configuration and error found so far. Return the calculated error.
874 */
875 static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq,
876 const struct dpll *calculated_clock,
877 const struct dpll *best_clock,
878 unsigned int best_error_ppm,
879 unsigned int *error_ppm)
880 {
881 /*
882 * For CHV ignore the error and consider only the P value.
883 * Prefer a bigger P value based on HW requirements.
884 */
885 if (IS_CHERRYVIEW(to_i915(dev))) {
886 *error_ppm = 0;
887
888 return calculated_clock->p > best_clock->p;
889 }
890
891 if (drm_WARN_ON_ONCE(dev, !target_freq))
892 return false;
893
894 *error_ppm = div_u64(1000000ULL *
895 abs(target_freq - calculated_clock->dot),
896 target_freq);
897 /*
898 * Prefer a better P value over a better (smaller) error if the error
899 * is small. Ensure this preference for future configurations too by
900 * setting the error to 0.
901 */
902 if (*error_ppm < 100 && calculated_clock->p > best_clock->p) {
903 *error_ppm = 0;
904
905 return true;
906 }
907
908 return *error_ppm + 10 < best_error_ppm;
909 }
910
911 /*
912 * Returns a set of divisors for the desired target clock with the given
913 * refclk, or FALSE. The returned values represent the clock equation:
914 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
915 */
916 static bool
917 vlv_find_best_dpll(const struct intel_limit *limit,
918 struct intel_crtc_state *crtc_state,
919 int target, int refclk, struct dpll *match_clock,
920 struct dpll *best_clock)
921 {
922 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
923 struct drm_device *dev = crtc->base.dev;
924 struct dpll clock;
925 unsigned int bestppm = 1000000;
926 /* min update 19.2 MHz */
927 int max_n = min(limit->n.max, refclk / 19200);
928 bool found = false;
929
930 target *= 5; /* fast clock */
931
932 memset(best_clock, 0, sizeof(*best_clock));
933
934 /* based on hardware requirement, prefer smaller n to precision */
935 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
936 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
937 for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
938 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
939 clock.p = clock.p1 * clock.p2;
940 /* based on hardware requirement, prefer bigger m1,m2 values */
941 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
942 unsigned int ppm;
943
944 clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
945 refclk * clock.m1);
946
947 vlv_calc_dpll_params(refclk, &clock);
948
949 if (!intel_pll_is_valid(to_i915(dev),
950 limit,
951 &clock))
952 continue;
953
954 if (!vlv_PLL_is_optimal(dev, target,
955 &clock,
956 best_clock,
957 bestppm, &ppm))
958 continue;
959
960 *best_clock = clock;
961 bestppm = ppm;
962 found = true;
963 }
964 }
965 }
966 }
967
968 return found;
969 }
970
971 /*
972 * Returns a set of divisors for the desired target clock with the given
973 * refclk, or FALSE. The returned values represent the clock equation:
974 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
975 */
976 static bool
977 chv_find_best_dpll(const struct intel_limit *limit,
978 struct intel_crtc_state *crtc_state,
979 int target, int refclk, struct dpll *match_clock,
980 struct dpll *best_clock)
981 {
982 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
983 struct drm_device *dev = crtc->base.dev;
984 unsigned int best_error_ppm;
985 struct dpll clock;
986 u64 m2;
987 int found = false;
988
989 memset(best_clock, 0, sizeof(*best_clock));
990 best_error_ppm = 1000000;
991
992 /*
993 * Based on hardware doc, the n always set to 1, and m1 always
994 * set to 2. If requires to support 200Mhz refclk, we need to
995 * revisit this because n may not 1 anymore.
996 */
997 clock.n = 1, clock.m1 = 2;
998 target *= 5; /* fast clock */
999
1000 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
1001 for (clock.p2 = limit->p2.p2_fast;
1002 clock.p2 >= limit->p2.p2_slow;
1003 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
1004 unsigned int error_ppm;
1005
1006 clock.p = clock.p1 * clock.p2;
1007
1008 m2 = DIV_ROUND_CLOSEST_ULL(mul_u32_u32(target, clock.p * clock.n) << 22,
1009 refclk * clock.m1);
1010
1011 if (m2 > INT_MAX/clock.m1)
1012 continue;
1013
1014 clock.m2 = m2;
1015
1016 chv_calc_dpll_params(refclk, &clock);
1017
1018 if (!intel_pll_is_valid(to_i915(dev), limit, &clock))
1019 continue;
1020
1021 if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock,
1022 best_error_ppm, &error_ppm))
1023 continue;
1024
1025 *best_clock = clock;
1026 best_error_ppm = error_ppm;
1027 found = true;
1028 }
1029 }
1030
1031 return found;
1032 }
1033
1034 bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state,
1035 struct dpll *best_clock)
1036 {
1037 int refclk = 100000;
1038 const struct intel_limit *limit = &intel_limits_bxt;
1039
1040 return chv_find_best_dpll(limit, crtc_state,
1041 crtc_state->port_clock, refclk,
1042 NULL, best_clock);
1043 }
1044
1045 static bool pipe_scanline_is_moving(struct drm_i915_private *dev_priv,
1046 enum pipe pipe)
1047 {
1048 i915_reg_t reg = PIPEDSL(pipe);
1049 u32 line1, line2;
1050 u32 line_mask;
1051
1052 if (IS_GEN(dev_priv, 2))
1053 line_mask = DSL_LINEMASK_GEN2;
1054 else
1055 line_mask = DSL_LINEMASK_GEN3;
1056
1057 line1 = intel_de_read(dev_priv, reg) & line_mask;
1058 msleep(5);
1059 line2 = intel_de_read(dev_priv, reg) & line_mask;
1060
1061 return line1 != line2;
1062 }
1063
1064 static void wait_for_pipe_scanline_moving(struct intel_crtc *crtc, bool state)
1065 {
1066 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1067 enum pipe pipe = crtc->pipe;
1068
1069 /* Wait for the display line to settle/start moving */
1070 if (wait_for(pipe_scanline_is_moving(dev_priv, pipe) == state, 100))
1071 drm_err(&dev_priv->drm,
1072 "pipe %c scanline %s wait timed out\n",
1073 pipe_name(pipe), onoff(state));
1074 }
1075
1076 static void intel_wait_for_pipe_scanline_stopped(struct intel_crtc *crtc)
1077 {
1078 wait_for_pipe_scanline_moving(crtc, false);
1079 }
1080
1081 static void intel_wait_for_pipe_scanline_moving(struct intel_crtc *crtc)
1082 {
1083 wait_for_pipe_scanline_moving(crtc, true);
1084 }
1085
1086 static void
1087 intel_wait_for_pipe_off(const struct intel_crtc_state *old_crtc_state)
1088 {
1089 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc);
1090 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1091
1092 if (INTEL_GEN(dev_priv) >= 4) {
1093 enum transcoder cpu_transcoder = old_crtc_state->cpu_transcoder;
1094 i915_reg_t reg = PIPECONF(cpu_transcoder);
1095
1096 /* Wait for the Pipe State to go off */
1097 if (intel_de_wait_for_clear(dev_priv, reg,
1098 I965_PIPECONF_ACTIVE, 100))
1099 drm_WARN(&dev_priv->drm, 1,
1100 "pipe_off wait timed out\n");
1101 } else {
1102 intel_wait_for_pipe_scanline_stopped(crtc);
1103 }
1104 }
1105
1106 /* Only for pre-ILK configs */
1107 void assert_pll(struct drm_i915_private *dev_priv,
1108 enum pipe pipe, bool state)
1109 {
1110 u32 val;
1111 bool cur_state;
1112
1113 val = intel_de_read(dev_priv, DPLL(pipe));
1114 cur_state = !!(val & DPLL_VCO_ENABLE);
1115 I915_STATE_WARN(cur_state != state,
1116 "PLL state assertion failure (expected %s, current %s)\n",
1117 onoff(state), onoff(cur_state));
1118 }
1119
1120 /* XXX: the dsi pll is shared between MIPI DSI ports */
1121 void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1122 {
1123 u32 val;
1124 bool cur_state;
1125
1126 vlv_cck_get(dev_priv);
1127 val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1128 vlv_cck_put(dev_priv);
1129
1130 cur_state = val & DSI_PLL_VCO_EN;
1131 I915_STATE_WARN(cur_state != state,
1132 "DSI PLL state assertion failure (expected %s, current %s)\n",
1133 onoff(state), onoff(cur_state));
1134 }
1135
1136 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1137 enum pipe pipe, bool state)
1138 {
1139 bool cur_state;
1140
1141 if (HAS_DDI(dev_priv)) {
1142 /*
1143 * DDI does not have a specific FDI_TX register.
1144 *
1145 * FDI is never fed from EDP transcoder
1146 * so pipe->transcoder cast is fine here.
1147 */
1148 enum transcoder cpu_transcoder = (enum transcoder)pipe;
1149 u32 val = intel_de_read(dev_priv,
1150 TRANS_DDI_FUNC_CTL(cpu_transcoder));
1151 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1152 } else {
1153 u32 val = intel_de_read(dev_priv, FDI_TX_CTL(pipe));
1154 cur_state = !!(val & FDI_TX_ENABLE);
1155 }
1156 I915_STATE_WARN(cur_state != state,
1157 "FDI TX state assertion failure (expected %s, current %s)\n",
1158 onoff(state), onoff(cur_state));
1159 }
1160 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1161 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1162
1163 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1164 enum pipe pipe, bool state)
1165 {
1166 u32 val;
1167 bool cur_state;
1168
1169 val = intel_de_read(dev_priv, FDI_RX_CTL(pipe));
1170 cur_state = !!(val & FDI_RX_ENABLE);
1171 I915_STATE_WARN(cur_state != state,
1172 "FDI RX state assertion failure (expected %s, current %s)\n",
1173 onoff(state), onoff(cur_state));
1174 }
1175 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1176 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1177
1178 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1179 enum pipe pipe)
1180 {
1181 u32 val;
1182
1183 /* ILK FDI PLL is always enabled */
1184 if (IS_GEN(dev_priv, 5))
1185 return;
1186
1187 /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1188 if (HAS_DDI(dev_priv))
1189 return;
1190
1191 val = intel_de_read(dev_priv, FDI_TX_CTL(pipe));
1192 I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1193 }
1194
1195 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1196 enum pipe pipe, bool state)
1197 {
1198 u32 val;
1199 bool cur_state;
1200
1201 val = intel_de_read(dev_priv, FDI_RX_CTL(pipe));
1202 cur_state = !!(val & FDI_RX_PLL_ENABLE);
1203 I915_STATE_WARN(cur_state != state,
1204 "FDI RX PLL assertion failure (expected %s, current %s)\n",
1205 onoff(state), onoff(cur_state));
1206 }
1207
1208 void assert_panel_unlocked(struct drm_i915_private *dev_priv, enum pipe pipe)
1209 {
1210 i915_reg_t pp_reg;
1211 u32 val;
1212 enum pipe panel_pipe = INVALID_PIPE;
1213 bool locked = true;
1214
1215 if (drm_WARN_ON(&dev_priv->drm, HAS_DDI(dev_priv)))
1216 return;
1217
1218 if (HAS_PCH_SPLIT(dev_priv)) {
1219 u32 port_sel;
1220
1221 pp_reg = PP_CONTROL(0);
1222 port_sel = intel_de_read(dev_priv, PP_ON_DELAYS(0)) & PANEL_PORT_SELECT_MASK;
1223
1224 switch (port_sel) {
1225 case PANEL_PORT_SELECT_LVDS:
1226 intel_lvds_port_enabled(dev_priv, PCH_LVDS, &panel_pipe);
1227 break;
1228 case PANEL_PORT_SELECT_DPA:
1229 intel_dp_port_enabled(dev_priv, DP_A, PORT_A, &panel_pipe);
1230 break;
1231 case PANEL_PORT_SELECT_DPC:
1232 intel_dp_port_enabled(dev_priv, PCH_DP_C, PORT_C, &panel_pipe);
1233 break;
1234 case PANEL_PORT_SELECT_DPD:
1235 intel_dp_port_enabled(dev_priv, PCH_DP_D, PORT_D, &panel_pipe);
1236 break;
1237 default:
1238 MISSING_CASE(port_sel);
1239 break;
1240 }
1241 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
1242 /* presumably write lock depends on pipe, not port select */
1243 pp_reg = PP_CONTROL(pipe);
1244 panel_pipe = pipe;
1245 } else {
1246 u32 port_sel;
1247
1248 pp_reg = PP_CONTROL(0);
1249 port_sel = intel_de_read(dev_priv, PP_ON_DELAYS(0)) & PANEL_PORT_SELECT_MASK;
1250
1251 drm_WARN_ON(&dev_priv->drm,
1252 port_sel != PANEL_PORT_SELECT_LVDS);
1253 intel_lvds_port_enabled(dev_priv, LVDS, &panel_pipe);
1254 }
1255
1256 val = intel_de_read(dev_priv, pp_reg);
1257 if (!(val & PANEL_POWER_ON) ||
1258 ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
1259 locked = false;
1260
1261 I915_STATE_WARN(panel_pipe == pipe && locked,
1262 "panel assertion failure, pipe %c regs locked\n",
1263 pipe_name(pipe));
1264 }
1265
1266 void assert_pipe(struct drm_i915_private *dev_priv,
1267 enum transcoder cpu_transcoder, bool state)
1268 {
1269 bool cur_state;
1270 enum intel_display_power_domain power_domain;
1271 intel_wakeref_t wakeref;
1272
1273 /* we keep both pipes enabled on 830 */
1274 if (IS_I830(dev_priv))
1275 state = true;
1276
1277 power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
1278 wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain);
1279 if (wakeref) {
1280 u32 val = intel_de_read(dev_priv, PIPECONF(cpu_transcoder));
1281 cur_state = !!(val & PIPECONF_ENABLE);
1282
1283 intel_display_power_put(dev_priv, power_domain, wakeref);
1284 } else {
1285 cur_state = false;
1286 }
1287
1288 I915_STATE_WARN(cur_state != state,
1289 "transcoder %s assertion failure (expected %s, current %s)\n",
1290 transcoder_name(cpu_transcoder),
1291 onoff(state), onoff(cur_state));
1292 }
1293
1294 static void assert_plane(struct intel_plane *plane, bool state)
1295 {
1296 enum pipe pipe;
1297 bool cur_state;
1298
1299 cur_state = plane->get_hw_state(plane, &pipe);
1300
1301 I915_STATE_WARN(cur_state != state,
1302 "%s assertion failure (expected %s, current %s)\n",
1303 plane->base.name, onoff(state), onoff(cur_state));
1304 }
1305
1306 #define assert_plane_enabled(p) assert_plane(p, true)
1307 #define assert_plane_disabled(p) assert_plane(p, false)
1308
1309 static void assert_planes_disabled(struct intel_crtc *crtc)
1310 {
1311 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1312 struct intel_plane *plane;
1313
1314 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane)
1315 assert_plane_disabled(plane);
1316 }
1317
1318 static void assert_vblank_disabled(struct drm_crtc *crtc)
1319 {
1320 if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0))
1321 drm_crtc_vblank_put(crtc);
1322 }
1323
1324 void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1325 enum pipe pipe)
1326 {
1327 u32 val;
1328 bool enabled;
1329
1330 val = intel_de_read(dev_priv, PCH_TRANSCONF(pipe));
1331 enabled = !!(val & TRANS_ENABLE);
1332 I915_STATE_WARN(enabled,
1333 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1334 pipe_name(pipe));
1335 }
1336
1337 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1338 enum pipe pipe, enum port port,
1339 i915_reg_t dp_reg)
1340 {
1341 enum pipe port_pipe;
1342 bool state;
1343
1344 state = intel_dp_port_enabled(dev_priv, dp_reg, port, &port_pipe);
1345
1346 I915_STATE_WARN(state && port_pipe == pipe,
1347 "PCH DP %c enabled on transcoder %c, should be disabled\n",
1348 port_name(port), pipe_name(pipe));
1349
1350 I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && !state && port_pipe == PIPE_B,
1351 "IBX PCH DP %c still using transcoder B\n",
1352 port_name(port));
1353 }
1354
1355 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1356 enum pipe pipe, enum port port,
1357 i915_reg_t hdmi_reg)
1358 {
1359 enum pipe port_pipe;
1360 bool state;
1361
1362 state = intel_sdvo_port_enabled(dev_priv, hdmi_reg, &port_pipe);
1363
1364 I915_STATE_WARN(state && port_pipe == pipe,
1365 "PCH HDMI %c enabled on transcoder %c, should be disabled\n",
1366 port_name(port), pipe_name(pipe));
1367
1368 I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && !state && port_pipe == PIPE_B,
1369 "IBX PCH HDMI %c still using transcoder B\n",
1370 port_name(port));
1371 }
1372
1373 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1374 enum pipe pipe)
1375 {
1376 enum pipe port_pipe;
1377
1378 assert_pch_dp_disabled(dev_priv, pipe, PORT_B, PCH_DP_B);
1379 assert_pch_dp_disabled(dev_priv, pipe, PORT_C, PCH_DP_C);
1380 assert_pch_dp_disabled(dev_priv, pipe, PORT_D, PCH_DP_D);
1381
1382 I915_STATE_WARN(intel_crt_port_enabled(dev_priv, PCH_ADPA, &port_pipe) &&
1383 port_pipe == pipe,
1384 "PCH VGA enabled on transcoder %c, should be disabled\n",
1385 pipe_name(pipe));
1386
1387 I915_STATE_WARN(intel_lvds_port_enabled(dev_priv, PCH_LVDS, &port_pipe) &&
1388 port_pipe == pipe,
1389 "PCH LVDS enabled on transcoder %c, should be disabled\n",
1390 pipe_name(pipe));
1391
1392 /* PCH SDVOB multiplex with HDMIB */
1393 assert_pch_hdmi_disabled(dev_priv, pipe, PORT_B, PCH_HDMIB);
1394 assert_pch_hdmi_disabled(dev_priv, pipe, PORT_C, PCH_HDMIC);
1395 assert_pch_hdmi_disabled(dev_priv, pipe, PORT_D, PCH_HDMID);
1396 }
1397
1398 static void _vlv_enable_pll(struct intel_crtc *crtc,
1399 const struct intel_crtc_state *pipe_config)
1400 {
1401 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1402 enum pipe pipe = crtc->pipe;
1403
1404 intel_de_write(dev_priv, DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1405 intel_de_posting_read(dev_priv, DPLL(pipe));
1406 udelay(150);
1407
1408 if (intel_de_wait_for_set(dev_priv, DPLL(pipe), DPLL_LOCK_VLV, 1))
1409 drm_err(&dev_priv->drm, "DPLL %d failed to lock\n", pipe);
1410 }
1411
1412 static void vlv_enable_pll(struct intel_crtc *crtc,
1413 const struct intel_crtc_state *pipe_config)
1414 {
1415 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1416 enum pipe pipe = crtc->pipe;
1417
1418 assert_pipe_disabled(dev_priv, pipe_config->cpu_transcoder);
1419
1420 /* PLL is protected by panel, make sure we can write it */
1421 assert_panel_unlocked(dev_priv, pipe);
1422
1423 if (pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE)
1424 _vlv_enable_pll(crtc, pipe_config);
1425
1426 intel_de_write(dev_priv, DPLL_MD(pipe),
1427 pipe_config->dpll_hw_state.dpll_md);
1428 intel_de_posting_read(dev_priv, DPLL_MD(pipe));
1429 }
1430
1431
1432 static void _chv_enable_pll(struct intel_crtc *crtc,
1433 const struct intel_crtc_state *pipe_config)
1434 {
1435 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1436 enum pipe pipe = crtc->pipe;
1437 enum dpio_channel port = vlv_pipe_to_channel(pipe);
1438 u32 tmp;
1439
1440 vlv_dpio_get(dev_priv);
1441
1442 /* Enable back the 10bit clock to display controller */
1443 tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1444 tmp |= DPIO_DCLKP_EN;
1445 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1446
1447 vlv_dpio_put(dev_priv);
1448
1449 /*
1450 * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1451 */
1452 udelay(1);
1453
1454 /* Enable PLL */
1455 intel_de_write(dev_priv, DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1456
1457 /* Check PLL is locked */
1458 if (intel_de_wait_for_set(dev_priv, DPLL(pipe), DPLL_LOCK_VLV, 1))
1459 drm_err(&dev_priv->drm, "PLL %d failed to lock\n", pipe);
1460 }
1461
1462 static void chv_enable_pll(struct intel_crtc *crtc,
1463 const struct intel_crtc_state *pipe_config)
1464 {
1465 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1466 enum pipe pipe = crtc->pipe;
1467
1468 assert_pipe_disabled(dev_priv, pipe_config->cpu_transcoder);
1469
1470 /* PLL is protected by panel, make sure we can write it */
1471 assert_panel_unlocked(dev_priv, pipe);
1472
1473 if (pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE)
1474 _chv_enable_pll(crtc, pipe_config);
1475
1476 if (pipe != PIPE_A) {
1477 /*
1478 * WaPixelRepeatModeFixForC0:chv
1479 *
1480 * DPLLCMD is AWOL. Use chicken bits to propagate
1481 * the value from DPLLBMD to either pipe B or C.
1482 */
1483 intel_de_write(dev_priv, CBR4_VLV, CBR_DPLLBMD_PIPE(pipe));
1484 intel_de_write(dev_priv, DPLL_MD(PIPE_B),
1485 pipe_config->dpll_hw_state.dpll_md);
1486 intel_de_write(dev_priv, CBR4_VLV, 0);
1487 dev_priv->chv_dpll_md[pipe] = pipe_config->dpll_hw_state.dpll_md;
1488
1489 /*
1490 * DPLLB VGA mode also seems to cause problems.
1491 * We should always have it disabled.
1492 */
1493 drm_WARN_ON(&dev_priv->drm,
1494 (intel_de_read(dev_priv, DPLL(PIPE_B)) &
1495 DPLL_VGA_MODE_DIS) == 0);
1496 } else {
1497 intel_de_write(dev_priv, DPLL_MD(pipe),
1498 pipe_config->dpll_hw_state.dpll_md);
1499 intel_de_posting_read(dev_priv, DPLL_MD(pipe));
1500 }
1501 }
1502
1503 static bool i9xx_has_pps(struct drm_i915_private *dev_priv)
1504 {
1505 if (IS_I830(dev_priv))
1506 return false;
1507
1508 return IS_PINEVIEW(dev_priv) || IS_MOBILE(dev_priv);
1509 }
1510
1511 static void i9xx_enable_pll(struct intel_crtc *crtc,
1512 const struct intel_crtc_state *crtc_state)
1513 {
1514 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1515 i915_reg_t reg = DPLL(crtc->pipe);
1516 u32 dpll = crtc_state->dpll_hw_state.dpll;
1517 int i;
1518
1519 assert_pipe_disabled(dev_priv, crtc_state->cpu_transcoder);
1520
1521 /* PLL is protected by panel, make sure we can write it */
1522 if (i9xx_has_pps(dev_priv))
1523 assert_panel_unlocked(dev_priv, crtc->pipe);
1524
1525 /*
1526 * Apparently we need to have VGA mode enabled prior to changing
1527 * the P1/P2 dividers. Otherwise the DPLL will keep using the old
1528 * dividers, even though the register value does change.
1529 */
1530 intel_de_write(dev_priv, reg, dpll & ~DPLL_VGA_MODE_DIS);
1531 intel_de_write(dev_priv, reg, dpll);
1532
1533 /* Wait for the clocks to stabilize. */
1534 intel_de_posting_read(dev_priv, reg);
1535 udelay(150);
1536
1537 if (INTEL_GEN(dev_priv) >= 4) {
1538 intel_de_write(dev_priv, DPLL_MD(crtc->pipe),
1539 crtc_state->dpll_hw_state.dpll_md);
1540 } else {
1541 /* The pixel multiplier can only be updated once the
1542 * DPLL is enabled and the clocks are stable.
1543 *
1544 * So write it again.
1545 */
1546 intel_de_write(dev_priv, reg, dpll);
1547 }
1548
1549 /* We do this three times for luck */
1550 for (i = 0; i < 3; i++) {
1551 intel_de_write(dev_priv, reg, dpll);
1552 intel_de_posting_read(dev_priv, reg);
1553 udelay(150); /* wait for warmup */
1554 }
1555 }
1556
1557 static void i9xx_disable_pll(const struct intel_crtc_state *crtc_state)
1558 {
1559 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1560 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1561 enum pipe pipe = crtc->pipe;
1562
1563 /* Don't disable pipe or pipe PLLs if needed */
1564 if (IS_I830(dev_priv))
1565 return;
1566
1567 /* Make sure the pipe isn't still relying on us */
1568 assert_pipe_disabled(dev_priv, crtc_state->cpu_transcoder);
1569
1570 intel_de_write(dev_priv, DPLL(pipe), DPLL_VGA_MODE_DIS);
1571 intel_de_posting_read(dev_priv, DPLL(pipe));
1572 }
1573
1574 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1575 {
1576 u32 val;
1577
1578 /* Make sure the pipe isn't still relying on us */
1579 assert_pipe_disabled(dev_priv, (enum transcoder)pipe);
1580
1581 val = DPLL_INTEGRATED_REF_CLK_VLV |
1582 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1583 if (pipe != PIPE_A)
1584 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1585
1586 intel_de_write(dev_priv, DPLL(pipe), val);
1587 intel_de_posting_read(dev_priv, DPLL(pipe));
1588 }
1589
1590 static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1591 {
1592 enum dpio_channel port = vlv_pipe_to_channel(pipe);
1593 u32 val;
1594
1595 /* Make sure the pipe isn't still relying on us */
1596 assert_pipe_disabled(dev_priv, (enum transcoder)pipe);
1597
1598 val = DPLL_SSC_REF_CLK_CHV |
1599 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1600 if (pipe != PIPE_A)
1601 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1602
1603 intel_de_write(dev_priv, DPLL(pipe), val);
1604 intel_de_posting_read(dev_priv, DPLL(pipe));
1605
1606 vlv_dpio_get(dev_priv);
1607
1608 /* Disable 10bit clock to display controller */
1609 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1610 val &= ~DPIO_DCLKP_EN;
1611 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1612
1613 vlv_dpio_put(dev_priv);
1614 }
1615
1616 void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1617 struct intel_digital_port *dig_port,
1618 unsigned int expected_mask)
1619 {
1620 u32 port_mask;
1621 i915_reg_t dpll_reg;
1622
1623 switch (dig_port->base.port) {
1624 case PORT_B:
1625 port_mask = DPLL_PORTB_READY_MASK;
1626 dpll_reg = DPLL(0);
1627 break;
1628 case PORT_C:
1629 port_mask = DPLL_PORTC_READY_MASK;
1630 dpll_reg = DPLL(0);
1631 expected_mask <<= 4;
1632 break;
1633 case PORT_D:
1634 port_mask = DPLL_PORTD_READY_MASK;
1635 dpll_reg = DPIO_PHY_STATUS;
1636 break;
1637 default:
1638 BUG();
1639 }
1640
1641 if (intel_de_wait_for_register(dev_priv, dpll_reg,
1642 port_mask, expected_mask, 1000))
1643 drm_WARN(&dev_priv->drm, 1,
1644 "timed out waiting for [ENCODER:%d:%s] port ready: got 0x%x, expected 0x%x\n",
1645 dig_port->base.base.base.id, dig_port->base.base.name,
1646 intel_de_read(dev_priv, dpll_reg) & port_mask,
1647 expected_mask);
1648 }
1649
1650 static void ilk_enable_pch_transcoder(const struct intel_crtc_state *crtc_state)
1651 {
1652 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1653 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1654 enum pipe pipe = crtc->pipe;
1655 i915_reg_t reg;
1656 u32 val, pipeconf_val;
1657
1658 /* Make sure PCH DPLL is enabled */
1659 assert_shared_dpll_enabled(dev_priv, crtc_state->shared_dpll);
1660
1661 /* FDI must be feeding us bits for PCH ports */
1662 assert_fdi_tx_enabled(dev_priv, pipe);
1663 assert_fdi_rx_enabled(dev_priv, pipe);
1664
1665 if (HAS_PCH_CPT(dev_priv)) {
1666 reg = TRANS_CHICKEN2(pipe);
1667 val = intel_de_read(dev_priv, reg);
1668 /*
1669 * Workaround: Set the timing override bit
1670 * before enabling the pch transcoder.
1671 */
1672 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1673 /* Configure frame start delay to match the CPU */
1674 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
1675 val |= TRANS_CHICKEN2_FRAME_START_DELAY(0);
1676 intel_de_write(dev_priv, reg, val);
1677 }
1678
1679 reg = PCH_TRANSCONF(pipe);
1680 val = intel_de_read(dev_priv, reg);
1681 pipeconf_val = intel_de_read(dev_priv, PIPECONF(pipe));
1682
1683 if (HAS_PCH_IBX(dev_priv)) {
1684 /* Configure frame start delay to match the CPU */
1685 val &= ~TRANS_FRAME_START_DELAY_MASK;
1686 val |= TRANS_FRAME_START_DELAY(0);
1687
1688 /*
1689 * Make the BPC in transcoder be consistent with
1690 * that in pipeconf reg. For HDMI we must use 8bpc
1691 * here for both 8bpc and 12bpc.
1692 */
1693 val &= ~PIPECONF_BPC_MASK;
1694 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
1695 val |= PIPECONF_8BPC;
1696 else
1697 val |= pipeconf_val & PIPECONF_BPC_MASK;
1698 }
1699
1700 val &= ~TRANS_INTERLACE_MASK;
1701 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK) {
1702 if (HAS_PCH_IBX(dev_priv) &&
1703 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO))
1704 val |= TRANS_LEGACY_INTERLACED_ILK;
1705 else
1706 val |= TRANS_INTERLACED;
1707 } else {
1708 val |= TRANS_PROGRESSIVE;
1709 }
1710
1711 intel_de_write(dev_priv, reg, val | TRANS_ENABLE);
1712 if (intel_de_wait_for_set(dev_priv, reg, TRANS_STATE_ENABLE, 100))
1713 drm_err(&dev_priv->drm, "failed to enable transcoder %c\n",
1714 pipe_name(pipe));
1715 }
1716
1717 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1718 enum transcoder cpu_transcoder)
1719 {
1720 u32 val, pipeconf_val;
1721
1722 /* FDI must be feeding us bits for PCH ports */
1723 assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
1724 assert_fdi_rx_enabled(dev_priv, PIPE_A);
1725
1726 val = intel_de_read(dev_priv, TRANS_CHICKEN2(PIPE_A));
1727 /* Workaround: set timing override bit. */
1728 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1729 /* Configure frame start delay to match the CPU */
1730 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
1731 val |= TRANS_CHICKEN2_FRAME_START_DELAY(0);
1732 intel_de_write(dev_priv, TRANS_CHICKEN2(PIPE_A), val);
1733
1734 val = TRANS_ENABLE;
1735 pipeconf_val = intel_de_read(dev_priv, PIPECONF(cpu_transcoder));
1736
1737 if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1738 PIPECONF_INTERLACED_ILK)
1739 val |= TRANS_INTERLACED;
1740 else
1741 val |= TRANS_PROGRESSIVE;
1742
1743 intel_de_write(dev_priv, LPT_TRANSCONF, val);
1744 if (intel_de_wait_for_set(dev_priv, LPT_TRANSCONF,
1745 TRANS_STATE_ENABLE, 100))
1746 drm_err(&dev_priv->drm, "Failed to enable PCH transcoder\n");
1747 }
1748
1749 static void ilk_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1750 enum pipe pipe)
1751 {
1752 i915_reg_t reg;
1753 u32 val;
1754
1755 /* FDI relies on the transcoder */
1756 assert_fdi_tx_disabled(dev_priv, pipe);
1757 assert_fdi_rx_disabled(dev_priv, pipe);
1758
1759 /* Ports must be off as well */
1760 assert_pch_ports_disabled(dev_priv, pipe);
1761
1762 reg = PCH_TRANSCONF(pipe);
1763 val = intel_de_read(dev_priv, reg);
1764 val &= ~TRANS_ENABLE;
1765 intel_de_write(dev_priv, reg, val);
1766 /* wait for PCH transcoder off, transcoder state */
1767 if (intel_de_wait_for_clear(dev_priv, reg, TRANS_STATE_ENABLE, 50))
1768 drm_err(&dev_priv->drm, "failed to disable transcoder %c\n",
1769 pipe_name(pipe));
1770
1771 if (HAS_PCH_CPT(dev_priv)) {
1772 /* Workaround: Clear the timing override chicken bit again. */
1773 reg = TRANS_CHICKEN2(pipe);
1774 val = intel_de_read(dev_priv, reg);
1775 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1776 intel_de_write(dev_priv, reg, val);
1777 }
1778 }
1779
1780 void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1781 {
1782 u32 val;
1783
1784 val = intel_de_read(dev_priv, LPT_TRANSCONF);
1785 val &= ~TRANS_ENABLE;
1786 intel_de_write(dev_priv, LPT_TRANSCONF, val);
1787 /* wait for PCH transcoder off, transcoder state */
1788 if (intel_de_wait_for_clear(dev_priv, LPT_TRANSCONF,
1789 TRANS_STATE_ENABLE, 50))
1790 drm_err(&dev_priv->drm, "Failed to disable PCH transcoder\n");
1791
1792 /* Workaround: clear timing override bit. */
1793 val = intel_de_read(dev_priv, TRANS_CHICKEN2(PIPE_A));
1794 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1795 intel_de_write(dev_priv, TRANS_CHICKEN2(PIPE_A), val);
1796 }
1797
1798 enum pipe intel_crtc_pch_transcoder(struct intel_crtc *crtc)
1799 {
1800 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1801
1802 if (HAS_PCH_LPT(dev_priv))
1803 return PIPE_A;
1804 else
1805 return crtc->pipe;
1806 }
1807
1808 static u32 intel_crtc_max_vblank_count(const struct intel_crtc_state *crtc_state)
1809 {
1810 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1811
1812 /*
1813 * On i965gm the hardware frame counter reads
1814 * zero when the TV encoder is enabled :(
1815 */
1816 if (IS_I965GM(dev_priv) &&
1817 (crtc_state->output_types & BIT(INTEL_OUTPUT_TVOUT)))
1818 return 0;
1819
1820 if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
1821 return 0xffffffff; /* full 32 bit counter */
1822 else if (INTEL_GEN(dev_priv) >= 3)
1823 return 0xffffff; /* only 24 bits of frame count */
1824 else
1825 return 0; /* Gen2 doesn't have a hardware frame counter */
1826 }
1827
1828 void intel_crtc_vblank_on(const struct intel_crtc_state *crtc_state)
1829 {
1830 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1831
1832 assert_vblank_disabled(&crtc->base);
1833 drm_crtc_set_max_vblank_count(&crtc->base,
1834 intel_crtc_max_vblank_count(crtc_state));
1835 drm_crtc_vblank_on(&crtc->base);
1836 }
1837
1838 void intel_crtc_vblank_off(const struct intel_crtc_state *crtc_state)
1839 {
1840 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1841
1842 drm_crtc_vblank_off(&crtc->base);
1843 assert_vblank_disabled(&crtc->base);
1844 }
1845
1846 void intel_enable_pipe(const struct intel_crtc_state *new_crtc_state)
1847 {
1848 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
1849 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1850 enum transcoder cpu_transcoder = new_crtc_state->cpu_transcoder;
1851 enum pipe pipe = crtc->pipe;
1852 i915_reg_t reg;
1853 u32 val;
1854
1855 drm_dbg_kms(&dev_priv->drm, "enabling pipe %c\n", pipe_name(pipe));
1856
1857 assert_planes_disabled(crtc);
1858
1859 /*
1860 * A pipe without a PLL won't actually be able to drive bits from
1861 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
1862 * need the check.
1863 */
1864 if (HAS_GMCH(dev_priv)) {
1865 if (intel_crtc_has_type(new_crtc_state, INTEL_OUTPUT_DSI))
1866 assert_dsi_pll_enabled(dev_priv);
1867 else
1868 assert_pll_enabled(dev_priv, pipe);
1869 } else {
1870 if (new_crtc_state->has_pch_encoder) {
1871 /* if driving the PCH, we need FDI enabled */
1872 assert_fdi_rx_pll_enabled(dev_priv,
1873 intel_crtc_pch_transcoder(crtc));
1874 assert_fdi_tx_pll_enabled(dev_priv,
1875 (enum pipe) cpu_transcoder);
1876 }
1877 /* FIXME: assert CPU port conditions for SNB+ */
1878 }
1879
1880 trace_intel_pipe_enable(crtc);
1881
1882 reg = PIPECONF(cpu_transcoder);
1883 val = intel_de_read(dev_priv, reg);
1884 if (val & PIPECONF_ENABLE) {
1885 /* we keep both pipes enabled on 830 */
1886 drm_WARN_ON(&dev_priv->drm, !IS_I830(dev_priv));
1887 return;
1888 }
1889
1890 intel_de_write(dev_priv, reg, val | PIPECONF_ENABLE);
1891 intel_de_posting_read(dev_priv, reg);
1892
1893 /*
1894 * Until the pipe starts PIPEDSL reads will return a stale value,
1895 * which causes an apparent vblank timestamp jump when PIPEDSL
1896 * resets to its proper value. That also messes up the frame count
1897 * when it's derived from the timestamps. So let's wait for the
1898 * pipe to start properly before we call drm_crtc_vblank_on()
1899 */
1900 if (intel_crtc_max_vblank_count(new_crtc_state) == 0)
1901 intel_wait_for_pipe_scanline_moving(crtc);
1902 }
1903
1904 void intel_disable_pipe(const struct intel_crtc_state *old_crtc_state)
1905 {
1906 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc);
1907 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1908 enum transcoder cpu_transcoder = old_crtc_state->cpu_transcoder;
1909 enum pipe pipe = crtc->pipe;
1910 i915_reg_t reg;
1911 u32 val;
1912
1913 drm_dbg_kms(&dev_priv->drm, "disabling pipe %c\n", pipe_name(pipe));
1914
1915 /*
1916 * Make sure planes won't keep trying to pump pixels to us,
1917 * or we might hang the display.
1918 */
1919 assert_planes_disabled(crtc);
1920
1921 trace_intel_pipe_disable(crtc);
1922
1923 reg = PIPECONF(cpu_transcoder);
1924 val = intel_de_read(dev_priv, reg);
1925 if ((val & PIPECONF_ENABLE) == 0)
1926 return;
1927
1928 /*
1929 * Double wide has implications for planes
1930 * so best keep it disabled when not needed.
1931 */
1932 if (old_crtc_state->double_wide)
1933 val &= ~PIPECONF_DOUBLE_WIDE;
1934
1935 /* Don't disable pipe or pipe PLLs if needed */
1936 if (!IS_I830(dev_priv))
1937 val &= ~PIPECONF_ENABLE;
1938
1939 intel_de_write(dev_priv, reg, val);
1940 if ((val & PIPECONF_ENABLE) == 0)
1941 intel_wait_for_pipe_off(old_crtc_state);
1942 }
1943
1944 static unsigned int intel_tile_size(const struct drm_i915_private *dev_priv)
1945 {
1946 return IS_GEN(dev_priv, 2) ? 2048 : 4096;
1947 }
1948
1949 static bool is_ccs_plane(const struct drm_framebuffer *fb, int plane)
1950 {
1951 if (!is_ccs_modifier(fb->modifier))
1952 return false;
1953
1954 return plane >= fb->format->num_planes / 2;
1955 }
1956
1957 static bool is_gen12_ccs_modifier(u64 modifier)
1958 {
1959 return modifier == I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS ||
1960 modifier == I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS;
1961
1962 }
1963
1964 static bool is_gen12_ccs_plane(const struct drm_framebuffer *fb, int plane)
1965 {
1966 return is_gen12_ccs_modifier(fb->modifier) && is_ccs_plane(fb, plane);
1967 }
1968
1969 static bool is_aux_plane(const struct drm_framebuffer *fb, int plane)
1970 {
1971 if (is_ccs_modifier(fb->modifier))
1972 return is_ccs_plane(fb, plane);
1973
1974 return plane == 1;
1975 }
1976
1977 static int main_to_ccs_plane(const struct drm_framebuffer *fb, int main_plane)
1978 {
1979 drm_WARN_ON(fb->dev, !is_ccs_modifier(fb->modifier) ||
1980 (main_plane && main_plane >= fb->format->num_planes / 2));
1981
1982 return fb->format->num_planes / 2 + main_plane;
1983 }
1984
1985 static int ccs_to_main_plane(const struct drm_framebuffer *fb, int ccs_plane)
1986 {
1987 drm_WARN_ON(fb->dev, !is_ccs_modifier(fb->modifier) ||
1988 ccs_plane < fb->format->num_planes / 2);
1989
1990 return ccs_plane - fb->format->num_planes / 2;
1991 }
1992
1993 /* Return either the main plane's CCS or - if not a CCS FB - UV plane */
1994 int intel_main_to_aux_plane(const struct drm_framebuffer *fb, int main_plane)
1995 {
1996 if (is_ccs_modifier(fb->modifier))
1997 return main_to_ccs_plane(fb, main_plane);
1998
1999 return 1;
2000 }
2001
2002 bool
2003 intel_format_info_is_yuv_semiplanar(const struct drm_format_info *info,
2004 uint64_t modifier)
2005 {
2006 return info->is_yuv &&
2007 info->num_planes == (is_ccs_modifier(modifier) ? 4 : 2);
2008 }
2009
2010 static bool is_semiplanar_uv_plane(const struct drm_framebuffer *fb,
2011 int color_plane)
2012 {
2013 return intel_format_info_is_yuv_semiplanar(fb->format, fb->modifier) &&
2014 color_plane == 1;
2015 }
2016
2017 static unsigned int
2018 intel_tile_width_bytes(const struct drm_framebuffer *fb, int color_plane)
2019 {
2020 struct drm_i915_private *dev_priv = to_i915(fb->dev);
2021 unsigned int cpp = fb->format->cpp[color_plane];
2022
2023 switch (fb->modifier) {
2024 case DRM_FORMAT_MOD_LINEAR:
2025 return intel_tile_size(dev_priv);
2026 case I915_FORMAT_MOD_X_TILED:
2027 if (IS_GEN(dev_priv, 2))
2028 return 128;
2029 else
2030 return 512;
2031 case I915_FORMAT_MOD_Y_TILED_CCS:
2032 if (is_ccs_plane(fb, color_plane))
2033 return 128;
2034 fallthrough;
2035 case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS:
2036 case I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS:
2037 if (is_ccs_plane(fb, color_plane))
2038 return 64;
2039 fallthrough;
2040 case I915_FORMAT_MOD_Y_TILED:
2041 if (IS_GEN(dev_priv, 2) || HAS_128_BYTE_Y_TILING(dev_priv))
2042 return 128;
2043 else
2044 return 512;
2045 case I915_FORMAT_MOD_Yf_TILED_CCS:
2046 if (is_ccs_plane(fb, color_plane))
2047 return 128;
2048 fallthrough;
2049 case I915_FORMAT_MOD_Yf_TILED:
2050 switch (cpp) {
2051 case 1:
2052 return 64;
2053 case 2:
2054 case 4:
2055 return 128;
2056 case 8:
2057 case 16:
2058 return 256;
2059 default:
2060 MISSING_CASE(cpp);
2061 return cpp;
2062 }
2063 break;
2064 default:
2065 MISSING_CASE(fb->modifier);
2066 return cpp;
2067 }
2068 }
2069
2070 static unsigned int
2071 intel_tile_height(const struct drm_framebuffer *fb, int color_plane)
2072 {
2073 if (is_gen12_ccs_plane(fb, color_plane))
2074 return 1;
2075
2076 return intel_tile_size(to_i915(fb->dev)) /
2077 intel_tile_width_bytes(fb, color_plane);
2078 }
2079
2080 /* Return the tile dimensions in pixel units */
2081 static void intel_tile_dims(const struct drm_framebuffer *fb, int color_plane,
2082 unsigned int *tile_width,
2083 unsigned int *tile_height)
2084 {
2085 unsigned int tile_width_bytes = intel_tile_width_bytes(fb, color_plane);
2086 unsigned int cpp = fb->format->cpp[color_plane];
2087
2088 *tile_width = tile_width_bytes / cpp;
2089 *tile_height = intel_tile_height(fb, color_plane);
2090 }
2091
2092 static unsigned int intel_tile_row_size(const struct drm_framebuffer *fb,
2093 int color_plane)
2094 {
2095 unsigned int tile_width, tile_height;
2096
2097 intel_tile_dims(fb, color_plane, &tile_width, &tile_height);
2098
2099 return fb->pitches[color_plane] * tile_height;
2100 }
2101
2102 unsigned int
2103 intel_fb_align_height(const struct drm_framebuffer *fb,
2104 int color_plane, unsigned int height)
2105 {
2106 unsigned int tile_height = intel_tile_height(fb, color_plane);
2107
2108 return ALIGN(height, tile_height);
2109 }
2110
2111 unsigned int intel_rotation_info_size(const struct intel_rotation_info *rot_info)
2112 {
2113 unsigned int size = 0;
2114 int i;
2115
2116 for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++)
2117 size += rot_info->plane[i].width * rot_info->plane[i].height;
2118
2119 return size;
2120 }
2121
2122 unsigned int intel_remapped_info_size(const struct intel_remapped_info *rem_info)
2123 {
2124 unsigned int size = 0;
2125 int i;
2126
2127 for (i = 0 ; i < ARRAY_SIZE(rem_info->plane); i++)
2128 size += rem_info->plane[i].width * rem_info->plane[i].height;
2129
2130 return size;
2131 }
2132
2133 static void
2134 intel_fill_fb_ggtt_view(struct i915_ggtt_view *view,
2135 const struct drm_framebuffer *fb,
2136 unsigned int rotation)
2137 {
2138 view->type = I915_GGTT_VIEW_NORMAL;
2139 if (drm_rotation_90_or_270(rotation)) {
2140 view->type = I915_GGTT_VIEW_ROTATED;
2141 view->rotated = to_intel_framebuffer(fb)->rot_info;
2142 }
2143 }
2144
2145 static unsigned int intel_cursor_alignment(const struct drm_i915_private *dev_priv)
2146 {
2147 if (IS_I830(dev_priv))
2148 return 16 * 1024;
2149 else if (IS_I85X(dev_priv))
2150 return 256;
2151 else if (IS_I845G(dev_priv) || IS_I865G(dev_priv))
2152 return 32;
2153 else
2154 return 4 * 1024;
2155 }
2156
2157 static unsigned int intel_linear_alignment(const struct drm_i915_private *dev_priv)
2158 {
2159 if (INTEL_GEN(dev_priv) >= 9)
2160 return 256 * 1024;
2161 else if (IS_I965G(dev_priv) || IS_I965GM(dev_priv) ||
2162 IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
2163 return 128 * 1024;
2164 else if (INTEL_GEN(dev_priv) >= 4)
2165 return 4 * 1024;
2166 else
2167 return 0;
2168 }
2169
2170 static unsigned int intel_surf_alignment(const struct drm_framebuffer *fb,
2171 int color_plane)
2172 {
2173 struct drm_i915_private *dev_priv = to_i915(fb->dev);
2174
2175 /* AUX_DIST needs only 4K alignment */
2176 if ((INTEL_GEN(dev_priv) < 12 && is_aux_plane(fb, color_plane)) ||
2177 is_ccs_plane(fb, color_plane))
2178 return 4096;
2179
2180 switch (fb->modifier) {
2181 case DRM_FORMAT_MOD_LINEAR:
2182 return intel_linear_alignment(dev_priv);
2183 case I915_FORMAT_MOD_X_TILED:
2184 if (INTEL_GEN(dev_priv) >= 9)
2185 return 256 * 1024;
2186 return 0;
2187 case I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS:
2188 if (is_semiplanar_uv_plane(fb, color_plane))
2189 return intel_tile_row_size(fb, color_plane);
2190 fallthrough;
2191 case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS:
2192 return 16 * 1024;
2193 case I915_FORMAT_MOD_Y_TILED_CCS:
2194 case I915_FORMAT_MOD_Yf_TILED_CCS:
2195 case I915_FORMAT_MOD_Y_TILED:
2196 if (INTEL_GEN(dev_priv) >= 12 &&
2197 is_semiplanar_uv_plane(fb, color_plane))
2198 return intel_tile_row_size(fb, color_plane);
2199 fallthrough;
2200 case I915_FORMAT_MOD_Yf_TILED:
2201 return 1 * 1024 * 1024;
2202 default:
2203 MISSING_CASE(fb->modifier);
2204 return 0;
2205 }
2206 }
2207
2208 static bool intel_plane_uses_fence(const struct intel_plane_state *plane_state)
2209 {
2210 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
2211 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
2212
2213 return INTEL_GEN(dev_priv) < 4 ||
2214 (plane->has_fbc &&
2215 plane_state->view.type == I915_GGTT_VIEW_NORMAL);
2216 }
2217
2218 struct i915_vma *
2219 intel_pin_and_fence_fb_obj(struct drm_framebuffer *fb,
2220 const struct i915_ggtt_view *view,
2221 bool uses_fence,
2222 unsigned long *out_flags)
2223 {
2224 struct drm_device *dev = fb->dev;
2225 struct drm_i915_private *dev_priv = to_i915(dev);
2226 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2227 intel_wakeref_t wakeref;
2228 struct i915_vma *vma;
2229 unsigned int pinctl;
2230 u32 alignment;
2231
2232 if (drm_WARN_ON(dev, !i915_gem_object_is_framebuffer(obj)))
2233 return ERR_PTR(-EINVAL);
2234
2235 alignment = intel_surf_alignment(fb, 0);
2236 if (drm_WARN_ON(dev, alignment && !is_power_of_2(alignment)))
2237 return ERR_PTR(-EINVAL);
2238
2239 /* Note that the w/a also requires 64 PTE of padding following the
2240 * bo. We currently fill all unused PTE with the shadow page and so
2241 * we should always have valid PTE following the scanout preventing
2242 * the VT-d warning.
2243 */
2244 if (intel_scanout_needs_vtd_wa(dev_priv) && alignment < 256 * 1024)
2245 alignment = 256 * 1024;
2246
2247 /*
2248 * Global gtt pte registers are special registers which actually forward
2249 * writes to a chunk of system memory. Which means that there is no risk
2250 * that the register values disappear as soon as we call
2251 * intel_runtime_pm_put(), so it is correct to wrap only the
2252 * pin/unpin/fence and not more.
2253 */
2254 wakeref = intel_runtime_pm_get(&dev_priv->runtime_pm);
2255
2256 atomic_inc(&dev_priv->gpu_error.pending_fb_pin);
2257
2258 /*
2259 * Valleyview is definitely limited to scanning out the first
2260 * 512MiB. Lets presume this behaviour was inherited from the
2261 * g4x display engine and that all earlier gen are similarly
2262 * limited. Testing suggests that it is a little more
2263 * complicated than this. For example, Cherryview appears quite
2264 * happy to scanout from anywhere within its global aperture.
2265 */
2266 pinctl = 0;
2267 if (HAS_GMCH(dev_priv))
2268 pinctl |= PIN_MAPPABLE;
2269
2270 vma = i915_gem_object_pin_to_display_plane(obj,
2271 alignment, view, pinctl);
2272 if (IS_ERR(vma))
2273 goto err;
2274
2275 if (uses_fence && i915_vma_is_map_and_fenceable(vma)) {
2276 int ret;
2277
2278 /*
2279 * Install a fence for tiled scan-out. Pre-i965 always needs a
2280 * fence, whereas 965+ only requires a fence if using
2281 * framebuffer compression. For simplicity, we always, when
2282 * possible, install a fence as the cost is not that onerous.
2283 *
2284 * If we fail to fence the tiled scanout, then either the
2285 * modeset will reject the change (which is highly unlikely as
2286 * the affected systems, all but one, do not have unmappable
2287 * space) or we will not be able to enable full powersaving
2288 * techniques (also likely not to apply due to various limits
2289 * FBC and the like impose on the size of the buffer, which
2290 * presumably we violated anyway with this unmappable buffer).
2291 * Anyway, it is presumably better to stumble onwards with
2292 * something and try to run the system in a "less than optimal"
2293 * mode that matches the user configuration.
2294 */
2295 ret = i915_vma_pin_fence(vma);
2296 if (ret != 0 && INTEL_GEN(dev_priv) < 4) {
2297 i915_gem_object_unpin_from_display_plane(vma);
2298 vma = ERR_PTR(ret);
2299 goto err;
2300 }
2301
2302 if (ret == 0 && vma->fence)
2303 *out_flags |= PLANE_HAS_FENCE;
2304 }
2305
2306 i915_vma_get(vma);
2307 err:
2308 atomic_dec(&dev_priv->gpu_error.pending_fb_pin);
2309 intel_runtime_pm_put(&dev_priv->runtime_pm, wakeref);
2310 return vma;
2311 }
2312
2313 void intel_unpin_fb_vma(struct i915_vma *vma, unsigned long flags)
2314 {
2315 i915_gem_object_lock(vma->obj, NULL);
2316 if (flags & PLANE_HAS_FENCE)
2317 i915_vma_unpin_fence(vma);
2318 i915_gem_object_unpin_from_display_plane(vma);
2319 i915_gem_object_unlock(vma->obj);
2320
2321 i915_vma_put(vma);
2322 }
2323
2324 static int intel_fb_pitch(const struct drm_framebuffer *fb, int color_plane,
2325 unsigned int rotation)
2326 {
2327 if (drm_rotation_90_or_270(rotation))
2328 return to_intel_framebuffer(fb)->rotated[color_plane].pitch;
2329 else
2330 return fb->pitches[color_plane];
2331 }
2332
2333 /*
2334 * Convert the x/y offsets into a linear offset.
2335 * Only valid with 0/180 degree rotation, which is fine since linear
2336 * offset is only used with linear buffers on pre-hsw and tiled buffers
2337 * with gen2/3, and 90/270 degree rotations isn't supported on any of them.
2338 */
2339 u32 intel_fb_xy_to_linear(int x, int y,
2340 const struct intel_plane_state *state,
2341 int color_plane)
2342 {
2343 const struct drm_framebuffer *fb = state->hw.fb;
2344 unsigned int cpp = fb->format->cpp[color_plane];
2345 unsigned int pitch = state->color_plane[color_plane].stride;
2346
2347 return y * pitch + x * cpp;
2348 }
2349
2350 /*
2351 * Add the x/y offsets derived from fb->offsets[] to the user
2352 * specified plane src x/y offsets. The resulting x/y offsets
2353 * specify the start of scanout from the beginning of the gtt mapping.
2354 */
2355 void intel_add_fb_offsets(int *x, int *y,
2356 const struct intel_plane_state *state,
2357 int color_plane)
2358
2359 {
2360 *x += state->color_plane[color_plane].x;
2361 *y += state->color_plane[color_plane].y;
2362 }
2363
2364 static u32 intel_adjust_tile_offset(int *x, int *y,
2365 unsigned int tile_width,
2366 unsigned int tile_height,
2367 unsigned int tile_size,
2368 unsigned int pitch_tiles,
2369 u32 old_offset,
2370 u32 new_offset)
2371 {
2372 unsigned int pitch_pixels = pitch_tiles * tile_width;
2373 unsigned int tiles;
2374
2375 WARN_ON(old_offset & (tile_size - 1));
2376 WARN_ON(new_offset & (tile_size - 1));
2377 WARN_ON(new_offset > old_offset);
2378
2379 tiles = (old_offset - new_offset) / tile_size;
2380
2381 *y += tiles / pitch_tiles * tile_height;
2382 *x += tiles % pitch_tiles * tile_width;
2383
2384 /* minimize x in case it got needlessly big */
2385 *y += *x / pitch_pixels * tile_height;
2386 *x %= pitch_pixels;
2387
2388 return new_offset;
2389 }
2390
2391 static bool is_surface_linear(const struct drm_framebuffer *fb, int color_plane)
2392 {
2393 return fb->modifier == DRM_FORMAT_MOD_LINEAR ||
2394 is_gen12_ccs_plane(fb, color_plane);
2395 }
2396
2397 static u32 intel_adjust_aligned_offset(int *x, int *y,
2398 const struct drm_framebuffer *fb,
2399 int color_plane,
2400 unsigned int rotation,
2401 unsigned int pitch,
2402 u32 old_offset, u32 new_offset)
2403 {
2404 struct drm_i915_private *dev_priv = to_i915(fb->dev);
2405 unsigned int cpp = fb->format->cpp[color_plane];
2406
2407 drm_WARN_ON(&dev_priv->drm, new_offset > old_offset);
2408
2409 if (!is_surface_linear(fb, color_plane)) {
2410 unsigned int tile_size, tile_width, tile_height;
2411 unsigned int pitch_tiles;
2412
2413 tile_size = intel_tile_size(dev_priv);
2414 intel_tile_dims(fb, color_plane, &tile_width, &tile_height);
2415
2416 if (drm_rotation_90_or_270(rotation)) {
2417 pitch_tiles = pitch / tile_height;
2418 swap(tile_width, tile_height);
2419 } else {
2420 pitch_tiles = pitch / (tile_width * cpp);
2421 }
2422
2423 intel_adjust_tile_offset(x, y, tile_width, tile_height,
2424 tile_size, pitch_tiles,
2425 old_offset, new_offset);
2426 } else {
2427 old_offset += *y * pitch + *x * cpp;
2428
2429 *y = (old_offset - new_offset) / pitch;
2430 *x = ((old_offset - new_offset) - *y * pitch) / cpp;
2431 }
2432
2433 return new_offset;
2434 }
2435
2436 /*
2437 * Adjust the tile offset by moving the difference into
2438 * the x/y offsets.
2439 */
2440 static u32 intel_plane_adjust_aligned_offset(int *x, int *y,
2441 const struct intel_plane_state *state,
2442 int color_plane,
2443 u32 old_offset, u32 new_offset)
2444 {
2445 return intel_adjust_aligned_offset(x, y, state->hw.fb, color_plane,
2446 state->hw.rotation,
2447 state->color_plane[color_plane].stride,
2448 old_offset, new_offset);
2449 }
2450
2451 /*
2452 * Computes the aligned offset to the base tile and adjusts
2453 * x, y. bytes per pixel is assumed to be a power-of-two.
2454 *
2455 * In the 90/270 rotated case, x and y are assumed
2456 * to be already rotated to match the rotated GTT view, and
2457 * pitch is the tile_height aligned framebuffer height.
2458 *
2459 * This function is used when computing the derived information
2460 * under intel_framebuffer, so using any of that information
2461 * here is not allowed. Anything under drm_framebuffer can be
2462 * used. This is why the user has to pass in the pitch since it
2463 * is specified in the rotated orientation.
2464 */
2465 static u32 intel_compute_aligned_offset(struct drm_i915_private *dev_priv,
2466 int *x, int *y,
2467 const struct drm_framebuffer *fb,
2468 int color_plane,
2469 unsigned int pitch,
2470 unsigned int rotation,
2471 u32 alignment)
2472 {
2473 unsigned int cpp = fb->format->cpp[color_plane];
2474 u32 offset, offset_aligned;
2475
2476 if (!is_surface_linear(fb, color_plane)) {
2477 unsigned int tile_size, tile_width, tile_height;
2478 unsigned int tile_rows, tiles, pitch_tiles;
2479
2480 tile_size = intel_tile_size(dev_priv);
2481 intel_tile_dims(fb, color_plane, &tile_width, &tile_height);
2482
2483 if (drm_rotation_90_or_270(rotation)) {
2484 pitch_tiles = pitch / tile_height;
2485 swap(tile_width, tile_height);
2486 } else {
2487 pitch_tiles = pitch / (tile_width * cpp);
2488 }
2489
2490 tile_rows = *y / tile_height;
2491 *y %= tile_height;
2492
2493 tiles = *x / tile_width;
2494 *x %= tile_width;
2495
2496 offset = (tile_rows * pitch_tiles + tiles) * tile_size;
2497
2498 offset_aligned = offset;
2499 if (alignment)
2500 offset_aligned = rounddown(offset_aligned, alignment);
2501
2502 intel_adjust_tile_offset(x, y, tile_width, tile_height,
2503 tile_size, pitch_tiles,
2504 offset, offset_aligned);
2505 } else {
2506 offset = *y * pitch + *x * cpp;
2507 offset_aligned = offset;
2508 if (alignment) {
2509 offset_aligned = rounddown(offset_aligned, alignment);
2510 *y = (offset % alignment) / pitch;
2511 *x = ((offset % alignment) - *y * pitch) / cpp;
2512 } else {
2513 *y = *x = 0;
2514 }
2515 }
2516
2517 return offset_aligned;
2518 }
2519
2520 static u32 intel_plane_compute_aligned_offset(int *x, int *y,
2521 const struct intel_plane_state *state,
2522 int color_plane)
2523 {
2524 struct intel_plane *intel_plane = to_intel_plane(state->uapi.plane);
2525 struct drm_i915_private *dev_priv = to_i915(intel_plane->base.dev);
2526 const struct drm_framebuffer *fb = state->hw.fb;
2527 unsigned int rotation = state->hw.rotation;
2528 int pitch = state->color_plane[color_plane].stride;
2529 u32 alignment;
2530
2531 if (intel_plane->id == PLANE_CURSOR)
2532 alignment = intel_cursor_alignment(dev_priv);
2533 else
2534 alignment = intel_surf_alignment(fb, color_plane);
2535
2536 return intel_compute_aligned_offset(dev_priv, x, y, fb, color_plane,
2537 pitch, rotation, alignment);
2538 }
2539
2540 /* Convert the fb->offset[] into x/y offsets */
2541 static int intel_fb_offset_to_xy(int *x, int *y,
2542 const struct drm_framebuffer *fb,
2543 int color_plane)
2544 {
2545 struct drm_i915_private *dev_priv = to_i915(fb->dev);
2546 unsigned int height;
2547 u32 alignment;
2548
2549 if (INTEL_GEN(dev_priv) >= 12 &&
2550 is_semiplanar_uv_plane(fb, color_plane))
2551 alignment = intel_tile_row_size(fb, color_plane);
2552 else if (fb->modifier != DRM_FORMAT_MOD_LINEAR)
2553 alignment = intel_tile_size(dev_priv);
2554 else
2555 alignment = 0;
2556
2557 if (alignment != 0 && fb->offsets[color_plane] % alignment) {
2558 drm_dbg_kms(&dev_priv->drm,
2559 "Misaligned offset 0x%08x for color plane %d\n",
2560 fb->offsets[color_plane], color_plane);
2561 return -EINVAL;
2562 }
2563
2564 height = drm_framebuffer_plane_height(fb->height, fb, color_plane);
2565 height = ALIGN(height, intel_tile_height(fb, color_plane));
2566
2567 /* Catch potential overflows early */
2568 if (add_overflows_t(u32, mul_u32_u32(height, fb->pitches[color_plane]),
2569 fb->offsets[color_plane])) {
2570 drm_dbg_kms(&dev_priv->drm,
2571 "Bad offset 0x%08x or pitch %d for color plane %d\n",
2572 fb->offsets[color_plane], fb->pitches[color_plane],
2573 color_plane);
2574 return -ERANGE;
2575 }
2576
2577 *x = 0;
2578 *y = 0;
2579
2580 intel_adjust_aligned_offset(x, y,
2581 fb, color_plane, DRM_MODE_ROTATE_0,
2582 fb->pitches[color_plane],
2583 fb->offsets[color_plane], 0);
2584
2585 return 0;
2586 }
2587
2588 static unsigned int intel_fb_modifier_to_tiling(u64 fb_modifier)
2589 {
2590 switch (fb_modifier) {
2591 case I915_FORMAT_MOD_X_TILED:
2592 return I915_TILING_X;
2593 case I915_FORMAT_MOD_Y_TILED:
2594 case I915_FORMAT_MOD_Y_TILED_CCS:
2595 case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS:
2596 case I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS:
2597 return I915_TILING_Y;
2598 default:
2599 return I915_TILING_NONE;
2600 }
2601 }
2602
2603 /*
2604 * From the Sky Lake PRM:
2605 * "The Color Control Surface (CCS) contains the compression status of
2606 * the cache-line pairs. The compression state of the cache-line pair
2607 * is specified by 2 bits in the CCS. Each CCS cache-line represents
2608 * an area on the main surface of 16 x16 sets of 128 byte Y-tiled
2609 * cache-line-pairs. CCS is always Y tiled."
2610 *
2611 * Since cache line pairs refers to horizontally adjacent cache lines,
2612 * each cache line in the CCS corresponds to an area of 32x16 cache
2613 * lines on the main surface. Since each pixel is 4 bytes, this gives
2614 * us a ratio of one byte in the CCS for each 8x16 pixels in the
2615 * main surface.
2616 */
2617 static const struct drm_format_info skl_ccs_formats[] = {
2618 { .format = DRM_FORMAT_XRGB8888, .depth = 24, .num_planes = 2,
2619 .cpp = { 4, 1, }, .hsub = 8, .vsub = 16, },
2620 { .format = DRM_FORMAT_XBGR8888, .depth = 24, .num_planes = 2,
2621 .cpp = { 4, 1, }, .hsub = 8, .vsub = 16, },
2622 { .format = DRM_FORMAT_ARGB8888, .depth = 32, .num_planes = 2,
2623 .cpp = { 4, 1, }, .hsub = 8, .vsub = 16, .has_alpha = true, },
2624 { .format = DRM_FORMAT_ABGR8888, .depth = 32, .num_planes = 2,
2625 .cpp = { 4, 1, }, .hsub = 8, .vsub = 16, .has_alpha = true, },
2626 };
2627
2628 /*
2629 * Gen-12 compression uses 4 bits of CCS data for each cache line pair in the
2630 * main surface. And each 64B CCS cache line represents an area of 4x1 Y-tiles
2631 * in the main surface. With 4 byte pixels and each Y-tile having dimensions of
2632 * 32x32 pixels, the ratio turns out to 1B in the CCS for every 2x32 pixels in
2633 * the main surface.
2634 */
2635 static const struct drm_format_info gen12_ccs_formats[] = {
2636 { .format = DRM_FORMAT_XRGB8888, .depth = 24, .num_planes = 2,
2637 .char_per_block = { 4, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 },
2638 .hsub = 1, .vsub = 1, },
2639 { .format = DRM_FORMAT_XBGR8888, .depth = 24, .num_planes = 2,
2640 .char_per_block = { 4, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 },
2641 .hsub = 1, .vsub = 1, },
2642 { .format = DRM_FORMAT_ARGB8888, .depth = 32, .num_planes = 2,
2643 .char_per_block = { 4, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 },
2644 .hsub = 1, .vsub = 1, .has_alpha = true },
2645 { .format = DRM_FORMAT_ABGR8888, .depth = 32, .num_planes = 2,
2646 .char_per_block = { 4, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 },
2647 .hsub = 1, .vsub = 1, .has_alpha = true },
2648 { .format = DRM_FORMAT_YUYV, .num_planes = 2,
2649 .char_per_block = { 2, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 },
2650 .hsub = 2, .vsub = 1, .is_yuv = true },
2651 { .format = DRM_FORMAT_YVYU, .num_planes = 2,
2652 .char_per_block = { 2, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 },
2653 .hsub = 2, .vsub = 1, .is_yuv = true },
2654 { .format = DRM_FORMAT_UYVY, .num_planes = 2,
2655 .char_per_block = { 2, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 },
2656 .hsub = 2, .vsub = 1, .is_yuv = true },
2657 { .format = DRM_FORMAT_VYUY, .num_planes = 2,
2658 .char_per_block = { 2, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 },
2659 .hsub = 2, .vsub = 1, .is_yuv = true },
2660 { .format = DRM_FORMAT_NV12, .num_planes = 4,
2661 .char_per_block = { 1, 2, 1, 1 }, .block_w = { 1, 1, 4, 4 }, .block_h = { 1, 1, 1, 1 },
2662 .hsub = 2, .vsub = 2, .is_yuv = true },
2663 { .format = DRM_FORMAT_P010, .num_planes = 4,
2664 .char_per_block = { 2, 4, 1, 1 }, .block_w = { 1, 1, 2, 2 }, .block_h = { 1, 1, 1, 1 },
2665 .hsub = 2, .vsub = 2, .is_yuv = true },
2666 { .format = DRM_FORMAT_P012, .num_planes = 4,
2667 .char_per_block = { 2, 4, 1, 1 }, .block_w = { 1, 1, 2, 2 }, .block_h = { 1, 1, 1, 1 },
2668 .hsub = 2, .vsub = 2, .is_yuv = true },
2669 { .format = DRM_FORMAT_P016, .num_planes = 4,
2670 .char_per_block = { 2, 4, 1, 1 }, .block_w = { 1, 1, 2, 2 }, .block_h = { 1, 1, 1, 1 },
2671 .hsub = 2, .vsub = 2, .is_yuv = true },
2672 };
2673
2674 static const struct drm_format_info *
2675 lookup_format_info(const struct drm_format_info formats[],
2676 int num_formats, u32 format)
2677 {
2678 int i;
2679
2680 for (i = 0; i < num_formats; i++) {
2681 if (formats[i].format == format)
2682 return &formats[i];
2683 }
2684
2685 return NULL;
2686 }
2687
2688 static const struct drm_format_info *
2689 intel_get_format_info(const struct drm_mode_fb_cmd2 *cmd)
2690 {
2691 switch (cmd->modifier[0]) {
2692 case I915_FORMAT_MOD_Y_TILED_CCS:
2693 case I915_FORMAT_MOD_Yf_TILED_CCS:
2694 return lookup_format_info(skl_ccs_formats,
2695 ARRAY_SIZE(skl_ccs_formats),
2696 cmd->pixel_format);
2697 case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS:
2698 case I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS:
2699 return lookup_format_info(gen12_ccs_formats,
2700 ARRAY_SIZE(gen12_ccs_formats),
2701 cmd->pixel_format);
2702 default:
2703 return NULL;
2704 }
2705 }
2706
2707 bool is_ccs_modifier(u64 modifier)
2708 {
2709 return modifier == I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS ||
2710 modifier == I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS ||
2711 modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
2712 modifier == I915_FORMAT_MOD_Yf_TILED_CCS;
2713 }
2714
2715 static int gen12_ccs_aux_stride(struct drm_framebuffer *fb, int ccs_plane)
2716 {
2717 return DIV_ROUND_UP(fb->pitches[ccs_to_main_plane(fb, ccs_plane)],
2718 512) * 64;
2719 }
2720
2721 u32 intel_plane_fb_max_stride(struct drm_i915_private *dev_priv,
2722 u32 pixel_format, u64 modifier)
2723 {
2724 struct intel_crtc *crtc;
2725 struct intel_plane *plane;
2726
2727 /*
2728 * We assume the primary plane for pipe A has
2729 * the highest stride limits of them all,
2730 * if in case pipe A is disabled, use the first pipe from pipe_mask.
2731 */
2732 crtc = intel_get_first_crtc(dev_priv);
2733 if (!crtc)
2734 return 0;
2735
2736 plane = to_intel_plane(crtc->base.primary);
2737
2738 return plane->max_stride(plane, pixel_format, modifier,
2739 DRM_MODE_ROTATE_0);
2740 }
2741
2742 static
2743 u32 intel_fb_max_stride(struct drm_i915_private *dev_priv,
2744 u32 pixel_format, u64 modifier)
2745 {
2746 /*
2747 * Arbitrary limit for gen4+ chosen to match the
2748 * render engine max stride.
2749 *
2750 * The new CCS hash mode makes remapping impossible
2751 */
2752 if (!is_ccs_modifier(modifier)) {
2753 if (INTEL_GEN(dev_priv) >= 7)
2754 return 256*1024;
2755 else if (INTEL_GEN(dev_priv) >= 4)
2756 return 128*1024;
2757 }
2758
2759 return intel_plane_fb_max_stride(dev_priv, pixel_format, modifier);
2760 }
2761
2762 static u32
2763 intel_fb_stride_alignment(const struct drm_framebuffer *fb, int color_plane)
2764 {
2765 struct drm_i915_private *dev_priv = to_i915(fb->dev);
2766 u32 tile_width;
2767
2768 if (is_surface_linear(fb, color_plane)) {
2769 u32 max_stride = intel_plane_fb_max_stride(dev_priv,
2770 fb->format->format,
2771 fb->modifier);
2772
2773 /*
2774 * To make remapping with linear generally feasible
2775 * we need the stride to be page aligned.
2776 */
2777 if (fb->pitches[color_plane] > max_stride &&
2778 !is_ccs_modifier(fb->modifier))
2779 return intel_tile_size(dev_priv);
2780 else
2781 return 64;
2782 }
2783
2784 tile_width = intel_tile_width_bytes(fb, color_plane);
2785 if (is_ccs_modifier(fb->modifier)) {
2786 /*
2787 * Display WA #0531: skl,bxt,kbl,glk
2788 *
2789 * Render decompression and plane width > 3840
2790 * combined with horizontal panning requires the
2791 * plane stride to be a multiple of 4. We'll just
2792 * require the entire fb to accommodate that to avoid
2793 * potential runtime errors at plane configuration time.
2794 */
2795 if (IS_GEN(dev_priv, 9) && color_plane == 0 && fb->width > 3840)
2796 tile_width *= 4;
2797 /*
2798 * The main surface pitch must be padded to a multiple of four
2799 * tile widths.
2800 */
2801 else if (INTEL_GEN(dev_priv) >= 12)
2802 tile_width *= 4;
2803 }
2804 return tile_width;
2805 }
2806
2807 bool intel_plane_can_remap(const struct intel_plane_state *plane_state)
2808 {
2809 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
2810 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
2811 const struct drm_framebuffer *fb = plane_state->hw.fb;
2812 int i;
2813
2814 /* We don't want to deal with remapping with cursors */
2815 if (plane->id == PLANE_CURSOR)
2816 return false;
2817
2818 /*
2819 * The display engine limits already match/exceed the
2820 * render engine limits, so not much point in remapping.
2821 * Would also need to deal with the fence POT alignment
2822 * and gen2 2KiB GTT tile size.
2823 */
2824 if (INTEL_GEN(dev_priv) < 4)
2825 return false;
2826
2827 /*
2828 * The new CCS hash mode isn't compatible with remapping as
2829 * the virtual address of the pages affects the compressed data.
2830 */
2831 if (is_ccs_modifier(fb->modifier))
2832 return false;
2833
2834 /* Linear needs a page aligned stride for remapping */
2835 if (fb->modifier == DRM_FORMAT_MOD_LINEAR) {
2836 unsigned int alignment = intel_tile_size(dev_priv) - 1;
2837
2838 for (i = 0; i < fb->format->num_planes; i++) {
2839 if (fb->pitches[i] & alignment)
2840 return false;
2841 }
2842 }
2843
2844 return true;
2845 }
2846
2847 static bool intel_plane_needs_remap(const struct intel_plane_state *plane_state)
2848 {
2849 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
2850 const struct drm_framebuffer *fb = plane_state->hw.fb;
2851 unsigned int rotation = plane_state->hw.rotation;
2852 u32 stride, max_stride;
2853
2854 /*
2855 * No remapping for invisible planes since we don't have
2856 * an actual source viewport to remap.
2857 */
2858 if (!plane_state->uapi.visible)
2859 return false;
2860
2861 if (!intel_plane_can_remap(plane_state))
2862 return false;
2863
2864 /*
2865 * FIXME: aux plane limits on gen9+ are
2866 * unclear in Bspec, for now no checking.
2867 */
2868 stride = intel_fb_pitch(fb, 0, rotation);
2869 max_stride = plane->max_stride(plane, fb->format->format,
2870 fb->modifier, rotation);
2871
2872 return stride > max_stride;
2873 }
2874
2875 static void
2876 intel_fb_plane_get_subsampling(int *hsub, int *vsub,
2877 const struct drm_framebuffer *fb,
2878 int color_plane)
2879 {
2880 int main_plane;
2881
2882 if (color_plane == 0) {
2883 *hsub = 1;
2884 *vsub = 1;
2885
2886 return;
2887 }
2888
2889 /*
2890 * TODO: Deduct the subsampling from the char block for all CCS
2891 * formats and planes.
2892 */
2893 if (!is_gen12_ccs_plane(fb, color_plane)) {
2894 *hsub = fb->format->hsub;
2895 *vsub = fb->format->vsub;
2896
2897 return;
2898 }
2899
2900 main_plane = ccs_to_main_plane(fb, color_plane);
2901 *hsub = drm_format_info_block_width(fb->format, color_plane) /
2902 drm_format_info_block_width(fb->format, main_plane);
2903
2904 /*
2905 * The min stride check in the core framebuffer_check() function
2906 * assumes that format->hsub applies to every plane except for the
2907 * first plane. That's incorrect for the CCS AUX plane of the first
2908 * plane, but for the above check to pass we must define the block
2909 * width with that subsampling applied to it. Adjust the width here
2910 * accordingly, so we can calculate the actual subsampling factor.
2911 */
2912 if (main_plane == 0)
2913 *hsub *= fb->format->hsub;
2914
2915 *vsub = 32;
2916 }
2917 static int
2918 intel_fb_check_ccs_xy(struct drm_framebuffer *fb, int ccs_plane, int x, int y)
2919 {
2920 struct drm_i915_private *i915 = to_i915(fb->dev);
2921 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
2922 int main_plane;
2923 int hsub, vsub;
2924 int tile_width, tile_height;
2925 int ccs_x, ccs_y;
2926 int main_x, main_y;
2927
2928 if (!is_ccs_plane(fb, ccs_plane))
2929 return 0;
2930
2931 intel_tile_dims(fb, ccs_plane, &tile_width, &tile_height);
2932 intel_fb_plane_get_subsampling(&hsub, &vsub, fb, ccs_plane);
2933
2934 tile_width *= hsub;
2935 tile_height *= vsub;
2936
2937 ccs_x = (x * hsub) % tile_width;
2938 ccs_y = (y * vsub) % tile_height;
2939
2940 main_plane = ccs_to_main_plane(fb, ccs_plane);
2941 main_x = intel_fb->normal[main_plane].x % tile_width;
2942 main_y = intel_fb->normal[main_plane].y % tile_height;
2943
2944 /*
2945 * CCS doesn't have its own x/y offset register, so the intra CCS tile
2946 * x/y offsets must match between CCS and the main surface.
2947 */
2948 if (main_x != ccs_x || main_y != ccs_y) {
2949 drm_dbg_kms(&i915->drm,
2950 "Bad CCS x/y (main %d,%d ccs %d,%d) full (main %d,%d ccs %d,%d)\n",
2951 main_x, main_y,
2952 ccs_x, ccs_y,
2953 intel_fb->normal[main_plane].x,
2954 intel_fb->normal[main_plane].y,
2955 x, y);
2956 return -EINVAL;
2957 }
2958
2959 return 0;
2960 }
2961
2962 static void
2963 intel_fb_plane_dims(int *w, int *h, struct drm_framebuffer *fb, int color_plane)
2964 {
2965 int main_plane = is_ccs_plane(fb, color_plane) ?
2966 ccs_to_main_plane(fb, color_plane) : 0;
2967 int main_hsub, main_vsub;
2968 int hsub, vsub;
2969
2970 intel_fb_plane_get_subsampling(&main_hsub, &main_vsub, fb, main_plane);
2971 intel_fb_plane_get_subsampling(&hsub, &vsub, fb, color_plane);
2972 *w = fb->width / main_hsub / hsub;
2973 *h = fb->height / main_vsub / vsub;
2974 }
2975
2976 /*
2977 * Setup the rotated view for an FB plane and return the size the GTT mapping
2978 * requires for this view.
2979 */
2980 static u32
2981 setup_fb_rotation(int plane, const struct intel_remapped_plane_info *plane_info,
2982 u32 gtt_offset_rotated, int x, int y,
2983 unsigned int width, unsigned int height,
2984 unsigned int tile_size,
2985 unsigned int tile_width, unsigned int tile_height,
2986 struct drm_framebuffer *fb)
2987 {
2988 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
2989 struct intel_rotation_info *rot_info = &intel_fb->rot_info;
2990 unsigned int pitch_tiles;
2991 struct drm_rect r;
2992
2993 /* Y or Yf modifiers required for 90/270 rotation */
2994 if (fb->modifier != I915_FORMAT_MOD_Y_TILED &&
2995 fb->modifier != I915_FORMAT_MOD_Yf_TILED)
2996 return 0;
2997
2998 if (drm_WARN_ON(fb->dev, plane >= ARRAY_SIZE(rot_info->plane)))
2999 return 0;
3000
3001 rot_info->plane[plane] = *plane_info;
3002
3003 intel_fb->rotated[plane].pitch = plane_info->height * tile_height;
3004
3005 /* rotate the x/y offsets to match the GTT view */
3006 drm_rect_init(&r, x, y, width, height);
3007 drm_rect_rotate(&r,
3008 plane_info->width * tile_width,
3009 plane_info->height * tile_height,
3010 DRM_MODE_ROTATE_270);
3011 x = r.x1;
3012 y = r.y1;
3013
3014 /* rotate the tile dimensions to match the GTT view */
3015 pitch_tiles = intel_fb->rotated[plane].pitch / tile_height;
3016 swap(tile_width, tile_height);
3017
3018 /*
3019 * We only keep the x/y offsets, so push all of the
3020 * gtt offset into the x/y offsets.
3021 */
3022 intel_adjust_tile_offset(&x, &y,
3023 tile_width, tile_height,
3024 tile_size, pitch_tiles,
3025 gtt_offset_rotated * tile_size, 0);
3026
3027 /*
3028 * First pixel of the framebuffer from
3029 * the start of the rotated gtt mapping.
3030 */
3031 intel_fb->rotated[plane].x = x;
3032 intel_fb->rotated[plane].y = y;
3033
3034 return plane_info->width * plane_info->height;
3035 }
3036
3037 static int
3038 intel_fill_fb_info(struct drm_i915_private *dev_priv,
3039 struct drm_framebuffer *fb)
3040 {
3041 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
3042 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
3043 u32 gtt_offset_rotated = 0;
3044 unsigned int max_size = 0;
3045 int i, num_planes = fb->format->num_planes;
3046 unsigned int tile_size = intel_tile_size(dev_priv);
3047
3048 for (i = 0; i < num_planes; i++) {
3049 unsigned int width, height;
3050 unsigned int cpp, size;
3051 u32 offset;
3052 int x, y;
3053 int ret;
3054
3055 cpp = fb->format->cpp[i];
3056 intel_fb_plane_dims(&width, &height, fb, i);
3057
3058 ret = intel_fb_offset_to_xy(&x, &y, fb, i);
3059 if (ret) {
3060 drm_dbg_kms(&dev_priv->drm,
3061 "bad fb plane %d offset: 0x%x\n",
3062 i, fb->offsets[i]);
3063 return ret;
3064 }
3065
3066 ret = intel_fb_check_ccs_xy(fb, i, x, y);
3067 if (ret)
3068 return ret;
3069
3070 /*
3071 * The fence (if used) is aligned to the start of the object
3072 * so having the framebuffer wrap around across the edge of the
3073 * fenced region doesn't really work. We have no API to configure
3074 * the fence start offset within the object (nor could we probably
3075 * on gen2/3). So it's just easier if we just require that the
3076 * fb layout agrees with the fence layout. We already check that the
3077 * fb stride matches the fence stride elsewhere.
3078 */
3079 if (i == 0 && i915_gem_object_is_tiled(obj) &&
3080 (x + width) * cpp > fb->pitches[i]) {
3081 drm_dbg_kms(&dev_priv->drm,
3082 "bad fb plane %d offset: 0x%x\n",
3083 i, fb->offsets[i]);
3084 return -EINVAL;
3085 }
3086
3087 /*
3088 * First pixel of the framebuffer from
3089 * the start of the normal gtt mapping.
3090 */
3091 intel_fb->normal[i].x = x;
3092 intel_fb->normal[i].y = y;
3093
3094 offset = intel_compute_aligned_offset(dev_priv, &x, &y, fb, i,
3095 fb->pitches[i],
3096 DRM_MODE_ROTATE_0,
3097 tile_size);
3098 offset /= tile_size;
3099
3100 if (!is_surface_linear(fb, i)) {
3101 struct intel_remapped_plane_info plane_info;
3102 unsigned int tile_width, tile_height;
3103
3104 intel_tile_dims(fb, i, &tile_width, &tile_height);
3105
3106 plane_info.offset = offset;
3107 plane_info.stride = DIV_ROUND_UP(fb->pitches[i],
3108 tile_width * cpp);
3109 plane_info.width = DIV_ROUND_UP(x + width, tile_width);
3110 plane_info.height = DIV_ROUND_UP(y + height,
3111 tile_height);
3112
3113 /* how many tiles does this plane need */
3114 size = plane_info.stride * plane_info.height;
3115 /*
3116 * If the plane isn't horizontally tile aligned,
3117 * we need one more tile.
3118 */
3119 if (x != 0)
3120 size++;
3121
3122 gtt_offset_rotated +=
3123 setup_fb_rotation(i, &plane_info,
3124 gtt_offset_rotated,
3125 x, y, width, height,
3126 tile_size,
3127 tile_width, tile_height,
3128 fb);
3129 } else {
3130 size = DIV_ROUND_UP((y + height) * fb->pitches[i] +
3131 x * cpp, tile_size);
3132 }
3133
3134 /* how many tiles in total needed in the bo */
3135 max_size = max(max_size, offset + size);
3136 }
3137
3138 if (mul_u32_u32(max_size, tile_size) > obj->base.size) {
3139 drm_dbg_kms(&dev_priv->drm,
3140 "fb too big for bo (need %llu bytes, have %zu bytes)\n",
3141 mul_u32_u32(max_size, tile_size), obj->base.size);
3142 return -EINVAL;
3143 }
3144
3145 return 0;
3146 }
3147
3148 static void
3149 intel_plane_remap_gtt(struct intel_plane_state *plane_state)
3150 {
3151 struct drm_i915_private *dev_priv =
3152 to_i915(plane_state->uapi.plane->dev);
3153 struct drm_framebuffer *fb = plane_state->hw.fb;
3154 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
3155 struct intel_rotation_info *info = &plane_state->view.rotated;
3156 unsigned int rotation = plane_state->hw.rotation;
3157 int i, num_planes = fb->format->num_planes;
3158 unsigned int tile_size = intel_tile_size(dev_priv);
3159 unsigned int src_x, src_y;
3160 unsigned int src_w, src_h;
3161 u32 gtt_offset = 0;
3162
3163 memset(&plane_state->view, 0, sizeof(plane_state->view));
3164 plane_state->view.type = drm_rotation_90_or_270(rotation) ?
3165 I915_GGTT_VIEW_ROTATED : I915_GGTT_VIEW_REMAPPED;
3166
3167 src_x = plane_state->uapi.src.x1 >> 16;
3168 src_y = plane_state->uapi.src.y1 >> 16;
3169 src_w = drm_rect_width(&plane_state->uapi.src) >> 16;
3170 src_h = drm_rect_height(&plane_state->uapi.src) >> 16;
3171
3172 drm_WARN_ON(&dev_priv->drm, is_ccs_modifier(fb->modifier));
3173
3174 /* Make src coordinates relative to the viewport */
3175 drm_rect_translate(&plane_state->uapi.src,
3176 -(src_x << 16), -(src_y << 16));
3177
3178 /* Rotate src coordinates to match rotated GTT view */
3179 if (drm_rotation_90_or_270(rotation))
3180 drm_rect_rotate(&plane_state->uapi.src,
3181 src_w << 16, src_h << 16,
3182 DRM_MODE_ROTATE_270);
3183
3184 for (i = 0; i < num_planes; i++) {
3185 unsigned int hsub = i ? fb->format->hsub : 1;
3186 unsigned int vsub = i ? fb->format->vsub : 1;
3187 unsigned int cpp = fb->format->cpp[i];
3188 unsigned int tile_width, tile_height;
3189 unsigned int width, height;
3190 unsigned int pitch_tiles;
3191 unsigned int x, y;
3192 u32 offset;
3193
3194 intel_tile_dims(fb, i, &tile_width, &tile_height);
3195
3196 x = src_x / hsub;
3197 y = src_y / vsub;
3198 width = src_w / hsub;
3199 height = src_h / vsub;
3200
3201 /*
3202 * First pixel of the src viewport from the
3203 * start of the normal gtt mapping.
3204 */
3205 x += intel_fb->normal[i].x;
3206 y += intel_fb->normal[i].y;
3207
3208 offset = intel_compute_aligned_offset(dev_priv, &x, &y,
3209 fb, i, fb->pitches[i],
3210 DRM_MODE_ROTATE_0, tile_size);
3211 offset /= tile_size;
3212
3213 drm_WARN_ON(&dev_priv->drm, i >= ARRAY_SIZE(info->plane));
3214 info->plane[i].offset = offset;
3215 info->plane[i].stride = DIV_ROUND_UP(fb->pitches[i],
3216 tile_width * cpp);
3217 info->plane[i].width = DIV_ROUND_UP(x + width, tile_width);
3218 info->plane[i].height = DIV_ROUND_UP(y + height, tile_height);
3219
3220 if (drm_rotation_90_or_270(rotation)) {
3221 struct drm_rect r;
3222
3223 /* rotate the x/y offsets to match the GTT view */
3224 drm_rect_init(&r, x, y, width, height);
3225 drm_rect_rotate(&r,
3226 info->plane[i].width * tile_width,
3227 info->plane[i].height * tile_height,
3228 DRM_MODE_ROTATE_270);
3229 x = r.x1;
3230 y = r.y1;
3231
3232 pitch_tiles = info->plane[i].height;
3233 plane_state->color_plane[i].stride = pitch_tiles * tile_height;
3234
3235 /* rotate the tile dimensions to match the GTT view */
3236 swap(tile_width, tile_height);
3237 } else {
3238 pitch_tiles = info->plane[i].width;
3239 plane_state->color_plane[i].stride = pitch_tiles * tile_width * cpp;
3240 }
3241
3242 /*
3243 * We only keep the x/y offsets, so push all of the
3244 * gtt offset into the x/y offsets.
3245 */
3246 intel_adjust_tile_offset(&x, &y,
3247 tile_width, tile_height,
3248 tile_size, pitch_tiles,
3249 gtt_offset * tile_size, 0);
3250
3251 gtt_offset += info->plane[i].width * info->plane[i].height;
3252
3253 plane_state->color_plane[i].offset = 0;
3254 plane_state->color_plane[i].x = x;
3255 plane_state->color_plane[i].y = y;
3256 }
3257 }
3258
3259 static int
3260 intel_plane_compute_gtt(struct intel_plane_state *plane_state)
3261 {
3262 const struct intel_framebuffer *fb =
3263 to_intel_framebuffer(plane_state->hw.fb);
3264 unsigned int rotation = plane_state->hw.rotation;
3265 int i, num_planes;
3266
3267 if (!fb)
3268 return 0;
3269
3270 num_planes = fb->base.format->num_planes;
3271
3272 if (intel_plane_needs_remap(plane_state)) {
3273 intel_plane_remap_gtt(plane_state);
3274
3275 /*
3276 * Sometimes even remapping can't overcome
3277 * the stride limitations :( Can happen with
3278 * big plane sizes and suitably misaligned
3279 * offsets.
3280 */
3281 return intel_plane_check_stride(plane_state);
3282 }
3283
3284 intel_fill_fb_ggtt_view(&plane_state->view, &fb->base, rotation);
3285
3286 for (i = 0; i < num_planes; i++) {
3287 plane_state->color_plane[i].stride = intel_fb_pitch(&fb->base, i, rotation);
3288 plane_state->color_plane[i].offset = 0;
3289
3290 if (drm_rotation_90_or_270(rotation)) {
3291 plane_state->color_plane[i].x = fb->rotated[i].x;
3292 plane_state->color_plane[i].y = fb->rotated[i].y;
3293 } else {
3294 plane_state->color_plane[i].x = fb->normal[i].x;
3295 plane_state->color_plane[i].y = fb->normal[i].y;
3296 }
3297 }
3298
3299 /* Rotate src coordinates to match rotated GTT view */
3300 if (drm_rotation_90_or_270(rotation))
3301 drm_rect_rotate(&plane_state->uapi.src,
3302 fb->base.width << 16, fb->base.height << 16,
3303 DRM_MODE_ROTATE_270);
3304
3305 return intel_plane_check_stride(plane_state);
3306 }
3307
3308 static int i9xx_format_to_fourcc(int format)
3309 {
3310 switch (format) {
3311 case DISPPLANE_8BPP:
3312 return DRM_FORMAT_C8;
3313 case DISPPLANE_BGRA555:
3314 return DRM_FORMAT_ARGB1555;
3315 case DISPPLANE_BGRX555:
3316 return DRM_FORMAT_XRGB1555;
3317 case DISPPLANE_BGRX565:
3318 return DRM_FORMAT_RGB565;
3319 default:
3320 case DISPPLANE_BGRX888:
3321 return DRM_FORMAT_XRGB8888;
3322 case DISPPLANE_RGBX888:
3323 return DRM_FORMAT_XBGR8888;
3324 case DISPPLANE_BGRA888:
3325 return DRM_FORMAT_ARGB8888;
3326 case DISPPLANE_RGBA888:
3327 return DRM_FORMAT_ABGR8888;
3328 case DISPPLANE_BGRX101010:
3329 return DRM_FORMAT_XRGB2101010;
3330 case DISPPLANE_RGBX101010:
3331 return DRM_FORMAT_XBGR2101010;
3332 case DISPPLANE_BGRA101010:
3333 return DRM_FORMAT_ARGB2101010;
3334 case DISPPLANE_RGBA101010:
3335 return DRM_FORMAT_ABGR2101010;
3336 case DISPPLANE_RGBX161616:
3337 return DRM_FORMAT_XBGR16161616F;
3338 }
3339 }
3340
3341 int skl_format_to_fourcc(int format, bool rgb_order, bool alpha)
3342 {
3343 switch (format) {
3344 case PLANE_CTL_FORMAT_RGB_565:
3345 return DRM_FORMAT_RGB565;
3346 case PLANE_CTL_FORMAT_NV12:
3347 return DRM_FORMAT_NV12;
3348 case PLANE_CTL_FORMAT_XYUV:
3349 return DRM_FORMAT_XYUV8888;
3350 case PLANE_CTL_FORMAT_P010:
3351 return DRM_FORMAT_P010;
3352 case PLANE_CTL_FORMAT_P012:
3353 return DRM_FORMAT_P012;
3354 case PLANE_CTL_FORMAT_P016:
3355 return DRM_FORMAT_P016;
3356 case PLANE_CTL_FORMAT_Y210:
3357 return DRM_FORMAT_Y210;
3358 case PLANE_CTL_FORMAT_Y212:
3359 return DRM_FORMAT_Y212;
3360 case PLANE_CTL_FORMAT_Y216:
3361 return DRM_FORMAT_Y216;
3362 case PLANE_CTL_FORMAT_Y410:
3363 return DRM_FORMAT_XVYU2101010;
3364 case PLANE_CTL_FORMAT_Y412:
3365 return DRM_FORMAT_XVYU12_16161616;
3366 case PLANE_CTL_FORMAT_Y416:
3367 return DRM_FORMAT_XVYU16161616;
3368 default:
3369 case PLANE_CTL_FORMAT_XRGB_8888:
3370 if (rgb_order) {
3371 if (alpha)
3372 return DRM_FORMAT_ABGR8888;
3373 else
3374 return DRM_FORMAT_XBGR8888;
3375 } else {
3376 if (alpha)
3377 return DRM_FORMAT_ARGB8888;
3378 else
3379 return DRM_FORMAT_XRGB8888;
3380 }
3381 case PLANE_CTL_FORMAT_XRGB_2101010:
3382 if (rgb_order) {
3383 if (alpha)
3384 return DRM_FORMAT_ABGR2101010;
3385 else
3386 return DRM_FORMAT_XBGR2101010;
3387 } else {
3388 if (alpha)
3389 return DRM_FORMAT_ARGB2101010;
3390 else
3391 return DRM_FORMAT_XRGB2101010;
3392 }
3393 case PLANE_CTL_FORMAT_XRGB_16161616F:
3394 if (rgb_order) {
3395 if (alpha)
3396 return DRM_FORMAT_ABGR16161616F;
3397 else
3398 return DRM_FORMAT_XBGR16161616F;
3399 } else {
3400 if (alpha)
3401 return DRM_FORMAT_ARGB16161616F;
3402 else
3403 return DRM_FORMAT_XRGB16161616F;
3404 }
3405 }
3406 }
3407
3408 static struct i915_vma *
3409 initial_plane_vma(struct drm_i915_private *i915,
3410 struct intel_initial_plane_config *plane_config)
3411 {
3412 struct drm_i915_gem_object *obj;
3413 struct i915_vma *vma;
3414 u32 base, size;
3415
3416 if (plane_config->size == 0)
3417 return NULL;
3418
3419 base = round_down(plane_config->base,
3420 I915_GTT_MIN_ALIGNMENT);
3421 size = round_up(plane_config->base + plane_config->size,
3422 I915_GTT_MIN_ALIGNMENT);
3423 size -= base;
3424
3425 /*
3426 * If the FB is too big, just don't use it since fbdev is not very
3427 * important and we should probably use that space with FBC or other
3428 * features.
3429 */
3430 if (size * 2 > i915->stolen_usable_size)
3431 return NULL;
3432
3433 obj = i915_gem_object_create_stolen_for_preallocated(i915, base, size);
3434 if (IS_ERR(obj))
3435 return NULL;
3436
3437 switch (plane_config->tiling) {
3438 case I915_TILING_NONE:
3439 break;
3440 case I915_TILING_X:
3441 case I915_TILING_Y:
3442 obj->tiling_and_stride =
3443 plane_config->fb->base.pitches[0] |
3444 plane_config->tiling;
3445 break;
3446 default:
3447 MISSING_CASE(plane_config->tiling);
3448 goto err_obj;
3449 }
3450
3451 vma = i915_vma_instance(obj, &i915->ggtt.vm, NULL);
3452 if (IS_ERR(vma))
3453 goto err_obj;
3454
3455 if (i915_ggtt_pin(vma, NULL, 0, PIN_MAPPABLE | PIN_OFFSET_FIXED | base))
3456 goto err_obj;
3457
3458 if (i915_gem_object_is_tiled(obj) &&
3459 !i915_vma_is_map_and_fenceable(vma))
3460 goto err_obj;
3461
3462 return vma;
3463
3464 err_obj:
3465 i915_gem_object_put(obj);
3466 return NULL;
3467 }
3468
3469 static bool
3470 intel_alloc_initial_plane_obj(struct intel_crtc *crtc,
3471 struct intel_initial_plane_config *plane_config)
3472 {
3473 struct drm_device *dev = crtc->base.dev;
3474 struct drm_i915_private *dev_priv = to_i915(dev);
3475 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
3476 struct drm_framebuffer *fb = &plane_config->fb->base;
3477 struct i915_vma *vma;
3478
3479 switch (fb->modifier) {
3480 case DRM_FORMAT_MOD_LINEAR:
3481 case I915_FORMAT_MOD_X_TILED:
3482 case I915_FORMAT_MOD_Y_TILED:
3483 break;
3484 default:
3485 drm_dbg(&dev_priv->drm,
3486 "Unsupported modifier for initial FB: 0x%llx\n",
3487 fb->modifier);
3488 return false;
3489 }
3490
3491 vma = initial_plane_vma(dev_priv, plane_config);
3492 if (!vma)
3493 return false;
3494
3495 mode_cmd.pixel_format = fb->format->format;
3496 mode_cmd.width = fb->width;
3497 mode_cmd.height = fb->height;
3498 mode_cmd.pitches[0] = fb->pitches[0];
3499 mode_cmd.modifier[0] = fb->modifier;
3500 mode_cmd.flags = DRM_MODE_FB_MODIFIERS;
3501
3502 if (intel_framebuffer_init(to_intel_framebuffer(fb),
3503 vma->obj, &mode_cmd)) {
3504 drm_dbg_kms(&dev_priv->drm, "intel fb init failed\n");
3505 goto err_vma;
3506 }
3507
3508 plane_config->vma = vma;
3509 return true;
3510
3511 err_vma:
3512 i915_vma_put(vma);
3513 return false;
3514 }
3515
3516 static void
3517 intel_set_plane_visible(struct intel_crtc_state *crtc_state,
3518 struct intel_plane_state *plane_state,
3519 bool visible)
3520 {
3521 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
3522
3523 plane_state->uapi.visible = visible;
3524
3525 if (visible)
3526 crtc_state->uapi.plane_mask |= drm_plane_mask(&plane->base);
3527 else
3528 crtc_state->uapi.plane_mask &= ~drm_plane_mask(&plane->base);
3529 }
3530
3531 static void fixup_active_planes(struct intel_crtc_state *crtc_state)
3532 {
3533 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
3534 struct drm_plane *plane;
3535
3536 /*
3537 * Active_planes aliases if multiple "primary" or cursor planes
3538 * have been used on the same (or wrong) pipe. plane_mask uses
3539 * unique ids, hence we can use that to reconstruct active_planes.
3540 */
3541 crtc_state->active_planes = 0;
3542
3543 drm_for_each_plane_mask(plane, &dev_priv->drm,
3544 crtc_state->uapi.plane_mask)
3545 crtc_state->active_planes |= BIT(to_intel_plane(plane)->id);
3546 }
3547
3548 static void intel_plane_disable_noatomic(struct intel_crtc *crtc,
3549 struct intel_plane *plane)
3550 {
3551 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
3552 struct intel_crtc_state *crtc_state =
3553 to_intel_crtc_state(crtc->base.state);
3554 struct intel_plane_state *plane_state =
3555 to_intel_plane_state(plane->base.state);
3556
3557 drm_dbg_kms(&dev_priv->drm,
3558 "Disabling [PLANE:%d:%s] on [CRTC:%d:%s]\n",
3559 plane->base.base.id, plane->base.name,
3560 crtc->base.base.id, crtc->base.name);
3561
3562 intel_set_plane_visible(crtc_state, plane_state, false);
3563 fixup_active_planes(crtc_state);
3564 crtc_state->data_rate[plane->id] = 0;
3565 crtc_state->min_cdclk[plane->id] = 0;
3566
3567 if (plane->id == PLANE_PRIMARY)
3568 hsw_disable_ips(crtc_state);
3569
3570 /*
3571 * Vblank time updates from the shadow to live plane control register
3572 * are blocked if the memory self-refresh mode is active at that
3573 * moment. So to make sure the plane gets truly disabled, disable
3574 * first the self-refresh mode. The self-refresh enable bit in turn
3575 * will be checked/applied by the HW only at the next frame start
3576 * event which is after the vblank start event, so we need to have a
3577 * wait-for-vblank between disabling the plane and the pipe.
3578 */
3579 if (HAS_GMCH(dev_priv) &&
3580 intel_set_memory_cxsr(dev_priv, false))
3581 intel_wait_for_vblank(dev_priv, crtc->pipe);
3582
3583 /*
3584 * Gen2 reports pipe underruns whenever all planes are disabled.
3585 * So disable underrun reporting before all the planes get disabled.
3586 */
3587 if (IS_GEN(dev_priv, 2) && !crtc_state->active_planes)
3588 intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, false);
3589
3590 intel_disable_plane(plane, crtc_state);
3591 }
3592
3593 static struct intel_frontbuffer *
3594 to_intel_frontbuffer(struct drm_framebuffer *fb)
3595 {
3596 return fb ? to_intel_framebuffer(fb)->frontbuffer : NULL;
3597 }
3598
3599 static void
3600 intel_find_initial_plane_obj(struct intel_crtc *intel_crtc,
3601 struct intel_initial_plane_config *plane_config)
3602 {
3603 struct drm_device *dev = intel_crtc->base.dev;
3604 struct drm_i915_private *dev_priv = to_i915(dev);
3605 struct drm_crtc *c;
3606 struct drm_plane *primary = intel_crtc->base.primary;
3607 struct drm_plane_state *plane_state = primary->state;
3608 struct intel_plane *intel_plane = to_intel_plane(primary);
3609 struct intel_plane_state *intel_state =
3610 to_intel_plane_state(plane_state);
3611 struct drm_framebuffer *fb;
3612 struct i915_vma *vma;
3613
3614 if (!plane_config->fb)
3615 return;
3616
3617 if (intel_alloc_initial_plane_obj(intel_crtc, plane_config)) {
3618 fb = &plane_config->fb->base;
3619 vma = plane_config->vma;
3620 goto valid_fb;
3621 }
3622
3623 /*
3624 * Failed to alloc the obj, check to see if we should share
3625 * an fb with another CRTC instead
3626 */
3627 for_each_crtc(dev, c) {
3628 struct intel_plane_state *state;
3629
3630 if (c == &intel_crtc->base)
3631 continue;
3632
3633 if (!to_intel_crtc(c)->active)
3634 continue;
3635
3636 state = to_intel_plane_state(c->primary->state);
3637 if (!state->vma)
3638 continue;
3639
3640 if (intel_plane_ggtt_offset(state) == plane_config->base) {
3641 fb = state->hw.fb;
3642 vma = state->vma;
3643 goto valid_fb;
3644 }
3645 }
3646
3647 /*
3648 * We've failed to reconstruct the BIOS FB. Current display state
3649 * indicates that the primary plane is visible, but has a NULL FB,
3650 * which will lead to problems later if we don't fix it up. The
3651 * simplest solution is to just disable the primary plane now and
3652 * pretend the BIOS never had it enabled.
3653 */
3654 intel_plane_disable_noatomic(intel_crtc, intel_plane);
3655
3656 return;
3657
3658 valid_fb:
3659 intel_state->hw.rotation = plane_config->rotation;
3660 intel_fill_fb_ggtt_view(&intel_state->view, fb,
3661 intel_state->hw.rotation);
3662 intel_state->color_plane[0].stride =
3663 intel_fb_pitch(fb, 0, intel_state->hw.rotation);
3664
3665 __i915_vma_pin(vma);
3666 intel_state->vma = i915_vma_get(vma);
3667 if (intel_plane_uses_fence(intel_state) && i915_vma_pin_fence(vma) == 0)
3668 if (vma->fence)
3669 intel_state->flags |= PLANE_HAS_FENCE;
3670
3671 plane_state->src_x = 0;
3672 plane_state->src_y = 0;
3673 plane_state->src_w = fb->width << 16;
3674 plane_state->src_h = fb->height << 16;
3675
3676 plane_state->crtc_x = 0;
3677 plane_state->crtc_y = 0;
3678 plane_state->crtc_w = fb->width;
3679 plane_state->crtc_h = fb->height;
3680
3681 intel_state->uapi.src = drm_plane_state_src(plane_state);
3682 intel_state->uapi.dst = drm_plane_state_dest(plane_state);
3683
3684 if (plane_config->tiling)
3685 dev_priv->preserve_bios_swizzle = true;
3686
3687 plane_state->fb = fb;
3688 drm_framebuffer_get(fb);
3689
3690 plane_state->crtc = &intel_crtc->base;
3691 intel_plane_copy_uapi_to_hw_state(intel_state, intel_state);
3692
3693 intel_frontbuffer_flush(to_intel_frontbuffer(fb), ORIGIN_DIRTYFB);
3694
3695 atomic_or(to_intel_plane(primary)->frontbuffer_bit,
3696 &to_intel_frontbuffer(fb)->bits);
3697 }
3698
3699 static int skl_max_plane_width(const struct drm_framebuffer *fb,
3700 int color_plane,
3701 unsigned int rotation)
3702 {
3703 int cpp = fb->format->cpp[color_plane];
3704
3705 switch (fb->modifier) {
3706 case DRM_FORMAT_MOD_LINEAR:
3707 case I915_FORMAT_MOD_X_TILED:
3708 /*
3709 * Validated limit is 4k, but has 5k should
3710 * work apart from the following features:
3711 * - Ytile (already limited to 4k)
3712 * - FP16 (already limited to 4k)
3713 * - render compression (already limited to 4k)
3714 * - KVMR sprite and cursor (don't care)
3715 * - horizontal panning (TODO verify this)
3716 * - pipe and plane scaling (TODO verify this)
3717 */
3718 if (cpp == 8)
3719 return 4096;
3720 else
3721 return 5120;
3722 case I915_FORMAT_MOD_Y_TILED_CCS:
3723 case I915_FORMAT_MOD_Yf_TILED_CCS:
3724 case I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS:
3725 /* FIXME AUX plane? */
3726 case I915_FORMAT_MOD_Y_TILED:
3727 case I915_FORMAT_MOD_Yf_TILED:
3728 if (cpp == 8)
3729 return 2048;
3730 else
3731 return 4096;
3732 default:
3733 MISSING_CASE(fb->modifier);
3734 return 2048;
3735 }
3736 }
3737
3738 static int glk_max_plane_width(const struct drm_framebuffer *fb,
3739 int color_plane,
3740 unsigned int rotation)
3741 {
3742 int cpp = fb->format->cpp[color_plane];
3743
3744 switch (fb->modifier) {
3745 case DRM_FORMAT_MOD_LINEAR:
3746 case I915_FORMAT_MOD_X_TILED:
3747 if (cpp == 8)
3748 return 4096;
3749 else
3750 return 5120;
3751 case I915_FORMAT_MOD_Y_TILED_CCS:
3752 case I915_FORMAT_MOD_Yf_TILED_CCS:
3753 /* FIXME AUX plane? */
3754 case I915_FORMAT_MOD_Y_TILED:
3755 case I915_FORMAT_MOD_Yf_TILED:
3756 if (cpp == 8)
3757 return 2048;
3758 else
3759 return 5120;
3760 default:
3761 MISSING_CASE(fb->modifier);
3762 return 2048;
3763 }
3764 }
3765
3766 static int icl_min_plane_width(const struct drm_framebuffer *fb)
3767 {
3768 /* Wa_14011264657, Wa_14011050563: gen11+ */
3769 switch (fb->format->format) {
3770 case DRM_FORMAT_C8:
3771 return 18;
3772 case DRM_FORMAT_RGB565:
3773 return 10;
3774 case DRM_FORMAT_XRGB8888:
3775 case DRM_FORMAT_XBGR8888:
3776 case DRM_FORMAT_ARGB8888:
3777 case DRM_FORMAT_ABGR8888:
3778 case DRM_FORMAT_XRGB2101010:
3779 case DRM_FORMAT_XBGR2101010:
3780 case DRM_FORMAT_ARGB2101010:
3781 case DRM_FORMAT_ABGR2101010:
3782 case DRM_FORMAT_XVYU2101010:
3783 case DRM_FORMAT_Y212:
3784 case DRM_FORMAT_Y216:
3785 return 6;
3786 case DRM_FORMAT_NV12:
3787 return 20;
3788 case DRM_FORMAT_P010:
3789 case DRM_FORMAT_P012:
3790 case DRM_FORMAT_P016:
3791 return 12;
3792 case DRM_FORMAT_XRGB16161616F:
3793 case DRM_FORMAT_XBGR16161616F:
3794 case DRM_FORMAT_ARGB16161616F:
3795 case DRM_FORMAT_ABGR16161616F:
3796 case DRM_FORMAT_XVYU12_16161616:
3797 case DRM_FORMAT_XVYU16161616:
3798 return 4;
3799 default:
3800 return 1;
3801 }
3802 }
3803
3804 static int icl_max_plane_width(const struct drm_framebuffer *fb,
3805 int color_plane,
3806 unsigned int rotation)
3807 {
3808 return 5120;
3809 }
3810
3811 static int skl_max_plane_height(void)
3812 {
3813 return 4096;
3814 }
3815
3816 static int icl_max_plane_height(void)
3817 {
3818 return 4320;
3819 }
3820
3821 static bool
3822 skl_check_main_ccs_coordinates(struct intel_plane_state *plane_state,
3823 int main_x, int main_y, u32 main_offset,
3824 int ccs_plane)
3825 {
3826 const struct drm_framebuffer *fb = plane_state->hw.fb;
3827 int aux_x = plane_state->color_plane[ccs_plane].x;
3828 int aux_y = plane_state->color_plane[ccs_plane].y;
3829 u32 aux_offset = plane_state->color_plane[ccs_plane].offset;
3830 u32 alignment = intel_surf_alignment(fb, ccs_plane);
3831 int hsub;
3832 int vsub;
3833
3834 intel_fb_plane_get_subsampling(&hsub, &vsub, fb, ccs_plane);
3835 while (aux_offset >= main_offset && aux_y <= main_y) {
3836 int x, y;
3837
3838 if (aux_x == main_x && aux_y == main_y)
3839 break;
3840
3841 if (aux_offset == 0)
3842 break;
3843
3844 x = aux_x / hsub;
3845 y = aux_y / vsub;
3846 aux_offset = intel_plane_adjust_aligned_offset(&x, &y,
3847 plane_state,
3848 ccs_plane,
3849 aux_offset,
3850 aux_offset -
3851 alignment);
3852 aux_x = x * hsub + aux_x % hsub;
3853 aux_y = y * vsub + aux_y % vsub;
3854 }
3855
3856 if (aux_x != main_x || aux_y != main_y)
3857 return false;
3858
3859 plane_state->color_plane[ccs_plane].offset = aux_offset;
3860 plane_state->color_plane[ccs_plane].x = aux_x;
3861 plane_state->color_plane[ccs_plane].y = aux_y;
3862
3863 return true;
3864 }
3865
3866 unsigned int
3867 intel_plane_fence_y_offset(const struct intel_plane_state *plane_state)
3868 {
3869 int x = 0, y = 0;
3870
3871 intel_plane_adjust_aligned_offset(&x, &y, plane_state, 0,
3872 plane_state->color_plane[0].offset, 0);
3873
3874 return y;
3875 }
3876
3877 static int skl_check_main_surface(struct intel_plane_state *plane_state)
3878 {
3879 struct drm_i915_private *dev_priv = to_i915(plane_state->uapi.plane->dev);
3880 const struct drm_framebuffer *fb = plane_state->hw.fb;
3881 unsigned int rotation = plane_state->hw.rotation;
3882 int x = plane_state->uapi.src.x1 >> 16;
3883 int y = plane_state->uapi.src.y1 >> 16;
3884 int w = drm_rect_width(&plane_state->uapi.src) >> 16;
3885 int h = drm_rect_height(&plane_state->uapi.src) >> 16;
3886 int max_width, min_width, max_height;
3887 u32 alignment, offset;
3888 int aux_plane = intel_main_to_aux_plane(fb, 0);
3889 u32 aux_offset = plane_state->color_plane[aux_plane].offset;
3890
3891 if (INTEL_GEN(dev_priv) >= 11) {
3892 max_width = icl_max_plane_width(fb, 0, rotation);
3893 min_width = icl_min_plane_width(fb);
3894 } else if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) {
3895 max_width = glk_max_plane_width(fb, 0, rotation);
3896 min_width = 1;
3897 } else {
3898 max_width = skl_max_plane_width(fb, 0, rotation);
3899 min_width = 1;
3900 }
3901
3902 if (INTEL_GEN(dev_priv) >= 11)
3903 max_height = icl_max_plane_height();
3904 else
3905 max_height = skl_max_plane_height();
3906
3907 if (w > max_width || w < min_width || h > max_height) {
3908 drm_dbg_kms(&dev_priv->drm,
3909 "requested Y/RGB source size %dx%d outside limits (min: %dx1 max: %dx%d)\n",
3910 w, h, min_width, max_width, max_height);
3911 return -EINVAL;
3912 }
3913
3914 intel_add_fb_offsets(&x, &y, plane_state, 0);
3915 offset = intel_plane_compute_aligned_offset(&x, &y, plane_state, 0);
3916 alignment = intel_surf_alignment(fb, 0);
3917 if (drm_WARN_ON(&dev_priv->drm, alignment && !is_power_of_2(alignment)))
3918 return -EINVAL;
3919
3920 /*
3921 * AUX surface offset is specified as the distance from the
3922 * main surface offset, and it must be non-negative. Make
3923 * sure that is what we will get.
3924 */
3925 if (offset > aux_offset)
3926 offset = intel_plane_adjust_aligned_offset(&x, &y, plane_state, 0,
3927 offset, aux_offset & ~(alignment - 1));
3928
3929 /*
3930 * When using an X-tiled surface, the plane blows up
3931 * if the x offset + width exceed the stride.
3932 *
3933 * TODO: linear and Y-tiled seem fine, Yf untested,
3934 */
3935 if (fb->modifier == I915_FORMAT_MOD_X_TILED) {
3936 int cpp = fb->format->cpp[0];
3937
3938 while ((x + w) * cpp > plane_state->color_plane[0].stride) {
3939 if (offset == 0) {
3940 drm_dbg_kms(&dev_priv->drm,
3941 "Unable to find suitable display surface offset due to X-tiling\n");
3942 return -EINVAL;
3943 }
3944
3945 offset = intel_plane_adjust_aligned_offset(&x, &y, plane_state, 0,
3946 offset, offset - alignment);
3947 }
3948 }
3949
3950 /*
3951 * CCS AUX surface doesn't have its own x/y offsets, we must make sure
3952 * they match with the main surface x/y offsets.
3953 */
3954 if (is_ccs_modifier(fb->modifier)) {
3955 while (!skl_check_main_ccs_coordinates(plane_state, x, y,
3956 offset, aux_plane)) {
3957 if (offset == 0)
3958 break;
3959
3960 offset = intel_plane_adjust_aligned_offset(&x, &y, plane_state, 0,
3961 offset, offset - alignment);
3962 }
3963
3964 if (x != plane_state->color_plane[aux_plane].x ||
3965 y != plane_state->color_plane[aux_plane].y) {
3966 drm_dbg_kms(&dev_priv->drm,
3967 "Unable to find suitable display surface offset due to CCS\n");
3968 return -EINVAL;
3969 }
3970 }
3971
3972 plane_state->color_plane[0].offset = offset;
3973 plane_state->color_plane[0].x = x;
3974 plane_state->color_plane[0].y = y;
3975
3976 /*
3977 * Put the final coordinates back so that the src
3978 * coordinate checks will see the right values.
3979 */
3980 drm_rect_translate_to(&plane_state->uapi.src,
3981 x << 16, y << 16);
3982
3983 return 0;
3984 }
3985
3986 static int skl_check_nv12_aux_surface(struct intel_plane_state *plane_state)
3987 {
3988 struct drm_i915_private *i915 = to_i915(plane_state->uapi.plane->dev);
3989 const struct drm_framebuffer *fb = plane_state->hw.fb;
3990 unsigned int rotation = plane_state->hw.rotation;
3991 int uv_plane = 1;
3992 int max_width = skl_max_plane_width(fb, uv_plane, rotation);
3993 int max_height = 4096;
3994 int x = plane_state->uapi.src.x1 >> 17;
3995 int y = plane_state->uapi.src.y1 >> 17;
3996 int w = drm_rect_width(&plane_state->uapi.src) >> 17;
3997 int h = drm_rect_height(&plane_state->uapi.src) >> 17;
3998 u32 offset;
3999
4000 intel_add_fb_offsets(&x, &y, plane_state, uv_plane);
4001 offset = intel_plane_compute_aligned_offset(&x, &y,
4002 plane_state, uv_plane);
4003
4004 /* FIXME not quite sure how/if these apply to the chroma plane */
4005 if (w > max_width || h > max_height) {
4006 drm_dbg_kms(&i915->drm,
4007 "CbCr source size %dx%d too big (limit %dx%d)\n",
4008 w, h, max_width, max_height);
4009 return -EINVAL;
4010 }
4011
4012 if (is_ccs_modifier(fb->modifier)) {
4013 int ccs_plane = main_to_ccs_plane(fb, uv_plane);
4014 int aux_offset = plane_state->color_plane[ccs_plane].offset;
4015 int alignment = intel_surf_alignment(fb, uv_plane);
4016
4017 if (offset > aux_offset)
4018 offset = intel_plane_adjust_aligned_offset(&x, &y,
4019 plane_state,
4020 uv_plane,
4021 offset,
4022 aux_offset & ~(alignment - 1));
4023
4024 while (!skl_check_main_ccs_coordinates(plane_state, x, y,
4025 offset, ccs_plane)) {
4026 if (offset == 0)
4027 break;
4028
4029 offset = intel_plane_adjust_aligned_offset(&x, &y,
4030 plane_state,
4031 uv_plane,
4032 offset, offset - alignment);
4033 }
4034
4035 if (x != plane_state->color_plane[ccs_plane].x ||
4036 y != plane_state->color_plane[ccs_plane].y) {
4037 drm_dbg_kms(&i915->drm,
4038 "Unable to find suitable display surface offset due to CCS\n");
4039 return -EINVAL;
4040 }
4041 }
4042
4043 plane_state->color_plane[uv_plane].offset = offset;
4044 plane_state->color_plane[uv_plane].x = x;
4045 plane_state->color_plane[uv_plane].y = y;
4046
4047 return 0;
4048 }
4049
4050 static int skl_check_ccs_aux_surface(struct intel_plane_state *plane_state)
4051 {
4052 const struct drm_framebuffer *fb = plane_state->hw.fb;
4053 int src_x = plane_state->uapi.src.x1 >> 16;
4054 int src_y = plane_state->uapi.src.y1 >> 16;
4055 u32 offset;
4056 int ccs_plane;
4057
4058 for (ccs_plane = 0; ccs_plane < fb->format->num_planes; ccs_plane++) {
4059 int main_hsub, main_vsub;
4060 int hsub, vsub;
4061 int x, y;
4062
4063 if (!is_ccs_plane(fb, ccs_plane))
4064 continue;
4065
4066 intel_fb_plane_get_subsampling(&main_hsub, &main_vsub, fb,
4067 ccs_to_main_plane(fb, ccs_plane));
4068 intel_fb_plane_get_subsampling(&hsub, &vsub, fb, ccs_plane);
4069
4070 hsub *= main_hsub;
4071 vsub *= main_vsub;
4072 x = src_x / hsub;
4073 y = src_y / vsub;
4074
4075 intel_add_fb_offsets(&x, &y, plane_state, ccs_plane);
4076
4077 offset = intel_plane_compute_aligned_offset(&x, &y,
4078 plane_state,
4079 ccs_plane);
4080
4081 plane_state->color_plane[ccs_plane].offset = offset;
4082 plane_state->color_plane[ccs_plane].x = (x * hsub +
4083 src_x % hsub) /
4084 main_hsub;
4085 plane_state->color_plane[ccs_plane].y = (y * vsub +
4086 src_y % vsub) /
4087 main_vsub;
4088 }
4089
4090 return 0;
4091 }
4092
4093 int skl_check_plane_surface(struct intel_plane_state *plane_state)
4094 {
4095 const struct drm_framebuffer *fb = plane_state->hw.fb;
4096 int ret, i;
4097
4098 ret = intel_plane_compute_gtt(plane_state);
4099 if (ret)
4100 return ret;
4101
4102 if (!plane_state->uapi.visible)
4103 return 0;
4104
4105 /*
4106 * Handle the AUX surface first since the main surface setup depends on
4107 * it.
4108 */
4109 if (is_ccs_modifier(fb->modifier)) {
4110 ret = skl_check_ccs_aux_surface(plane_state);
4111 if (ret)
4112 return ret;
4113 }
4114
4115 if (intel_format_info_is_yuv_semiplanar(fb->format,
4116 fb->modifier)) {
4117 ret = skl_check_nv12_aux_surface(plane_state);
4118 if (ret)
4119 return ret;
4120 }
4121
4122 for (i = fb->format->num_planes; i < ARRAY_SIZE(plane_state->color_plane); i++) {
4123 plane_state->color_plane[i].offset = ~0xfff;
4124 plane_state->color_plane[i].x = 0;
4125 plane_state->color_plane[i].y = 0;
4126 }
4127
4128 ret = skl_check_main_surface(plane_state);
4129 if (ret)
4130 return ret;
4131
4132 return 0;
4133 }
4134
4135 static void i9xx_plane_ratio(const struct intel_crtc_state *crtc_state,
4136 const struct intel_plane_state *plane_state,
4137 unsigned int *num, unsigned int *den)
4138 {
4139 const struct drm_framebuffer *fb = plane_state->hw.fb;
4140 unsigned int cpp = fb->format->cpp[0];
4141
4142 /*
4143 * g4x bspec says 64bpp pixel rate can't exceed 80%
4144 * of cdclk when the sprite plane is enabled on the
4145 * same pipe. ilk/snb bspec says 64bpp pixel rate is
4146 * never allowed to exceed 80% of cdclk. Let's just go
4147 * with the ilk/snb limit always.
4148 */
4149 if (cpp == 8) {
4150 *num = 10;
4151 *den = 8;
4152 } else {
4153 *num = 1;
4154 *den = 1;
4155 }
4156 }
4157
4158 static int i9xx_plane_min_cdclk(const struct intel_crtc_state *crtc_state,
4159 const struct intel_plane_state *plane_state)
4160 {
4161 unsigned int pixel_rate;
4162 unsigned int num, den;
4163
4164 /*
4165 * Note that crtc_state->pixel_rate accounts for both
4166 * horizontal and vertical panel fitter downscaling factors.
4167 * Pre-HSW bspec tells us to only consider the horizontal
4168 * downscaling factor here. We ignore that and just consider
4169 * both for simplicity.
4170 */
4171 pixel_rate = crtc_state->pixel_rate;
4172
4173 i9xx_plane_ratio(crtc_state, plane_state, &num, &den);
4174
4175 /* two pixels per clock with double wide pipe */
4176 if (crtc_state->double_wide)
4177 den *= 2;
4178
4179 return DIV_ROUND_UP(pixel_rate * num, den);
4180 }
4181
4182 unsigned int
4183 i9xx_plane_max_stride(struct intel_plane *plane,
4184 u32 pixel_format, u64 modifier,
4185 unsigned int rotation)
4186 {
4187 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
4188
4189 if (!HAS_GMCH(dev_priv)) {
4190 return 32*1024;
4191 } else if (INTEL_GEN(dev_priv) >= 4) {
4192 if (modifier == I915_FORMAT_MOD_X_TILED)
4193 return 16*1024;
4194 else
4195 return 32*1024;
4196 } else if (INTEL_GEN(dev_priv) >= 3) {
4197 if (modifier == I915_FORMAT_MOD_X_TILED)
4198 return 8*1024;
4199 else
4200 return 16*1024;
4201 } else {
4202 if (plane->i9xx_plane == PLANE_C)
4203 return 4*1024;
4204 else
4205 return 8*1024;
4206 }
4207 }
4208
4209 static u32 i9xx_plane_ctl_crtc(const struct intel_crtc_state *crtc_state)
4210 {
4211 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
4212 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
4213 u32 dspcntr = 0;
4214
4215 if (crtc_state->gamma_enable)
4216 dspcntr |= DISPPLANE_GAMMA_ENABLE;
4217
4218 if (crtc_state->csc_enable)
4219 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
4220
4221 if (INTEL_GEN(dev_priv) < 5)
4222 dspcntr |= DISPPLANE_SEL_PIPE(crtc->pipe);
4223
4224 return dspcntr;
4225 }
4226
4227 static u32 i9xx_plane_ctl(const struct intel_crtc_state *crtc_state,
4228 const struct intel_plane_state *plane_state)
4229 {
4230 struct drm_i915_private *dev_priv =
4231 to_i915(plane_state->uapi.plane->dev);
4232 const struct drm_framebuffer *fb = plane_state->hw.fb;
4233 unsigned int rotation = plane_state->hw.rotation;
4234 u32 dspcntr;
4235
4236 dspcntr = DISPLAY_PLANE_ENABLE;
4237
4238 if (IS_G4X(dev_priv) || IS_GEN(dev_priv, 5) ||
4239 IS_GEN(dev_priv, 6) || IS_IVYBRIDGE(dev_priv))
4240 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
4241
4242 switch (fb->format->format) {
4243 case DRM_FORMAT_C8:
4244 dspcntr |= DISPPLANE_8BPP;
4245 break;
4246 case DRM_FORMAT_XRGB1555:
4247 dspcntr |= DISPPLANE_BGRX555;
4248 break;
4249 case DRM_FORMAT_ARGB1555:
4250 dspcntr |= DISPPLANE_BGRA555;
4251 break;
4252 case DRM_FORMAT_RGB565:
4253 dspcntr |= DISPPLANE_BGRX565;
4254 break;
4255 case DRM_FORMAT_XRGB8888:
4256 dspcntr |= DISPPLANE_BGRX888;
4257 break;
4258 case DRM_FORMAT_XBGR8888:
4259 dspcntr |= DISPPLANE_RGBX888;
4260 break;
4261 case DRM_FORMAT_ARGB8888:
4262 dspcntr |= DISPPLANE_BGRA888;
4263 break;
4264 case DRM_FORMAT_ABGR8888:
4265 dspcntr |= DISPPLANE_RGBA888;
4266 break;
4267 case DRM_FORMAT_XRGB2101010:
4268 dspcntr |= DISPPLANE_BGRX101010;
4269 break;
4270 case DRM_FORMAT_XBGR2101010:
4271 dspcntr |= DISPPLANE_RGBX101010;
4272 break;
4273 case DRM_FORMAT_ARGB2101010:
4274 dspcntr |= DISPPLANE_BGRA101010;
4275 break;
4276 case DRM_FORMAT_ABGR2101010:
4277 dspcntr |= DISPPLANE_RGBA101010;
4278 break;
4279 case DRM_FORMAT_XBGR16161616F:
4280 dspcntr |= DISPPLANE_RGBX161616;
4281 break;
4282 default:
4283 MISSING_CASE(fb->format->format);
4284 return 0;
4285 }
4286
4287 if (INTEL_GEN(dev_priv) >= 4 &&
4288 fb->modifier == I915_FORMAT_MOD_X_TILED)
4289 dspcntr |= DISPPLANE_TILED;
4290
4291 if (rotation & DRM_MODE_ROTATE_180)
4292 dspcntr |= DISPPLANE_ROTATE_180;
4293
4294 if (rotation & DRM_MODE_REFLECT_X)
4295 dspcntr |= DISPPLANE_MIRROR;
4296
4297 return dspcntr;
4298 }
4299
4300 int i9xx_check_plane_surface(struct intel_plane_state *plane_state)
4301 {
4302 struct drm_i915_private *dev_priv =
4303 to_i915(plane_state->uapi.plane->dev);
4304 const struct drm_framebuffer *fb = plane_state->hw.fb;
4305 int src_x, src_y, src_w;
4306 u32 offset;
4307 int ret;
4308
4309 ret = intel_plane_compute_gtt(plane_state);
4310 if (ret)
4311 return ret;
4312
4313 if (!plane_state->uapi.visible)
4314 return 0;
4315
4316 src_w = drm_rect_width(&plane_state->uapi.src) >> 16;
4317 src_x = plane_state->uapi.src.x1 >> 16;
4318 src_y = plane_state->uapi.src.y1 >> 16;
4319
4320 /* Undocumented hardware limit on i965/g4x/vlv/chv */
4321 if (HAS_GMCH(dev_priv) && fb->format->cpp[0] == 8 && src_w > 2048)
4322 return -EINVAL;
4323
4324 intel_add_fb_offsets(&src_x, &src_y, plane_state, 0);
4325
4326 if (INTEL_GEN(dev_priv) >= 4)
4327 offset = intel_plane_compute_aligned_offset(&src_x, &src_y,
4328 plane_state, 0);
4329 else
4330 offset = 0;
4331
4332 /*
4333 * Put the final coordinates back so that the src
4334 * coordinate checks will see the right values.
4335 */
4336 drm_rect_translate_to(&plane_state->uapi.src,
4337 src_x << 16, src_y << 16);
4338
4339 /* HSW/BDW do this automagically in hardware */
4340 if (!IS_HASWELL(dev_priv) && !IS_BROADWELL(dev_priv)) {
4341 unsigned int rotation = plane_state->hw.rotation;
4342 int src_w = drm_rect_width(&plane_state->uapi.src) >> 16;
4343 int src_h = drm_rect_height(&plane_state->uapi.src) >> 16;
4344
4345 if (rotation & DRM_MODE_ROTATE_180) {
4346 src_x += src_w - 1;
4347 src_y += src_h - 1;
4348 } else if (rotation & DRM_MODE_REFLECT_X) {
4349 src_x += src_w - 1;
4350 }
4351 }
4352
4353 plane_state->color_plane[0].offset = offset;
4354 plane_state->color_plane[0].x = src_x;
4355 plane_state->color_plane[0].y = src_y;
4356
4357 return 0;
4358 }
4359
4360 static bool i9xx_plane_has_windowing(struct intel_plane *plane)
4361 {
4362 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
4363 enum i9xx_plane_id i9xx_plane = plane->i9xx_plane;
4364
4365 if (IS_CHERRYVIEW(dev_priv))
4366 return i9xx_plane == PLANE_B;
4367 else if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
4368 return false;
4369 else if (IS_GEN(dev_priv, 4))
4370 return i9xx_plane == PLANE_C;
4371 else
4372 return i9xx_plane == PLANE_B ||
4373 i9xx_plane == PLANE_C;
4374 }
4375
4376 static int
4377 i9xx_plane_check(struct intel_crtc_state *crtc_state,
4378 struct intel_plane_state *plane_state)
4379 {
4380 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
4381 int ret;
4382
4383 ret = chv_plane_check_rotation(plane_state);
4384 if (ret)
4385 return ret;
4386
4387 ret = drm_atomic_helper_check_plane_state(&plane_state->uapi,
4388 &crtc_state->uapi,
4389 DRM_PLANE_HELPER_NO_SCALING,
4390 DRM_PLANE_HELPER_NO_SCALING,
4391 i9xx_plane_has_windowing(plane),
4392 true);
4393 if (ret)
4394 return ret;
4395
4396 ret = i9xx_check_plane_surface(plane_state);
4397 if (ret)
4398 return ret;
4399
4400 if (!plane_state->uapi.visible)
4401 return 0;
4402
4403 ret = intel_plane_check_src_coordinates(plane_state);
4404 if (ret)
4405 return ret;
4406
4407 plane_state->ctl = i9xx_plane_ctl(crtc_state, plane_state);
4408
4409 return 0;
4410 }
4411
4412 static void i9xx_update_plane(struct intel_plane *plane,
4413 const struct intel_crtc_state *crtc_state,
4414 const struct intel_plane_state *plane_state)
4415 {
4416 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
4417 enum i9xx_plane_id i9xx_plane = plane->i9xx_plane;
4418 u32 linear_offset;
4419 int x = plane_state->color_plane[0].x;
4420 int y = plane_state->color_plane[0].y;
4421 int crtc_x = plane_state->uapi.dst.x1;
4422 int crtc_y = plane_state->uapi.dst.y1;
4423 int crtc_w = drm_rect_width(&plane_state->uapi.dst);
4424 int crtc_h = drm_rect_height(&plane_state->uapi.dst);
4425 unsigned long irqflags;
4426 u32 dspaddr_offset;
4427 u32 dspcntr;
4428
4429 dspcntr = plane_state->ctl | i9xx_plane_ctl_crtc(crtc_state);
4430
4431 linear_offset = intel_fb_xy_to_linear(x, y, plane_state, 0);
4432
4433 if (INTEL_GEN(dev_priv) >= 4)
4434 dspaddr_offset = plane_state->color_plane[0].offset;
4435 else
4436 dspaddr_offset = linear_offset;
4437
4438 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
4439
4440 intel_de_write_fw(dev_priv, DSPSTRIDE(i9xx_plane),
4441 plane_state->color_plane[0].stride);
4442
4443 if (INTEL_GEN(dev_priv) < 4) {
4444 /*
4445 * PLANE_A doesn't actually have a full window
4446 * generator but let's assume we still need to
4447 * program whatever is there.
4448 */
4449 intel_de_write_fw(dev_priv, DSPPOS(i9xx_plane),
4450 (crtc_y << 16) | crtc_x);
4451 intel_de_write_fw(dev_priv, DSPSIZE(i9xx_plane),
4452 ((crtc_h - 1) << 16) | (crtc_w - 1));
4453 } else if (IS_CHERRYVIEW(dev_priv) && i9xx_plane == PLANE_B) {
4454 intel_de_write_fw(dev_priv, PRIMPOS(i9xx_plane),
4455 (crtc_y << 16) | crtc_x);
4456 intel_de_write_fw(dev_priv, PRIMSIZE(i9xx_plane),
4457 ((crtc_h - 1) << 16) | (crtc_w - 1));
4458 intel_de_write_fw(dev_priv, PRIMCNSTALPHA(i9xx_plane), 0);
4459 }
4460
4461 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
4462 intel_de_write_fw(dev_priv, DSPOFFSET(i9xx_plane),
4463 (y << 16) | x);
4464 } else if (INTEL_GEN(dev_priv) >= 4) {
4465 intel_de_write_fw(dev_priv, DSPLINOFF(i9xx_plane),
4466 linear_offset);
4467 intel_de_write_fw(dev_priv, DSPTILEOFF(i9xx_plane),
4468 (y << 16) | x);
4469 }
4470
4471 /*
4472 * The control register self-arms if the plane was previously
4473 * disabled. Try to make the plane enable atomic by writing
4474 * the control register just before the surface register.
4475 */
4476 intel_de_write_fw(dev_priv, DSPCNTR(i9xx_plane), dspcntr);
4477 if (INTEL_GEN(dev_priv) >= 4)
4478 intel_de_write_fw(dev_priv, DSPSURF(i9xx_plane),
4479 intel_plane_ggtt_offset(plane_state) + dspaddr_offset);
4480 else
4481 intel_de_write_fw(dev_priv, DSPADDR(i9xx_plane),
4482 intel_plane_ggtt_offset(plane_state) + dspaddr_offset);
4483
4484 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
4485 }
4486
4487 static void i9xx_disable_plane(struct intel_plane *plane,
4488 const struct intel_crtc_state *crtc_state)
4489 {
4490 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
4491 enum i9xx_plane_id i9xx_plane = plane->i9xx_plane;
4492 unsigned long irqflags;
4493 u32 dspcntr;
4494
4495 /*
4496 * DSPCNTR pipe gamma enable on g4x+ and pipe csc
4497 * enable on ilk+ affect the pipe bottom color as
4498 * well, so we must configure them even if the plane
4499 * is disabled.
4500 *
4501 * On pre-g4x there is no way to gamma correct the
4502 * pipe bottom color but we'll keep on doing this
4503 * anyway so that the crtc state readout works correctly.
4504 */
4505 dspcntr = i9xx_plane_ctl_crtc(crtc_state);
4506
4507 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
4508
4509 intel_de_write_fw(dev_priv, DSPCNTR(i9xx_plane), dspcntr);
4510 if (INTEL_GEN(dev_priv) >= 4)
4511 intel_de_write_fw(dev_priv, DSPSURF(i9xx_plane), 0);
4512 else
4513 intel_de_write_fw(dev_priv, DSPADDR(i9xx_plane), 0);
4514
4515 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
4516 }
4517
4518 static bool i9xx_plane_get_hw_state(struct intel_plane *plane,
4519 enum pipe *pipe)
4520 {
4521 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
4522 enum intel_display_power_domain power_domain;
4523 enum i9xx_plane_id i9xx_plane = plane->i9xx_plane;
4524 intel_wakeref_t wakeref;
4525 bool ret;
4526 u32 val;
4527
4528 /*
4529 * Not 100% correct for planes that can move between pipes,
4530 * but that's only the case for gen2-4 which don't have any
4531 * display power wells.
4532 */
4533 power_domain = POWER_DOMAIN_PIPE(plane->pipe);
4534 wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain);
4535 if (!wakeref)
4536 return false;
4537
4538 val = intel_de_read(dev_priv, DSPCNTR(i9xx_plane));
4539
4540 ret = val & DISPLAY_PLANE_ENABLE;
4541
4542 if (INTEL_GEN(dev_priv) >= 5)
4543 *pipe = plane->pipe;
4544 else
4545 *pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
4546 DISPPLANE_SEL_PIPE_SHIFT;
4547
4548 intel_display_power_put(dev_priv, power_domain, wakeref);
4549
4550 return ret;
4551 }
4552
4553 static void skl_detach_scaler(struct intel_crtc *intel_crtc, int id)
4554 {
4555 struct drm_device *dev = intel_crtc->base.dev;
4556 struct drm_i915_private *dev_priv = to_i915(dev);
4557 unsigned long irqflags;
4558
4559 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
4560
4561 intel_de_write_fw(dev_priv, SKL_PS_CTRL(intel_crtc->pipe, id), 0);
4562 intel_de_write_fw(dev_priv, SKL_PS_WIN_POS(intel_crtc->pipe, id), 0);
4563 intel_de_write_fw(dev_priv, SKL_PS_WIN_SZ(intel_crtc->pipe, id), 0);
4564
4565 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
4566 }
4567
4568 /*
4569 * This function detaches (aka. unbinds) unused scalers in hardware
4570 */
4571 static void skl_detach_scalers(const struct intel_crtc_state *crtc_state)
4572 {
4573 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->uapi.crtc);
4574 const struct intel_crtc_scaler_state *scaler_state =
4575 &crtc_state->scaler_state;
4576 int i;
4577
4578 /* loop through and disable scalers that aren't in use */
4579 for (i = 0; i < intel_crtc->num_scalers; i++) {
4580 if (!scaler_state->scalers[i].in_use)
4581 skl_detach_scaler(intel_crtc, i);
4582 }
4583 }
4584
4585 static unsigned int skl_plane_stride_mult(const struct drm_framebuffer *fb,
4586 int color_plane, unsigned int rotation)
4587 {
4588 /*
4589 * The stride is either expressed as a multiple of 64 bytes chunks for
4590 * linear buffers or in number of tiles for tiled buffers.
4591 */
4592 if (is_surface_linear(fb, color_plane))
4593 return 64;
4594 else if (drm_rotation_90_or_270(rotation))
4595 return intel_tile_height(fb, color_plane);
4596 else
4597 return intel_tile_width_bytes(fb, color_plane);
4598 }
4599
4600 u32 skl_plane_stride(const struct intel_plane_state *plane_state,
4601 int color_plane)
4602 {
4603 const struct drm_framebuffer *fb = plane_state->hw.fb;
4604 unsigned int rotation = plane_state->hw.rotation;
4605 u32 stride = plane_state->color_plane[color_plane].stride;
4606
4607 if (color_plane >= fb->format->num_planes)
4608 return 0;
4609
4610 return stride / skl_plane_stride_mult(fb, color_plane, rotation);
4611 }
4612
4613 static u32 skl_plane_ctl_format(u32 pixel_format)
4614 {
4615 switch (pixel_format) {
4616 case DRM_FORMAT_C8:
4617 return PLANE_CTL_FORMAT_INDEXED;
4618 case DRM_FORMAT_RGB565:
4619 return PLANE_CTL_FORMAT_RGB_565;
4620 case DRM_FORMAT_XBGR8888:
4621 case DRM_FORMAT_ABGR8888:
4622 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX;
4623 case DRM_FORMAT_XRGB8888:
4624 case DRM_FORMAT_ARGB8888:
4625 return PLANE_CTL_FORMAT_XRGB_8888;
4626 case DRM_FORMAT_XBGR2101010:
4627 case DRM_FORMAT_ABGR2101010:
4628 return PLANE_CTL_FORMAT_XRGB_2101010 | PLANE_CTL_ORDER_RGBX;
4629 case DRM_FORMAT_XRGB2101010:
4630 case DRM_FORMAT_ARGB2101010:
4631 return PLANE_CTL_FORMAT_XRGB_2101010;
4632 case DRM_FORMAT_XBGR16161616F:
4633 case DRM_FORMAT_ABGR16161616F:
4634 return PLANE_CTL_FORMAT_XRGB_16161616F | PLANE_CTL_ORDER_RGBX;
4635 case DRM_FORMAT_XRGB16161616F:
4636 case DRM_FORMAT_ARGB16161616F:
4637 return PLANE_CTL_FORMAT_XRGB_16161616F;
4638 case DRM_FORMAT_XYUV8888:
4639 return PLANE_CTL_FORMAT_XYUV;
4640 case DRM_FORMAT_YUYV:
4641 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YUYV;
4642 case DRM_FORMAT_YVYU:
4643 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YVYU;
4644 case DRM_FORMAT_UYVY:
4645 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_UYVY;
4646 case DRM_FORMAT_VYUY:
4647 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_VYUY;
4648 case DRM_FORMAT_NV12:
4649 return PLANE_CTL_FORMAT_NV12;
4650 case DRM_FORMAT_P010:
4651 return PLANE_CTL_FORMAT_P010;
4652 case DRM_FORMAT_P012:
4653 return PLANE_CTL_FORMAT_P012;
4654 case DRM_FORMAT_P016:
4655 return PLANE_CTL_FORMAT_P016;
4656 case DRM_FORMAT_Y210:
4657 return PLANE_CTL_FORMAT_Y210;
4658 case DRM_FORMAT_Y212:
4659 return PLANE_CTL_FORMAT_Y212;
4660 case DRM_FORMAT_Y216:
4661 return PLANE_CTL_FORMAT_Y216;
4662 case DRM_FORMAT_XVYU2101010:
4663 return PLANE_CTL_FORMAT_Y410;
4664 case DRM_FORMAT_XVYU12_16161616:
4665 return PLANE_CTL_FORMAT_Y412;
4666 case DRM_FORMAT_XVYU16161616:
4667 return PLANE_CTL_FORMAT_Y416;
4668 default:
4669 MISSING_CASE(pixel_format);
4670 }
4671
4672 return 0;
4673 }
4674
4675 static u32 skl_plane_ctl_alpha(const struct intel_plane_state *plane_state)
4676 {
4677 if (!plane_state->hw.fb->format->has_alpha)
4678 return PLANE_CTL_ALPHA_DISABLE;
4679
4680 switch (plane_state->hw.pixel_blend_mode) {
4681 case DRM_MODE_BLEND_PIXEL_NONE:
4682 return PLANE_CTL_ALPHA_DISABLE;
4683 case DRM_MODE_BLEND_PREMULTI:
4684 return PLANE_CTL_ALPHA_SW_PREMULTIPLY;
4685 case DRM_MODE_BLEND_COVERAGE:
4686 return PLANE_CTL_ALPHA_HW_PREMULTIPLY;
4687 default:
4688 MISSING_CASE(plane_state->hw.pixel_blend_mode);
4689 return PLANE_CTL_ALPHA_DISABLE;
4690 }
4691 }
4692
4693 static u32 glk_plane_color_ctl_alpha(const struct intel_plane_state *plane_state)
4694 {
4695 if (!plane_state->hw.fb->format->has_alpha)
4696 return PLANE_COLOR_ALPHA_DISABLE;
4697
4698 switch (plane_state->hw.pixel_blend_mode) {
4699 case DRM_MODE_BLEND_PIXEL_NONE:
4700 return PLANE_COLOR_ALPHA_DISABLE;
4701 case DRM_MODE_BLEND_PREMULTI:
4702 return PLANE_COLOR_ALPHA_SW_PREMULTIPLY;
4703 case DRM_MODE_BLEND_COVERAGE:
4704 return PLANE_COLOR_ALPHA_HW_PREMULTIPLY;
4705 default:
4706 MISSING_CASE(plane_state->hw.pixel_blend_mode);
4707 return PLANE_COLOR_ALPHA_DISABLE;
4708 }
4709 }
4710
4711 static u32 skl_plane_ctl_tiling(u64 fb_modifier)
4712 {
4713 switch (fb_modifier) {
4714 case DRM_FORMAT_MOD_LINEAR:
4715 break;
4716 case I915_FORMAT_MOD_X_TILED:
4717 return PLANE_CTL_TILED_X;
4718 case I915_FORMAT_MOD_Y_TILED:
4719 return PLANE_CTL_TILED_Y;
4720 case I915_FORMAT_MOD_Y_TILED_CCS:
4721 return PLANE_CTL_TILED_Y | PLANE_CTL_RENDER_DECOMPRESSION_ENABLE;
4722 case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS:
4723 return PLANE_CTL_TILED_Y |
4724 PLANE_CTL_RENDER_DECOMPRESSION_ENABLE |
4725 PLANE_CTL_CLEAR_COLOR_DISABLE;
4726 case I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS:
4727 return PLANE_CTL_TILED_Y | PLANE_CTL_MEDIA_DECOMPRESSION_ENABLE;
4728 case I915_FORMAT_MOD_Yf_TILED:
4729 return PLANE_CTL_TILED_YF;
4730 case I915_FORMAT_MOD_Yf_TILED_CCS:
4731 return PLANE_CTL_TILED_YF | PLANE_CTL_RENDER_DECOMPRESSION_ENABLE;
4732 default:
4733 MISSING_CASE(fb_modifier);
4734 }
4735
4736 return 0;
4737 }
4738
4739 static u32 skl_plane_ctl_rotate(unsigned int rotate)
4740 {
4741 switch (rotate) {
4742 case DRM_MODE_ROTATE_0:
4743 break;
4744 /*
4745 * DRM_MODE_ROTATE_ is counter clockwise to stay compatible with Xrandr
4746 * while i915 HW rotation is clockwise, thats why this swapping.
4747 */
4748 case DRM_MODE_ROTATE_90:
4749 return PLANE_CTL_ROTATE_270;
4750 case DRM_MODE_ROTATE_180:
4751 return PLANE_CTL_ROTATE_180;
4752 case DRM_MODE_ROTATE_270:
4753 return PLANE_CTL_ROTATE_90;
4754 default:
4755 MISSING_CASE(rotate);
4756 }
4757
4758 return 0;
4759 }
4760
4761 static u32 cnl_plane_ctl_flip(unsigned int reflect)
4762 {
4763 switch (reflect) {
4764 case 0:
4765 break;
4766 case DRM_MODE_REFLECT_X:
4767 return PLANE_CTL_FLIP_HORIZONTAL;
4768 case DRM_MODE_REFLECT_Y:
4769 default:
4770 MISSING_CASE(reflect);
4771 }
4772
4773 return 0;
4774 }
4775
4776 u32 skl_plane_ctl_crtc(const struct intel_crtc_state *crtc_state)
4777 {
4778 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
4779 u32 plane_ctl = 0;
4780
4781 if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
4782 return plane_ctl;
4783
4784 if (crtc_state->gamma_enable)
4785 plane_ctl |= PLANE_CTL_PIPE_GAMMA_ENABLE;
4786
4787 if (crtc_state->csc_enable)
4788 plane_ctl |= PLANE_CTL_PIPE_CSC_ENABLE;
4789
4790 return plane_ctl;
4791 }
4792
4793 u32 skl_plane_ctl(const struct intel_crtc_state *crtc_state,
4794 const struct intel_plane_state *plane_state)
4795 {
4796 struct drm_i915_private *dev_priv =
4797 to_i915(plane_state->uapi.plane->dev);
4798 const struct drm_framebuffer *fb = plane_state->hw.fb;
4799 unsigned int rotation = plane_state->hw.rotation;
4800 const struct drm_intel_sprite_colorkey *key = &plane_state->ckey;
4801 u32 plane_ctl;
4802
4803 plane_ctl = PLANE_CTL_ENABLE;
4804
4805 if (INTEL_GEN(dev_priv) < 10 && !IS_GEMINILAKE(dev_priv)) {
4806 plane_ctl |= skl_plane_ctl_alpha(plane_state);
4807 plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE;
4808
4809 if (plane_state->hw.color_encoding == DRM_COLOR_YCBCR_BT709)
4810 plane_ctl |= PLANE_CTL_YUV_TO_RGB_CSC_FORMAT_BT709;
4811
4812 if (plane_state->hw.color_range == DRM_COLOR_YCBCR_FULL_RANGE)
4813 plane_ctl |= PLANE_CTL_YUV_RANGE_CORRECTION_DISABLE;
4814 }
4815
4816 plane_ctl |= skl_plane_ctl_format(fb->format->format);
4817 plane_ctl |= skl_plane_ctl_tiling(fb->modifier);
4818 plane_ctl |= skl_plane_ctl_rotate(rotation & DRM_MODE_ROTATE_MASK);
4819
4820 if (INTEL_GEN(dev_priv) >= 10)
4821 plane_ctl |= cnl_plane_ctl_flip(rotation &
4822 DRM_MODE_REFLECT_MASK);
4823
4824 if (key->flags & I915_SET_COLORKEY_DESTINATION)
4825 plane_ctl |= PLANE_CTL_KEY_ENABLE_DESTINATION;
4826 else if (key->flags & I915_SET_COLORKEY_SOURCE)
4827 plane_ctl |= PLANE_CTL_KEY_ENABLE_SOURCE;
4828
4829 return plane_ctl;
4830 }
4831
4832 u32 glk_plane_color_ctl_crtc(const struct intel_crtc_state *crtc_state)
4833 {
4834 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
4835 u32 plane_color_ctl = 0;
4836
4837 if (INTEL_GEN(dev_priv) >= 11)
4838 return plane_color_ctl;
4839
4840 if (crtc_state->gamma_enable)
4841 plane_color_ctl |= PLANE_COLOR_PIPE_GAMMA_ENABLE;
4842
4843 if (crtc_state->csc_enable)
4844 plane_color_ctl |= PLANE_COLOR_PIPE_CSC_ENABLE;
4845
4846 return plane_color_ctl;
4847 }
4848
4849 u32 glk_plane_color_ctl(const struct intel_crtc_state *crtc_state,
4850 const struct intel_plane_state *plane_state)
4851 {
4852 struct drm_i915_private *dev_priv =
4853 to_i915(plane_state->uapi.plane->dev);
4854 const struct drm_framebuffer *fb = plane_state->hw.fb;
4855 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
4856 u32 plane_color_ctl = 0;
4857
4858 plane_color_ctl |= PLANE_COLOR_PLANE_GAMMA_DISABLE;
4859 plane_color_ctl |= glk_plane_color_ctl_alpha(plane_state);
4860
4861 if (fb->format->is_yuv && !icl_is_hdr_plane(dev_priv, plane->id)) {
4862 switch (plane_state->hw.color_encoding) {
4863 case DRM_COLOR_YCBCR_BT709:
4864 plane_color_ctl |= PLANE_COLOR_CSC_MODE_YUV709_TO_RGB709;
4865 break;
4866 case DRM_COLOR_YCBCR_BT2020:
4867 plane_color_ctl |=
4868 PLANE_COLOR_CSC_MODE_YUV2020_TO_RGB2020;
4869 break;
4870 default:
4871 plane_color_ctl |=
4872 PLANE_COLOR_CSC_MODE_YUV601_TO_RGB601;
4873 }
4874 if (plane_state->hw.color_range == DRM_COLOR_YCBCR_FULL_RANGE)
4875 plane_color_ctl |= PLANE_COLOR_YUV_RANGE_CORRECTION_DISABLE;
4876 } else if (fb->format->is_yuv) {
4877 plane_color_ctl |= PLANE_COLOR_INPUT_CSC_ENABLE;
4878 }
4879
4880 return plane_color_ctl;
4881 }
4882
4883 static int
4884 __intel_display_resume(struct drm_device *dev,
4885 struct drm_atomic_state *state,
4886 struct drm_modeset_acquire_ctx *ctx)
4887 {
4888 struct drm_crtc_state *crtc_state;
4889 struct drm_crtc *crtc;
4890 int i, ret;
4891
4892 intel_modeset_setup_hw_state(dev, ctx);
4893 intel_vga_redisable(to_i915(dev));
4894
4895 if (!state)
4896 return 0;
4897
4898 /*
4899 * We've duplicated the state, pointers to the old state are invalid.
4900 *
4901 * Don't attempt to use the old state until we commit the duplicated state.
4902 */
4903 for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
4904 /*
4905 * Force recalculation even if we restore
4906 * current state. With fast modeset this may not result
4907 * in a modeset when the state is compatible.
4908 */
4909 crtc_state->mode_changed = true;
4910 }
4911
4912 /* ignore any reset values/BIOS leftovers in the WM registers */
4913 if (!HAS_GMCH(to_i915(dev)))
4914 to_intel_atomic_state(state)->skip_intermediate_wm = true;
4915
4916 ret = drm_atomic_helper_commit_duplicated_state(state, ctx);
4917
4918 drm_WARN_ON(dev, ret == -EDEADLK);
4919 return ret;
4920 }
4921
4922 static bool gpu_reset_clobbers_display(struct drm_i915_private *dev_priv)
4923 {
4924 return (INTEL_INFO(dev_priv)->gpu_reset_clobbers_display &&
4925 intel_has_gpu_reset(&dev_priv->gt));
4926 }
4927
4928 void intel_prepare_reset(struct drm_i915_private *dev_priv)
4929 {
4930 struct drm_device *dev = &dev_priv->drm;
4931 struct drm_modeset_acquire_ctx *ctx = &dev_priv->reset_ctx;
4932 struct drm_atomic_state *state;
4933 int ret;
4934
4935 /* reset doesn't touch the display */
4936 if (!dev_priv->params.force_reset_modeset_test &&
4937 !gpu_reset_clobbers_display(dev_priv))
4938 return;
4939
4940 /* We have a modeset vs reset deadlock, defensively unbreak it. */
4941 set_bit(I915_RESET_MODESET, &dev_priv->gt.reset.flags);
4942 smp_mb__after_atomic();
4943 wake_up_bit(&dev_priv->gt.reset.flags, I915_RESET_MODESET);
4944
4945 if (atomic_read(&dev_priv->gpu_error.pending_fb_pin)) {
4946 drm_dbg_kms(&dev_priv->drm,
4947 "Modeset potentially stuck, unbreaking through wedging\n");
4948 intel_gt_set_wedged(&dev_priv->gt);
4949 }
4950
4951 /*
4952 * Need mode_config.mutex so that we don't
4953 * trample ongoing ->detect() and whatnot.
4954 */
4955 mutex_lock(&dev->mode_config.mutex);
4956 drm_modeset_acquire_init(ctx, 0);
4957 while (1) {
4958 ret = drm_modeset_lock_all_ctx(dev, ctx);
4959 if (ret != -EDEADLK)
4960 break;
4961
4962 drm_modeset_backoff(ctx);
4963 }
4964 /*
4965 * Disabling the crtcs gracefully seems nicer. Also the
4966 * g33 docs say we should at least disable all the planes.
4967 */
4968 state = drm_atomic_helper_duplicate_state(dev, ctx);
4969 if (IS_ERR(state)) {
4970 ret = PTR_ERR(state);
4971 drm_err(&dev_priv->drm, "Duplicating state failed with %i\n",
4972 ret);
4973 return;
4974 }
4975
4976 ret = drm_atomic_helper_disable_all(dev, ctx);
4977 if (ret) {
4978 drm_err(&dev_priv->drm, "Suspending crtc's failed with %i\n",
4979 ret);
4980 drm_atomic_state_put(state);
4981 return;
4982 }
4983
4984 dev_priv->modeset_restore_state = state;
4985 state->acquire_ctx = ctx;
4986 }
4987
4988 void intel_finish_reset(struct drm_i915_private *dev_priv)
4989 {
4990 struct drm_device *dev = &dev_priv->drm;
4991 struct drm_modeset_acquire_ctx *ctx = &dev_priv->reset_ctx;
4992 struct drm_atomic_state *state;
4993 int ret;
4994
4995 /* reset doesn't touch the display */
4996 if (!test_bit(I915_RESET_MODESET, &dev_priv->gt.reset.flags))
4997 return;
4998
4999 state = fetch_and_zero(&dev_priv->modeset_restore_state);
5000 if (!state)
5001 goto unlock;
5002
5003 /* reset doesn't touch the display */
5004 if (!gpu_reset_clobbers_display(dev_priv)) {
5005 /* for testing only restore the display */
5006 ret = __intel_display_resume(dev, state, ctx);
5007 if (ret)
5008 drm_err(&dev_priv->drm,
5009 "Restoring old state failed with %i\n", ret);
5010 } else {
5011 /*
5012 * The display has been reset as well,
5013 * so need a full re-initialization.
5014 */
5015 intel_pps_unlock_regs_wa(dev_priv);
5016 intel_modeset_init_hw(dev_priv);
5017 intel_init_clock_gating(dev_priv);
5018
5019 spin_lock_irq(&dev_priv->irq_lock);
5020 if (dev_priv->display.hpd_irq_setup)
5021 dev_priv->display.hpd_irq_setup(dev_priv);
5022 spin_unlock_irq(&dev_priv->irq_lock);
5023
5024 ret = __intel_display_resume(dev, state, ctx);
5025 if (ret)
5026 drm_err(&dev_priv->drm,
5027 "Restoring old state failed with %i\n", ret);
5028
5029 intel_hpd_init(dev_priv);
5030 }
5031
5032 drm_atomic_state_put(state);
5033 unlock:
5034 drm_modeset_drop_locks(ctx);
5035 drm_modeset_acquire_fini(ctx);
5036 mutex_unlock(&dev->mode_config.mutex);
5037
5038 clear_bit_unlock(I915_RESET_MODESET, &dev_priv->gt.reset.flags);
5039 }
5040
5041 static void icl_set_pipe_chicken(struct intel_crtc *crtc)
5042 {
5043 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5044 enum pipe pipe = crtc->pipe;
5045 u32 tmp;
5046
5047 tmp = intel_de_read(dev_priv, PIPE_CHICKEN(pipe));
5048
5049 /*
5050 * Display WA #1153: icl
5051 * enable hardware to bypass the alpha math
5052 * and rounding for per-pixel values 00 and 0xff
5053 */
5054 tmp |= PER_PIXEL_ALPHA_BYPASS_EN;
5055 /*
5056 * Display WA # 1605353570: icl
5057 * Set the pixel rounding bit to 1 for allowing
5058 * passthrough of Frame buffer pixels unmodified
5059 * across pipe
5060 */
5061 tmp |= PIXEL_ROUNDING_TRUNC_FB_PASSTHRU;
5062 intel_de_write(dev_priv, PIPE_CHICKEN(pipe), tmp);
5063 }
5064
5065 static void intel_fdi_normal_train(struct intel_crtc *crtc)
5066 {
5067 struct drm_device *dev = crtc->base.dev;
5068 struct drm_i915_private *dev_priv = to_i915(dev);
5069 enum pipe pipe = crtc->pipe;
5070 i915_reg_t reg;
5071 u32 temp;
5072
5073 /* enable normal train */
5074 reg = FDI_TX_CTL(pipe);
5075 temp = intel_de_read(dev_priv, reg);
5076 if (IS_IVYBRIDGE(dev_priv)) {
5077 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
5078 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
5079 } else {
5080 temp &= ~FDI_LINK_TRAIN_NONE;
5081 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
5082 }
5083 intel_de_write(dev_priv, reg, temp);
5084
5085 reg = FDI_RX_CTL(pipe);
5086 temp = intel_de_read(dev_priv, reg);
5087 if (HAS_PCH_CPT(dev_priv)) {
5088 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
5089 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
5090 } else {
5091 temp &= ~FDI_LINK_TRAIN_NONE;
5092 temp |= FDI_LINK_TRAIN_NONE;
5093 }
5094 intel_de_write(dev_priv, reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
5095
5096 /* wait one idle pattern time */
5097 intel_de_posting_read(dev_priv, reg);
5098 udelay(1000);
5099
5100 /* IVB wants error correction enabled */
5101 if (IS_IVYBRIDGE(dev_priv))
5102 intel_de_write(dev_priv, reg,
5103 intel_de_read(dev_priv, reg) | FDI_FS_ERRC_ENABLE | FDI_FE_ERRC_ENABLE);
5104 }
5105
5106 /* The FDI link training functions for ILK/Ibexpeak. */
5107 static void ilk_fdi_link_train(struct intel_crtc *crtc,
5108 const struct intel_crtc_state *crtc_state)
5109 {
5110 struct drm_device *dev = crtc->base.dev;
5111 struct drm_i915_private *dev_priv = to_i915(dev);
5112 enum pipe pipe = crtc->pipe;
5113 i915_reg_t reg;
5114 u32 temp, tries;
5115
5116 /* FDI needs bits from pipe first */
5117 assert_pipe_enabled(dev_priv, crtc_state->cpu_transcoder);
5118
5119 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
5120 for train result */
5121 reg = FDI_RX_IMR(pipe);
5122 temp = intel_de_read(dev_priv, reg);
5123 temp &= ~FDI_RX_SYMBOL_LOCK;
5124 temp &= ~FDI_RX_BIT_LOCK;
5125 intel_de_write(dev_priv, reg, temp);
5126 intel_de_read(dev_priv, reg);
5127 udelay(150);
5128
5129 /* enable CPU FDI TX and PCH FDI RX */
5130 reg = FDI_TX_CTL(pipe);
5131 temp = intel_de_read(dev_priv, reg);
5132 temp &= ~FDI_DP_PORT_WIDTH_MASK;
5133 temp |= FDI_DP_PORT_WIDTH(crtc_state->fdi_lanes);
5134 temp &= ~FDI_LINK_TRAIN_NONE;
5135 temp |= FDI_LINK_TRAIN_PATTERN_1;
5136 intel_de_write(dev_priv, reg, temp | FDI_TX_ENABLE);
5137
5138 reg = FDI_RX_CTL(pipe);
5139 temp = intel_de_read(dev_priv, reg);
5140 temp &= ~FDI_LINK_TRAIN_NONE;
5141 temp |= FDI_LINK_TRAIN_PATTERN_1;
5142 intel_de_write(dev_priv, reg, temp | FDI_RX_ENABLE);
5143
5144 intel_de_posting_read(dev_priv, reg);
5145 udelay(150);
5146
5147 /* Ironlake workaround, enable clock pointer after FDI enable*/
5148 intel_de_write(dev_priv, FDI_RX_CHICKEN(pipe),
5149 FDI_RX_PHASE_SYNC_POINTER_OVR);
5150 intel_de_write(dev_priv, FDI_RX_CHICKEN(pipe),
5151 FDI_RX_PHASE_SYNC_POINTER_OVR | FDI_RX_PHASE_SYNC_POINTER_EN);
5152
5153 reg = FDI_RX_IIR(pipe);
5154 for (tries = 0; tries < 5; tries++) {
5155 temp = intel_de_read(dev_priv, reg);
5156 drm_dbg_kms(&dev_priv->drm, "FDI_RX_IIR 0x%x\n", temp);
5157
5158 if ((temp & FDI_RX_BIT_LOCK)) {
5159 drm_dbg_kms(&dev_priv->drm, "FDI train 1 done.\n");
5160 intel_de_write(dev_priv, reg, temp | FDI_RX_BIT_LOCK);
5161 break;
5162 }
5163 }
5164 if (tries == 5)
5165 drm_err(&dev_priv->drm, "FDI train 1 fail!\n");
5166
5167 /* Train 2 */
5168 reg = FDI_TX_CTL(pipe);
5169 temp = intel_de_read(dev_priv, reg);
5170 temp &= ~FDI_LINK_TRAIN_NONE;
5171 temp |= FDI_LINK_TRAIN_PATTERN_2;
5172 intel_de_write(dev_priv, reg, temp);
5173
5174 reg = FDI_RX_CTL(pipe);
5175 temp = intel_de_read(dev_priv, reg);
5176 temp &= ~FDI_LINK_TRAIN_NONE;
5177 temp |= FDI_LINK_TRAIN_PATTERN_2;
5178 intel_de_write(dev_priv, reg, temp);
5179
5180 intel_de_posting_read(dev_priv, reg);
5181 udelay(150);
5182
5183 reg = FDI_RX_IIR(pipe);
5184 for (tries = 0; tries < 5; tries++) {
5185 temp = intel_de_read(dev_priv, reg);
5186 drm_dbg_kms(&dev_priv->drm, "FDI_RX_IIR 0x%x\n", temp);
5187
5188 if (temp & FDI_RX_SYMBOL_LOCK) {
5189 intel_de_write(dev_priv, reg,
5190 temp | FDI_RX_SYMBOL_LOCK);
5191 drm_dbg_kms(&dev_priv->drm, "FDI train 2 done.\n");
5192 break;
5193 }
5194 }
5195 if (tries == 5)
5196 drm_err(&dev_priv->drm, "FDI train 2 fail!\n");
5197
5198 drm_dbg_kms(&dev_priv->drm, "FDI train done\n");
5199
5200 }
5201
5202 static const int snb_b_fdi_train_param[] = {
5203 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
5204 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
5205 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
5206 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
5207 };
5208
5209 /* The FDI link training functions for SNB/Cougarpoint. */
5210 static void gen6_fdi_link_train(struct intel_crtc *crtc,
5211 const struct intel_crtc_state *crtc_state)
5212 {
5213 struct drm_device *dev = crtc->base.dev;
5214 struct drm_i915_private *dev_priv = to_i915(dev);
5215 enum pipe pipe = crtc->pipe;
5216 i915_reg_t reg;
5217 u32 temp, i, retry;
5218
5219 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
5220 for train result */
5221 reg = FDI_RX_IMR(pipe);
5222 temp = intel_de_read(dev_priv, reg);
5223 temp &= ~FDI_RX_SYMBOL_LOCK;
5224 temp &= ~FDI_RX_BIT_LOCK;
5225 intel_de_write(dev_priv, reg, temp);
5226
5227 intel_de_posting_read(dev_priv, reg);
5228 udelay(150);
5229
5230 /* enable CPU FDI TX and PCH FDI RX */
5231 reg = FDI_TX_CTL(pipe);
5232 temp = intel_de_read(dev_priv, reg);
5233 temp &= ~FDI_DP_PORT_WIDTH_MASK;
5234 temp |= FDI_DP_PORT_WIDTH(crtc_state->fdi_lanes);
5235 temp &= ~FDI_LINK_TRAIN_NONE;
5236 temp |= FDI_LINK_TRAIN_PATTERN_1;
5237 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
5238 /* SNB-B */
5239 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
5240 intel_de_write(dev_priv, reg, temp | FDI_TX_ENABLE);
5241
5242 intel_de_write(dev_priv, FDI_RX_MISC(pipe),
5243 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
5244
5245 reg = FDI_RX_CTL(pipe);
5246 temp = intel_de_read(dev_priv, reg);
5247 if (HAS_PCH_CPT(dev_priv)) {
5248 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
5249 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
5250 } else {
5251 temp &= ~FDI_LINK_TRAIN_NONE;
5252 temp |= FDI_LINK_TRAIN_PATTERN_1;
5253 }
5254 intel_de_write(dev_priv, reg, temp | FDI_RX_ENABLE);
5255
5256 intel_de_posting_read(dev_priv, reg);
5257 udelay(150);
5258
5259 for (i = 0; i < 4; i++) {
5260 reg = FDI_TX_CTL(pipe);
5261 temp = intel_de_read(dev_priv, reg);
5262 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
5263 temp |= snb_b_fdi_train_param[i];
5264 intel_de_write(dev_priv, reg, temp);
5265
5266 intel_de_posting_read(dev_priv, reg);
5267 udelay(500);
5268
5269 for (retry = 0; retry < 5; retry++) {
5270 reg = FDI_RX_IIR(pipe);
5271 temp = intel_de_read(dev_priv, reg);
5272 drm_dbg_kms(&dev_priv->drm, "FDI_RX_IIR 0x%x\n", temp);
5273 if (temp & FDI_RX_BIT_LOCK) {
5274 intel_de_write(dev_priv, reg,
5275 temp | FDI_RX_BIT_LOCK);
5276 drm_dbg_kms(&dev_priv->drm,
5277 "FDI train 1 done.\n");
5278 break;
5279 }
5280 udelay(50);
5281 }
5282 if (retry < 5)
5283 break;
5284 }
5285 if (i == 4)
5286 drm_err(&dev_priv->drm, "FDI train 1 fail!\n");
5287
5288 /* Train 2 */
5289 reg = FDI_TX_CTL(pipe);
5290 temp = intel_de_read(dev_priv, reg);
5291 temp &= ~FDI_LINK_TRAIN_NONE;
5292 temp |= FDI_LINK_TRAIN_PATTERN_2;
5293 if (IS_GEN(dev_priv, 6)) {
5294 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
5295 /* SNB-B */
5296 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
5297 }
5298 intel_de_write(dev_priv, reg, temp);
5299
5300 reg = FDI_RX_CTL(pipe);
5301 temp = intel_de_read(dev_priv, reg);
5302 if (HAS_PCH_CPT(dev_priv)) {
5303 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
5304 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
5305 } else {
5306 temp &= ~FDI_LINK_TRAIN_NONE;
5307 temp |= FDI_LINK_TRAIN_PATTERN_2;
5308 }
5309 intel_de_write(dev_priv, reg, temp);
5310
5311 intel_de_posting_read(dev_priv, reg);
5312 udelay(150);
5313
5314 for (i = 0; i < 4; i++) {
5315 reg = FDI_TX_CTL(pipe);
5316 temp = intel_de_read(dev_priv, reg);
5317 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
5318 temp |= snb_b_fdi_train_param[i];
5319 intel_de_write(dev_priv, reg, temp);
5320
5321 intel_de_posting_read(dev_priv, reg);
5322 udelay(500);
5323
5324 for (retry = 0; retry < 5; retry++) {
5325 reg = FDI_RX_IIR(pipe);
5326 temp = intel_de_read(dev_priv, reg);
5327 drm_dbg_kms(&dev_priv->drm, "FDI_RX_IIR 0x%x\n", temp);
5328 if (temp & FDI_RX_SYMBOL_LOCK) {
5329 intel_de_write(dev_priv, reg,
5330 temp | FDI_RX_SYMBOL_LOCK);
5331 drm_dbg_kms(&dev_priv->drm,
5332 "FDI train 2 done.\n");
5333 break;
5334 }
5335 udelay(50);
5336 }
5337 if (retry < 5)
5338 break;
5339 }
5340 if (i == 4)
5341 drm_err(&dev_priv->drm, "FDI train 2 fail!\n");
5342
5343 drm_dbg_kms(&dev_priv->drm, "FDI train done.\n");
5344 }
5345
5346 /* Manual link training for Ivy Bridge A0 parts */
5347 static void ivb_manual_fdi_link_train(struct intel_crtc *crtc,
5348 const struct intel_crtc_state *crtc_state)
5349 {
5350 struct drm_device *dev = crtc->base.dev;
5351 struct drm_i915_private *dev_priv = to_i915(dev);
5352 enum pipe pipe = crtc->pipe;
5353 i915_reg_t reg;
5354 u32 temp, i, j;
5355
5356 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
5357 for train result */
5358 reg = FDI_RX_IMR(pipe);
5359 temp = intel_de_read(dev_priv, reg);
5360 temp &= ~FDI_RX_SYMBOL_LOCK;
5361 temp &= ~FDI_RX_BIT_LOCK;
5362 intel_de_write(dev_priv, reg, temp);
5363
5364 intel_de_posting_read(dev_priv, reg);
5365 udelay(150);
5366
5367 drm_dbg_kms(&dev_priv->drm, "FDI_RX_IIR before link train 0x%x\n",
5368 intel_de_read(dev_priv, FDI_RX_IIR(pipe)));
5369
5370 /* Try each vswing and preemphasis setting twice before moving on */
5371 for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
5372 /* disable first in case we need to retry */
5373 reg = FDI_TX_CTL(pipe);
5374 temp = intel_de_read(dev_priv, reg);
5375 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
5376 temp &= ~FDI_TX_ENABLE;
5377 intel_de_write(dev_priv, reg, temp);
5378
5379 reg = FDI_RX_CTL(pipe);
5380 temp = intel_de_read(dev_priv, reg);
5381 temp &= ~FDI_LINK_TRAIN_AUTO;
5382 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
5383 temp &= ~FDI_RX_ENABLE;
5384 intel_de_write(dev_priv, reg, temp);
5385
5386 /* enable CPU FDI TX and PCH FDI RX */
5387 reg = FDI_TX_CTL(pipe);
5388 temp = intel_de_read(dev_priv, reg);
5389 temp &= ~FDI_DP_PORT_WIDTH_MASK;
5390 temp |= FDI_DP_PORT_WIDTH(crtc_state->fdi_lanes);
5391 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
5392 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
5393 temp |= snb_b_fdi_train_param[j/2];
5394 temp |= FDI_COMPOSITE_SYNC;
5395 intel_de_write(dev_priv, reg, temp | FDI_TX_ENABLE);
5396
5397 intel_de_write(dev_priv, FDI_RX_MISC(pipe),
5398 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
5399
5400 reg = FDI_RX_CTL(pipe);
5401 temp = intel_de_read(dev_priv, reg);
5402 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
5403 temp |= FDI_COMPOSITE_SYNC;
5404 intel_de_write(dev_priv, reg, temp | FDI_RX_ENABLE);
5405
5406 intel_de_posting_read(dev_priv, reg);
5407 udelay(1); /* should be 0.5us */
5408
5409 for (i = 0; i < 4; i++) {
5410 reg = FDI_RX_IIR(pipe);
5411 temp = intel_de_read(dev_priv, reg);
5412 drm_dbg_kms(&dev_priv->drm, "FDI_RX_IIR 0x%x\n", temp);
5413
5414 if (temp & FDI_RX_BIT_LOCK ||
5415 (intel_de_read(dev_priv, reg) & FDI_RX_BIT_LOCK)) {
5416 intel_de_write(dev_priv, reg,
5417 temp | FDI_RX_BIT_LOCK);
5418 drm_dbg_kms(&dev_priv->drm,
5419 "FDI train 1 done, level %i.\n",
5420 i);
5421 break;
5422 }
5423 udelay(1); /* should be 0.5us */
5424 }
5425 if (i == 4) {
5426 drm_dbg_kms(&dev_priv->drm,
5427 "FDI train 1 fail on vswing %d\n", j / 2);
5428 continue;
5429 }
5430
5431 /* Train 2 */
5432 reg = FDI_TX_CTL(pipe);
5433 temp = intel_de_read(dev_priv, reg);
5434 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
5435 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
5436 intel_de_write(dev_priv, reg, temp);
5437
5438 reg = FDI_RX_CTL(pipe);
5439 temp = intel_de_read(dev_priv, reg);
5440 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
5441 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
5442 intel_de_write(dev_priv, reg, temp);
5443
5444 intel_de_posting_read(dev_priv, reg);
5445 udelay(2); /* should be 1.5us */
5446
5447 for (i = 0; i < 4; i++) {
5448 reg = FDI_RX_IIR(pipe);
5449 temp = intel_de_read(dev_priv, reg);
5450 drm_dbg_kms(&dev_priv->drm, "FDI_RX_IIR 0x%x\n", temp);
5451
5452 if (temp & FDI_RX_SYMBOL_LOCK ||
5453 (intel_de_read(dev_priv, reg) & FDI_RX_SYMBOL_LOCK)) {
5454 intel_de_write(dev_priv, reg,
5455 temp | FDI_RX_SYMBOL_LOCK);
5456 drm_dbg_kms(&dev_priv->drm,
5457 "FDI train 2 done, level %i.\n",
5458 i);
5459 goto train_done;
5460 }
5461 udelay(2); /* should be 1.5us */
5462 }
5463 if (i == 4)
5464 drm_dbg_kms(&dev_priv->drm,
5465 "FDI train 2 fail on vswing %d\n", j / 2);
5466 }
5467
5468 train_done:
5469 drm_dbg_kms(&dev_priv->drm, "FDI train done.\n");
5470 }
5471
5472 static void ilk_fdi_pll_enable(const struct intel_crtc_state *crtc_state)
5473 {
5474 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->uapi.crtc);
5475 struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
5476 enum pipe pipe = intel_crtc->pipe;
5477 i915_reg_t reg;
5478 u32 temp;
5479
5480 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
5481 reg = FDI_RX_CTL(pipe);
5482 temp = intel_de_read(dev_priv, reg);
5483 temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
5484 temp |= FDI_DP_PORT_WIDTH(crtc_state->fdi_lanes);
5485 temp |= (intel_de_read(dev_priv, PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
5486 intel_de_write(dev_priv, reg, temp | FDI_RX_PLL_ENABLE);
5487
5488 intel_de_posting_read(dev_priv, reg);
5489 udelay(200);
5490
5491 /* Switch from Rawclk to PCDclk */
5492 temp = intel_de_read(dev_priv, reg);
5493 intel_de_write(dev_priv, reg, temp | FDI_PCDCLK);
5494
5495 intel_de_posting_read(dev_priv, reg);
5496 udelay(200);
5497
5498 /* Enable CPU FDI TX PLL, always on for Ironlake */
5499 reg = FDI_TX_CTL(pipe);
5500 temp = intel_de_read(dev_priv, reg);
5501 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
5502 intel_de_write(dev_priv, reg, temp | FDI_TX_PLL_ENABLE);
5503
5504 intel_de_posting_read(dev_priv, reg);
5505 udelay(100);
5506 }
5507 }
5508
5509 static void ilk_fdi_pll_disable(struct intel_crtc *intel_crtc)
5510 {
5511 struct drm_device *dev = intel_crtc->base.dev;
5512 struct drm_i915_private *dev_priv = to_i915(dev);
5513 enum pipe pipe = intel_crtc->pipe;
5514 i915_reg_t reg;
5515 u32 temp;
5516
5517 /* Switch from PCDclk to Rawclk */
5518 reg = FDI_RX_CTL(pipe);
5519 temp = intel_de_read(dev_priv, reg);
5520 intel_de_write(dev_priv, reg, temp & ~FDI_PCDCLK);
5521
5522 /* Disable CPU FDI TX PLL */
5523 reg = FDI_TX_CTL(pipe);
5524 temp = intel_de_read(dev_priv, reg);
5525 intel_de_write(dev_priv, reg, temp & ~FDI_TX_PLL_ENABLE);
5526
5527 intel_de_posting_read(dev_priv, reg);
5528 udelay(100);
5529
5530 reg = FDI_RX_CTL(pipe);
5531 temp = intel_de_read(dev_priv, reg);
5532 intel_de_write(dev_priv, reg, temp & ~FDI_RX_PLL_ENABLE);
5533
5534 /* Wait for the clocks to turn off. */
5535 intel_de_posting_read(dev_priv, reg);
5536 udelay(100);
5537 }
5538
5539 static void ilk_fdi_disable(struct intel_crtc *crtc)
5540 {
5541 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5542 enum pipe pipe = crtc->pipe;
5543 i915_reg_t reg;
5544 u32 temp;
5545
5546 /* disable CPU FDI tx and PCH FDI rx */
5547 reg = FDI_TX_CTL(pipe);
5548 temp = intel_de_read(dev_priv, reg);
5549 intel_de_write(dev_priv, reg, temp & ~FDI_TX_ENABLE);
5550 intel_de_posting_read(dev_priv, reg);
5551
5552 reg = FDI_RX_CTL(pipe);
5553 temp = intel_de_read(dev_priv, reg);
5554 temp &= ~(0x7 << 16);
5555 temp |= (intel_de_read(dev_priv, PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
5556 intel_de_write(dev_priv, reg, temp & ~FDI_RX_ENABLE);
5557
5558 intel_de_posting_read(dev_priv, reg);
5559 udelay(100);
5560
5561 /* Ironlake workaround, disable clock pointer after downing FDI */
5562 if (HAS_PCH_IBX(dev_priv))
5563 intel_de_write(dev_priv, FDI_RX_CHICKEN(pipe),
5564 FDI_RX_PHASE_SYNC_POINTER_OVR);
5565
5566 /* still set train pattern 1 */
5567 reg = FDI_TX_CTL(pipe);
5568 temp = intel_de_read(dev_priv, reg);
5569 temp &= ~FDI_LINK_TRAIN_NONE;
5570 temp |= FDI_LINK_TRAIN_PATTERN_1;
5571 intel_de_write(dev_priv, reg, temp);
5572
5573 reg = FDI_RX_CTL(pipe);
5574 temp = intel_de_read(dev_priv, reg);
5575 if (HAS_PCH_CPT(dev_priv)) {
5576 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
5577 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
5578 } else {
5579 temp &= ~FDI_LINK_TRAIN_NONE;
5580 temp |= FDI_LINK_TRAIN_PATTERN_1;
5581 }
5582 /* BPC in FDI rx is consistent with that in PIPECONF */
5583 temp &= ~(0x07 << 16);
5584 temp |= (intel_de_read(dev_priv, PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
5585 intel_de_write(dev_priv, reg, temp);
5586
5587 intel_de_posting_read(dev_priv, reg);
5588 udelay(100);
5589 }
5590
5591 bool intel_has_pending_fb_unpin(struct drm_i915_private *dev_priv)
5592 {
5593 struct drm_crtc *crtc;
5594 bool cleanup_done;
5595
5596 drm_for_each_crtc(crtc, &dev_priv->drm) {
5597 struct drm_crtc_commit *commit;
5598 spin_lock(&crtc->commit_lock);
5599 commit = list_first_entry_or_null(&crtc->commit_list,
5600 struct drm_crtc_commit, commit_entry);
5601 cleanup_done = commit ?
5602 try_wait_for_completion(&commit->cleanup_done) : true;
5603 spin_unlock(&crtc->commit_lock);
5604
5605 if (cleanup_done)
5606 continue;
5607
5608 drm_crtc_wait_one_vblank(crtc);
5609
5610 return true;
5611 }
5612
5613 return false;
5614 }
5615
5616 void lpt_disable_iclkip(struct drm_i915_private *dev_priv)
5617 {
5618 u32 temp;
5619
5620 intel_de_write(dev_priv, PIXCLK_GATE, PIXCLK_GATE_GATE);
5621
5622 mutex_lock(&dev_priv->sb_lock);
5623
5624 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
5625 temp |= SBI_SSCCTL_DISABLE;
5626 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
5627
5628 mutex_unlock(&dev_priv->sb_lock);
5629 }
5630
5631 /* Program iCLKIP clock to the desired frequency */
5632 static void lpt_program_iclkip(const struct intel_crtc_state *crtc_state)
5633 {
5634 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
5635 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5636 int clock = crtc_state->hw.adjusted_mode.crtc_clock;
5637 u32 divsel, phaseinc, auxdiv, phasedir = 0;
5638 u32 temp;
5639
5640 lpt_disable_iclkip(dev_priv);
5641
5642 /* The iCLK virtual clock root frequency is in MHz,
5643 * but the adjusted_mode->crtc_clock in in KHz. To get the
5644 * divisors, it is necessary to divide one by another, so we
5645 * convert the virtual clock precision to KHz here for higher
5646 * precision.
5647 */
5648 for (auxdiv = 0; auxdiv < 2; auxdiv++) {
5649 u32 iclk_virtual_root_freq = 172800 * 1000;
5650 u32 iclk_pi_range = 64;
5651 u32 desired_divisor;
5652
5653 desired_divisor = DIV_ROUND_CLOSEST(iclk_virtual_root_freq,
5654 clock << auxdiv);
5655 divsel = (desired_divisor / iclk_pi_range) - 2;
5656 phaseinc = desired_divisor % iclk_pi_range;
5657
5658 /*
5659 * Near 20MHz is a corner case which is
5660 * out of range for the 7-bit divisor
5661 */
5662 if (divsel <= 0x7f)
5663 break;
5664 }
5665
5666 /* This should not happen with any sane values */
5667 drm_WARN_ON(&dev_priv->drm, SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
5668 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
5669 drm_WARN_ON(&dev_priv->drm, SBI_SSCDIVINTPHASE_DIR(phasedir) &
5670 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
5671
5672 drm_dbg_kms(&dev_priv->drm,
5673 "iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
5674 clock, auxdiv, divsel, phasedir, phaseinc);
5675
5676 mutex_lock(&dev_priv->sb_lock);
5677
5678 /* Program SSCDIVINTPHASE6 */
5679 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
5680 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
5681 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
5682 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
5683 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
5684 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
5685 temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
5686 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
5687
5688 /* Program SSCAUXDIV */
5689 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
5690 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
5691 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
5692 intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
5693
5694 /* Enable modulator and associated divider */
5695 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
5696 temp &= ~SBI_SSCCTL_DISABLE;
5697 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
5698
5699 mutex_unlock(&dev_priv->sb_lock);
5700
5701 /* Wait for initialization time */
5702 udelay(24);
5703
5704 intel_de_write(dev_priv, PIXCLK_GATE, PIXCLK_GATE_UNGATE);
5705 }
5706
5707 int lpt_get_iclkip(struct drm_i915_private *dev_priv)
5708 {
5709 u32 divsel, phaseinc, auxdiv;
5710 u32 iclk_virtual_root_freq = 172800 * 1000;
5711 u32 iclk_pi_range = 64;
5712 u32 desired_divisor;
5713 u32 temp;
5714
5715 if ((intel_de_read(dev_priv, PIXCLK_GATE) & PIXCLK_GATE_UNGATE) == 0)
5716 return 0;
5717
5718 mutex_lock(&dev_priv->sb_lock);
5719
5720 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
5721 if (temp & SBI_SSCCTL_DISABLE) {
5722 mutex_unlock(&dev_priv->sb_lock);
5723 return 0;
5724 }
5725
5726 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
5727 divsel = (temp & SBI_SSCDIVINTPHASE_DIVSEL_MASK) >>
5728 SBI_SSCDIVINTPHASE_DIVSEL_SHIFT;
5729 phaseinc = (temp & SBI_SSCDIVINTPHASE_INCVAL_MASK) >>
5730 SBI_SSCDIVINTPHASE_INCVAL_SHIFT;
5731
5732 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
5733 auxdiv = (temp & SBI_SSCAUXDIV_FINALDIV2SEL_MASK) >>
5734 SBI_SSCAUXDIV_FINALDIV2SEL_SHIFT;
5735
5736 mutex_unlock(&dev_priv->sb_lock);
5737
5738 desired_divisor = (divsel + 2) * iclk_pi_range + phaseinc;
5739
5740 return DIV_ROUND_CLOSEST(iclk_virtual_root_freq,
5741 desired_divisor << auxdiv);
5742 }
5743
5744 static void ilk_pch_transcoder_set_timings(const struct intel_crtc_state *crtc_state,
5745 enum pipe pch_transcoder)
5746 {
5747 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
5748 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5749 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
5750
5751 intel_de_write(dev_priv, PCH_TRANS_HTOTAL(pch_transcoder),
5752 intel_de_read(dev_priv, HTOTAL(cpu_transcoder)));
5753 intel_de_write(dev_priv, PCH_TRANS_HBLANK(pch_transcoder),
5754 intel_de_read(dev_priv, HBLANK(cpu_transcoder)));
5755 intel_de_write(dev_priv, PCH_TRANS_HSYNC(pch_transcoder),
5756 intel_de_read(dev_priv, HSYNC(cpu_transcoder)));
5757
5758 intel_de_write(dev_priv, PCH_TRANS_VTOTAL(pch_transcoder),
5759 intel_de_read(dev_priv, VTOTAL(cpu_transcoder)));
5760 intel_de_write(dev_priv, PCH_TRANS_VBLANK(pch_transcoder),
5761 intel_de_read(dev_priv, VBLANK(cpu_transcoder)));
5762 intel_de_write(dev_priv, PCH_TRANS_VSYNC(pch_transcoder),
5763 intel_de_read(dev_priv, VSYNC(cpu_transcoder)));
5764 intel_de_write(dev_priv, PCH_TRANS_VSYNCSHIFT(pch_transcoder),
5765 intel_de_read(dev_priv, VSYNCSHIFT(cpu_transcoder)));
5766 }
5767
5768 static void cpt_set_fdi_bc_bifurcation(struct drm_i915_private *dev_priv, bool enable)
5769 {
5770 u32 temp;
5771
5772 temp = intel_de_read(dev_priv, SOUTH_CHICKEN1);
5773 if (!!(temp & FDI_BC_BIFURCATION_SELECT) == enable)
5774 return;
5775
5776 drm_WARN_ON(&dev_priv->drm,
5777 intel_de_read(dev_priv, FDI_RX_CTL(PIPE_B)) &
5778 FDI_RX_ENABLE);
5779 drm_WARN_ON(&dev_priv->drm,
5780 intel_de_read(dev_priv, FDI_RX_CTL(PIPE_C)) &
5781 FDI_RX_ENABLE);
5782
5783 temp &= ~FDI_BC_BIFURCATION_SELECT;
5784 if (enable)
5785 temp |= FDI_BC_BIFURCATION_SELECT;
5786
5787 drm_dbg_kms(&dev_priv->drm, "%sabling fdi C rx\n",
5788 enable ? "en" : "dis");
5789 intel_de_write(dev_priv, SOUTH_CHICKEN1, temp);
5790 intel_de_posting_read(dev_priv, SOUTH_CHICKEN1);
5791 }
5792
5793 static void ivb_update_fdi_bc_bifurcation(const struct intel_crtc_state *crtc_state)
5794 {
5795 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
5796 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5797
5798 switch (crtc->pipe) {
5799 case PIPE_A:
5800 break;
5801 case PIPE_B:
5802 if (crtc_state->fdi_lanes > 2)
5803 cpt_set_fdi_bc_bifurcation(dev_priv, false);
5804 else
5805 cpt_set_fdi_bc_bifurcation(dev_priv, true);
5806
5807 break;
5808 case PIPE_C:
5809 cpt_set_fdi_bc_bifurcation(dev_priv, true);
5810
5811 break;
5812 default:
5813 BUG();
5814 }
5815 }
5816
5817 /*
5818 * Finds the encoder associated with the given CRTC. This can only be
5819 * used when we know that the CRTC isn't feeding multiple encoders!
5820 */
5821 static struct intel_encoder *
5822 intel_get_crtc_new_encoder(const struct intel_atomic_state *state,
5823 const struct intel_crtc_state *crtc_state)
5824 {
5825 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
5826 const struct drm_connector_state *connector_state;
5827 const struct drm_connector *connector;
5828 struct intel_encoder *encoder = NULL;
5829 int num_encoders = 0;
5830 int i;
5831
5832 for_each_new_connector_in_state(&state->base, connector, connector_state, i) {
5833 if (connector_state->crtc != &crtc->base)
5834 continue;
5835
5836 encoder = to_intel_encoder(connector_state->best_encoder);
5837 num_encoders++;
5838 }
5839
5840 drm_WARN(encoder->base.dev, num_encoders != 1,
5841 "%d encoders for pipe %c\n",
5842 num_encoders, pipe_name(crtc->pipe));
5843
5844 return encoder;
5845 }
5846
5847 /*
5848 * Enable PCH resources required for PCH ports:
5849 * - PCH PLLs
5850 * - FDI training & RX/TX
5851 * - update transcoder timings
5852 * - DP transcoding bits
5853 * - transcoder
5854 */
5855 static void ilk_pch_enable(const struct intel_atomic_state *state,
5856 const struct intel_crtc_state *crtc_state)
5857 {
5858 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
5859 struct drm_device *dev = crtc->base.dev;
5860 struct drm_i915_private *dev_priv = to_i915(dev);
5861 enum pipe pipe = crtc->pipe;
5862 u32 temp;
5863
5864 assert_pch_transcoder_disabled(dev_priv, pipe);
5865
5866 if (IS_IVYBRIDGE(dev_priv))
5867 ivb_update_fdi_bc_bifurcation(crtc_state);
5868
5869 /* Write the TU size bits before fdi link training, so that error
5870 * detection works. */
5871 intel_de_write(dev_priv, FDI_RX_TUSIZE1(pipe),
5872 intel_de_read(dev_priv, PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
5873
5874 /* For PCH output, training FDI link */
5875 dev_priv->display.fdi_link_train(crtc, crtc_state);
5876
5877 /* We need to program the right clock selection before writing the pixel
5878 * mutliplier into the DPLL. */
5879 if (HAS_PCH_CPT(dev_priv)) {
5880 u32 sel;
5881
5882 temp = intel_de_read(dev_priv, PCH_DPLL_SEL);
5883 temp |= TRANS_DPLL_ENABLE(pipe);
5884 sel = TRANS_DPLLB_SEL(pipe);
5885 if (crtc_state->shared_dpll ==
5886 intel_get_shared_dpll_by_id(dev_priv, DPLL_ID_PCH_PLL_B))
5887 temp |= sel;
5888 else
5889 temp &= ~sel;
5890 intel_de_write(dev_priv, PCH_DPLL_SEL, temp);
5891 }
5892
5893 /* XXX: pch pll's can be enabled any time before we enable the PCH
5894 * transcoder, and we actually should do this to not upset any PCH
5895 * transcoder that already use the clock when we share it.
5896 *
5897 * Note that enable_shared_dpll tries to do the right thing, but
5898 * get_shared_dpll unconditionally resets the pll - we need that to have
5899 * the right LVDS enable sequence. */
5900 intel_enable_shared_dpll(crtc_state);
5901
5902 /* set transcoder timing, panel must allow it */
5903 assert_panel_unlocked(dev_priv, pipe);
5904 ilk_pch_transcoder_set_timings(crtc_state, pipe);
5905
5906 intel_fdi_normal_train(crtc);
5907
5908 /* For PCH DP, enable TRANS_DP_CTL */
5909 if (HAS_PCH_CPT(dev_priv) &&
5910 intel_crtc_has_dp_encoder(crtc_state)) {
5911 const struct drm_display_mode *adjusted_mode =
5912 &crtc_state->hw.adjusted_mode;
5913 u32 bpc = (intel_de_read(dev_priv, PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
5914 i915_reg_t reg = TRANS_DP_CTL(pipe);
5915 enum port port;
5916
5917 temp = intel_de_read(dev_priv, reg);
5918 temp &= ~(TRANS_DP_PORT_SEL_MASK |
5919 TRANS_DP_SYNC_MASK |
5920 TRANS_DP_BPC_MASK);
5921 temp |= TRANS_DP_OUTPUT_ENABLE;
5922 temp |= bpc << 9; /* same format but at 11:9 */
5923
5924 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
5925 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
5926 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
5927 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
5928
5929 port = intel_get_crtc_new_encoder(state, crtc_state)->port;
5930 drm_WARN_ON(dev, port < PORT_B || port > PORT_D);
5931 temp |= TRANS_DP_PORT_SEL(port);
5932
5933 intel_de_write(dev_priv, reg, temp);
5934 }
5935
5936 ilk_enable_pch_transcoder(crtc_state);
5937 }
5938
5939 void lpt_pch_enable(const struct intel_crtc_state *crtc_state)
5940 {
5941 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
5942 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5943 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
5944
5945 assert_pch_transcoder_disabled(dev_priv, PIPE_A);
5946
5947 lpt_program_iclkip(crtc_state);
5948
5949 /* Set transcoder timing. */
5950 ilk_pch_transcoder_set_timings(crtc_state, PIPE_A);
5951
5952 lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
5953 }
5954
5955 static void cpt_verify_modeset(struct drm_i915_private *dev_priv,
5956 enum pipe pipe)
5957 {
5958 i915_reg_t dslreg = PIPEDSL(pipe);
5959 u32 temp;
5960
5961 temp = intel_de_read(dev_priv, dslreg);
5962 udelay(500);
5963 if (wait_for(intel_de_read(dev_priv, dslreg) != temp, 5)) {
5964 if (wait_for(intel_de_read(dev_priv, dslreg) != temp, 5))
5965 drm_err(&dev_priv->drm,
5966 "mode set failed: pipe %c stuck\n",
5967 pipe_name(pipe));
5968 }
5969 }
5970
5971 /*
5972 * The hardware phase 0.0 refers to the center of the pixel.
5973 * We want to start from the top/left edge which is phase
5974 * -0.5. That matches how the hardware calculates the scaling
5975 * factors (from top-left of the first pixel to bottom-right
5976 * of the last pixel, as opposed to the pixel centers).
5977 *
5978 * For 4:2:0 subsampled chroma planes we obviously have to
5979 * adjust that so that the chroma sample position lands in
5980 * the right spot.
5981 *
5982 * Note that for packed YCbCr 4:2:2 formats there is no way to
5983 * control chroma siting. The hardware simply replicates the
5984 * chroma samples for both of the luma samples, and thus we don't
5985 * actually get the expected MPEG2 chroma siting convention :(
5986 * The same behaviour is observed on pre-SKL platforms as well.
5987 *
5988 * Theory behind the formula (note that we ignore sub-pixel
5989 * source coordinates):
5990 * s = source sample position
5991 * d = destination sample position
5992 *
5993 * Downscaling 4:1:
5994 * -0.5
5995 * | 0.0
5996 * | | 1.5 (initial phase)
5997 * | | |
5998 * v v v
5999 * | s | s | s | s |
6000 * | d |
6001 *
6002 * Upscaling 1:4:
6003 * -0.5
6004 * | -0.375 (initial phase)
6005 * | | 0.0
6006 * | | |
6007 * v v v
6008 * | s |
6009 * | d | d | d | d |
6010 */
6011 u16 skl_scaler_calc_phase(int sub, int scale, bool chroma_cosited)
6012 {
6013 int phase = -0x8000;
6014 u16 trip = 0;
6015
6016 if (chroma_cosited)
6017 phase += (sub - 1) * 0x8000 / sub;
6018
6019 phase += scale / (2 * sub);
6020
6021 /*
6022 * Hardware initial phase limited to [-0.5:1.5].
6023 * Since the max hardware scale factor is 3.0, we
6024 * should never actually excdeed 1.0 here.
6025 */
6026 WARN_ON(phase < -0x8000 || phase > 0x18000);
6027
6028 if (phase < 0)
6029 phase = 0x10000 + phase;
6030 else
6031 trip = PS_PHASE_TRIP;
6032
6033 return ((phase >> 2) & PS_PHASE_MASK) | trip;
6034 }
6035
6036 #define SKL_MIN_SRC_W 8
6037 #define SKL_MAX_SRC_W 4096
6038 #define SKL_MIN_SRC_H 8
6039 #define SKL_MAX_SRC_H 4096
6040 #define SKL_MIN_DST_W 8
6041 #define SKL_MAX_DST_W 4096
6042 #define SKL_MIN_DST_H 8
6043 #define SKL_MAX_DST_H 4096
6044 #define ICL_MAX_SRC_W 5120
6045 #define ICL_MAX_SRC_H 4096
6046 #define ICL_MAX_DST_W 5120
6047 #define ICL_MAX_DST_H 4096
6048 #define SKL_MIN_YUV_420_SRC_W 16
6049 #define SKL_MIN_YUV_420_SRC_H 16
6050
6051 static int
6052 skl_update_scaler(struct intel_crtc_state *crtc_state, bool force_detach,
6053 unsigned int scaler_user, int *scaler_id,
6054 int src_w, int src_h, int dst_w, int dst_h,
6055 const struct drm_format_info *format,
6056 u64 modifier, bool need_scaler)
6057 {
6058 struct intel_crtc_scaler_state *scaler_state =
6059 &crtc_state->scaler_state;
6060 struct intel_crtc *intel_crtc =
6061 to_intel_crtc(crtc_state->uapi.crtc);
6062 struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
6063 const struct drm_display_mode *adjusted_mode =
6064 &crtc_state->hw.adjusted_mode;
6065
6066 /*
6067 * Src coordinates are already rotated by 270 degrees for
6068 * the 90/270 degree plane rotation cases (to match the
6069 * GTT mapping), hence no need to account for rotation here.
6070 */
6071 if (src_w != dst_w || src_h != dst_h)
6072 need_scaler = true;
6073
6074 /*
6075 * Scaling/fitting not supported in IF-ID mode in GEN9+
6076 * TODO: Interlace fetch mode doesn't support YUV420 planar formats.
6077 * Once NV12 is enabled, handle it here while allocating scaler
6078 * for NV12.
6079 */
6080 if (INTEL_GEN(dev_priv) >= 9 && crtc_state->hw.enable &&
6081 need_scaler && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
6082 drm_dbg_kms(&dev_priv->drm,
6083 "Pipe/Plane scaling not supported with IF-ID mode\n");
6084 return -EINVAL;
6085 }
6086
6087 /*
6088 * if plane is being disabled or scaler is no more required or force detach
6089 * - free scaler binded to this plane/crtc
6090 * - in order to do this, update crtc->scaler_usage
6091 *
6092 * Here scaler state in crtc_state is set free so that
6093 * scaler can be assigned to other user. Actual register
6094 * update to free the scaler is done in plane/panel-fit programming.
6095 * For this purpose crtc/plane_state->scaler_id isn't reset here.
6096 */
6097 if (force_detach || !need_scaler) {
6098 if (*scaler_id >= 0) {
6099 scaler_state->scaler_users &= ~(1 << scaler_user);
6100 scaler_state->scalers[*scaler_id].in_use = 0;
6101
6102 drm_dbg_kms(&dev_priv->drm,
6103 "scaler_user index %u.%u: "
6104 "Staged freeing scaler id %d scaler_users = 0x%x\n",
6105 intel_crtc->pipe, scaler_user, *scaler_id,
6106 scaler_state->scaler_users);
6107 *scaler_id = -1;
6108 }
6109 return 0;
6110 }
6111
6112 if (format && intel_format_info_is_yuv_semiplanar(format, modifier) &&
6113 (src_h < SKL_MIN_YUV_420_SRC_H || src_w < SKL_MIN_YUV_420_SRC_W)) {
6114 drm_dbg_kms(&dev_priv->drm,
6115 "Planar YUV: src dimensions not met\n");
6116 return -EINVAL;
6117 }
6118
6119 /* range checks */
6120 if (src_w < SKL_MIN_SRC_W || src_h < SKL_MIN_SRC_H ||
6121 dst_w < SKL_MIN_DST_W || dst_h < SKL_MIN_DST_H ||
6122 (INTEL_GEN(dev_priv) >= 11 &&
6123 (src_w > ICL_MAX_SRC_W || src_h > ICL_MAX_SRC_H ||
6124 dst_w > ICL_MAX_DST_W || dst_h > ICL_MAX_DST_H)) ||
6125 (INTEL_GEN(dev_priv) < 11 &&
6126 (src_w > SKL_MAX_SRC_W || src_h > SKL_MAX_SRC_H ||
6127 dst_w > SKL_MAX_DST_W || dst_h > SKL_MAX_DST_H))) {
6128 drm_dbg_kms(&dev_priv->drm,
6129 "scaler_user index %u.%u: src %ux%u dst %ux%u "
6130 "size is out of scaler range\n",
6131 intel_crtc->pipe, scaler_user, src_w, src_h,
6132 dst_w, dst_h);
6133 return -EINVAL;
6134 }
6135
6136 /* mark this plane as a scaler user in crtc_state */
6137 scaler_state->scaler_users |= (1 << scaler_user);
6138 drm_dbg_kms(&dev_priv->drm, "scaler_user index %u.%u: "
6139 "staged scaling request for %ux%u->%ux%u scaler_users = 0x%x\n",
6140 intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h,
6141 scaler_state->scaler_users);
6142
6143 return 0;
6144 }
6145
6146 static int skl_update_scaler_crtc(struct intel_crtc_state *crtc_state)
6147 {
6148 const struct drm_display_mode *adjusted_mode =
6149 &crtc_state->hw.adjusted_mode;
6150 int width, height;
6151
6152 if (crtc_state->pch_pfit.enabled) {
6153 width = drm_rect_width(&crtc_state->pch_pfit.dst);
6154 height = drm_rect_height(&crtc_state->pch_pfit.dst);
6155 } else {
6156 width = adjusted_mode->crtc_hdisplay;
6157 height = adjusted_mode->crtc_vdisplay;
6158 }
6159
6160 return skl_update_scaler(crtc_state, !crtc_state->hw.active,
6161 SKL_CRTC_INDEX,
6162 &crtc_state->scaler_state.scaler_id,
6163 crtc_state->pipe_src_w, crtc_state->pipe_src_h,
6164 width, height, NULL, 0,
6165 crtc_state->pch_pfit.enabled);
6166 }
6167
6168 /**
6169 * skl_update_scaler_plane - Stages update to scaler state for a given plane.
6170 * @crtc_state: crtc's scaler state
6171 * @plane_state: atomic plane state to update
6172 *
6173 * Return
6174 * 0 - scaler_usage updated successfully
6175 * error - requested scaling cannot be supported or other error condition
6176 */
6177 static int skl_update_scaler_plane(struct intel_crtc_state *crtc_state,
6178 struct intel_plane_state *plane_state)
6179 {
6180 struct intel_plane *intel_plane =
6181 to_intel_plane(plane_state->uapi.plane);
6182 struct drm_i915_private *dev_priv = to_i915(intel_plane->base.dev);
6183 struct drm_framebuffer *fb = plane_state->hw.fb;
6184 int ret;
6185 bool force_detach = !fb || !plane_state->uapi.visible;
6186 bool need_scaler = false;
6187
6188 /* Pre-gen11 and SDR planes always need a scaler for planar formats. */
6189 if (!icl_is_hdr_plane(dev_priv, intel_plane->id) &&
6190 fb && intel_format_info_is_yuv_semiplanar(fb->format, fb->modifier))
6191 need_scaler = true;
6192
6193 ret = skl_update_scaler(crtc_state, force_detach,
6194 drm_plane_index(&intel_plane->base),
6195 &plane_state->scaler_id,
6196 drm_rect_width(&plane_state->uapi.src) >> 16,
6197 drm_rect_height(&plane_state->uapi.src) >> 16,
6198 drm_rect_width(&plane_state->uapi.dst),
6199 drm_rect_height(&plane_state->uapi.dst),
6200 fb ? fb->format : NULL,
6201 fb ? fb->modifier : 0,
6202 need_scaler);
6203
6204 if (ret || plane_state->scaler_id < 0)
6205 return ret;
6206
6207 /* check colorkey */
6208 if (plane_state->ckey.flags) {
6209 drm_dbg_kms(&dev_priv->drm,
6210 "[PLANE:%d:%s] scaling with color key not allowed",
6211 intel_plane->base.base.id,
6212 intel_plane->base.name);
6213 return -EINVAL;
6214 }
6215
6216 /* Check src format */
6217 switch (fb->format->format) {
6218 case DRM_FORMAT_RGB565:
6219 case DRM_FORMAT_XBGR8888:
6220 case DRM_FORMAT_XRGB8888:
6221 case DRM_FORMAT_ABGR8888:
6222 case DRM_FORMAT_ARGB8888:
6223 case DRM_FORMAT_XRGB2101010:
6224 case DRM_FORMAT_XBGR2101010:
6225 case DRM_FORMAT_ARGB2101010:
6226 case DRM_FORMAT_ABGR2101010:
6227 case DRM_FORMAT_YUYV:
6228 case DRM_FORMAT_YVYU:
6229 case DRM_FORMAT_UYVY:
6230 case DRM_FORMAT_VYUY:
6231 case DRM_FORMAT_NV12:
6232 case DRM_FORMAT_XYUV8888:
6233 case DRM_FORMAT_P010:
6234 case DRM_FORMAT_P012:
6235 case DRM_FORMAT_P016:
6236 case DRM_FORMAT_Y210:
6237 case DRM_FORMAT_Y212:
6238 case DRM_FORMAT_Y216:
6239 case DRM_FORMAT_XVYU2101010:
6240 case DRM_FORMAT_XVYU12_16161616:
6241 case DRM_FORMAT_XVYU16161616:
6242 break;
6243 case DRM_FORMAT_XBGR16161616F:
6244 case DRM_FORMAT_ABGR16161616F:
6245 case DRM_FORMAT_XRGB16161616F:
6246 case DRM_FORMAT_ARGB16161616F:
6247 if (INTEL_GEN(dev_priv) >= 11)
6248 break;
6249 fallthrough;
6250 default:
6251 drm_dbg_kms(&dev_priv->drm,
6252 "[PLANE:%d:%s] FB:%d unsupported scaling format 0x%x\n",
6253 intel_plane->base.base.id, intel_plane->base.name,
6254 fb->base.id, fb->format->format);
6255 return -EINVAL;
6256 }
6257
6258 return 0;
6259 }
6260
6261 void skl_scaler_disable(const struct intel_crtc_state *old_crtc_state)
6262 {
6263 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc);
6264 int i;
6265
6266 for (i = 0; i < crtc->num_scalers; i++)
6267 skl_detach_scaler(crtc, i);
6268 }
6269
6270 static void skl_pfit_enable(const struct intel_crtc_state *crtc_state)
6271 {
6272 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
6273 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6274 const struct intel_crtc_scaler_state *scaler_state =
6275 &crtc_state->scaler_state;
6276 struct drm_rect src = {
6277 .x2 = crtc_state->pipe_src_w << 16,
6278 .y2 = crtc_state->pipe_src_h << 16,
6279 };
6280 const struct drm_rect *dst = &crtc_state->pch_pfit.dst;
6281 u16 uv_rgb_hphase, uv_rgb_vphase;
6282 enum pipe pipe = crtc->pipe;
6283 int width = drm_rect_width(dst);
6284 int height = drm_rect_height(dst);
6285 int x = dst->x1;
6286 int y = dst->y1;
6287 int hscale, vscale;
6288 unsigned long irqflags;
6289 int id;
6290
6291 if (!crtc_state->pch_pfit.enabled)
6292 return;
6293
6294 if (drm_WARN_ON(&dev_priv->drm,
6295 crtc_state->scaler_state.scaler_id < 0))
6296 return;
6297
6298 hscale = drm_rect_calc_hscale(&src, dst, 0, INT_MAX);
6299 vscale = drm_rect_calc_vscale(&src, dst, 0, INT_MAX);
6300
6301 uv_rgb_hphase = skl_scaler_calc_phase(1, hscale, false);
6302 uv_rgb_vphase = skl_scaler_calc_phase(1, vscale, false);
6303
6304 id = scaler_state->scaler_id;
6305
6306 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
6307
6308 intel_de_write_fw(dev_priv, SKL_PS_CTRL(pipe, id), PS_SCALER_EN |
6309 PS_FILTER_MEDIUM | scaler_state->scalers[id].mode);
6310 intel_de_write_fw(dev_priv, SKL_PS_VPHASE(pipe, id),
6311 PS_Y_PHASE(0) | PS_UV_RGB_PHASE(uv_rgb_vphase));
6312 intel_de_write_fw(dev_priv, SKL_PS_HPHASE(pipe, id),
6313 PS_Y_PHASE(0) | PS_UV_RGB_PHASE(uv_rgb_hphase));
6314 intel_de_write_fw(dev_priv, SKL_PS_WIN_POS(pipe, id),
6315 x << 16 | y);
6316 intel_de_write_fw(dev_priv, SKL_PS_WIN_SZ(pipe, id),
6317 width << 16 | height);
6318
6319 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
6320 }
6321
6322 static void ilk_pfit_enable(const struct intel_crtc_state *crtc_state)
6323 {
6324 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
6325 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6326 const struct drm_rect *dst = &crtc_state->pch_pfit.dst;
6327 enum pipe pipe = crtc->pipe;
6328 int width = drm_rect_width(dst);
6329 int height = drm_rect_height(dst);
6330 int x = dst->x1;
6331 int y = dst->y1;
6332
6333 if (!crtc_state->pch_pfit.enabled)
6334 return;
6335
6336 /* Force use of hard-coded filter coefficients
6337 * as some pre-programmed values are broken,
6338 * e.g. x201.
6339 */
6340 if (IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv))
6341 intel_de_write(dev_priv, PF_CTL(pipe), PF_ENABLE |
6342 PF_FILTER_MED_3x3 | PF_PIPE_SEL_IVB(pipe));
6343 else
6344 intel_de_write(dev_priv, PF_CTL(pipe), PF_ENABLE |
6345 PF_FILTER_MED_3x3);
6346 intel_de_write(dev_priv, PF_WIN_POS(pipe), x << 16 | y);
6347 intel_de_write(dev_priv, PF_WIN_SZ(pipe), width << 16 | height);
6348 }
6349
6350 void hsw_enable_ips(const struct intel_crtc_state *crtc_state)
6351 {
6352 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
6353 struct drm_device *dev = crtc->base.dev;
6354 struct drm_i915_private *dev_priv = to_i915(dev);
6355
6356 if (!crtc_state->ips_enabled)
6357 return;
6358
6359 /*
6360 * We can only enable IPS after we enable a plane and wait for a vblank
6361 * This function is called from post_plane_update, which is run after
6362 * a vblank wait.
6363 */
6364 drm_WARN_ON(dev, !(crtc_state->active_planes & ~BIT(PLANE_CURSOR)));
6365
6366 if (IS_BROADWELL(dev_priv)) {
6367 drm_WARN_ON(dev, sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL,
6368 IPS_ENABLE | IPS_PCODE_CONTROL));
6369 /* Quoting Art Runyan: "its not safe to expect any particular
6370 * value in IPS_CTL bit 31 after enabling IPS through the
6371 * mailbox." Moreover, the mailbox may return a bogus state,
6372 * so we need to just enable it and continue on.
6373 */
6374 } else {
6375 intel_de_write(dev_priv, IPS_CTL, IPS_ENABLE);
6376 /* The bit only becomes 1 in the next vblank, so this wait here
6377 * is essentially intel_wait_for_vblank. If we don't have this
6378 * and don't wait for vblanks until the end of crtc_enable, then
6379 * the HW state readout code will complain that the expected
6380 * IPS_CTL value is not the one we read. */
6381 if (intel_de_wait_for_set(dev_priv, IPS_CTL, IPS_ENABLE, 50))
6382 drm_err(&dev_priv->drm,
6383 "Timed out waiting for IPS enable\n");
6384 }
6385 }
6386
6387 void hsw_disable_ips(const struct intel_crtc_state *crtc_state)
6388 {
6389 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
6390 struct drm_device *dev = crtc->base.dev;
6391 struct drm_i915_private *dev_priv = to_i915(dev);
6392
6393 if (!crtc_state->ips_enabled)
6394 return;
6395
6396 if (IS_BROADWELL(dev_priv)) {
6397 drm_WARN_ON(dev,
6398 sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
6399 /*
6400 * Wait for PCODE to finish disabling IPS. The BSpec specified
6401 * 42ms timeout value leads to occasional timeouts so use 100ms
6402 * instead.
6403 */
6404 if (intel_de_wait_for_clear(dev_priv, IPS_CTL, IPS_ENABLE, 100))
6405 drm_err(&dev_priv->drm,
6406 "Timed out waiting for IPS disable\n");
6407 } else {
6408 intel_de_write(dev_priv, IPS_CTL, 0);
6409 intel_de_posting_read(dev_priv, IPS_CTL);
6410 }
6411
6412 /* We need to wait for a vblank before we can disable the plane. */
6413 intel_wait_for_vblank(dev_priv, crtc->pipe);
6414 }
6415
6416 static void intel_crtc_dpms_overlay_disable(struct intel_crtc *intel_crtc)
6417 {
6418 if (intel_crtc->overlay)
6419 (void) intel_overlay_switch_off(intel_crtc->overlay);
6420
6421 /* Let userspace switch the overlay on again. In most cases userspace
6422 * has to recompute where to put it anyway.
6423 */
6424 }
6425
6426 static bool hsw_pre_update_disable_ips(const struct intel_crtc_state *old_crtc_state,
6427 const struct intel_crtc_state *new_crtc_state)
6428 {
6429 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
6430 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6431
6432 if (!old_crtc_state->ips_enabled)
6433 return false;
6434
6435 if (needs_modeset(new_crtc_state))
6436 return true;
6437
6438 /*
6439 * Workaround : Do not read or write the pipe palette/gamma data while
6440 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
6441 *
6442 * Disable IPS before we program the LUT.
6443 */
6444 if (IS_HASWELL(dev_priv) &&
6445 (new_crtc_state->uapi.color_mgmt_changed ||
6446 new_crtc_state->update_pipe) &&
6447 new_crtc_state->gamma_mode == GAMMA_MODE_MODE_SPLIT)
6448 return true;
6449
6450 return !new_crtc_state->ips_enabled;
6451 }
6452
6453 static bool hsw_post_update_enable_ips(const struct intel_crtc_state *old_crtc_state,
6454 const struct intel_crtc_state *new_crtc_state)
6455 {
6456 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
6457 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6458
6459 if (!new_crtc_state->ips_enabled)
6460 return false;
6461
6462 if (needs_modeset(new_crtc_state))
6463 return true;
6464
6465 /*
6466 * Workaround : Do not read or write the pipe palette/gamma data while
6467 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
6468 *
6469 * Re-enable IPS after the LUT has been programmed.
6470 */
6471 if (IS_HASWELL(dev_priv) &&
6472 (new_crtc_state->uapi.color_mgmt_changed ||
6473 new_crtc_state->update_pipe) &&
6474 new_crtc_state->gamma_mode == GAMMA_MODE_MODE_SPLIT)
6475 return true;
6476
6477 /*
6478 * We can't read out IPS on broadwell, assume the worst and
6479 * forcibly enable IPS on the first fastset.
6480 */
6481 if (new_crtc_state->update_pipe && old_crtc_state->inherited)
6482 return true;
6483
6484 return !old_crtc_state->ips_enabled;
6485 }
6486
6487 static bool needs_nv12_wa(const struct intel_crtc_state *crtc_state)
6488 {
6489 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
6490
6491 if (!crtc_state->nv12_planes)
6492 return false;
6493
6494 /* WA Display #0827: Gen9:all */
6495 if (IS_GEN(dev_priv, 9) && !IS_GEMINILAKE(dev_priv))
6496 return true;
6497
6498 return false;
6499 }
6500
6501 static bool needs_scalerclk_wa(const struct intel_crtc_state *crtc_state)
6502 {
6503 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
6504
6505 /* Wa_2006604312:icl,ehl */
6506 if (crtc_state->scaler_state.scaler_users > 0 && IS_GEN(dev_priv, 11))
6507 return true;
6508
6509 return false;
6510 }
6511
6512 static bool planes_enabling(const struct intel_crtc_state *old_crtc_state,
6513 const struct intel_crtc_state *new_crtc_state)
6514 {
6515 return (!old_crtc_state->active_planes || needs_modeset(new_crtc_state)) &&
6516 new_crtc_state->active_planes;
6517 }
6518
6519 static bool planes_disabling(const struct intel_crtc_state *old_crtc_state,
6520 const struct intel_crtc_state *new_crtc_state)
6521 {
6522 return old_crtc_state->active_planes &&
6523 (!new_crtc_state->active_planes || needs_modeset(new_crtc_state));
6524 }
6525
6526 static void intel_post_plane_update(struct intel_atomic_state *state,
6527 struct intel_crtc *crtc)
6528 {
6529 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
6530 const struct intel_crtc_state *old_crtc_state =
6531 intel_atomic_get_old_crtc_state(state, crtc);
6532 const struct intel_crtc_state *new_crtc_state =
6533 intel_atomic_get_new_crtc_state(state, crtc);
6534 enum pipe pipe = crtc->pipe;
6535
6536 intel_frontbuffer_flip(dev_priv, new_crtc_state->fb_bits);
6537
6538 if (new_crtc_state->update_wm_post && new_crtc_state->hw.active)
6539 intel_update_watermarks(crtc);
6540
6541 if (hsw_post_update_enable_ips(old_crtc_state, new_crtc_state))
6542 hsw_enable_ips(new_crtc_state);
6543
6544 intel_fbc_post_update(state, crtc);
6545
6546 if (needs_nv12_wa(old_crtc_state) &&
6547 !needs_nv12_wa(new_crtc_state))
6548 skl_wa_827(dev_priv, pipe, false);
6549
6550 if (needs_scalerclk_wa(old_crtc_state) &&
6551 !needs_scalerclk_wa(new_crtc_state))
6552 icl_wa_scalerclkgating(dev_priv, pipe, false);
6553 }
6554
6555 static void intel_pre_plane_update(struct intel_atomic_state *state,
6556 struct intel_crtc *crtc)
6557 {
6558 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
6559 const struct intel_crtc_state *old_crtc_state =
6560 intel_atomic_get_old_crtc_state(state, crtc);
6561 const struct intel_crtc_state *new_crtc_state =
6562 intel_atomic_get_new_crtc_state(state, crtc);
6563 enum pipe pipe = crtc->pipe;
6564
6565 if (hsw_pre_update_disable_ips(old_crtc_state, new_crtc_state))
6566 hsw_disable_ips(old_crtc_state);
6567
6568 if (intel_fbc_pre_update(state, crtc))
6569 intel_wait_for_vblank(dev_priv, pipe);
6570
6571 /* Display WA 827 */
6572 if (!needs_nv12_wa(old_crtc_state) &&
6573 needs_nv12_wa(new_crtc_state))
6574 skl_wa_827(dev_priv, pipe, true);
6575
6576 /* Wa_2006604312:icl,ehl */
6577 if (!needs_scalerclk_wa(old_crtc_state) &&
6578 needs_scalerclk_wa(new_crtc_state))
6579 icl_wa_scalerclkgating(dev_priv, pipe, true);
6580
6581 /*
6582 * Vblank time updates from the shadow to live plane control register
6583 * are blocked if the memory self-refresh mode is active at that
6584 * moment. So to make sure the plane gets truly disabled, disable
6585 * first the self-refresh mode. The self-refresh enable bit in turn
6586 * will be checked/applied by the HW only at the next frame start
6587 * event which is after the vblank start event, so we need to have a
6588 * wait-for-vblank between disabling the plane and the pipe.
6589 */
6590 if (HAS_GMCH(dev_priv) && old_crtc_state->hw.active &&
6591 new_crtc_state->disable_cxsr && intel_set_memory_cxsr(dev_priv, false))
6592 intel_wait_for_vblank(dev_priv, pipe);
6593
6594 /*
6595 * IVB workaround: must disable low power watermarks for at least
6596 * one frame before enabling scaling. LP watermarks can be re-enabled
6597 * when scaling is disabled.
6598 *
6599 * WaCxSRDisabledForSpriteScaling:ivb
6600 */
6601 if (old_crtc_state->hw.active &&
6602 new_crtc_state->disable_lp_wm && ilk_disable_lp_wm(dev_priv))
6603 intel_wait_for_vblank(dev_priv, pipe);
6604
6605 /*
6606 * If we're doing a modeset we don't need to do any
6607 * pre-vblank watermark programming here.
6608 */
6609 if (!needs_modeset(new_crtc_state)) {
6610 /*
6611 * For platforms that support atomic watermarks, program the
6612 * 'intermediate' watermarks immediately. On pre-gen9 platforms, these
6613 * will be the intermediate values that are safe for both pre- and
6614 * post- vblank; when vblank happens, the 'active' values will be set
6615 * to the final 'target' values and we'll do this again to get the
6616 * optimal watermarks. For gen9+ platforms, the values we program here
6617 * will be the final target values which will get automatically latched
6618 * at vblank time; no further programming will be necessary.
6619 *
6620 * If a platform hasn't been transitioned to atomic watermarks yet,
6621 * we'll continue to update watermarks the old way, if flags tell
6622 * us to.
6623 */
6624 if (dev_priv->display.initial_watermarks)
6625 dev_priv->display.initial_watermarks(state, crtc);
6626 else if (new_crtc_state->update_wm_pre)
6627 intel_update_watermarks(crtc);
6628 }
6629
6630 /*
6631 * Gen2 reports pipe underruns whenever all planes are disabled.
6632 * So disable underrun reporting before all the planes get disabled.
6633 *
6634 * We do this after .initial_watermarks() so that we have a
6635 * chance of catching underruns with the intermediate watermarks
6636 * vs. the old plane configuration.
6637 */
6638 if (IS_GEN(dev_priv, 2) && planes_disabling(old_crtc_state, new_crtc_state))
6639 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
6640 }
6641
6642 static void intel_crtc_disable_planes(struct intel_atomic_state *state,
6643 struct intel_crtc *crtc)
6644 {
6645 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6646 const struct intel_crtc_state *new_crtc_state =
6647 intel_atomic_get_new_crtc_state(state, crtc);
6648 unsigned int update_mask = new_crtc_state->update_planes;
6649 const struct intel_plane_state *old_plane_state;
6650 struct intel_plane *plane;
6651 unsigned fb_bits = 0;
6652 int i;
6653
6654 intel_crtc_dpms_overlay_disable(crtc);
6655
6656 for_each_old_intel_plane_in_state(state, plane, old_plane_state, i) {
6657 if (crtc->pipe != plane->pipe ||
6658 !(update_mask & BIT(plane->id)))
6659 continue;
6660
6661 intel_disable_plane(plane, new_crtc_state);
6662
6663 if (old_plane_state->uapi.visible)
6664 fb_bits |= plane->frontbuffer_bit;
6665 }
6666
6667 intel_frontbuffer_flip(dev_priv, fb_bits);
6668 }
6669
6670 /*
6671 * intel_connector_primary_encoder - get the primary encoder for a connector
6672 * @connector: connector for which to return the encoder
6673 *
6674 * Returns the primary encoder for a connector. There is a 1:1 mapping from
6675 * all connectors to their encoder, except for DP-MST connectors which have
6676 * both a virtual and a primary encoder. These DP-MST primary encoders can be
6677 * pointed to by as many DP-MST connectors as there are pipes.
6678 */
6679 static struct intel_encoder *
6680 intel_connector_primary_encoder(struct intel_connector *connector)
6681 {
6682 struct intel_encoder *encoder;
6683
6684 if (connector->mst_port)
6685 return &dp_to_dig_port(connector->mst_port)->base;
6686
6687 encoder = intel_attached_encoder(connector);
6688 drm_WARN_ON(connector->base.dev, !encoder);
6689
6690 return encoder;
6691 }
6692
6693 static void intel_encoders_update_prepare(struct intel_atomic_state *state)
6694 {
6695 struct drm_connector_state *new_conn_state;
6696 struct drm_connector *connector;
6697 int i;
6698
6699 for_each_new_connector_in_state(&state->base, connector, new_conn_state,
6700 i) {
6701 struct intel_connector *intel_connector;
6702 struct intel_encoder *encoder;
6703 struct intel_crtc *crtc;
6704
6705 if (!intel_connector_needs_modeset(state, connector))
6706 continue;
6707
6708 intel_connector = to_intel_connector(connector);
6709 encoder = intel_connector_primary_encoder(intel_connector);
6710 if (!encoder->update_prepare)
6711 continue;
6712
6713 crtc = new_conn_state->crtc ?
6714 to_intel_crtc(new_conn_state->crtc) : NULL;
6715 encoder->update_prepare(state, encoder, crtc);
6716 }
6717 }
6718
6719 static void intel_encoders_update_complete(struct intel_atomic_state *state)
6720 {
6721 struct drm_connector_state *new_conn_state;
6722 struct drm_connector *connector;
6723 int i;
6724
6725 for_each_new_connector_in_state(&state->base, connector, new_conn_state,
6726 i) {
6727 struct intel_connector *intel_connector;
6728 struct intel_encoder *encoder;
6729 struct intel_crtc *crtc;
6730
6731 if (!intel_connector_needs_modeset(state, connector))
6732 continue;
6733
6734 intel_connector = to_intel_connector(connector);
6735 encoder = intel_connector_primary_encoder(intel_connector);
6736 if (!encoder->update_complete)
6737 continue;
6738
6739 crtc = new_conn_state->crtc ?
6740 to_intel_crtc(new_conn_state->crtc) : NULL;
6741 encoder->update_complete(state, encoder, crtc);
6742 }
6743 }
6744
6745 static void intel_encoders_pre_pll_enable(struct intel_atomic_state *state,
6746 struct intel_crtc *crtc)
6747 {
6748 const struct intel_crtc_state *crtc_state =
6749 intel_atomic_get_new_crtc_state(state, crtc);
6750 const struct drm_connector_state *conn_state;
6751 struct drm_connector *conn;
6752 int i;
6753
6754 for_each_new_connector_in_state(&state->base, conn, conn_state, i) {
6755 struct intel_encoder *encoder =
6756 to_intel_encoder(conn_state->best_encoder);
6757
6758 if (conn_state->crtc != &crtc->base)
6759 continue;
6760
6761 if (encoder->pre_pll_enable)
6762 encoder->pre_pll_enable(state, encoder,
6763 crtc_state, conn_state);
6764 }
6765 }
6766
6767 static void intel_encoders_pre_enable(struct intel_atomic_state *state,
6768 struct intel_crtc *crtc)
6769 {
6770 const struct intel_crtc_state *crtc_state =
6771 intel_atomic_get_new_crtc_state(state, crtc);
6772 const struct drm_connector_state *conn_state;
6773 struct drm_connector *conn;
6774 int i;
6775
6776 for_each_new_connector_in_state(&state->base, conn, conn_state, i) {
6777 struct intel_encoder *encoder =
6778 to_intel_encoder(conn_state->best_encoder);
6779
6780 if (conn_state->crtc != &crtc->base)
6781 continue;
6782
6783 if (encoder->pre_enable)
6784 encoder->pre_enable(state, encoder,
6785 crtc_state, conn_state);
6786 }
6787 }
6788
6789 static void intel_encoders_enable(struct intel_atomic_state *state,
6790 struct intel_crtc *crtc)
6791 {
6792 const struct intel_crtc_state *crtc_state =
6793 intel_atomic_get_new_crtc_state(state, crtc);
6794 const struct drm_connector_state *conn_state;
6795 struct drm_connector *conn;
6796 int i;
6797
6798 for_each_new_connector_in_state(&state->base, conn, conn_state, i) {
6799 struct intel_encoder *encoder =
6800 to_intel_encoder(conn_state->best_encoder);
6801
6802 if (conn_state->crtc != &crtc->base)
6803 continue;
6804
6805 if (encoder->enable)
6806 encoder->enable(state, encoder,
6807 crtc_state, conn_state);
6808 intel_opregion_notify_encoder(encoder, true);
6809 }
6810 }
6811
6812 static void intel_encoders_disable(struct intel_atomic_state *state,
6813 struct intel_crtc *crtc)
6814 {
6815 const struct intel_crtc_state *old_crtc_state =
6816 intel_atomic_get_old_crtc_state(state, crtc);
6817 const struct drm_connector_state *old_conn_state;
6818 struct drm_connector *conn;
6819 int i;
6820
6821 for_each_old_connector_in_state(&state->base, conn, old_conn_state, i) {
6822 struct intel_encoder *encoder =
6823 to_intel_encoder(old_conn_state->best_encoder);
6824
6825 if (old_conn_state->crtc != &crtc->base)
6826 continue;
6827
6828 intel_opregion_notify_encoder(encoder, false);
6829 if (encoder->disable)
6830 encoder->disable(state, encoder,
6831 old_crtc_state, old_conn_state);
6832 }
6833 }
6834
6835 static void intel_encoders_post_disable(struct intel_atomic_state *state,
6836 struct intel_crtc *crtc)
6837 {
6838 const struct intel_crtc_state *old_crtc_state =
6839 intel_atomic_get_old_crtc_state(state, crtc);
6840 const struct drm_connector_state *old_conn_state;
6841 struct drm_connector *conn;
6842 int i;
6843
6844 for_each_old_connector_in_state(&state->base, conn, old_conn_state, i) {
6845 struct intel_encoder *encoder =
6846 to_intel_encoder(old_conn_state->best_encoder);
6847
6848 if (old_conn_state->crtc != &crtc->base)
6849 continue;
6850
6851 if (encoder->post_disable)
6852 encoder->post_disable(state, encoder,
6853 old_crtc_state, old_conn_state);
6854 }
6855 }
6856
6857 static void intel_encoders_post_pll_disable(struct intel_atomic_state *state,
6858 struct intel_crtc *crtc)
6859 {
6860 const struct intel_crtc_state *old_crtc_state =
6861 intel_atomic_get_old_crtc_state(state, crtc);
6862 const struct drm_connector_state *old_conn_state;
6863 struct drm_connector *conn;
6864 int i;
6865
6866 for_each_old_connector_in_state(&state->base, conn, old_conn_state, i) {
6867 struct intel_encoder *encoder =
6868 to_intel_encoder(old_conn_state->best_encoder);
6869
6870 if (old_conn_state->crtc != &crtc->base)
6871 continue;
6872
6873 if (encoder->post_pll_disable)
6874 encoder->post_pll_disable(state, encoder,
6875 old_crtc_state, old_conn_state);
6876 }
6877 }
6878
6879 static void intel_encoders_update_pipe(struct intel_atomic_state *state,
6880 struct intel_crtc *crtc)
6881 {
6882 const struct intel_crtc_state *crtc_state =
6883 intel_atomic_get_new_crtc_state(state, crtc);
6884 const struct drm_connector_state *conn_state;
6885 struct drm_connector *conn;
6886 int i;
6887
6888 for_each_new_connector_in_state(&state->base, conn, conn_state, i) {
6889 struct intel_encoder *encoder =
6890 to_intel_encoder(conn_state->best_encoder);
6891
6892 if (conn_state->crtc != &crtc->base)
6893 continue;
6894
6895 if (encoder->update_pipe)
6896 encoder->update_pipe(state, encoder,
6897 crtc_state, conn_state);
6898 }
6899 }
6900
6901 static void intel_disable_primary_plane(const struct intel_crtc_state *crtc_state)
6902 {
6903 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
6904 struct intel_plane *plane = to_intel_plane(crtc->base.primary);
6905
6906 plane->disable_plane(plane, crtc_state);
6907 }
6908
6909 static void ilk_crtc_enable(struct intel_atomic_state *state,
6910 struct intel_crtc *crtc)
6911 {
6912 const struct intel_crtc_state *new_crtc_state =
6913 intel_atomic_get_new_crtc_state(state, crtc);
6914 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6915 enum pipe pipe = crtc->pipe;
6916
6917 if (drm_WARN_ON(&dev_priv->drm, crtc->active))
6918 return;
6919
6920 /*
6921 * Sometimes spurious CPU pipe underruns happen during FDI
6922 * training, at least with VGA+HDMI cloning. Suppress them.
6923 *
6924 * On ILK we get an occasional spurious CPU pipe underruns
6925 * between eDP port A enable and vdd enable. Also PCH port
6926 * enable seems to result in the occasional CPU pipe underrun.
6927 *
6928 * Spurious PCH underruns also occur during PCH enabling.
6929 */
6930 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
6931 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
6932
6933 if (new_crtc_state->has_pch_encoder)
6934 intel_prepare_shared_dpll(new_crtc_state);
6935
6936 if (intel_crtc_has_dp_encoder(new_crtc_state))
6937 intel_dp_set_m_n(new_crtc_state, M1_N1);
6938
6939 intel_set_pipe_timings(new_crtc_state);
6940 intel_set_pipe_src_size(new_crtc_state);
6941
6942 if (new_crtc_state->has_pch_encoder)
6943 intel_cpu_transcoder_set_m_n(new_crtc_state,
6944 &new_crtc_state->fdi_m_n, NULL);
6945
6946 ilk_set_pipeconf(new_crtc_state);
6947
6948 crtc->active = true;
6949
6950 intel_encoders_pre_enable(state, crtc);
6951
6952 if (new_crtc_state->has_pch_encoder) {
6953 /* Note: FDI PLL enabling _must_ be done before we enable the
6954 * cpu pipes, hence this is separate from all the other fdi/pch
6955 * enabling. */
6956 ilk_fdi_pll_enable(new_crtc_state);
6957 } else {
6958 assert_fdi_tx_disabled(dev_priv, pipe);
6959 assert_fdi_rx_disabled(dev_priv, pipe);
6960 }
6961
6962 ilk_pfit_enable(new_crtc_state);
6963
6964 /*
6965 * On ILK+ LUT must be loaded before the pipe is running but with
6966 * clocks enabled
6967 */
6968 intel_color_load_luts(new_crtc_state);
6969 intel_color_commit(new_crtc_state);
6970 /* update DSPCNTR to configure gamma for pipe bottom color */
6971 intel_disable_primary_plane(new_crtc_state);
6972
6973 if (dev_priv->display.initial_watermarks)
6974 dev_priv->display.initial_watermarks(state, crtc);
6975 intel_enable_pipe(new_crtc_state);
6976
6977 if (new_crtc_state->has_pch_encoder)
6978 ilk_pch_enable(state, new_crtc_state);
6979
6980 intel_crtc_vblank_on(new_crtc_state);
6981
6982 intel_encoders_enable(state, crtc);
6983
6984 if (HAS_PCH_CPT(dev_priv))
6985 cpt_verify_modeset(dev_priv, pipe);
6986
6987 /*
6988 * Must wait for vblank to avoid spurious PCH FIFO underruns.
6989 * And a second vblank wait is needed at least on ILK with
6990 * some interlaced HDMI modes. Let's do the double wait always
6991 * in case there are more corner cases we don't know about.
6992 */
6993 if (new_crtc_state->has_pch_encoder) {
6994 intel_wait_for_vblank(dev_priv, pipe);
6995 intel_wait_for_vblank(dev_priv, pipe);
6996 }
6997 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
6998 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
6999 }
7000
7001 /* IPS only exists on ULT machines and is tied to pipe A. */
7002 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
7003 {
7004 return HAS_IPS(to_i915(crtc->base.dev)) && crtc->pipe == PIPE_A;
7005 }
7006
7007 static void glk_pipe_scaler_clock_gating_wa(struct drm_i915_private *dev_priv,
7008 enum pipe pipe, bool apply)
7009 {
7010 u32 val = intel_de_read(dev_priv, CLKGATE_DIS_PSL(pipe));
7011 u32 mask = DPF_GATING_DIS | DPF_RAM_GATING_DIS | DPFR_GATING_DIS;
7012
7013 if (apply)
7014 val |= mask;
7015 else
7016 val &= ~mask;
7017
7018 intel_de_write(dev_priv, CLKGATE_DIS_PSL(pipe), val);
7019 }
7020
7021 static void icl_pipe_mbus_enable(struct intel_crtc *crtc)
7022 {
7023 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7024 enum pipe pipe = crtc->pipe;
7025 u32 val;
7026
7027 val = MBUS_DBOX_A_CREDIT(2);
7028
7029 if (INTEL_GEN(dev_priv) >= 12) {
7030 val |= MBUS_DBOX_BW_CREDIT(2);
7031 val |= MBUS_DBOX_B_CREDIT(12);
7032 } else {
7033 val |= MBUS_DBOX_BW_CREDIT(1);
7034 val |= MBUS_DBOX_B_CREDIT(8);
7035 }
7036
7037 intel_de_write(dev_priv, PIPE_MBUS_DBOX_CTL(pipe), val);
7038 }
7039
7040 static void hsw_set_linetime_wm(const struct intel_crtc_state *crtc_state)
7041 {
7042 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
7043 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7044
7045 intel_de_write(dev_priv, WM_LINETIME(crtc->pipe),
7046 HSW_LINETIME(crtc_state->linetime) |
7047 HSW_IPS_LINETIME(crtc_state->ips_linetime));
7048 }
7049
7050 static void hsw_set_frame_start_delay(const struct intel_crtc_state *crtc_state)
7051 {
7052 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
7053 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7054 i915_reg_t reg = CHICKEN_TRANS(crtc_state->cpu_transcoder);
7055 u32 val;
7056
7057 val = intel_de_read(dev_priv, reg);
7058 val &= ~HSW_FRAME_START_DELAY_MASK;
7059 val |= HSW_FRAME_START_DELAY(0);
7060 intel_de_write(dev_priv, reg, val);
7061 }
7062
7063 static void hsw_crtc_enable(struct intel_atomic_state *state,
7064 struct intel_crtc *crtc)
7065 {
7066 const struct intel_crtc_state *new_crtc_state =
7067 intel_atomic_get_new_crtc_state(state, crtc);
7068 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7069 enum pipe pipe = crtc->pipe, hsw_workaround_pipe;
7070 enum transcoder cpu_transcoder = new_crtc_state->cpu_transcoder;
7071 bool psl_clkgate_wa;
7072
7073 if (drm_WARN_ON(&dev_priv->drm, crtc->active))
7074 return;
7075
7076 intel_encoders_pre_pll_enable(state, crtc);
7077
7078 if (new_crtc_state->shared_dpll)
7079 intel_enable_shared_dpll(new_crtc_state);
7080
7081 intel_encoders_pre_enable(state, crtc);
7082
7083 if (!transcoder_is_dsi(cpu_transcoder))
7084 intel_set_pipe_timings(new_crtc_state);
7085
7086 intel_set_pipe_src_size(new_crtc_state);
7087
7088 if (cpu_transcoder != TRANSCODER_EDP &&
7089 !transcoder_is_dsi(cpu_transcoder))
7090 intel_de_write(dev_priv, PIPE_MULT(cpu_transcoder),
7091 new_crtc_state->pixel_multiplier - 1);
7092
7093 if (new_crtc_state->has_pch_encoder)
7094 intel_cpu_transcoder_set_m_n(new_crtc_state,
7095 &new_crtc_state->fdi_m_n, NULL);
7096
7097 if (!transcoder_is_dsi(cpu_transcoder)) {
7098 hsw_set_frame_start_delay(new_crtc_state);
7099 hsw_set_pipeconf(new_crtc_state);
7100 }
7101
7102 if (INTEL_GEN(dev_priv) >= 9 || IS_BROADWELL(dev_priv))
7103 bdw_set_pipemisc(new_crtc_state);
7104
7105 crtc->active = true;
7106
7107 /* Display WA #1180: WaDisableScalarClockGating: glk, cnl */
7108 psl_clkgate_wa = (IS_GEMINILAKE(dev_priv) || IS_CANNONLAKE(dev_priv)) &&
7109 new_crtc_state->pch_pfit.enabled;
7110 if (psl_clkgate_wa)
7111 glk_pipe_scaler_clock_gating_wa(dev_priv, pipe, true);
7112
7113 if (INTEL_GEN(dev_priv) >= 9)
7114 skl_pfit_enable(new_crtc_state);
7115 else
7116 ilk_pfit_enable(new_crtc_state);
7117
7118 /*
7119 * On ILK+ LUT must be loaded before the pipe is running but with
7120 * clocks enabled
7121 */
7122 intel_color_load_luts(new_crtc_state);
7123 intel_color_commit(new_crtc_state);
7124 /* update DSPCNTR to configure gamma/csc for pipe bottom color */
7125 if (INTEL_GEN(dev_priv) < 9)
7126 intel_disable_primary_plane(new_crtc_state);
7127
7128 hsw_set_linetime_wm(new_crtc_state);
7129
7130 if (INTEL_GEN(dev_priv) >= 11)
7131 icl_set_pipe_chicken(crtc);
7132
7133 if (dev_priv->display.initial_watermarks)
7134 dev_priv->display.initial_watermarks(state, crtc);
7135
7136 if (INTEL_GEN(dev_priv) >= 11)
7137 icl_pipe_mbus_enable(crtc);
7138
7139 intel_encoders_enable(state, crtc);
7140
7141 if (psl_clkgate_wa) {
7142 intel_wait_for_vblank(dev_priv, pipe);
7143 glk_pipe_scaler_clock_gating_wa(dev_priv, pipe, false);
7144 }
7145
7146 /* If we change the relative order between pipe/planes enabling, we need
7147 * to change the workaround. */
7148 hsw_workaround_pipe = new_crtc_state->hsw_workaround_pipe;
7149 if (IS_HASWELL(dev_priv) && hsw_workaround_pipe != INVALID_PIPE) {
7150 intel_wait_for_vblank(dev_priv, hsw_workaround_pipe);
7151 intel_wait_for_vblank(dev_priv, hsw_workaround_pipe);
7152 }
7153 }
7154
7155 void ilk_pfit_disable(const struct intel_crtc_state *old_crtc_state)
7156 {
7157 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc);
7158 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7159 enum pipe pipe = crtc->pipe;
7160
7161 /* To avoid upsetting the power well on haswell only disable the pfit if
7162 * it's in use. The hw state code will make sure we get this right. */
7163 if (!old_crtc_state->pch_pfit.enabled)
7164 return;
7165
7166 intel_de_write(dev_priv, PF_CTL(pipe), 0);
7167 intel_de_write(dev_priv, PF_WIN_POS(pipe), 0);
7168 intel_de_write(dev_priv, PF_WIN_SZ(pipe), 0);
7169 }
7170
7171 static void ilk_crtc_disable(struct intel_atomic_state *state,
7172 struct intel_crtc *crtc)
7173 {
7174 const struct intel_crtc_state *old_crtc_state =
7175 intel_atomic_get_old_crtc_state(state, crtc);
7176 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7177 enum pipe pipe = crtc->pipe;
7178
7179 /*
7180 * Sometimes spurious CPU pipe underruns happen when the
7181 * pipe is already disabled, but FDI RX/TX is still enabled.
7182 * Happens at least with VGA+HDMI cloning. Suppress them.
7183 */
7184 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
7185 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
7186
7187 intel_encoders_disable(state, crtc);
7188
7189 intel_crtc_vblank_off(old_crtc_state);
7190
7191 intel_disable_pipe(old_crtc_state);
7192
7193 ilk_pfit_disable(old_crtc_state);
7194
7195 if (old_crtc_state->has_pch_encoder)
7196 ilk_fdi_disable(crtc);
7197
7198 intel_encoders_post_disable(state, crtc);
7199
7200 if (old_crtc_state->has_pch_encoder) {
7201 ilk_disable_pch_transcoder(dev_priv, pipe);
7202
7203 if (HAS_PCH_CPT(dev_priv)) {
7204 i915_reg_t reg;
7205 u32 temp;
7206
7207 /* disable TRANS_DP_CTL */
7208 reg = TRANS_DP_CTL(pipe);
7209 temp = intel_de_read(dev_priv, reg);
7210 temp &= ~(TRANS_DP_OUTPUT_ENABLE |
7211 TRANS_DP_PORT_SEL_MASK);
7212 temp |= TRANS_DP_PORT_SEL_NONE;
7213 intel_de_write(dev_priv, reg, temp);
7214
7215 /* disable DPLL_SEL */
7216 temp = intel_de_read(dev_priv, PCH_DPLL_SEL);
7217 temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
7218 intel_de_write(dev_priv, PCH_DPLL_SEL, temp);
7219 }
7220
7221 ilk_fdi_pll_disable(crtc);
7222 }
7223
7224 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
7225 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
7226 }
7227
7228 static void hsw_crtc_disable(struct intel_atomic_state *state,
7229 struct intel_crtc *crtc)
7230 {
7231 /*
7232 * FIXME collapse everything to one hook.
7233 * Need care with mst->ddi interactions.
7234 */
7235 intel_encoders_disable(state, crtc);
7236 intel_encoders_post_disable(state, crtc);
7237 }
7238
7239 static void i9xx_pfit_enable(const struct intel_crtc_state *crtc_state)
7240 {
7241 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
7242 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7243
7244 if (!crtc_state->gmch_pfit.control)
7245 return;
7246
7247 /*
7248 * The panel fitter should only be adjusted whilst the pipe is disabled,
7249 * according to register description and PRM.
7250 */
7251 drm_WARN_ON(&dev_priv->drm,
7252 intel_de_read(dev_priv, PFIT_CONTROL) & PFIT_ENABLE);
7253 assert_pipe_disabled(dev_priv, crtc_state->cpu_transcoder);
7254
7255 intel_de_write(dev_priv, PFIT_PGM_RATIOS,
7256 crtc_state->gmch_pfit.pgm_ratios);
7257 intel_de_write(dev_priv, PFIT_CONTROL, crtc_state->gmch_pfit.control);
7258
7259 /* Border color in case we don't scale up to the full screen. Black by
7260 * default, change to something else for debugging. */
7261 intel_de_write(dev_priv, BCLRPAT(crtc->pipe), 0);
7262 }
7263
7264 bool intel_phy_is_combo(struct drm_i915_private *dev_priv, enum phy phy)
7265 {
7266 if (phy == PHY_NONE)
7267 return false;
7268 else if (IS_ROCKETLAKE(dev_priv))
7269 return phy <= PHY_D;
7270 else if (IS_ELKHARTLAKE(dev_priv))
7271 return phy <= PHY_C;
7272 else if (INTEL_GEN(dev_priv) >= 11)
7273 return phy <= PHY_B;
7274 else
7275 return false;
7276 }
7277
7278 bool intel_phy_is_tc(struct drm_i915_private *dev_priv, enum phy phy)
7279 {
7280 if (IS_ROCKETLAKE(dev_priv))
7281 return false;
7282 else if (INTEL_GEN(dev_priv) >= 12)
7283 return phy >= PHY_D && phy <= PHY_I;
7284 else if (INTEL_GEN(dev_priv) >= 11 && !IS_ELKHARTLAKE(dev_priv))
7285 return phy >= PHY_C && phy <= PHY_F;
7286 else
7287 return false;
7288 }
7289
7290 enum phy intel_port_to_phy(struct drm_i915_private *i915, enum port port)
7291 {
7292 if (IS_ROCKETLAKE(i915) && port >= PORT_D)
7293 return (enum phy)port - 1;
7294 else if (IS_ELKHARTLAKE(i915) && port == PORT_D)
7295 return PHY_A;
7296
7297 return (enum phy)port;
7298 }
7299
7300 enum tc_port intel_port_to_tc(struct drm_i915_private *dev_priv, enum port port)
7301 {
7302 if (!intel_phy_is_tc(dev_priv, intel_port_to_phy(dev_priv, port)))
7303 return PORT_TC_NONE;
7304
7305 if (INTEL_GEN(dev_priv) >= 12)
7306 return port - PORT_D;
7307
7308 return port - PORT_C;
7309 }
7310
7311 enum intel_display_power_domain intel_port_to_power_domain(enum port port)
7312 {
7313 switch (port) {
7314 case PORT_A:
7315 return POWER_DOMAIN_PORT_DDI_A_LANES;
7316 case PORT_B:
7317 return POWER_DOMAIN_PORT_DDI_B_LANES;
7318 case PORT_C:
7319 return POWER_DOMAIN_PORT_DDI_C_LANES;
7320 case PORT_D:
7321 return POWER_DOMAIN_PORT_DDI_D_LANES;
7322 case PORT_E:
7323 return POWER_DOMAIN_PORT_DDI_E_LANES;
7324 case PORT_F:
7325 return POWER_DOMAIN_PORT_DDI_F_LANES;
7326 case PORT_G:
7327 return POWER_DOMAIN_PORT_DDI_G_LANES;
7328 case PORT_H:
7329 return POWER_DOMAIN_PORT_DDI_H_LANES;
7330 case PORT_I:
7331 return POWER_DOMAIN_PORT_DDI_I_LANES;
7332 default:
7333 MISSING_CASE(port);
7334 return POWER_DOMAIN_PORT_OTHER;
7335 }
7336 }
7337
7338 enum intel_display_power_domain
7339 intel_aux_power_domain(struct intel_digital_port *dig_port)
7340 {
7341 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
7342 enum phy phy = intel_port_to_phy(dev_priv, dig_port->base.port);
7343
7344 if (intel_phy_is_tc(dev_priv, phy) &&
7345 dig_port->tc_mode == TC_PORT_TBT_ALT) {
7346 switch (dig_port->aux_ch) {
7347 case AUX_CH_C:
7348 return POWER_DOMAIN_AUX_C_TBT;
7349 case AUX_CH_D:
7350 return POWER_DOMAIN_AUX_D_TBT;
7351 case AUX_CH_E:
7352 return POWER_DOMAIN_AUX_E_TBT;
7353 case AUX_CH_F:
7354 return POWER_DOMAIN_AUX_F_TBT;
7355 case AUX_CH_G:
7356 return POWER_DOMAIN_AUX_G_TBT;
7357 case AUX_CH_H:
7358 return POWER_DOMAIN_AUX_H_TBT;
7359 case AUX_CH_I:
7360 return POWER_DOMAIN_AUX_I_TBT;
7361 default:
7362 MISSING_CASE(dig_port->aux_ch);
7363 return POWER_DOMAIN_AUX_C_TBT;
7364 }
7365 }
7366
7367 return intel_legacy_aux_to_power_domain(dig_port->aux_ch);
7368 }
7369
7370 /*
7371 * Converts aux_ch to power_domain without caring about TBT ports for that use
7372 * intel_aux_power_domain()
7373 */
7374 enum intel_display_power_domain
7375 intel_legacy_aux_to_power_domain(enum aux_ch aux_ch)
7376 {
7377 switch (aux_ch) {
7378 case AUX_CH_A:
7379 return POWER_DOMAIN_AUX_A;
7380 case AUX_CH_B:
7381 return POWER_DOMAIN_AUX_B;
7382 case AUX_CH_C:
7383 return POWER_DOMAIN_AUX_C;
7384 case AUX_CH_D:
7385 return POWER_DOMAIN_AUX_D;
7386 case AUX_CH_E:
7387 return POWER_DOMAIN_AUX_E;
7388 case AUX_CH_F:
7389 return POWER_DOMAIN_AUX_F;
7390 case AUX_CH_G:
7391 return POWER_DOMAIN_AUX_G;
7392 case AUX_CH_H:
7393 return POWER_DOMAIN_AUX_H;
7394 case AUX_CH_I:
7395 return POWER_DOMAIN_AUX_I;
7396 default:
7397 MISSING_CASE(aux_ch);
7398 return POWER_DOMAIN_AUX_A;
7399 }
7400 }
7401
7402 static u64 get_crtc_power_domains(struct intel_crtc_state *crtc_state)
7403 {
7404 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
7405 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7406 struct drm_encoder *encoder;
7407 enum pipe pipe = crtc->pipe;
7408 u64 mask;
7409 enum transcoder transcoder = crtc_state->cpu_transcoder;
7410
7411 if (!crtc_state->hw.active)
7412 return 0;
7413
7414 mask = BIT_ULL(POWER_DOMAIN_PIPE(pipe));
7415 mask |= BIT_ULL(POWER_DOMAIN_TRANSCODER(transcoder));
7416 if (crtc_state->pch_pfit.enabled ||
7417 crtc_state->pch_pfit.force_thru)
7418 mask |= BIT_ULL(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
7419
7420 drm_for_each_encoder_mask(encoder, &dev_priv->drm,
7421 crtc_state->uapi.encoder_mask) {
7422 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
7423
7424 mask |= BIT_ULL(intel_encoder->power_domain);
7425 }
7426
7427 if (HAS_DDI(dev_priv) && crtc_state->has_audio)
7428 mask |= BIT_ULL(POWER_DOMAIN_AUDIO);
7429
7430 if (crtc_state->shared_dpll)
7431 mask |= BIT_ULL(POWER_DOMAIN_DISPLAY_CORE);
7432
7433 return mask;
7434 }
7435
7436 static u64
7437 modeset_get_crtc_power_domains(struct intel_crtc_state *crtc_state)
7438 {
7439 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
7440 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7441 enum intel_display_power_domain domain;
7442 u64 domains, new_domains, old_domains;
7443
7444 old_domains = crtc->enabled_power_domains;
7445 crtc->enabled_power_domains = new_domains =
7446 get_crtc_power_domains(crtc_state);
7447
7448 domains = new_domains & ~old_domains;
7449
7450 for_each_power_domain(domain, domains)
7451 intel_display_power_get(dev_priv, domain);
7452
7453 return old_domains & ~new_domains;
7454 }
7455
7456 static void modeset_put_power_domains(struct drm_i915_private *dev_priv,
7457 u64 domains)
7458 {
7459 enum intel_display_power_domain domain;
7460
7461 for_each_power_domain(domain, domains)
7462 intel_display_power_put_unchecked(dev_priv, domain);
7463 }
7464
7465 static void valleyview_crtc_enable(struct intel_atomic_state *state,
7466 struct intel_crtc *crtc)
7467 {
7468 const struct intel_crtc_state *new_crtc_state =
7469 intel_atomic_get_new_crtc_state(state, crtc);
7470 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7471 enum pipe pipe = crtc->pipe;
7472
7473 if (drm_WARN_ON(&dev_priv->drm, crtc->active))
7474 return;
7475
7476 if (intel_crtc_has_dp_encoder(new_crtc_state))
7477 intel_dp_set_m_n(new_crtc_state, M1_N1);
7478
7479 intel_set_pipe_timings(new_crtc_state);
7480 intel_set_pipe_src_size(new_crtc_state);
7481
7482 if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_B) {
7483 intel_de_write(dev_priv, CHV_BLEND(pipe), CHV_BLEND_LEGACY);
7484 intel_de_write(dev_priv, CHV_CANVAS(pipe), 0);
7485 }
7486
7487 i9xx_set_pipeconf(new_crtc_state);
7488
7489 crtc->active = true;
7490
7491 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
7492
7493 intel_encoders_pre_pll_enable(state, crtc);
7494
7495 if (IS_CHERRYVIEW(dev_priv)) {
7496 chv_prepare_pll(crtc, new_crtc_state);
7497 chv_enable_pll(crtc, new_crtc_state);
7498 } else {
7499 vlv_prepare_pll(crtc, new_crtc_state);
7500 vlv_enable_pll(crtc, new_crtc_state);
7501 }
7502
7503 intel_encoders_pre_enable(state, crtc);
7504
7505 i9xx_pfit_enable(new_crtc_state);
7506
7507 intel_color_load_luts(new_crtc_state);
7508 intel_color_commit(new_crtc_state);
7509 /* update DSPCNTR to configure gamma for pipe bottom color */
7510 intel_disable_primary_plane(new_crtc_state);
7511
7512 dev_priv->display.initial_watermarks(state, crtc);
7513 intel_enable_pipe(new_crtc_state);
7514
7515 intel_crtc_vblank_on(new_crtc_state);
7516
7517 intel_encoders_enable(state, crtc);
7518 }
7519
7520 static void i9xx_set_pll_dividers(const struct intel_crtc_state *crtc_state)
7521 {
7522 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
7523 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7524
7525 intel_de_write(dev_priv, FP0(crtc->pipe),
7526 crtc_state->dpll_hw_state.fp0);
7527 intel_de_write(dev_priv, FP1(crtc->pipe),
7528 crtc_state->dpll_hw_state.fp1);
7529 }
7530
7531 static void i9xx_crtc_enable(struct intel_atomic_state *state,
7532 struct intel_crtc *crtc)
7533 {
7534 const struct intel_crtc_state *new_crtc_state =
7535 intel_atomic_get_new_crtc_state(state, crtc);
7536 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7537 enum pipe pipe = crtc->pipe;
7538
7539 if (drm_WARN_ON(&dev_priv->drm, crtc->active))
7540 return;
7541
7542 i9xx_set_pll_dividers(new_crtc_state);
7543
7544 if (intel_crtc_has_dp_encoder(new_crtc_state))
7545 intel_dp_set_m_n(new_crtc_state, M1_N1);
7546
7547 intel_set_pipe_timings(new_crtc_state);
7548 intel_set_pipe_src_size(new_crtc_state);
7549
7550 i9xx_set_pipeconf(new_crtc_state);
7551
7552 crtc->active = true;
7553
7554 if (!IS_GEN(dev_priv, 2))
7555 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
7556
7557 intel_encoders_pre_enable(state, crtc);
7558
7559 i9xx_enable_pll(crtc, new_crtc_state);
7560
7561 i9xx_pfit_enable(new_crtc_state);
7562
7563 intel_color_load_luts(new_crtc_state);
7564 intel_color_commit(new_crtc_state);
7565 /* update DSPCNTR to configure gamma for pipe bottom color */
7566 intel_disable_primary_plane(new_crtc_state);
7567
7568 if (dev_priv->display.initial_watermarks)
7569 dev_priv->display.initial_watermarks(state, crtc);
7570 else
7571 intel_update_watermarks(crtc);
7572 intel_enable_pipe(new_crtc_state);
7573
7574 intel_crtc_vblank_on(new_crtc_state);
7575
7576 intel_encoders_enable(state, crtc);
7577
7578 /* prevents spurious underruns */
7579 if (IS_GEN(dev_priv, 2))
7580 intel_wait_for_vblank(dev_priv, pipe);
7581 }
7582
7583 static void i9xx_pfit_disable(const struct intel_crtc_state *old_crtc_state)
7584 {
7585 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc);
7586 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7587
7588 if (!old_crtc_state->gmch_pfit.control)
7589 return;
7590
7591 assert_pipe_disabled(dev_priv, old_crtc_state->cpu_transcoder);
7592
7593 drm_dbg_kms(&dev_priv->drm, "disabling pfit, current: 0x%08x\n",
7594 intel_de_read(dev_priv, PFIT_CONTROL));
7595 intel_de_write(dev_priv, PFIT_CONTROL, 0);
7596 }
7597
7598 static void i9xx_crtc_disable(struct intel_atomic_state *state,
7599 struct intel_crtc *crtc)
7600 {
7601 struct intel_crtc_state *old_crtc_state =
7602 intel_atomic_get_old_crtc_state(state, crtc);
7603 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7604 enum pipe pipe = crtc->pipe;
7605
7606 /*
7607 * On gen2 planes are double buffered but the pipe isn't, so we must
7608 * wait for planes to fully turn off before disabling the pipe.
7609 */
7610 if (IS_GEN(dev_priv, 2))
7611 intel_wait_for_vblank(dev_priv, pipe);
7612
7613 intel_encoders_disable(state, crtc);
7614
7615 intel_crtc_vblank_off(old_crtc_state);
7616
7617 intel_disable_pipe(old_crtc_state);
7618
7619 i9xx_pfit_disable(old_crtc_state);
7620
7621 intel_encoders_post_disable(state, crtc);
7622
7623 if (!intel_crtc_has_type(old_crtc_state, INTEL_OUTPUT_DSI)) {
7624 if (IS_CHERRYVIEW(dev_priv))
7625 chv_disable_pll(dev_priv, pipe);
7626 else if (IS_VALLEYVIEW(dev_priv))
7627 vlv_disable_pll(dev_priv, pipe);
7628 else
7629 i9xx_disable_pll(old_crtc_state);
7630 }
7631
7632 intel_encoders_post_pll_disable(state, crtc);
7633
7634 if (!IS_GEN(dev_priv, 2))
7635 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
7636
7637 if (!dev_priv->display.initial_watermarks)
7638 intel_update_watermarks(crtc);
7639
7640 /* clock the pipe down to 640x480@60 to potentially save power */
7641 if (IS_I830(dev_priv))
7642 i830_enable_pipe(dev_priv, pipe);
7643 }
7644
7645 static void intel_crtc_disable_noatomic(struct intel_crtc *crtc,
7646 struct drm_modeset_acquire_ctx *ctx)
7647 {
7648 struct intel_encoder *encoder;
7649 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7650 struct intel_bw_state *bw_state =
7651 to_intel_bw_state(dev_priv->bw_obj.state);
7652 struct intel_cdclk_state *cdclk_state =
7653 to_intel_cdclk_state(dev_priv->cdclk.obj.state);
7654 struct intel_dbuf_state *dbuf_state =
7655 to_intel_dbuf_state(dev_priv->dbuf.obj.state);
7656 struct intel_crtc_state *crtc_state =
7657 to_intel_crtc_state(crtc->base.state);
7658 enum intel_display_power_domain domain;
7659 struct intel_plane *plane;
7660 struct drm_atomic_state *state;
7661 struct intel_crtc_state *temp_crtc_state;
7662 enum pipe pipe = crtc->pipe;
7663 u64 domains;
7664 int ret;
7665
7666 if (!crtc_state->hw.active)
7667 return;
7668
7669 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
7670 const struct intel_plane_state *plane_state =
7671 to_intel_plane_state(plane->base.state);
7672
7673 if (plane_state->uapi.visible)
7674 intel_plane_disable_noatomic(crtc, plane);
7675 }
7676
7677 state = drm_atomic_state_alloc(&dev_priv->drm);
7678 if (!state) {
7679 drm_dbg_kms(&dev_priv->drm,
7680 "failed to disable [CRTC:%d:%s], out of memory",
7681 crtc->base.base.id, crtc->base.name);
7682 return;
7683 }
7684
7685 state->acquire_ctx = ctx;
7686
7687 /* Everything's already locked, -EDEADLK can't happen. */
7688 temp_crtc_state = intel_atomic_get_crtc_state(state, crtc);
7689 ret = drm_atomic_add_affected_connectors(state, &crtc->base);
7690
7691 drm_WARN_ON(&dev_priv->drm, IS_ERR(temp_crtc_state) || ret);
7692
7693 dev_priv->display.crtc_disable(to_intel_atomic_state(state), crtc);
7694
7695 drm_atomic_state_put(state);
7696
7697 drm_dbg_kms(&dev_priv->drm,
7698 "[CRTC:%d:%s] hw state adjusted, was enabled, now disabled\n",
7699 crtc->base.base.id, crtc->base.name);
7700
7701 crtc->active = false;
7702 crtc->base.enabled = false;
7703
7704 drm_WARN_ON(&dev_priv->drm,
7705 drm_atomic_set_mode_for_crtc(&crtc_state->uapi, NULL) < 0);
7706 crtc_state->uapi.active = false;
7707 crtc_state->uapi.connector_mask = 0;
7708 crtc_state->uapi.encoder_mask = 0;
7709 intel_crtc_free_hw_state(crtc_state);
7710 memset(&crtc_state->hw, 0, sizeof(crtc_state->hw));
7711
7712 for_each_encoder_on_crtc(&dev_priv->drm, &crtc->base, encoder)
7713 encoder->base.crtc = NULL;
7714
7715 intel_fbc_disable(crtc);
7716 intel_update_watermarks(crtc);
7717 intel_disable_shared_dpll(crtc_state);
7718
7719 domains = crtc->enabled_power_domains;
7720 for_each_power_domain(domain, domains)
7721 intel_display_power_put_unchecked(dev_priv, domain);
7722 crtc->enabled_power_domains = 0;
7723
7724 dev_priv->active_pipes &= ~BIT(pipe);
7725 cdclk_state->min_cdclk[pipe] = 0;
7726 cdclk_state->min_voltage_level[pipe] = 0;
7727 cdclk_state->active_pipes &= ~BIT(pipe);
7728
7729 dbuf_state->active_pipes &= ~BIT(pipe);
7730
7731 bw_state->data_rate[pipe] = 0;
7732 bw_state->num_active_planes[pipe] = 0;
7733 }
7734
7735 /*
7736 * turn all crtc's off, but do not adjust state
7737 * This has to be paired with a call to intel_modeset_setup_hw_state.
7738 */
7739 int intel_display_suspend(struct drm_device *dev)
7740 {
7741 struct drm_i915_private *dev_priv = to_i915(dev);
7742 struct drm_atomic_state *state;
7743 int ret;
7744
7745 state = drm_atomic_helper_suspend(dev);
7746 ret = PTR_ERR_OR_ZERO(state);
7747 if (ret)
7748 drm_err(&dev_priv->drm, "Suspending crtc's failed with %i\n",
7749 ret);
7750 else
7751 dev_priv->modeset_restore_state = state;
7752 return ret;
7753 }
7754
7755 void intel_encoder_destroy(struct drm_encoder *encoder)
7756 {
7757 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
7758
7759 drm_encoder_cleanup(encoder);
7760 kfree(intel_encoder);
7761 }
7762
7763 /* Cross check the actual hw state with our own modeset state tracking (and it's
7764 * internal consistency). */
7765 static void intel_connector_verify_state(struct intel_crtc_state *crtc_state,
7766 struct drm_connector_state *conn_state)
7767 {
7768 struct intel_connector *connector = to_intel_connector(conn_state->connector);
7769 struct drm_i915_private *i915 = to_i915(connector->base.dev);
7770
7771 drm_dbg_kms(&i915->drm, "[CONNECTOR:%d:%s]\n",
7772 connector->base.base.id, connector->base.name);
7773
7774 if (connector->get_hw_state(connector)) {
7775 struct intel_encoder *encoder = intel_attached_encoder(connector);
7776
7777 I915_STATE_WARN(!crtc_state,
7778 "connector enabled without attached crtc\n");
7779
7780 if (!crtc_state)
7781 return;
7782
7783 I915_STATE_WARN(!crtc_state->hw.active,
7784 "connector is active, but attached crtc isn't\n");
7785
7786 if (!encoder || encoder->type == INTEL_OUTPUT_DP_MST)
7787 return;
7788
7789 I915_STATE_WARN(conn_state->best_encoder != &encoder->base,
7790 "atomic encoder doesn't match attached encoder\n");
7791
7792 I915_STATE_WARN(conn_state->crtc != encoder->base.crtc,
7793 "attached encoder crtc differs from connector crtc\n");
7794 } else {
7795 I915_STATE_WARN(crtc_state && crtc_state->hw.active,
7796 "attached crtc is active, but connector isn't\n");
7797 I915_STATE_WARN(!crtc_state && conn_state->best_encoder,
7798 "best encoder set without crtc!\n");
7799 }
7800 }
7801
7802 static int pipe_required_fdi_lanes(struct intel_crtc_state *crtc_state)
7803 {
7804 if (crtc_state->hw.enable && crtc_state->has_pch_encoder)
7805 return crtc_state->fdi_lanes;
7806
7807 return 0;
7808 }
7809
7810 static int ilk_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
7811 struct intel_crtc_state *pipe_config)
7812 {
7813 struct drm_i915_private *dev_priv = to_i915(dev);
7814 struct drm_atomic_state *state = pipe_config->uapi.state;
7815 struct intel_crtc *other_crtc;
7816 struct intel_crtc_state *other_crtc_state;
7817
7818 drm_dbg_kms(&dev_priv->drm,
7819 "checking fdi config on pipe %c, lanes %i\n",
7820 pipe_name(pipe), pipe_config->fdi_lanes);
7821 if (pipe_config->fdi_lanes > 4) {
7822 drm_dbg_kms(&dev_priv->drm,
7823 "invalid fdi lane config on pipe %c: %i lanes\n",
7824 pipe_name(pipe), pipe_config->fdi_lanes);
7825 return -EINVAL;
7826 }
7827
7828 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
7829 if (pipe_config->fdi_lanes > 2) {
7830 drm_dbg_kms(&dev_priv->drm,
7831 "only 2 lanes on haswell, required: %i lanes\n",
7832 pipe_config->fdi_lanes);
7833 return -EINVAL;
7834 } else {
7835 return 0;
7836 }
7837 }
7838
7839 if (INTEL_NUM_PIPES(dev_priv) == 2)
7840 return 0;
7841
7842 /* Ivybridge 3 pipe is really complicated */
7843 switch (pipe) {
7844 case PIPE_A:
7845 return 0;
7846 case PIPE_B:
7847 if (pipe_config->fdi_lanes <= 2)
7848 return 0;
7849
7850 other_crtc = intel_get_crtc_for_pipe(dev_priv, PIPE_C);
7851 other_crtc_state =
7852 intel_atomic_get_crtc_state(state, other_crtc);
7853 if (IS_ERR(other_crtc_state))
7854 return PTR_ERR(other_crtc_state);
7855
7856 if (pipe_required_fdi_lanes(other_crtc_state) > 0) {
7857 drm_dbg_kms(&dev_priv->drm,
7858 "invalid shared fdi lane config on pipe %c: %i lanes\n",
7859 pipe_name(pipe), pipe_config->fdi_lanes);
7860 return -EINVAL;
7861 }
7862 return 0;
7863 case PIPE_C:
7864 if (pipe_config->fdi_lanes > 2) {
7865 drm_dbg_kms(&dev_priv->drm,
7866 "only 2 lanes on pipe %c: required %i lanes\n",
7867 pipe_name(pipe), pipe_config->fdi_lanes);
7868 return -EINVAL;
7869 }
7870
7871 other_crtc = intel_get_crtc_for_pipe(dev_priv, PIPE_B);
7872 other_crtc_state =
7873 intel_atomic_get_crtc_state(state, other_crtc);
7874 if (IS_ERR(other_crtc_state))
7875 return PTR_ERR(other_crtc_state);
7876
7877 if (pipe_required_fdi_lanes(other_crtc_state) > 2) {
7878 drm_dbg_kms(&dev_priv->drm,
7879 "fdi link B uses too many lanes to enable link C\n");
7880 return -EINVAL;
7881 }
7882 return 0;
7883 default:
7884 BUG();
7885 }
7886 }
7887
7888 #define RETRY 1
7889 static int ilk_fdi_compute_config(struct intel_crtc *intel_crtc,
7890 struct intel_crtc_state *pipe_config)
7891 {
7892 struct drm_device *dev = intel_crtc->base.dev;
7893 struct drm_i915_private *i915 = to_i915(dev);
7894 const struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
7895 int lane, link_bw, fdi_dotclock, ret;
7896 bool needs_recompute = false;
7897
7898 retry:
7899 /* FDI is a binary signal running at ~2.7GHz, encoding
7900 * each output octet as 10 bits. The actual frequency
7901 * is stored as a divider into a 100MHz clock, and the
7902 * mode pixel clock is stored in units of 1KHz.
7903 * Hence the bw of each lane in terms of the mode signal
7904 * is:
7905 */
7906 link_bw = intel_fdi_link_freq(i915, pipe_config);
7907
7908 fdi_dotclock = adjusted_mode->crtc_clock;
7909
7910 lane = ilk_get_lanes_required(fdi_dotclock, link_bw,
7911 pipe_config->pipe_bpp);
7912
7913 pipe_config->fdi_lanes = lane;
7914
7915 intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
7916 link_bw, &pipe_config->fdi_m_n, false, false);
7917
7918 ret = ilk_check_fdi_lanes(dev, intel_crtc->pipe, pipe_config);
7919 if (ret == -EDEADLK)
7920 return ret;
7921
7922 if (ret == -EINVAL && pipe_config->pipe_bpp > 6*3) {
7923 pipe_config->pipe_bpp -= 2*3;
7924 drm_dbg_kms(&i915->drm,
7925 "fdi link bw constraint, reducing pipe bpp to %i\n",
7926 pipe_config->pipe_bpp);
7927 needs_recompute = true;
7928 pipe_config->bw_constrained = true;
7929
7930 goto retry;
7931 }
7932
7933 if (needs_recompute)
7934 return RETRY;
7935
7936 return ret;
7937 }
7938
7939 bool hsw_crtc_state_ips_capable(const struct intel_crtc_state *crtc_state)
7940 {
7941 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
7942 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7943
7944 /* IPS only exists on ULT machines and is tied to pipe A. */
7945 if (!hsw_crtc_supports_ips(crtc))
7946 return false;
7947
7948 if (!dev_priv->params.enable_ips)
7949 return false;
7950
7951 if (crtc_state->pipe_bpp > 24)
7952 return false;
7953
7954 /*
7955 * We compare against max which means we must take
7956 * the increased cdclk requirement into account when
7957 * calculating the new cdclk.
7958 *
7959 * Should measure whether using a lower cdclk w/o IPS
7960 */
7961 if (IS_BROADWELL(dev_priv) &&
7962 crtc_state->pixel_rate > dev_priv->max_cdclk_freq * 95 / 100)
7963 return false;
7964
7965 return true;
7966 }
7967
7968 static int hsw_compute_ips_config(struct intel_crtc_state *crtc_state)
7969 {
7970 struct drm_i915_private *dev_priv =
7971 to_i915(crtc_state->uapi.crtc->dev);
7972 struct intel_atomic_state *state =
7973 to_intel_atomic_state(crtc_state->uapi.state);
7974
7975 crtc_state->ips_enabled = false;
7976
7977 if (!hsw_crtc_state_ips_capable(crtc_state))
7978 return 0;
7979
7980 /*
7981 * When IPS gets enabled, the pipe CRC changes. Since IPS gets
7982 * enabled and disabled dynamically based on package C states,
7983 * user space can't make reliable use of the CRCs, so let's just
7984 * completely disable it.
7985 */
7986 if (crtc_state->crc_enabled)
7987 return 0;
7988
7989 /* IPS should be fine as long as at least one plane is enabled. */
7990 if (!(crtc_state->active_planes & ~BIT(PLANE_CURSOR)))
7991 return 0;
7992
7993 if (IS_BROADWELL(dev_priv)) {
7994 const struct intel_cdclk_state *cdclk_state;
7995
7996 cdclk_state = intel_atomic_get_cdclk_state(state);
7997 if (IS_ERR(cdclk_state))
7998 return PTR_ERR(cdclk_state);
7999
8000 /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
8001 if (crtc_state->pixel_rate > cdclk_state->logical.cdclk * 95 / 100)
8002 return 0;
8003 }
8004
8005 crtc_state->ips_enabled = true;
8006
8007 return 0;
8008 }
8009
8010 static bool intel_crtc_supports_double_wide(const struct intel_crtc *crtc)
8011 {
8012 const struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
8013
8014 /* GDG double wide on either pipe, otherwise pipe A only */
8015 return INTEL_GEN(dev_priv) < 4 &&
8016 (crtc->pipe == PIPE_A || IS_I915G(dev_priv));
8017 }
8018
8019 static u32 ilk_pipe_pixel_rate(const struct intel_crtc_state *crtc_state)
8020 {
8021 u32 pixel_rate = crtc_state->hw.adjusted_mode.crtc_clock;
8022 unsigned int pipe_w, pipe_h, pfit_w, pfit_h;
8023
8024 /*
8025 * We only use IF-ID interlacing. If we ever use
8026 * PF-ID we'll need to adjust the pixel_rate here.
8027 */
8028
8029 if (!crtc_state->pch_pfit.enabled)
8030 return pixel_rate;
8031
8032 pipe_w = crtc_state->pipe_src_w;
8033 pipe_h = crtc_state->pipe_src_h;
8034
8035 pfit_w = drm_rect_width(&crtc_state->pch_pfit.dst);
8036 pfit_h = drm_rect_height(&crtc_state->pch_pfit.dst);
8037
8038 if (pipe_w < pfit_w)
8039 pipe_w = pfit_w;
8040 if (pipe_h < pfit_h)
8041 pipe_h = pfit_h;
8042
8043 if (drm_WARN_ON(crtc_state->uapi.crtc->dev,
8044 !pfit_w || !pfit_h))
8045 return pixel_rate;
8046
8047 return div_u64(mul_u32_u32(pixel_rate, pipe_w * pipe_h),
8048 pfit_w * pfit_h);
8049 }
8050
8051 static void intel_crtc_compute_pixel_rate(struct intel_crtc_state *crtc_state)
8052 {
8053 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
8054
8055 if (HAS_GMCH(dev_priv))
8056 /* FIXME calculate proper pipe pixel rate for GMCH pfit */
8057 crtc_state->pixel_rate =
8058 crtc_state->hw.adjusted_mode.crtc_clock;
8059 else
8060 crtc_state->pixel_rate =
8061 ilk_pipe_pixel_rate(crtc_state);
8062 }
8063
8064 static int intel_crtc_compute_config(struct intel_crtc *crtc,
8065 struct intel_crtc_state *pipe_config)
8066 {
8067 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
8068 const struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
8069 int clock_limit = dev_priv->max_dotclk_freq;
8070
8071 if (INTEL_GEN(dev_priv) < 4) {
8072 clock_limit = dev_priv->max_cdclk_freq * 9 / 10;
8073
8074 /*
8075 * Enable double wide mode when the dot clock
8076 * is > 90% of the (display) core speed.
8077 */
8078 if (intel_crtc_supports_double_wide(crtc) &&
8079 adjusted_mode->crtc_clock > clock_limit) {
8080 clock_limit = dev_priv->max_dotclk_freq;
8081 pipe_config->double_wide = true;
8082 }
8083 }
8084
8085 if (adjusted_mode->crtc_clock > clock_limit) {
8086 drm_dbg_kms(&dev_priv->drm,
8087 "requested pixel clock (%d kHz) too high (max: %d kHz, double wide: %s)\n",
8088 adjusted_mode->crtc_clock, clock_limit,
8089 yesno(pipe_config->double_wide));
8090 return -EINVAL;
8091 }
8092
8093 if ((pipe_config->output_format == INTEL_OUTPUT_FORMAT_YCBCR420 ||
8094 pipe_config->output_format == INTEL_OUTPUT_FORMAT_YCBCR444) &&
8095 pipe_config->hw.ctm) {
8096 /*
8097 * There is only one pipe CSC unit per pipe, and we need that
8098 * for output conversion from RGB->YCBCR. So if CTM is already
8099 * applied we can't support YCBCR420 output.
8100 */
8101 drm_dbg_kms(&dev_priv->drm,
8102 "YCBCR420 and CTM together are not possible\n");
8103 return -EINVAL;
8104 }
8105
8106 /*
8107 * Pipe horizontal size must be even in:
8108 * - DVO ganged mode
8109 * - LVDS dual channel mode
8110 * - Double wide pipe
8111 */
8112 if (pipe_config->pipe_src_w & 1) {
8113 if (pipe_config->double_wide) {
8114 drm_dbg_kms(&dev_priv->drm,
8115 "Odd pipe source width not supported with double wide pipe\n");
8116 return -EINVAL;
8117 }
8118
8119 if (intel_crtc_has_type(pipe_config, INTEL_OUTPUT_LVDS) &&
8120 intel_is_dual_link_lvds(dev_priv)) {
8121 drm_dbg_kms(&dev_priv->drm,
8122 "Odd pipe source width not supported with dual link LVDS\n");
8123 return -EINVAL;
8124 }
8125 }
8126
8127 /* Cantiga+ cannot handle modes with a hsync front porch of 0.
8128 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
8129 */
8130 if ((INTEL_GEN(dev_priv) > 4 || IS_G4X(dev_priv)) &&
8131 adjusted_mode->crtc_hsync_start == adjusted_mode->crtc_hdisplay)
8132 return -EINVAL;
8133
8134 intel_crtc_compute_pixel_rate(pipe_config);
8135
8136 if (pipe_config->has_pch_encoder)
8137 return ilk_fdi_compute_config(crtc, pipe_config);
8138
8139 return 0;
8140 }
8141
8142 static void
8143 intel_reduce_m_n_ratio(u32 *num, u32 *den)
8144 {
8145 while (*num > DATA_LINK_M_N_MASK ||
8146 *den > DATA_LINK_M_N_MASK) {
8147 *num >>= 1;
8148 *den >>= 1;
8149 }
8150 }
8151
8152 static void compute_m_n(unsigned int m, unsigned int n,
8153 u32 *ret_m, u32 *ret_n,
8154 bool constant_n)
8155 {
8156 /*
8157 * Several DP dongles in particular seem to be fussy about
8158 * too large link M/N values. Give N value as 0x8000 that
8159 * should be acceptable by specific devices. 0x8000 is the
8160 * specified fixed N value for asynchronous clock mode,
8161 * which the devices expect also in synchronous clock mode.
8162 */
8163 if (constant_n)
8164 *ret_n = 0x8000;
8165 else
8166 *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
8167
8168 *ret_m = div_u64(mul_u32_u32(m, *ret_n), n);
8169 intel_reduce_m_n_ratio(ret_m, ret_n);
8170 }
8171
8172 void
8173 intel_link_compute_m_n(u16 bits_per_pixel, int nlanes,
8174 int pixel_clock, int link_clock,
8175 struct intel_link_m_n *m_n,
8176 bool constant_n, bool fec_enable)
8177 {
8178 u32 data_clock = bits_per_pixel * pixel_clock;
8179
8180 if (fec_enable)
8181 data_clock = intel_dp_mode_to_fec_clock(data_clock);
8182
8183 m_n->tu = 64;
8184 compute_m_n(data_clock,
8185 link_clock * nlanes * 8,
8186 &m_n->gmch_m, &m_n->gmch_n,
8187 constant_n);
8188
8189 compute_m_n(pixel_clock, link_clock,
8190 &m_n->link_m, &m_n->link_n,
8191 constant_n);
8192 }
8193
8194 static void intel_panel_sanitize_ssc(struct drm_i915_private *dev_priv)
8195 {
8196 /*
8197 * There may be no VBT; and if the BIOS enabled SSC we can
8198 * just keep using it to avoid unnecessary flicker. Whereas if the
8199 * BIOS isn't using it, don't assume it will work even if the VBT
8200 * indicates as much.
8201 */
8202 if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) {
8203 bool bios_lvds_use_ssc = intel_de_read(dev_priv,
8204 PCH_DREF_CONTROL) &
8205 DREF_SSC1_ENABLE;
8206
8207 if (dev_priv->vbt.lvds_use_ssc != bios_lvds_use_ssc) {
8208 drm_dbg_kms(&dev_priv->drm,
8209 "SSC %s by BIOS, overriding VBT which says %s\n",
8210 enableddisabled(bios_lvds_use_ssc),
8211 enableddisabled(dev_priv->vbt.lvds_use_ssc));
8212 dev_priv->vbt.lvds_use_ssc = bios_lvds_use_ssc;
8213 }
8214 }
8215 }
8216
8217 static bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
8218 {
8219 if (dev_priv->params.panel_use_ssc >= 0)
8220 return dev_priv->params.panel_use_ssc != 0;
8221 return dev_priv->vbt.lvds_use_ssc
8222 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
8223 }
8224
8225 static u32 pnv_dpll_compute_fp(struct dpll *dpll)
8226 {
8227 return (1 << dpll->n) << 16 | dpll->m2;
8228 }
8229
8230 static u32 i9xx_dpll_compute_fp(struct dpll *dpll)
8231 {
8232 return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
8233 }
8234
8235 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
8236 struct intel_crtc_state *crtc_state,
8237 struct dpll *reduced_clock)
8238 {
8239 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
8240 u32 fp, fp2 = 0;
8241
8242 if (IS_PINEVIEW(dev_priv)) {
8243 fp = pnv_dpll_compute_fp(&crtc_state->dpll);
8244 if (reduced_clock)
8245 fp2 = pnv_dpll_compute_fp(reduced_clock);
8246 } else {
8247 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
8248 if (reduced_clock)
8249 fp2 = i9xx_dpll_compute_fp(reduced_clock);
8250 }
8251
8252 crtc_state->dpll_hw_state.fp0 = fp;
8253
8254 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
8255 reduced_clock) {
8256 crtc_state->dpll_hw_state.fp1 = fp2;
8257 } else {
8258 crtc_state->dpll_hw_state.fp1 = fp;
8259 }
8260 }
8261
8262 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
8263 pipe)
8264 {
8265 u32 reg_val;
8266
8267 /*
8268 * PLLB opamp always calibrates to max value of 0x3f, force enable it
8269 * and set it to a reasonable value instead.
8270 */
8271 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
8272 reg_val &= 0xffffff00;
8273 reg_val |= 0x00000030;
8274 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
8275
8276 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
8277 reg_val &= 0x00ffffff;
8278 reg_val |= 0x8c000000;
8279 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
8280
8281 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
8282 reg_val &= 0xffffff00;
8283 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
8284
8285 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
8286 reg_val &= 0x00ffffff;
8287 reg_val |= 0xb0000000;
8288 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
8289 }
8290
8291 static void intel_pch_transcoder_set_m_n(const struct intel_crtc_state *crtc_state,
8292 const struct intel_link_m_n *m_n)
8293 {
8294 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
8295 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
8296 enum pipe pipe = crtc->pipe;
8297
8298 intel_de_write(dev_priv, PCH_TRANS_DATA_M1(pipe),
8299 TU_SIZE(m_n->tu) | m_n->gmch_m);
8300 intel_de_write(dev_priv, PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
8301 intel_de_write(dev_priv, PCH_TRANS_LINK_M1(pipe), m_n->link_m);
8302 intel_de_write(dev_priv, PCH_TRANS_LINK_N1(pipe), m_n->link_n);
8303 }
8304
8305 static bool transcoder_has_m2_n2(struct drm_i915_private *dev_priv,
8306 enum transcoder transcoder)
8307 {
8308 if (IS_HASWELL(dev_priv))
8309 return transcoder == TRANSCODER_EDP;
8310
8311 /*
8312 * Strictly speaking some registers are available before
8313 * gen7, but we only support DRRS on gen7+
8314 */
8315 return IS_GEN(dev_priv, 7) || IS_CHERRYVIEW(dev_priv);
8316 }
8317
8318 static void intel_cpu_transcoder_set_m_n(const struct intel_crtc_state *crtc_state,
8319 const struct intel_link_m_n *m_n,
8320 const struct intel_link_m_n *m2_n2)
8321 {
8322 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
8323 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
8324 enum pipe pipe = crtc->pipe;
8325 enum transcoder transcoder = crtc_state->cpu_transcoder;
8326
8327 if (INTEL_GEN(dev_priv) >= 5) {
8328 intel_de_write(dev_priv, PIPE_DATA_M1(transcoder),
8329 TU_SIZE(m_n->tu) | m_n->gmch_m);
8330 intel_de_write(dev_priv, PIPE_DATA_N1(transcoder),
8331 m_n->gmch_n);
8332 intel_de_write(dev_priv, PIPE_LINK_M1(transcoder),
8333 m_n->link_m);
8334 intel_de_write(dev_priv, PIPE_LINK_N1(transcoder),
8335 m_n->link_n);
8336 /*
8337 * M2_N2 registers are set only if DRRS is supported
8338 * (to make sure the registers are not unnecessarily accessed).
8339 */
8340 if (m2_n2 && crtc_state->has_drrs &&
8341 transcoder_has_m2_n2(dev_priv, transcoder)) {
8342 intel_de_write(dev_priv, PIPE_DATA_M2(transcoder),
8343 TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
8344 intel_de_write(dev_priv, PIPE_DATA_N2(transcoder),
8345 m2_n2->gmch_n);
8346 intel_de_write(dev_priv, PIPE_LINK_M2(transcoder),
8347 m2_n2->link_m);
8348 intel_de_write(dev_priv, PIPE_LINK_N2(transcoder),
8349 m2_n2->link_n);
8350 }
8351 } else {
8352 intel_de_write(dev_priv, PIPE_DATA_M_G4X(pipe),
8353 TU_SIZE(m_n->tu) | m_n->gmch_m);
8354 intel_de_write(dev_priv, PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
8355 intel_de_write(dev_priv, PIPE_LINK_M_G4X(pipe), m_n->link_m);
8356 intel_de_write(dev_priv, PIPE_LINK_N_G4X(pipe), m_n->link_n);
8357 }
8358 }
8359
8360 void intel_dp_set_m_n(const struct intel_crtc_state *crtc_state, enum link_m_n_set m_n)
8361 {
8362 const struct intel_link_m_n *dp_m_n, *dp_m2_n2 = NULL;
8363 struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev);
8364
8365 if (m_n == M1_N1) {
8366 dp_m_n = &crtc_state->dp_m_n;
8367 dp_m2_n2 = &crtc_state->dp_m2_n2;
8368 } else if (m_n == M2_N2) {
8369
8370 /*
8371 * M2_N2 registers are not supported. Hence m2_n2 divider value
8372 * needs to be programmed into M1_N1.
8373 */
8374 dp_m_n = &crtc_state->dp_m2_n2;
8375 } else {
8376 drm_err(&i915->drm, "Unsupported divider value\n");
8377 return;
8378 }
8379
8380 if (crtc_state->has_pch_encoder)
8381 intel_pch_transcoder_set_m_n(crtc_state, &crtc_state->dp_m_n);
8382 else
8383 intel_cpu_transcoder_set_m_n(crtc_state, dp_m_n, dp_m2_n2);
8384 }
8385
8386 static void vlv_compute_dpll(struct intel_crtc *crtc,
8387 struct intel_crtc_state *pipe_config)
8388 {
8389 pipe_config->dpll_hw_state.dpll = DPLL_INTEGRATED_REF_CLK_VLV |
8390 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
8391 if (crtc->pipe != PIPE_A)
8392 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
8393
8394 /* DPLL not used with DSI, but still need the rest set up */
8395 if (!intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DSI))
8396 pipe_config->dpll_hw_state.dpll |= DPLL_VCO_ENABLE |
8397 DPLL_EXT_BUFFER_ENABLE_VLV;
8398
8399 pipe_config->dpll_hw_state.dpll_md =
8400 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
8401 }
8402
8403 static void chv_compute_dpll(struct intel_crtc *crtc,
8404 struct intel_crtc_state *pipe_config)
8405 {
8406 pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLK_CHV |
8407 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
8408 if (crtc->pipe != PIPE_A)
8409 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
8410
8411 /* DPLL not used with DSI, but still need the rest set up */
8412 if (!intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DSI))
8413 pipe_config->dpll_hw_state.dpll |= DPLL_VCO_ENABLE;
8414
8415 pipe_config->dpll_hw_state.dpll_md =
8416 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
8417 }
8418
8419 static void vlv_prepare_pll(struct intel_crtc *crtc,
8420 const struct intel_crtc_state *pipe_config)
8421 {
8422 struct drm_device *dev = crtc->base.dev;
8423 struct drm_i915_private *dev_priv = to_i915(dev);
8424 enum pipe pipe = crtc->pipe;
8425 u32 mdiv;
8426 u32 bestn, bestm1, bestm2, bestp1, bestp2;
8427 u32 coreclk, reg_val;
8428
8429 /* Enable Refclk */
8430 intel_de_write(dev_priv, DPLL(pipe),
8431 pipe_config->dpll_hw_state.dpll & ~(DPLL_VCO_ENABLE | DPLL_EXT_BUFFER_ENABLE_VLV));
8432
8433 /* No need to actually set up the DPLL with DSI */
8434 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
8435 return;
8436
8437 vlv_dpio_get(dev_priv);
8438
8439 bestn = pipe_config->dpll.n;
8440 bestm1 = pipe_config->dpll.m1;
8441 bestm2 = pipe_config->dpll.m2;
8442 bestp1 = pipe_config->dpll.p1;
8443 bestp2 = pipe_config->dpll.p2;
8444
8445 /* See eDP HDMI DPIO driver vbios notes doc */
8446
8447 /* PLL B needs special handling */
8448 if (pipe == PIPE_B)
8449 vlv_pllb_recal_opamp(dev_priv, pipe);
8450
8451 /* Set up Tx target for periodic Rcomp update */
8452 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
8453
8454 /* Disable target IRef on PLL */
8455 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
8456 reg_val &= 0x00ffffff;
8457 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
8458
8459 /* Disable fast lock */
8460 vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
8461
8462 /* Set idtafcrecal before PLL is enabled */
8463 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
8464 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
8465 mdiv |= ((bestn << DPIO_N_SHIFT));
8466 mdiv |= (1 << DPIO_K_SHIFT);
8467
8468 /*
8469 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
8470 * but we don't support that).
8471 * Note: don't use the DAC post divider as it seems unstable.
8472 */
8473 mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
8474 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
8475
8476 mdiv |= DPIO_ENABLE_CALIBRATION;
8477 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
8478
8479 /* Set HBR and RBR LPF coefficients */
8480 if (pipe_config->port_clock == 162000 ||
8481 intel_crtc_has_type(pipe_config, INTEL_OUTPUT_ANALOG) ||
8482 intel_crtc_has_type(pipe_config, INTEL_OUTPUT_HDMI))
8483 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
8484 0x009f0003);
8485 else
8486 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
8487 0x00d0000f);
8488
8489 if (intel_crtc_has_dp_encoder(pipe_config)) {
8490 /* Use SSC source */
8491 if (pipe == PIPE_A)
8492 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
8493 0x0df40000);
8494 else
8495 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
8496 0x0df70000);
8497 } else { /* HDMI or VGA */
8498 /* Use bend source */
8499 if (pipe == PIPE_A)
8500 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
8501 0x0df70000);
8502 else
8503 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
8504 0x0df40000);
8505 }
8506
8507 coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
8508 coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
8509 if (intel_crtc_has_dp_encoder(pipe_config))
8510 coreclk |= 0x01000000;
8511 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
8512
8513 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
8514
8515 vlv_dpio_put(dev_priv);
8516 }
8517
8518 static void chv_prepare_pll(struct intel_crtc *crtc,
8519 const struct intel_crtc_state *pipe_config)
8520 {
8521 struct drm_device *dev = crtc->base.dev;
8522 struct drm_i915_private *dev_priv = to_i915(dev);
8523 enum pipe pipe = crtc->pipe;
8524 enum dpio_channel port = vlv_pipe_to_channel(pipe);
8525 u32 loopfilter, tribuf_calcntr;
8526 u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
8527 u32 dpio_val;
8528 int vco;
8529
8530 /* Enable Refclk and SSC */
8531 intel_de_write(dev_priv, DPLL(pipe),
8532 pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
8533
8534 /* No need to actually set up the DPLL with DSI */
8535 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
8536 return;
8537
8538 bestn = pipe_config->dpll.n;
8539 bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
8540 bestm1 = pipe_config->dpll.m1;
8541 bestm2 = pipe_config->dpll.m2 >> 22;
8542 bestp1 = pipe_config->dpll.p1;
8543 bestp2 = pipe_config->dpll.p2;
8544 vco = pipe_config->dpll.vco;
8545 dpio_val = 0;
8546 loopfilter = 0;
8547
8548 vlv_dpio_get(dev_priv);
8549
8550 /* p1 and p2 divider */
8551 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
8552 5 << DPIO_CHV_S1_DIV_SHIFT |
8553 bestp1 << DPIO_CHV_P1_DIV_SHIFT |
8554 bestp2 << DPIO_CHV_P2_DIV_SHIFT |
8555 1 << DPIO_CHV_K_DIV_SHIFT);
8556
8557 /* Feedback post-divider - m2 */
8558 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
8559
8560 /* Feedback refclk divider - n and m1 */
8561 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
8562 DPIO_CHV_M1_DIV_BY_2 |
8563 1 << DPIO_CHV_N_DIV_SHIFT);
8564
8565 /* M2 fraction division */
8566 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
8567
8568 /* M2 fraction division enable */
8569 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
8570 dpio_val &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN);
8571 dpio_val |= (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT);
8572 if (bestm2_frac)
8573 dpio_val |= DPIO_CHV_FRAC_DIV_EN;
8574 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port), dpio_val);
8575
8576 /* Program digital lock detect threshold */
8577 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW9(port));
8578 dpio_val &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK |
8579 DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE);
8580 dpio_val |= (0x5 << DPIO_CHV_INT_LOCK_THRESHOLD_SHIFT);
8581 if (!bestm2_frac)
8582 dpio_val |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE;
8583 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW9(port), dpio_val);
8584
8585 /* Loop filter */
8586 if (vco == 5400000) {
8587 loopfilter |= (0x3 << DPIO_CHV_PROP_COEFF_SHIFT);
8588 loopfilter |= (0x8 << DPIO_CHV_INT_COEFF_SHIFT);
8589 loopfilter |= (0x1 << DPIO_CHV_GAIN_CTRL_SHIFT);
8590 tribuf_calcntr = 0x9;
8591 } else if (vco <= 6200000) {
8592 loopfilter |= (0x5 << DPIO_CHV_PROP_COEFF_SHIFT);
8593 loopfilter |= (0xB << DPIO_CHV_INT_COEFF_SHIFT);
8594 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
8595 tribuf_calcntr = 0x9;
8596 } else if (vco <= 6480000) {
8597 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
8598 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
8599 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
8600 tribuf_calcntr = 0x8;
8601 } else {
8602 /* Not supported. Apply the same limits as in the max case */
8603 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
8604 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
8605 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
8606 tribuf_calcntr = 0;
8607 }
8608 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
8609
8610 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW8(port));
8611 dpio_val &= ~DPIO_CHV_TDC_TARGET_CNT_MASK;
8612 dpio_val |= (tribuf_calcntr << DPIO_CHV_TDC_TARGET_CNT_SHIFT);
8613 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW8(port), dpio_val);
8614
8615 /* AFC Recal */
8616 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
8617 vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
8618 DPIO_AFC_RECAL);
8619
8620 vlv_dpio_put(dev_priv);
8621 }
8622
8623 /**
8624 * vlv_force_pll_on - forcibly enable just the PLL
8625 * @dev_priv: i915 private structure
8626 * @pipe: pipe PLL to enable
8627 * @dpll: PLL configuration
8628 *
8629 * Enable the PLL for @pipe using the supplied @dpll config. To be used
8630 * in cases where we need the PLL enabled even when @pipe is not going to
8631 * be enabled.
8632 */
8633 int vlv_force_pll_on(struct drm_i915_private *dev_priv, enum pipe pipe,
8634 const struct dpll *dpll)
8635 {
8636 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
8637 struct intel_crtc_state *pipe_config;
8638
8639 pipe_config = intel_crtc_state_alloc(crtc);
8640 if (!pipe_config)
8641 return -ENOMEM;
8642
8643 pipe_config->cpu_transcoder = (enum transcoder)pipe;
8644 pipe_config->pixel_multiplier = 1;
8645 pipe_config->dpll = *dpll;
8646
8647 if (IS_CHERRYVIEW(dev_priv)) {
8648 chv_compute_dpll(crtc, pipe_config);
8649 chv_prepare_pll(crtc, pipe_config);
8650 chv_enable_pll(crtc, pipe_config);
8651 } else {
8652 vlv_compute_dpll(crtc, pipe_config);
8653 vlv_prepare_pll(crtc, pipe_config);
8654 vlv_enable_pll(crtc, pipe_config);
8655 }
8656
8657 kfree(pipe_config);
8658
8659 return 0;
8660 }
8661
8662 /**
8663 * vlv_force_pll_off - forcibly disable just the PLL
8664 * @dev_priv: i915 private structure
8665 * @pipe: pipe PLL to disable
8666 *
8667 * Disable the PLL for @pipe. To be used in cases where we need
8668 * the PLL enabled even when @pipe is not going to be enabled.
8669 */
8670 void vlv_force_pll_off(struct drm_i915_private *dev_priv, enum pipe pipe)
8671 {
8672 if (IS_CHERRYVIEW(dev_priv))
8673 chv_disable_pll(dev_priv, pipe);
8674 else
8675 vlv_disable_pll(dev_priv, pipe);
8676 }
8677
8678 static void i9xx_compute_dpll(struct intel_crtc *crtc,
8679 struct intel_crtc_state *crtc_state,
8680 struct dpll *reduced_clock)
8681 {
8682 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
8683 u32 dpll;
8684 struct dpll *clock = &crtc_state->dpll;
8685
8686 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
8687
8688 dpll = DPLL_VGA_MODE_DIS;
8689
8690 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS))
8691 dpll |= DPLLB_MODE_LVDS;
8692 else
8693 dpll |= DPLLB_MODE_DAC_SERIAL;
8694
8695 if (IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
8696 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv)) {
8697 dpll |= (crtc_state->pixel_multiplier - 1)
8698 << SDVO_MULTIPLIER_SHIFT_HIRES;
8699 }
8700
8701 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) ||
8702 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
8703 dpll |= DPLL_SDVO_HIGH_SPEED;
8704
8705 if (intel_crtc_has_dp_encoder(crtc_state))
8706 dpll |= DPLL_SDVO_HIGH_SPEED;
8707
8708 /* compute bitmask from p1 value */
8709 if (IS_PINEVIEW(dev_priv))
8710 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
8711 else {
8712 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
8713 if (IS_G4X(dev_priv) && reduced_clock)
8714 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
8715 }
8716 switch (clock->p2) {
8717 case 5:
8718 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
8719 break;
8720 case 7:
8721 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
8722 break;
8723 case 10:
8724 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
8725 break;
8726 case 14:
8727 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
8728 break;
8729 }
8730 if (INTEL_GEN(dev_priv) >= 4)
8731 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
8732
8733 if (crtc_state->sdvo_tv_clock)
8734 dpll |= PLL_REF_INPUT_TVCLKINBC;
8735 else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
8736 intel_panel_use_ssc(dev_priv))
8737 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
8738 else
8739 dpll |= PLL_REF_INPUT_DREFCLK;
8740
8741 dpll |= DPLL_VCO_ENABLE;
8742 crtc_state->dpll_hw_state.dpll = dpll;
8743
8744 if (INTEL_GEN(dev_priv) >= 4) {
8745 u32 dpll_md = (crtc_state->pixel_multiplier - 1)
8746 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
8747 crtc_state->dpll_hw_state.dpll_md = dpll_md;
8748 }
8749 }
8750
8751 static void i8xx_compute_dpll(struct intel_crtc *crtc,
8752 struct intel_crtc_state *crtc_state,
8753 struct dpll *reduced_clock)
8754 {
8755 struct drm_device *dev = crtc->base.dev;
8756 struct drm_i915_private *dev_priv = to_i915(dev);
8757 u32 dpll;
8758 struct dpll *clock = &crtc_state->dpll;
8759
8760 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
8761
8762 dpll = DPLL_VGA_MODE_DIS;
8763
8764 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8765 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
8766 } else {
8767 if (clock->p1 == 2)
8768 dpll |= PLL_P1_DIVIDE_BY_TWO;
8769 else
8770 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
8771 if (clock->p2 == 4)
8772 dpll |= PLL_P2_DIVIDE_BY_4;
8773 }
8774
8775 /*
8776 * Bspec:
8777 * "[Almador Errata}: For the correct operation of the muxed DVO pins
8778 * (GDEVSELB/I2Cdata, GIRDBY/I2CClk) and (GFRAMEB/DVI_Data,
8779 * GTRDYB/DVI_Clk): Bit 31 (DPLL VCO Enable) and Bit 30 (2X Clock
8780 * Enable) must be set to “1” in both the DPLL A Control Register
8781 * (06014h-06017h) and DPLL B Control Register (06018h-0601Bh)."
8782 *
8783 * For simplicity We simply keep both bits always enabled in
8784 * both DPLLS. The spec says we should disable the DVO 2X clock
8785 * when not needed, but this seems to work fine in practice.
8786 */
8787 if (IS_I830(dev_priv) ||
8788 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO))
8789 dpll |= DPLL_DVO_2X_MODE;
8790
8791 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
8792 intel_panel_use_ssc(dev_priv))
8793 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
8794 else
8795 dpll |= PLL_REF_INPUT_DREFCLK;
8796
8797 dpll |= DPLL_VCO_ENABLE;
8798 crtc_state->dpll_hw_state.dpll = dpll;
8799 }
8800
8801 static void intel_set_pipe_timings(const struct intel_crtc_state *crtc_state)
8802 {
8803 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
8804 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
8805 enum pipe pipe = crtc->pipe;
8806 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
8807 const struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode;
8808 u32 crtc_vtotal, crtc_vblank_end;
8809 int vsyncshift = 0;
8810
8811 /* We need to be careful not to changed the adjusted mode, for otherwise
8812 * the hw state checker will get angry at the mismatch. */
8813 crtc_vtotal = adjusted_mode->crtc_vtotal;
8814 crtc_vblank_end = adjusted_mode->crtc_vblank_end;
8815
8816 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
8817 /* the chip adds 2 halflines automatically */
8818 crtc_vtotal -= 1;
8819 crtc_vblank_end -= 1;
8820
8821 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO))
8822 vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
8823 else
8824 vsyncshift = adjusted_mode->crtc_hsync_start -
8825 adjusted_mode->crtc_htotal / 2;
8826 if (vsyncshift < 0)
8827 vsyncshift += adjusted_mode->crtc_htotal;
8828 }
8829
8830 if (INTEL_GEN(dev_priv) > 3)
8831 intel_de_write(dev_priv, VSYNCSHIFT(cpu_transcoder),
8832 vsyncshift);
8833
8834 intel_de_write(dev_priv, HTOTAL(cpu_transcoder),
8835 (adjusted_mode->crtc_hdisplay - 1) | ((adjusted_mode->crtc_htotal - 1) << 16));
8836 intel_de_write(dev_priv, HBLANK(cpu_transcoder),
8837 (adjusted_mode->crtc_hblank_start - 1) | ((adjusted_mode->crtc_hblank_end - 1) << 16));
8838 intel_de_write(dev_priv, HSYNC(cpu_transcoder),
8839 (adjusted_mode->crtc_hsync_start - 1) | ((adjusted_mode->crtc_hsync_end - 1) << 16));
8840
8841 intel_de_write(dev_priv, VTOTAL(cpu_transcoder),
8842 (adjusted_mode->crtc_vdisplay - 1) | ((crtc_vtotal - 1) << 16));
8843 intel_de_write(dev_priv, VBLANK(cpu_transcoder),
8844 (adjusted_mode->crtc_vblank_start - 1) | ((crtc_vblank_end - 1) << 16));
8845 intel_de_write(dev_priv, VSYNC(cpu_transcoder),
8846 (adjusted_mode->crtc_vsync_start - 1) | ((adjusted_mode->crtc_vsync_end - 1) << 16));
8847
8848 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
8849 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
8850 * documented on the DDI_FUNC_CTL register description, EDP Input Select
8851 * bits. */
8852 if (IS_HASWELL(dev_priv) && cpu_transcoder == TRANSCODER_EDP &&
8853 (pipe == PIPE_B || pipe == PIPE_C))
8854 intel_de_write(dev_priv, VTOTAL(pipe),
8855 intel_de_read(dev_priv, VTOTAL(cpu_transcoder)));
8856
8857 }
8858
8859 static void intel_set_pipe_src_size(const struct intel_crtc_state *crtc_state)
8860 {
8861 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
8862 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
8863 enum pipe pipe = crtc->pipe;
8864
8865 /* pipesrc controls the size that is scaled from, which should
8866 * always be the user's requested size.
8867 */
8868 intel_de_write(dev_priv, PIPESRC(pipe),
8869 ((crtc_state->pipe_src_w - 1) << 16) | (crtc_state->pipe_src_h - 1));
8870 }
8871
8872 static bool intel_pipe_is_interlaced(const struct intel_crtc_state *crtc_state)
8873 {
8874 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
8875 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
8876
8877 if (IS_GEN(dev_priv, 2))
8878 return false;
8879
8880 if (INTEL_GEN(dev_priv) >= 9 ||
8881 IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv))
8882 return intel_de_read(dev_priv, PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK_HSW;
8883 else
8884 return intel_de_read(dev_priv, PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK;
8885 }
8886
8887 static void intel_get_pipe_timings(struct intel_crtc *crtc,
8888 struct intel_crtc_state *pipe_config)
8889 {
8890 struct drm_device *dev = crtc->base.dev;
8891 struct drm_i915_private *dev_priv = to_i915(dev);
8892 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
8893 u32 tmp;
8894
8895 tmp = intel_de_read(dev_priv, HTOTAL(cpu_transcoder));
8896 pipe_config->hw.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
8897 pipe_config->hw.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
8898
8899 if (!transcoder_is_dsi(cpu_transcoder)) {
8900 tmp = intel_de_read(dev_priv, HBLANK(cpu_transcoder));
8901 pipe_config->hw.adjusted_mode.crtc_hblank_start =
8902 (tmp & 0xffff) + 1;
8903 pipe_config->hw.adjusted_mode.crtc_hblank_end =
8904 ((tmp >> 16) & 0xffff) + 1;
8905 }
8906 tmp = intel_de_read(dev_priv, HSYNC(cpu_transcoder));
8907 pipe_config->hw.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
8908 pipe_config->hw.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
8909
8910 tmp = intel_de_read(dev_priv, VTOTAL(cpu_transcoder));
8911 pipe_config->hw.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
8912 pipe_config->hw.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
8913
8914 if (!transcoder_is_dsi(cpu_transcoder)) {
8915 tmp = intel_de_read(dev_priv, VBLANK(cpu_transcoder));
8916 pipe_config->hw.adjusted_mode.crtc_vblank_start =
8917 (tmp & 0xffff) + 1;
8918 pipe_config->hw.adjusted_mode.crtc_vblank_end =
8919 ((tmp >> 16) & 0xffff) + 1;
8920 }
8921 tmp = intel_de_read(dev_priv, VSYNC(cpu_transcoder));
8922 pipe_config->hw.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
8923 pipe_config->hw.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
8924
8925 if (intel_pipe_is_interlaced(pipe_config)) {
8926 pipe_config->hw.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
8927 pipe_config->hw.adjusted_mode.crtc_vtotal += 1;
8928 pipe_config->hw.adjusted_mode.crtc_vblank_end += 1;
8929 }
8930 }
8931
8932 static void intel_get_pipe_src_size(struct intel_crtc *crtc,
8933 struct intel_crtc_state *pipe_config)
8934 {
8935 struct drm_device *dev = crtc->base.dev;
8936 struct drm_i915_private *dev_priv = to_i915(dev);
8937 u32 tmp;
8938
8939 tmp = intel_de_read(dev_priv, PIPESRC(crtc->pipe));
8940 pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
8941 pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
8942
8943 pipe_config->hw.mode.vdisplay = pipe_config->pipe_src_h;
8944 pipe_config->hw.mode.hdisplay = pipe_config->pipe_src_w;
8945 }
8946
8947 void intel_mode_from_pipe_config(struct drm_display_mode *mode,
8948 struct intel_crtc_state *pipe_config)
8949 {
8950 mode->hdisplay = pipe_config->hw.adjusted_mode.crtc_hdisplay;
8951 mode->htotal = pipe_config->hw.adjusted_mode.crtc_htotal;
8952 mode->hsync_start = pipe_config->hw.adjusted_mode.crtc_hsync_start;
8953 mode->hsync_end = pipe_config->hw.adjusted_mode.crtc_hsync_end;
8954
8955 mode->vdisplay = pipe_config->hw.adjusted_mode.crtc_vdisplay;
8956 mode->vtotal = pipe_config->hw.adjusted_mode.crtc_vtotal;
8957 mode->vsync_start = pipe_config->hw.adjusted_mode.crtc_vsync_start;
8958 mode->vsync_end = pipe_config->hw.adjusted_mode.crtc_vsync_end;
8959
8960 mode->flags = pipe_config->hw.adjusted_mode.flags;
8961 mode->type = DRM_MODE_TYPE_DRIVER;
8962
8963 mode->clock = pipe_config->hw.adjusted_mode.crtc_clock;
8964
8965 drm_mode_set_name(mode);
8966 }
8967
8968 static void i9xx_set_pipeconf(const struct intel_crtc_state *crtc_state)
8969 {
8970 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
8971 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
8972 u32 pipeconf;
8973
8974 pipeconf = 0;
8975
8976 /* we keep both pipes enabled on 830 */
8977 if (IS_I830(dev_priv))
8978 pipeconf |= intel_de_read(dev_priv, PIPECONF(crtc->pipe)) & PIPECONF_ENABLE;
8979
8980 if (crtc_state->double_wide)
8981 pipeconf |= PIPECONF_DOUBLE_WIDE;
8982
8983 /* only g4x and later have fancy bpc/dither controls */
8984 if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
8985 IS_CHERRYVIEW(dev_priv)) {
8986 /* Bspec claims that we can't use dithering for 30bpp pipes. */
8987 if (crtc_state->dither && crtc_state->pipe_bpp != 30)
8988 pipeconf |= PIPECONF_DITHER_EN |
8989 PIPECONF_DITHER_TYPE_SP;
8990
8991 switch (crtc_state->pipe_bpp) {
8992 case 18:
8993 pipeconf |= PIPECONF_6BPC;
8994 break;
8995 case 24:
8996 pipeconf |= PIPECONF_8BPC;
8997 break;
8998 case 30:
8999 pipeconf |= PIPECONF_10BPC;
9000 break;
9001 default:
9002 /* Case prevented by intel_choose_pipe_bpp_dither. */
9003 BUG();
9004 }
9005 }
9006
9007 if (crtc_state->hw.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
9008 if (INTEL_GEN(dev_priv) < 4 ||
9009 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO))
9010 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
9011 else
9012 pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
9013 } else {
9014 pipeconf |= PIPECONF_PROGRESSIVE;
9015 }
9016
9017 if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
9018 crtc_state->limited_color_range)
9019 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
9020
9021 pipeconf |= PIPECONF_GAMMA_MODE(crtc_state->gamma_mode);
9022
9023 pipeconf |= PIPECONF_FRAME_START_DELAY(0);
9024
9025 intel_de_write(dev_priv, PIPECONF(crtc->pipe), pipeconf);
9026 intel_de_posting_read(dev_priv, PIPECONF(crtc->pipe));
9027 }
9028
9029 static int i8xx_crtc_compute_clock(struct intel_crtc *crtc,
9030 struct intel_crtc_state *crtc_state)
9031 {
9032 struct drm_device *dev = crtc->base.dev;
9033 struct drm_i915_private *dev_priv = to_i915(dev);
9034 const struct intel_limit *limit;
9035 int refclk = 48000;
9036
9037 memset(&crtc_state->dpll_hw_state, 0,
9038 sizeof(crtc_state->dpll_hw_state));
9039
9040 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
9041 if (intel_panel_use_ssc(dev_priv)) {
9042 refclk = dev_priv->vbt.lvds_ssc_freq;
9043 drm_dbg_kms(&dev_priv->drm,
9044 "using SSC reference clock of %d kHz\n",
9045 refclk);
9046 }
9047
9048 limit = &intel_limits_i8xx_lvds;
9049 } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO)) {
9050 limit = &intel_limits_i8xx_dvo;
9051 } else {
9052 limit = &intel_limits_i8xx_dac;
9053 }
9054
9055 if (!crtc_state->clock_set &&
9056 !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
9057 refclk, NULL, &crtc_state->dpll)) {
9058 drm_err(&dev_priv->drm,
9059 "Couldn't find PLL settings for mode!\n");
9060 return -EINVAL;
9061 }
9062
9063 i8xx_compute_dpll(crtc, crtc_state, NULL);
9064
9065 return 0;
9066 }
9067
9068 static int g4x_crtc_compute_clock(struct intel_crtc *crtc,
9069 struct intel_crtc_state *crtc_state)
9070 {
9071 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
9072 const struct intel_limit *limit;
9073 int refclk = 96000;
9074
9075 memset(&crtc_state->dpll_hw_state, 0,
9076 sizeof(crtc_state->dpll_hw_state));
9077
9078 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
9079 if (intel_panel_use_ssc(dev_priv)) {
9080 refclk = dev_priv->vbt.lvds_ssc_freq;
9081 drm_dbg_kms(&dev_priv->drm,
9082 "using SSC reference clock of %d kHz\n",
9083 refclk);
9084 }
9085
9086 if (intel_is_dual_link_lvds(dev_priv))
9087 limit = &intel_limits_g4x_dual_channel_lvds;
9088 else
9089 limit = &intel_limits_g4x_single_channel_lvds;
9090 } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI) ||
9091 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG)) {
9092 limit = &intel_limits_g4x_hdmi;
9093 } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO)) {
9094 limit = &intel_limits_g4x_sdvo;
9095 } else {
9096 /* The option is for other outputs */
9097 limit = &intel_limits_i9xx_sdvo;
9098 }
9099
9100 if (!crtc_state->clock_set &&
9101 !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
9102 refclk, NULL, &crtc_state->dpll)) {
9103 drm_err(&dev_priv->drm,
9104 "Couldn't find PLL settings for mode!\n");
9105 return -EINVAL;
9106 }
9107
9108 i9xx_compute_dpll(crtc, crtc_state, NULL);
9109
9110 return 0;
9111 }
9112
9113 static int pnv_crtc_compute_clock(struct intel_crtc *crtc,
9114 struct intel_crtc_state *crtc_state)
9115 {
9116 struct drm_device *dev = crtc->base.dev;
9117 struct drm_i915_private *dev_priv = to_i915(dev);
9118 const struct intel_limit *limit;
9119 int refclk = 96000;
9120
9121 memset(&crtc_state->dpll_hw_state, 0,
9122 sizeof(crtc_state->dpll_hw_state));
9123
9124 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
9125 if (intel_panel_use_ssc(dev_priv)) {
9126 refclk = dev_priv->vbt.lvds_ssc_freq;
9127 drm_dbg_kms(&dev_priv->drm,
9128 "using SSC reference clock of %d kHz\n",
9129 refclk);
9130 }
9131
9132 limit = &pnv_limits_lvds;
9133 } else {
9134 limit = &pnv_limits_sdvo;
9135 }
9136
9137 if (!crtc_state->clock_set &&
9138 !pnv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
9139 refclk, NULL, &crtc_state->dpll)) {
9140 drm_err(&dev_priv->drm,
9141 "Couldn't find PLL settings for mode!\n");
9142 return -EINVAL;
9143 }
9144
9145 i9xx_compute_dpll(crtc, crtc_state, NULL);
9146
9147 return 0;
9148 }
9149
9150 static int i9xx_crtc_compute_clock(struct intel_crtc *crtc,
9151 struct intel_crtc_state *crtc_state)
9152 {
9153 struct drm_device *dev = crtc->base.dev;
9154 struct drm_i915_private *dev_priv = to_i915(dev);
9155 const struct intel_limit *limit;
9156 int refclk = 96000;
9157
9158 memset(&crtc_state->dpll_hw_state, 0,
9159 sizeof(crtc_state->dpll_hw_state));
9160
9161 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
9162 if (intel_panel_use_ssc(dev_priv)) {
9163 refclk = dev_priv->vbt.lvds_ssc_freq;
9164 drm_dbg_kms(&dev_priv->drm,
9165 "using SSC reference clock of %d kHz\n",
9166 refclk);
9167 }
9168
9169 limit = &intel_limits_i9xx_lvds;
9170 } else {
9171 limit = &intel_limits_i9xx_sdvo;
9172 }
9173
9174 if (!crtc_state->clock_set &&
9175 !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
9176 refclk, NULL, &crtc_state->dpll)) {
9177 drm_err(&dev_priv->drm,
9178 "Couldn't find PLL settings for mode!\n");
9179 return -EINVAL;
9180 }
9181
9182 i9xx_compute_dpll(crtc, crtc_state, NULL);
9183
9184 return 0;
9185 }
9186
9187 static int chv_crtc_compute_clock(struct intel_crtc *crtc,
9188 struct intel_crtc_state *crtc_state)
9189 {
9190 int refclk = 100000;
9191 const struct intel_limit *limit = &intel_limits_chv;
9192 struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev);
9193
9194 memset(&crtc_state->dpll_hw_state, 0,
9195 sizeof(crtc_state->dpll_hw_state));
9196
9197 if (!crtc_state->clock_set &&
9198 !chv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
9199 refclk, NULL, &crtc_state->dpll)) {
9200 drm_err(&i915->drm, "Couldn't find PLL settings for mode!\n");
9201 return -EINVAL;
9202 }
9203
9204 chv_compute_dpll(crtc, crtc_state);
9205
9206 return 0;
9207 }
9208
9209 static int vlv_crtc_compute_clock(struct intel_crtc *crtc,
9210 struct intel_crtc_state *crtc_state)
9211 {
9212 int refclk = 100000;
9213 const struct intel_limit *limit = &intel_limits_vlv;
9214 struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev);
9215
9216 memset(&crtc_state->dpll_hw_state, 0,
9217 sizeof(crtc_state->dpll_hw_state));
9218
9219 if (!crtc_state->clock_set &&
9220 !vlv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
9221 refclk, NULL, &crtc_state->dpll)) {
9222 drm_err(&i915->drm, "Couldn't find PLL settings for mode!\n");
9223 return -EINVAL;
9224 }
9225
9226 vlv_compute_dpll(crtc, crtc_state);
9227
9228 return 0;
9229 }
9230
9231 static bool i9xx_has_pfit(struct drm_i915_private *dev_priv)
9232 {
9233 if (IS_I830(dev_priv))
9234 return false;
9235
9236 return INTEL_GEN(dev_priv) >= 4 ||
9237 IS_PINEVIEW(dev_priv) || IS_MOBILE(dev_priv);
9238 }
9239
9240 static void i9xx_get_pfit_config(struct intel_crtc_state *crtc_state)
9241 {
9242 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
9243 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
9244 u32 tmp;
9245
9246 if (!i9xx_has_pfit(dev_priv))
9247 return;
9248
9249 tmp = intel_de_read(dev_priv, PFIT_CONTROL);
9250 if (!(tmp & PFIT_ENABLE))
9251 return;
9252
9253 /* Check whether the pfit is attached to our pipe. */
9254 if (INTEL_GEN(dev_priv) < 4) {
9255 if (crtc->pipe != PIPE_B)
9256 return;
9257 } else {
9258 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
9259 return;
9260 }
9261
9262 crtc_state->gmch_pfit.control = tmp;
9263 crtc_state->gmch_pfit.pgm_ratios =
9264 intel_de_read(dev_priv, PFIT_PGM_RATIOS);
9265 }
9266
9267 static void vlv_crtc_clock_get(struct intel_crtc *crtc,
9268 struct intel_crtc_state *pipe_config)
9269 {
9270 struct drm_device *dev = crtc->base.dev;
9271 struct drm_i915_private *dev_priv = to_i915(dev);
9272 enum pipe pipe = crtc->pipe;
9273 struct dpll clock;
9274 u32 mdiv;
9275 int refclk = 100000;
9276
9277 /* In case of DSI, DPLL will not be used */
9278 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
9279 return;
9280
9281 vlv_dpio_get(dev_priv);
9282 mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
9283 vlv_dpio_put(dev_priv);
9284
9285 clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
9286 clock.m2 = mdiv & DPIO_M2DIV_MASK;
9287 clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
9288 clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
9289 clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
9290
9291 pipe_config->port_clock = vlv_calc_dpll_params(refclk, &clock);
9292 }
9293
9294 static void
9295 i9xx_get_initial_plane_config(struct intel_crtc *crtc,
9296 struct intel_initial_plane_config *plane_config)
9297 {
9298 struct drm_device *dev = crtc->base.dev;
9299 struct drm_i915_private *dev_priv = to_i915(dev);
9300 struct intel_plane *plane = to_intel_plane(crtc->base.primary);
9301 enum i9xx_plane_id i9xx_plane = plane->i9xx_plane;
9302 enum pipe pipe;
9303 u32 val, base, offset;
9304 int fourcc, pixel_format;
9305 unsigned int aligned_height;
9306 struct drm_framebuffer *fb;
9307 struct intel_framebuffer *intel_fb;
9308
9309 if (!plane->get_hw_state(plane, &pipe))
9310 return;
9311
9312 drm_WARN_ON(dev, pipe != crtc->pipe);
9313
9314 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9315 if (!intel_fb) {
9316 drm_dbg_kms(&dev_priv->drm, "failed to alloc fb\n");
9317 return;
9318 }
9319
9320 fb = &intel_fb->base;
9321
9322 fb->dev = dev;
9323
9324 val = intel_de_read(dev_priv, DSPCNTR(i9xx_plane));
9325
9326 if (INTEL_GEN(dev_priv) >= 4) {
9327 if (val & DISPPLANE_TILED) {
9328 plane_config->tiling = I915_TILING_X;
9329 fb->modifier = I915_FORMAT_MOD_X_TILED;
9330 }
9331
9332 if (val & DISPPLANE_ROTATE_180)
9333 plane_config->rotation = DRM_MODE_ROTATE_180;
9334 }
9335
9336 if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_B &&
9337 val & DISPPLANE_MIRROR)
9338 plane_config->rotation |= DRM_MODE_REFLECT_X;
9339
9340 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
9341 fourcc = i9xx_format_to_fourcc(pixel_format);
9342 fb->format = drm_format_info(fourcc);
9343
9344 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
9345 offset = intel_de_read(dev_priv, DSPOFFSET(i9xx_plane));
9346 base = intel_de_read(dev_priv, DSPSURF(i9xx_plane)) & 0xfffff000;
9347 } else if (INTEL_GEN(dev_priv) >= 4) {
9348 if (plane_config->tiling)
9349 offset = intel_de_read(dev_priv,
9350 DSPTILEOFF(i9xx_plane));
9351 else
9352 offset = intel_de_read(dev_priv,
9353 DSPLINOFF(i9xx_plane));
9354 base = intel_de_read(dev_priv, DSPSURF(i9xx_plane)) & 0xfffff000;
9355 } else {
9356 base = intel_de_read(dev_priv, DSPADDR(i9xx_plane));
9357 }
9358 plane_config->base = base;
9359
9360 val = intel_de_read(dev_priv, PIPESRC(pipe));
9361 fb->width = ((val >> 16) & 0xfff) + 1;
9362 fb->height = ((val >> 0) & 0xfff) + 1;
9363
9364 val = intel_de_read(dev_priv, DSPSTRIDE(i9xx_plane));
9365 fb->pitches[0] = val & 0xffffffc0;
9366
9367 aligned_height = intel_fb_align_height(fb, 0, fb->height);
9368
9369 plane_config->size = fb->pitches[0] * aligned_height;
9370
9371 drm_dbg_kms(&dev_priv->drm,
9372 "%s/%s with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9373 crtc->base.name, plane->base.name, fb->width, fb->height,
9374 fb->format->cpp[0] * 8, base, fb->pitches[0],
9375 plane_config->size);
9376
9377 plane_config->fb = intel_fb;
9378 }
9379
9380 static void chv_crtc_clock_get(struct intel_crtc *crtc,
9381 struct intel_crtc_state *pipe_config)
9382 {
9383 struct drm_device *dev = crtc->base.dev;
9384 struct drm_i915_private *dev_priv = to_i915(dev);
9385 enum pipe pipe = crtc->pipe;
9386 enum dpio_channel port = vlv_pipe_to_channel(pipe);
9387 struct dpll clock;
9388 u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2, pll_dw3;
9389 int refclk = 100000;
9390
9391 /* In case of DSI, DPLL will not be used */
9392 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
9393 return;
9394
9395 vlv_dpio_get(dev_priv);
9396 cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
9397 pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
9398 pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
9399 pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
9400 pll_dw3 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
9401 vlv_dpio_put(dev_priv);
9402
9403 clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
9404 clock.m2 = (pll_dw0 & 0xff) << 22;
9405 if (pll_dw3 & DPIO_CHV_FRAC_DIV_EN)
9406 clock.m2 |= pll_dw2 & 0x3fffff;
9407 clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
9408 clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
9409 clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
9410
9411 pipe_config->port_clock = chv_calc_dpll_params(refclk, &clock);
9412 }
9413
9414 static enum intel_output_format
9415 bdw_get_pipemisc_output_format(struct intel_crtc *crtc)
9416 {
9417 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
9418 u32 tmp;
9419
9420 tmp = intel_de_read(dev_priv, PIPEMISC(crtc->pipe));
9421
9422 if (tmp & PIPEMISC_YUV420_ENABLE) {
9423 /* We support 4:2:0 in full blend mode only */
9424 drm_WARN_ON(&dev_priv->drm,
9425 (tmp & PIPEMISC_YUV420_MODE_FULL_BLEND) == 0);
9426
9427 return INTEL_OUTPUT_FORMAT_YCBCR420;
9428 } else if (tmp & PIPEMISC_OUTPUT_COLORSPACE_YUV) {
9429 return INTEL_OUTPUT_FORMAT_YCBCR444;
9430 } else {
9431 return INTEL_OUTPUT_FORMAT_RGB;
9432 }
9433 }
9434
9435 static void i9xx_get_pipe_color_config(struct intel_crtc_state *crtc_state)
9436 {
9437 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
9438 struct intel_plane *plane = to_intel_plane(crtc->base.primary);
9439 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
9440 enum i9xx_plane_id i9xx_plane = plane->i9xx_plane;
9441 u32 tmp;
9442
9443 tmp = intel_de_read(dev_priv, DSPCNTR(i9xx_plane));
9444
9445 if (tmp & DISPPLANE_GAMMA_ENABLE)
9446 crtc_state->gamma_enable = true;
9447
9448 if (!HAS_GMCH(dev_priv) &&
9449 tmp & DISPPLANE_PIPE_CSC_ENABLE)
9450 crtc_state->csc_enable = true;
9451 }
9452
9453 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
9454 struct intel_crtc_state *pipe_config)
9455 {
9456 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
9457 enum intel_display_power_domain power_domain;
9458 intel_wakeref_t wakeref;
9459 u32 tmp;
9460 bool ret;
9461
9462 power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
9463 wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain);
9464 if (!wakeref)
9465 return false;
9466
9467 pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB;
9468 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
9469 pipe_config->shared_dpll = NULL;
9470
9471 ret = false;
9472
9473 tmp = intel_de_read(dev_priv, PIPECONF(crtc->pipe));
9474 if (!(tmp & PIPECONF_ENABLE))
9475 goto out;
9476
9477 if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
9478 IS_CHERRYVIEW(dev_priv)) {
9479 switch (tmp & PIPECONF_BPC_MASK) {
9480 case PIPECONF_6BPC:
9481 pipe_config->pipe_bpp = 18;
9482 break;
9483 case PIPECONF_8BPC:
9484 pipe_config->pipe_bpp = 24;
9485 break;
9486 case PIPECONF_10BPC:
9487 pipe_config->pipe_bpp = 30;
9488 break;
9489 default:
9490 break;
9491 }
9492 }
9493
9494 if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
9495 (tmp & PIPECONF_COLOR_RANGE_SELECT))
9496 pipe_config->limited_color_range = true;
9497
9498 pipe_config->gamma_mode = (tmp & PIPECONF_GAMMA_MODE_MASK_I9XX) >>
9499 PIPECONF_GAMMA_MODE_SHIFT;
9500
9501 if (IS_CHERRYVIEW(dev_priv))
9502 pipe_config->cgm_mode = intel_de_read(dev_priv,
9503 CGM_PIPE_MODE(crtc->pipe));
9504
9505 i9xx_get_pipe_color_config(pipe_config);
9506 intel_color_get_config(pipe_config);
9507
9508 if (INTEL_GEN(dev_priv) < 4)
9509 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
9510
9511 intel_get_pipe_timings(crtc, pipe_config);
9512 intel_get_pipe_src_size(crtc, pipe_config);
9513
9514 i9xx_get_pfit_config(pipe_config);
9515
9516 if (INTEL_GEN(dev_priv) >= 4) {
9517 /* No way to read it out on pipes B and C */
9518 if (IS_CHERRYVIEW(dev_priv) && crtc->pipe != PIPE_A)
9519 tmp = dev_priv->chv_dpll_md[crtc->pipe];
9520 else
9521 tmp = intel_de_read(dev_priv, DPLL_MD(crtc->pipe));
9522 pipe_config->pixel_multiplier =
9523 ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
9524 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
9525 pipe_config->dpll_hw_state.dpll_md = tmp;
9526 } else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
9527 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv)) {
9528 tmp = intel_de_read(dev_priv, DPLL(crtc->pipe));
9529 pipe_config->pixel_multiplier =
9530 ((tmp & SDVO_MULTIPLIER_MASK)
9531 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
9532 } else {
9533 /* Note that on i915G/GM the pixel multiplier is in the sdvo
9534 * port and will be fixed up in the encoder->get_config
9535 * function. */
9536 pipe_config->pixel_multiplier = 1;
9537 }
9538 pipe_config->dpll_hw_state.dpll = intel_de_read(dev_priv,
9539 DPLL(crtc->pipe));
9540 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv)) {
9541 pipe_config->dpll_hw_state.fp0 = intel_de_read(dev_priv,
9542 FP0(crtc->pipe));
9543 pipe_config->dpll_hw_state.fp1 = intel_de_read(dev_priv,
9544 FP1(crtc->pipe));
9545 } else {
9546 /* Mask out read-only status bits. */
9547 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
9548 DPLL_PORTC_READY_MASK |
9549 DPLL_PORTB_READY_MASK);
9550 }
9551
9552 if (IS_CHERRYVIEW(dev_priv))
9553 chv_crtc_clock_get(crtc, pipe_config);
9554 else if (IS_VALLEYVIEW(dev_priv))
9555 vlv_crtc_clock_get(crtc, pipe_config);
9556 else
9557 i9xx_crtc_clock_get(crtc, pipe_config);
9558
9559 /*
9560 * Normally the dotclock is filled in by the encoder .get_config()
9561 * but in case the pipe is enabled w/o any ports we need a sane
9562 * default.
9563 */
9564 pipe_config->hw.adjusted_mode.crtc_clock =
9565 pipe_config->port_clock / pipe_config->pixel_multiplier;
9566
9567 ret = true;
9568
9569 out:
9570 intel_display_power_put(dev_priv, power_domain, wakeref);
9571
9572 return ret;
9573 }
9574
9575 static void ilk_init_pch_refclk(struct drm_i915_private *dev_priv)
9576 {
9577 struct intel_encoder *encoder;
9578 int i;
9579 u32 val, final;
9580 bool has_lvds = false;
9581 bool has_cpu_edp = false;
9582 bool has_panel = false;
9583 bool has_ck505 = false;
9584 bool can_ssc = false;
9585 bool using_ssc_source = false;
9586
9587 /* We need to take the global config into account */
9588 for_each_intel_encoder(&dev_priv->drm, encoder) {
9589 switch (encoder->type) {
9590 case INTEL_OUTPUT_LVDS:
9591 has_panel = true;
9592 has_lvds = true;
9593 break;
9594 case INTEL_OUTPUT_EDP:
9595 has_panel = true;
9596 if (encoder->port == PORT_A)
9597 has_cpu_edp = true;
9598 break;
9599 default:
9600 break;
9601 }
9602 }
9603
9604 if (HAS_PCH_IBX(dev_priv)) {
9605 has_ck505 = dev_priv->vbt.display_clock_mode;
9606 can_ssc = has_ck505;
9607 } else {
9608 has_ck505 = false;
9609 can_ssc = true;
9610 }
9611
9612 /* Check if any DPLLs are using the SSC source */
9613 for (i = 0; i < dev_priv->dpll.num_shared_dpll; i++) {
9614 u32 temp = intel_de_read(dev_priv, PCH_DPLL(i));
9615
9616 if (!(temp & DPLL_VCO_ENABLE))
9617 continue;
9618
9619 if ((temp & PLL_REF_INPUT_MASK) ==
9620 PLLB_REF_INPUT_SPREADSPECTRUMIN) {
9621 using_ssc_source = true;
9622 break;
9623 }
9624 }
9625
9626 drm_dbg_kms(&dev_priv->drm,
9627 "has_panel %d has_lvds %d has_ck505 %d using_ssc_source %d\n",
9628 has_panel, has_lvds, has_ck505, using_ssc_source);
9629
9630 /* Ironlake: try to setup display ref clock before DPLL
9631 * enabling. This is only under driver's control after
9632 * PCH B stepping, previous chipset stepping should be
9633 * ignoring this setting.
9634 */
9635 val = intel_de_read(dev_priv, PCH_DREF_CONTROL);
9636
9637 /* As we must carefully and slowly disable/enable each source in turn,
9638 * compute the final state we want first and check if we need to
9639 * make any changes at all.
9640 */
9641 final = val;
9642 final &= ~DREF_NONSPREAD_SOURCE_MASK;
9643 if (has_ck505)
9644 final |= DREF_NONSPREAD_CK505_ENABLE;
9645 else
9646 final |= DREF_NONSPREAD_SOURCE_ENABLE;
9647
9648 final &= ~DREF_SSC_SOURCE_MASK;
9649 final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
9650 final &= ~DREF_SSC1_ENABLE;
9651
9652 if (has_panel) {
9653 final |= DREF_SSC_SOURCE_ENABLE;
9654
9655 if (intel_panel_use_ssc(dev_priv) && can_ssc)
9656 final |= DREF_SSC1_ENABLE;
9657
9658 if (has_cpu_edp) {
9659 if (intel_panel_use_ssc(dev_priv) && can_ssc)
9660 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
9661 else
9662 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
9663 } else
9664 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
9665 } else if (using_ssc_source) {
9666 final |= DREF_SSC_SOURCE_ENABLE;
9667 final |= DREF_SSC1_ENABLE;
9668 }
9669
9670 if (final == val)
9671 return;
9672
9673 /* Always enable nonspread source */
9674 val &= ~DREF_NONSPREAD_SOURCE_MASK;
9675
9676 if (has_ck505)
9677 val |= DREF_NONSPREAD_CK505_ENABLE;
9678 else
9679 val |= DREF_NONSPREAD_SOURCE_ENABLE;
9680
9681 if (has_panel) {
9682 val &= ~DREF_SSC_SOURCE_MASK;
9683 val |= DREF_SSC_SOURCE_ENABLE;
9684
9685 /* SSC must be turned on before enabling the CPU output */
9686 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
9687 drm_dbg_kms(&dev_priv->drm, "Using SSC on panel\n");
9688 val |= DREF_SSC1_ENABLE;
9689 } else
9690 val &= ~DREF_SSC1_ENABLE;
9691
9692 /* Get SSC going before enabling the outputs */
9693 intel_de_write(dev_priv, PCH_DREF_CONTROL, val);
9694 intel_de_posting_read(dev_priv, PCH_DREF_CONTROL);
9695 udelay(200);
9696
9697 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
9698
9699 /* Enable CPU source on CPU attached eDP */
9700 if (has_cpu_edp) {
9701 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
9702 drm_dbg_kms(&dev_priv->drm,
9703 "Using SSC on eDP\n");
9704 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
9705 } else
9706 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
9707 } else
9708 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
9709
9710 intel_de_write(dev_priv, PCH_DREF_CONTROL, val);
9711 intel_de_posting_read(dev_priv, PCH_DREF_CONTROL);
9712 udelay(200);
9713 } else {
9714 drm_dbg_kms(&dev_priv->drm, "Disabling CPU source output\n");
9715
9716 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
9717
9718 /* Turn off CPU output */
9719 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
9720
9721 intel_de_write(dev_priv, PCH_DREF_CONTROL, val);
9722 intel_de_posting_read(dev_priv, PCH_DREF_CONTROL);
9723 udelay(200);
9724
9725 if (!using_ssc_source) {
9726 drm_dbg_kms(&dev_priv->drm, "Disabling SSC source\n");
9727
9728 /* Turn off the SSC source */
9729 val &= ~DREF_SSC_SOURCE_MASK;
9730 val |= DREF_SSC_SOURCE_DISABLE;
9731
9732 /* Turn off SSC1 */
9733 val &= ~DREF_SSC1_ENABLE;
9734
9735 intel_de_write(dev_priv, PCH_DREF_CONTROL, val);
9736 intel_de_posting_read(dev_priv, PCH_DREF_CONTROL);
9737 udelay(200);
9738 }
9739 }
9740
9741 BUG_ON(val != final);
9742 }
9743
9744 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
9745 {
9746 u32 tmp;
9747
9748 tmp = intel_de_read(dev_priv, SOUTH_CHICKEN2);
9749 tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
9750 intel_de_write(dev_priv, SOUTH_CHICKEN2, tmp);
9751
9752 if (wait_for_us(intel_de_read(dev_priv, SOUTH_CHICKEN2) &
9753 FDI_MPHY_IOSFSB_RESET_STATUS, 100))
9754 drm_err(&dev_priv->drm, "FDI mPHY reset assert timeout\n");
9755
9756 tmp = intel_de_read(dev_priv, SOUTH_CHICKEN2);
9757 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
9758 intel_de_write(dev_priv, SOUTH_CHICKEN2, tmp);
9759
9760 if (wait_for_us((intel_de_read(dev_priv, SOUTH_CHICKEN2) &
9761 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
9762 drm_err(&dev_priv->drm, "FDI mPHY reset de-assert timeout\n");
9763 }
9764
9765 /* WaMPhyProgramming:hsw */
9766 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
9767 {
9768 u32 tmp;
9769
9770 tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
9771 tmp &= ~(0xFF << 24);
9772 tmp |= (0x12 << 24);
9773 intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
9774
9775 tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
9776 tmp |= (1 << 11);
9777 intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
9778
9779 tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
9780 tmp |= (1 << 11);
9781 intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
9782
9783 tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
9784 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
9785 intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
9786
9787 tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
9788 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
9789 intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
9790
9791 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
9792 tmp &= ~(7 << 13);
9793 tmp |= (5 << 13);
9794 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
9795
9796 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
9797 tmp &= ~(7 << 13);
9798 tmp |= (5 << 13);
9799 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
9800
9801 tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
9802 tmp &= ~0xFF;
9803 tmp |= 0x1C;
9804 intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
9805
9806 tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
9807 tmp &= ~0xFF;
9808 tmp |= 0x1C;
9809 intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
9810
9811 tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
9812 tmp &= ~(0xFF << 16);
9813 tmp |= (0x1C << 16);
9814 intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
9815
9816 tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
9817 tmp &= ~(0xFF << 16);
9818 tmp |= (0x1C << 16);
9819 intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
9820
9821 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
9822 tmp |= (1 << 27);
9823 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
9824
9825 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
9826 tmp |= (1 << 27);
9827 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
9828
9829 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
9830 tmp &= ~(0xF << 28);
9831 tmp |= (4 << 28);
9832 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
9833
9834 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
9835 tmp &= ~(0xF << 28);
9836 tmp |= (4 << 28);
9837 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
9838 }
9839
9840 /* Implements 3 different sequences from BSpec chapter "Display iCLK
9841 * Programming" based on the parameters passed:
9842 * - Sequence to enable CLKOUT_DP
9843 * - Sequence to enable CLKOUT_DP without spread
9844 * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
9845 */
9846 static void lpt_enable_clkout_dp(struct drm_i915_private *dev_priv,
9847 bool with_spread, bool with_fdi)
9848 {
9849 u32 reg, tmp;
9850
9851 if (drm_WARN(&dev_priv->drm, with_fdi && !with_spread,
9852 "FDI requires downspread\n"))
9853 with_spread = true;
9854 if (drm_WARN(&dev_priv->drm, HAS_PCH_LPT_LP(dev_priv) &&
9855 with_fdi, "LP PCH doesn't have FDI\n"))
9856 with_fdi = false;
9857
9858 mutex_lock(&dev_priv->sb_lock);
9859
9860 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
9861 tmp &= ~SBI_SSCCTL_DISABLE;
9862 tmp |= SBI_SSCCTL_PATHALT;
9863 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
9864
9865 udelay(24);
9866
9867 if (with_spread) {
9868 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
9869 tmp &= ~SBI_SSCCTL_PATHALT;
9870 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
9871
9872 if (with_fdi) {
9873 lpt_reset_fdi_mphy(dev_priv);
9874 lpt_program_fdi_mphy(dev_priv);
9875 }
9876 }
9877
9878 reg = HAS_PCH_LPT_LP(dev_priv) ? SBI_GEN0 : SBI_DBUFF0;
9879 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
9880 tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
9881 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
9882
9883 mutex_unlock(&dev_priv->sb_lock);
9884 }
9885
9886 /* Sequence to disable CLKOUT_DP */
9887 void lpt_disable_clkout_dp(struct drm_i915_private *dev_priv)
9888 {
9889 u32 reg, tmp;
9890
9891 mutex_lock(&dev_priv->sb_lock);
9892
9893 reg = HAS_PCH_LPT_LP(dev_priv) ? SBI_GEN0 : SBI_DBUFF0;
9894 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
9895 tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
9896 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
9897
9898 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
9899 if (!(tmp & SBI_SSCCTL_DISABLE)) {
9900 if (!(tmp & SBI_SSCCTL_PATHALT)) {
9901 tmp |= SBI_SSCCTL_PATHALT;
9902 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
9903 udelay(32);
9904 }
9905 tmp |= SBI_SSCCTL_DISABLE;
9906 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
9907 }
9908
9909 mutex_unlock(&dev_priv->sb_lock);
9910 }
9911
9912 #define BEND_IDX(steps) ((50 + (steps)) / 5)
9913
9914 static const u16 sscdivintphase[] = {
9915 [BEND_IDX( 50)] = 0x3B23,
9916 [BEND_IDX( 45)] = 0x3B23,
9917 [BEND_IDX( 40)] = 0x3C23,
9918 [BEND_IDX( 35)] = 0x3C23,
9919 [BEND_IDX( 30)] = 0x3D23,
9920 [BEND_IDX( 25)] = 0x3D23,
9921 [BEND_IDX( 20)] = 0x3E23,
9922 [BEND_IDX( 15)] = 0x3E23,
9923 [BEND_IDX( 10)] = 0x3F23,
9924 [BEND_IDX( 5)] = 0x3F23,
9925 [BEND_IDX( 0)] = 0x0025,
9926 [BEND_IDX( -5)] = 0x0025,
9927 [BEND_IDX(-10)] = 0x0125,
9928 [BEND_IDX(-15)] = 0x0125,
9929 [BEND_IDX(-20)] = 0x0225,
9930 [BEND_IDX(-25)] = 0x0225,
9931 [BEND_IDX(-30)] = 0x0325,
9932 [BEND_IDX(-35)] = 0x0325,
9933 [BEND_IDX(-40)] = 0x0425,
9934 [BEND_IDX(-45)] = 0x0425,
9935 [BEND_IDX(-50)] = 0x0525,
9936 };
9937
9938 /*
9939 * Bend CLKOUT_DP
9940 * steps -50 to 50 inclusive, in steps of 5
9941 * < 0 slow down the clock, > 0 speed up the clock, 0 == no bend (135MHz)
9942 * change in clock period = -(steps / 10) * 5.787 ps
9943 */
9944 static void lpt_bend_clkout_dp(struct drm_i915_private *dev_priv, int steps)
9945 {
9946 u32 tmp;
9947 int idx = BEND_IDX(steps);
9948
9949 if (drm_WARN_ON(&dev_priv->drm, steps % 5 != 0))
9950 return;
9951
9952 if (drm_WARN_ON(&dev_priv->drm, idx >= ARRAY_SIZE(sscdivintphase)))
9953 return;
9954
9955 mutex_lock(&dev_priv->sb_lock);
9956
9957 if (steps % 10 != 0)
9958 tmp = 0xAAAAAAAB;
9959 else
9960 tmp = 0x00000000;
9961 intel_sbi_write(dev_priv, SBI_SSCDITHPHASE, tmp, SBI_ICLK);
9962
9963 tmp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE, SBI_ICLK);
9964 tmp &= 0xffff0000;
9965 tmp |= sscdivintphase[idx];
9966 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE, tmp, SBI_ICLK);
9967
9968 mutex_unlock(&dev_priv->sb_lock);
9969 }
9970
9971 #undef BEND_IDX
9972
9973 static bool spll_uses_pch_ssc(struct drm_i915_private *dev_priv)
9974 {
9975 u32 fuse_strap = intel_de_read(dev_priv, FUSE_STRAP);
9976 u32 ctl = intel_de_read(dev_priv, SPLL_CTL);
9977
9978 if ((ctl & SPLL_PLL_ENABLE) == 0)
9979 return false;
9980
9981 if ((ctl & SPLL_REF_MASK) == SPLL_REF_MUXED_SSC &&
9982 (fuse_strap & HSW_CPU_SSC_ENABLE) == 0)
9983 return true;
9984
9985 if (IS_BROADWELL(dev_priv) &&
9986 (ctl & SPLL_REF_MASK) == SPLL_REF_PCH_SSC_BDW)
9987 return true;
9988
9989 return false;
9990 }
9991
9992 static bool wrpll_uses_pch_ssc(struct drm_i915_private *dev_priv,
9993 enum intel_dpll_id id)
9994 {
9995 u32 fuse_strap = intel_de_read(dev_priv, FUSE_STRAP);
9996 u32 ctl = intel_de_read(dev_priv, WRPLL_CTL(id));
9997
9998 if ((ctl & WRPLL_PLL_ENABLE) == 0)
9999 return false;
10000
10001 if ((ctl & WRPLL_REF_MASK) == WRPLL_REF_PCH_SSC)
10002 return true;
10003
10004 if ((IS_BROADWELL(dev_priv) || IS_HSW_ULT(dev_priv)) &&
10005 (ctl & WRPLL_REF_MASK) == WRPLL_REF_MUXED_SSC_BDW &&
10006 (fuse_strap & HSW_CPU_SSC_ENABLE) == 0)
10007 return true;
10008
10009 return false;
10010 }
10011
10012 static void lpt_init_pch_refclk(struct drm_i915_private *dev_priv)
10013 {
10014 struct intel_encoder *encoder;
10015 bool has_fdi = false;
10016
10017 for_each_intel_encoder(&dev_priv->drm, encoder) {
10018 switch (encoder->type) {
10019 case INTEL_OUTPUT_ANALOG:
10020 has_fdi = true;
10021 break;
10022 default:
10023 break;
10024 }
10025 }
10026
10027 /*
10028 * The BIOS may have decided to use the PCH SSC
10029 * reference so we must not disable it until the
10030 * relevant PLLs have stopped relying on it. We'll
10031 * just leave the PCH SSC reference enabled in case
10032 * any active PLL is using it. It will get disabled
10033 * after runtime suspend if we don't have FDI.
10034 *
10035 * TODO: Move the whole reference clock handling
10036 * to the modeset sequence proper so that we can
10037 * actually enable/disable/reconfigure these things
10038 * safely. To do that we need to introduce a real
10039 * clock hierarchy. That would also allow us to do
10040 * clock bending finally.
10041 */
10042 dev_priv->pch_ssc_use = 0;
10043
10044 if (spll_uses_pch_ssc(dev_priv)) {
10045 drm_dbg_kms(&dev_priv->drm, "SPLL using PCH SSC\n");
10046 dev_priv->pch_ssc_use |= BIT(DPLL_ID_SPLL);
10047 }
10048
10049 if (wrpll_uses_pch_ssc(dev_priv, DPLL_ID_WRPLL1)) {
10050 drm_dbg_kms(&dev_priv->drm, "WRPLL1 using PCH SSC\n");
10051 dev_priv->pch_ssc_use |= BIT(DPLL_ID_WRPLL1);
10052 }
10053
10054 if (wrpll_uses_pch_ssc(dev_priv, DPLL_ID_WRPLL2)) {
10055 drm_dbg_kms(&dev_priv->drm, "WRPLL2 using PCH SSC\n");
10056 dev_priv->pch_ssc_use |= BIT(DPLL_ID_WRPLL2);
10057 }
10058
10059 if (dev_priv->pch_ssc_use)
10060 return;
10061
10062 if (has_fdi) {
10063 lpt_bend_clkout_dp(dev_priv, 0);
10064 lpt_enable_clkout_dp(dev_priv, true, true);
10065 } else {
10066 lpt_disable_clkout_dp(dev_priv);
10067 }
10068 }
10069
10070 /*
10071 * Initialize reference clocks when the driver loads
10072 */
10073 void intel_init_pch_refclk(struct drm_i915_private *dev_priv)
10074 {
10075 if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv))
10076 ilk_init_pch_refclk(dev_priv);
10077 else if (HAS_PCH_LPT(dev_priv))
10078 lpt_init_pch_refclk(dev_priv);
10079 }
10080
10081 static void ilk_set_pipeconf(const struct intel_crtc_state *crtc_state)
10082 {
10083 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
10084 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
10085 enum pipe pipe = crtc->pipe;
10086 u32 val;
10087
10088 val = 0;
10089
10090 switch (crtc_state->pipe_bpp) {
10091 case 18:
10092 val |= PIPECONF_6BPC;
10093 break;
10094 case 24:
10095 val |= PIPECONF_8BPC;
10096 break;
10097 case 30:
10098 val |= PIPECONF_10BPC;
10099 break;
10100 case 36:
10101 val |= PIPECONF_12BPC;
10102 break;
10103 default:
10104 /* Case prevented by intel_choose_pipe_bpp_dither. */
10105 BUG();
10106 }
10107
10108 if (crtc_state->dither)
10109 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
10110
10111 if (crtc_state->hw.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
10112 val |= PIPECONF_INTERLACED_ILK;
10113 else
10114 val |= PIPECONF_PROGRESSIVE;
10115
10116 /*
10117 * This would end up with an odd purple hue over
10118 * the entire display. Make sure we don't do it.
10119 */
10120 drm_WARN_ON(&dev_priv->drm, crtc_state->limited_color_range &&
10121 crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB);
10122
10123 if (crtc_state->limited_color_range &&
10124 !intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO))
10125 val |= PIPECONF_COLOR_RANGE_SELECT;
10126
10127 if (crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB)
10128 val |= PIPECONF_OUTPUT_COLORSPACE_YUV709;
10129
10130 val |= PIPECONF_GAMMA_MODE(crtc_state->gamma_mode);
10131
10132 val |= PIPECONF_FRAME_START_DELAY(0);
10133
10134 intel_de_write(dev_priv, PIPECONF(pipe), val);
10135 intel_de_posting_read(dev_priv, PIPECONF(pipe));
10136 }
10137
10138 static void hsw_set_pipeconf(const struct intel_crtc_state *crtc_state)
10139 {
10140 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
10141 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
10142 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
10143 u32 val = 0;
10144
10145 if (IS_HASWELL(dev_priv) && crtc_state->dither)
10146 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
10147
10148 if (crtc_state->hw.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
10149 val |= PIPECONF_INTERLACED_ILK;
10150 else
10151 val |= PIPECONF_PROGRESSIVE;
10152
10153 if (IS_HASWELL(dev_priv) &&
10154 crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB)
10155 val |= PIPECONF_OUTPUT_COLORSPACE_YUV_HSW;
10156
10157 intel_de_write(dev_priv, PIPECONF(cpu_transcoder), val);
10158 intel_de_posting_read(dev_priv, PIPECONF(cpu_transcoder));
10159 }
10160
10161 static void bdw_set_pipemisc(const struct intel_crtc_state *crtc_state)
10162 {
10163 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
10164 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
10165 u32 val = 0;
10166
10167 switch (crtc_state->pipe_bpp) {
10168 case 18:
10169 val |= PIPEMISC_DITHER_6_BPC;
10170 break;
10171 case 24:
10172 val |= PIPEMISC_DITHER_8_BPC;
10173 break;
10174 case 30:
10175 val |= PIPEMISC_DITHER_10_BPC;
10176 break;
10177 case 36:
10178 val |= PIPEMISC_DITHER_12_BPC;
10179 break;
10180 default:
10181 MISSING_CASE(crtc_state->pipe_bpp);
10182 break;
10183 }
10184
10185 if (crtc_state->dither)
10186 val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
10187
10188 if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420 ||
10189 crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR444)
10190 val |= PIPEMISC_OUTPUT_COLORSPACE_YUV;
10191
10192 if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
10193 val |= PIPEMISC_YUV420_ENABLE |
10194 PIPEMISC_YUV420_MODE_FULL_BLEND;
10195
10196 if (INTEL_GEN(dev_priv) >= 11 &&
10197 (crtc_state->active_planes & ~(icl_hdr_plane_mask() |
10198 BIT(PLANE_CURSOR))) == 0)
10199 val |= PIPEMISC_HDR_MODE_PRECISION;
10200
10201 if (INTEL_GEN(dev_priv) >= 12)
10202 val |= PIPEMISC_PIXEL_ROUNDING_TRUNC;
10203
10204 intel_de_write(dev_priv, PIPEMISC(crtc->pipe), val);
10205 }
10206
10207 int bdw_get_pipemisc_bpp(struct intel_crtc *crtc)
10208 {
10209 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
10210 u32 tmp;
10211
10212 tmp = intel_de_read(dev_priv, PIPEMISC(crtc->pipe));
10213
10214 switch (tmp & PIPEMISC_DITHER_BPC_MASK) {
10215 case PIPEMISC_DITHER_6_BPC:
10216 return 18;
10217 case PIPEMISC_DITHER_8_BPC:
10218 return 24;
10219 case PIPEMISC_DITHER_10_BPC:
10220 return 30;
10221 case PIPEMISC_DITHER_12_BPC:
10222 return 36;
10223 default:
10224 MISSING_CASE(tmp);
10225 return 0;
10226 }
10227 }
10228
10229 int ilk_get_lanes_required(int target_clock, int link_bw, int bpp)
10230 {
10231 /*
10232 * Account for spread spectrum to avoid
10233 * oversubscribing the link. Max center spread
10234 * is 2.5%; use 5% for safety's sake.
10235 */
10236 u32 bps = target_clock * bpp * 21 / 20;
10237 return DIV_ROUND_UP(bps, link_bw * 8);
10238 }
10239
10240 static bool ilk_needs_fb_cb_tune(struct dpll *dpll, int factor)
10241 {
10242 return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
10243 }
10244
10245 static void ilk_compute_dpll(struct intel_crtc *crtc,
10246 struct intel_crtc_state *crtc_state,
10247 struct dpll *reduced_clock)
10248 {
10249 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
10250 u32 dpll, fp, fp2;
10251 int factor;
10252
10253 /* Enable autotuning of the PLL clock (if permissible) */
10254 factor = 21;
10255 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
10256 if ((intel_panel_use_ssc(dev_priv) &&
10257 dev_priv->vbt.lvds_ssc_freq == 100000) ||
10258 (HAS_PCH_IBX(dev_priv) &&
10259 intel_is_dual_link_lvds(dev_priv)))
10260 factor = 25;
10261 } else if (crtc_state->sdvo_tv_clock) {
10262 factor = 20;
10263 }
10264
10265 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
10266
10267 if (ilk_needs_fb_cb_tune(&crtc_state->dpll, factor))
10268 fp |= FP_CB_TUNE;
10269
10270 if (reduced_clock) {
10271 fp2 = i9xx_dpll_compute_fp(reduced_clock);
10272
10273 if (reduced_clock->m < factor * reduced_clock->n)
10274 fp2 |= FP_CB_TUNE;
10275 } else {
10276 fp2 = fp;
10277 }
10278
10279 dpll = 0;
10280
10281 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS))
10282 dpll |= DPLLB_MODE_LVDS;
10283 else
10284 dpll |= DPLLB_MODE_DAC_SERIAL;
10285
10286 dpll |= (crtc_state->pixel_multiplier - 1)
10287 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
10288
10289 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) ||
10290 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
10291 dpll |= DPLL_SDVO_HIGH_SPEED;
10292
10293 if (intel_crtc_has_dp_encoder(crtc_state))
10294 dpll |= DPLL_SDVO_HIGH_SPEED;
10295
10296 /*
10297 * The high speed IO clock is only really required for
10298 * SDVO/HDMI/DP, but we also enable it for CRT to make it
10299 * possible to share the DPLL between CRT and HDMI. Enabling
10300 * the clock needlessly does no real harm, except use up a
10301 * bit of power potentially.
10302 *
10303 * We'll limit this to IVB with 3 pipes, since it has only two
10304 * DPLLs and so DPLL sharing is the only way to get three pipes
10305 * driving PCH ports at the same time. On SNB we could do this,
10306 * and potentially avoid enabling the second DPLL, but it's not
10307 * clear if it''s a win or loss power wise. No point in doing
10308 * this on ILK at all since it has a fixed DPLL<->pipe mapping.
10309 */
10310 if (INTEL_NUM_PIPES(dev_priv) == 3 &&
10311 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG))
10312 dpll |= DPLL_SDVO_HIGH_SPEED;
10313
10314 /* compute bitmask from p1 value */
10315 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
10316 /* also FPA1 */
10317 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
10318
10319 switch (crtc_state->dpll.p2) {
10320 case 5:
10321 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
10322 break;
10323 case 7:
10324 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
10325 break;
10326 case 10:
10327 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
10328 break;
10329 case 14:
10330 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
10331 break;
10332 }
10333
10334 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
10335 intel_panel_use_ssc(dev_priv))
10336 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
10337 else
10338 dpll |= PLL_REF_INPUT_DREFCLK;
10339
10340 dpll |= DPLL_VCO_ENABLE;
10341
10342 crtc_state->dpll_hw_state.dpll = dpll;
10343 crtc_state->dpll_hw_state.fp0 = fp;
10344 crtc_state->dpll_hw_state.fp1 = fp2;
10345 }
10346
10347 static int ilk_crtc_compute_clock(struct intel_crtc *crtc,
10348 struct intel_crtc_state *crtc_state)
10349 {
10350 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
10351 struct intel_atomic_state *state =
10352 to_intel_atomic_state(crtc_state->uapi.state);
10353 const struct intel_limit *limit;
10354 int refclk = 120000;
10355
10356 memset(&crtc_state->dpll_hw_state, 0,
10357 sizeof(crtc_state->dpll_hw_state));
10358
10359 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
10360 if (!crtc_state->has_pch_encoder)
10361 return 0;
10362
10363 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
10364 if (intel_panel_use_ssc(dev_priv)) {
10365 drm_dbg_kms(&dev_priv->drm,
10366 "using SSC reference clock of %d kHz\n",
10367 dev_priv->vbt.lvds_ssc_freq);
10368 refclk = dev_priv->vbt.lvds_ssc_freq;
10369 }
10370
10371 if (intel_is_dual_link_lvds(dev_priv)) {
10372 if (refclk == 100000)
10373 limit = &ilk_limits_dual_lvds_100m;
10374 else
10375 limit = &ilk_limits_dual_lvds;
10376 } else {
10377 if (refclk == 100000)
10378 limit = &ilk_limits_single_lvds_100m;
10379 else
10380 limit = &ilk_limits_single_lvds;
10381 }
10382 } else {
10383 limit = &ilk_limits_dac;
10384 }
10385
10386 if (!crtc_state->clock_set &&
10387 !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
10388 refclk, NULL, &crtc_state->dpll)) {
10389 drm_err(&dev_priv->drm,
10390 "Couldn't find PLL settings for mode!\n");
10391 return -EINVAL;
10392 }
10393
10394 ilk_compute_dpll(crtc, crtc_state, NULL);
10395
10396 if (!intel_reserve_shared_dplls(state, crtc, NULL)) {
10397 drm_dbg_kms(&dev_priv->drm,
10398 "failed to find PLL for pipe %c\n",
10399 pipe_name(crtc->pipe));
10400 return -EINVAL;
10401 }
10402
10403 return 0;
10404 }
10405
10406 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
10407 struct intel_link_m_n *m_n)
10408 {
10409 struct drm_device *dev = crtc->base.dev;
10410 struct drm_i915_private *dev_priv = to_i915(dev);
10411 enum pipe pipe = crtc->pipe;
10412
10413 m_n->link_m = intel_de_read(dev_priv, PCH_TRANS_LINK_M1(pipe));
10414 m_n->link_n = intel_de_read(dev_priv, PCH_TRANS_LINK_N1(pipe));
10415 m_n->gmch_m = intel_de_read(dev_priv, PCH_TRANS_DATA_M1(pipe))
10416 & ~TU_SIZE_MASK;
10417 m_n->gmch_n = intel_de_read(dev_priv, PCH_TRANS_DATA_N1(pipe));
10418 m_n->tu = ((intel_de_read(dev_priv, PCH_TRANS_DATA_M1(pipe))
10419 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
10420 }
10421
10422 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
10423 enum transcoder transcoder,
10424 struct intel_link_m_n *m_n,
10425 struct intel_link_m_n *m2_n2)
10426 {
10427 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
10428 enum pipe pipe = crtc->pipe;
10429
10430 if (INTEL_GEN(dev_priv) >= 5) {
10431 m_n->link_m = intel_de_read(dev_priv,
10432 PIPE_LINK_M1(transcoder));
10433 m_n->link_n = intel_de_read(dev_priv,
10434 PIPE_LINK_N1(transcoder));
10435 m_n->gmch_m = intel_de_read(dev_priv,
10436 PIPE_DATA_M1(transcoder))
10437 & ~TU_SIZE_MASK;
10438 m_n->gmch_n = intel_de_read(dev_priv,
10439 PIPE_DATA_N1(transcoder));
10440 m_n->tu = ((intel_de_read(dev_priv, PIPE_DATA_M1(transcoder))
10441 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
10442
10443 if (m2_n2 && transcoder_has_m2_n2(dev_priv, transcoder)) {
10444 m2_n2->link_m = intel_de_read(dev_priv,
10445 PIPE_LINK_M2(transcoder));
10446 m2_n2->link_n = intel_de_read(dev_priv,
10447 PIPE_LINK_N2(transcoder));
10448 m2_n2->gmch_m = intel_de_read(dev_priv,
10449 PIPE_DATA_M2(transcoder))
10450 & ~TU_SIZE_MASK;
10451 m2_n2->gmch_n = intel_de_read(dev_priv,
10452 PIPE_DATA_N2(transcoder));
10453 m2_n2->tu = ((intel_de_read(dev_priv, PIPE_DATA_M2(transcoder))
10454 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
10455 }
10456 } else {
10457 m_n->link_m = intel_de_read(dev_priv, PIPE_LINK_M_G4X(pipe));
10458 m_n->link_n = intel_de_read(dev_priv, PIPE_LINK_N_G4X(pipe));
10459 m_n->gmch_m = intel_de_read(dev_priv, PIPE_DATA_M_G4X(pipe))
10460 & ~TU_SIZE_MASK;
10461 m_n->gmch_n = intel_de_read(dev_priv, PIPE_DATA_N_G4X(pipe));
10462 m_n->tu = ((intel_de_read(dev_priv, PIPE_DATA_M_G4X(pipe))
10463 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
10464 }
10465 }
10466
10467 void intel_dp_get_m_n(struct intel_crtc *crtc,
10468 struct intel_crtc_state *pipe_config)
10469 {
10470 if (pipe_config->has_pch_encoder)
10471 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
10472 else
10473 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
10474 &pipe_config->dp_m_n,
10475 &pipe_config->dp_m2_n2);
10476 }
10477
10478 static void ilk_get_fdi_m_n_config(struct intel_crtc *crtc,
10479 struct intel_crtc_state *pipe_config)
10480 {
10481 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
10482 &pipe_config->fdi_m_n, NULL);
10483 }
10484
10485 static void ilk_get_pfit_pos_size(struct intel_crtc_state *crtc_state,
10486 u32 pos, u32 size)
10487 {
10488 drm_rect_init(&crtc_state->pch_pfit.dst,
10489 pos >> 16, pos & 0xffff,
10490 size >> 16, size & 0xffff);
10491 }
10492
10493 static void skl_get_pfit_config(struct intel_crtc_state *crtc_state)
10494 {
10495 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
10496 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
10497 struct intel_crtc_scaler_state *scaler_state = &crtc_state->scaler_state;
10498 int id = -1;
10499 int i;
10500
10501 /* find scaler attached to this pipe */
10502 for (i = 0; i < crtc->num_scalers; i++) {
10503 u32 ctl, pos, size;
10504
10505 ctl = intel_de_read(dev_priv, SKL_PS_CTRL(crtc->pipe, i));
10506 if ((ctl & (PS_SCALER_EN | PS_PLANE_SEL_MASK)) != PS_SCALER_EN)
10507 continue;
10508
10509 id = i;
10510 crtc_state->pch_pfit.enabled = true;
10511
10512 pos = intel_de_read(dev_priv, SKL_PS_WIN_POS(crtc->pipe, i));
10513 size = intel_de_read(dev_priv, SKL_PS_WIN_SZ(crtc->pipe, i));
10514
10515 ilk_get_pfit_pos_size(crtc_state, pos, size);
10516
10517 scaler_state->scalers[i].in_use = true;
10518 break;
10519 }
10520
10521 scaler_state->scaler_id = id;
10522 if (id >= 0)
10523 scaler_state->scaler_users |= (1 << SKL_CRTC_INDEX);
10524 else
10525 scaler_state->scaler_users &= ~(1 << SKL_CRTC_INDEX);
10526 }
10527
10528 static void
10529 skl_get_initial_plane_config(struct intel_crtc *crtc,
10530 struct intel_initial_plane_config *plane_config)
10531 {
10532 struct drm_device *dev = crtc->base.dev;
10533 struct drm_i915_private *dev_priv = to_i915(dev);
10534 struct intel_plane *plane = to_intel_plane(crtc->base.primary);
10535 enum plane_id plane_id = plane->id;
10536 enum pipe pipe;
10537 u32 val, base, offset, stride_mult, tiling, alpha;
10538 int fourcc, pixel_format;
10539 unsigned int aligned_height;
10540 struct drm_framebuffer *fb;
10541 struct intel_framebuffer *intel_fb;
10542
10543 if (!plane->get_hw_state(plane, &pipe))
10544 return;
10545
10546 drm_WARN_ON(dev, pipe != crtc->pipe);
10547
10548 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
10549 if (!intel_fb) {
10550 drm_dbg_kms(&dev_priv->drm, "failed to alloc fb\n");
10551 return;
10552 }
10553
10554 fb = &intel_fb->base;
10555
10556 fb->dev = dev;
10557
10558 val = intel_de_read(dev_priv, PLANE_CTL(pipe, plane_id));
10559
10560 if (INTEL_GEN(dev_priv) >= 11)
10561 pixel_format = val & ICL_PLANE_CTL_FORMAT_MASK;
10562 else
10563 pixel_format = val & PLANE_CTL_FORMAT_MASK;
10564
10565 if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) {
10566 alpha = intel_de_read(dev_priv,
10567 PLANE_COLOR_CTL(pipe, plane_id));
10568 alpha &= PLANE_COLOR_ALPHA_MASK;
10569 } else {
10570 alpha = val & PLANE_CTL_ALPHA_MASK;
10571 }
10572
10573 fourcc = skl_format_to_fourcc(pixel_format,
10574 val & PLANE_CTL_ORDER_RGBX, alpha);
10575 fb->format = drm_format_info(fourcc);
10576
10577 tiling = val & PLANE_CTL_TILED_MASK;
10578 switch (tiling) {
10579 case PLANE_CTL_TILED_LINEAR:
10580 fb->modifier = DRM_FORMAT_MOD_LINEAR;
10581 break;
10582 case PLANE_CTL_TILED_X:
10583 plane_config->tiling = I915_TILING_X;
10584 fb->modifier = I915_FORMAT_MOD_X_TILED;
10585 break;
10586 case PLANE_CTL_TILED_Y:
10587 plane_config->tiling = I915_TILING_Y;
10588 if (val & PLANE_CTL_RENDER_DECOMPRESSION_ENABLE)
10589 fb->modifier = INTEL_GEN(dev_priv) >= 12 ?
10590 I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS :
10591 I915_FORMAT_MOD_Y_TILED_CCS;
10592 else if (val & PLANE_CTL_MEDIA_DECOMPRESSION_ENABLE)
10593 fb->modifier = I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS;
10594 else
10595 fb->modifier = I915_FORMAT_MOD_Y_TILED;
10596 break;
10597 case PLANE_CTL_TILED_YF:
10598 if (val & PLANE_CTL_RENDER_DECOMPRESSION_ENABLE)
10599 fb->modifier = I915_FORMAT_MOD_Yf_TILED_CCS;
10600 else
10601 fb->modifier = I915_FORMAT_MOD_Yf_TILED;
10602 break;
10603 default:
10604 MISSING_CASE(tiling);
10605 goto error;
10606 }
10607
10608 /*
10609 * DRM_MODE_ROTATE_ is counter clockwise to stay compatible with Xrandr
10610 * while i915 HW rotation is clockwise, thats why this swapping.
10611 */
10612 switch (val & PLANE_CTL_ROTATE_MASK) {
10613 case PLANE_CTL_ROTATE_0:
10614 plane_config->rotation = DRM_MODE_ROTATE_0;
10615 break;
10616 case PLANE_CTL_ROTATE_90:
10617 plane_config->rotation = DRM_MODE_ROTATE_270;
10618 break;
10619 case PLANE_CTL_ROTATE_180:
10620 plane_config->rotation = DRM_MODE_ROTATE_180;
10621 break;
10622 case PLANE_CTL_ROTATE_270:
10623 plane_config->rotation = DRM_MODE_ROTATE_90;
10624 break;
10625 }
10626
10627 if (INTEL_GEN(dev_priv) >= 10 &&
10628 val & PLANE_CTL_FLIP_HORIZONTAL)
10629 plane_config->rotation |= DRM_MODE_REFLECT_X;
10630
10631 base = intel_de_read(dev_priv, PLANE_SURF(pipe, plane_id)) & 0xfffff000;
10632 plane_config->base = base;
10633
10634 offset = intel_de_read(dev_priv, PLANE_OFFSET(pipe, plane_id));
10635
10636 val = intel_de_read(dev_priv, PLANE_SIZE(pipe, plane_id));
10637 fb->height = ((val >> 16) & 0xffff) + 1;
10638 fb->width = ((val >> 0) & 0xffff) + 1;
10639
10640 val = intel_de_read(dev_priv, PLANE_STRIDE(pipe, plane_id));
10641 stride_mult = skl_plane_stride_mult(fb, 0, DRM_MODE_ROTATE_0);
10642 fb->pitches[0] = (val & 0x3ff) * stride_mult;
10643
10644 aligned_height = intel_fb_align_height(fb, 0, fb->height);
10645
10646 plane_config->size = fb->pitches[0] * aligned_height;
10647
10648 drm_dbg_kms(&dev_priv->drm,
10649 "%s/%s with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
10650 crtc->base.name, plane->base.name, fb->width, fb->height,
10651 fb->format->cpp[0] * 8, base, fb->pitches[0],
10652 plane_config->size);
10653
10654 plane_config->fb = intel_fb;
10655 return;
10656
10657 error:
10658 kfree(intel_fb);
10659 }
10660
10661 static void ilk_get_pfit_config(struct intel_crtc_state *crtc_state)
10662 {
10663 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
10664 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
10665 u32 ctl, pos, size;
10666
10667 ctl = intel_de_read(dev_priv, PF_CTL(crtc->pipe));
10668 if ((ctl & PF_ENABLE) == 0)
10669 return;
10670
10671 crtc_state->pch_pfit.enabled = true;
10672
10673 pos = intel_de_read(dev_priv, PF_WIN_POS(crtc->pipe));
10674 size = intel_de_read(dev_priv, PF_WIN_SZ(crtc->pipe));
10675
10676 ilk_get_pfit_pos_size(crtc_state, pos, size);
10677
10678 /*
10679 * We currently do not free assignements of panel fitters on
10680 * ivb/hsw (since we don't use the higher upscaling modes which
10681 * differentiates them) so just WARN about this case for now.
10682 */
10683 drm_WARN_ON(&dev_priv->drm, IS_GEN(dev_priv, 7) &&
10684 (ctl & PF_PIPE_SEL_MASK_IVB) != PF_PIPE_SEL_IVB(crtc->pipe));
10685 }
10686
10687 static bool ilk_get_pipe_config(struct intel_crtc *crtc,
10688 struct intel_crtc_state *pipe_config)
10689 {
10690 struct drm_device *dev = crtc->base.dev;
10691 struct drm_i915_private *dev_priv = to_i915(dev);
10692 enum intel_display_power_domain power_domain;
10693 intel_wakeref_t wakeref;
10694 u32 tmp;
10695 bool ret;
10696
10697 power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
10698 wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain);
10699 if (!wakeref)
10700 return false;
10701
10702 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
10703 pipe_config->shared_dpll = NULL;
10704
10705 ret = false;
10706 tmp = intel_de_read(dev_priv, PIPECONF(crtc->pipe));
10707 if (!(tmp & PIPECONF_ENABLE))
10708 goto out;
10709
10710 switch (tmp & PIPECONF_BPC_MASK) {
10711 case PIPECONF_6BPC:
10712 pipe_config->pipe_bpp = 18;
10713 break;
10714 case PIPECONF_8BPC:
10715 pipe_config->pipe_bpp = 24;
10716 break;
10717 case PIPECONF_10BPC:
10718 pipe_config->pipe_bpp = 30;
10719 break;
10720 case PIPECONF_12BPC:
10721 pipe_config->pipe_bpp = 36;
10722 break;
10723 default:
10724 break;
10725 }
10726
10727 if (tmp & PIPECONF_COLOR_RANGE_SELECT)
10728 pipe_config->limited_color_range = true;
10729
10730 switch (tmp & PIPECONF_OUTPUT_COLORSPACE_MASK) {
10731 case PIPECONF_OUTPUT_COLORSPACE_YUV601:
10732 case PIPECONF_OUTPUT_COLORSPACE_YUV709:
10733 pipe_config->output_format = INTEL_OUTPUT_FORMAT_YCBCR444;
10734 break;
10735 default:
10736 pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB;
10737 break;
10738 }
10739
10740 pipe_config->gamma_mode = (tmp & PIPECONF_GAMMA_MODE_MASK_ILK) >>
10741 PIPECONF_GAMMA_MODE_SHIFT;
10742
10743 pipe_config->csc_mode = intel_de_read(dev_priv,
10744 PIPE_CSC_MODE(crtc->pipe));
10745
10746 i9xx_get_pipe_color_config(pipe_config);
10747 intel_color_get_config(pipe_config);
10748
10749 if (intel_de_read(dev_priv, PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
10750 struct intel_shared_dpll *pll;
10751 enum intel_dpll_id pll_id;
10752
10753 pipe_config->has_pch_encoder = true;
10754
10755 tmp = intel_de_read(dev_priv, FDI_RX_CTL(crtc->pipe));
10756 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
10757 FDI_DP_PORT_WIDTH_SHIFT) + 1;
10758
10759 ilk_get_fdi_m_n_config(crtc, pipe_config);
10760
10761 if (HAS_PCH_IBX(dev_priv)) {
10762 /*
10763 * The pipe->pch transcoder and pch transcoder->pll
10764 * mapping is fixed.
10765 */
10766 pll_id = (enum intel_dpll_id) crtc->pipe;
10767 } else {
10768 tmp = intel_de_read(dev_priv, PCH_DPLL_SEL);
10769 if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
10770 pll_id = DPLL_ID_PCH_PLL_B;
10771 else
10772 pll_id= DPLL_ID_PCH_PLL_A;
10773 }
10774
10775 pipe_config->shared_dpll =
10776 intel_get_shared_dpll_by_id(dev_priv, pll_id);
10777 pll = pipe_config->shared_dpll;
10778
10779 drm_WARN_ON(dev, !pll->info->funcs->get_hw_state(dev_priv, pll,
10780 &pipe_config->dpll_hw_state));
10781
10782 tmp = pipe_config->dpll_hw_state.dpll;
10783 pipe_config->pixel_multiplier =
10784 ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
10785 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
10786
10787 ilk_pch_clock_get(crtc, pipe_config);
10788 } else {
10789 pipe_config->pixel_multiplier = 1;
10790 }
10791
10792 intel_get_pipe_timings(crtc, pipe_config);
10793 intel_get_pipe_src_size(crtc, pipe_config);
10794
10795 ilk_get_pfit_config(pipe_config);
10796
10797 ret = true;
10798
10799 out:
10800 intel_display_power_put(dev_priv, power_domain, wakeref);
10801
10802 return ret;
10803 }
10804
10805 static int hsw_crtc_compute_clock(struct intel_crtc *crtc,
10806 struct intel_crtc_state *crtc_state)
10807 {
10808 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
10809 struct intel_atomic_state *state =
10810 to_intel_atomic_state(crtc_state->uapi.state);
10811
10812 if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI) ||
10813 INTEL_GEN(dev_priv) >= 11) {
10814 struct intel_encoder *encoder =
10815 intel_get_crtc_new_encoder(state, crtc_state);
10816
10817 if (!intel_reserve_shared_dplls(state, crtc, encoder)) {
10818 drm_dbg_kms(&dev_priv->drm,
10819 "failed to find PLL for pipe %c\n",
10820 pipe_name(crtc->pipe));
10821 return -EINVAL;
10822 }
10823 }
10824
10825 return 0;
10826 }
10827
10828 static void cnl_get_ddi_pll(struct drm_i915_private *dev_priv, enum port port,
10829 struct intel_crtc_state *pipe_config)
10830 {
10831 enum intel_dpll_id id;
10832 u32 temp;
10833
10834 temp = intel_de_read(dev_priv, DPCLKA_CFGCR0) & DPCLKA_CFGCR0_DDI_CLK_SEL_MASK(port);
10835 id = temp >> DPCLKA_CFGCR0_DDI_CLK_SEL_SHIFT(port);
10836
10837 if (drm_WARN_ON(&dev_priv->drm, id < SKL_DPLL0 || id > SKL_DPLL2))
10838 return;
10839
10840 pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
10841 }
10842
10843 static void icl_get_ddi_pll(struct drm_i915_private *dev_priv, enum port port,
10844 struct intel_crtc_state *pipe_config)
10845 {
10846 enum phy phy = intel_port_to_phy(dev_priv, port);
10847 enum icl_port_dpll_id port_dpll_id;
10848 enum intel_dpll_id id;
10849 u32 temp;
10850
10851 if (intel_phy_is_combo(dev_priv, phy)) {
10852 u32 mask, shift;
10853
10854 if (IS_ROCKETLAKE(dev_priv)) {
10855 mask = RKL_DPCLKA_CFGCR0_DDI_CLK_SEL_MASK(phy);
10856 shift = RKL_DPCLKA_CFGCR0_DDI_CLK_SEL_SHIFT(phy);
10857 } else {
10858 mask = ICL_DPCLKA_CFGCR0_DDI_CLK_SEL_MASK(phy);
10859 shift = ICL_DPCLKA_CFGCR0_DDI_CLK_SEL_SHIFT(phy);
10860 }
10861
10862 temp = intel_de_read(dev_priv, ICL_DPCLKA_CFGCR0) & mask;
10863 id = temp >> shift;
10864 port_dpll_id = ICL_PORT_DPLL_DEFAULT;
10865 } else if (intel_phy_is_tc(dev_priv, phy)) {
10866 u32 clk_sel = intel_de_read(dev_priv, DDI_CLK_SEL(port)) & DDI_CLK_SEL_MASK;
10867
10868 if (clk_sel == DDI_CLK_SEL_MG) {
10869 id = icl_tc_port_to_pll_id(intel_port_to_tc(dev_priv,
10870 port));
10871 port_dpll_id = ICL_PORT_DPLL_MG_PHY;
10872 } else {
10873 drm_WARN_ON(&dev_priv->drm,
10874 clk_sel < DDI_CLK_SEL_TBT_162);
10875 id = DPLL_ID_ICL_TBTPLL;
10876 port_dpll_id = ICL_PORT_DPLL_DEFAULT;
10877 }
10878 } else {
10879 drm_WARN(&dev_priv->drm, 1, "Invalid port %x\n", port);
10880 return;
10881 }
10882
10883 pipe_config->icl_port_dplls[port_dpll_id].pll =
10884 intel_get_shared_dpll_by_id(dev_priv, id);
10885
10886 icl_set_active_port_dpll(pipe_config, port_dpll_id);
10887 }
10888
10889 static void bxt_get_ddi_pll(struct drm_i915_private *dev_priv,
10890 enum port port,
10891 struct intel_crtc_state *pipe_config)
10892 {
10893 enum intel_dpll_id id;
10894
10895 switch (port) {
10896 case PORT_A:
10897 id = DPLL_ID_SKL_DPLL0;
10898 break;
10899 case PORT_B:
10900 id = DPLL_ID_SKL_DPLL1;
10901 break;
10902 case PORT_C:
10903 id = DPLL_ID_SKL_DPLL2;
10904 break;
10905 default:
10906 drm_err(&dev_priv->drm, "Incorrect port type\n");
10907 return;
10908 }
10909
10910 pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
10911 }
10912
10913 static void skl_get_ddi_pll(struct drm_i915_private *dev_priv, enum port port,
10914 struct intel_crtc_state *pipe_config)
10915 {
10916 enum intel_dpll_id id;
10917 u32 temp;
10918
10919 temp = intel_de_read(dev_priv, DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port);
10920 id = temp >> (port * 3 + 1);
10921
10922 if (drm_WARN_ON(&dev_priv->drm, id < SKL_DPLL0 || id > SKL_DPLL3))
10923 return;
10924
10925 pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
10926 }
10927
10928 static void hsw_get_ddi_pll(struct drm_i915_private *dev_priv, enum port port,
10929 struct intel_crtc_state *pipe_config)
10930 {
10931 enum intel_dpll_id id;
10932 u32 ddi_pll_sel = intel_de_read(dev_priv, PORT_CLK_SEL(port));
10933
10934 switch (ddi_pll_sel) {
10935 case PORT_CLK_SEL_WRPLL1:
10936 id = DPLL_ID_WRPLL1;
10937 break;
10938 case PORT_CLK_SEL_WRPLL2:
10939 id = DPLL_ID_WRPLL2;
10940 break;
10941 case PORT_CLK_SEL_SPLL:
10942 id = DPLL_ID_SPLL;
10943 break;
10944 case PORT_CLK_SEL_LCPLL_810:
10945 id = DPLL_ID_LCPLL_810;
10946 break;
10947 case PORT_CLK_SEL_LCPLL_1350:
10948 id = DPLL_ID_LCPLL_1350;
10949 break;
10950 case PORT_CLK_SEL_LCPLL_2700:
10951 id = DPLL_ID_LCPLL_2700;
10952 break;
10953 default:
10954 MISSING_CASE(ddi_pll_sel);
10955 fallthrough;
10956 case PORT_CLK_SEL_NONE:
10957 return;
10958 }
10959
10960 pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
10961 }
10962
10963 static bool hsw_get_transcoder_state(struct intel_crtc *crtc,
10964 struct intel_crtc_state *pipe_config,
10965 u64 *power_domain_mask,
10966 intel_wakeref_t *wakerefs)
10967 {
10968 struct drm_device *dev = crtc->base.dev;
10969 struct drm_i915_private *dev_priv = to_i915(dev);
10970 enum intel_display_power_domain power_domain;
10971 unsigned long panel_transcoder_mask = BIT(TRANSCODER_EDP);
10972 unsigned long enabled_panel_transcoders = 0;
10973 enum transcoder panel_transcoder;
10974 intel_wakeref_t wf;
10975 u32 tmp;
10976
10977 if (INTEL_GEN(dev_priv) >= 11)
10978 panel_transcoder_mask |=
10979 BIT(TRANSCODER_DSI_0) | BIT(TRANSCODER_DSI_1);
10980
10981 /*
10982 * The pipe->transcoder mapping is fixed with the exception of the eDP
10983 * and DSI transcoders handled below.
10984 */
10985 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
10986
10987 /*
10988 * XXX: Do intel_display_power_get_if_enabled before reading this (for
10989 * consistency and less surprising code; it's in always on power).
10990 */
10991 for_each_cpu_transcoder_masked(dev_priv, panel_transcoder,
10992 panel_transcoder_mask) {
10993 bool force_thru = false;
10994 enum pipe trans_pipe;
10995
10996 tmp = intel_de_read(dev_priv,
10997 TRANS_DDI_FUNC_CTL(panel_transcoder));
10998 if (!(tmp & TRANS_DDI_FUNC_ENABLE))
10999 continue;
11000
11001 /*
11002 * Log all enabled ones, only use the first one.
11003 *
11004 * FIXME: This won't work for two separate DSI displays.
11005 */
11006 enabled_panel_transcoders |= BIT(panel_transcoder);
11007 if (enabled_panel_transcoders != BIT(panel_transcoder))
11008 continue;
11009
11010 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
11011 default:
11012 drm_WARN(dev, 1,
11013 "unknown pipe linked to transcoder %s\n",
11014 transcoder_name(panel_transcoder));
11015 fallthrough;
11016 case TRANS_DDI_EDP_INPUT_A_ONOFF:
11017 force_thru = true;
11018 fallthrough;
11019 case TRANS_DDI_EDP_INPUT_A_ON:
11020 trans_pipe = PIPE_A;
11021 break;
11022 case TRANS_DDI_EDP_INPUT_B_ONOFF:
11023 trans_pipe = PIPE_B;
11024 break;
11025 case TRANS_DDI_EDP_INPUT_C_ONOFF:
11026 trans_pipe = PIPE_C;
11027 break;
11028 case TRANS_DDI_EDP_INPUT_D_ONOFF:
11029 trans_pipe = PIPE_D;
11030 break;
11031 }
11032
11033 if (trans_pipe == crtc->pipe) {
11034 pipe_config->cpu_transcoder = panel_transcoder;
11035 pipe_config->pch_pfit.force_thru = force_thru;
11036 }
11037 }
11038
11039 /*
11040 * Valid combos: none, eDP, DSI0, DSI1, DSI0+DSI1
11041 */
11042 drm_WARN_ON(dev, (enabled_panel_transcoders & BIT(TRANSCODER_EDP)) &&
11043 enabled_panel_transcoders != BIT(TRANSCODER_EDP));
11044
11045 power_domain = POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder);
11046 drm_WARN_ON(dev, *power_domain_mask & BIT_ULL(power_domain));
11047
11048 wf = intel_display_power_get_if_enabled(dev_priv, power_domain);
11049 if (!wf)
11050 return false;
11051
11052 wakerefs[power_domain] = wf;
11053 *power_domain_mask |= BIT_ULL(power_domain);
11054
11055 tmp = intel_de_read(dev_priv, PIPECONF(pipe_config->cpu_transcoder));
11056
11057 return tmp & PIPECONF_ENABLE;
11058 }
11059
11060 static bool bxt_get_dsi_transcoder_state(struct intel_crtc *crtc,
11061 struct intel_crtc_state *pipe_config,
11062 u64 *power_domain_mask,
11063 intel_wakeref_t *wakerefs)
11064 {
11065 struct drm_device *dev = crtc->base.dev;
11066 struct drm_i915_private *dev_priv = to_i915(dev);
11067 enum intel_display_power_domain power_domain;
11068 enum transcoder cpu_transcoder;
11069 intel_wakeref_t wf;
11070 enum port port;
11071 u32 tmp;
11072
11073 for_each_port_masked(port, BIT(PORT_A) | BIT(PORT_C)) {
11074 if (port == PORT_A)
11075 cpu_transcoder = TRANSCODER_DSI_A;
11076 else
11077 cpu_transcoder = TRANSCODER_DSI_C;
11078
11079 power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
11080 drm_WARN_ON(dev, *power_domain_mask & BIT_ULL(power_domain));
11081
11082 wf = intel_display_power_get_if_enabled(dev_priv, power_domain);
11083 if (!wf)
11084 continue;
11085
11086 wakerefs[power_domain] = wf;
11087 *power_domain_mask |= BIT_ULL(power_domain);
11088
11089 /*
11090 * The PLL needs to be enabled with a valid divider
11091 * configuration, otherwise accessing DSI registers will hang
11092 * the machine. See BSpec North Display Engine
11093 * registers/MIPI[BXT]. We can break out here early, since we
11094 * need the same DSI PLL to be enabled for both DSI ports.
11095 */
11096 if (!bxt_dsi_pll_is_enabled(dev_priv))
11097 break;
11098
11099 /* XXX: this works for video mode only */
11100 tmp = intel_de_read(dev_priv, BXT_MIPI_PORT_CTRL(port));
11101 if (!(tmp & DPI_ENABLE))
11102 continue;
11103
11104 tmp = intel_de_read(dev_priv, MIPI_CTRL(port));
11105 if ((tmp & BXT_PIPE_SELECT_MASK) != BXT_PIPE_SELECT(crtc->pipe))
11106 continue;
11107
11108 pipe_config->cpu_transcoder = cpu_transcoder;
11109 break;
11110 }
11111
11112 return transcoder_is_dsi(pipe_config->cpu_transcoder);
11113 }
11114
11115 static void hsw_get_ddi_port_state(struct intel_crtc *crtc,
11116 struct intel_crtc_state *pipe_config)
11117 {
11118 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
11119 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
11120 struct intel_shared_dpll *pll;
11121 enum port port;
11122 u32 tmp;
11123
11124 if (transcoder_is_dsi(cpu_transcoder)) {
11125 port = (cpu_transcoder == TRANSCODER_DSI_A) ?
11126 PORT_A : PORT_B;
11127 } else {
11128 tmp = intel_de_read(dev_priv,
11129 TRANS_DDI_FUNC_CTL(cpu_transcoder));
11130 if (INTEL_GEN(dev_priv) >= 12)
11131 port = TGL_TRANS_DDI_FUNC_CTL_VAL_TO_PORT(tmp);
11132 else
11133 port = TRANS_DDI_FUNC_CTL_VAL_TO_PORT(tmp);
11134 }
11135
11136 if (INTEL_GEN(dev_priv) >= 11)
11137 icl_get_ddi_pll(dev_priv, port, pipe_config);
11138 else if (IS_CANNONLAKE(dev_priv))
11139 cnl_get_ddi_pll(dev_priv, port, pipe_config);
11140 else if (IS_GEN9_BC(dev_priv))
11141 skl_get_ddi_pll(dev_priv, port, pipe_config);
11142 else if (IS_GEN9_LP(dev_priv))
11143 bxt_get_ddi_pll(dev_priv, port, pipe_config);
11144 else
11145 hsw_get_ddi_pll(dev_priv, port, pipe_config);
11146
11147 pll = pipe_config->shared_dpll;
11148 if (pll) {
11149 drm_WARN_ON(&dev_priv->drm,
11150 !pll->info->funcs->get_hw_state(dev_priv, pll,
11151 &pipe_config->dpll_hw_state));
11152 }
11153
11154 /*
11155 * Haswell has only FDI/PCH transcoder A. It is which is connected to
11156 * DDI E. So just check whether this pipe is wired to DDI E and whether
11157 * the PCH transcoder is on.
11158 */
11159 if (INTEL_GEN(dev_priv) < 9 &&
11160 (port == PORT_E) && intel_de_read(dev_priv, LPT_TRANSCONF) & TRANS_ENABLE) {
11161 pipe_config->has_pch_encoder = true;
11162
11163 tmp = intel_de_read(dev_priv, FDI_RX_CTL(PIPE_A));
11164 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
11165 FDI_DP_PORT_WIDTH_SHIFT) + 1;
11166
11167 ilk_get_fdi_m_n_config(crtc, pipe_config);
11168 }
11169 }
11170
11171 static bool hsw_get_pipe_config(struct intel_crtc *crtc,
11172 struct intel_crtc_state *pipe_config)
11173 {
11174 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
11175 intel_wakeref_t wakerefs[POWER_DOMAIN_NUM], wf;
11176 enum intel_display_power_domain power_domain;
11177 u64 power_domain_mask;
11178 bool active;
11179 u32 tmp;
11180
11181 pipe_config->master_transcoder = INVALID_TRANSCODER;
11182
11183 power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
11184 wf = intel_display_power_get_if_enabled(dev_priv, power_domain);
11185 if (!wf)
11186 return false;
11187
11188 wakerefs[power_domain] = wf;
11189 power_domain_mask = BIT_ULL(power_domain);
11190
11191 pipe_config->shared_dpll = NULL;
11192
11193 active = hsw_get_transcoder_state(crtc, pipe_config,
11194 &power_domain_mask, wakerefs);
11195
11196 if (IS_GEN9_LP(dev_priv) &&
11197 bxt_get_dsi_transcoder_state(crtc, pipe_config,
11198 &power_domain_mask, wakerefs)) {
11199 drm_WARN_ON(&dev_priv->drm, active);
11200 active = true;
11201 }
11202
11203 if (!active)
11204 goto out;
11205
11206 if (!transcoder_is_dsi(pipe_config->cpu_transcoder) ||
11207 INTEL_GEN(dev_priv) >= 11) {
11208 hsw_get_ddi_port_state(crtc, pipe_config);
11209 intel_get_pipe_timings(crtc, pipe_config);
11210 }
11211
11212 intel_get_pipe_src_size(crtc, pipe_config);
11213
11214 if (IS_HASWELL(dev_priv)) {
11215 u32 tmp = intel_de_read(dev_priv,
11216 PIPECONF(pipe_config->cpu_transcoder));
11217
11218 if (tmp & PIPECONF_OUTPUT_COLORSPACE_YUV_HSW)
11219 pipe_config->output_format = INTEL_OUTPUT_FORMAT_YCBCR444;
11220 else
11221 pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB;
11222 } else {
11223 pipe_config->output_format =
11224 bdw_get_pipemisc_output_format(crtc);
11225
11226 /*
11227 * Currently there is no interface defined to
11228 * check user preference between RGB/YCBCR444
11229 * or YCBCR420. So the only possible case for
11230 * YCBCR444 usage is driving YCBCR420 output
11231 * with LSPCON, when pipe is configured for
11232 * YCBCR444 output and LSPCON takes care of
11233 * downsampling it.
11234 */
11235 pipe_config->lspcon_downsampling =
11236 pipe_config->output_format == INTEL_OUTPUT_FORMAT_YCBCR444;
11237 }
11238
11239 pipe_config->gamma_mode = intel_de_read(dev_priv,
11240 GAMMA_MODE(crtc->pipe));
11241
11242 pipe_config->csc_mode = intel_de_read(dev_priv,
11243 PIPE_CSC_MODE(crtc->pipe));
11244
11245 if (INTEL_GEN(dev_priv) >= 9) {
11246 tmp = intel_de_read(dev_priv, SKL_BOTTOM_COLOR(crtc->pipe));
11247
11248 if (tmp & SKL_BOTTOM_COLOR_GAMMA_ENABLE)
11249 pipe_config->gamma_enable = true;
11250
11251 if (tmp & SKL_BOTTOM_COLOR_CSC_ENABLE)
11252 pipe_config->csc_enable = true;
11253 } else {
11254 i9xx_get_pipe_color_config(pipe_config);
11255 }
11256
11257 intel_color_get_config(pipe_config);
11258
11259 tmp = intel_de_read(dev_priv, WM_LINETIME(crtc->pipe));
11260 pipe_config->linetime = REG_FIELD_GET(HSW_LINETIME_MASK, tmp);
11261 if (IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv))
11262 pipe_config->ips_linetime =
11263 REG_FIELD_GET(HSW_IPS_LINETIME_MASK, tmp);
11264
11265 power_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
11266 drm_WARN_ON(&dev_priv->drm, power_domain_mask & BIT_ULL(power_domain));
11267
11268 wf = intel_display_power_get_if_enabled(dev_priv, power_domain);
11269 if (wf) {
11270 wakerefs[power_domain] = wf;
11271 power_domain_mask |= BIT_ULL(power_domain);
11272
11273 if (INTEL_GEN(dev_priv) >= 9)
11274 skl_get_pfit_config(pipe_config);
11275 else
11276 ilk_get_pfit_config(pipe_config);
11277 }
11278
11279 if (hsw_crtc_supports_ips(crtc)) {
11280 if (IS_HASWELL(dev_priv))
11281 pipe_config->ips_enabled = intel_de_read(dev_priv,
11282 IPS_CTL) & IPS_ENABLE;
11283 else {
11284 /*
11285 * We cannot readout IPS state on broadwell, set to
11286 * true so we can set it to a defined state on first
11287 * commit.
11288 */
11289 pipe_config->ips_enabled = true;
11290 }
11291 }
11292
11293 if (pipe_config->cpu_transcoder != TRANSCODER_EDP &&
11294 !transcoder_is_dsi(pipe_config->cpu_transcoder)) {
11295 pipe_config->pixel_multiplier =
11296 intel_de_read(dev_priv,
11297 PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
11298 } else {
11299 pipe_config->pixel_multiplier = 1;
11300 }
11301
11302 out:
11303 for_each_power_domain(power_domain, power_domain_mask)
11304 intel_display_power_put(dev_priv,
11305 power_domain, wakerefs[power_domain]);
11306
11307 return active;
11308 }
11309
11310 static u32 intel_cursor_base(const struct intel_plane_state *plane_state)
11311 {
11312 struct drm_i915_private *dev_priv =
11313 to_i915(plane_state->uapi.plane->dev);
11314 const struct drm_framebuffer *fb = plane_state->hw.fb;
11315 const struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11316 u32 base;
11317
11318 if (INTEL_INFO(dev_priv)->display.cursor_needs_physical)
11319 base = sg_dma_address(obj->mm.pages->sgl);
11320 else
11321 base = intel_plane_ggtt_offset(plane_state);
11322
11323 return base + plane_state->color_plane[0].offset;
11324 }
11325
11326 static u32 intel_cursor_position(const struct intel_plane_state *plane_state)
11327 {
11328 int x = plane_state->uapi.dst.x1;
11329 int y = plane_state->uapi.dst.y1;
11330 u32 pos = 0;
11331
11332 if (x < 0) {
11333 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
11334 x = -x;
11335 }
11336 pos |= x << CURSOR_X_SHIFT;
11337
11338 if (y < 0) {
11339 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
11340 y = -y;
11341 }
11342 pos |= y << CURSOR_Y_SHIFT;
11343
11344 return pos;
11345 }
11346
11347 static bool intel_cursor_size_ok(const struct intel_plane_state *plane_state)
11348 {
11349 const struct drm_mode_config *config =
11350 &plane_state->uapi.plane->dev->mode_config;
11351 int width = drm_rect_width(&plane_state->uapi.dst);
11352 int height = drm_rect_height(&plane_state->uapi.dst);
11353
11354 return width > 0 && width <= config->cursor_width &&
11355 height > 0 && height <= config->cursor_height;
11356 }
11357
11358 static int intel_cursor_check_surface(struct intel_plane_state *plane_state)
11359 {
11360 struct drm_i915_private *dev_priv =
11361 to_i915(plane_state->uapi.plane->dev);
11362 unsigned int rotation = plane_state->hw.rotation;
11363 int src_x, src_y;
11364 u32 offset;
11365 int ret;
11366
11367 ret = intel_plane_compute_gtt(plane_state);
11368 if (ret)
11369 return ret;
11370
11371 if (!plane_state->uapi.visible)
11372 return 0;
11373
11374 src_x = plane_state->uapi.src.x1 >> 16;
11375 src_y = plane_state->uapi.src.y1 >> 16;
11376
11377 intel_add_fb_offsets(&src_x, &src_y, plane_state, 0);
11378 offset = intel_plane_compute_aligned_offset(&src_x, &src_y,
11379 plane_state, 0);
11380
11381 if (src_x != 0 || src_y != 0) {
11382 drm_dbg_kms(&dev_priv->drm,
11383 "Arbitrary cursor panning not supported\n");
11384 return -EINVAL;
11385 }
11386
11387 /*
11388 * Put the final coordinates back so that the src
11389 * coordinate checks will see the right values.
11390 */
11391 drm_rect_translate_to(&plane_state->uapi.src,
11392 src_x << 16, src_y << 16);
11393
11394 /* ILK+ do this automagically in hardware */
11395 if (HAS_GMCH(dev_priv) && rotation & DRM_MODE_ROTATE_180) {
11396 const struct drm_framebuffer *fb = plane_state->hw.fb;
11397 int src_w = drm_rect_width(&plane_state->uapi.src) >> 16;
11398 int src_h = drm_rect_height(&plane_state->uapi.src) >> 16;
11399
11400 offset += (src_h * src_w - 1) * fb->format->cpp[0];
11401 }
11402
11403 plane_state->color_plane[0].offset = offset;
11404 plane_state->color_plane[0].x = src_x;
11405 plane_state->color_plane[0].y = src_y;
11406
11407 return 0;
11408 }
11409
11410 static int intel_check_cursor(struct intel_crtc_state *crtc_state,
11411 struct intel_plane_state *plane_state)
11412 {
11413 const struct drm_framebuffer *fb = plane_state->hw.fb;
11414 struct drm_i915_private *i915 = to_i915(plane_state->uapi.plane->dev);
11415 int ret;
11416
11417 if (fb && fb->modifier != DRM_FORMAT_MOD_LINEAR) {
11418 drm_dbg_kms(&i915->drm, "cursor cannot be tiled\n");
11419 return -EINVAL;
11420 }
11421
11422 ret = drm_atomic_helper_check_plane_state(&plane_state->uapi,
11423 &crtc_state->uapi,
11424 DRM_PLANE_HELPER_NO_SCALING,
11425 DRM_PLANE_HELPER_NO_SCALING,
11426 true, true);
11427 if (ret)
11428 return ret;
11429
11430 /* Use the unclipped src/dst rectangles, which we program to hw */
11431 plane_state->uapi.src = drm_plane_state_src(&plane_state->uapi);
11432 plane_state->uapi.dst = drm_plane_state_dest(&plane_state->uapi);
11433
11434 ret = intel_cursor_check_surface(plane_state);
11435 if (ret)
11436 return ret;
11437
11438 if (!plane_state->uapi.visible)
11439 return 0;
11440
11441 ret = intel_plane_check_src_coordinates(plane_state);
11442 if (ret)
11443 return ret;
11444
11445 return 0;
11446 }
11447
11448 static unsigned int
11449 i845_cursor_max_stride(struct intel_plane *plane,
11450 u32 pixel_format, u64 modifier,
11451 unsigned int rotation)
11452 {
11453 return 2048;
11454 }
11455
11456 static u32 i845_cursor_ctl_crtc(const struct intel_crtc_state *crtc_state)
11457 {
11458 u32 cntl = 0;
11459
11460 if (crtc_state->gamma_enable)
11461 cntl |= CURSOR_GAMMA_ENABLE;
11462
11463 return cntl;
11464 }
11465
11466 static u32 i845_cursor_ctl(const struct intel_crtc_state *crtc_state,
11467 const struct intel_plane_state *plane_state)
11468 {
11469 return CURSOR_ENABLE |
11470 CURSOR_FORMAT_ARGB |
11471 CURSOR_STRIDE(plane_state->color_plane[0].stride);
11472 }
11473
11474 static bool i845_cursor_size_ok(const struct intel_plane_state *plane_state)
11475 {
11476 int width = drm_rect_width(&plane_state->uapi.dst);
11477
11478 /*
11479 * 845g/865g are only limited by the width of their cursors,
11480 * the height is arbitrary up to the precision of the register.
11481 */
11482 return intel_cursor_size_ok(plane_state) && IS_ALIGNED(width, 64);
11483 }
11484
11485 static int i845_check_cursor(struct intel_crtc_state *crtc_state,
11486 struct intel_plane_state *plane_state)
11487 {
11488 const struct drm_framebuffer *fb = plane_state->hw.fb;
11489 struct drm_i915_private *i915 = to_i915(plane_state->uapi.plane->dev);
11490 int ret;
11491
11492 ret = intel_check_cursor(crtc_state, plane_state);
11493 if (ret)
11494 return ret;
11495
11496 /* if we want to turn off the cursor ignore width and height */
11497 if (!fb)
11498 return 0;
11499
11500 /* Check for which cursor types we support */
11501 if (!i845_cursor_size_ok(plane_state)) {
11502 drm_dbg_kms(&i915->drm,
11503 "Cursor dimension %dx%d not supported\n",
11504 drm_rect_width(&plane_state->uapi.dst),
11505 drm_rect_height(&plane_state->uapi.dst));
11506 return -EINVAL;
11507 }
11508
11509 drm_WARN_ON(&i915->drm, plane_state->uapi.visible &&
11510 plane_state->color_plane[0].stride != fb->pitches[0]);
11511
11512 switch (fb->pitches[0]) {
11513 case 256:
11514 case 512:
11515 case 1024:
11516 case 2048:
11517 break;
11518 default:
11519 drm_dbg_kms(&i915->drm, "Invalid cursor stride (%u)\n",
11520 fb->pitches[0]);
11521 return -EINVAL;
11522 }
11523
11524 plane_state->ctl = i845_cursor_ctl(crtc_state, plane_state);
11525
11526 return 0;
11527 }
11528
11529 static void i845_update_cursor(struct intel_plane *plane,
11530 const struct intel_crtc_state *crtc_state,
11531 const struct intel_plane_state *plane_state)
11532 {
11533 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
11534 u32 cntl = 0, base = 0, pos = 0, size = 0;
11535 unsigned long irqflags;
11536
11537 if (plane_state && plane_state->uapi.visible) {
11538 unsigned int width = drm_rect_width(&plane_state->uapi.dst);
11539 unsigned int height = drm_rect_height(&plane_state->uapi.dst);
11540
11541 cntl = plane_state->ctl |
11542 i845_cursor_ctl_crtc(crtc_state);
11543
11544 size = (height << 12) | width;
11545
11546 base = intel_cursor_base(plane_state);
11547 pos = intel_cursor_position(plane_state);
11548 }
11549
11550 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
11551
11552 /* On these chipsets we can only modify the base/size/stride
11553 * whilst the cursor is disabled.
11554 */
11555 if (plane->cursor.base != base ||
11556 plane->cursor.size != size ||
11557 plane->cursor.cntl != cntl) {
11558 intel_de_write_fw(dev_priv, CURCNTR(PIPE_A), 0);
11559 intel_de_write_fw(dev_priv, CURBASE(PIPE_A), base);
11560 intel_de_write_fw(dev_priv, CURSIZE, size);
11561 intel_de_write_fw(dev_priv, CURPOS(PIPE_A), pos);
11562 intel_de_write_fw(dev_priv, CURCNTR(PIPE_A), cntl);
11563
11564 plane->cursor.base = base;
11565 plane->cursor.size = size;
11566 plane->cursor.cntl = cntl;
11567 } else {
11568 intel_de_write_fw(dev_priv, CURPOS(PIPE_A), pos);
11569 }
11570
11571 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
11572 }
11573
11574 static void i845_disable_cursor(struct intel_plane *plane,
11575 const struct intel_crtc_state *crtc_state)
11576 {
11577 i845_update_cursor(plane, crtc_state, NULL);
11578 }
11579
11580 static bool i845_cursor_get_hw_state(struct intel_plane *plane,
11581 enum pipe *pipe)
11582 {
11583 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
11584 enum intel_display_power_domain power_domain;
11585 intel_wakeref_t wakeref;
11586 bool ret;
11587
11588 power_domain = POWER_DOMAIN_PIPE(PIPE_A);
11589 wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain);
11590 if (!wakeref)
11591 return false;
11592
11593 ret = intel_de_read(dev_priv, CURCNTR(PIPE_A)) & CURSOR_ENABLE;
11594
11595 *pipe = PIPE_A;
11596
11597 intel_display_power_put(dev_priv, power_domain, wakeref);
11598
11599 return ret;
11600 }
11601
11602 static unsigned int
11603 i9xx_cursor_max_stride(struct intel_plane *plane,
11604 u32 pixel_format, u64 modifier,
11605 unsigned int rotation)
11606 {
11607 return plane->base.dev->mode_config.cursor_width * 4;
11608 }
11609
11610 static u32 i9xx_cursor_ctl_crtc(const struct intel_crtc_state *crtc_state)
11611 {
11612 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
11613 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
11614 u32 cntl = 0;
11615
11616 if (INTEL_GEN(dev_priv) >= 11)
11617 return cntl;
11618
11619 if (crtc_state->gamma_enable)
11620 cntl = MCURSOR_GAMMA_ENABLE;
11621
11622 if (crtc_state->csc_enable)
11623 cntl |= MCURSOR_PIPE_CSC_ENABLE;
11624
11625 if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv))
11626 cntl |= MCURSOR_PIPE_SELECT(crtc->pipe);
11627
11628 return cntl;
11629 }
11630
11631 static u32 i9xx_cursor_ctl(const struct intel_crtc_state *crtc_state,
11632 const struct intel_plane_state *plane_state)
11633 {
11634 struct drm_i915_private *dev_priv =
11635 to_i915(plane_state->uapi.plane->dev);
11636 u32 cntl = 0;
11637
11638 if (IS_GEN(dev_priv, 6) || IS_IVYBRIDGE(dev_priv))
11639 cntl |= MCURSOR_TRICKLE_FEED_DISABLE;
11640
11641 switch (drm_rect_width(&plane_state->uapi.dst)) {
11642 case 64:
11643 cntl |= MCURSOR_MODE_64_ARGB_AX;
11644 break;
11645 case 128:
11646 cntl |= MCURSOR_MODE_128_ARGB_AX;
11647 break;
11648 case 256:
11649 cntl |= MCURSOR_MODE_256_ARGB_AX;
11650 break;
11651 default:
11652 MISSING_CASE(drm_rect_width(&plane_state->uapi.dst));
11653 return 0;
11654 }
11655
11656 if (plane_state->hw.rotation & DRM_MODE_ROTATE_180)
11657 cntl |= MCURSOR_ROTATE_180;
11658
11659 return cntl;
11660 }
11661
11662 static bool i9xx_cursor_size_ok(const struct intel_plane_state *plane_state)
11663 {
11664 struct drm_i915_private *dev_priv =
11665 to_i915(plane_state->uapi.plane->dev);
11666 int width = drm_rect_width(&plane_state->uapi.dst);
11667 int height = drm_rect_height(&plane_state->uapi.dst);
11668
11669 if (!intel_cursor_size_ok(plane_state))
11670 return false;
11671
11672 /* Cursor width is limited to a few power-of-two sizes */
11673 switch (width) {
11674 case 256:
11675 case 128:
11676 case 64:
11677 break;
11678 default:
11679 return false;
11680 }
11681
11682 /*
11683 * IVB+ have CUR_FBC_CTL which allows an arbitrary cursor
11684 * height from 8 lines up to the cursor width, when the
11685 * cursor is not rotated. Everything else requires square
11686 * cursors.
11687 */
11688 if (HAS_CUR_FBC(dev_priv) &&
11689 plane_state->hw.rotation & DRM_MODE_ROTATE_0) {
11690 if (height < 8 || height > width)
11691 return false;
11692 } else {
11693 if (height != width)
11694 return false;
11695 }
11696
11697 return true;
11698 }
11699
11700 static int i9xx_check_cursor(struct intel_crtc_state *crtc_state,
11701 struct intel_plane_state *plane_state)
11702 {
11703 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
11704 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
11705 const struct drm_framebuffer *fb = plane_state->hw.fb;
11706 enum pipe pipe = plane->pipe;
11707 int ret;
11708
11709 ret = intel_check_cursor(crtc_state, plane_state);
11710 if (ret)
11711 return ret;
11712
11713 /* if we want to turn off the cursor ignore width and height */
11714 if (!fb)
11715 return 0;
11716
11717 /* Check for which cursor types we support */
11718 if (!i9xx_cursor_size_ok(plane_state)) {
11719 drm_dbg(&dev_priv->drm,
11720 "Cursor dimension %dx%d not supported\n",
11721 drm_rect_width(&plane_state->uapi.dst),
11722 drm_rect_height(&plane_state->uapi.dst));
11723 return -EINVAL;
11724 }
11725
11726 drm_WARN_ON(&dev_priv->drm, plane_state->uapi.visible &&
11727 plane_state->color_plane[0].stride != fb->pitches[0]);
11728
11729 if (fb->pitches[0] !=
11730 drm_rect_width(&plane_state->uapi.dst) * fb->format->cpp[0]) {
11731 drm_dbg_kms(&dev_priv->drm,
11732 "Invalid cursor stride (%u) (cursor width %d)\n",
11733 fb->pitches[0],
11734 drm_rect_width(&plane_state->uapi.dst));
11735 return -EINVAL;
11736 }
11737
11738 /*
11739 * There's something wrong with the cursor on CHV pipe C.
11740 * If it straddles the left edge of the screen then
11741 * moving it away from the edge or disabling it often
11742 * results in a pipe underrun, and often that can lead to
11743 * dead pipe (constant underrun reported, and it scans
11744 * out just a solid color). To recover from that, the
11745 * display power well must be turned off and on again.
11746 * Refuse the put the cursor into that compromised position.
11747 */
11748 if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_C &&
11749 plane_state->uapi.visible && plane_state->uapi.dst.x1 < 0) {
11750 drm_dbg_kms(&dev_priv->drm,
11751 "CHV cursor C not allowed to straddle the left screen edge\n");
11752 return -EINVAL;
11753 }
11754
11755 plane_state->ctl = i9xx_cursor_ctl(crtc_state, plane_state);
11756
11757 return 0;
11758 }
11759
11760 static void i9xx_update_cursor(struct intel_plane *plane,
11761 const struct intel_crtc_state *crtc_state,
11762 const struct intel_plane_state *plane_state)
11763 {
11764 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
11765 enum pipe pipe = plane->pipe;
11766 u32 cntl = 0, base = 0, pos = 0, fbc_ctl = 0;
11767 unsigned long irqflags;
11768
11769 if (plane_state && plane_state->uapi.visible) {
11770 unsigned width = drm_rect_width(&plane_state->uapi.dst);
11771 unsigned height = drm_rect_height(&plane_state->uapi.dst);
11772
11773 cntl = plane_state->ctl |
11774 i9xx_cursor_ctl_crtc(crtc_state);
11775
11776 if (width != height)
11777 fbc_ctl = CUR_FBC_CTL_EN | (height - 1);
11778
11779 base = intel_cursor_base(plane_state);
11780 pos = intel_cursor_position(plane_state);
11781 }
11782
11783 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
11784
11785 /*
11786 * On some platforms writing CURCNTR first will also
11787 * cause CURPOS to be armed by the CURBASE write.
11788 * Without the CURCNTR write the CURPOS write would
11789 * arm itself. Thus we always update CURCNTR before
11790 * CURPOS.
11791 *
11792 * On other platforms CURPOS always requires the
11793 * CURBASE write to arm the update. Additonally
11794 * a write to any of the cursor register will cancel
11795 * an already armed cursor update. Thus leaving out
11796 * the CURBASE write after CURPOS could lead to a
11797 * cursor that doesn't appear to move, or even change
11798 * shape. Thus we always write CURBASE.
11799 *
11800 * The other registers are armed by by the CURBASE write
11801 * except when the plane is getting enabled at which time
11802 * the CURCNTR write arms the update.
11803 */
11804
11805 if (INTEL_GEN(dev_priv) >= 9)
11806 skl_write_cursor_wm(plane, crtc_state);
11807
11808 if (plane->cursor.base != base ||
11809 plane->cursor.size != fbc_ctl ||
11810 plane->cursor.cntl != cntl) {
11811 if (HAS_CUR_FBC(dev_priv))
11812 intel_de_write_fw(dev_priv, CUR_FBC_CTL(pipe),
11813 fbc_ctl);
11814 intel_de_write_fw(dev_priv, CURCNTR(pipe), cntl);
11815 intel_de_write_fw(dev_priv, CURPOS(pipe), pos);
11816 intel_de_write_fw(dev_priv, CURBASE(pipe), base);
11817
11818 plane->cursor.base = base;
11819 plane->cursor.size = fbc_ctl;
11820 plane->cursor.cntl = cntl;
11821 } else {
11822 intel_de_write_fw(dev_priv, CURPOS(pipe), pos);
11823 intel_de_write_fw(dev_priv, CURBASE(pipe), base);
11824 }
11825
11826 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
11827 }
11828
11829 static void i9xx_disable_cursor(struct intel_plane *plane,
11830 const struct intel_crtc_state *crtc_state)
11831 {
11832 i9xx_update_cursor(plane, crtc_state, NULL);
11833 }
11834
11835 static bool i9xx_cursor_get_hw_state(struct intel_plane *plane,
11836 enum pipe *pipe)
11837 {
11838 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
11839 enum intel_display_power_domain power_domain;
11840 intel_wakeref_t wakeref;
11841 bool ret;
11842 u32 val;
11843
11844 /*
11845 * Not 100% correct for planes that can move between pipes,
11846 * but that's only the case for gen2-3 which don't have any
11847 * display power wells.
11848 */
11849 power_domain = POWER_DOMAIN_PIPE(plane->pipe);
11850 wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain);
11851 if (!wakeref)
11852 return false;
11853
11854 val = intel_de_read(dev_priv, CURCNTR(plane->pipe));
11855
11856 ret = val & MCURSOR_MODE;
11857
11858 if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
11859 *pipe = plane->pipe;
11860 else
11861 *pipe = (val & MCURSOR_PIPE_SELECT_MASK) >>
11862 MCURSOR_PIPE_SELECT_SHIFT;
11863
11864 intel_display_power_put(dev_priv, power_domain, wakeref);
11865
11866 return ret;
11867 }
11868
11869 /* VESA 640x480x72Hz mode to set on the pipe */
11870 static const struct drm_display_mode load_detect_mode = {
11871 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
11872 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
11873 };
11874
11875 struct drm_framebuffer *
11876 intel_framebuffer_create(struct drm_i915_gem_object *obj,
11877 struct drm_mode_fb_cmd2 *mode_cmd)
11878 {
11879 struct intel_framebuffer *intel_fb;
11880 int ret;
11881
11882 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
11883 if (!intel_fb)
11884 return ERR_PTR(-ENOMEM);
11885
11886 ret = intel_framebuffer_init(intel_fb, obj, mode_cmd);
11887 if (ret)
11888 goto err;
11889
11890 return &intel_fb->base;
11891
11892 err:
11893 kfree(intel_fb);
11894 return ERR_PTR(ret);
11895 }
11896
11897 static int intel_modeset_disable_planes(struct drm_atomic_state *state,
11898 struct drm_crtc *crtc)
11899 {
11900 struct drm_plane *plane;
11901 struct drm_plane_state *plane_state;
11902 int ret, i;
11903
11904 ret = drm_atomic_add_affected_planes(state, crtc);
11905 if (ret)
11906 return ret;
11907
11908 for_each_new_plane_in_state(state, plane, plane_state, i) {
11909 if (plane_state->crtc != crtc)
11910 continue;
11911
11912 ret = drm_atomic_set_crtc_for_plane(plane_state, NULL);
11913 if (ret)
11914 return ret;
11915
11916 drm_atomic_set_fb_for_plane(plane_state, NULL);
11917 }
11918
11919 return 0;
11920 }
11921
11922 int intel_get_load_detect_pipe(struct drm_connector *connector,
11923 struct intel_load_detect_pipe *old,
11924 struct drm_modeset_acquire_ctx *ctx)
11925 {
11926 struct intel_crtc *intel_crtc;
11927 struct intel_encoder *intel_encoder =
11928 intel_attached_encoder(to_intel_connector(connector));
11929 struct drm_crtc *possible_crtc;
11930 struct drm_encoder *encoder = &intel_encoder->base;
11931 struct drm_crtc *crtc = NULL;
11932 struct drm_device *dev = encoder->dev;
11933 struct drm_i915_private *dev_priv = to_i915(dev);
11934 struct drm_mode_config *config = &dev->mode_config;
11935 struct drm_atomic_state *state = NULL, *restore_state = NULL;
11936 struct drm_connector_state *connector_state;
11937 struct intel_crtc_state *crtc_state;
11938 int ret, i = -1;
11939
11940 drm_dbg_kms(&dev_priv->drm, "[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
11941 connector->base.id, connector->name,
11942 encoder->base.id, encoder->name);
11943
11944 old->restore_state = NULL;
11945
11946 drm_WARN_ON(dev, !drm_modeset_is_locked(&config->connection_mutex));
11947
11948 /*
11949 * Algorithm gets a little messy:
11950 *
11951 * - if the connector already has an assigned crtc, use it (but make
11952 * sure it's on first)
11953 *
11954 * - try to find the first unused crtc that can drive this connector,
11955 * and use that if we find one
11956 */
11957
11958 /* See if we already have a CRTC for this connector */
11959 if (connector->state->crtc) {
11960 crtc = connector->state->crtc;
11961
11962 ret = drm_modeset_lock(&crtc->mutex, ctx);
11963 if (ret)
11964 goto fail;
11965
11966 /* Make sure the crtc and connector are running */
11967 goto found;
11968 }
11969
11970 /* Find an unused one (if possible) */
11971 for_each_crtc(dev, possible_crtc) {
11972 i++;
11973 if (!(encoder->possible_crtcs & (1 << i)))
11974 continue;
11975
11976 ret = drm_modeset_lock(&possible_crtc->mutex, ctx);
11977 if (ret)
11978 goto fail;
11979
11980 if (possible_crtc->state->enable) {
11981 drm_modeset_unlock(&possible_crtc->mutex);
11982 continue;
11983 }
11984
11985 crtc = possible_crtc;
11986 break;
11987 }
11988
11989 /*
11990 * If we didn't find an unused CRTC, don't use any.
11991 */
11992 if (!crtc) {
11993 drm_dbg_kms(&dev_priv->drm,
11994 "no pipe available for load-detect\n");
11995 ret = -ENODEV;
11996 goto fail;
11997 }
11998
11999 found:
12000 intel_crtc = to_intel_crtc(crtc);
12001
12002 state = drm_atomic_state_alloc(dev);
12003 restore_state = drm_atomic_state_alloc(dev);
12004 if (!state || !restore_state) {
12005 ret = -ENOMEM;
12006 goto fail;
12007 }
12008
12009 state->acquire_ctx = ctx;
12010 restore_state->acquire_ctx = ctx;
12011
12012 connector_state = drm_atomic_get_connector_state(state, connector);
12013 if (IS_ERR(connector_state)) {
12014 ret = PTR_ERR(connector_state);
12015 goto fail;
12016 }
12017
12018 ret = drm_atomic_set_crtc_for_connector(connector_state, crtc);
12019 if (ret)
12020 goto fail;
12021
12022 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
12023 if (IS_ERR(crtc_state)) {
12024 ret = PTR_ERR(crtc_state);
12025 goto fail;
12026 }
12027
12028 crtc_state->uapi.active = true;
12029
12030 ret = drm_atomic_set_mode_for_crtc(&crtc_state->uapi,
12031 &load_detect_mode);
12032 if (ret)
12033 goto fail;
12034
12035 ret = intel_modeset_disable_planes(state, crtc);
12036 if (ret)
12037 goto fail;
12038
12039 ret = PTR_ERR_OR_ZERO(drm_atomic_get_connector_state(restore_state, connector));
12040 if (!ret)
12041 ret = PTR_ERR_OR_ZERO(drm_atomic_get_crtc_state(restore_state, crtc));
12042 if (!ret)
12043 ret = drm_atomic_add_affected_planes(restore_state, crtc);
12044 if (ret) {
12045 drm_dbg_kms(&dev_priv->drm,
12046 "Failed to create a copy of old state to restore: %i\n",
12047 ret);
12048 goto fail;
12049 }
12050
12051 ret = drm_atomic_commit(state);
12052 if (ret) {
12053 drm_dbg_kms(&dev_priv->drm,
12054 "failed to set mode on load-detect pipe\n");
12055 goto fail;
12056 }
12057
12058 old->restore_state = restore_state;
12059 drm_atomic_state_put(state);
12060
12061 /* let the connector get through one full cycle before testing */
12062 intel_wait_for_vblank(dev_priv, intel_crtc->pipe);
12063 return true;
12064
12065 fail:
12066 if (state) {
12067 drm_atomic_state_put(state);
12068 state = NULL;
12069 }
12070 if (restore_state) {
12071 drm_atomic_state_put(restore_state);
12072 restore_state = NULL;
12073 }
12074
12075 if (ret == -EDEADLK)
12076 return ret;
12077
12078 return false;
12079 }
12080
12081 void intel_release_load_detect_pipe(struct drm_connector *connector,
12082 struct intel_load_detect_pipe *old,
12083 struct drm_modeset_acquire_ctx *ctx)
12084 {
12085 struct intel_encoder *intel_encoder =
12086 intel_attached_encoder(to_intel_connector(connector));
12087 struct drm_i915_private *i915 = to_i915(intel_encoder->base.dev);
12088 struct drm_encoder *encoder = &intel_encoder->base;
12089 struct drm_atomic_state *state = old->restore_state;
12090 int ret;
12091
12092 drm_dbg_kms(&i915->drm, "[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
12093 connector->base.id, connector->name,
12094 encoder->base.id, encoder->name);
12095
12096 if (!state)
12097 return;
12098
12099 ret = drm_atomic_helper_commit_duplicated_state(state, ctx);
12100 if (ret)
12101 drm_dbg_kms(&i915->drm,
12102 "Couldn't release load detect pipe: %i\n", ret);
12103 drm_atomic_state_put(state);
12104 }
12105
12106 static int i9xx_pll_refclk(struct drm_device *dev,
12107 const struct intel_crtc_state *pipe_config)
12108 {
12109 struct drm_i915_private *dev_priv = to_i915(dev);
12110 u32 dpll = pipe_config->dpll_hw_state.dpll;
12111
12112 if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
12113 return dev_priv->vbt.lvds_ssc_freq;
12114 else if (HAS_PCH_SPLIT(dev_priv))
12115 return 120000;
12116 else if (!IS_GEN(dev_priv, 2))
12117 return 96000;
12118 else
12119 return 48000;
12120 }
12121
12122 /* Returns the clock of the currently programmed mode of the given pipe. */
12123 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
12124 struct intel_crtc_state *pipe_config)
12125 {
12126 struct drm_device *dev = crtc->base.dev;
12127 struct drm_i915_private *dev_priv = to_i915(dev);
12128 enum pipe pipe = crtc->pipe;
12129 u32 dpll = pipe_config->dpll_hw_state.dpll;
12130 u32 fp;
12131 struct dpll clock;
12132 int port_clock;
12133 int refclk = i9xx_pll_refclk(dev, pipe_config);
12134
12135 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
12136 fp = pipe_config->dpll_hw_state.fp0;
12137 else
12138 fp = pipe_config->dpll_hw_state.fp1;
12139
12140 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
12141 if (IS_PINEVIEW(dev_priv)) {
12142 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
12143 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
12144 } else {
12145 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
12146 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
12147 }
12148
12149 if (!IS_GEN(dev_priv, 2)) {
12150 if (IS_PINEVIEW(dev_priv))
12151 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
12152 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
12153 else
12154 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
12155 DPLL_FPA01_P1_POST_DIV_SHIFT);
12156
12157 switch (dpll & DPLL_MODE_MASK) {
12158 case DPLLB_MODE_DAC_SERIAL:
12159 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
12160 5 : 10;
12161 break;
12162 case DPLLB_MODE_LVDS:
12163 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
12164 7 : 14;
12165 break;
12166 default:
12167 drm_dbg_kms(&dev_priv->drm,
12168 "Unknown DPLL mode %08x in programmed "
12169 "mode\n", (int)(dpll & DPLL_MODE_MASK));
12170 return;
12171 }
12172
12173 if (IS_PINEVIEW(dev_priv))
12174 port_clock = pnv_calc_dpll_params(refclk, &clock);
12175 else
12176 port_clock = i9xx_calc_dpll_params(refclk, &clock);
12177 } else {
12178 u32 lvds = IS_I830(dev_priv) ? 0 : intel_de_read(dev_priv,
12179 LVDS);
12180 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
12181
12182 if (is_lvds) {
12183 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
12184 DPLL_FPA01_P1_POST_DIV_SHIFT);
12185
12186 if (lvds & LVDS_CLKB_POWER_UP)
12187 clock.p2 = 7;
12188 else
12189 clock.p2 = 14;
12190 } else {
12191 if (dpll & PLL_P1_DIVIDE_BY_TWO)
12192 clock.p1 = 2;
12193 else {
12194 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
12195 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
12196 }
12197 if (dpll & PLL_P2_DIVIDE_BY_4)
12198 clock.p2 = 4;
12199 else
12200 clock.p2 = 2;
12201 }
12202
12203 port_clock = i9xx_calc_dpll_params(refclk, &clock);
12204 }
12205
12206 /*
12207 * This value includes pixel_multiplier. We will use
12208 * port_clock to compute adjusted_mode.crtc_clock in the
12209 * encoder's get_config() function.
12210 */
12211 pipe_config->port_clock = port_clock;
12212 }
12213
12214 int intel_dotclock_calculate(int link_freq,
12215 const struct intel_link_m_n *m_n)
12216 {
12217 /*
12218 * The calculation for the data clock is:
12219 * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
12220 * But we want to avoid losing precison if possible, so:
12221 * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
12222 *
12223 * and the link clock is simpler:
12224 * link_clock = (m * link_clock) / n
12225 */
12226
12227 if (!m_n->link_n)
12228 return 0;
12229
12230 return div_u64(mul_u32_u32(m_n->link_m, link_freq), m_n->link_n);
12231 }
12232
12233 static void ilk_pch_clock_get(struct intel_crtc *crtc,
12234 struct intel_crtc_state *pipe_config)
12235 {
12236 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
12237
12238 /* read out port_clock from the DPLL */
12239 i9xx_crtc_clock_get(crtc, pipe_config);
12240
12241 /*
12242 * In case there is an active pipe without active ports,
12243 * we may need some idea for the dotclock anyway.
12244 * Calculate one based on the FDI configuration.
12245 */
12246 pipe_config->hw.adjusted_mode.crtc_clock =
12247 intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config),
12248 &pipe_config->fdi_m_n);
12249 }
12250
12251 static void intel_crtc_state_reset(struct intel_crtc_state *crtc_state,
12252 struct intel_crtc *crtc)
12253 {
12254 memset(crtc_state, 0, sizeof(*crtc_state));
12255
12256 __drm_atomic_helper_crtc_state_reset(&crtc_state->uapi, &crtc->base);
12257
12258 crtc_state->cpu_transcoder = INVALID_TRANSCODER;
12259 crtc_state->master_transcoder = INVALID_TRANSCODER;
12260 crtc_state->hsw_workaround_pipe = INVALID_PIPE;
12261 crtc_state->output_format = INTEL_OUTPUT_FORMAT_INVALID;
12262 crtc_state->scaler_state.scaler_id = -1;
12263 crtc_state->mst_master_transcoder = INVALID_TRANSCODER;
12264 }
12265
12266 static struct intel_crtc_state *intel_crtc_state_alloc(struct intel_crtc *crtc)
12267 {
12268 struct intel_crtc_state *crtc_state;
12269
12270 crtc_state = kmalloc(sizeof(*crtc_state), GFP_KERNEL);
12271
12272 if (crtc_state)
12273 intel_crtc_state_reset(crtc_state, crtc);
12274
12275 return crtc_state;
12276 }
12277
12278 /* Returns the currently programmed mode of the given encoder. */
12279 struct drm_display_mode *
12280 intel_encoder_current_mode(struct intel_encoder *encoder)
12281 {
12282 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
12283 struct intel_crtc_state *crtc_state;
12284 struct drm_display_mode *mode;
12285 struct intel_crtc *crtc;
12286 enum pipe pipe;
12287
12288 if (!encoder->get_hw_state(encoder, &pipe))
12289 return NULL;
12290
12291 crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
12292
12293 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
12294 if (!mode)
12295 return NULL;
12296
12297 crtc_state = intel_crtc_state_alloc(crtc);
12298 if (!crtc_state) {
12299 kfree(mode);
12300 return NULL;
12301 }
12302
12303 if (!dev_priv->display.get_pipe_config(crtc, crtc_state)) {
12304 kfree(crtc_state);
12305 kfree(mode);
12306 return NULL;
12307 }
12308
12309 encoder->get_config(encoder, crtc_state);
12310
12311 intel_mode_from_pipe_config(mode, crtc_state);
12312
12313 kfree(crtc_state);
12314
12315 return mode;
12316 }
12317
12318 static void intel_crtc_destroy(struct drm_crtc *crtc)
12319 {
12320 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12321
12322 drm_crtc_cleanup(crtc);
12323 kfree(intel_crtc);
12324 }
12325
12326 /**
12327 * intel_wm_need_update - Check whether watermarks need updating
12328 * @cur: current plane state
12329 * @new: new plane state
12330 *
12331 * Check current plane state versus the new one to determine whether
12332 * watermarks need to be recalculated.
12333 *
12334 * Returns true or false.
12335 */
12336 static bool intel_wm_need_update(const struct intel_plane_state *cur,
12337 struct intel_plane_state *new)
12338 {
12339 /* Update watermarks on tiling or size changes. */
12340 if (new->uapi.visible != cur->uapi.visible)
12341 return true;
12342
12343 if (!cur->hw.fb || !new->hw.fb)
12344 return false;
12345
12346 if (cur->hw.fb->modifier != new->hw.fb->modifier ||
12347 cur->hw.rotation != new->hw.rotation ||
12348 drm_rect_width(&new->uapi.src) != drm_rect_width(&cur->uapi.src) ||
12349 drm_rect_height(&new->uapi.src) != drm_rect_height(&cur->uapi.src) ||
12350 drm_rect_width(&new->uapi.dst) != drm_rect_width(&cur->uapi.dst) ||
12351 drm_rect_height(&new->uapi.dst) != drm_rect_height(&cur->uapi.dst))
12352 return true;
12353
12354 return false;
12355 }
12356
12357 static bool needs_scaling(const struct intel_plane_state *state)
12358 {
12359 int src_w = drm_rect_width(&state->uapi.src) >> 16;
12360 int src_h = drm_rect_height(&state->uapi.src) >> 16;
12361 int dst_w = drm_rect_width(&state->uapi.dst);
12362 int dst_h = drm_rect_height(&state->uapi.dst);
12363
12364 return (src_w != dst_w || src_h != dst_h);
12365 }
12366
12367 int intel_plane_atomic_calc_changes(const struct intel_crtc_state *old_crtc_state,
12368 struct intel_crtc_state *crtc_state,
12369 const struct intel_plane_state *old_plane_state,
12370 struct intel_plane_state *plane_state)
12371 {
12372 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
12373 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
12374 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
12375 bool mode_changed = needs_modeset(crtc_state);
12376 bool was_crtc_enabled = old_crtc_state->hw.active;
12377 bool is_crtc_enabled = crtc_state->hw.active;
12378 bool turn_off, turn_on, visible, was_visible;
12379 int ret;
12380
12381 if (INTEL_GEN(dev_priv) >= 9 && plane->id != PLANE_CURSOR) {
12382 ret = skl_update_scaler_plane(crtc_state, plane_state);
12383 if (ret)
12384 return ret;
12385 }
12386
12387 was_visible = old_plane_state->uapi.visible;
12388 visible = plane_state->uapi.visible;
12389
12390 if (!was_crtc_enabled && drm_WARN_ON(&dev_priv->drm, was_visible))
12391 was_visible = false;
12392
12393 /*
12394 * Visibility is calculated as if the crtc was on, but
12395 * after scaler setup everything depends on it being off
12396 * when the crtc isn't active.
12397 *
12398 * FIXME this is wrong for watermarks. Watermarks should also
12399 * be computed as if the pipe would be active. Perhaps move
12400 * per-plane wm computation to the .check_plane() hook, and
12401 * only combine the results from all planes in the current place?
12402 */
12403 if (!is_crtc_enabled) {
12404 intel_plane_set_invisible(crtc_state, plane_state);
12405 visible = false;
12406 }
12407
12408 if (!was_visible && !visible)
12409 return 0;
12410
12411 turn_off = was_visible && (!visible || mode_changed);
12412 turn_on = visible && (!was_visible || mode_changed);
12413
12414 drm_dbg_atomic(&dev_priv->drm,
12415 "[CRTC:%d:%s] with [PLANE:%d:%s] visible %i -> %i, off %i, on %i, ms %i\n",
12416 crtc->base.base.id, crtc->base.name,
12417 plane->base.base.id, plane->base.name,
12418 was_visible, visible,
12419 turn_off, turn_on, mode_changed);
12420
12421 if (turn_on) {
12422 if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv))
12423 crtc_state->update_wm_pre = true;
12424
12425 /* must disable cxsr around plane enable/disable */
12426 if (plane->id != PLANE_CURSOR)
12427 crtc_state->disable_cxsr = true;
12428 } else if (turn_off) {
12429 if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv))
12430 crtc_state->update_wm_post = true;
12431
12432 /* must disable cxsr around plane enable/disable */
12433 if (plane->id != PLANE_CURSOR)
12434 crtc_state->disable_cxsr = true;
12435 } else if (intel_wm_need_update(old_plane_state, plane_state)) {
12436 if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv)) {
12437 /* FIXME bollocks */
12438 crtc_state->update_wm_pre = true;
12439 crtc_state->update_wm_post = true;
12440 }
12441 }
12442
12443 if (visible || was_visible)
12444 crtc_state->fb_bits |= plane->frontbuffer_bit;
12445
12446 /*
12447 * ILK/SNB DVSACNTR/Sprite Enable
12448 * IVB SPR_CTL/Sprite Enable
12449 * "When in Self Refresh Big FIFO mode, a write to enable the
12450 * plane will be internally buffered and delayed while Big FIFO
12451 * mode is exiting."
12452 *
12453 * Which means that enabling the sprite can take an extra frame
12454 * when we start in big FIFO mode (LP1+). Thus we need to drop
12455 * down to LP0 and wait for vblank in order to make sure the
12456 * sprite gets enabled on the next vblank after the register write.
12457 * Doing otherwise would risk enabling the sprite one frame after
12458 * we've already signalled flip completion. We can resume LP1+
12459 * once the sprite has been enabled.
12460 *
12461 *
12462 * WaCxSRDisabledForSpriteScaling:ivb
12463 * IVB SPR_SCALE/Scaling Enable
12464 * "Low Power watermarks must be disabled for at least one
12465 * frame before enabling sprite scaling, and kept disabled
12466 * until sprite scaling is disabled."
12467 *
12468 * ILK/SNB DVSASCALE/Scaling Enable
12469 * "When in Self Refresh Big FIFO mode, scaling enable will be
12470 * masked off while Big FIFO mode is exiting."
12471 *
12472 * Despite the w/a only being listed for IVB we assume that
12473 * the ILK/SNB note has similar ramifications, hence we apply
12474 * the w/a on all three platforms.
12475 *
12476 * With experimental results seems this is needed also for primary
12477 * plane, not only sprite plane.
12478 */
12479 if (plane->id != PLANE_CURSOR &&
12480 (IS_GEN_RANGE(dev_priv, 5, 6) ||
12481 IS_IVYBRIDGE(dev_priv)) &&
12482 (turn_on || (!needs_scaling(old_plane_state) &&
12483 needs_scaling(plane_state))))
12484 crtc_state->disable_lp_wm = true;
12485
12486 return 0;
12487 }
12488
12489 static bool encoders_cloneable(const struct intel_encoder *a,
12490 const struct intel_encoder *b)
12491 {
12492 /* masks could be asymmetric, so check both ways */
12493 return a == b || (a->cloneable & (1 << b->type) &&
12494 b->cloneable & (1 << a->type));
12495 }
12496
12497 static bool check_single_encoder_cloning(struct drm_atomic_state *state,
12498 struct intel_crtc *crtc,
12499 struct intel_encoder *encoder)
12500 {
12501 struct intel_encoder *source_encoder;
12502 struct drm_connector *connector;
12503 struct drm_connector_state *connector_state;
12504 int i;
12505
12506 for_each_new_connector_in_state(state, connector, connector_state, i) {
12507 if (connector_state->crtc != &crtc->base)
12508 continue;
12509
12510 source_encoder =
12511 to_intel_encoder(connector_state->best_encoder);
12512 if (!encoders_cloneable(encoder, source_encoder))
12513 return false;
12514 }
12515
12516 return true;
12517 }
12518
12519 static int icl_add_linked_planes(struct intel_atomic_state *state)
12520 {
12521 struct intel_plane *plane, *linked;
12522 struct intel_plane_state *plane_state, *linked_plane_state;
12523 int i;
12524
12525 for_each_new_intel_plane_in_state(state, plane, plane_state, i) {
12526 linked = plane_state->planar_linked_plane;
12527
12528 if (!linked)
12529 continue;
12530
12531 linked_plane_state = intel_atomic_get_plane_state(state, linked);
12532 if (IS_ERR(linked_plane_state))
12533 return PTR_ERR(linked_plane_state);
12534
12535 drm_WARN_ON(state->base.dev,
12536 linked_plane_state->planar_linked_plane != plane);
12537 drm_WARN_ON(state->base.dev,
12538 linked_plane_state->planar_slave == plane_state->planar_slave);
12539 }
12540
12541 return 0;
12542 }
12543
12544 static int icl_check_nv12_planes(struct intel_crtc_state *crtc_state)
12545 {
12546 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
12547 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
12548 struct intel_atomic_state *state = to_intel_atomic_state(crtc_state->uapi.state);
12549 struct intel_plane *plane, *linked;
12550 struct intel_plane_state *plane_state;
12551 int i;
12552
12553 if (INTEL_GEN(dev_priv) < 11)
12554 return 0;
12555
12556 /*
12557 * Destroy all old plane links and make the slave plane invisible
12558 * in the crtc_state->active_planes mask.
12559 */
12560 for_each_new_intel_plane_in_state(state, plane, plane_state, i) {
12561 if (plane->pipe != crtc->pipe || !plane_state->planar_linked_plane)
12562 continue;
12563
12564 plane_state->planar_linked_plane = NULL;
12565 if (plane_state->planar_slave && !plane_state->uapi.visible) {
12566 crtc_state->active_planes &= ~BIT(plane->id);
12567 crtc_state->update_planes |= BIT(plane->id);
12568 }
12569
12570 plane_state->planar_slave = false;
12571 }
12572
12573 if (!crtc_state->nv12_planes)
12574 return 0;
12575
12576 for_each_new_intel_plane_in_state(state, plane, plane_state, i) {
12577 struct intel_plane_state *linked_state = NULL;
12578
12579 if (plane->pipe != crtc->pipe ||
12580 !(crtc_state->nv12_planes & BIT(plane->id)))
12581 continue;
12582
12583 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, linked) {
12584 if (!icl_is_nv12_y_plane(dev_priv, linked->id))
12585 continue;
12586
12587 if (crtc_state->active_planes & BIT(linked->id))
12588 continue;
12589
12590 linked_state = intel_atomic_get_plane_state(state, linked);
12591 if (IS_ERR(linked_state))
12592 return PTR_ERR(linked_state);
12593
12594 break;
12595 }
12596
12597 if (!linked_state) {
12598 drm_dbg_kms(&dev_priv->drm,
12599 "Need %d free Y planes for planar YUV\n",
12600 hweight8(crtc_state->nv12_planes));
12601
12602 return -EINVAL;
12603 }
12604
12605 plane_state->planar_linked_plane = linked;
12606
12607 linked_state->planar_slave = true;
12608 linked_state->planar_linked_plane = plane;
12609 crtc_state->active_planes |= BIT(linked->id);
12610 crtc_state->update_planes |= BIT(linked->id);
12611 drm_dbg_kms(&dev_priv->drm, "Using %s as Y plane for %s\n",
12612 linked->base.name, plane->base.name);
12613
12614 /* Copy parameters to slave plane */
12615 linked_state->ctl = plane_state->ctl | PLANE_CTL_YUV420_Y_PLANE;
12616 linked_state->color_ctl = plane_state->color_ctl;
12617 linked_state->view = plane_state->view;
12618 memcpy(linked_state->color_plane, plane_state->color_plane,
12619 sizeof(linked_state->color_plane));
12620
12621 intel_plane_copy_uapi_to_hw_state(linked_state, plane_state);
12622 linked_state->uapi.src = plane_state->uapi.src;
12623 linked_state->uapi.dst = plane_state->uapi.dst;
12624
12625 if (icl_is_hdr_plane(dev_priv, plane->id)) {
12626 if (linked->id == PLANE_SPRITE5)
12627 plane_state->cus_ctl |= PLANE_CUS_PLANE_7;
12628 else if (linked->id == PLANE_SPRITE4)
12629 plane_state->cus_ctl |= PLANE_CUS_PLANE_6;
12630 else if (linked->id == PLANE_SPRITE3)
12631 plane_state->cus_ctl |= PLANE_CUS_PLANE_5_RKL;
12632 else if (linked->id == PLANE_SPRITE2)
12633 plane_state->cus_ctl |= PLANE_CUS_PLANE_4_RKL;
12634 else
12635 MISSING_CASE(linked->id);
12636 }
12637 }
12638
12639 return 0;
12640 }
12641
12642 static bool c8_planes_changed(const struct intel_crtc_state *new_crtc_state)
12643 {
12644 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
12645 struct intel_atomic_state *state =
12646 to_intel_atomic_state(new_crtc_state->uapi.state);
12647 const struct intel_crtc_state *old_crtc_state =
12648 intel_atomic_get_old_crtc_state(state, crtc);
12649
12650 return !old_crtc_state->c8_planes != !new_crtc_state->c8_planes;
12651 }
12652
12653 static u16 hsw_linetime_wm(const struct intel_crtc_state *crtc_state)
12654 {
12655 const struct drm_display_mode *adjusted_mode =
12656 &crtc_state->hw.adjusted_mode;
12657 int linetime_wm;
12658
12659 if (!crtc_state->hw.enable)
12660 return 0;
12661
12662 linetime_wm = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
12663 adjusted_mode->crtc_clock);
12664
12665 return min(linetime_wm, 0x1ff);
12666 }
12667
12668 static u16 hsw_ips_linetime_wm(const struct intel_crtc_state *crtc_state,
12669 const struct intel_cdclk_state *cdclk_state)
12670 {
12671 const struct drm_display_mode *adjusted_mode =
12672 &crtc_state->hw.adjusted_mode;
12673 int linetime_wm;
12674
12675 if (!crtc_state->hw.enable)
12676 return 0;
12677
12678 linetime_wm = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
12679 cdclk_state->logical.cdclk);
12680
12681 return min(linetime_wm, 0x1ff);
12682 }
12683
12684 static u16 skl_linetime_wm(const struct intel_crtc_state *crtc_state)
12685 {
12686 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
12687 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
12688 const struct drm_display_mode *adjusted_mode =
12689 &crtc_state->hw.adjusted_mode;
12690 int linetime_wm;
12691
12692 if (!crtc_state->hw.enable)
12693 return 0;
12694
12695 linetime_wm = DIV_ROUND_UP(adjusted_mode->crtc_htotal * 1000 * 8,
12696 crtc_state->pixel_rate);
12697
12698 /* Display WA #1135: BXT:ALL GLK:ALL */
12699 if (IS_GEN9_LP(dev_priv) && dev_priv->ipc_enabled)
12700 linetime_wm /= 2;
12701
12702 return min(linetime_wm, 0x1ff);
12703 }
12704
12705 static int hsw_compute_linetime_wm(struct intel_atomic_state *state,
12706 struct intel_crtc *crtc)
12707 {
12708 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
12709 struct intel_crtc_state *crtc_state =
12710 intel_atomic_get_new_crtc_state(state, crtc);
12711 const struct intel_cdclk_state *cdclk_state;
12712
12713 if (INTEL_GEN(dev_priv) >= 9)
12714 crtc_state->linetime = skl_linetime_wm(crtc_state);
12715 else
12716 crtc_state->linetime = hsw_linetime_wm(crtc_state);
12717
12718 if (!hsw_crtc_supports_ips(crtc))
12719 return 0;
12720
12721 cdclk_state = intel_atomic_get_cdclk_state(state);
12722 if (IS_ERR(cdclk_state))
12723 return PTR_ERR(cdclk_state);
12724
12725 crtc_state->ips_linetime = hsw_ips_linetime_wm(crtc_state,
12726 cdclk_state);
12727
12728 return 0;
12729 }
12730
12731 static int intel_crtc_atomic_check(struct intel_atomic_state *state,
12732 struct intel_crtc *crtc)
12733 {
12734 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
12735 struct intel_crtc_state *crtc_state =
12736 intel_atomic_get_new_crtc_state(state, crtc);
12737 bool mode_changed = needs_modeset(crtc_state);
12738 int ret;
12739
12740 if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv) &&
12741 mode_changed && !crtc_state->hw.active)
12742 crtc_state->update_wm_post = true;
12743
12744 if (mode_changed && crtc_state->hw.enable &&
12745 dev_priv->display.crtc_compute_clock &&
12746 !drm_WARN_ON(&dev_priv->drm, crtc_state->shared_dpll)) {
12747 ret = dev_priv->display.crtc_compute_clock(crtc, crtc_state);
12748 if (ret)
12749 return ret;
12750 }
12751
12752 /*
12753 * May need to update pipe gamma enable bits
12754 * when C8 planes are getting enabled/disabled.
12755 */
12756 if (c8_planes_changed(crtc_state))
12757 crtc_state->uapi.color_mgmt_changed = true;
12758
12759 if (mode_changed || crtc_state->update_pipe ||
12760 crtc_state->uapi.color_mgmt_changed) {
12761 ret = intel_color_check(crtc_state);
12762 if (ret)
12763 return ret;
12764 }
12765
12766 if (dev_priv->display.compute_pipe_wm) {
12767 ret = dev_priv->display.compute_pipe_wm(crtc_state);
12768 if (ret) {
12769 drm_dbg_kms(&dev_priv->drm,
12770 "Target pipe watermarks are invalid\n");
12771 return ret;
12772 }
12773 }
12774
12775 if (dev_priv->display.compute_intermediate_wm) {
12776 if (drm_WARN_ON(&dev_priv->drm,
12777 !dev_priv->display.compute_pipe_wm))
12778 return 0;
12779
12780 /*
12781 * Calculate 'intermediate' watermarks that satisfy both the
12782 * old state and the new state. We can program these
12783 * immediately.
12784 */
12785 ret = dev_priv->display.compute_intermediate_wm(crtc_state);
12786 if (ret) {
12787 drm_dbg_kms(&dev_priv->drm,
12788 "No valid intermediate pipe watermarks are possible\n");
12789 return ret;
12790 }
12791 }
12792
12793 if (INTEL_GEN(dev_priv) >= 9) {
12794 if (mode_changed || crtc_state->update_pipe) {
12795 ret = skl_update_scaler_crtc(crtc_state);
12796 if (ret)
12797 return ret;
12798 }
12799
12800 ret = intel_atomic_setup_scalers(dev_priv, crtc, crtc_state);
12801 if (ret)
12802 return ret;
12803 }
12804
12805 if (HAS_IPS(dev_priv)) {
12806 ret = hsw_compute_ips_config(crtc_state);
12807 if (ret)
12808 return ret;
12809 }
12810
12811 if (INTEL_GEN(dev_priv) >= 9 ||
12812 IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) {
12813 ret = hsw_compute_linetime_wm(state, crtc);
12814 if (ret)
12815 return ret;
12816
12817 }
12818
12819 if (!mode_changed)
12820 intel_psr2_sel_fetch_update(state, crtc);
12821
12822 return 0;
12823 }
12824
12825 static void intel_modeset_update_connector_atomic_state(struct drm_device *dev)
12826 {
12827 struct intel_connector *connector;
12828 struct drm_connector_list_iter conn_iter;
12829
12830 drm_connector_list_iter_begin(dev, &conn_iter);
12831 for_each_intel_connector_iter(connector, &conn_iter) {
12832 if (connector->base.state->crtc)
12833 drm_connector_put(&connector->base);
12834
12835 if (connector->base.encoder) {
12836 connector->base.state->best_encoder =
12837 connector->base.encoder;
12838 connector->base.state->crtc =
12839 connector->base.encoder->crtc;
12840
12841 drm_connector_get(&connector->base);
12842 } else {
12843 connector->base.state->best_encoder = NULL;
12844 connector->base.state->crtc = NULL;
12845 }
12846 }
12847 drm_connector_list_iter_end(&conn_iter);
12848 }
12849
12850 static int
12851 compute_sink_pipe_bpp(const struct drm_connector_state *conn_state,
12852 struct intel_crtc_state *pipe_config)
12853 {
12854 struct drm_connector *connector = conn_state->connector;
12855 struct drm_i915_private *i915 = to_i915(pipe_config->uapi.crtc->dev);
12856 const struct drm_display_info *info = &connector->display_info;
12857 int bpp;
12858
12859 switch (conn_state->max_bpc) {
12860 case 6 ... 7:
12861 bpp = 6 * 3;
12862 break;
12863 case 8 ... 9:
12864 bpp = 8 * 3;
12865 break;
12866 case 10 ... 11:
12867 bpp = 10 * 3;
12868 break;
12869 case 12:
12870 bpp = 12 * 3;
12871 break;
12872 default:
12873 return -EINVAL;
12874 }
12875
12876 if (bpp < pipe_config->pipe_bpp) {
12877 drm_dbg_kms(&i915->drm,
12878 "[CONNECTOR:%d:%s] Limiting display bpp to %d instead of "
12879 "EDID bpp %d, requested bpp %d, max platform bpp %d\n",
12880 connector->base.id, connector->name,
12881 bpp, 3 * info->bpc,
12882 3 * conn_state->max_requested_bpc,
12883 pipe_config->pipe_bpp);
12884
12885 pipe_config->pipe_bpp = bpp;
12886 }
12887
12888 return 0;
12889 }
12890
12891 static int
12892 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
12893 struct intel_crtc_state *pipe_config)
12894 {
12895 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
12896 struct drm_atomic_state *state = pipe_config->uapi.state;
12897 struct drm_connector *connector;
12898 struct drm_connector_state *connector_state;
12899 int bpp, i;
12900
12901 if ((IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
12902 IS_CHERRYVIEW(dev_priv)))
12903 bpp = 10*3;
12904 else if (INTEL_GEN(dev_priv) >= 5)
12905 bpp = 12*3;
12906 else
12907 bpp = 8*3;
12908
12909 pipe_config->pipe_bpp = bpp;
12910
12911 /* Clamp display bpp to connector max bpp */
12912 for_each_new_connector_in_state(state, connector, connector_state, i) {
12913 int ret;
12914
12915 if (connector_state->crtc != &crtc->base)
12916 continue;
12917
12918 ret = compute_sink_pipe_bpp(connector_state, pipe_config);
12919 if (ret)
12920 return ret;
12921 }
12922
12923 return 0;
12924 }
12925
12926 static void intel_dump_crtc_timings(struct drm_i915_private *i915,
12927 const struct drm_display_mode *mode)
12928 {
12929 drm_dbg_kms(&i915->drm, "crtc timings: %d %d %d %d %d %d %d %d %d, "
12930 "type: 0x%x flags: 0x%x\n",
12931 mode->crtc_clock,
12932 mode->crtc_hdisplay, mode->crtc_hsync_start,
12933 mode->crtc_hsync_end, mode->crtc_htotal,
12934 mode->crtc_vdisplay, mode->crtc_vsync_start,
12935 mode->crtc_vsync_end, mode->crtc_vtotal,
12936 mode->type, mode->flags);
12937 }
12938
12939 static void
12940 intel_dump_m_n_config(const struct intel_crtc_state *pipe_config,
12941 const char *id, unsigned int lane_count,
12942 const struct intel_link_m_n *m_n)
12943 {
12944 struct drm_i915_private *i915 = to_i915(pipe_config->uapi.crtc->dev);
12945
12946 drm_dbg_kms(&i915->drm,
12947 "%s: lanes: %i; gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
12948 id, lane_count,
12949 m_n->gmch_m, m_n->gmch_n,
12950 m_n->link_m, m_n->link_n, m_n->tu);
12951 }
12952
12953 static void
12954 intel_dump_infoframe(struct drm_i915_private *dev_priv,
12955 const union hdmi_infoframe *frame)
12956 {
12957 if (!drm_debug_enabled(DRM_UT_KMS))
12958 return;
12959
12960 hdmi_infoframe_log(KERN_DEBUG, dev_priv->drm.dev, frame);
12961 }
12962
12963 static void
12964 intel_dump_dp_vsc_sdp(struct drm_i915_private *dev_priv,
12965 const struct drm_dp_vsc_sdp *vsc)
12966 {
12967 if (!drm_debug_enabled(DRM_UT_KMS))
12968 return;
12969
12970 drm_dp_vsc_sdp_log(KERN_DEBUG, dev_priv->drm.dev, vsc);
12971 }
12972
12973 #define OUTPUT_TYPE(x) [INTEL_OUTPUT_ ## x] = #x
12974
12975 static const char * const output_type_str[] = {
12976 OUTPUT_TYPE(UNUSED),
12977 OUTPUT_TYPE(ANALOG),
12978 OUTPUT_TYPE(DVO),
12979 OUTPUT_TYPE(SDVO),
12980 OUTPUT_TYPE(LVDS),
12981 OUTPUT_TYPE(TVOUT),
12982 OUTPUT_TYPE(HDMI),
12983 OUTPUT_TYPE(DP),
12984 OUTPUT_TYPE(EDP),
12985 OUTPUT_TYPE(DSI),
12986 OUTPUT_TYPE(DDI),
12987 OUTPUT_TYPE(DP_MST),
12988 };
12989
12990 #undef OUTPUT_TYPE
12991
12992 static void snprintf_output_types(char *buf, size_t len,
12993 unsigned int output_types)
12994 {
12995 char *str = buf;
12996 int i;
12997
12998 str[0] = '\0';
12999
13000 for (i = 0; i < ARRAY_SIZE(output_type_str); i++) {
13001 int r;
13002
13003 if ((output_types & BIT(i)) == 0)
13004 continue;
13005
13006 r = snprintf(str, len, "%s%s",
13007 str != buf ? "," : "", output_type_str[i]);
13008 if (r >= len)
13009 break;
13010 str += r;
13011 len -= r;
13012
13013 output_types &= ~BIT(i);
13014 }
13015
13016 WARN_ON_ONCE(output_types != 0);
13017 }
13018
13019 static const char * const output_format_str[] = {
13020 [INTEL_OUTPUT_FORMAT_INVALID] = "Invalid",
13021 [INTEL_OUTPUT_FORMAT_RGB] = "RGB",
13022 [INTEL_OUTPUT_FORMAT_YCBCR420] = "YCBCR4:2:0",
13023 [INTEL_OUTPUT_FORMAT_YCBCR444] = "YCBCR4:4:4",
13024 };
13025
13026 static const char *output_formats(enum intel_output_format format)
13027 {
13028 if (format >= ARRAY_SIZE(output_format_str))
13029 format = INTEL_OUTPUT_FORMAT_INVALID;
13030 return output_format_str[format];
13031 }
13032
13033 static void intel_dump_plane_state(const struct intel_plane_state *plane_state)
13034 {
13035 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
13036 struct drm_i915_private *i915 = to_i915(plane->base.dev);
13037 const struct drm_framebuffer *fb = plane_state->hw.fb;
13038 struct drm_format_name_buf format_name;
13039
13040 if (!fb) {
13041 drm_dbg_kms(&i915->drm,
13042 "[PLANE:%d:%s] fb: [NOFB], visible: %s\n",
13043 plane->base.base.id, plane->base.name,
13044 yesno(plane_state->uapi.visible));
13045 return;
13046 }
13047
13048 drm_dbg_kms(&i915->drm,
13049 "[PLANE:%d:%s] fb: [FB:%d] %ux%u format = %s, visible: %s\n",
13050 plane->base.base.id, plane->base.name,
13051 fb->base.id, fb->width, fb->height,
13052 drm_get_format_name(fb->format->format, &format_name),
13053 yesno(plane_state->uapi.visible));
13054 drm_dbg_kms(&i915->drm, "\trotation: 0x%x, scaler: %d\n",
13055 plane_state->hw.rotation, plane_state->scaler_id);
13056 if (plane_state->uapi.visible)
13057 drm_dbg_kms(&i915->drm,
13058 "\tsrc: " DRM_RECT_FP_FMT " dst: " DRM_RECT_FMT "\n",
13059 DRM_RECT_FP_ARG(&plane_state->uapi.src),
13060 DRM_RECT_ARG(&plane_state->uapi.dst));
13061 }
13062
13063 static void intel_dump_pipe_config(const struct intel_crtc_state *pipe_config,
13064 struct intel_atomic_state *state,
13065 const char *context)
13066 {
13067 struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc);
13068 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
13069 const struct intel_plane_state *plane_state;
13070 struct intel_plane *plane;
13071 char buf[64];
13072 int i;
13073
13074 drm_dbg_kms(&dev_priv->drm, "[CRTC:%d:%s] enable: %s %s\n",
13075 crtc->base.base.id, crtc->base.name,
13076 yesno(pipe_config->hw.enable), context);
13077
13078 if (!pipe_config->hw.enable)
13079 goto dump_planes;
13080
13081 snprintf_output_types(buf, sizeof(buf), pipe_config->output_types);
13082 drm_dbg_kms(&dev_priv->drm,
13083 "active: %s, output_types: %s (0x%x), output format: %s\n",
13084 yesno(pipe_config->hw.active),
13085 buf, pipe_config->output_types,
13086 output_formats(pipe_config->output_format));
13087
13088 drm_dbg_kms(&dev_priv->drm,
13089 "cpu_transcoder: %s, pipe bpp: %i, dithering: %i\n",
13090 transcoder_name(pipe_config->cpu_transcoder),
13091 pipe_config->pipe_bpp, pipe_config->dither);
13092
13093 drm_dbg_kms(&dev_priv->drm,
13094 "port sync: master transcoder: %s, slave transcoder bitmask = 0x%x\n",
13095 transcoder_name(pipe_config->master_transcoder),
13096 pipe_config->sync_mode_slaves_mask);
13097
13098 if (pipe_config->has_pch_encoder)
13099 intel_dump_m_n_config(pipe_config, "fdi",
13100 pipe_config->fdi_lanes,
13101 &pipe_config->fdi_m_n);
13102
13103 if (intel_crtc_has_dp_encoder(pipe_config)) {
13104 intel_dump_m_n_config(pipe_config, "dp m_n",
13105 pipe_config->lane_count, &pipe_config->dp_m_n);
13106 if (pipe_config->has_drrs)
13107 intel_dump_m_n_config(pipe_config, "dp m2_n2",
13108 pipe_config->lane_count,
13109 &pipe_config->dp_m2_n2);
13110 }
13111
13112 drm_dbg_kms(&dev_priv->drm,
13113 "audio: %i, infoframes: %i, infoframes enabled: 0x%x\n",
13114 pipe_config->has_audio, pipe_config->has_infoframe,
13115 pipe_config->infoframes.enable);
13116
13117 if (pipe_config->infoframes.enable &
13118 intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GENERAL_CONTROL))
13119 drm_dbg_kms(&dev_priv->drm, "GCP: 0x%x\n",
13120 pipe_config->infoframes.gcp);
13121 if (pipe_config->infoframes.enable &
13122 intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_AVI))
13123 intel_dump_infoframe(dev_priv, &pipe_config->infoframes.avi);
13124 if (pipe_config->infoframes.enable &
13125 intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_SPD))
13126 intel_dump_infoframe(dev_priv, &pipe_config->infoframes.spd);
13127 if (pipe_config->infoframes.enable &
13128 intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_VENDOR))
13129 intel_dump_infoframe(dev_priv, &pipe_config->infoframes.hdmi);
13130 if (pipe_config->infoframes.enable &
13131 intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_DRM))
13132 intel_dump_infoframe(dev_priv, &pipe_config->infoframes.drm);
13133 if (pipe_config->infoframes.enable &
13134 intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GAMUT_METADATA))
13135 intel_dump_infoframe(dev_priv, &pipe_config->infoframes.drm);
13136 if (pipe_config->infoframes.enable &
13137 intel_hdmi_infoframe_enable(DP_SDP_VSC))
13138 intel_dump_dp_vsc_sdp(dev_priv, &pipe_config->infoframes.vsc);
13139
13140 drm_dbg_kms(&dev_priv->drm, "requested mode:\n");
13141 drm_mode_debug_printmodeline(&pipe_config->hw.mode);
13142 drm_dbg_kms(&dev_priv->drm, "adjusted mode:\n");
13143 drm_mode_debug_printmodeline(&pipe_config->hw.adjusted_mode);
13144 intel_dump_crtc_timings(dev_priv, &pipe_config->hw.adjusted_mode);
13145 drm_dbg_kms(&dev_priv->drm,
13146 "port clock: %d, pipe src size: %dx%d, pixel rate %d\n",
13147 pipe_config->port_clock,
13148 pipe_config->pipe_src_w, pipe_config->pipe_src_h,
13149 pipe_config->pixel_rate);
13150
13151 drm_dbg_kms(&dev_priv->drm, "linetime: %d, ips linetime: %d\n",
13152 pipe_config->linetime, pipe_config->ips_linetime);
13153
13154 if (INTEL_GEN(dev_priv) >= 9)
13155 drm_dbg_kms(&dev_priv->drm,
13156 "num_scalers: %d, scaler_users: 0x%x, scaler_id: %d\n",
13157 crtc->num_scalers,
13158 pipe_config->scaler_state.scaler_users,
13159 pipe_config->scaler_state.scaler_id);
13160
13161 if (HAS_GMCH(dev_priv))
13162 drm_dbg_kms(&dev_priv->drm,
13163 "gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
13164 pipe_config->gmch_pfit.control,
13165 pipe_config->gmch_pfit.pgm_ratios,
13166 pipe_config->gmch_pfit.lvds_border_bits);
13167 else
13168 drm_dbg_kms(&dev_priv->drm,
13169 "pch pfit: " DRM_RECT_FMT ", %s, force thru: %s\n",
13170 DRM_RECT_ARG(&pipe_config->pch_pfit.dst),
13171 enableddisabled(pipe_config->pch_pfit.enabled),
13172 yesno(pipe_config->pch_pfit.force_thru));
13173
13174 drm_dbg_kms(&dev_priv->drm, "ips: %i, double wide: %i\n",
13175 pipe_config->ips_enabled, pipe_config->double_wide);
13176
13177 intel_dpll_dump_hw_state(dev_priv, &pipe_config->dpll_hw_state);
13178
13179 if (IS_CHERRYVIEW(dev_priv))
13180 drm_dbg_kms(&dev_priv->drm,
13181 "cgm_mode: 0x%x gamma_mode: 0x%x gamma_enable: %d csc_enable: %d\n",
13182 pipe_config->cgm_mode, pipe_config->gamma_mode,
13183 pipe_config->gamma_enable, pipe_config->csc_enable);
13184 else
13185 drm_dbg_kms(&dev_priv->drm,
13186 "csc_mode: 0x%x gamma_mode: 0x%x gamma_enable: %d csc_enable: %d\n",
13187 pipe_config->csc_mode, pipe_config->gamma_mode,
13188 pipe_config->gamma_enable, pipe_config->csc_enable);
13189
13190 drm_dbg_kms(&dev_priv->drm, "MST master transcoder: %s\n",
13191 transcoder_name(pipe_config->mst_master_transcoder));
13192
13193 dump_planes:
13194 if (!state)
13195 return;
13196
13197 for_each_new_intel_plane_in_state(state, plane, plane_state, i) {
13198 if (plane->pipe == crtc->pipe)
13199 intel_dump_plane_state(plane_state);
13200 }
13201 }
13202
13203 static bool check_digital_port_conflicts(struct intel_atomic_state *state)
13204 {
13205 struct drm_device *dev = state->base.dev;
13206 struct drm_connector *connector;
13207 struct drm_connector_list_iter conn_iter;
13208 unsigned int used_ports = 0;
13209 unsigned int used_mst_ports = 0;
13210 bool ret = true;
13211
13212 /*
13213 * We're going to peek into connector->state,
13214 * hence connection_mutex must be held.
13215 */
13216 drm_modeset_lock_assert_held(&dev->mode_config.connection_mutex);
13217
13218 /*
13219 * Walk the connector list instead of the encoder
13220 * list to detect the problem on ddi platforms
13221 * where there's just one encoder per digital port.
13222 */
13223 drm_connector_list_iter_begin(dev, &conn_iter);
13224 drm_for_each_connector_iter(connector, &conn_iter) {
13225 struct drm_connector_state *connector_state;
13226 struct intel_encoder *encoder;
13227
13228 connector_state =
13229 drm_atomic_get_new_connector_state(&state->base,
13230 connector);
13231 if (!connector_state)
13232 connector_state = connector->state;
13233
13234 if (!connector_state->best_encoder)
13235 continue;
13236
13237 encoder = to_intel_encoder(connector_state->best_encoder);
13238
13239 drm_WARN_ON(dev, !connector_state->crtc);
13240
13241 switch (encoder->type) {
13242 case INTEL_OUTPUT_DDI:
13243 if (drm_WARN_ON(dev, !HAS_DDI(to_i915(dev))))
13244 break;
13245 fallthrough;
13246 case INTEL_OUTPUT_DP:
13247 case INTEL_OUTPUT_HDMI:
13248 case INTEL_OUTPUT_EDP:
13249 /* the same port mustn't appear more than once */
13250 if (used_ports & BIT(encoder->port))
13251 ret = false;
13252
13253 used_ports |= BIT(encoder->port);
13254 break;
13255 case INTEL_OUTPUT_DP_MST:
13256 used_mst_ports |=
13257 1 << encoder->port;
13258 break;
13259 default:
13260 break;
13261 }
13262 }
13263 drm_connector_list_iter_end(&conn_iter);
13264
13265 /* can't mix MST and SST/HDMI on the same port */
13266 if (used_ports & used_mst_ports)
13267 return false;
13268
13269 return ret;
13270 }
13271
13272 static void
13273 intel_crtc_copy_uapi_to_hw_state_nomodeset(struct intel_crtc_state *crtc_state)
13274 {
13275 intel_crtc_copy_color_blobs(crtc_state);
13276 }
13277
13278 static void
13279 intel_crtc_copy_uapi_to_hw_state(struct intel_crtc_state *crtc_state)
13280 {
13281 crtc_state->hw.enable = crtc_state->uapi.enable;
13282 crtc_state->hw.active = crtc_state->uapi.active;
13283 crtc_state->hw.mode = crtc_state->uapi.mode;
13284 crtc_state->hw.adjusted_mode = crtc_state->uapi.adjusted_mode;
13285 intel_crtc_copy_uapi_to_hw_state_nomodeset(crtc_state);
13286 }
13287
13288 static void intel_crtc_copy_hw_to_uapi_state(struct intel_crtc_state *crtc_state)
13289 {
13290 crtc_state->uapi.enable = crtc_state->hw.enable;
13291 crtc_state->uapi.active = crtc_state->hw.active;
13292 drm_WARN_ON(crtc_state->uapi.crtc->dev,
13293 drm_atomic_set_mode_for_crtc(&crtc_state->uapi, &crtc_state->hw.mode) < 0);
13294
13295 crtc_state->uapi.adjusted_mode = crtc_state->hw.adjusted_mode;
13296
13297 /* copy color blobs to uapi */
13298 drm_property_replace_blob(&crtc_state->uapi.degamma_lut,
13299 crtc_state->hw.degamma_lut);
13300 drm_property_replace_blob(&crtc_state->uapi.gamma_lut,
13301 crtc_state->hw.gamma_lut);
13302 drm_property_replace_blob(&crtc_state->uapi.ctm,
13303 crtc_state->hw.ctm);
13304 }
13305
13306 static int
13307 intel_crtc_prepare_cleared_state(struct intel_crtc_state *crtc_state)
13308 {
13309 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
13310 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
13311 struct intel_crtc_state *saved_state;
13312
13313 saved_state = intel_crtc_state_alloc(crtc);
13314 if (!saved_state)
13315 return -ENOMEM;
13316
13317 /* free the old crtc_state->hw members */
13318 intel_crtc_free_hw_state(crtc_state);
13319
13320 /* FIXME: before the switch to atomic started, a new pipe_config was
13321 * kzalloc'd. Code that depends on any field being zero should be
13322 * fixed, so that the crtc_state can be safely duplicated. For now,
13323 * only fields that are know to not cause problems are preserved. */
13324
13325 saved_state->uapi = crtc_state->uapi;
13326 saved_state->scaler_state = crtc_state->scaler_state;
13327 saved_state->shared_dpll = crtc_state->shared_dpll;
13328 saved_state->dpll_hw_state = crtc_state->dpll_hw_state;
13329 memcpy(saved_state->icl_port_dplls, crtc_state->icl_port_dplls,
13330 sizeof(saved_state->icl_port_dplls));
13331 saved_state->crc_enabled = crtc_state->crc_enabled;
13332 if (IS_G4X(dev_priv) ||
13333 IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
13334 saved_state->wm = crtc_state->wm;
13335
13336 memcpy(crtc_state, saved_state, sizeof(*crtc_state));
13337 kfree(saved_state);
13338
13339 intel_crtc_copy_uapi_to_hw_state(crtc_state);
13340
13341 return 0;
13342 }
13343
13344 static int
13345 intel_modeset_pipe_config(struct intel_crtc_state *pipe_config)
13346 {
13347 struct drm_crtc *crtc = pipe_config->uapi.crtc;
13348 struct drm_atomic_state *state = pipe_config->uapi.state;
13349 struct drm_i915_private *i915 = to_i915(pipe_config->uapi.crtc->dev);
13350 struct drm_connector *connector;
13351 struct drm_connector_state *connector_state;
13352 int base_bpp, ret, i;
13353 bool retry = true;
13354
13355 pipe_config->cpu_transcoder =
13356 (enum transcoder) to_intel_crtc(crtc)->pipe;
13357
13358 /*
13359 * Sanitize sync polarity flags based on requested ones. If neither
13360 * positive or negative polarity is requested, treat this as meaning
13361 * negative polarity.
13362 */
13363 if (!(pipe_config->hw.adjusted_mode.flags &
13364 (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
13365 pipe_config->hw.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
13366
13367 if (!(pipe_config->hw.adjusted_mode.flags &
13368 (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
13369 pipe_config->hw.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
13370
13371 ret = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
13372 pipe_config);
13373 if (ret)
13374 return ret;
13375
13376 base_bpp = pipe_config->pipe_bpp;
13377
13378 /*
13379 * Determine the real pipe dimensions. Note that stereo modes can
13380 * increase the actual pipe size due to the frame doubling and
13381 * insertion of additional space for blanks between the frame. This
13382 * is stored in the crtc timings. We use the requested mode to do this
13383 * computation to clearly distinguish it from the adjusted mode, which
13384 * can be changed by the connectors in the below retry loop.
13385 */
13386 drm_mode_get_hv_timing(&pipe_config->hw.mode,
13387 &pipe_config->pipe_src_w,
13388 &pipe_config->pipe_src_h);
13389
13390 for_each_new_connector_in_state(state, connector, connector_state, i) {
13391 struct intel_encoder *encoder =
13392 to_intel_encoder(connector_state->best_encoder);
13393
13394 if (connector_state->crtc != crtc)
13395 continue;
13396
13397 if (!check_single_encoder_cloning(state, to_intel_crtc(crtc), encoder)) {
13398 drm_dbg_kms(&i915->drm,
13399 "rejecting invalid cloning configuration\n");
13400 return -EINVAL;
13401 }
13402
13403 /*
13404 * Determine output_types before calling the .compute_config()
13405 * hooks so that the hooks can use this information safely.
13406 */
13407 if (encoder->compute_output_type)
13408 pipe_config->output_types |=
13409 BIT(encoder->compute_output_type(encoder, pipe_config,
13410 connector_state));
13411 else
13412 pipe_config->output_types |= BIT(encoder->type);
13413 }
13414
13415 encoder_retry:
13416 /* Ensure the port clock defaults are reset when retrying. */
13417 pipe_config->port_clock = 0;
13418 pipe_config->pixel_multiplier = 1;
13419
13420 /* Fill in default crtc timings, allow encoders to overwrite them. */
13421 drm_mode_set_crtcinfo(&pipe_config->hw.adjusted_mode,
13422 CRTC_STEREO_DOUBLE);
13423
13424 /* Pass our mode to the connectors and the CRTC to give them a chance to
13425 * adjust it according to limitations or connector properties, and also
13426 * a chance to reject the mode entirely.
13427 */
13428 for_each_new_connector_in_state(state, connector, connector_state, i) {
13429 struct intel_encoder *encoder =
13430 to_intel_encoder(connector_state->best_encoder);
13431
13432 if (connector_state->crtc != crtc)
13433 continue;
13434
13435 ret = encoder->compute_config(encoder, pipe_config,
13436 connector_state);
13437 if (ret < 0) {
13438 if (ret != -EDEADLK)
13439 drm_dbg_kms(&i915->drm,
13440 "Encoder config failure: %d\n",
13441 ret);
13442 return ret;
13443 }
13444 }
13445
13446 /* Set default port clock if not overwritten by the encoder. Needs to be
13447 * done afterwards in case the encoder adjusts the mode. */
13448 if (!pipe_config->port_clock)
13449 pipe_config->port_clock = pipe_config->hw.adjusted_mode.crtc_clock
13450 * pipe_config->pixel_multiplier;
13451
13452 ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
13453 if (ret == -EDEADLK)
13454 return ret;
13455 if (ret < 0) {
13456 drm_dbg_kms(&i915->drm, "CRTC fixup failed\n");
13457 return ret;
13458 }
13459
13460 if (ret == RETRY) {
13461 if (drm_WARN(&i915->drm, !retry,
13462 "loop in pipe configuration computation\n"))
13463 return -EINVAL;
13464
13465 drm_dbg_kms(&i915->drm, "CRTC bw constrained, retrying\n");
13466 retry = false;
13467 goto encoder_retry;
13468 }
13469
13470 /* Dithering seems to not pass-through bits correctly when it should, so
13471 * only enable it on 6bpc panels and when its not a compliance
13472 * test requesting 6bpc video pattern.
13473 */
13474 pipe_config->dither = (pipe_config->pipe_bpp == 6*3) &&
13475 !pipe_config->dither_force_disable;
13476 drm_dbg_kms(&i915->drm,
13477 "hw max bpp: %i, pipe bpp: %i, dithering: %i\n",
13478 base_bpp, pipe_config->pipe_bpp, pipe_config->dither);
13479
13480 return 0;
13481 }
13482
13483 static int
13484 intel_modeset_pipe_config_late(struct intel_crtc_state *crtc_state)
13485 {
13486 struct intel_atomic_state *state =
13487 to_intel_atomic_state(crtc_state->uapi.state);
13488 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
13489 struct drm_connector_state *conn_state;
13490 struct drm_connector *connector;
13491 int i;
13492
13493 for_each_new_connector_in_state(&state->base, connector,
13494 conn_state, i) {
13495 struct intel_encoder *encoder =
13496 to_intel_encoder(conn_state->best_encoder);
13497 int ret;
13498
13499 if (conn_state->crtc != &crtc->base ||
13500 !encoder->compute_config_late)
13501 continue;
13502
13503 ret = encoder->compute_config_late(encoder, crtc_state,
13504 conn_state);
13505 if (ret)
13506 return ret;
13507 }
13508
13509 return 0;
13510 }
13511
13512 bool intel_fuzzy_clock_check(int clock1, int clock2)
13513 {
13514 int diff;
13515
13516 if (clock1 == clock2)
13517 return true;
13518
13519 if (!clock1 || !clock2)
13520 return false;
13521
13522 diff = abs(clock1 - clock2);
13523
13524 if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
13525 return true;
13526
13527 return false;
13528 }
13529
13530 static bool
13531 intel_compare_m_n(unsigned int m, unsigned int n,
13532 unsigned int m2, unsigned int n2,
13533 bool exact)
13534 {
13535 if (m == m2 && n == n2)
13536 return true;
13537
13538 if (exact || !m || !n || !m2 || !n2)
13539 return false;
13540
13541 BUILD_BUG_ON(DATA_LINK_M_N_MASK > INT_MAX);
13542
13543 if (n > n2) {
13544 while (n > n2) {
13545 m2 <<= 1;
13546 n2 <<= 1;
13547 }
13548 } else if (n < n2) {
13549 while (n < n2) {
13550 m <<= 1;
13551 n <<= 1;
13552 }
13553 }
13554
13555 if (n != n2)
13556 return false;
13557
13558 return intel_fuzzy_clock_check(m, m2);
13559 }
13560
13561 static bool
13562 intel_compare_link_m_n(const struct intel_link_m_n *m_n,
13563 const struct intel_link_m_n *m2_n2,
13564 bool exact)
13565 {
13566 return m_n->tu == m2_n2->tu &&
13567 intel_compare_m_n(m_n->gmch_m, m_n->gmch_n,
13568 m2_n2->gmch_m, m2_n2->gmch_n, exact) &&
13569 intel_compare_m_n(m_n->link_m, m_n->link_n,
13570 m2_n2->link_m, m2_n2->link_n, exact);
13571 }
13572
13573 static bool
13574 intel_compare_infoframe(const union hdmi_infoframe *a,
13575 const union hdmi_infoframe *b)
13576 {
13577 return memcmp(a, b, sizeof(*a)) == 0;
13578 }
13579
13580 static bool
13581 intel_compare_dp_vsc_sdp(const struct drm_dp_vsc_sdp *a,
13582 const struct drm_dp_vsc_sdp *b)
13583 {
13584 return memcmp(a, b, sizeof(*a)) == 0;
13585 }
13586
13587 static void
13588 pipe_config_infoframe_mismatch(struct drm_i915_private *dev_priv,
13589 bool fastset, const char *name,
13590 const union hdmi_infoframe *a,
13591 const union hdmi_infoframe *b)
13592 {
13593 if (fastset) {
13594 if (!drm_debug_enabled(DRM_UT_KMS))
13595 return;
13596
13597 drm_dbg_kms(&dev_priv->drm,
13598 "fastset mismatch in %s infoframe\n", name);
13599 drm_dbg_kms(&dev_priv->drm, "expected:\n");
13600 hdmi_infoframe_log(KERN_DEBUG, dev_priv->drm.dev, a);
13601 drm_dbg_kms(&dev_priv->drm, "found:\n");
13602 hdmi_infoframe_log(KERN_DEBUG, dev_priv->drm.dev, b);
13603 } else {
13604 drm_err(&dev_priv->drm, "mismatch in %s infoframe\n", name);
13605 drm_err(&dev_priv->drm, "expected:\n");
13606 hdmi_infoframe_log(KERN_ERR, dev_priv->drm.dev, a);
13607 drm_err(&dev_priv->drm, "found:\n");
13608 hdmi_infoframe_log(KERN_ERR, dev_priv->drm.dev, b);
13609 }
13610 }
13611
13612 static void
13613 pipe_config_dp_vsc_sdp_mismatch(struct drm_i915_private *dev_priv,
13614 bool fastset, const char *name,
13615 const struct drm_dp_vsc_sdp *a,
13616 const struct drm_dp_vsc_sdp *b)
13617 {
13618 if (fastset) {
13619 if (!drm_debug_enabled(DRM_UT_KMS))
13620 return;
13621
13622 drm_dbg_kms(&dev_priv->drm,
13623 "fastset mismatch in %s dp sdp\n", name);
13624 drm_dbg_kms(&dev_priv->drm, "expected:\n");
13625 drm_dp_vsc_sdp_log(KERN_DEBUG, dev_priv->drm.dev, a);
13626 drm_dbg_kms(&dev_priv->drm, "found:\n");
13627 drm_dp_vsc_sdp_log(KERN_DEBUG, dev_priv->drm.dev, b);
13628 } else {
13629 drm_err(&dev_priv->drm, "mismatch in %s dp sdp\n", name);
13630 drm_err(&dev_priv->drm, "expected:\n");
13631 drm_dp_vsc_sdp_log(KERN_ERR, dev_priv->drm.dev, a);
13632 drm_err(&dev_priv->drm, "found:\n");
13633 drm_dp_vsc_sdp_log(KERN_ERR, dev_priv->drm.dev, b);
13634 }
13635 }
13636
13637 static void __printf(4, 5)
13638 pipe_config_mismatch(bool fastset, const struct intel_crtc *crtc,
13639 const char *name, const char *format, ...)
13640 {
13641 struct drm_i915_private *i915 = to_i915(crtc->base.dev);
13642 struct va_format vaf;
13643 va_list args;
13644
13645 va_start(args, format);
13646 vaf.fmt = format;
13647 vaf.va = &args;
13648
13649 if (fastset)
13650 drm_dbg_kms(&i915->drm,
13651 "[CRTC:%d:%s] fastset mismatch in %s %pV\n",
13652 crtc->base.base.id, crtc->base.name, name, &vaf);
13653 else
13654 drm_err(&i915->drm, "[CRTC:%d:%s] mismatch in %s %pV\n",
13655 crtc->base.base.id, crtc->base.name, name, &vaf);
13656
13657 va_end(args);
13658 }
13659
13660 static bool fastboot_enabled(struct drm_i915_private *dev_priv)
13661 {
13662 if (dev_priv->params.fastboot != -1)
13663 return dev_priv->params.fastboot;
13664
13665 /* Enable fastboot by default on Skylake and newer */
13666 if (INTEL_GEN(dev_priv) >= 9)
13667 return true;
13668
13669 /* Enable fastboot by default on VLV and CHV */
13670 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
13671 return true;
13672
13673 /* Disabled by default on all others */
13674 return false;
13675 }
13676
13677 static bool
13678 intel_pipe_config_compare(const struct intel_crtc_state *current_config,
13679 const struct intel_crtc_state *pipe_config,
13680 bool fastset)
13681 {
13682 struct drm_i915_private *dev_priv = to_i915(current_config->uapi.crtc->dev);
13683 struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc);
13684 bool ret = true;
13685 u32 bp_gamma = 0;
13686 bool fixup_inherited = fastset &&
13687 current_config->inherited && !pipe_config->inherited;
13688
13689 if (fixup_inherited && !fastboot_enabled(dev_priv)) {
13690 drm_dbg_kms(&dev_priv->drm,
13691 "initial modeset and fastboot not set\n");
13692 ret = false;
13693 }
13694
13695 #define PIPE_CONF_CHECK_X(name) do { \
13696 if (current_config->name != pipe_config->name) { \
13697 pipe_config_mismatch(fastset, crtc, __stringify(name), \
13698 "(expected 0x%08x, found 0x%08x)", \
13699 current_config->name, \
13700 pipe_config->name); \
13701 ret = false; \
13702 } \
13703 } while (0)
13704
13705 #define PIPE_CONF_CHECK_I(name) do { \
13706 if (current_config->name != pipe_config->name) { \
13707 pipe_config_mismatch(fastset, crtc, __stringify(name), \
13708 "(expected %i, found %i)", \
13709 current_config->name, \
13710 pipe_config->name); \
13711 ret = false; \
13712 } \
13713 } while (0)
13714
13715 #define PIPE_CONF_CHECK_BOOL(name) do { \
13716 if (current_config->name != pipe_config->name) { \
13717 pipe_config_mismatch(fastset, crtc, __stringify(name), \
13718 "(expected %s, found %s)", \
13719 yesno(current_config->name), \
13720 yesno(pipe_config->name)); \
13721 ret = false; \
13722 } \
13723 } while (0)
13724
13725 /*
13726 * Checks state where we only read out the enabling, but not the entire
13727 * state itself (like full infoframes or ELD for audio). These states
13728 * require a full modeset on bootup to fix up.
13729 */
13730 #define PIPE_CONF_CHECK_BOOL_INCOMPLETE(name) do { \
13731 if (!fixup_inherited || (!current_config->name && !pipe_config->name)) { \
13732 PIPE_CONF_CHECK_BOOL(name); \
13733 } else { \
13734 pipe_config_mismatch(fastset, crtc, __stringify(name), \
13735 "unable to verify whether state matches exactly, forcing modeset (expected %s, found %s)", \
13736 yesno(current_config->name), \
13737 yesno(pipe_config->name)); \
13738 ret = false; \
13739 } \
13740 } while (0)
13741
13742 #define PIPE_CONF_CHECK_P(name) do { \
13743 if (current_config->name != pipe_config->name) { \
13744 pipe_config_mismatch(fastset, crtc, __stringify(name), \
13745 "(expected %p, found %p)", \
13746 current_config->name, \
13747 pipe_config->name); \
13748 ret = false; \
13749 } \
13750 } while (0)
13751
13752 #define PIPE_CONF_CHECK_M_N(name) do { \
13753 if (!intel_compare_link_m_n(&current_config->name, \
13754 &pipe_config->name,\
13755 !fastset)) { \
13756 pipe_config_mismatch(fastset, crtc, __stringify(name), \
13757 "(expected tu %i gmch %i/%i link %i/%i, " \
13758 "found tu %i, gmch %i/%i link %i/%i)", \
13759 current_config->name.tu, \
13760 current_config->name.gmch_m, \
13761 current_config->name.gmch_n, \
13762 current_config->name.link_m, \
13763 current_config->name.link_n, \
13764 pipe_config->name.tu, \
13765 pipe_config->name.gmch_m, \
13766 pipe_config->name.gmch_n, \
13767 pipe_config->name.link_m, \
13768 pipe_config->name.link_n); \
13769 ret = false; \
13770 } \
13771 } while (0)
13772
13773 /* This is required for BDW+ where there is only one set of registers for
13774 * switching between high and low RR.
13775 * This macro can be used whenever a comparison has to be made between one
13776 * hw state and multiple sw state variables.
13777 */
13778 #define PIPE_CONF_CHECK_M_N_ALT(name, alt_name) do { \
13779 if (!intel_compare_link_m_n(&current_config->name, \
13780 &pipe_config->name, !fastset) && \
13781 !intel_compare_link_m_n(&current_config->alt_name, \
13782 &pipe_config->name, !fastset)) { \
13783 pipe_config_mismatch(fastset, crtc, __stringify(name), \
13784 "(expected tu %i gmch %i/%i link %i/%i, " \
13785 "or tu %i gmch %i/%i link %i/%i, " \
13786 "found tu %i, gmch %i/%i link %i/%i)", \
13787 current_config->name.tu, \
13788 current_config->name.gmch_m, \
13789 current_config->name.gmch_n, \
13790 current_config->name.link_m, \
13791 current_config->name.link_n, \
13792 current_config->alt_name.tu, \
13793 current_config->alt_name.gmch_m, \
13794 current_config->alt_name.gmch_n, \
13795 current_config->alt_name.link_m, \
13796 current_config->alt_name.link_n, \
13797 pipe_config->name.tu, \
13798 pipe_config->name.gmch_m, \
13799 pipe_config->name.gmch_n, \
13800 pipe_config->name.link_m, \
13801 pipe_config->name.link_n); \
13802 ret = false; \
13803 } \
13804 } while (0)
13805
13806 #define PIPE_CONF_CHECK_FLAGS(name, mask) do { \
13807 if ((current_config->name ^ pipe_config->name) & (mask)) { \
13808 pipe_config_mismatch(fastset, crtc, __stringify(name), \
13809 "(%x) (expected %i, found %i)", \
13810 (mask), \
13811 current_config->name & (mask), \
13812 pipe_config->name & (mask)); \
13813 ret = false; \
13814 } \
13815 } while (0)
13816
13817 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) do { \
13818 if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
13819 pipe_config_mismatch(fastset, crtc, __stringify(name), \
13820 "(expected %i, found %i)", \
13821 current_config->name, \
13822 pipe_config->name); \
13823 ret = false; \
13824 } \
13825 } while (0)
13826
13827 #define PIPE_CONF_CHECK_INFOFRAME(name) do { \
13828 if (!intel_compare_infoframe(&current_config->infoframes.name, \
13829 &pipe_config->infoframes.name)) { \
13830 pipe_config_infoframe_mismatch(dev_priv, fastset, __stringify(name), \
13831 &current_config->infoframes.name, \
13832 &pipe_config->infoframes.name); \
13833 ret = false; \
13834 } \
13835 } while (0)
13836
13837 #define PIPE_CONF_CHECK_DP_VSC_SDP(name) do { \
13838 if (!current_config->has_psr && !pipe_config->has_psr && \
13839 !intel_compare_dp_vsc_sdp(&current_config->infoframes.name, \
13840 &pipe_config->infoframes.name)) { \
13841 pipe_config_dp_vsc_sdp_mismatch(dev_priv, fastset, __stringify(name), \
13842 &current_config->infoframes.name, \
13843 &pipe_config->infoframes.name); \
13844 ret = false; \
13845 } \
13846 } while (0)
13847
13848 #define PIPE_CONF_CHECK_COLOR_LUT(name1, name2, bit_precision) do { \
13849 if (current_config->name1 != pipe_config->name1) { \
13850 pipe_config_mismatch(fastset, crtc, __stringify(name1), \
13851 "(expected %i, found %i, won't compare lut values)", \
13852 current_config->name1, \
13853 pipe_config->name1); \
13854 ret = false;\
13855 } else { \
13856 if (!intel_color_lut_equal(current_config->name2, \
13857 pipe_config->name2, pipe_config->name1, \
13858 bit_precision)) { \
13859 pipe_config_mismatch(fastset, crtc, __stringify(name2), \
13860 "hw_state doesn't match sw_state"); \
13861 ret = false; \
13862 } \
13863 } \
13864 } while (0)
13865
13866 #define PIPE_CONF_QUIRK(quirk) \
13867 ((current_config->quirks | pipe_config->quirks) & (quirk))
13868
13869 PIPE_CONF_CHECK_I(cpu_transcoder);
13870
13871 PIPE_CONF_CHECK_BOOL(has_pch_encoder);
13872 PIPE_CONF_CHECK_I(fdi_lanes);
13873 PIPE_CONF_CHECK_M_N(fdi_m_n);
13874
13875 PIPE_CONF_CHECK_I(lane_count);
13876 PIPE_CONF_CHECK_X(lane_lat_optim_mask);
13877
13878 if (INTEL_GEN(dev_priv) < 8) {
13879 PIPE_CONF_CHECK_M_N(dp_m_n);
13880
13881 if (current_config->has_drrs)
13882 PIPE_CONF_CHECK_M_N(dp_m2_n2);
13883 } else
13884 PIPE_CONF_CHECK_M_N_ALT(dp_m_n, dp_m2_n2);
13885
13886 PIPE_CONF_CHECK_X(output_types);
13887
13888 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_hdisplay);
13889 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_htotal);
13890 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_hblank_start);
13891 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_hblank_end);
13892 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_hsync_start);
13893 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_hsync_end);
13894
13895 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_vdisplay);
13896 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_vtotal);
13897 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_vblank_start);
13898 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_vblank_end);
13899 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_vsync_start);
13900 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_vsync_end);
13901
13902 PIPE_CONF_CHECK_I(pixel_multiplier);
13903 PIPE_CONF_CHECK_I(output_format);
13904 PIPE_CONF_CHECK_BOOL(has_hdmi_sink);
13905 if ((INTEL_GEN(dev_priv) < 8 && !IS_HASWELL(dev_priv)) ||
13906 IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
13907 PIPE_CONF_CHECK_BOOL(limited_color_range);
13908
13909 PIPE_CONF_CHECK_BOOL(hdmi_scrambling);
13910 PIPE_CONF_CHECK_BOOL(hdmi_high_tmds_clock_ratio);
13911 PIPE_CONF_CHECK_BOOL(has_infoframe);
13912 PIPE_CONF_CHECK_BOOL(fec_enable);
13913
13914 PIPE_CONF_CHECK_BOOL_INCOMPLETE(has_audio);
13915
13916 PIPE_CONF_CHECK_FLAGS(hw.adjusted_mode.flags,
13917 DRM_MODE_FLAG_INTERLACE);
13918
13919 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
13920 PIPE_CONF_CHECK_FLAGS(hw.adjusted_mode.flags,
13921 DRM_MODE_FLAG_PHSYNC);
13922 PIPE_CONF_CHECK_FLAGS(hw.adjusted_mode.flags,
13923 DRM_MODE_FLAG_NHSYNC);
13924 PIPE_CONF_CHECK_FLAGS(hw.adjusted_mode.flags,
13925 DRM_MODE_FLAG_PVSYNC);
13926 PIPE_CONF_CHECK_FLAGS(hw.adjusted_mode.flags,
13927 DRM_MODE_FLAG_NVSYNC);
13928 }
13929
13930 PIPE_CONF_CHECK_X(gmch_pfit.control);
13931 /* pfit ratios are autocomputed by the hw on gen4+ */
13932 if (INTEL_GEN(dev_priv) < 4)
13933 PIPE_CONF_CHECK_X(gmch_pfit.pgm_ratios);
13934 PIPE_CONF_CHECK_X(gmch_pfit.lvds_border_bits);
13935
13936 /*
13937 * Changing the EDP transcoder input mux
13938 * (A_ONOFF vs. A_ON) requires a full modeset.
13939 */
13940 PIPE_CONF_CHECK_BOOL(pch_pfit.force_thru);
13941
13942 if (!fastset) {
13943 PIPE_CONF_CHECK_I(pipe_src_w);
13944 PIPE_CONF_CHECK_I(pipe_src_h);
13945
13946 PIPE_CONF_CHECK_BOOL(pch_pfit.enabled);
13947 if (current_config->pch_pfit.enabled) {
13948 PIPE_CONF_CHECK_I(pch_pfit.dst.x1);
13949 PIPE_CONF_CHECK_I(pch_pfit.dst.y1);
13950 PIPE_CONF_CHECK_I(pch_pfit.dst.x2);
13951 PIPE_CONF_CHECK_I(pch_pfit.dst.y2);
13952 }
13953
13954 PIPE_CONF_CHECK_I(scaler_state.scaler_id);
13955 PIPE_CONF_CHECK_CLOCK_FUZZY(pixel_rate);
13956
13957 PIPE_CONF_CHECK_X(gamma_mode);
13958 if (IS_CHERRYVIEW(dev_priv))
13959 PIPE_CONF_CHECK_X(cgm_mode);
13960 else
13961 PIPE_CONF_CHECK_X(csc_mode);
13962 PIPE_CONF_CHECK_BOOL(gamma_enable);
13963 PIPE_CONF_CHECK_BOOL(csc_enable);
13964
13965 PIPE_CONF_CHECK_I(linetime);
13966 PIPE_CONF_CHECK_I(ips_linetime);
13967
13968 bp_gamma = intel_color_get_gamma_bit_precision(pipe_config);
13969 if (bp_gamma)
13970 PIPE_CONF_CHECK_COLOR_LUT(gamma_mode, hw.gamma_lut, bp_gamma);
13971 }
13972
13973 PIPE_CONF_CHECK_BOOL(double_wide);
13974
13975 PIPE_CONF_CHECK_P(shared_dpll);
13976 PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
13977 PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
13978 PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
13979 PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
13980 PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
13981 PIPE_CONF_CHECK_X(dpll_hw_state.spll);
13982 PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1);
13983 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1);
13984 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2);
13985 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr0);
13986 PIPE_CONF_CHECK_X(dpll_hw_state.ebb0);
13987 PIPE_CONF_CHECK_X(dpll_hw_state.ebb4);
13988 PIPE_CONF_CHECK_X(dpll_hw_state.pll0);
13989 PIPE_CONF_CHECK_X(dpll_hw_state.pll1);
13990 PIPE_CONF_CHECK_X(dpll_hw_state.pll2);
13991 PIPE_CONF_CHECK_X(dpll_hw_state.pll3);
13992 PIPE_CONF_CHECK_X(dpll_hw_state.pll6);
13993 PIPE_CONF_CHECK_X(dpll_hw_state.pll8);
13994 PIPE_CONF_CHECK_X(dpll_hw_state.pll9);
13995 PIPE_CONF_CHECK_X(dpll_hw_state.pll10);
13996 PIPE_CONF_CHECK_X(dpll_hw_state.pcsdw12);
13997 PIPE_CONF_CHECK_X(dpll_hw_state.mg_refclkin_ctl);
13998 PIPE_CONF_CHECK_X(dpll_hw_state.mg_clktop2_coreclkctl1);
13999 PIPE_CONF_CHECK_X(dpll_hw_state.mg_clktop2_hsclkctl);
14000 PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_div0);
14001 PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_div1);
14002 PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_lf);
14003 PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_frac_lock);
14004 PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_ssc);
14005 PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_bias);
14006 PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_tdc_coldst_bias);
14007
14008 PIPE_CONF_CHECK_X(dsi_pll.ctrl);
14009 PIPE_CONF_CHECK_X(dsi_pll.div);
14010
14011 if (IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5)
14012 PIPE_CONF_CHECK_I(pipe_bpp);
14013
14014 PIPE_CONF_CHECK_CLOCK_FUZZY(hw.adjusted_mode.crtc_clock);
14015 PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
14016
14017 PIPE_CONF_CHECK_I(min_voltage_level);
14018
14019 PIPE_CONF_CHECK_X(infoframes.enable);
14020 PIPE_CONF_CHECK_X(infoframes.gcp);
14021 PIPE_CONF_CHECK_INFOFRAME(avi);
14022 PIPE_CONF_CHECK_INFOFRAME(spd);
14023 PIPE_CONF_CHECK_INFOFRAME(hdmi);
14024 PIPE_CONF_CHECK_INFOFRAME(drm);
14025 PIPE_CONF_CHECK_DP_VSC_SDP(vsc);
14026
14027 PIPE_CONF_CHECK_X(sync_mode_slaves_mask);
14028 PIPE_CONF_CHECK_I(master_transcoder);
14029
14030 PIPE_CONF_CHECK_I(dsc.compression_enable);
14031 PIPE_CONF_CHECK_I(dsc.dsc_split);
14032 PIPE_CONF_CHECK_I(dsc.compressed_bpp);
14033
14034 PIPE_CONF_CHECK_I(mst_master_transcoder);
14035
14036 #undef PIPE_CONF_CHECK_X
14037 #undef PIPE_CONF_CHECK_I
14038 #undef PIPE_CONF_CHECK_BOOL
14039 #undef PIPE_CONF_CHECK_BOOL_INCOMPLETE
14040 #undef PIPE_CONF_CHECK_P
14041 #undef PIPE_CONF_CHECK_FLAGS
14042 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
14043 #undef PIPE_CONF_CHECK_COLOR_LUT
14044 #undef PIPE_CONF_QUIRK
14045
14046 return ret;
14047 }
14048
14049 static void intel_pipe_config_sanity_check(struct drm_i915_private *dev_priv,
14050 const struct intel_crtc_state *pipe_config)
14051 {
14052 if (pipe_config->has_pch_encoder) {
14053 int fdi_dotclock = intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config),
14054 &pipe_config->fdi_m_n);
14055 int dotclock = pipe_config->hw.adjusted_mode.crtc_clock;
14056
14057 /*
14058 * FDI already provided one idea for the dotclock.
14059 * Yell if the encoder disagrees.
14060 */
14061 drm_WARN(&dev_priv->drm,
14062 !intel_fuzzy_clock_check(fdi_dotclock, dotclock),
14063 "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
14064 fdi_dotclock, dotclock);
14065 }
14066 }
14067
14068 static void verify_wm_state(struct intel_crtc *crtc,
14069 struct intel_crtc_state *new_crtc_state)
14070 {
14071 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
14072 struct skl_hw_state {
14073 struct skl_ddb_entry ddb_y[I915_MAX_PLANES];
14074 struct skl_ddb_entry ddb_uv[I915_MAX_PLANES];
14075 struct skl_pipe_wm wm;
14076 } *hw;
14077 struct skl_pipe_wm *sw_wm;
14078 struct skl_ddb_entry *hw_ddb_entry, *sw_ddb_entry;
14079 u8 hw_enabled_slices;
14080 const enum pipe pipe = crtc->pipe;
14081 int plane, level, max_level = ilk_wm_max_level(dev_priv);
14082
14083 if (INTEL_GEN(dev_priv) < 9 || !new_crtc_state->hw.active)
14084 return;
14085
14086 hw = kzalloc(sizeof(*hw), GFP_KERNEL);
14087 if (!hw)
14088 return;
14089
14090 skl_pipe_wm_get_hw_state(crtc, &hw->wm);
14091 sw_wm = &new_crtc_state->wm.skl.optimal;
14092
14093 skl_pipe_ddb_get_hw_state(crtc, hw->ddb_y, hw->ddb_uv);
14094
14095 hw_enabled_slices = intel_enabled_dbuf_slices_mask(dev_priv);
14096
14097 if (INTEL_GEN(dev_priv) >= 11 &&
14098 hw_enabled_slices != dev_priv->dbuf.enabled_slices)
14099 drm_err(&dev_priv->drm,
14100 "mismatch in DBUF Slices (expected 0x%x, got 0x%x)\n",
14101 dev_priv->dbuf.enabled_slices,
14102 hw_enabled_slices);
14103
14104 /* planes */
14105 for_each_universal_plane(dev_priv, pipe, plane) {
14106 struct skl_plane_wm *hw_plane_wm, *sw_plane_wm;
14107
14108 hw_plane_wm = &hw->wm.planes[plane];
14109 sw_plane_wm = &sw_wm->planes[plane];
14110
14111 /* Watermarks */
14112 for (level = 0; level <= max_level; level++) {
14113 if (skl_wm_level_equals(&hw_plane_wm->wm[level],
14114 &sw_plane_wm->wm[level]) ||
14115 (level == 0 && skl_wm_level_equals(&hw_plane_wm->wm[level],
14116 &sw_plane_wm->sagv_wm0)))
14117 continue;
14118
14119 drm_err(&dev_priv->drm,
14120 "mismatch in WM pipe %c plane %d level %d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
14121 pipe_name(pipe), plane + 1, level,
14122 sw_plane_wm->wm[level].plane_en,
14123 sw_plane_wm->wm[level].plane_res_b,
14124 sw_plane_wm->wm[level].plane_res_l,
14125 hw_plane_wm->wm[level].plane_en,
14126 hw_plane_wm->wm[level].plane_res_b,
14127 hw_plane_wm->wm[level].plane_res_l);
14128 }
14129
14130 if (!skl_wm_level_equals(&hw_plane_wm->trans_wm,
14131 &sw_plane_wm->trans_wm)) {
14132 drm_err(&dev_priv->drm,
14133 "mismatch in trans WM pipe %c plane %d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
14134 pipe_name(pipe), plane + 1,
14135 sw_plane_wm->trans_wm.plane_en,
14136 sw_plane_wm->trans_wm.plane_res_b,
14137 sw_plane_wm->trans_wm.plane_res_l,
14138 hw_plane_wm->trans_wm.plane_en,
14139 hw_plane_wm->trans_wm.plane_res_b,
14140 hw_plane_wm->trans_wm.plane_res_l);
14141 }
14142
14143 /* DDB */
14144 hw_ddb_entry = &hw->ddb_y[plane];
14145 sw_ddb_entry = &new_crtc_state->wm.skl.plane_ddb_y[plane];
14146
14147 if (!skl_ddb_entry_equal(hw_ddb_entry, sw_ddb_entry)) {
14148 drm_err(&dev_priv->drm,
14149 "mismatch in DDB state pipe %c plane %d (expected (%u,%u), found (%u,%u))\n",
14150 pipe_name(pipe), plane + 1,
14151 sw_ddb_entry->start, sw_ddb_entry->end,
14152 hw_ddb_entry->start, hw_ddb_entry->end);
14153 }
14154 }
14155
14156 /*
14157 * cursor
14158 * If the cursor plane isn't active, we may not have updated it's ddb
14159 * allocation. In that case since the ddb allocation will be updated
14160 * once the plane becomes visible, we can skip this check
14161 */
14162 if (1) {
14163 struct skl_plane_wm *hw_plane_wm, *sw_plane_wm;
14164
14165 hw_plane_wm = &hw->wm.planes[PLANE_CURSOR];
14166 sw_plane_wm = &sw_wm->planes[PLANE_CURSOR];
14167
14168 /* Watermarks */
14169 for (level = 0; level <= max_level; level++) {
14170 if (skl_wm_level_equals(&hw_plane_wm->wm[level],
14171 &sw_plane_wm->wm[level]) ||
14172 (level == 0 && skl_wm_level_equals(&hw_plane_wm->wm[level],
14173 &sw_plane_wm->sagv_wm0)))
14174 continue;
14175
14176 drm_err(&dev_priv->drm,
14177 "mismatch in WM pipe %c cursor level %d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
14178 pipe_name(pipe), level,
14179 sw_plane_wm->wm[level].plane_en,
14180 sw_plane_wm->wm[level].plane_res_b,
14181 sw_plane_wm->wm[level].plane_res_l,
14182 hw_plane_wm->wm[level].plane_en,
14183 hw_plane_wm->wm[level].plane_res_b,
14184 hw_plane_wm->wm[level].plane_res_l);
14185 }
14186
14187 if (!skl_wm_level_equals(&hw_plane_wm->trans_wm,
14188 &sw_plane_wm->trans_wm)) {
14189 drm_err(&dev_priv->drm,
14190 "mismatch in trans WM pipe %c cursor (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
14191 pipe_name(pipe),
14192 sw_plane_wm->trans_wm.plane_en,
14193 sw_plane_wm->trans_wm.plane_res_b,
14194 sw_plane_wm->trans_wm.plane_res_l,
14195 hw_plane_wm->trans_wm.plane_en,
14196 hw_plane_wm->trans_wm.plane_res_b,
14197 hw_plane_wm->trans_wm.plane_res_l);
14198 }
14199
14200 /* DDB */
14201 hw_ddb_entry = &hw->ddb_y[PLANE_CURSOR];
14202 sw_ddb_entry = &new_crtc_state->wm.skl.plane_ddb_y[PLANE_CURSOR];
14203
14204 if (!skl_ddb_entry_equal(hw_ddb_entry, sw_ddb_entry)) {
14205 drm_err(&dev_priv->drm,
14206 "mismatch in DDB state pipe %c cursor (expected (%u,%u), found (%u,%u))\n",
14207 pipe_name(pipe),
14208 sw_ddb_entry->start, sw_ddb_entry->end,
14209 hw_ddb_entry->start, hw_ddb_entry->end);
14210 }
14211 }
14212
14213 kfree(hw);
14214 }
14215
14216 static void
14217 verify_connector_state(struct intel_atomic_state *state,
14218 struct intel_crtc *crtc)
14219 {
14220 struct drm_connector *connector;
14221 struct drm_connector_state *new_conn_state;
14222 int i;
14223
14224 for_each_new_connector_in_state(&state->base, connector, new_conn_state, i) {
14225 struct drm_encoder *encoder = connector->encoder;
14226 struct intel_crtc_state *crtc_state = NULL;
14227
14228 if (new_conn_state->crtc != &crtc->base)
14229 continue;
14230
14231 if (crtc)
14232 crtc_state = intel_atomic_get_new_crtc_state(state, crtc);
14233
14234 intel_connector_verify_state(crtc_state, new_conn_state);
14235
14236 I915_STATE_WARN(new_conn_state->best_encoder != encoder,
14237 "connector's atomic encoder doesn't match legacy encoder\n");
14238 }
14239 }
14240
14241 static void
14242 verify_encoder_state(struct drm_i915_private *dev_priv, struct intel_atomic_state *state)
14243 {
14244 struct intel_encoder *encoder;
14245 struct drm_connector *connector;
14246 struct drm_connector_state *old_conn_state, *new_conn_state;
14247 int i;
14248
14249 for_each_intel_encoder(&dev_priv->drm, encoder) {
14250 bool enabled = false, found = false;
14251 enum pipe pipe;
14252
14253 drm_dbg_kms(&dev_priv->drm, "[ENCODER:%d:%s]\n",
14254 encoder->base.base.id,
14255 encoder->base.name);
14256
14257 for_each_oldnew_connector_in_state(&state->base, connector, old_conn_state,
14258 new_conn_state, i) {
14259 if (old_conn_state->best_encoder == &encoder->base)
14260 found = true;
14261
14262 if (new_conn_state->best_encoder != &encoder->base)
14263 continue;
14264 found = enabled = true;
14265
14266 I915_STATE_WARN(new_conn_state->crtc !=
14267 encoder->base.crtc,
14268 "connector's crtc doesn't match encoder crtc\n");
14269 }
14270
14271 if (!found)
14272 continue;
14273
14274 I915_STATE_WARN(!!encoder->base.crtc != enabled,
14275 "encoder's enabled state mismatch "
14276 "(expected %i, found %i)\n",
14277 !!encoder->base.crtc, enabled);
14278
14279 if (!encoder->base.crtc) {
14280 bool active;
14281
14282 active = encoder->get_hw_state(encoder, &pipe);
14283 I915_STATE_WARN(active,
14284 "encoder detached but still enabled on pipe %c.\n",
14285 pipe_name(pipe));
14286 }
14287 }
14288 }
14289
14290 static void
14291 verify_crtc_state(struct intel_crtc *crtc,
14292 struct intel_crtc_state *old_crtc_state,
14293 struct intel_crtc_state *new_crtc_state)
14294 {
14295 struct drm_device *dev = crtc->base.dev;
14296 struct drm_i915_private *dev_priv = to_i915(dev);
14297 struct intel_encoder *encoder;
14298 struct intel_crtc_state *pipe_config = old_crtc_state;
14299 struct drm_atomic_state *state = old_crtc_state->uapi.state;
14300
14301 __drm_atomic_helper_crtc_destroy_state(&old_crtc_state->uapi);
14302 intel_crtc_free_hw_state(old_crtc_state);
14303 intel_crtc_state_reset(old_crtc_state, crtc);
14304 old_crtc_state->uapi.state = state;
14305
14306 drm_dbg_kms(&dev_priv->drm, "[CRTC:%d:%s]\n", crtc->base.base.id,
14307 crtc->base.name);
14308
14309 pipe_config->hw.enable = new_crtc_state->hw.enable;
14310
14311 pipe_config->hw.active =
14312 dev_priv->display.get_pipe_config(crtc, pipe_config);
14313
14314 /* we keep both pipes enabled on 830 */
14315 if (IS_I830(dev_priv) && pipe_config->hw.active)
14316 pipe_config->hw.active = new_crtc_state->hw.active;
14317
14318 I915_STATE_WARN(new_crtc_state->hw.active != pipe_config->hw.active,
14319 "crtc active state doesn't match with hw state "
14320 "(expected %i, found %i)\n",
14321 new_crtc_state->hw.active, pipe_config->hw.active);
14322
14323 I915_STATE_WARN(crtc->active != new_crtc_state->hw.active,
14324 "transitional active state does not match atomic hw state "
14325 "(expected %i, found %i)\n",
14326 new_crtc_state->hw.active, crtc->active);
14327
14328 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
14329 enum pipe pipe;
14330 bool active;
14331
14332 active = encoder->get_hw_state(encoder, &pipe);
14333 I915_STATE_WARN(active != new_crtc_state->hw.active,
14334 "[ENCODER:%i] active %i with crtc active %i\n",
14335 encoder->base.base.id, active,
14336 new_crtc_state->hw.active);
14337
14338 I915_STATE_WARN(active && crtc->pipe != pipe,
14339 "Encoder connected to wrong pipe %c\n",
14340 pipe_name(pipe));
14341
14342 if (active)
14343 encoder->get_config(encoder, pipe_config);
14344 }
14345
14346 intel_crtc_compute_pixel_rate(pipe_config);
14347
14348 if (!new_crtc_state->hw.active)
14349 return;
14350
14351 intel_pipe_config_sanity_check(dev_priv, pipe_config);
14352
14353 if (!intel_pipe_config_compare(new_crtc_state,
14354 pipe_config, false)) {
14355 I915_STATE_WARN(1, "pipe state doesn't match!\n");
14356 intel_dump_pipe_config(pipe_config, NULL, "[hw state]");
14357 intel_dump_pipe_config(new_crtc_state, NULL, "[sw state]");
14358 }
14359 }
14360
14361 static void
14362 intel_verify_planes(struct intel_atomic_state *state)
14363 {
14364 struct intel_plane *plane;
14365 const struct intel_plane_state *plane_state;
14366 int i;
14367
14368 for_each_new_intel_plane_in_state(state, plane,
14369 plane_state, i)
14370 assert_plane(plane, plane_state->planar_slave ||
14371 plane_state->uapi.visible);
14372 }
14373
14374 static void
14375 verify_single_dpll_state(struct drm_i915_private *dev_priv,
14376 struct intel_shared_dpll *pll,
14377 struct intel_crtc *crtc,
14378 struct intel_crtc_state *new_crtc_state)
14379 {
14380 struct intel_dpll_hw_state dpll_hw_state;
14381 unsigned int crtc_mask;
14382 bool active;
14383
14384 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
14385
14386 drm_dbg_kms(&dev_priv->drm, "%s\n", pll->info->name);
14387
14388 active = pll->info->funcs->get_hw_state(dev_priv, pll, &dpll_hw_state);
14389
14390 if (!(pll->info->flags & INTEL_DPLL_ALWAYS_ON)) {
14391 I915_STATE_WARN(!pll->on && pll->active_mask,
14392 "pll in active use but not on in sw tracking\n");
14393 I915_STATE_WARN(pll->on && !pll->active_mask,
14394 "pll is on but not used by any active crtc\n");
14395 I915_STATE_WARN(pll->on != active,
14396 "pll on state mismatch (expected %i, found %i)\n",
14397 pll->on, active);
14398 }
14399
14400 if (!crtc) {
14401 I915_STATE_WARN(pll->active_mask & ~pll->state.crtc_mask,
14402 "more active pll users than references: %x vs %x\n",
14403 pll->active_mask, pll->state.crtc_mask);
14404
14405 return;
14406 }
14407
14408 crtc_mask = drm_crtc_mask(&crtc->base);
14409
14410 if (new_crtc_state->hw.active)
14411 I915_STATE_WARN(!(pll->active_mask & crtc_mask),
14412 "pll active mismatch (expected pipe %c in active mask 0x%02x)\n",
14413 pipe_name(crtc->pipe), pll->active_mask);
14414 else
14415 I915_STATE_WARN(pll->active_mask & crtc_mask,
14416 "pll active mismatch (didn't expect pipe %c in active mask 0x%02x)\n",
14417 pipe_name(crtc->pipe), pll->active_mask);
14418
14419 I915_STATE_WARN(!(pll->state.crtc_mask & crtc_mask),
14420 "pll enabled crtcs mismatch (expected 0x%x in 0x%02x)\n",
14421 crtc_mask, pll->state.crtc_mask);
14422
14423 I915_STATE_WARN(pll->on && memcmp(&pll->state.hw_state,
14424 &dpll_hw_state,
14425 sizeof(dpll_hw_state)),
14426 "pll hw state mismatch\n");
14427 }
14428
14429 static void
14430 verify_shared_dpll_state(struct intel_crtc *crtc,
14431 struct intel_crtc_state *old_crtc_state,
14432 struct intel_crtc_state *new_crtc_state)
14433 {
14434 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
14435
14436 if (new_crtc_state->shared_dpll)
14437 verify_single_dpll_state(dev_priv, new_crtc_state->shared_dpll, crtc, new_crtc_state);
14438
14439 if (old_crtc_state->shared_dpll &&
14440 old_crtc_state->shared_dpll != new_crtc_state->shared_dpll) {
14441 unsigned int crtc_mask = drm_crtc_mask(&crtc->base);
14442 struct intel_shared_dpll *pll = old_crtc_state->shared_dpll;
14443
14444 I915_STATE_WARN(pll->active_mask & crtc_mask,
14445 "pll active mismatch (didn't expect pipe %c in active mask)\n",
14446 pipe_name(crtc->pipe));
14447 I915_STATE_WARN(pll->state.crtc_mask & crtc_mask,
14448 "pll enabled crtcs mismatch (found %x in enabled mask)\n",
14449 pipe_name(crtc->pipe));
14450 }
14451 }
14452
14453 static void
14454 intel_modeset_verify_crtc(struct intel_crtc *crtc,
14455 struct intel_atomic_state *state,
14456 struct intel_crtc_state *old_crtc_state,
14457 struct intel_crtc_state *new_crtc_state)
14458 {
14459 if (!needs_modeset(new_crtc_state) && !new_crtc_state->update_pipe)
14460 return;
14461
14462 verify_wm_state(crtc, new_crtc_state);
14463 verify_connector_state(state, crtc);
14464 verify_crtc_state(crtc, old_crtc_state, new_crtc_state);
14465 verify_shared_dpll_state(crtc, old_crtc_state, new_crtc_state);
14466 }
14467
14468 static void
14469 verify_disabled_dpll_state(struct drm_i915_private *dev_priv)
14470 {
14471 int i;
14472
14473 for (i = 0; i < dev_priv->dpll.num_shared_dpll; i++)
14474 verify_single_dpll_state(dev_priv,
14475 &dev_priv->dpll.shared_dplls[i],
14476 NULL, NULL);
14477 }
14478
14479 static void
14480 intel_modeset_verify_disabled(struct drm_i915_private *dev_priv,
14481 struct intel_atomic_state *state)
14482 {
14483 verify_encoder_state(dev_priv, state);
14484 verify_connector_state(state, NULL);
14485 verify_disabled_dpll_state(dev_priv);
14486 }
14487
14488 static void
14489 intel_crtc_update_active_timings(const struct intel_crtc_state *crtc_state)
14490 {
14491 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
14492 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
14493 const struct drm_display_mode *adjusted_mode =
14494 &crtc_state->hw.adjusted_mode;
14495
14496 drm_calc_timestamping_constants(&crtc->base, adjusted_mode);
14497
14498 crtc->mode_flags = crtc_state->mode_flags;
14499
14500 /*
14501 * The scanline counter increments at the leading edge of hsync.
14502 *
14503 * On most platforms it starts counting from vtotal-1 on the
14504 * first active line. That means the scanline counter value is
14505 * always one less than what we would expect. Ie. just after
14506 * start of vblank, which also occurs at start of hsync (on the
14507 * last active line), the scanline counter will read vblank_start-1.
14508 *
14509 * On gen2 the scanline counter starts counting from 1 instead
14510 * of vtotal-1, so we have to subtract one (or rather add vtotal-1
14511 * to keep the value positive), instead of adding one.
14512 *
14513 * On HSW+ the behaviour of the scanline counter depends on the output
14514 * type. For DP ports it behaves like most other platforms, but on HDMI
14515 * there's an extra 1 line difference. So we need to add two instead of
14516 * one to the value.
14517 *
14518 * On VLV/CHV DSI the scanline counter would appear to increment
14519 * approx. 1/3 of a scanline before start of vblank. Unfortunately
14520 * that means we can't tell whether we're in vblank or not while
14521 * we're on that particular line. We must still set scanline_offset
14522 * to 1 so that the vblank timestamps come out correct when we query
14523 * the scanline counter from within the vblank interrupt handler.
14524 * However if queried just before the start of vblank we'll get an
14525 * answer that's slightly in the future.
14526 */
14527 if (IS_GEN(dev_priv, 2)) {
14528 int vtotal;
14529
14530 vtotal = adjusted_mode->crtc_vtotal;
14531 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
14532 vtotal /= 2;
14533
14534 crtc->scanline_offset = vtotal - 1;
14535 } else if (HAS_DDI(dev_priv) &&
14536 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) {
14537 crtc->scanline_offset = 2;
14538 } else {
14539 crtc->scanline_offset = 1;
14540 }
14541 }
14542
14543 static void intel_modeset_clear_plls(struct intel_atomic_state *state)
14544 {
14545 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
14546 struct intel_crtc_state *new_crtc_state;
14547 struct intel_crtc *crtc;
14548 int i;
14549
14550 if (!dev_priv->display.crtc_compute_clock)
14551 return;
14552
14553 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
14554 if (!needs_modeset(new_crtc_state))
14555 continue;
14556
14557 intel_release_shared_dplls(state, crtc);
14558 }
14559 }
14560
14561 /*
14562 * This implements the workaround described in the "notes" section of the mode
14563 * set sequence documentation. When going from no pipes or single pipe to
14564 * multiple pipes, and planes are enabled after the pipe, we need to wait at
14565 * least 2 vblanks on the first pipe before enabling planes on the second pipe.
14566 */
14567 static int hsw_mode_set_planes_workaround(struct intel_atomic_state *state)
14568 {
14569 struct intel_crtc_state *crtc_state;
14570 struct intel_crtc *crtc;
14571 struct intel_crtc_state *first_crtc_state = NULL;
14572 struct intel_crtc_state *other_crtc_state = NULL;
14573 enum pipe first_pipe = INVALID_PIPE, enabled_pipe = INVALID_PIPE;
14574 int i;
14575
14576 /* look at all crtc's that are going to be enabled in during modeset */
14577 for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) {
14578 if (!crtc_state->hw.active ||
14579 !needs_modeset(crtc_state))
14580 continue;
14581
14582 if (first_crtc_state) {
14583 other_crtc_state = crtc_state;
14584 break;
14585 } else {
14586 first_crtc_state = crtc_state;
14587 first_pipe = crtc->pipe;
14588 }
14589 }
14590
14591 /* No workaround needed? */
14592 if (!first_crtc_state)
14593 return 0;
14594
14595 /* w/a possibly needed, check how many crtc's are already enabled. */
14596 for_each_intel_crtc(state->base.dev, crtc) {
14597 crtc_state = intel_atomic_get_crtc_state(&state->base, crtc);
14598 if (IS_ERR(crtc_state))
14599 return PTR_ERR(crtc_state);
14600
14601 crtc_state->hsw_workaround_pipe = INVALID_PIPE;
14602
14603 if (!crtc_state->hw.active ||
14604 needs_modeset(crtc_state))
14605 continue;
14606
14607 /* 2 or more enabled crtcs means no need for w/a */
14608 if (enabled_pipe != INVALID_PIPE)
14609 return 0;
14610
14611 enabled_pipe = crtc->pipe;
14612 }
14613
14614 if (enabled_pipe != INVALID_PIPE)
14615 first_crtc_state->hsw_workaround_pipe = enabled_pipe;
14616 else if (other_crtc_state)
14617 other_crtc_state->hsw_workaround_pipe = first_pipe;
14618
14619 return 0;
14620 }
14621
14622 u8 intel_calc_active_pipes(struct intel_atomic_state *state,
14623 u8 active_pipes)
14624 {
14625 const struct intel_crtc_state *crtc_state;
14626 struct intel_crtc *crtc;
14627 int i;
14628
14629 for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) {
14630 if (crtc_state->hw.active)
14631 active_pipes |= BIT(crtc->pipe);
14632 else
14633 active_pipes &= ~BIT(crtc->pipe);
14634 }
14635
14636 return active_pipes;
14637 }
14638
14639 static int intel_modeset_checks(struct intel_atomic_state *state)
14640 {
14641 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
14642
14643 state->modeset = true;
14644
14645 if (IS_HASWELL(dev_priv))
14646 return hsw_mode_set_planes_workaround(state);
14647
14648 return 0;
14649 }
14650
14651 /*
14652 * Handle calculation of various watermark data at the end of the atomic check
14653 * phase. The code here should be run after the per-crtc and per-plane 'check'
14654 * handlers to ensure that all derived state has been updated.
14655 */
14656 static int calc_watermark_data(struct intel_atomic_state *state)
14657 {
14658 struct drm_device *dev = state->base.dev;
14659 struct drm_i915_private *dev_priv = to_i915(dev);
14660
14661 /* Is there platform-specific watermark information to calculate? */
14662 if (dev_priv->display.compute_global_watermarks)
14663 return dev_priv->display.compute_global_watermarks(state);
14664
14665 return 0;
14666 }
14667
14668 static void intel_crtc_check_fastset(const struct intel_crtc_state *old_crtc_state,
14669 struct intel_crtc_state *new_crtc_state)
14670 {
14671 if (!intel_pipe_config_compare(old_crtc_state, new_crtc_state, true))
14672 return;
14673
14674 new_crtc_state->uapi.mode_changed = false;
14675 new_crtc_state->update_pipe = true;
14676 }
14677
14678 static void intel_crtc_copy_fastset(const struct intel_crtc_state *old_crtc_state,
14679 struct intel_crtc_state *new_crtc_state)
14680 {
14681 /*
14682 * If we're not doing the full modeset we want to
14683 * keep the current M/N values as they may be
14684 * sufficiently different to the computed values
14685 * to cause problems.
14686 *
14687 * FIXME: should really copy more fuzzy state here
14688 */
14689 new_crtc_state->fdi_m_n = old_crtc_state->fdi_m_n;
14690 new_crtc_state->dp_m_n = old_crtc_state->dp_m_n;
14691 new_crtc_state->dp_m2_n2 = old_crtc_state->dp_m2_n2;
14692 new_crtc_state->has_drrs = old_crtc_state->has_drrs;
14693 }
14694
14695 static int intel_crtc_add_planes_to_state(struct intel_atomic_state *state,
14696 struct intel_crtc *crtc,
14697 u8 plane_ids_mask)
14698 {
14699 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
14700 struct intel_plane *plane;
14701
14702 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
14703 struct intel_plane_state *plane_state;
14704
14705 if ((plane_ids_mask & BIT(plane->id)) == 0)
14706 continue;
14707
14708 plane_state = intel_atomic_get_plane_state(state, plane);
14709 if (IS_ERR(plane_state))
14710 return PTR_ERR(plane_state);
14711 }
14712
14713 return 0;
14714 }
14715
14716 static bool active_planes_affects_min_cdclk(struct drm_i915_private *dev_priv)
14717 {
14718 /* See {hsw,vlv,ivb}_plane_ratio() */
14719 return IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv) ||
14720 IS_CHERRYVIEW(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
14721 IS_IVYBRIDGE(dev_priv) || (INTEL_GEN(dev_priv) >= 11);
14722 }
14723
14724 static int intel_atomic_check_planes(struct intel_atomic_state *state)
14725 {
14726 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
14727 struct intel_crtc_state *old_crtc_state, *new_crtc_state;
14728 struct intel_plane_state *plane_state;
14729 struct intel_plane *plane;
14730 struct intel_crtc *crtc;
14731 int i, ret;
14732
14733 ret = icl_add_linked_planes(state);
14734 if (ret)
14735 return ret;
14736
14737 for_each_new_intel_plane_in_state(state, plane, plane_state, i) {
14738 ret = intel_plane_atomic_check(state, plane);
14739 if (ret) {
14740 drm_dbg_atomic(&dev_priv->drm,
14741 "[PLANE:%d:%s] atomic driver check failed\n",
14742 plane->base.base.id, plane->base.name);
14743 return ret;
14744 }
14745 }
14746
14747 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
14748 new_crtc_state, i) {
14749 u8 old_active_planes, new_active_planes;
14750
14751 ret = icl_check_nv12_planes(new_crtc_state);
14752 if (ret)
14753 return ret;
14754
14755 /*
14756 * On some platforms the number of active planes affects
14757 * the planes' minimum cdclk calculation. Add such planes
14758 * to the state before we compute the minimum cdclk.
14759 */
14760 if (!active_planes_affects_min_cdclk(dev_priv))
14761 continue;
14762
14763 old_active_planes = old_crtc_state->active_planes & ~BIT(PLANE_CURSOR);
14764 new_active_planes = new_crtc_state->active_planes & ~BIT(PLANE_CURSOR);
14765
14766 /*
14767 * Not only the number of planes, but if the plane configuration had
14768 * changed might already mean we need to recompute min CDCLK,
14769 * because different planes might consume different amount of Dbuf bandwidth
14770 * according to formula: Bw per plane = Pixel rate * bpp * pipe/plane scale factor
14771 */
14772 if (old_active_planes == new_active_planes)
14773 continue;
14774
14775 ret = intel_crtc_add_planes_to_state(state, crtc, new_active_planes);
14776 if (ret)
14777 return ret;
14778 }
14779
14780 return 0;
14781 }
14782
14783 static int intel_atomic_check_cdclk(struct intel_atomic_state *state,
14784 bool *need_cdclk_calc)
14785 {
14786 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
14787 const struct intel_cdclk_state *old_cdclk_state;
14788 const struct intel_cdclk_state *new_cdclk_state;
14789 struct intel_plane_state *plane_state;
14790 struct intel_bw_state *new_bw_state;
14791 struct intel_plane *plane;
14792 int min_cdclk = 0;
14793 enum pipe pipe;
14794 int ret;
14795 int i;
14796 /*
14797 * active_planes bitmask has been updated, and potentially
14798 * affected planes are part of the state. We can now
14799 * compute the minimum cdclk for each plane.
14800 */
14801 for_each_new_intel_plane_in_state(state, plane, plane_state, i) {
14802 ret = intel_plane_calc_min_cdclk(state, plane, need_cdclk_calc);
14803 if (ret)
14804 return ret;
14805 }
14806
14807 old_cdclk_state = intel_atomic_get_old_cdclk_state(state);
14808 new_cdclk_state = intel_atomic_get_new_cdclk_state(state);
14809
14810 if (new_cdclk_state &&
14811 old_cdclk_state->force_min_cdclk != new_cdclk_state->force_min_cdclk)
14812 *need_cdclk_calc = true;
14813
14814 ret = dev_priv->display.bw_calc_min_cdclk(state);
14815 if (ret)
14816 return ret;
14817
14818 new_bw_state = intel_atomic_get_new_bw_state(state);
14819
14820 if (!new_cdclk_state || !new_bw_state)
14821 return 0;
14822
14823 for_each_pipe(dev_priv, pipe) {
14824 min_cdclk = max(new_cdclk_state->min_cdclk[pipe], min_cdclk);
14825
14826 /*
14827 * Currently do this change only if we need to increase
14828 */
14829 if (new_bw_state->min_cdclk > min_cdclk)
14830 *need_cdclk_calc = true;
14831 }
14832
14833 return 0;
14834 }
14835
14836 static int intel_atomic_check_crtcs(struct intel_atomic_state *state)
14837 {
14838 struct intel_crtc_state *crtc_state;
14839 struct intel_crtc *crtc;
14840 int i;
14841
14842 for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) {
14843 int ret = intel_crtc_atomic_check(state, crtc);
14844 struct drm_i915_private *i915 = to_i915(crtc->base.dev);
14845 if (ret) {
14846 drm_dbg_atomic(&i915->drm,
14847 "[CRTC:%d:%s] atomic driver check failed\n",
14848 crtc->base.base.id, crtc->base.name);
14849 return ret;
14850 }
14851 }
14852
14853 return 0;
14854 }
14855
14856 static bool intel_cpu_transcoders_need_modeset(struct intel_atomic_state *state,
14857 u8 transcoders)
14858 {
14859 const struct intel_crtc_state *new_crtc_state;
14860 struct intel_crtc *crtc;
14861 int i;
14862
14863 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
14864 if (new_crtc_state->hw.enable &&
14865 transcoders & BIT(new_crtc_state->cpu_transcoder) &&
14866 needs_modeset(new_crtc_state))
14867 return true;
14868 }
14869
14870 return false;
14871 }
14872
14873 /**
14874 * intel_atomic_check - validate state object
14875 * @dev: drm device
14876 * @_state: state to validate
14877 */
14878 static int intel_atomic_check(struct drm_device *dev,
14879 struct drm_atomic_state *_state)
14880 {
14881 struct drm_i915_private *dev_priv = to_i915(dev);
14882 struct intel_atomic_state *state = to_intel_atomic_state(_state);
14883 struct intel_crtc_state *old_crtc_state, *new_crtc_state;
14884 struct intel_crtc *crtc;
14885 int ret, i;
14886 bool any_ms = false;
14887
14888 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
14889 new_crtc_state, i) {
14890 if (new_crtc_state->inherited != old_crtc_state->inherited)
14891 new_crtc_state->uapi.mode_changed = true;
14892 }
14893
14894 ret = drm_atomic_helper_check_modeset(dev, &state->base);
14895 if (ret)
14896 goto fail;
14897
14898 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
14899 new_crtc_state, i) {
14900 if (!needs_modeset(new_crtc_state)) {
14901 /* Light copy */
14902 intel_crtc_copy_uapi_to_hw_state_nomodeset(new_crtc_state);
14903
14904 continue;
14905 }
14906
14907 ret = intel_crtc_prepare_cleared_state(new_crtc_state);
14908 if (ret)
14909 goto fail;
14910
14911 if (!new_crtc_state->hw.enable)
14912 continue;
14913
14914 ret = intel_modeset_pipe_config(new_crtc_state);
14915 if (ret)
14916 goto fail;
14917 }
14918
14919 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
14920 new_crtc_state, i) {
14921 if (!needs_modeset(new_crtc_state))
14922 continue;
14923
14924 ret = intel_modeset_pipe_config_late(new_crtc_state);
14925 if (ret)
14926 goto fail;
14927
14928 intel_crtc_check_fastset(old_crtc_state, new_crtc_state);
14929 }
14930
14931 /**
14932 * Check if fastset is allowed by external dependencies like other
14933 * pipes and transcoders.
14934 *
14935 * Right now it only forces a fullmodeset when the MST master
14936 * transcoder did not changed but the pipe of the master transcoder
14937 * needs a fullmodeset so all slaves also needs to do a fullmodeset or
14938 * in case of port synced crtcs, if one of the synced crtcs
14939 * needs a full modeset, all other synced crtcs should be
14940 * forced a full modeset.
14941 */
14942 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
14943 if (!new_crtc_state->hw.enable || needs_modeset(new_crtc_state))
14944 continue;
14945
14946 if (intel_dp_mst_is_slave_trans(new_crtc_state)) {
14947 enum transcoder master = new_crtc_state->mst_master_transcoder;
14948
14949 if (intel_cpu_transcoders_need_modeset(state, BIT(master))) {
14950 new_crtc_state->uapi.mode_changed = true;
14951 new_crtc_state->update_pipe = false;
14952 }
14953 }
14954
14955 if (is_trans_port_sync_mode(new_crtc_state)) {
14956 u8 trans = new_crtc_state->sync_mode_slaves_mask;
14957
14958 if (new_crtc_state->master_transcoder != INVALID_TRANSCODER)
14959 trans |= BIT(new_crtc_state->master_transcoder);
14960
14961 if (intel_cpu_transcoders_need_modeset(state, trans)) {
14962 new_crtc_state->uapi.mode_changed = true;
14963 new_crtc_state->update_pipe = false;
14964 }
14965 }
14966 }
14967
14968 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
14969 new_crtc_state, i) {
14970 if (needs_modeset(new_crtc_state)) {
14971 any_ms = true;
14972 continue;
14973 }
14974
14975 if (!new_crtc_state->update_pipe)
14976 continue;
14977
14978 intel_crtc_copy_fastset(old_crtc_state, new_crtc_state);
14979 }
14980
14981 if (any_ms && !check_digital_port_conflicts(state)) {
14982 drm_dbg_kms(&dev_priv->drm,
14983 "rejecting conflicting digital port configuration\n");
14984 ret = -EINVAL;
14985 goto fail;
14986 }
14987
14988 ret = drm_dp_mst_atomic_check(&state->base);
14989 if (ret)
14990 goto fail;
14991
14992 ret = intel_atomic_check_planes(state);
14993 if (ret)
14994 goto fail;
14995
14996 /*
14997 * distrust_bios_wm will force a full dbuf recomputation
14998 * but the hardware state will only get updated accordingly
14999 * if state->modeset==true. Hence distrust_bios_wm==true &&
15000 * state->modeset==false is an invalid combination which
15001 * would cause the hardware and software dbuf state to get
15002 * out of sync. We must prevent that.
15003 *
15004 * FIXME clean up this mess and introduce better
15005 * state tracking for dbuf.
15006 */
15007 if (dev_priv->wm.distrust_bios_wm)
15008 any_ms = true;
15009
15010 intel_fbc_choose_crtc(dev_priv, state);
15011 ret = calc_watermark_data(state);
15012 if (ret)
15013 goto fail;
15014
15015 ret = intel_bw_atomic_check(state);
15016 if (ret)
15017 goto fail;
15018
15019 ret = intel_atomic_check_cdclk(state, &any_ms);
15020 if (ret)
15021 goto fail;
15022
15023 if (any_ms) {
15024 ret = intel_modeset_checks(state);
15025 if (ret)
15026 goto fail;
15027
15028 ret = intel_modeset_calc_cdclk(state);
15029 if (ret)
15030 return ret;
15031
15032 intel_modeset_clear_plls(state);
15033 }
15034
15035 ret = intel_atomic_check_crtcs(state);
15036 if (ret)
15037 goto fail;
15038
15039 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
15040 new_crtc_state, i) {
15041 if (!needs_modeset(new_crtc_state) &&
15042 !new_crtc_state->update_pipe)
15043 continue;
15044
15045 intel_dump_pipe_config(new_crtc_state, state,
15046 needs_modeset(new_crtc_state) ?
15047 "[modeset]" : "[fastset]");
15048 }
15049
15050 return 0;
15051
15052 fail:
15053 if (ret == -EDEADLK)
15054 return ret;
15055
15056 /*
15057 * FIXME would probably be nice to know which crtc specifically
15058 * caused the failure, in cases where we can pinpoint it.
15059 */
15060 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
15061 new_crtc_state, i)
15062 intel_dump_pipe_config(new_crtc_state, state, "[failed]");
15063
15064 return ret;
15065 }
15066
15067 static int intel_atomic_prepare_commit(struct intel_atomic_state *state)
15068 {
15069 struct intel_crtc_state *crtc_state;
15070 struct intel_crtc *crtc;
15071 int i, ret;
15072
15073 ret = drm_atomic_helper_prepare_planes(state->base.dev, &state->base);
15074 if (ret < 0)
15075 return ret;
15076
15077 for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) {
15078 bool mode_changed = needs_modeset(crtc_state);
15079
15080 if (mode_changed || crtc_state->update_pipe ||
15081 crtc_state->uapi.color_mgmt_changed) {
15082 intel_dsb_prepare(crtc_state);
15083 }
15084 }
15085
15086 return 0;
15087 }
15088
15089 u32 intel_crtc_get_vblank_counter(struct intel_crtc *crtc)
15090 {
15091 struct drm_device *dev = crtc->base.dev;
15092 struct drm_vblank_crtc *vblank = &dev->vblank[drm_crtc_index(&crtc->base)];
15093
15094 if (!vblank->max_vblank_count)
15095 return (u32)drm_crtc_accurate_vblank_count(&crtc->base);
15096
15097 return crtc->base.funcs->get_vblank_counter(&crtc->base);
15098 }
15099
15100 void intel_crtc_arm_fifo_underrun(struct intel_crtc *crtc,
15101 struct intel_crtc_state *crtc_state)
15102 {
15103 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
15104
15105 if (!IS_GEN(dev_priv, 2) || crtc_state->active_planes)
15106 intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, true);
15107
15108 if (crtc_state->has_pch_encoder) {
15109 enum pipe pch_transcoder =
15110 intel_crtc_pch_transcoder(crtc);
15111
15112 intel_set_pch_fifo_underrun_reporting(dev_priv, pch_transcoder, true);
15113 }
15114 }
15115
15116 static void intel_pipe_fastset(const struct intel_crtc_state *old_crtc_state,
15117 const struct intel_crtc_state *new_crtc_state)
15118 {
15119 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
15120 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
15121
15122 /*
15123 * Update pipe size and adjust fitter if needed: the reason for this is
15124 * that in compute_mode_changes we check the native mode (not the pfit
15125 * mode) to see if we can flip rather than do a full mode set. In the
15126 * fastboot case, we'll flip, but if we don't update the pipesrc and
15127 * pfit state, we'll end up with a big fb scanned out into the wrong
15128 * sized surface.
15129 */
15130 intel_set_pipe_src_size(new_crtc_state);
15131
15132 /* on skylake this is done by detaching scalers */
15133 if (INTEL_GEN(dev_priv) >= 9) {
15134 skl_detach_scalers(new_crtc_state);
15135
15136 if (new_crtc_state->pch_pfit.enabled)
15137 skl_pfit_enable(new_crtc_state);
15138 } else if (HAS_PCH_SPLIT(dev_priv)) {
15139 if (new_crtc_state->pch_pfit.enabled)
15140 ilk_pfit_enable(new_crtc_state);
15141 else if (old_crtc_state->pch_pfit.enabled)
15142 ilk_pfit_disable(old_crtc_state);
15143 }
15144
15145 /*
15146 * The register is supposedly single buffered so perhaps
15147 * not 100% correct to do this here. But SKL+ calculate
15148 * this based on the adjust pixel rate so pfit changes do
15149 * affect it and so it must be updated for fastsets.
15150 * HSW/BDW only really need this here for fastboot, after
15151 * that the value should not change without a full modeset.
15152 */
15153 if (INTEL_GEN(dev_priv) >= 9 ||
15154 IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv))
15155 hsw_set_linetime_wm(new_crtc_state);
15156
15157 if (INTEL_GEN(dev_priv) >= 11)
15158 icl_set_pipe_chicken(crtc);
15159 }
15160
15161 static void commit_pipe_config(struct intel_atomic_state *state,
15162 struct intel_crtc *crtc)
15163 {
15164 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
15165 const struct intel_crtc_state *old_crtc_state =
15166 intel_atomic_get_old_crtc_state(state, crtc);
15167 const struct intel_crtc_state *new_crtc_state =
15168 intel_atomic_get_new_crtc_state(state, crtc);
15169 bool modeset = needs_modeset(new_crtc_state);
15170
15171 /*
15172 * During modesets pipe configuration was programmed as the
15173 * CRTC was enabled.
15174 */
15175 if (!modeset) {
15176 if (new_crtc_state->uapi.color_mgmt_changed ||
15177 new_crtc_state->update_pipe)
15178 intel_color_commit(new_crtc_state);
15179
15180 if (INTEL_GEN(dev_priv) >= 9)
15181 skl_detach_scalers(new_crtc_state);
15182
15183 if (INTEL_GEN(dev_priv) >= 9 || IS_BROADWELL(dev_priv))
15184 bdw_set_pipemisc(new_crtc_state);
15185
15186 if (new_crtc_state->update_pipe)
15187 intel_pipe_fastset(old_crtc_state, new_crtc_state);
15188
15189 intel_psr2_program_trans_man_trk_ctl(new_crtc_state);
15190 }
15191
15192 if (dev_priv->display.atomic_update_watermarks)
15193 dev_priv->display.atomic_update_watermarks(state, crtc);
15194 }
15195
15196 static void intel_enable_crtc(struct intel_atomic_state *state,
15197 struct intel_crtc *crtc)
15198 {
15199 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
15200 const struct intel_crtc_state *new_crtc_state =
15201 intel_atomic_get_new_crtc_state(state, crtc);
15202
15203 if (!needs_modeset(new_crtc_state))
15204 return;
15205
15206 intel_crtc_update_active_timings(new_crtc_state);
15207
15208 dev_priv->display.crtc_enable(state, crtc);
15209
15210 /* vblanks work again, re-enable pipe CRC. */
15211 intel_crtc_enable_pipe_crc(crtc);
15212 }
15213
15214 static void intel_update_crtc(struct intel_atomic_state *state,
15215 struct intel_crtc *crtc)
15216 {
15217 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
15218 const struct intel_crtc_state *old_crtc_state =
15219 intel_atomic_get_old_crtc_state(state, crtc);
15220 struct intel_crtc_state *new_crtc_state =
15221 intel_atomic_get_new_crtc_state(state, crtc);
15222 bool modeset = needs_modeset(new_crtc_state);
15223
15224 if (!modeset) {
15225 if (new_crtc_state->preload_luts &&
15226 (new_crtc_state->uapi.color_mgmt_changed ||
15227 new_crtc_state->update_pipe))
15228 intel_color_load_luts(new_crtc_state);
15229
15230 intel_pre_plane_update(state, crtc);
15231
15232 if (new_crtc_state->update_pipe)
15233 intel_encoders_update_pipe(state, crtc);
15234 }
15235
15236 if (new_crtc_state->update_pipe && !new_crtc_state->enable_fbc)
15237 intel_fbc_disable(crtc);
15238 else
15239 intel_fbc_enable(state, crtc);
15240
15241 /* Perform vblank evasion around commit operation */
15242 intel_pipe_update_start(new_crtc_state);
15243
15244 commit_pipe_config(state, crtc);
15245
15246 if (INTEL_GEN(dev_priv) >= 9)
15247 skl_update_planes_on_crtc(state, crtc);
15248 else
15249 i9xx_update_planes_on_crtc(state, crtc);
15250
15251 intel_pipe_update_end(new_crtc_state);
15252
15253 /*
15254 * We usually enable FIFO underrun interrupts as part of the
15255 * CRTC enable sequence during modesets. But when we inherit a
15256 * valid pipe configuration from the BIOS we need to take care
15257 * of enabling them on the CRTC's first fastset.
15258 */
15259 if (new_crtc_state->update_pipe && !modeset &&
15260 old_crtc_state->inherited)
15261 intel_crtc_arm_fifo_underrun(crtc, new_crtc_state);
15262 }
15263
15264
15265 static void intel_old_crtc_state_disables(struct intel_atomic_state *state,
15266 struct intel_crtc_state *old_crtc_state,
15267 struct intel_crtc_state *new_crtc_state,
15268 struct intel_crtc *crtc)
15269 {
15270 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
15271
15272 intel_crtc_disable_planes(state, crtc);
15273
15274 /*
15275 * We need to disable pipe CRC before disabling the pipe,
15276 * or we race against vblank off.
15277 */
15278 intel_crtc_disable_pipe_crc(crtc);
15279
15280 dev_priv->display.crtc_disable(state, crtc);
15281 crtc->active = false;
15282 intel_fbc_disable(crtc);
15283 intel_disable_shared_dpll(old_crtc_state);
15284
15285 /* FIXME unify this for all platforms */
15286 if (!new_crtc_state->hw.active &&
15287 !HAS_GMCH(dev_priv) &&
15288 dev_priv->display.initial_watermarks)
15289 dev_priv->display.initial_watermarks(state, crtc);
15290 }
15291
15292 static void intel_commit_modeset_disables(struct intel_atomic_state *state)
15293 {
15294 struct intel_crtc_state *new_crtc_state, *old_crtc_state;
15295 struct intel_crtc *crtc;
15296 u32 handled = 0;
15297 int i;
15298
15299 /* Only disable port sync and MST slaves */
15300 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
15301 new_crtc_state, i) {
15302 if (!needs_modeset(new_crtc_state))
15303 continue;
15304
15305 if (!old_crtc_state->hw.active)
15306 continue;
15307
15308 /* In case of Transcoder port Sync master slave CRTCs can be
15309 * assigned in any order and we need to make sure that
15310 * slave CRTCs are disabled first and then master CRTC since
15311 * Slave vblanks are masked till Master Vblanks.
15312 */
15313 if (!is_trans_port_sync_slave(old_crtc_state) &&
15314 !intel_dp_mst_is_slave_trans(old_crtc_state))
15315 continue;
15316
15317 intel_pre_plane_update(state, crtc);
15318 intel_old_crtc_state_disables(state, old_crtc_state,
15319 new_crtc_state, crtc);
15320 handled |= BIT(crtc->pipe);
15321 }
15322
15323 /* Disable everything else left on */
15324 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
15325 new_crtc_state, i) {
15326 if (!needs_modeset(new_crtc_state) ||
15327 (handled & BIT(crtc->pipe)))
15328 continue;
15329
15330 intel_pre_plane_update(state, crtc);
15331 if (old_crtc_state->hw.active)
15332 intel_old_crtc_state_disables(state, old_crtc_state,
15333 new_crtc_state, crtc);
15334 }
15335 }
15336
15337 static void intel_commit_modeset_enables(struct intel_atomic_state *state)
15338 {
15339 struct intel_crtc_state *new_crtc_state;
15340 struct intel_crtc *crtc;
15341 int i;
15342
15343 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
15344 if (!new_crtc_state->hw.active)
15345 continue;
15346
15347 intel_enable_crtc(state, crtc);
15348 intel_update_crtc(state, crtc);
15349 }
15350 }
15351
15352 static void skl_commit_modeset_enables(struct intel_atomic_state *state)
15353 {
15354 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
15355 struct intel_crtc *crtc;
15356 struct intel_crtc_state *old_crtc_state, *new_crtc_state;
15357 struct skl_ddb_entry entries[I915_MAX_PIPES] = {};
15358 u8 update_pipes = 0, modeset_pipes = 0;
15359 int i;
15360
15361 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
15362 enum pipe pipe = crtc->pipe;
15363
15364 if (!new_crtc_state->hw.active)
15365 continue;
15366
15367 /* ignore allocations for crtc's that have been turned off. */
15368 if (!needs_modeset(new_crtc_state)) {
15369 entries[pipe] = old_crtc_state->wm.skl.ddb;
15370 update_pipes |= BIT(pipe);
15371 } else {
15372 modeset_pipes |= BIT(pipe);
15373 }
15374 }
15375
15376 /*
15377 * Whenever the number of active pipes changes, we need to make sure we
15378 * update the pipes in the right order so that their ddb allocations
15379 * never overlap with each other between CRTC updates. Otherwise we'll
15380 * cause pipe underruns and other bad stuff.
15381 *
15382 * So first lets enable all pipes that do not need a fullmodeset as
15383 * those don't have any external dependency.
15384 */
15385 while (update_pipes) {
15386 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
15387 new_crtc_state, i) {
15388 enum pipe pipe = crtc->pipe;
15389
15390 if ((update_pipes & BIT(pipe)) == 0)
15391 continue;
15392
15393 if (skl_ddb_allocation_overlaps(&new_crtc_state->wm.skl.ddb,
15394 entries, I915_MAX_PIPES, pipe))
15395 continue;
15396
15397 entries[pipe] = new_crtc_state->wm.skl.ddb;
15398 update_pipes &= ~BIT(pipe);
15399
15400 intel_update_crtc(state, crtc);
15401
15402 /*
15403 * If this is an already active pipe, it's DDB changed,
15404 * and this isn't the last pipe that needs updating
15405 * then we need to wait for a vblank to pass for the
15406 * new ddb allocation to take effect.
15407 */
15408 if (!skl_ddb_entry_equal(&new_crtc_state->wm.skl.ddb,
15409 &old_crtc_state->wm.skl.ddb) &&
15410 (update_pipes | modeset_pipes))
15411 intel_wait_for_vblank(dev_priv, pipe);
15412 }
15413 }
15414
15415 update_pipes = modeset_pipes;
15416
15417 /*
15418 * Enable all pipes that needs a modeset and do not depends on other
15419 * pipes
15420 */
15421 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
15422 enum pipe pipe = crtc->pipe;
15423
15424 if ((modeset_pipes & BIT(pipe)) == 0)
15425 continue;
15426
15427 if (intel_dp_mst_is_slave_trans(new_crtc_state) ||
15428 is_trans_port_sync_master(new_crtc_state))
15429 continue;
15430
15431 modeset_pipes &= ~BIT(pipe);
15432
15433 intel_enable_crtc(state, crtc);
15434 }
15435
15436 /*
15437 * Then we enable all remaining pipes that depend on other
15438 * pipes: MST slaves and port sync masters.
15439 */
15440 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
15441 enum pipe pipe = crtc->pipe;
15442
15443 if ((modeset_pipes & BIT(pipe)) == 0)
15444 continue;
15445
15446 modeset_pipes &= ~BIT(pipe);
15447
15448 intel_enable_crtc(state, crtc);
15449 }
15450
15451 /*
15452 * Finally we do the plane updates/etc. for all pipes that got enabled.
15453 */
15454 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
15455 enum pipe pipe = crtc->pipe;
15456
15457 if ((update_pipes & BIT(pipe)) == 0)
15458 continue;
15459
15460 drm_WARN_ON(&dev_priv->drm, skl_ddb_allocation_overlaps(&new_crtc_state->wm.skl.ddb,
15461 entries, I915_MAX_PIPES, pipe));
15462
15463 entries[pipe] = new_crtc_state->wm.skl.ddb;
15464 update_pipes &= ~BIT(pipe);
15465
15466 intel_update_crtc(state, crtc);
15467 }
15468
15469 drm_WARN_ON(&dev_priv->drm, modeset_pipes);
15470 drm_WARN_ON(&dev_priv->drm, update_pipes);
15471 }
15472
15473 static void intel_atomic_helper_free_state(struct drm_i915_private *dev_priv)
15474 {
15475 struct intel_atomic_state *state, *next;
15476 struct llist_node *freed;
15477
15478 freed = llist_del_all(&dev_priv->atomic_helper.free_list);
15479 llist_for_each_entry_safe(state, next, freed, freed)
15480 drm_atomic_state_put(&state->base);
15481 }
15482
15483 static void intel_atomic_helper_free_state_worker(struct work_struct *work)
15484 {
15485 struct drm_i915_private *dev_priv =
15486 container_of(work, typeof(*dev_priv), atomic_helper.free_work);
15487
15488 intel_atomic_helper_free_state(dev_priv);
15489 }
15490
15491 static void intel_atomic_commit_fence_wait(struct intel_atomic_state *intel_state)
15492 {
15493 struct wait_queue_entry wait_fence, wait_reset;
15494 struct drm_i915_private *dev_priv = to_i915(intel_state->base.dev);
15495
15496 init_wait_entry(&wait_fence, 0);
15497 init_wait_entry(&wait_reset, 0);
15498 for (;;) {
15499 prepare_to_wait(&intel_state->commit_ready.wait,
15500 &wait_fence, TASK_UNINTERRUPTIBLE);
15501 prepare_to_wait(bit_waitqueue(&dev_priv->gt.reset.flags,
15502 I915_RESET_MODESET),
15503 &wait_reset, TASK_UNINTERRUPTIBLE);
15504
15505
15506 if (i915_sw_fence_done(&intel_state->commit_ready) ||
15507 test_bit(I915_RESET_MODESET, &dev_priv->gt.reset.flags))
15508 break;
15509
15510 schedule();
15511 }
15512 finish_wait(&intel_state->commit_ready.wait, &wait_fence);
15513 finish_wait(bit_waitqueue(&dev_priv->gt.reset.flags,
15514 I915_RESET_MODESET),
15515 &wait_reset);
15516 }
15517
15518 static void intel_cleanup_dsbs(struct intel_atomic_state *state)
15519 {
15520 struct intel_crtc_state *old_crtc_state, *new_crtc_state;
15521 struct intel_crtc *crtc;
15522 int i;
15523
15524 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
15525 new_crtc_state, i)
15526 intel_dsb_cleanup(old_crtc_state);
15527 }
15528
15529 static void intel_atomic_cleanup_work(struct work_struct *work)
15530 {
15531 struct intel_atomic_state *state =
15532 container_of(work, struct intel_atomic_state, base.commit_work);
15533 struct drm_i915_private *i915 = to_i915(state->base.dev);
15534
15535 intel_cleanup_dsbs(state);
15536 drm_atomic_helper_cleanup_planes(&i915->drm, &state->base);
15537 drm_atomic_helper_commit_cleanup_done(&state->base);
15538 drm_atomic_state_put(&state->base);
15539
15540 intel_atomic_helper_free_state(i915);
15541 }
15542
15543 static void intel_atomic_commit_tail(struct intel_atomic_state *state)
15544 {
15545 struct drm_device *dev = state->base.dev;
15546 struct drm_i915_private *dev_priv = to_i915(dev);
15547 struct intel_crtc_state *new_crtc_state, *old_crtc_state;
15548 struct intel_crtc *crtc;
15549 u64 put_domains[I915_MAX_PIPES] = {};
15550 intel_wakeref_t wakeref = 0;
15551 int i;
15552
15553 intel_atomic_commit_fence_wait(state);
15554
15555 drm_atomic_helper_wait_for_dependencies(&state->base);
15556
15557 if (state->modeset)
15558 wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_MODESET);
15559
15560 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
15561 new_crtc_state, i) {
15562 if (needs_modeset(new_crtc_state) ||
15563 new_crtc_state->update_pipe) {
15564
15565 put_domains[crtc->pipe] =
15566 modeset_get_crtc_power_domains(new_crtc_state);
15567 }
15568 }
15569
15570 intel_commit_modeset_disables(state);
15571
15572 /* FIXME: Eventually get rid of our crtc->config pointer */
15573 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i)
15574 crtc->config = new_crtc_state;
15575
15576 if (state->modeset) {
15577 drm_atomic_helper_update_legacy_modeset_state(dev, &state->base);
15578
15579 intel_set_cdclk_pre_plane_update(state);
15580
15581 intel_modeset_verify_disabled(dev_priv, state);
15582 }
15583
15584 intel_sagv_pre_plane_update(state);
15585
15586 /* Complete the events for pipes that have now been disabled */
15587 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
15588 bool modeset = needs_modeset(new_crtc_state);
15589
15590 /* Complete events for now disable pipes here. */
15591 if (modeset && !new_crtc_state->hw.active && new_crtc_state->uapi.event) {
15592 spin_lock_irq(&dev->event_lock);
15593 drm_crtc_send_vblank_event(&crtc->base,
15594 new_crtc_state->uapi.event);
15595 spin_unlock_irq(&dev->event_lock);
15596
15597 new_crtc_state->uapi.event = NULL;
15598 }
15599 }
15600
15601 if (state->modeset)
15602 intel_encoders_update_prepare(state);
15603
15604 intel_dbuf_pre_plane_update(state);
15605
15606 /* Now enable the clocks, plane, pipe, and connectors that we set up. */
15607 dev_priv->display.commit_modeset_enables(state);
15608
15609 if (state->modeset) {
15610 intel_encoders_update_complete(state);
15611
15612 intel_set_cdclk_post_plane_update(state);
15613 }
15614
15615 /* FIXME: We should call drm_atomic_helper_commit_hw_done() here
15616 * already, but still need the state for the delayed optimization. To
15617 * fix this:
15618 * - wrap the optimization/post_plane_update stuff into a per-crtc work.
15619 * - schedule that vblank worker _before_ calling hw_done
15620 * - at the start of commit_tail, cancel it _synchrously
15621 * - switch over to the vblank wait helper in the core after that since
15622 * we don't need out special handling any more.
15623 */
15624 drm_atomic_helper_wait_for_flip_done(dev, &state->base);
15625
15626 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
15627 if (new_crtc_state->hw.active &&
15628 !needs_modeset(new_crtc_state) &&
15629 !new_crtc_state->preload_luts &&
15630 (new_crtc_state->uapi.color_mgmt_changed ||
15631 new_crtc_state->update_pipe))
15632 intel_color_load_luts(new_crtc_state);
15633 }
15634
15635 /*
15636 * Now that the vblank has passed, we can go ahead and program the
15637 * optimal watermarks on platforms that need two-step watermark
15638 * programming.
15639 *
15640 * TODO: Move this (and other cleanup) to an async worker eventually.
15641 */
15642 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
15643 new_crtc_state, i) {
15644 /*
15645 * Gen2 reports pipe underruns whenever all planes are disabled.
15646 * So re-enable underrun reporting after some planes get enabled.
15647 *
15648 * We do this before .optimize_watermarks() so that we have a
15649 * chance of catching underruns with the intermediate watermarks
15650 * vs. the new plane configuration.
15651 */
15652 if (IS_GEN(dev_priv, 2) && planes_enabling(old_crtc_state, new_crtc_state))
15653 intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, true);
15654
15655 if (dev_priv->display.optimize_watermarks)
15656 dev_priv->display.optimize_watermarks(state, crtc);
15657 }
15658
15659 intel_dbuf_post_plane_update(state);
15660
15661 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
15662 intel_post_plane_update(state, crtc);
15663
15664 if (put_domains[i])
15665 modeset_put_power_domains(dev_priv, put_domains[i]);
15666
15667 intel_modeset_verify_crtc(crtc, state, old_crtc_state, new_crtc_state);
15668
15669 /*
15670 * DSB cleanup is done in cleanup_work aligning with framebuffer
15671 * cleanup. So copy and reset the dsb structure to sync with
15672 * commit_done and later do dsb cleanup in cleanup_work.
15673 */
15674 old_crtc_state->dsb = fetch_and_zero(&new_crtc_state->dsb);
15675 }
15676
15677 /* Underruns don't always raise interrupts, so check manually */
15678 intel_check_cpu_fifo_underruns(dev_priv);
15679 intel_check_pch_fifo_underruns(dev_priv);
15680
15681 if (state->modeset)
15682 intel_verify_planes(state);
15683
15684 intel_sagv_post_plane_update(state);
15685
15686 drm_atomic_helper_commit_hw_done(&state->base);
15687
15688 if (state->modeset) {
15689 /* As one of the primary mmio accessors, KMS has a high
15690 * likelihood of triggering bugs in unclaimed access. After we
15691 * finish modesetting, see if an error has been flagged, and if
15692 * so enable debugging for the next modeset - and hope we catch
15693 * the culprit.
15694 */
15695 intel_uncore_arm_unclaimed_mmio_detection(&dev_priv->uncore);
15696 intel_display_power_put(dev_priv, POWER_DOMAIN_MODESET, wakeref);
15697 }
15698 intel_runtime_pm_put(&dev_priv->runtime_pm, state->wakeref);
15699
15700 /*
15701 * Defer the cleanup of the old state to a separate worker to not
15702 * impede the current task (userspace for blocking modesets) that
15703 * are executed inline. For out-of-line asynchronous modesets/flips,
15704 * deferring to a new worker seems overkill, but we would place a
15705 * schedule point (cond_resched()) here anyway to keep latencies
15706 * down.
15707 */
15708 INIT_WORK(&state->base.commit_work, intel_atomic_cleanup_work);
15709 queue_work(system_highpri_wq, &state->base.commit_work);
15710 }
15711
15712 static void intel_atomic_commit_work(struct work_struct *work)
15713 {
15714 struct intel_atomic_state *state =
15715 container_of(work, struct intel_atomic_state, base.commit_work);
15716
15717 intel_atomic_commit_tail(state);
15718 }
15719
15720 static int __i915_sw_fence_call
15721 intel_atomic_commit_ready(struct i915_sw_fence *fence,
15722 enum i915_sw_fence_notify notify)
15723 {
15724 struct intel_atomic_state *state =
15725 container_of(fence, struct intel_atomic_state, commit_ready);
15726
15727 switch (notify) {
15728 case FENCE_COMPLETE:
15729 /* we do blocking waits in the worker, nothing to do here */
15730 break;
15731 case FENCE_FREE:
15732 {
15733 struct intel_atomic_helper *helper =
15734 &to_i915(state->base.dev)->atomic_helper;
15735
15736 if (llist_add(&state->freed, &helper->free_list))
15737 schedule_work(&helper->free_work);
15738 break;
15739 }
15740 }
15741
15742 return NOTIFY_DONE;
15743 }
15744
15745 static void intel_atomic_track_fbs(struct intel_atomic_state *state)
15746 {
15747 struct intel_plane_state *old_plane_state, *new_plane_state;
15748 struct intel_plane *plane;
15749 int i;
15750
15751 for_each_oldnew_intel_plane_in_state(state, plane, old_plane_state,
15752 new_plane_state, i)
15753 intel_frontbuffer_track(to_intel_frontbuffer(old_plane_state->hw.fb),
15754 to_intel_frontbuffer(new_plane_state->hw.fb),
15755 plane->frontbuffer_bit);
15756 }
15757
15758 static int intel_atomic_commit(struct drm_device *dev,
15759 struct drm_atomic_state *_state,
15760 bool nonblock)
15761 {
15762 struct intel_atomic_state *state = to_intel_atomic_state(_state);
15763 struct drm_i915_private *dev_priv = to_i915(dev);
15764 int ret = 0;
15765
15766 state->wakeref = intel_runtime_pm_get(&dev_priv->runtime_pm);
15767
15768 drm_atomic_state_get(&state->base);
15769 i915_sw_fence_init(&state->commit_ready,
15770 intel_atomic_commit_ready);
15771
15772 /*
15773 * The intel_legacy_cursor_update() fast path takes care
15774 * of avoiding the vblank waits for simple cursor
15775 * movement and flips. For cursor on/off and size changes,
15776 * we want to perform the vblank waits so that watermark
15777 * updates happen during the correct frames. Gen9+ have
15778 * double buffered watermarks and so shouldn't need this.
15779 *
15780 * Unset state->legacy_cursor_update before the call to
15781 * drm_atomic_helper_setup_commit() because otherwise
15782 * drm_atomic_helper_wait_for_flip_done() is a noop and
15783 * we get FIFO underruns because we didn't wait
15784 * for vblank.
15785 *
15786 * FIXME doing watermarks and fb cleanup from a vblank worker
15787 * (assuming we had any) would solve these problems.
15788 */
15789 if (INTEL_GEN(dev_priv) < 9 && state->base.legacy_cursor_update) {
15790 struct intel_crtc_state *new_crtc_state;
15791 struct intel_crtc *crtc;
15792 int i;
15793
15794 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i)
15795 if (new_crtc_state->wm.need_postvbl_update ||
15796 new_crtc_state->update_wm_post)
15797 state->base.legacy_cursor_update = false;
15798 }
15799
15800 ret = intel_atomic_prepare_commit(state);
15801 if (ret) {
15802 drm_dbg_atomic(&dev_priv->drm,
15803 "Preparing state failed with %i\n", ret);
15804 i915_sw_fence_commit(&state->commit_ready);
15805 intel_runtime_pm_put(&dev_priv->runtime_pm, state->wakeref);
15806 return ret;
15807 }
15808
15809 ret = drm_atomic_helper_setup_commit(&state->base, nonblock);
15810 if (!ret)
15811 ret = drm_atomic_helper_swap_state(&state->base, true);
15812 if (!ret)
15813 intel_atomic_swap_global_state(state);
15814
15815 if (ret) {
15816 struct intel_crtc_state *new_crtc_state;
15817 struct intel_crtc *crtc;
15818 int i;
15819
15820 i915_sw_fence_commit(&state->commit_ready);
15821
15822 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i)
15823 intel_dsb_cleanup(new_crtc_state);
15824
15825 drm_atomic_helper_cleanup_planes(dev, &state->base);
15826 intel_runtime_pm_put(&dev_priv->runtime_pm, state->wakeref);
15827 return ret;
15828 }
15829 dev_priv->wm.distrust_bios_wm = false;
15830 intel_shared_dpll_swap_state(state);
15831 intel_atomic_track_fbs(state);
15832
15833 drm_atomic_state_get(&state->base);
15834 INIT_WORK(&state->base.commit_work, intel_atomic_commit_work);
15835
15836 i915_sw_fence_commit(&state->commit_ready);
15837 if (nonblock && state->modeset) {
15838 queue_work(dev_priv->modeset_wq, &state->base.commit_work);
15839 } else if (nonblock) {
15840 queue_work(dev_priv->flip_wq, &state->base.commit_work);
15841 } else {
15842 if (state->modeset)
15843 flush_workqueue(dev_priv->modeset_wq);
15844 intel_atomic_commit_tail(state);
15845 }
15846
15847 return 0;
15848 }
15849
15850 struct wait_rps_boost {
15851 struct wait_queue_entry wait;
15852
15853 struct drm_crtc *crtc;
15854 struct i915_request *request;
15855 };
15856
15857 static int do_rps_boost(struct wait_queue_entry *_wait,
15858 unsigned mode, int sync, void *key)
15859 {
15860 struct wait_rps_boost *wait = container_of(_wait, typeof(*wait), wait);
15861 struct i915_request *rq = wait->request;
15862
15863 /*
15864 * If we missed the vblank, but the request is already running it
15865 * is reasonable to assume that it will complete before the next
15866 * vblank without our intervention, so leave RPS alone.
15867 */
15868 if (!i915_request_started(rq))
15869 intel_rps_boost(rq);
15870 i915_request_put(rq);
15871
15872 drm_crtc_vblank_put(wait->crtc);
15873
15874 list_del(&wait->wait.entry);
15875 kfree(wait);
15876 return 1;
15877 }
15878
15879 static void add_rps_boost_after_vblank(struct drm_crtc *crtc,
15880 struct dma_fence *fence)
15881 {
15882 struct wait_rps_boost *wait;
15883
15884 if (!dma_fence_is_i915(fence))
15885 return;
15886
15887 if (INTEL_GEN(to_i915(crtc->dev)) < 6)
15888 return;
15889
15890 if (drm_crtc_vblank_get(crtc))
15891 return;
15892
15893 wait = kmalloc(sizeof(*wait), GFP_KERNEL);
15894 if (!wait) {
15895 drm_crtc_vblank_put(crtc);
15896 return;
15897 }
15898
15899 wait->request = to_request(dma_fence_get(fence));
15900 wait->crtc = crtc;
15901
15902 wait->wait.func = do_rps_boost;
15903 wait->wait.flags = 0;
15904
15905 add_wait_queue(drm_crtc_vblank_waitqueue(crtc), &wait->wait);
15906 }
15907
15908 static int intel_plane_pin_fb(struct intel_plane_state *plane_state)
15909 {
15910 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
15911 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
15912 struct drm_framebuffer *fb = plane_state->hw.fb;
15913 struct i915_vma *vma;
15914
15915 if (plane->id == PLANE_CURSOR &&
15916 INTEL_INFO(dev_priv)->display.cursor_needs_physical) {
15917 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
15918 const int align = intel_cursor_alignment(dev_priv);
15919 int err;
15920
15921 err = i915_gem_object_attach_phys(obj, align);
15922 if (err)
15923 return err;
15924 }
15925
15926 vma = intel_pin_and_fence_fb_obj(fb,
15927 &plane_state->view,
15928 intel_plane_uses_fence(plane_state),
15929 &plane_state->flags);
15930 if (IS_ERR(vma))
15931 return PTR_ERR(vma);
15932
15933 plane_state->vma = vma;
15934
15935 return 0;
15936 }
15937
15938 static void intel_plane_unpin_fb(struct intel_plane_state *old_plane_state)
15939 {
15940 struct i915_vma *vma;
15941
15942 vma = fetch_and_zero(&old_plane_state->vma);
15943 if (vma)
15944 intel_unpin_fb_vma(vma, old_plane_state->flags);
15945 }
15946
15947 static void fb_obj_bump_render_priority(struct drm_i915_gem_object *obj)
15948 {
15949 struct i915_sched_attr attr = {
15950 .priority = I915_USER_PRIORITY(I915_PRIORITY_DISPLAY),
15951 };
15952
15953 i915_gem_object_wait_priority(obj, 0, &attr);
15954 }
15955
15956 /**
15957 * intel_prepare_plane_fb - Prepare fb for usage on plane
15958 * @_plane: drm plane to prepare for
15959 * @_new_plane_state: the plane state being prepared
15960 *
15961 * Prepares a framebuffer for usage on a display plane. Generally this
15962 * involves pinning the underlying object and updating the frontbuffer tracking
15963 * bits. Some older platforms need special physical address handling for
15964 * cursor planes.
15965 *
15966 * Returns 0 on success, negative error code on failure.
15967 */
15968 int
15969 intel_prepare_plane_fb(struct drm_plane *_plane,
15970 struct drm_plane_state *_new_plane_state)
15971 {
15972 struct intel_plane *plane = to_intel_plane(_plane);
15973 struct intel_plane_state *new_plane_state =
15974 to_intel_plane_state(_new_plane_state);
15975 struct intel_atomic_state *state =
15976 to_intel_atomic_state(new_plane_state->uapi.state);
15977 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
15978 const struct intel_plane_state *old_plane_state =
15979 intel_atomic_get_old_plane_state(state, plane);
15980 struct drm_i915_gem_object *obj = intel_fb_obj(new_plane_state->hw.fb);
15981 struct drm_i915_gem_object *old_obj = intel_fb_obj(old_plane_state->hw.fb);
15982 int ret;
15983
15984 if (old_obj) {
15985 const struct intel_crtc_state *crtc_state =
15986 intel_atomic_get_new_crtc_state(state,
15987 to_intel_crtc(old_plane_state->hw.crtc));
15988
15989 /* Big Hammer, we also need to ensure that any pending
15990 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
15991 * current scanout is retired before unpinning the old
15992 * framebuffer. Note that we rely on userspace rendering
15993 * into the buffer attached to the pipe they are waiting
15994 * on. If not, userspace generates a GPU hang with IPEHR
15995 * point to the MI_WAIT_FOR_EVENT.
15996 *
15997 * This should only fail upon a hung GPU, in which case we
15998 * can safely continue.
15999 */
16000 if (needs_modeset(crtc_state)) {
16001 ret = i915_sw_fence_await_reservation(&state->commit_ready,
16002 old_obj->base.resv, NULL,
16003 false, 0,
16004 GFP_KERNEL);
16005 if (ret < 0)
16006 return ret;
16007 }
16008 }
16009
16010 if (new_plane_state->uapi.fence) { /* explicit fencing */
16011 ret = i915_sw_fence_await_dma_fence(&state->commit_ready,
16012 new_plane_state->uapi.fence,
16013 i915_fence_timeout(dev_priv),
16014 GFP_KERNEL);
16015 if (ret < 0)
16016 return ret;
16017 }
16018
16019 if (!obj)
16020 return 0;
16021
16022 ret = i915_gem_object_pin_pages(obj);
16023 if (ret)
16024 return ret;
16025
16026 ret = intel_plane_pin_fb(new_plane_state);
16027
16028 i915_gem_object_unpin_pages(obj);
16029 if (ret)
16030 return ret;
16031
16032 fb_obj_bump_render_priority(obj);
16033 i915_gem_object_flush_frontbuffer(obj, ORIGIN_DIRTYFB);
16034
16035 if (!new_plane_state->uapi.fence) { /* implicit fencing */
16036 struct dma_fence *fence;
16037
16038 ret = i915_sw_fence_await_reservation(&state->commit_ready,
16039 obj->base.resv, NULL,
16040 false,
16041 i915_fence_timeout(dev_priv),
16042 GFP_KERNEL);
16043 if (ret < 0)
16044 goto unpin_fb;
16045
16046 fence = dma_resv_get_excl_rcu(obj->base.resv);
16047 if (fence) {
16048 add_rps_boost_after_vblank(new_plane_state->hw.crtc,
16049 fence);
16050 dma_fence_put(fence);
16051 }
16052 } else {
16053 add_rps_boost_after_vblank(new_plane_state->hw.crtc,
16054 new_plane_state->uapi.fence);
16055 }
16056
16057 /*
16058 * We declare pageflips to be interactive and so merit a small bias
16059 * towards upclocking to deliver the frame on time. By only changing
16060 * the RPS thresholds to sample more regularly and aim for higher
16061 * clocks we can hopefully deliver low power workloads (like kodi)
16062 * that are not quite steady state without resorting to forcing
16063 * maximum clocks following a vblank miss (see do_rps_boost()).
16064 */
16065 if (!state->rps_interactive) {
16066 intel_rps_mark_interactive(&dev_priv->gt.rps, true);
16067 state->rps_interactive = true;
16068 }
16069
16070 return 0;
16071
16072 unpin_fb:
16073 intel_plane_unpin_fb(new_plane_state);
16074
16075 return ret;
16076 }
16077
16078 /**
16079 * intel_cleanup_plane_fb - Cleans up an fb after plane use
16080 * @plane: drm plane to clean up for
16081 * @_old_plane_state: the state from the previous modeset
16082 *
16083 * Cleans up a framebuffer that has just been removed from a plane.
16084 */
16085 void
16086 intel_cleanup_plane_fb(struct drm_plane *plane,
16087 struct drm_plane_state *_old_plane_state)
16088 {
16089 struct intel_plane_state *old_plane_state =
16090 to_intel_plane_state(_old_plane_state);
16091 struct intel_atomic_state *state =
16092 to_intel_atomic_state(old_plane_state->uapi.state);
16093 struct drm_i915_private *dev_priv = to_i915(plane->dev);
16094 struct drm_i915_gem_object *obj = intel_fb_obj(old_plane_state->hw.fb);
16095
16096 if (!obj)
16097 return;
16098
16099 if (state->rps_interactive) {
16100 intel_rps_mark_interactive(&dev_priv->gt.rps, false);
16101 state->rps_interactive = false;
16102 }
16103
16104 /* Should only be called after a successful intel_prepare_plane_fb()! */
16105 intel_plane_unpin_fb(old_plane_state);
16106 }
16107
16108 /**
16109 * intel_plane_destroy - destroy a plane
16110 * @plane: plane to destroy
16111 *
16112 * Common destruction function for all types of planes (primary, cursor,
16113 * sprite).
16114 */
16115 void intel_plane_destroy(struct drm_plane *plane)
16116 {
16117 drm_plane_cleanup(plane);
16118 kfree(to_intel_plane(plane));
16119 }
16120
16121 static bool i8xx_plane_format_mod_supported(struct drm_plane *_plane,
16122 u32 format, u64 modifier)
16123 {
16124 switch (modifier) {
16125 case DRM_FORMAT_MOD_LINEAR:
16126 case I915_FORMAT_MOD_X_TILED:
16127 break;
16128 default:
16129 return false;
16130 }
16131
16132 switch (format) {
16133 case DRM_FORMAT_C8:
16134 case DRM_FORMAT_RGB565:
16135 case DRM_FORMAT_XRGB1555:
16136 case DRM_FORMAT_XRGB8888:
16137 return modifier == DRM_FORMAT_MOD_LINEAR ||
16138 modifier == I915_FORMAT_MOD_X_TILED;
16139 default:
16140 return false;
16141 }
16142 }
16143
16144 static bool i965_plane_format_mod_supported(struct drm_plane *_plane,
16145 u32 format, u64 modifier)
16146 {
16147 switch (modifier) {
16148 case DRM_FORMAT_MOD_LINEAR:
16149 case I915_FORMAT_MOD_X_TILED:
16150 break;
16151 default:
16152 return false;
16153 }
16154
16155 switch (format) {
16156 case DRM_FORMAT_C8:
16157 case DRM_FORMAT_RGB565:
16158 case DRM_FORMAT_XRGB8888:
16159 case DRM_FORMAT_XBGR8888:
16160 case DRM_FORMAT_ARGB8888:
16161 case DRM_FORMAT_ABGR8888:
16162 case DRM_FORMAT_XRGB2101010:
16163 case DRM_FORMAT_XBGR2101010:
16164 case DRM_FORMAT_ARGB2101010:
16165 case DRM_FORMAT_ABGR2101010:
16166 case DRM_FORMAT_XBGR16161616F:
16167 return modifier == DRM_FORMAT_MOD_LINEAR ||
16168 modifier == I915_FORMAT_MOD_X_TILED;
16169 default:
16170 return false;
16171 }
16172 }
16173
16174 static bool intel_cursor_format_mod_supported(struct drm_plane *_plane,
16175 u32 format, u64 modifier)
16176 {
16177 return modifier == DRM_FORMAT_MOD_LINEAR &&
16178 format == DRM_FORMAT_ARGB8888;
16179 }
16180
16181 static const struct drm_plane_funcs i965_plane_funcs = {
16182 .update_plane = drm_atomic_helper_update_plane,
16183 .disable_plane = drm_atomic_helper_disable_plane,
16184 .destroy = intel_plane_destroy,
16185 .atomic_duplicate_state = intel_plane_duplicate_state,
16186 .atomic_destroy_state = intel_plane_destroy_state,
16187 .format_mod_supported = i965_plane_format_mod_supported,
16188 };
16189
16190 static const struct drm_plane_funcs i8xx_plane_funcs = {
16191 .update_plane = drm_atomic_helper_update_plane,
16192 .disable_plane = drm_atomic_helper_disable_plane,
16193 .destroy = intel_plane_destroy,
16194 .atomic_duplicate_state = intel_plane_duplicate_state,
16195 .atomic_destroy_state = intel_plane_destroy_state,
16196 .format_mod_supported = i8xx_plane_format_mod_supported,
16197 };
16198
16199 static int
16200 intel_legacy_cursor_update(struct drm_plane *_plane,
16201 struct drm_crtc *_crtc,
16202 struct drm_framebuffer *fb,
16203 int crtc_x, int crtc_y,
16204 unsigned int crtc_w, unsigned int crtc_h,
16205 u32 src_x, u32 src_y,
16206 u32 src_w, u32 src_h,
16207 struct drm_modeset_acquire_ctx *ctx)
16208 {
16209 struct intel_plane *plane = to_intel_plane(_plane);
16210 struct intel_crtc *crtc = to_intel_crtc(_crtc);
16211 struct intel_plane_state *old_plane_state =
16212 to_intel_plane_state(plane->base.state);
16213 struct intel_plane_state *new_plane_state;
16214 struct intel_crtc_state *crtc_state =
16215 to_intel_crtc_state(crtc->base.state);
16216 struct intel_crtc_state *new_crtc_state;
16217 int ret;
16218
16219 /*
16220 * When crtc is inactive or there is a modeset pending,
16221 * wait for it to complete in the slowpath
16222 */
16223 if (!crtc_state->hw.active || needs_modeset(crtc_state) ||
16224 crtc_state->update_pipe)
16225 goto slow;
16226
16227 /*
16228 * Don't do an async update if there is an outstanding commit modifying
16229 * the plane. This prevents our async update's changes from getting
16230 * overridden by a previous synchronous update's state.
16231 */
16232 if (old_plane_state->uapi.commit &&
16233 !try_wait_for_completion(&old_plane_state->uapi.commit->hw_done))
16234 goto slow;
16235
16236 /*
16237 * If any parameters change that may affect watermarks,
16238 * take the slowpath. Only changing fb or position should be
16239 * in the fastpath.
16240 */
16241 if (old_plane_state->uapi.crtc != &crtc->base ||
16242 old_plane_state->uapi.src_w != src_w ||
16243 old_plane_state->uapi.src_h != src_h ||
16244 old_plane_state->uapi.crtc_w != crtc_w ||
16245 old_plane_state->uapi.crtc_h != crtc_h ||
16246 !old_plane_state->uapi.fb != !fb)
16247 goto slow;
16248
16249 new_plane_state = to_intel_plane_state(intel_plane_duplicate_state(&plane->base));
16250 if (!new_plane_state)
16251 return -ENOMEM;
16252
16253 new_crtc_state = to_intel_crtc_state(intel_crtc_duplicate_state(&crtc->base));
16254 if (!new_crtc_state) {
16255 ret = -ENOMEM;
16256 goto out_free;
16257 }
16258
16259 drm_atomic_set_fb_for_plane(&new_plane_state->uapi, fb);
16260
16261 new_plane_state->uapi.src_x = src_x;
16262 new_plane_state->uapi.src_y = src_y;
16263 new_plane_state->uapi.src_w = src_w;
16264 new_plane_state->uapi.src_h = src_h;
16265 new_plane_state->uapi.crtc_x = crtc_x;
16266 new_plane_state->uapi.crtc_y = crtc_y;
16267 new_plane_state->uapi.crtc_w = crtc_w;
16268 new_plane_state->uapi.crtc_h = crtc_h;
16269
16270 intel_plane_copy_uapi_to_hw_state(new_plane_state, new_plane_state);
16271
16272 ret = intel_plane_atomic_check_with_state(crtc_state, new_crtc_state,
16273 old_plane_state, new_plane_state);
16274 if (ret)
16275 goto out_free;
16276
16277 ret = intel_plane_pin_fb(new_plane_state);
16278 if (ret)
16279 goto out_free;
16280
16281 intel_frontbuffer_flush(to_intel_frontbuffer(new_plane_state->hw.fb),
16282 ORIGIN_FLIP);
16283 intel_frontbuffer_track(to_intel_frontbuffer(old_plane_state->hw.fb),
16284 to_intel_frontbuffer(new_plane_state->hw.fb),
16285 plane->frontbuffer_bit);
16286
16287 /* Swap plane state */
16288 plane->base.state = &new_plane_state->uapi;
16289
16290 /*
16291 * We cannot swap crtc_state as it may be in use by an atomic commit or
16292 * page flip that's running simultaneously. If we swap crtc_state and
16293 * destroy the old state, we will cause a use-after-free there.
16294 *
16295 * Only update active_planes, which is needed for our internal
16296 * bookkeeping. Either value will do the right thing when updating
16297 * planes atomically. If the cursor was part of the atomic update then
16298 * we would have taken the slowpath.
16299 */
16300 crtc_state->active_planes = new_crtc_state->active_planes;
16301
16302 if (new_plane_state->uapi.visible)
16303 intel_update_plane(plane, crtc_state, new_plane_state);
16304 else
16305 intel_disable_plane(plane, crtc_state);
16306
16307 intel_plane_unpin_fb(old_plane_state);
16308
16309 out_free:
16310 if (new_crtc_state)
16311 intel_crtc_destroy_state(&crtc->base, &new_crtc_state->uapi);
16312 if (ret)
16313 intel_plane_destroy_state(&plane->base, &new_plane_state->uapi);
16314 else
16315 intel_plane_destroy_state(&plane->base, &old_plane_state->uapi);
16316 return ret;
16317
16318 slow:
16319 return drm_atomic_helper_update_plane(&plane->base, &crtc->base, fb,
16320 crtc_x, crtc_y, crtc_w, crtc_h,
16321 src_x, src_y, src_w, src_h, ctx);
16322 }
16323
16324 static const struct drm_plane_funcs intel_cursor_plane_funcs = {
16325 .update_plane = intel_legacy_cursor_update,
16326 .disable_plane = drm_atomic_helper_disable_plane,
16327 .destroy = intel_plane_destroy,
16328 .atomic_duplicate_state = intel_plane_duplicate_state,
16329 .atomic_destroy_state = intel_plane_destroy_state,
16330 .format_mod_supported = intel_cursor_format_mod_supported,
16331 };
16332
16333 static bool i9xx_plane_has_fbc(struct drm_i915_private *dev_priv,
16334 enum i9xx_plane_id i9xx_plane)
16335 {
16336 if (!HAS_FBC(dev_priv))
16337 return false;
16338
16339 if (IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv))
16340 return i9xx_plane == PLANE_A; /* tied to pipe A */
16341 else if (IS_IVYBRIDGE(dev_priv))
16342 return i9xx_plane == PLANE_A || i9xx_plane == PLANE_B ||
16343 i9xx_plane == PLANE_C;
16344 else if (INTEL_GEN(dev_priv) >= 4)
16345 return i9xx_plane == PLANE_A || i9xx_plane == PLANE_B;
16346 else
16347 return i9xx_plane == PLANE_A;
16348 }
16349
16350 static struct intel_plane *
16351 intel_primary_plane_create(struct drm_i915_private *dev_priv, enum pipe pipe)
16352 {
16353 struct intel_plane *plane;
16354 const struct drm_plane_funcs *plane_funcs;
16355 unsigned int supported_rotations;
16356 const u32 *formats;
16357 int num_formats;
16358 int ret, zpos;
16359
16360 if (INTEL_GEN(dev_priv) >= 9)
16361 return skl_universal_plane_create(dev_priv, pipe,
16362 PLANE_PRIMARY);
16363
16364 plane = intel_plane_alloc();
16365 if (IS_ERR(plane))
16366 return plane;
16367
16368 plane->pipe = pipe;
16369 /*
16370 * On gen2/3 only plane A can do FBC, but the panel fitter and LVDS
16371 * port is hooked to pipe B. Hence we want plane A feeding pipe B.
16372 */
16373 if (HAS_FBC(dev_priv) && INTEL_GEN(dev_priv) < 4 &&
16374 INTEL_NUM_PIPES(dev_priv) == 2)
16375 plane->i9xx_plane = (enum i9xx_plane_id) !pipe;
16376 else
16377 plane->i9xx_plane = (enum i9xx_plane_id) pipe;
16378 plane->id = PLANE_PRIMARY;
16379 plane->frontbuffer_bit = INTEL_FRONTBUFFER(pipe, plane->id);
16380
16381 plane->has_fbc = i9xx_plane_has_fbc(dev_priv, plane->i9xx_plane);
16382 if (plane->has_fbc) {
16383 struct intel_fbc *fbc = &dev_priv->fbc;
16384
16385 fbc->possible_framebuffer_bits |= plane->frontbuffer_bit;
16386 }
16387
16388 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
16389 formats = vlv_primary_formats;
16390 num_formats = ARRAY_SIZE(vlv_primary_formats);
16391 } else if (INTEL_GEN(dev_priv) >= 4) {
16392 /*
16393 * WaFP16GammaEnabling:ivb
16394 * "Workaround : When using the 64-bit format, the plane
16395 * output on each color channel has one quarter amplitude.
16396 * It can be brought up to full amplitude by using pipe
16397 * gamma correction or pipe color space conversion to
16398 * multiply the plane output by four."
16399 *
16400 * There is no dedicated plane gamma for the primary plane,
16401 * and using the pipe gamma/csc could conflict with other
16402 * planes, so we choose not to expose fp16 on IVB primary
16403 * planes. HSW primary planes no longer have this problem.
16404 */
16405 if (IS_IVYBRIDGE(dev_priv)) {
16406 formats = ivb_primary_formats;
16407 num_formats = ARRAY_SIZE(ivb_primary_formats);
16408 } else {
16409 formats = i965_primary_formats;
16410 num_formats = ARRAY_SIZE(i965_primary_formats);
16411 }
16412 } else {
16413 formats = i8xx_primary_formats;
16414 num_formats = ARRAY_SIZE(i8xx_primary_formats);
16415 }
16416
16417 if (INTEL_GEN(dev_priv) >= 4)
16418 plane_funcs = &i965_plane_funcs;
16419 else
16420 plane_funcs = &i8xx_plane_funcs;
16421
16422 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
16423 plane->min_cdclk = vlv_plane_min_cdclk;
16424 else if (IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv))
16425 plane->min_cdclk = hsw_plane_min_cdclk;
16426 else if (IS_IVYBRIDGE(dev_priv))
16427 plane->min_cdclk = ivb_plane_min_cdclk;
16428 else
16429 plane->min_cdclk = i9xx_plane_min_cdclk;
16430
16431 plane->max_stride = i9xx_plane_max_stride;
16432 plane->update_plane = i9xx_update_plane;
16433 plane->disable_plane = i9xx_disable_plane;
16434 plane->get_hw_state = i9xx_plane_get_hw_state;
16435 plane->check_plane = i9xx_plane_check;
16436
16437 if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
16438 ret = drm_universal_plane_init(&dev_priv->drm, &plane->base,
16439 0, plane_funcs,
16440 formats, num_formats,
16441 i9xx_format_modifiers,
16442 DRM_PLANE_TYPE_PRIMARY,
16443 "primary %c", pipe_name(pipe));
16444 else
16445 ret = drm_universal_plane_init(&dev_priv->drm, &plane->base,
16446 0, plane_funcs,
16447 formats, num_formats,
16448 i9xx_format_modifiers,
16449 DRM_PLANE_TYPE_PRIMARY,
16450 "plane %c",
16451 plane_name(plane->i9xx_plane));
16452 if (ret)
16453 goto fail;
16454
16455 if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_B) {
16456 supported_rotations =
16457 DRM_MODE_ROTATE_0 | DRM_MODE_ROTATE_180 |
16458 DRM_MODE_REFLECT_X;
16459 } else if (INTEL_GEN(dev_priv) >= 4) {
16460 supported_rotations =
16461 DRM_MODE_ROTATE_0 | DRM_MODE_ROTATE_180;
16462 } else {
16463 supported_rotations = DRM_MODE_ROTATE_0;
16464 }
16465
16466 if (INTEL_GEN(dev_priv) >= 4)
16467 drm_plane_create_rotation_property(&plane->base,
16468 DRM_MODE_ROTATE_0,
16469 supported_rotations);
16470
16471 zpos = 0;
16472 drm_plane_create_zpos_immutable_property(&plane->base, zpos);
16473
16474 drm_plane_helper_add(&plane->base, &intel_plane_helper_funcs);
16475
16476 return plane;
16477
16478 fail:
16479 intel_plane_free(plane);
16480
16481 return ERR_PTR(ret);
16482 }
16483
16484 static struct intel_plane *
16485 intel_cursor_plane_create(struct drm_i915_private *dev_priv,
16486 enum pipe pipe)
16487 {
16488 struct intel_plane *cursor;
16489 int ret, zpos;
16490
16491 cursor = intel_plane_alloc();
16492 if (IS_ERR(cursor))
16493 return cursor;
16494
16495 cursor->pipe = pipe;
16496 cursor->i9xx_plane = (enum i9xx_plane_id) pipe;
16497 cursor->id = PLANE_CURSOR;
16498 cursor->frontbuffer_bit = INTEL_FRONTBUFFER(pipe, cursor->id);
16499
16500 if (IS_I845G(dev_priv) || IS_I865G(dev_priv)) {
16501 cursor->max_stride = i845_cursor_max_stride;
16502 cursor->update_plane = i845_update_cursor;
16503 cursor->disable_plane = i845_disable_cursor;
16504 cursor->get_hw_state = i845_cursor_get_hw_state;
16505 cursor->check_plane = i845_check_cursor;
16506 } else {
16507 cursor->max_stride = i9xx_cursor_max_stride;
16508 cursor->update_plane = i9xx_update_cursor;
16509 cursor->disable_plane = i9xx_disable_cursor;
16510 cursor->get_hw_state = i9xx_cursor_get_hw_state;
16511 cursor->check_plane = i9xx_check_cursor;
16512 }
16513
16514 cursor->cursor.base = ~0;
16515 cursor->cursor.cntl = ~0;
16516
16517 if (IS_I845G(dev_priv) || IS_I865G(dev_priv) || HAS_CUR_FBC(dev_priv))
16518 cursor->cursor.size = ~0;
16519
16520 ret = drm_universal_plane_init(&dev_priv->drm, &cursor->base,
16521 0, &intel_cursor_plane_funcs,
16522 intel_cursor_formats,
16523 ARRAY_SIZE(intel_cursor_formats),
16524 cursor_format_modifiers,
16525 DRM_PLANE_TYPE_CURSOR,
16526 "cursor %c", pipe_name(pipe));
16527 if (ret)
16528 goto fail;
16529
16530 if (INTEL_GEN(dev_priv) >= 4)
16531 drm_plane_create_rotation_property(&cursor->base,
16532 DRM_MODE_ROTATE_0,
16533 DRM_MODE_ROTATE_0 |
16534 DRM_MODE_ROTATE_180);
16535
16536 zpos = RUNTIME_INFO(dev_priv)->num_sprites[pipe] + 1;
16537 drm_plane_create_zpos_immutable_property(&cursor->base, zpos);
16538
16539 if (INTEL_GEN(dev_priv) >= 12)
16540 drm_plane_enable_fb_damage_clips(&cursor->base);
16541
16542 drm_plane_helper_add(&cursor->base, &intel_plane_helper_funcs);
16543
16544 return cursor;
16545
16546 fail:
16547 intel_plane_free(cursor);
16548
16549 return ERR_PTR(ret);
16550 }
16551
16552 #define INTEL_CRTC_FUNCS \
16553 .gamma_set = drm_atomic_helper_legacy_gamma_set, \
16554 .set_config = drm_atomic_helper_set_config, \
16555 .destroy = intel_crtc_destroy, \
16556 .page_flip = drm_atomic_helper_page_flip, \
16557 .atomic_duplicate_state = intel_crtc_duplicate_state, \
16558 .atomic_destroy_state = intel_crtc_destroy_state, \
16559 .set_crc_source = intel_crtc_set_crc_source, \
16560 .verify_crc_source = intel_crtc_verify_crc_source, \
16561 .get_crc_sources = intel_crtc_get_crc_sources
16562
16563 static const struct drm_crtc_funcs bdw_crtc_funcs = {
16564 INTEL_CRTC_FUNCS,
16565
16566 .get_vblank_counter = g4x_get_vblank_counter,
16567 .enable_vblank = bdw_enable_vblank,
16568 .disable_vblank = bdw_disable_vblank,
16569 .get_vblank_timestamp = intel_crtc_get_vblank_timestamp,
16570 };
16571
16572 static const struct drm_crtc_funcs ilk_crtc_funcs = {
16573 INTEL_CRTC_FUNCS,
16574
16575 .get_vblank_counter = g4x_get_vblank_counter,
16576 .enable_vblank = ilk_enable_vblank,
16577 .disable_vblank = ilk_disable_vblank,
16578 .get_vblank_timestamp = intel_crtc_get_vblank_timestamp,
16579 };
16580
16581 static const struct drm_crtc_funcs g4x_crtc_funcs = {
16582 INTEL_CRTC_FUNCS,
16583
16584 .get_vblank_counter = g4x_get_vblank_counter,
16585 .enable_vblank = i965_enable_vblank,
16586 .disable_vblank = i965_disable_vblank,
16587 .get_vblank_timestamp = intel_crtc_get_vblank_timestamp,
16588 };
16589
16590 static const struct drm_crtc_funcs i965_crtc_funcs = {
16591 INTEL_CRTC_FUNCS,
16592
16593 .get_vblank_counter = i915_get_vblank_counter,
16594 .enable_vblank = i965_enable_vblank,
16595 .disable_vblank = i965_disable_vblank,
16596 .get_vblank_timestamp = intel_crtc_get_vblank_timestamp,
16597 };
16598
16599 static const struct drm_crtc_funcs i915gm_crtc_funcs = {
16600 INTEL_CRTC_FUNCS,
16601
16602 .get_vblank_counter = i915_get_vblank_counter,
16603 .enable_vblank = i915gm_enable_vblank,
16604 .disable_vblank = i915gm_disable_vblank,
16605 .get_vblank_timestamp = intel_crtc_get_vblank_timestamp,
16606 };
16607
16608 static const struct drm_crtc_funcs i915_crtc_funcs = {
16609 INTEL_CRTC_FUNCS,
16610
16611 .get_vblank_counter = i915_get_vblank_counter,
16612 .enable_vblank = i8xx_enable_vblank,
16613 .disable_vblank = i8xx_disable_vblank,
16614 .get_vblank_timestamp = intel_crtc_get_vblank_timestamp,
16615 };
16616
16617 static const struct drm_crtc_funcs i8xx_crtc_funcs = {
16618 INTEL_CRTC_FUNCS,
16619
16620 /* no hw vblank counter */
16621 .enable_vblank = i8xx_enable_vblank,
16622 .disable_vblank = i8xx_disable_vblank,
16623 .get_vblank_timestamp = intel_crtc_get_vblank_timestamp,
16624 };
16625
16626 static struct intel_crtc *intel_crtc_alloc(void)
16627 {
16628 struct intel_crtc_state *crtc_state;
16629 struct intel_crtc *crtc;
16630
16631 crtc = kzalloc(sizeof(*crtc), GFP_KERNEL);
16632 if (!crtc)
16633 return ERR_PTR(-ENOMEM);
16634
16635 crtc_state = intel_crtc_state_alloc(crtc);
16636 if (!crtc_state) {
16637 kfree(crtc);
16638 return ERR_PTR(-ENOMEM);
16639 }
16640
16641 crtc->base.state = &crtc_state->uapi;
16642 crtc->config = crtc_state;
16643
16644 return crtc;
16645 }
16646
16647 static void intel_crtc_free(struct intel_crtc *crtc)
16648 {
16649 intel_crtc_destroy_state(&crtc->base, crtc->base.state);
16650 kfree(crtc);
16651 }
16652
16653 static void intel_plane_possible_crtcs_init(struct drm_i915_private *dev_priv)
16654 {
16655 struct intel_plane *plane;
16656
16657 for_each_intel_plane(&dev_priv->drm, plane) {
16658 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv,
16659 plane->pipe);
16660
16661 plane->base.possible_crtcs = drm_crtc_mask(&crtc->base);
16662 }
16663 }
16664
16665 static int intel_crtc_init(struct drm_i915_private *dev_priv, enum pipe pipe)
16666 {
16667 struct intel_plane *primary, *cursor;
16668 const struct drm_crtc_funcs *funcs;
16669 struct intel_crtc *crtc;
16670 int sprite, ret;
16671
16672 crtc = intel_crtc_alloc();
16673 if (IS_ERR(crtc))
16674 return PTR_ERR(crtc);
16675
16676 crtc->pipe = pipe;
16677 crtc->num_scalers = RUNTIME_INFO(dev_priv)->num_scalers[pipe];
16678
16679 primary = intel_primary_plane_create(dev_priv, pipe);
16680 if (IS_ERR(primary)) {
16681 ret = PTR_ERR(primary);
16682 goto fail;
16683 }
16684 crtc->plane_ids_mask |= BIT(primary->id);
16685
16686 for_each_sprite(dev_priv, pipe, sprite) {
16687 struct intel_plane *plane;
16688
16689 plane = intel_sprite_plane_create(dev_priv, pipe, sprite);
16690 if (IS_ERR(plane)) {
16691 ret = PTR_ERR(plane);
16692 goto fail;
16693 }
16694 crtc->plane_ids_mask |= BIT(plane->id);
16695 }
16696
16697 cursor = intel_cursor_plane_create(dev_priv, pipe);
16698 if (IS_ERR(cursor)) {
16699 ret = PTR_ERR(cursor);
16700 goto fail;
16701 }
16702 crtc->plane_ids_mask |= BIT(cursor->id);
16703
16704 if (HAS_GMCH(dev_priv)) {
16705 if (IS_CHERRYVIEW(dev_priv) ||
16706 IS_VALLEYVIEW(dev_priv) || IS_G4X(dev_priv))
16707 funcs = &g4x_crtc_funcs;
16708 else if (IS_GEN(dev_priv, 4))
16709 funcs = &i965_crtc_funcs;
16710 else if (IS_I945GM(dev_priv) || IS_I915GM(dev_priv))
16711 funcs = &i915gm_crtc_funcs;
16712 else if (IS_GEN(dev_priv, 3))
16713 funcs = &i915_crtc_funcs;
16714 else
16715 funcs = &i8xx_crtc_funcs;
16716 } else {
16717 if (INTEL_GEN(dev_priv) >= 8)
16718 funcs = &bdw_crtc_funcs;
16719 else
16720 funcs = &ilk_crtc_funcs;
16721 }
16722
16723 ret = drm_crtc_init_with_planes(&dev_priv->drm, &crtc->base,
16724 &primary->base, &cursor->base,
16725 funcs, "pipe %c", pipe_name(pipe));
16726 if (ret)
16727 goto fail;
16728
16729 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->pipe_to_crtc_mapping) ||
16730 dev_priv->pipe_to_crtc_mapping[pipe] != NULL);
16731 dev_priv->pipe_to_crtc_mapping[pipe] = crtc;
16732
16733 if (INTEL_GEN(dev_priv) < 9) {
16734 enum i9xx_plane_id i9xx_plane = primary->i9xx_plane;
16735
16736 BUG_ON(i9xx_plane >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
16737 dev_priv->plane_to_crtc_mapping[i9xx_plane] != NULL);
16738 dev_priv->plane_to_crtc_mapping[i9xx_plane] = crtc;
16739 }
16740
16741 intel_color_init(crtc);
16742
16743 intel_crtc_crc_init(crtc);
16744
16745 drm_WARN_ON(&dev_priv->drm, drm_crtc_index(&crtc->base) != crtc->pipe);
16746
16747 return 0;
16748
16749 fail:
16750 intel_crtc_free(crtc);
16751
16752 return ret;
16753 }
16754
16755 int intel_get_pipe_from_crtc_id_ioctl(struct drm_device *dev, void *data,
16756 struct drm_file *file)
16757 {
16758 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
16759 struct drm_crtc *drmmode_crtc;
16760 struct intel_crtc *crtc;
16761
16762 drmmode_crtc = drm_crtc_find(dev, file, pipe_from_crtc_id->crtc_id);
16763 if (!drmmode_crtc)
16764 return -ENOENT;
16765
16766 crtc = to_intel_crtc(drmmode_crtc);
16767 pipe_from_crtc_id->pipe = crtc->pipe;
16768
16769 return 0;
16770 }
16771
16772 static u32 intel_encoder_possible_clones(struct intel_encoder *encoder)
16773 {
16774 struct drm_device *dev = encoder->base.dev;
16775 struct intel_encoder *source_encoder;
16776 u32 possible_clones = 0;
16777
16778 for_each_intel_encoder(dev, source_encoder) {
16779 if (encoders_cloneable(encoder, source_encoder))
16780 possible_clones |= drm_encoder_mask(&source_encoder->base);
16781 }
16782
16783 return possible_clones;
16784 }
16785
16786 static u32 intel_encoder_possible_crtcs(struct intel_encoder *encoder)
16787 {
16788 struct drm_device *dev = encoder->base.dev;
16789 struct intel_crtc *crtc;
16790 u32 possible_crtcs = 0;
16791
16792 for_each_intel_crtc(dev, crtc) {
16793 if (encoder->pipe_mask & BIT(crtc->pipe))
16794 possible_crtcs |= drm_crtc_mask(&crtc->base);
16795 }
16796
16797 return possible_crtcs;
16798 }
16799
16800 static bool ilk_has_edp_a(struct drm_i915_private *dev_priv)
16801 {
16802 if (!IS_MOBILE(dev_priv))
16803 return false;
16804
16805 if ((intel_de_read(dev_priv, DP_A) & DP_DETECTED) == 0)
16806 return false;
16807
16808 if (IS_GEN(dev_priv, 5) && (intel_de_read(dev_priv, FUSE_STRAP) & ILK_eDP_A_DISABLE))
16809 return false;
16810
16811 return true;
16812 }
16813
16814 static bool intel_ddi_crt_present(struct drm_i915_private *dev_priv)
16815 {
16816 if (INTEL_GEN(dev_priv) >= 9)
16817 return false;
16818
16819 if (IS_HSW_ULT(dev_priv) || IS_BDW_ULT(dev_priv))
16820 return false;
16821
16822 if (HAS_PCH_LPT_H(dev_priv) &&
16823 intel_de_read(dev_priv, SFUSE_STRAP) & SFUSE_STRAP_CRT_DISABLED)
16824 return false;
16825
16826 /* DDI E can't be used if DDI A requires 4 lanes */
16827 if (intel_de_read(dev_priv, DDI_BUF_CTL(PORT_A)) & DDI_A_4_LANES)
16828 return false;
16829
16830 if (!dev_priv->vbt.int_crt_support)
16831 return false;
16832
16833 return true;
16834 }
16835
16836 void intel_pps_unlock_regs_wa(struct drm_i915_private *dev_priv)
16837 {
16838 int pps_num;
16839 int pps_idx;
16840
16841 if (HAS_DDI(dev_priv))
16842 return;
16843 /*
16844 * This w/a is needed at least on CPT/PPT, but to be sure apply it
16845 * everywhere where registers can be write protected.
16846 */
16847 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
16848 pps_num = 2;
16849 else
16850 pps_num = 1;
16851
16852 for (pps_idx = 0; pps_idx < pps_num; pps_idx++) {
16853 u32 val = intel_de_read(dev_priv, PP_CONTROL(pps_idx));
16854
16855 val = (val & ~PANEL_UNLOCK_MASK) | PANEL_UNLOCK_REGS;
16856 intel_de_write(dev_priv, PP_CONTROL(pps_idx), val);
16857 }
16858 }
16859
16860 static void intel_pps_init(struct drm_i915_private *dev_priv)
16861 {
16862 if (HAS_PCH_SPLIT(dev_priv) || IS_GEN9_LP(dev_priv))
16863 dev_priv->pps_mmio_base = PCH_PPS_BASE;
16864 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
16865 dev_priv->pps_mmio_base = VLV_PPS_BASE;
16866 else
16867 dev_priv->pps_mmio_base = PPS_BASE;
16868
16869 intel_pps_unlock_regs_wa(dev_priv);
16870 }
16871
16872 static void intel_setup_outputs(struct drm_i915_private *dev_priv)
16873 {
16874 struct intel_encoder *encoder;
16875 bool dpd_is_edp = false;
16876
16877 intel_pps_init(dev_priv);
16878
16879 if (!HAS_DISPLAY(dev_priv))
16880 return;
16881
16882 if (IS_ROCKETLAKE(dev_priv)) {
16883 intel_ddi_init(dev_priv, PORT_A);
16884 intel_ddi_init(dev_priv, PORT_B);
16885 intel_ddi_init(dev_priv, PORT_D); /* DDI TC1 */
16886 intel_ddi_init(dev_priv, PORT_E); /* DDI TC2 */
16887 } else if (INTEL_GEN(dev_priv) >= 12) {
16888 intel_ddi_init(dev_priv, PORT_A);
16889 intel_ddi_init(dev_priv, PORT_B);
16890 intel_ddi_init(dev_priv, PORT_D);
16891 intel_ddi_init(dev_priv, PORT_E);
16892 intel_ddi_init(dev_priv, PORT_F);
16893 intel_ddi_init(dev_priv, PORT_G);
16894 intel_ddi_init(dev_priv, PORT_H);
16895 intel_ddi_init(dev_priv, PORT_I);
16896 icl_dsi_init(dev_priv);
16897 } else if (IS_ELKHARTLAKE(dev_priv)) {
16898 intel_ddi_init(dev_priv, PORT_A);
16899 intel_ddi_init(dev_priv, PORT_B);
16900 intel_ddi_init(dev_priv, PORT_C);
16901 intel_ddi_init(dev_priv, PORT_D);
16902 icl_dsi_init(dev_priv);
16903 } else if (IS_GEN(dev_priv, 11)) {
16904 intel_ddi_init(dev_priv, PORT_A);
16905 intel_ddi_init(dev_priv, PORT_B);
16906 intel_ddi_init(dev_priv, PORT_C);
16907 intel_ddi_init(dev_priv, PORT_D);
16908 intel_ddi_init(dev_priv, PORT_E);
16909 /*
16910 * On some ICL SKUs port F is not present. No strap bits for
16911 * this, so rely on VBT.
16912 * Work around broken VBTs on SKUs known to have no port F.
16913 */
16914 if (IS_ICL_WITH_PORT_F(dev_priv) &&
16915 intel_bios_is_port_present(dev_priv, PORT_F))
16916 intel_ddi_init(dev_priv, PORT_F);
16917
16918 icl_dsi_init(dev_priv);
16919 } else if (IS_GEN9_LP(dev_priv)) {
16920 /*
16921 * FIXME: Broxton doesn't support port detection via the
16922 * DDI_BUF_CTL_A or SFUSE_STRAP registers, find another way to
16923 * detect the ports.
16924 */
16925 intel_ddi_init(dev_priv, PORT_A);
16926 intel_ddi_init(dev_priv, PORT_B);
16927 intel_ddi_init(dev_priv, PORT_C);
16928
16929 vlv_dsi_init(dev_priv);
16930 } else if (HAS_DDI(dev_priv)) {
16931 int found;
16932
16933 if (intel_ddi_crt_present(dev_priv))
16934 intel_crt_init(dev_priv);
16935
16936 /*
16937 * Haswell uses DDI functions to detect digital outputs.
16938 * On SKL pre-D0 the strap isn't connected, so we assume
16939 * it's there.
16940 */
16941 found = intel_de_read(dev_priv, DDI_BUF_CTL(PORT_A)) & DDI_INIT_DISPLAY_DETECTED;
16942 /* WaIgnoreDDIAStrap: skl */
16943 if (found || IS_GEN9_BC(dev_priv))
16944 intel_ddi_init(dev_priv, PORT_A);
16945
16946 /* DDI B, C, D, and F detection is indicated by the SFUSE_STRAP
16947 * register */
16948 found = intel_de_read(dev_priv, SFUSE_STRAP);
16949
16950 if (found & SFUSE_STRAP_DDIB_DETECTED)
16951 intel_ddi_init(dev_priv, PORT_B);
16952 if (found & SFUSE_STRAP_DDIC_DETECTED)
16953 intel_ddi_init(dev_priv, PORT_C);
16954 if (found & SFUSE_STRAP_DDID_DETECTED)
16955 intel_ddi_init(dev_priv, PORT_D);
16956 if (found & SFUSE_STRAP_DDIF_DETECTED)
16957 intel_ddi_init(dev_priv, PORT_F);
16958 /*
16959 * On SKL we don't have a way to detect DDI-E so we rely on VBT.
16960 */
16961 if (IS_GEN9_BC(dev_priv) &&
16962 intel_bios_is_port_present(dev_priv, PORT_E))
16963 intel_ddi_init(dev_priv, PORT_E);
16964
16965 } else if (HAS_PCH_SPLIT(dev_priv)) {
16966 int found;
16967
16968 /*
16969 * intel_edp_init_connector() depends on this completing first,
16970 * to prevent the registration of both eDP and LVDS and the
16971 * incorrect sharing of the PPS.
16972 */
16973 intel_lvds_init(dev_priv);
16974 intel_crt_init(dev_priv);
16975
16976 dpd_is_edp = intel_dp_is_port_edp(dev_priv, PORT_D);
16977
16978 if (ilk_has_edp_a(dev_priv))
16979 intel_dp_init(dev_priv, DP_A, PORT_A);
16980
16981 if (intel_de_read(dev_priv, PCH_HDMIB) & SDVO_DETECTED) {
16982 /* PCH SDVOB multiplex with HDMIB */
16983 found = intel_sdvo_init(dev_priv, PCH_SDVOB, PORT_B);
16984 if (!found)
16985 intel_hdmi_init(dev_priv, PCH_HDMIB, PORT_B);
16986 if (!found && (intel_de_read(dev_priv, PCH_DP_B) & DP_DETECTED))
16987 intel_dp_init(dev_priv, PCH_DP_B, PORT_B);
16988 }
16989
16990 if (intel_de_read(dev_priv, PCH_HDMIC) & SDVO_DETECTED)
16991 intel_hdmi_init(dev_priv, PCH_HDMIC, PORT_C);
16992
16993 if (!dpd_is_edp && intel_de_read(dev_priv, PCH_HDMID) & SDVO_DETECTED)
16994 intel_hdmi_init(dev_priv, PCH_HDMID, PORT_D);
16995
16996 if (intel_de_read(dev_priv, PCH_DP_C) & DP_DETECTED)
16997 intel_dp_init(dev_priv, PCH_DP_C, PORT_C);
16998
16999 if (intel_de_read(dev_priv, PCH_DP_D) & DP_DETECTED)
17000 intel_dp_init(dev_priv, PCH_DP_D, PORT_D);
17001 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
17002 bool has_edp, has_port;
17003
17004 if (IS_VALLEYVIEW(dev_priv) && dev_priv->vbt.int_crt_support)
17005 intel_crt_init(dev_priv);
17006
17007 /*
17008 * The DP_DETECTED bit is the latched state of the DDC
17009 * SDA pin at boot. However since eDP doesn't require DDC
17010 * (no way to plug in a DP->HDMI dongle) the DDC pins for
17011 * eDP ports may have been muxed to an alternate function.
17012 * Thus we can't rely on the DP_DETECTED bit alone to detect
17013 * eDP ports. Consult the VBT as well as DP_DETECTED to
17014 * detect eDP ports.
17015 *
17016 * Sadly the straps seem to be missing sometimes even for HDMI
17017 * ports (eg. on Voyo V3 - CHT x7-Z8700), so check both strap
17018 * and VBT for the presence of the port. Additionally we can't
17019 * trust the port type the VBT declares as we've seen at least
17020 * HDMI ports that the VBT claim are DP or eDP.
17021 */
17022 has_edp = intel_dp_is_port_edp(dev_priv, PORT_B);
17023 has_port = intel_bios_is_port_present(dev_priv, PORT_B);
17024 if (intel_de_read(dev_priv, VLV_DP_B) & DP_DETECTED || has_port)
17025 has_edp &= intel_dp_init(dev_priv, VLV_DP_B, PORT_B);
17026 if ((intel_de_read(dev_priv, VLV_HDMIB) & SDVO_DETECTED || has_port) && !has_edp)
17027 intel_hdmi_init(dev_priv, VLV_HDMIB, PORT_B);
17028
17029 has_edp = intel_dp_is_port_edp(dev_priv, PORT_C);
17030 has_port = intel_bios_is_port_present(dev_priv, PORT_C);
17031 if (intel_de_read(dev_priv, VLV_DP_C) & DP_DETECTED || has_port)
17032 has_edp &= intel_dp_init(dev_priv, VLV_DP_C, PORT_C);
17033 if ((intel_de_read(dev_priv, VLV_HDMIC) & SDVO_DETECTED || has_port) && !has_edp)
17034 intel_hdmi_init(dev_priv, VLV_HDMIC, PORT_C);
17035
17036 if (IS_CHERRYVIEW(dev_priv)) {
17037 /*
17038 * eDP not supported on port D,
17039 * so no need to worry about it
17040 */
17041 has_port = intel_bios_is_port_present(dev_priv, PORT_D);
17042 if (intel_de_read(dev_priv, CHV_DP_D) & DP_DETECTED || has_port)
17043 intel_dp_init(dev_priv, CHV_DP_D, PORT_D);
17044 if (intel_de_read(dev_priv, CHV_HDMID) & SDVO_DETECTED || has_port)
17045 intel_hdmi_init(dev_priv, CHV_HDMID, PORT_D);
17046 }
17047
17048 vlv_dsi_init(dev_priv);
17049 } else if (IS_PINEVIEW(dev_priv)) {
17050 intel_lvds_init(dev_priv);
17051 intel_crt_init(dev_priv);
17052 } else if (IS_GEN_RANGE(dev_priv, 3, 4)) {
17053 bool found = false;
17054
17055 if (IS_MOBILE(dev_priv))
17056 intel_lvds_init(dev_priv);
17057
17058 intel_crt_init(dev_priv);
17059
17060 if (intel_de_read(dev_priv, GEN3_SDVOB) & SDVO_DETECTED) {
17061 drm_dbg_kms(&dev_priv->drm, "probing SDVOB\n");
17062 found = intel_sdvo_init(dev_priv, GEN3_SDVOB, PORT_B);
17063 if (!found && IS_G4X(dev_priv)) {
17064 drm_dbg_kms(&dev_priv->drm,
17065 "probing HDMI on SDVOB\n");
17066 intel_hdmi_init(dev_priv, GEN4_HDMIB, PORT_B);
17067 }
17068
17069 if (!found && IS_G4X(dev_priv))
17070 intel_dp_init(dev_priv, DP_B, PORT_B);
17071 }
17072
17073 /* Before G4X SDVOC doesn't have its own detect register */
17074
17075 if (intel_de_read(dev_priv, GEN3_SDVOB) & SDVO_DETECTED) {
17076 drm_dbg_kms(&dev_priv->drm, "probing SDVOC\n");
17077 found = intel_sdvo_init(dev_priv, GEN3_SDVOC, PORT_C);
17078 }
17079
17080 if (!found && (intel_de_read(dev_priv, GEN3_SDVOC) & SDVO_DETECTED)) {
17081
17082 if (IS_G4X(dev_priv)) {
17083 drm_dbg_kms(&dev_priv->drm,
17084 "probing HDMI on SDVOC\n");
17085 intel_hdmi_init(dev_priv, GEN4_HDMIC, PORT_C);
17086 }
17087 if (IS_G4X(dev_priv))
17088 intel_dp_init(dev_priv, DP_C, PORT_C);
17089 }
17090
17091 if (IS_G4X(dev_priv) && (intel_de_read(dev_priv, DP_D) & DP_DETECTED))
17092 intel_dp_init(dev_priv, DP_D, PORT_D);
17093
17094 if (SUPPORTS_TV(dev_priv))
17095 intel_tv_init(dev_priv);
17096 } else if (IS_GEN(dev_priv, 2)) {
17097 if (IS_I85X(dev_priv))
17098 intel_lvds_init(dev_priv);
17099
17100 intel_crt_init(dev_priv);
17101 intel_dvo_init(dev_priv);
17102 }
17103
17104 intel_psr_init(dev_priv);
17105
17106 for_each_intel_encoder(&dev_priv->drm, encoder) {
17107 encoder->base.possible_crtcs =
17108 intel_encoder_possible_crtcs(encoder);
17109 encoder->base.possible_clones =
17110 intel_encoder_possible_clones(encoder);
17111 }
17112
17113 intel_init_pch_refclk(dev_priv);
17114
17115 drm_helper_move_panel_connectors_to_head(&dev_priv->drm);
17116 }
17117
17118 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
17119 {
17120 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
17121
17122 drm_framebuffer_cleanup(fb);
17123 intel_frontbuffer_put(intel_fb->frontbuffer);
17124
17125 kfree(intel_fb);
17126 }
17127
17128 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
17129 struct drm_file *file,
17130 unsigned int *handle)
17131 {
17132 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
17133 struct drm_i915_private *i915 = to_i915(obj->base.dev);
17134
17135 if (obj->userptr.mm) {
17136 drm_dbg(&i915->drm,
17137 "attempting to use a userptr for a framebuffer, denied\n");
17138 return -EINVAL;
17139 }
17140
17141 return drm_gem_handle_create(file, &obj->base, handle);
17142 }
17143
17144 static int intel_user_framebuffer_dirty(struct drm_framebuffer *fb,
17145 struct drm_file *file,
17146 unsigned flags, unsigned color,
17147 struct drm_clip_rect *clips,
17148 unsigned num_clips)
17149 {
17150 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
17151
17152 i915_gem_object_flush_if_display(obj);
17153 intel_frontbuffer_flush(to_intel_frontbuffer(fb), ORIGIN_DIRTYFB);
17154
17155 return 0;
17156 }
17157
17158 static const struct drm_framebuffer_funcs intel_fb_funcs = {
17159 .destroy = intel_user_framebuffer_destroy,
17160 .create_handle = intel_user_framebuffer_create_handle,
17161 .dirty = intel_user_framebuffer_dirty,
17162 };
17163
17164 static int intel_framebuffer_init(struct intel_framebuffer *intel_fb,
17165 struct drm_i915_gem_object *obj,
17166 struct drm_mode_fb_cmd2 *mode_cmd)
17167 {
17168 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
17169 struct drm_framebuffer *fb = &intel_fb->base;
17170 u32 max_stride;
17171 unsigned int tiling, stride;
17172 int ret = -EINVAL;
17173 int i;
17174
17175 intel_fb->frontbuffer = intel_frontbuffer_get(obj);
17176 if (!intel_fb->frontbuffer)
17177 return -ENOMEM;
17178
17179 i915_gem_object_lock(obj, NULL);
17180 tiling = i915_gem_object_get_tiling(obj);
17181 stride = i915_gem_object_get_stride(obj);
17182 i915_gem_object_unlock(obj);
17183
17184 if (mode_cmd->flags & DRM_MODE_FB_MODIFIERS) {
17185 /*
17186 * If there's a fence, enforce that
17187 * the fb modifier and tiling mode match.
17188 */
17189 if (tiling != I915_TILING_NONE &&
17190 tiling != intel_fb_modifier_to_tiling(mode_cmd->modifier[0])) {
17191 drm_dbg_kms(&dev_priv->drm,
17192 "tiling_mode doesn't match fb modifier\n");
17193 goto err;
17194 }
17195 } else {
17196 if (tiling == I915_TILING_X) {
17197 mode_cmd->modifier[0] = I915_FORMAT_MOD_X_TILED;
17198 } else if (tiling == I915_TILING_Y) {
17199 drm_dbg_kms(&dev_priv->drm,
17200 "No Y tiling for legacy addfb\n");
17201 goto err;
17202 }
17203 }
17204
17205 if (!drm_any_plane_has_format(&dev_priv->drm,
17206 mode_cmd->pixel_format,
17207 mode_cmd->modifier[0])) {
17208 struct drm_format_name_buf format_name;
17209
17210 drm_dbg_kms(&dev_priv->drm,
17211 "unsupported pixel format %s / modifier 0x%llx\n",
17212 drm_get_format_name(mode_cmd->pixel_format,
17213 &format_name),
17214 mode_cmd->modifier[0]);
17215 goto err;
17216 }
17217
17218 /*
17219 * gen2/3 display engine uses the fence if present,
17220 * so the tiling mode must match the fb modifier exactly.
17221 */
17222 if (INTEL_GEN(dev_priv) < 4 &&
17223 tiling != intel_fb_modifier_to_tiling(mode_cmd->modifier[0])) {
17224 drm_dbg_kms(&dev_priv->drm,
17225 "tiling_mode must match fb modifier exactly on gen2/3\n");
17226 goto err;
17227 }
17228
17229 max_stride = intel_fb_max_stride(dev_priv, mode_cmd->pixel_format,
17230 mode_cmd->modifier[0]);
17231 if (mode_cmd->pitches[0] > max_stride) {
17232 drm_dbg_kms(&dev_priv->drm,
17233 "%s pitch (%u) must be at most %d\n",
17234 mode_cmd->modifier[0] != DRM_FORMAT_MOD_LINEAR ?
17235 "tiled" : "linear",
17236 mode_cmd->pitches[0], max_stride);
17237 goto err;
17238 }
17239
17240 /*
17241 * If there's a fence, enforce that
17242 * the fb pitch and fence stride match.
17243 */
17244 if (tiling != I915_TILING_NONE && mode_cmd->pitches[0] != stride) {
17245 drm_dbg_kms(&dev_priv->drm,
17246 "pitch (%d) must match tiling stride (%d)\n",
17247 mode_cmd->pitches[0], stride);
17248 goto err;
17249 }
17250
17251 /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
17252 if (mode_cmd->offsets[0] != 0) {
17253 drm_dbg_kms(&dev_priv->drm,
17254 "plane 0 offset (0x%08x) must be 0\n",
17255 mode_cmd->offsets[0]);
17256 goto err;
17257 }
17258
17259 drm_helper_mode_fill_fb_struct(&dev_priv->drm, fb, mode_cmd);
17260
17261 for (i = 0; i < fb->format->num_planes; i++) {
17262 u32 stride_alignment;
17263
17264 if (mode_cmd->handles[i] != mode_cmd->handles[0]) {
17265 drm_dbg_kms(&dev_priv->drm, "bad plane %d handle\n",
17266 i);
17267 goto err;
17268 }
17269
17270 stride_alignment = intel_fb_stride_alignment(fb, i);
17271 if (fb->pitches[i] & (stride_alignment - 1)) {
17272 drm_dbg_kms(&dev_priv->drm,
17273 "plane %d pitch (%d) must be at least %u byte aligned\n",
17274 i, fb->pitches[i], stride_alignment);
17275 goto err;
17276 }
17277
17278 if (is_gen12_ccs_plane(fb, i)) {
17279 int ccs_aux_stride = gen12_ccs_aux_stride(fb, i);
17280
17281 if (fb->pitches[i] != ccs_aux_stride) {
17282 drm_dbg_kms(&dev_priv->drm,
17283 "ccs aux plane %d pitch (%d) must be %d\n",
17284 i,
17285 fb->pitches[i], ccs_aux_stride);
17286 goto err;
17287 }
17288 }
17289
17290 fb->obj[i] = &obj->base;
17291 }
17292
17293 ret = intel_fill_fb_info(dev_priv, fb);
17294 if (ret)
17295 goto err;
17296
17297 ret = drm_framebuffer_init(&dev_priv->drm, fb, &intel_fb_funcs);
17298 if (ret) {
17299 drm_err(&dev_priv->drm, "framebuffer init failed %d\n", ret);
17300 goto err;
17301 }
17302
17303 return 0;
17304
17305 err:
17306 intel_frontbuffer_put(intel_fb->frontbuffer);
17307 return ret;
17308 }
17309
17310 static struct drm_framebuffer *
17311 intel_user_framebuffer_create(struct drm_device *dev,
17312 struct drm_file *filp,
17313 const struct drm_mode_fb_cmd2 *user_mode_cmd)
17314 {
17315 struct drm_framebuffer *fb;
17316 struct drm_i915_gem_object *obj;
17317 struct drm_mode_fb_cmd2 mode_cmd = *user_mode_cmd;
17318
17319 obj = i915_gem_object_lookup(filp, mode_cmd.handles[0]);
17320 if (!obj)
17321 return ERR_PTR(-ENOENT);
17322
17323 fb = intel_framebuffer_create(obj, &mode_cmd);
17324 i915_gem_object_put(obj);
17325
17326 return fb;
17327 }
17328
17329 static enum drm_mode_status
17330 intel_mode_valid(struct drm_device *dev,
17331 const struct drm_display_mode *mode)
17332 {
17333 struct drm_i915_private *dev_priv = to_i915(dev);
17334 int hdisplay_max, htotal_max;
17335 int vdisplay_max, vtotal_max;
17336
17337 /*
17338 * Can't reject DBLSCAN here because Xorg ddxen can add piles
17339 * of DBLSCAN modes to the output's mode list when they detect
17340 * the scaling mode property on the connector. And they don't
17341 * ask the kernel to validate those modes in any way until
17342 * modeset time at which point the client gets a protocol error.
17343 * So in order to not upset those clients we silently ignore the
17344 * DBLSCAN flag on such connectors. For other connectors we will
17345 * reject modes with the DBLSCAN flag in encoder->compute_config().
17346 * And we always reject DBLSCAN modes in connector->mode_valid()
17347 * as we never want such modes on the connector's mode list.
17348 */
17349
17350 if (mode->vscan > 1)
17351 return MODE_NO_VSCAN;
17352
17353 if (mode->flags & DRM_MODE_FLAG_HSKEW)
17354 return MODE_H_ILLEGAL;
17355
17356 if (mode->flags & (DRM_MODE_FLAG_CSYNC |
17357 DRM_MODE_FLAG_NCSYNC |
17358 DRM_MODE_FLAG_PCSYNC))
17359 return MODE_HSYNC;
17360
17361 if (mode->flags & (DRM_MODE_FLAG_BCAST |
17362 DRM_MODE_FLAG_PIXMUX |
17363 DRM_MODE_FLAG_CLKDIV2))
17364 return MODE_BAD;
17365
17366 /* Transcoder timing limits */
17367 if (INTEL_GEN(dev_priv) >= 11) {
17368 hdisplay_max = 16384;
17369 vdisplay_max = 8192;
17370 htotal_max = 16384;
17371 vtotal_max = 8192;
17372 } else if (INTEL_GEN(dev_priv) >= 9 ||
17373 IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) {
17374 hdisplay_max = 8192; /* FDI max 4096 handled elsewhere */
17375 vdisplay_max = 4096;
17376 htotal_max = 8192;
17377 vtotal_max = 8192;
17378 } else if (INTEL_GEN(dev_priv) >= 3) {
17379 hdisplay_max = 4096;
17380 vdisplay_max = 4096;
17381 htotal_max = 8192;
17382 vtotal_max = 8192;
17383 } else {
17384 hdisplay_max = 2048;
17385 vdisplay_max = 2048;
17386 htotal_max = 4096;
17387 vtotal_max = 4096;
17388 }
17389
17390 if (mode->hdisplay > hdisplay_max ||
17391 mode->hsync_start > htotal_max ||
17392 mode->hsync_end > htotal_max ||
17393 mode->htotal > htotal_max)
17394 return MODE_H_ILLEGAL;
17395
17396 if (mode->vdisplay > vdisplay_max ||
17397 mode->vsync_start > vtotal_max ||
17398 mode->vsync_end > vtotal_max ||
17399 mode->vtotal > vtotal_max)
17400 return MODE_V_ILLEGAL;
17401
17402 if (INTEL_GEN(dev_priv) >= 5) {
17403 if (mode->hdisplay < 64 ||
17404 mode->htotal - mode->hdisplay < 32)
17405 return MODE_H_ILLEGAL;
17406
17407 if (mode->vtotal - mode->vdisplay < 5)
17408 return MODE_V_ILLEGAL;
17409 } else {
17410 if (mode->htotal - mode->hdisplay < 32)
17411 return MODE_H_ILLEGAL;
17412
17413 if (mode->vtotal - mode->vdisplay < 3)
17414 return MODE_V_ILLEGAL;
17415 }
17416
17417 return MODE_OK;
17418 }
17419
17420 enum drm_mode_status
17421 intel_mode_valid_max_plane_size(struct drm_i915_private *dev_priv,
17422 const struct drm_display_mode *mode)
17423 {
17424 int plane_width_max, plane_height_max;
17425
17426 /*
17427 * intel_mode_valid() should be
17428 * sufficient on older platforms.
17429 */
17430 if (INTEL_GEN(dev_priv) < 9)
17431 return MODE_OK;
17432
17433 /*
17434 * Most people will probably want a fullscreen
17435 * plane so let's not advertize modes that are
17436 * too big for that.
17437 */
17438 if (INTEL_GEN(dev_priv) >= 11) {
17439 plane_width_max = 5120;
17440 plane_height_max = 4320;
17441 } else {
17442 plane_width_max = 5120;
17443 plane_height_max = 4096;
17444 }
17445
17446 if (mode->hdisplay > plane_width_max)
17447 return MODE_H_ILLEGAL;
17448
17449 if (mode->vdisplay > plane_height_max)
17450 return MODE_V_ILLEGAL;
17451
17452 return MODE_OK;
17453 }
17454
17455 static const struct drm_mode_config_funcs intel_mode_funcs = {
17456 .fb_create = intel_user_framebuffer_create,
17457 .get_format_info = intel_get_format_info,
17458 .output_poll_changed = intel_fbdev_output_poll_changed,
17459 .mode_valid = intel_mode_valid,
17460 .atomic_check = intel_atomic_check,
17461 .atomic_commit = intel_atomic_commit,
17462 .atomic_state_alloc = intel_atomic_state_alloc,
17463 .atomic_state_clear = intel_atomic_state_clear,
17464 .atomic_state_free = intel_atomic_state_free,
17465 };
17466
17467 /**
17468 * intel_init_display_hooks - initialize the display modesetting hooks
17469 * @dev_priv: device private
17470 */
17471 void intel_init_display_hooks(struct drm_i915_private *dev_priv)
17472 {
17473 intel_init_cdclk_hooks(dev_priv);
17474
17475 if (INTEL_GEN(dev_priv) >= 9) {
17476 dev_priv->display.get_pipe_config = hsw_get_pipe_config;
17477 dev_priv->display.get_initial_plane_config =
17478 skl_get_initial_plane_config;
17479 dev_priv->display.crtc_compute_clock = hsw_crtc_compute_clock;
17480 dev_priv->display.crtc_enable = hsw_crtc_enable;
17481 dev_priv->display.crtc_disable = hsw_crtc_disable;
17482 } else if (HAS_DDI(dev_priv)) {
17483 dev_priv->display.get_pipe_config = hsw_get_pipe_config;
17484 dev_priv->display.get_initial_plane_config =
17485 i9xx_get_initial_plane_config;
17486 dev_priv->display.crtc_compute_clock =
17487 hsw_crtc_compute_clock;
17488 dev_priv->display.crtc_enable = hsw_crtc_enable;
17489 dev_priv->display.crtc_disable = hsw_crtc_disable;
17490 } else if (HAS_PCH_SPLIT(dev_priv)) {
17491 dev_priv->display.get_pipe_config = ilk_get_pipe_config;
17492 dev_priv->display.get_initial_plane_config =
17493 i9xx_get_initial_plane_config;
17494 dev_priv->display.crtc_compute_clock =
17495 ilk_crtc_compute_clock;
17496 dev_priv->display.crtc_enable = ilk_crtc_enable;
17497 dev_priv->display.crtc_disable = ilk_crtc_disable;
17498 } else if (IS_CHERRYVIEW(dev_priv)) {
17499 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
17500 dev_priv->display.get_initial_plane_config =
17501 i9xx_get_initial_plane_config;
17502 dev_priv->display.crtc_compute_clock = chv_crtc_compute_clock;
17503 dev_priv->display.crtc_enable = valleyview_crtc_enable;
17504 dev_priv->display.crtc_disable = i9xx_crtc_disable;
17505 } else if (IS_VALLEYVIEW(dev_priv)) {
17506 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
17507 dev_priv->display.get_initial_plane_config =
17508 i9xx_get_initial_plane_config;
17509 dev_priv->display.crtc_compute_clock = vlv_crtc_compute_clock;
17510 dev_priv->display.crtc_enable = valleyview_crtc_enable;
17511 dev_priv->display.crtc_disable = i9xx_crtc_disable;
17512 } else if (IS_G4X(dev_priv)) {
17513 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
17514 dev_priv->display.get_initial_plane_config =
17515 i9xx_get_initial_plane_config;
17516 dev_priv->display.crtc_compute_clock = g4x_crtc_compute_clock;
17517 dev_priv->display.crtc_enable = i9xx_crtc_enable;
17518 dev_priv->display.crtc_disable = i9xx_crtc_disable;
17519 } else if (IS_PINEVIEW(dev_priv)) {
17520 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
17521 dev_priv->display.get_initial_plane_config =
17522 i9xx_get_initial_plane_config;
17523 dev_priv->display.crtc_compute_clock = pnv_crtc_compute_clock;
17524 dev_priv->display.crtc_enable = i9xx_crtc_enable;
17525 dev_priv->display.crtc_disable = i9xx_crtc_disable;
17526 } else if (!IS_GEN(dev_priv, 2)) {
17527 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
17528 dev_priv->display.get_initial_plane_config =
17529 i9xx_get_initial_plane_config;
17530 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
17531 dev_priv->display.crtc_enable = i9xx_crtc_enable;
17532 dev_priv->display.crtc_disable = i9xx_crtc_disable;
17533 } else {
17534 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
17535 dev_priv->display.get_initial_plane_config =
17536 i9xx_get_initial_plane_config;
17537 dev_priv->display.crtc_compute_clock = i8xx_crtc_compute_clock;
17538 dev_priv->display.crtc_enable = i9xx_crtc_enable;
17539 dev_priv->display.crtc_disable = i9xx_crtc_disable;
17540 }
17541
17542 if (IS_GEN(dev_priv, 5)) {
17543 dev_priv->display.fdi_link_train = ilk_fdi_link_train;
17544 } else if (IS_GEN(dev_priv, 6)) {
17545 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
17546 } else if (IS_IVYBRIDGE(dev_priv)) {
17547 /* FIXME: detect B0+ stepping and use auto training */
17548 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
17549 }
17550
17551 if (INTEL_GEN(dev_priv) >= 9)
17552 dev_priv->display.commit_modeset_enables = skl_commit_modeset_enables;
17553 else
17554 dev_priv->display.commit_modeset_enables = intel_commit_modeset_enables;
17555
17556 }
17557
17558 void intel_modeset_init_hw(struct drm_i915_private *i915)
17559 {
17560 struct intel_cdclk_state *cdclk_state =
17561 to_intel_cdclk_state(i915->cdclk.obj.state);
17562 struct intel_dbuf_state *dbuf_state =
17563 to_intel_dbuf_state(i915->dbuf.obj.state);
17564
17565 intel_update_cdclk(i915);
17566 intel_dump_cdclk_config(&i915->cdclk.hw, "Current CDCLK");
17567 cdclk_state->logical = cdclk_state->actual = i915->cdclk.hw;
17568
17569 dbuf_state->enabled_slices = i915->dbuf.enabled_slices;
17570 }
17571
17572 static int sanitize_watermarks_add_affected(struct drm_atomic_state *state)
17573 {
17574 struct drm_plane *plane;
17575 struct intel_crtc *crtc;
17576
17577 for_each_intel_crtc(state->dev, crtc) {
17578 struct intel_crtc_state *crtc_state;
17579
17580 crtc_state = intel_atomic_get_crtc_state(state, crtc);
17581 if (IS_ERR(crtc_state))
17582 return PTR_ERR(crtc_state);
17583
17584 if (crtc_state->hw.active) {
17585 /*
17586 * Preserve the inherited flag to avoid
17587 * taking the full modeset path.
17588 */
17589 crtc_state->inherited = true;
17590 }
17591 }
17592
17593 drm_for_each_plane(plane, state->dev) {
17594 struct drm_plane_state *plane_state;
17595
17596 plane_state = drm_atomic_get_plane_state(state, plane);
17597 if (IS_ERR(plane_state))
17598 return PTR_ERR(plane_state);
17599 }
17600
17601 return 0;
17602 }
17603
17604 /*
17605 * Calculate what we think the watermarks should be for the state we've read
17606 * out of the hardware and then immediately program those watermarks so that
17607 * we ensure the hardware settings match our internal state.
17608 *
17609 * We can calculate what we think WM's should be by creating a duplicate of the
17610 * current state (which was constructed during hardware readout) and running it
17611 * through the atomic check code to calculate new watermark values in the
17612 * state object.
17613 */
17614 static void sanitize_watermarks(struct drm_i915_private *dev_priv)
17615 {
17616 struct drm_atomic_state *state;
17617 struct intel_atomic_state *intel_state;
17618 struct intel_crtc *crtc;
17619 struct intel_crtc_state *crtc_state;
17620 struct drm_modeset_acquire_ctx ctx;
17621 int ret;
17622 int i;
17623
17624 /* Only supported on platforms that use atomic watermark design */
17625 if (!dev_priv->display.optimize_watermarks)
17626 return;
17627
17628 state = drm_atomic_state_alloc(&dev_priv->drm);
17629 if (drm_WARN_ON(&dev_priv->drm, !state))
17630 return;
17631
17632 intel_state = to_intel_atomic_state(state);
17633
17634 drm_modeset_acquire_init(&ctx, 0);
17635
17636 retry:
17637 state->acquire_ctx = &ctx;
17638
17639 /*
17640 * Hardware readout is the only time we don't want to calculate
17641 * intermediate watermarks (since we don't trust the current
17642 * watermarks).
17643 */
17644 if (!HAS_GMCH(dev_priv))
17645 intel_state->skip_intermediate_wm = true;
17646
17647 ret = sanitize_watermarks_add_affected(state);
17648 if (ret)
17649 goto fail;
17650
17651 ret = intel_atomic_check(&dev_priv->drm, state);
17652 if (ret)
17653 goto fail;
17654
17655 /* Write calculated watermark values back */
17656 for_each_new_intel_crtc_in_state(intel_state, crtc, crtc_state, i) {
17657 crtc_state->wm.need_postvbl_update = true;
17658 dev_priv->display.optimize_watermarks(intel_state, crtc);
17659
17660 to_intel_crtc_state(crtc->base.state)->wm = crtc_state->wm;
17661 }
17662
17663 fail:
17664 if (ret == -EDEADLK) {
17665 drm_atomic_state_clear(state);
17666 drm_modeset_backoff(&ctx);
17667 goto retry;
17668 }
17669
17670 /*
17671 * If we fail here, it means that the hardware appears to be
17672 * programmed in a way that shouldn't be possible, given our
17673 * understanding of watermark requirements. This might mean a
17674 * mistake in the hardware readout code or a mistake in the
17675 * watermark calculations for a given platform. Raise a WARN
17676 * so that this is noticeable.
17677 *
17678 * If this actually happens, we'll have to just leave the
17679 * BIOS-programmed watermarks untouched and hope for the best.
17680 */
17681 drm_WARN(&dev_priv->drm, ret,
17682 "Could not determine valid watermarks for inherited state\n");
17683
17684 drm_atomic_state_put(state);
17685
17686 drm_modeset_drop_locks(&ctx);
17687 drm_modeset_acquire_fini(&ctx);
17688 }
17689
17690 static void intel_update_fdi_pll_freq(struct drm_i915_private *dev_priv)
17691 {
17692 if (IS_GEN(dev_priv, 5)) {
17693 u32 fdi_pll_clk =
17694 intel_de_read(dev_priv, FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK;
17695
17696 dev_priv->fdi_pll_freq = (fdi_pll_clk + 2) * 10000;
17697 } else if (IS_GEN(dev_priv, 6) || IS_IVYBRIDGE(dev_priv)) {
17698 dev_priv->fdi_pll_freq = 270000;
17699 } else {
17700 return;
17701 }
17702
17703 drm_dbg(&dev_priv->drm, "FDI PLL freq=%d\n", dev_priv->fdi_pll_freq);
17704 }
17705
17706 static int intel_initial_commit(struct drm_device *dev)
17707 {
17708 struct drm_atomic_state *state = NULL;
17709 struct drm_modeset_acquire_ctx ctx;
17710 struct intel_crtc *crtc;
17711 int ret = 0;
17712
17713 state = drm_atomic_state_alloc(dev);
17714 if (!state)
17715 return -ENOMEM;
17716
17717 drm_modeset_acquire_init(&ctx, 0);
17718
17719 retry:
17720 state->acquire_ctx = &ctx;
17721
17722 for_each_intel_crtc(dev, crtc) {
17723 struct intel_crtc_state *crtc_state =
17724 intel_atomic_get_crtc_state(state, crtc);
17725
17726 if (IS_ERR(crtc_state)) {
17727 ret = PTR_ERR(crtc_state);
17728 goto out;
17729 }
17730
17731 if (crtc_state->hw.active) {
17732 /*
17733 * We've not yet detected sink capabilities
17734 * (audio,infoframes,etc.) and thus we don't want to
17735 * force a full state recomputation yet. We want that to
17736 * happen only for the first real commit from userspace.
17737 * So preserve the inherited flag for the time being.
17738 */
17739 crtc_state->inherited = true;
17740
17741 ret = drm_atomic_add_affected_planes(state, &crtc->base);
17742 if (ret)
17743 goto out;
17744
17745 /*
17746 * FIXME hack to force a LUT update to avoid the
17747 * plane update forcing the pipe gamma on without
17748 * having a proper LUT loaded. Remove once we
17749 * have readout for pipe gamma enable.
17750 */
17751 crtc_state->uapi.color_mgmt_changed = true;
17752
17753 /*
17754 * FIXME hack to force full modeset when DSC is being
17755 * used.
17756 *
17757 * As long as we do not have full state readout and
17758 * config comparison of crtc_state->dsc, we have no way
17759 * to ensure reliable fastset. Remove once we have
17760 * readout for DSC.
17761 */
17762 if (crtc_state->dsc.compression_enable) {
17763 ret = drm_atomic_add_affected_connectors(state,
17764 &crtc->base);
17765 if (ret)
17766 goto out;
17767 crtc_state->uapi.mode_changed = true;
17768 drm_dbg_kms(dev, "Force full modeset for DSC\n");
17769 }
17770 }
17771 }
17772
17773 ret = drm_atomic_commit(state);
17774
17775 out:
17776 if (ret == -EDEADLK) {
17777 drm_atomic_state_clear(state);
17778 drm_modeset_backoff(&ctx);
17779 goto retry;
17780 }
17781
17782 drm_atomic_state_put(state);
17783
17784 drm_modeset_drop_locks(&ctx);
17785 drm_modeset_acquire_fini(&ctx);
17786
17787 return ret;
17788 }
17789
17790 static void intel_mode_config_init(struct drm_i915_private *i915)
17791 {
17792 struct drm_mode_config *mode_config = &i915->drm.mode_config;
17793
17794 drm_mode_config_init(&i915->drm);
17795 INIT_LIST_HEAD(&i915->global_obj_list);
17796
17797 mode_config->min_width = 0;
17798 mode_config->min_height = 0;
17799
17800 mode_config->preferred_depth = 24;
17801 mode_config->prefer_shadow = 1;
17802
17803 mode_config->allow_fb_modifiers = true;
17804
17805 mode_config->funcs = &intel_mode_funcs;
17806
17807 /*
17808 * Maximum framebuffer dimensions, chosen to match
17809 * the maximum render engine surface size on gen4+.
17810 */
17811 if (INTEL_GEN(i915) >= 7) {
17812 mode_config->max_width = 16384;
17813 mode_config->max_height = 16384;
17814 } else if (INTEL_GEN(i915) >= 4) {
17815 mode_config->max_width = 8192;
17816 mode_config->max_height = 8192;
17817 } else if (IS_GEN(i915, 3)) {
17818 mode_config->max_width = 4096;
17819 mode_config->max_height = 4096;
17820 } else {
17821 mode_config->max_width = 2048;
17822 mode_config->max_height = 2048;
17823 }
17824
17825 if (IS_I845G(i915) || IS_I865G(i915)) {
17826 mode_config->cursor_width = IS_I845G(i915) ? 64 : 512;
17827 mode_config->cursor_height = 1023;
17828 } else if (IS_I830(i915) || IS_I85X(i915) ||
17829 IS_I915G(i915) || IS_I915GM(i915)) {
17830 mode_config->cursor_width = 64;
17831 mode_config->cursor_height = 64;
17832 } else {
17833 mode_config->cursor_width = 256;
17834 mode_config->cursor_height = 256;
17835 }
17836 }
17837
17838 static void intel_mode_config_cleanup(struct drm_i915_private *i915)
17839 {
17840 intel_atomic_global_obj_cleanup(i915);
17841 drm_mode_config_cleanup(&i915->drm);
17842 }
17843
17844 static void plane_config_fini(struct intel_initial_plane_config *plane_config)
17845 {
17846 if (plane_config->fb) {
17847 struct drm_framebuffer *fb = &plane_config->fb->base;
17848
17849 /* We may only have the stub and not a full framebuffer */
17850 if (drm_framebuffer_read_refcount(fb))
17851 drm_framebuffer_put(fb);
17852 else
17853 kfree(fb);
17854 }
17855
17856 if (plane_config->vma)
17857 i915_vma_put(plane_config->vma);
17858 }
17859
17860 /* part #1: call before irq install */
17861 int intel_modeset_init_noirq(struct drm_i915_private *i915)
17862 {
17863 int ret;
17864
17865 if (i915_inject_probe_failure(i915))
17866 return -ENODEV;
17867
17868 if (HAS_DISPLAY(i915)) {
17869 ret = drm_vblank_init(&i915->drm,
17870 INTEL_NUM_PIPES(i915));
17871 if (ret)
17872 return ret;
17873 }
17874
17875 intel_bios_init(i915);
17876
17877 ret = intel_vga_register(i915);
17878 if (ret)
17879 goto cleanup_bios;
17880
17881 /* FIXME: completely on the wrong abstraction layer */
17882 intel_power_domains_init_hw(i915, false);
17883
17884 intel_csr_ucode_init(i915);
17885
17886 i915->modeset_wq = alloc_ordered_workqueue("i915_modeset", 0);
17887 i915->flip_wq = alloc_workqueue("i915_flip", WQ_HIGHPRI |
17888 WQ_UNBOUND, WQ_UNBOUND_MAX_ACTIVE);
17889
17890 intel_mode_config_init(i915);
17891
17892 ret = intel_cdclk_init(i915);
17893 if (ret)
17894 goto cleanup_vga_client_pw_domain_csr;
17895
17896 ret = intel_dbuf_init(i915);
17897 if (ret)
17898 goto cleanup_vga_client_pw_domain_csr;
17899
17900 ret = intel_bw_init(i915);
17901 if (ret)
17902 goto cleanup_vga_client_pw_domain_csr;
17903
17904 init_llist_head(&i915->atomic_helper.free_list);
17905 INIT_WORK(&i915->atomic_helper.free_work,
17906 intel_atomic_helper_free_state_worker);
17907
17908 intel_init_quirks(i915);
17909
17910 intel_fbc_init(i915);
17911
17912 return 0;
17913
17914 cleanup_vga_client_pw_domain_csr:
17915 intel_csr_ucode_fini(i915);
17916 intel_power_domains_driver_remove(i915);
17917 intel_vga_unregister(i915);
17918 cleanup_bios:
17919 intel_bios_driver_remove(i915);
17920
17921 return ret;
17922 }
17923
17924 /* part #2: call after irq install, but before gem init */
17925 int intel_modeset_init_nogem(struct drm_i915_private *i915)
17926 {
17927 struct drm_device *dev = &i915->drm;
17928 enum pipe pipe;
17929 struct intel_crtc *crtc;
17930 int ret;
17931
17932 intel_init_pm(i915);
17933
17934 intel_panel_sanitize_ssc(i915);
17935
17936 intel_gmbus_setup(i915);
17937
17938 drm_dbg_kms(&i915->drm, "%d display pipe%s available.\n",
17939 INTEL_NUM_PIPES(i915),
17940 INTEL_NUM_PIPES(i915) > 1 ? "s" : "");
17941
17942 if (HAS_DISPLAY(i915)) {
17943 for_each_pipe(i915, pipe) {
17944 ret = intel_crtc_init(i915, pipe);
17945 if (ret) {
17946 intel_mode_config_cleanup(i915);
17947 return ret;
17948 }
17949 }
17950 }
17951
17952 intel_plane_possible_crtcs_init(i915);
17953 intel_shared_dpll_init(dev);
17954 intel_update_fdi_pll_freq(i915);
17955
17956 intel_update_czclk(i915);
17957 intel_modeset_init_hw(i915);
17958
17959 intel_hdcp_component_init(i915);
17960
17961 if (i915->max_cdclk_freq == 0)
17962 intel_update_max_cdclk(i915);
17963
17964 /*
17965 * If the platform has HTI, we need to find out whether it has reserved
17966 * any display resources before we create our display outputs.
17967 */
17968 if (INTEL_INFO(i915)->display.has_hti)
17969 i915->hti_state = intel_de_read(i915, HDPORT_STATE);
17970
17971 /* Just disable it once at startup */
17972 intel_vga_disable(i915);
17973 intel_setup_outputs(i915);
17974
17975 drm_modeset_lock_all(dev);
17976 intel_modeset_setup_hw_state(dev, dev->mode_config.acquire_ctx);
17977 drm_modeset_unlock_all(dev);
17978
17979 for_each_intel_crtc(dev, crtc) {
17980 struct intel_initial_plane_config plane_config = {};
17981
17982 if (!crtc->active)
17983 continue;
17984
17985 /*
17986 * Note that reserving the BIOS fb up front prevents us
17987 * from stuffing other stolen allocations like the ring
17988 * on top. This prevents some ugliness at boot time, and
17989 * can even allow for smooth boot transitions if the BIOS
17990 * fb is large enough for the active pipe configuration.
17991 */
17992 i915->display.get_initial_plane_config(crtc, &plane_config);
17993
17994 /*
17995 * If the fb is shared between multiple heads, we'll
17996 * just get the first one.
17997 */
17998 intel_find_initial_plane_obj(crtc, &plane_config);
17999
18000 plane_config_fini(&plane_config);
18001 }
18002
18003 /*
18004 * Make sure hardware watermarks really match the state we read out.
18005 * Note that we need to do this after reconstructing the BIOS fb's
18006 * since the watermark calculation done here will use pstate->fb.
18007 */
18008 if (!HAS_GMCH(i915))
18009 sanitize_watermarks(i915);
18010
18011 /*
18012 * Force all active planes to recompute their states. So that on
18013 * mode_setcrtc after probe, all the intel_plane_state variables
18014 * are already calculated and there is no assert_plane warnings
18015 * during bootup.
18016 */
18017 ret = intel_initial_commit(dev);
18018 if (ret)
18019 drm_dbg_kms(&i915->drm, "Initial commit in probe failed.\n");
18020
18021 return 0;
18022 }
18023
18024 /* part #3: call after gem init */
18025 int intel_modeset_init(struct drm_i915_private *i915)
18026 {
18027 int ret;
18028
18029 intel_overlay_setup(i915);
18030
18031 if (!HAS_DISPLAY(i915))
18032 return 0;
18033
18034 ret = intel_fbdev_init(&i915->drm);
18035 if (ret)
18036 return ret;
18037
18038 /* Only enable hotplug handling once the fbdev is fully set up. */
18039 intel_hpd_init(i915);
18040
18041 intel_init_ipc(i915);
18042
18043 intel_psr_set_force_mode_changed(i915->psr.dp);
18044
18045 return 0;
18046 }
18047
18048 void i830_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe)
18049 {
18050 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
18051 /* 640x480@60Hz, ~25175 kHz */
18052 struct dpll clock = {
18053 .m1 = 18,
18054 .m2 = 7,
18055 .p1 = 13,
18056 .p2 = 4,
18057 .n = 2,
18058 };
18059 u32 dpll, fp;
18060 int i;
18061
18062 drm_WARN_ON(&dev_priv->drm,
18063 i9xx_calc_dpll_params(48000, &clock) != 25154);
18064
18065 drm_dbg_kms(&dev_priv->drm,
18066 "enabling pipe %c due to force quirk (vco=%d dot=%d)\n",
18067 pipe_name(pipe), clock.vco, clock.dot);
18068
18069 fp = i9xx_dpll_compute_fp(&clock);
18070 dpll = DPLL_DVO_2X_MODE |
18071 DPLL_VGA_MODE_DIS |
18072 ((clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT) |
18073 PLL_P2_DIVIDE_BY_4 |
18074 PLL_REF_INPUT_DREFCLK |
18075 DPLL_VCO_ENABLE;
18076
18077 intel_de_write(dev_priv, FP0(pipe), fp);
18078 intel_de_write(dev_priv, FP1(pipe), fp);
18079
18080 intel_de_write(dev_priv, HTOTAL(pipe), (640 - 1) | ((800 - 1) << 16));
18081 intel_de_write(dev_priv, HBLANK(pipe), (640 - 1) | ((800 - 1) << 16));
18082 intel_de_write(dev_priv, HSYNC(pipe), (656 - 1) | ((752 - 1) << 16));
18083 intel_de_write(dev_priv, VTOTAL(pipe), (480 - 1) | ((525 - 1) << 16));
18084 intel_de_write(dev_priv, VBLANK(pipe), (480 - 1) | ((525 - 1) << 16));
18085 intel_de_write(dev_priv, VSYNC(pipe), (490 - 1) | ((492 - 1) << 16));
18086 intel_de_write(dev_priv, PIPESRC(pipe), ((640 - 1) << 16) | (480 - 1));
18087
18088 /*
18089 * Apparently we need to have VGA mode enabled prior to changing
18090 * the P1/P2 dividers. Otherwise the DPLL will keep using the old
18091 * dividers, even though the register value does change.
18092 */
18093 intel_de_write(dev_priv, DPLL(pipe), dpll & ~DPLL_VGA_MODE_DIS);
18094 intel_de_write(dev_priv, DPLL(pipe), dpll);
18095
18096 /* Wait for the clocks to stabilize. */
18097 intel_de_posting_read(dev_priv, DPLL(pipe));
18098 udelay(150);
18099
18100 /* The pixel multiplier can only be updated once the
18101 * DPLL is enabled and the clocks are stable.
18102 *
18103 * So write it again.
18104 */
18105 intel_de_write(dev_priv, DPLL(pipe), dpll);
18106
18107 /* We do this three times for luck */
18108 for (i = 0; i < 3 ; i++) {
18109 intel_de_write(dev_priv, DPLL(pipe), dpll);
18110 intel_de_posting_read(dev_priv, DPLL(pipe));
18111 udelay(150); /* wait for warmup */
18112 }
18113
18114 intel_de_write(dev_priv, PIPECONF(pipe),
18115 PIPECONF_ENABLE | PIPECONF_PROGRESSIVE);
18116 intel_de_posting_read(dev_priv, PIPECONF(pipe));
18117
18118 intel_wait_for_pipe_scanline_moving(crtc);
18119 }
18120
18121 void i830_disable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe)
18122 {
18123 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
18124
18125 drm_dbg_kms(&dev_priv->drm, "disabling pipe %c due to force quirk\n",
18126 pipe_name(pipe));
18127
18128 drm_WARN_ON(&dev_priv->drm,
18129 intel_de_read(dev_priv, DSPCNTR(PLANE_A)) &
18130 DISPLAY_PLANE_ENABLE);
18131 drm_WARN_ON(&dev_priv->drm,
18132 intel_de_read(dev_priv, DSPCNTR(PLANE_B)) &
18133 DISPLAY_PLANE_ENABLE);
18134 drm_WARN_ON(&dev_priv->drm,
18135 intel_de_read(dev_priv, DSPCNTR(PLANE_C)) &
18136 DISPLAY_PLANE_ENABLE);
18137 drm_WARN_ON(&dev_priv->drm,
18138 intel_de_read(dev_priv, CURCNTR(PIPE_A)) & MCURSOR_MODE);
18139 drm_WARN_ON(&dev_priv->drm,
18140 intel_de_read(dev_priv, CURCNTR(PIPE_B)) & MCURSOR_MODE);
18141
18142 intel_de_write(dev_priv, PIPECONF(pipe), 0);
18143 intel_de_posting_read(dev_priv, PIPECONF(pipe));
18144
18145 intel_wait_for_pipe_scanline_stopped(crtc);
18146
18147 intel_de_write(dev_priv, DPLL(pipe), DPLL_VGA_MODE_DIS);
18148 intel_de_posting_read(dev_priv, DPLL(pipe));
18149 }
18150
18151 static void
18152 intel_sanitize_plane_mapping(struct drm_i915_private *dev_priv)
18153 {
18154 struct intel_crtc *crtc;
18155
18156 if (INTEL_GEN(dev_priv) >= 4)
18157 return;
18158
18159 for_each_intel_crtc(&dev_priv->drm, crtc) {
18160 struct intel_plane *plane =
18161 to_intel_plane(crtc->base.primary);
18162 struct intel_crtc *plane_crtc;
18163 enum pipe pipe;
18164
18165 if (!plane->get_hw_state(plane, &pipe))
18166 continue;
18167
18168 if (pipe == crtc->pipe)
18169 continue;
18170
18171 drm_dbg_kms(&dev_priv->drm,
18172 "[PLANE:%d:%s] attached to the wrong pipe, disabling plane\n",
18173 plane->base.base.id, plane->base.name);
18174
18175 plane_crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
18176 intel_plane_disable_noatomic(plane_crtc, plane);
18177 }
18178 }
18179
18180 static bool intel_crtc_has_encoders(struct intel_crtc *crtc)
18181 {
18182 struct drm_device *dev = crtc->base.dev;
18183 struct intel_encoder *encoder;
18184
18185 for_each_encoder_on_crtc(dev, &crtc->base, encoder)
18186 return true;
18187
18188 return false;
18189 }
18190
18191 static struct intel_connector *intel_encoder_find_connector(struct intel_encoder *encoder)
18192 {
18193 struct drm_device *dev = encoder->base.dev;
18194 struct intel_connector *connector;
18195
18196 for_each_connector_on_encoder(dev, &encoder->base, connector)
18197 return connector;
18198
18199 return NULL;
18200 }
18201
18202 static bool has_pch_trancoder(struct drm_i915_private *dev_priv,
18203 enum pipe pch_transcoder)
18204 {
18205 return HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv) ||
18206 (HAS_PCH_LPT_H(dev_priv) && pch_transcoder == PIPE_A);
18207 }
18208
18209 static void intel_sanitize_frame_start_delay(const struct intel_crtc_state *crtc_state)
18210 {
18211 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
18212 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
18213 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
18214
18215 if (INTEL_GEN(dev_priv) >= 9 ||
18216 IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) {
18217 i915_reg_t reg = CHICKEN_TRANS(cpu_transcoder);
18218 u32 val;
18219
18220 if (transcoder_is_dsi(cpu_transcoder))
18221 return;
18222
18223 val = intel_de_read(dev_priv, reg);
18224 val &= ~HSW_FRAME_START_DELAY_MASK;
18225 val |= HSW_FRAME_START_DELAY(0);
18226 intel_de_write(dev_priv, reg, val);
18227 } else {
18228 i915_reg_t reg = PIPECONF(cpu_transcoder);
18229 u32 val;
18230
18231 val = intel_de_read(dev_priv, reg);
18232 val &= ~PIPECONF_FRAME_START_DELAY_MASK;
18233 val |= PIPECONF_FRAME_START_DELAY(0);
18234 intel_de_write(dev_priv, reg, val);
18235 }
18236
18237 if (!crtc_state->has_pch_encoder)
18238 return;
18239
18240 if (HAS_PCH_IBX(dev_priv)) {
18241 i915_reg_t reg = PCH_TRANSCONF(crtc->pipe);
18242 u32 val;
18243
18244 val = intel_de_read(dev_priv, reg);
18245 val &= ~TRANS_FRAME_START_DELAY_MASK;
18246 val |= TRANS_FRAME_START_DELAY(0);
18247 intel_de_write(dev_priv, reg, val);
18248 } else {
18249 enum pipe pch_transcoder = intel_crtc_pch_transcoder(crtc);
18250 i915_reg_t reg = TRANS_CHICKEN2(pch_transcoder);
18251 u32 val;
18252
18253 val = intel_de_read(dev_priv, reg);
18254 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
18255 val |= TRANS_CHICKEN2_FRAME_START_DELAY(0);
18256 intel_de_write(dev_priv, reg, val);
18257 }
18258 }
18259
18260 static void intel_sanitize_crtc(struct intel_crtc *crtc,
18261 struct drm_modeset_acquire_ctx *ctx)
18262 {
18263 struct drm_device *dev = crtc->base.dev;
18264 struct drm_i915_private *dev_priv = to_i915(dev);
18265 struct intel_crtc_state *crtc_state = to_intel_crtc_state(crtc->base.state);
18266
18267 if (crtc_state->hw.active) {
18268 struct intel_plane *plane;
18269
18270 /* Clear any frame start delays used for debugging left by the BIOS */
18271 intel_sanitize_frame_start_delay(crtc_state);
18272
18273 /* Disable everything but the primary plane */
18274 for_each_intel_plane_on_crtc(dev, crtc, plane) {
18275 const struct intel_plane_state *plane_state =
18276 to_intel_plane_state(plane->base.state);
18277
18278 if (plane_state->uapi.visible &&
18279 plane->base.type != DRM_PLANE_TYPE_PRIMARY)
18280 intel_plane_disable_noatomic(crtc, plane);
18281 }
18282
18283 /*
18284 * Disable any background color set by the BIOS, but enable the
18285 * gamma and CSC to match how we program our planes.
18286 */
18287 if (INTEL_GEN(dev_priv) >= 9)
18288 intel_de_write(dev_priv, SKL_BOTTOM_COLOR(crtc->pipe),
18289 SKL_BOTTOM_COLOR_GAMMA_ENABLE | SKL_BOTTOM_COLOR_CSC_ENABLE);
18290 }
18291
18292 /* Adjust the state of the output pipe according to whether we
18293 * have active connectors/encoders. */
18294 if (crtc_state->hw.active && !intel_crtc_has_encoders(crtc))
18295 intel_crtc_disable_noatomic(crtc, ctx);
18296
18297 if (crtc_state->hw.active || HAS_GMCH(dev_priv)) {
18298 /*
18299 * We start out with underrun reporting disabled to avoid races.
18300 * For correct bookkeeping mark this on active crtcs.
18301 *
18302 * Also on gmch platforms we dont have any hardware bits to
18303 * disable the underrun reporting. Which means we need to start
18304 * out with underrun reporting disabled also on inactive pipes,
18305 * since otherwise we'll complain about the garbage we read when
18306 * e.g. coming up after runtime pm.
18307 *
18308 * No protection against concurrent access is required - at
18309 * worst a fifo underrun happens which also sets this to false.
18310 */
18311 crtc->cpu_fifo_underrun_disabled = true;
18312 /*
18313 * We track the PCH trancoder underrun reporting state
18314 * within the crtc. With crtc for pipe A housing the underrun
18315 * reporting state for PCH transcoder A, crtc for pipe B housing
18316 * it for PCH transcoder B, etc. LPT-H has only PCH transcoder A,
18317 * and marking underrun reporting as disabled for the non-existing
18318 * PCH transcoders B and C would prevent enabling the south
18319 * error interrupt (see cpt_can_enable_serr_int()).
18320 */
18321 if (has_pch_trancoder(dev_priv, crtc->pipe))
18322 crtc->pch_fifo_underrun_disabled = true;
18323 }
18324 }
18325
18326 static bool has_bogus_dpll_config(const struct intel_crtc_state *crtc_state)
18327 {
18328 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
18329
18330 /*
18331 * Some SNB BIOSen (eg. ASUS K53SV) are known to misprogram
18332 * the hardware when a high res displays plugged in. DPLL P
18333 * divider is zero, and the pipe timings are bonkers. We'll
18334 * try to disable everything in that case.
18335 *
18336 * FIXME would be nice to be able to sanitize this state
18337 * without several WARNs, but for now let's take the easy
18338 * road.
18339 */
18340 return IS_GEN(dev_priv, 6) &&
18341 crtc_state->hw.active &&
18342 crtc_state->shared_dpll &&
18343 crtc_state->port_clock == 0;
18344 }
18345
18346 static void intel_sanitize_encoder(struct intel_encoder *encoder)
18347 {
18348 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
18349 struct intel_connector *connector;
18350 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
18351 struct intel_crtc_state *crtc_state = crtc ?
18352 to_intel_crtc_state(crtc->base.state) : NULL;
18353
18354 /* We need to check both for a crtc link (meaning that the
18355 * encoder is active and trying to read from a pipe) and the
18356 * pipe itself being active. */
18357 bool has_active_crtc = crtc_state &&
18358 crtc_state->hw.active;
18359
18360 if (crtc_state && has_bogus_dpll_config(crtc_state)) {
18361 drm_dbg_kms(&dev_priv->drm,
18362 "BIOS has misprogrammed the hardware. Disabling pipe %c\n",
18363 pipe_name(crtc->pipe));
18364 has_active_crtc = false;
18365 }
18366
18367 connector = intel_encoder_find_connector(encoder);
18368 if (connector && !has_active_crtc) {
18369 drm_dbg_kms(&dev_priv->drm,
18370 "[ENCODER:%d:%s] has active connectors but no active pipe!\n",
18371 encoder->base.base.id,
18372 encoder->base.name);
18373
18374 /* Connector is active, but has no active pipe. This is
18375 * fallout from our resume register restoring. Disable
18376 * the encoder manually again. */
18377 if (crtc_state) {
18378 struct drm_encoder *best_encoder;
18379
18380 drm_dbg_kms(&dev_priv->drm,
18381 "[ENCODER:%d:%s] manually disabled\n",
18382 encoder->base.base.id,
18383 encoder->base.name);
18384
18385 /* avoid oopsing in case the hooks consult best_encoder */
18386 best_encoder = connector->base.state->best_encoder;
18387 connector->base.state->best_encoder = &encoder->base;
18388
18389 /* FIXME NULL atomic state passed! */
18390 if (encoder->disable)
18391 encoder->disable(NULL, encoder, crtc_state,
18392 connector->base.state);
18393 if (encoder->post_disable)
18394 encoder->post_disable(NULL, encoder, crtc_state,
18395 connector->base.state);
18396
18397 connector->base.state->best_encoder = best_encoder;
18398 }
18399 encoder->base.crtc = NULL;
18400
18401 /* Inconsistent output/port/pipe state happens presumably due to
18402 * a bug in one of the get_hw_state functions. Or someplace else
18403 * in our code, like the register restore mess on resume. Clamp
18404 * things to off as a safer default. */
18405
18406 connector->base.dpms = DRM_MODE_DPMS_OFF;
18407 connector->base.encoder = NULL;
18408 }
18409
18410 /* notify opregion of the sanitized encoder state */
18411 intel_opregion_notify_encoder(encoder, connector && has_active_crtc);
18412
18413 if (INTEL_GEN(dev_priv) >= 11)
18414 icl_sanitize_encoder_pll_mapping(encoder);
18415 }
18416
18417 /* FIXME read out full plane state for all planes */
18418 static void readout_plane_state(struct drm_i915_private *dev_priv)
18419 {
18420 struct intel_plane *plane;
18421 struct intel_crtc *crtc;
18422
18423 for_each_intel_plane(&dev_priv->drm, plane) {
18424 struct intel_plane_state *plane_state =
18425 to_intel_plane_state(plane->base.state);
18426 struct intel_crtc_state *crtc_state;
18427 enum pipe pipe = PIPE_A;
18428 bool visible;
18429
18430 visible = plane->get_hw_state(plane, &pipe);
18431
18432 crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
18433 crtc_state = to_intel_crtc_state(crtc->base.state);
18434
18435 intel_set_plane_visible(crtc_state, plane_state, visible);
18436
18437 drm_dbg_kms(&dev_priv->drm,
18438 "[PLANE:%d:%s] hw state readout: %s, pipe %c\n",
18439 plane->base.base.id, plane->base.name,
18440 enableddisabled(visible), pipe_name(pipe));
18441 }
18442
18443 for_each_intel_crtc(&dev_priv->drm, crtc) {
18444 struct intel_crtc_state *crtc_state =
18445 to_intel_crtc_state(crtc->base.state);
18446
18447 fixup_active_planes(crtc_state);
18448 }
18449 }
18450
18451 static void intel_modeset_readout_hw_state(struct drm_device *dev)
18452 {
18453 struct drm_i915_private *dev_priv = to_i915(dev);
18454 struct intel_cdclk_state *cdclk_state =
18455 to_intel_cdclk_state(dev_priv->cdclk.obj.state);
18456 struct intel_dbuf_state *dbuf_state =
18457 to_intel_dbuf_state(dev_priv->dbuf.obj.state);
18458 enum pipe pipe;
18459 struct intel_crtc *crtc;
18460 struct intel_encoder *encoder;
18461 struct intel_connector *connector;
18462 struct drm_connector_list_iter conn_iter;
18463 u8 active_pipes = 0;
18464
18465 for_each_intel_crtc(dev, crtc) {
18466 struct intel_crtc_state *crtc_state =
18467 to_intel_crtc_state(crtc->base.state);
18468
18469 __drm_atomic_helper_crtc_destroy_state(&crtc_state->uapi);
18470 intel_crtc_free_hw_state(crtc_state);
18471 intel_crtc_state_reset(crtc_state, crtc);
18472
18473 crtc_state->hw.active = crtc_state->hw.enable =
18474 dev_priv->display.get_pipe_config(crtc, crtc_state);
18475
18476 crtc->base.enabled = crtc_state->hw.enable;
18477 crtc->active = crtc_state->hw.active;
18478
18479 if (crtc_state->hw.active)
18480 active_pipes |= BIT(crtc->pipe);
18481
18482 drm_dbg_kms(&dev_priv->drm,
18483 "[CRTC:%d:%s] hw state readout: %s\n",
18484 crtc->base.base.id, crtc->base.name,
18485 enableddisabled(crtc_state->hw.active));
18486 }
18487
18488 dev_priv->active_pipes = cdclk_state->active_pipes =
18489 dbuf_state->active_pipes = active_pipes;
18490
18491 readout_plane_state(dev_priv);
18492
18493 intel_dpll_readout_hw_state(dev_priv);
18494
18495 for_each_intel_encoder(dev, encoder) {
18496 pipe = 0;
18497
18498 if (encoder->get_hw_state(encoder, &pipe)) {
18499 struct intel_crtc_state *crtc_state;
18500
18501 crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
18502 crtc_state = to_intel_crtc_state(crtc->base.state);
18503
18504 encoder->base.crtc = &crtc->base;
18505 encoder->get_config(encoder, crtc_state);
18506 } else {
18507 encoder->base.crtc = NULL;
18508 }
18509
18510 drm_dbg_kms(&dev_priv->drm,
18511 "[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
18512 encoder->base.base.id, encoder->base.name,
18513 enableddisabled(encoder->base.crtc),
18514 pipe_name(pipe));
18515 }
18516
18517 drm_connector_list_iter_begin(dev, &conn_iter);
18518 for_each_intel_connector_iter(connector, &conn_iter) {
18519 if (connector->get_hw_state(connector)) {
18520 struct intel_crtc_state *crtc_state;
18521 struct intel_crtc *crtc;
18522
18523 connector->base.dpms = DRM_MODE_DPMS_ON;
18524
18525 encoder = intel_attached_encoder(connector);
18526 connector->base.encoder = &encoder->base;
18527
18528 crtc = to_intel_crtc(encoder->base.crtc);
18529 crtc_state = crtc ? to_intel_crtc_state(crtc->base.state) : NULL;
18530
18531 if (crtc_state && crtc_state->hw.active) {
18532 /*
18533 * This has to be done during hardware readout
18534 * because anything calling .crtc_disable may
18535 * rely on the connector_mask being accurate.
18536 */
18537 crtc_state->uapi.connector_mask |=
18538 drm_connector_mask(&connector->base);
18539 crtc_state->uapi.encoder_mask |=
18540 drm_encoder_mask(&encoder->base);
18541 }
18542 } else {
18543 connector->base.dpms = DRM_MODE_DPMS_OFF;
18544 connector->base.encoder = NULL;
18545 }
18546 drm_dbg_kms(&dev_priv->drm,
18547 "[CONNECTOR:%d:%s] hw state readout: %s\n",
18548 connector->base.base.id, connector->base.name,
18549 enableddisabled(connector->base.encoder));
18550 }
18551 drm_connector_list_iter_end(&conn_iter);
18552
18553 for_each_intel_crtc(dev, crtc) {
18554 struct intel_bw_state *bw_state =
18555 to_intel_bw_state(dev_priv->bw_obj.state);
18556 struct intel_crtc_state *crtc_state =
18557 to_intel_crtc_state(crtc->base.state);
18558 struct intel_plane *plane;
18559 int min_cdclk = 0;
18560
18561 if (crtc_state->hw.active) {
18562 struct drm_display_mode *mode = &crtc_state->hw.mode;
18563
18564 intel_mode_from_pipe_config(&crtc_state->hw.adjusted_mode,
18565 crtc_state);
18566
18567 *mode = crtc_state->hw.adjusted_mode;
18568 mode->hdisplay = crtc_state->pipe_src_w;
18569 mode->vdisplay = crtc_state->pipe_src_h;
18570
18571 /*
18572 * The initial mode needs to be set in order to keep
18573 * the atomic core happy. It wants a valid mode if the
18574 * crtc's enabled, so we do the above call.
18575 *
18576 * But we don't set all the derived state fully, hence
18577 * set a flag to indicate that a full recalculation is
18578 * needed on the next commit.
18579 */
18580 crtc_state->inherited = true;
18581
18582 intel_crtc_compute_pixel_rate(crtc_state);
18583
18584 intel_crtc_update_active_timings(crtc_state);
18585
18586 intel_crtc_copy_hw_to_uapi_state(crtc_state);
18587 }
18588
18589 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
18590 const struct intel_plane_state *plane_state =
18591 to_intel_plane_state(plane->base.state);
18592
18593 /*
18594 * FIXME don't have the fb yet, so can't
18595 * use intel_plane_data_rate() :(
18596 */
18597 if (plane_state->uapi.visible)
18598 crtc_state->data_rate[plane->id] =
18599 4 * crtc_state->pixel_rate;
18600 /*
18601 * FIXME don't have the fb yet, so can't
18602 * use plane->min_cdclk() :(
18603 */
18604 if (plane_state->uapi.visible && plane->min_cdclk) {
18605 if (crtc_state->double_wide ||
18606 INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
18607 crtc_state->min_cdclk[plane->id] =
18608 DIV_ROUND_UP(crtc_state->pixel_rate, 2);
18609 else
18610 crtc_state->min_cdclk[plane->id] =
18611 crtc_state->pixel_rate;
18612 }
18613 drm_dbg_kms(&dev_priv->drm,
18614 "[PLANE:%d:%s] min_cdclk %d kHz\n",
18615 plane->base.base.id, plane->base.name,
18616 crtc_state->min_cdclk[plane->id]);
18617 }
18618
18619 if (crtc_state->hw.active) {
18620 min_cdclk = intel_crtc_compute_min_cdclk(crtc_state);
18621 if (drm_WARN_ON(dev, min_cdclk < 0))
18622 min_cdclk = 0;
18623 }
18624
18625 cdclk_state->min_cdclk[crtc->pipe] = min_cdclk;
18626 cdclk_state->min_voltage_level[crtc->pipe] =
18627 crtc_state->min_voltage_level;
18628
18629 intel_bw_crtc_update(bw_state, crtc_state);
18630
18631 intel_pipe_config_sanity_check(dev_priv, crtc_state);
18632 }
18633 }
18634
18635 static void
18636 get_encoder_power_domains(struct drm_i915_private *dev_priv)
18637 {
18638 struct intel_encoder *encoder;
18639
18640 for_each_intel_encoder(&dev_priv->drm, encoder) {
18641 struct intel_crtc_state *crtc_state;
18642
18643 if (!encoder->get_power_domains)
18644 continue;
18645
18646 /*
18647 * MST-primary and inactive encoders don't have a crtc state
18648 * and neither of these require any power domain references.
18649 */
18650 if (!encoder->base.crtc)
18651 continue;
18652
18653 crtc_state = to_intel_crtc_state(encoder->base.crtc->state);
18654 encoder->get_power_domains(encoder, crtc_state);
18655 }
18656 }
18657
18658 static void intel_early_display_was(struct drm_i915_private *dev_priv)
18659 {
18660 /*
18661 * Display WA #1185 WaDisableDARBFClkGating:cnl,glk,icl,ehl,tgl
18662 * Also known as Wa_14010480278.
18663 */
18664 if (IS_GEN_RANGE(dev_priv, 10, 12) || IS_GEMINILAKE(dev_priv))
18665 intel_de_write(dev_priv, GEN9_CLKGATE_DIS_0,
18666 intel_de_read(dev_priv, GEN9_CLKGATE_DIS_0) | DARBF_GATING_DIS);
18667
18668 if (IS_HASWELL(dev_priv)) {
18669 /*
18670 * WaRsPkgCStateDisplayPMReq:hsw
18671 * System hang if this isn't done before disabling all planes!
18672 */
18673 intel_de_write(dev_priv, CHICKEN_PAR1_1,
18674 intel_de_read(dev_priv, CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
18675 }
18676 }
18677
18678 static void ibx_sanitize_pch_hdmi_port(struct drm_i915_private *dev_priv,
18679 enum port port, i915_reg_t hdmi_reg)
18680 {
18681 u32 val = intel_de_read(dev_priv, hdmi_reg);
18682
18683 if (val & SDVO_ENABLE ||
18684 (val & SDVO_PIPE_SEL_MASK) == SDVO_PIPE_SEL(PIPE_A))
18685 return;
18686
18687 drm_dbg_kms(&dev_priv->drm,
18688 "Sanitizing transcoder select for HDMI %c\n",
18689 port_name(port));
18690
18691 val &= ~SDVO_PIPE_SEL_MASK;
18692 val |= SDVO_PIPE_SEL(PIPE_A);
18693
18694 intel_de_write(dev_priv, hdmi_reg, val);
18695 }
18696
18697 static void ibx_sanitize_pch_dp_port(struct drm_i915_private *dev_priv,
18698 enum port port, i915_reg_t dp_reg)
18699 {
18700 u32 val = intel_de_read(dev_priv, dp_reg);
18701
18702 if (val & DP_PORT_EN ||
18703 (val & DP_PIPE_SEL_MASK) == DP_PIPE_SEL(PIPE_A))
18704 return;
18705
18706 drm_dbg_kms(&dev_priv->drm,
18707 "Sanitizing transcoder select for DP %c\n",
18708 port_name(port));
18709
18710 val &= ~DP_PIPE_SEL_MASK;
18711 val |= DP_PIPE_SEL(PIPE_A);
18712
18713 intel_de_write(dev_priv, dp_reg, val);
18714 }
18715
18716 static void ibx_sanitize_pch_ports(struct drm_i915_private *dev_priv)
18717 {
18718 /*
18719 * The BIOS may select transcoder B on some of the PCH
18720 * ports even it doesn't enable the port. This would trip
18721 * assert_pch_dp_disabled() and assert_pch_hdmi_disabled().
18722 * Sanitize the transcoder select bits to prevent that. We
18723 * assume that the BIOS never actually enabled the port,
18724 * because if it did we'd actually have to toggle the port
18725 * on and back off to make the transcoder A select stick
18726 * (see. intel_dp_link_down(), intel_disable_hdmi(),
18727 * intel_disable_sdvo()).
18728 */
18729 ibx_sanitize_pch_dp_port(dev_priv, PORT_B, PCH_DP_B);
18730 ibx_sanitize_pch_dp_port(dev_priv, PORT_C, PCH_DP_C);
18731 ibx_sanitize_pch_dp_port(dev_priv, PORT_D, PCH_DP_D);
18732
18733 /* PCH SDVOB multiplex with HDMIB */
18734 ibx_sanitize_pch_hdmi_port(dev_priv, PORT_B, PCH_HDMIB);
18735 ibx_sanitize_pch_hdmi_port(dev_priv, PORT_C, PCH_HDMIC);
18736 ibx_sanitize_pch_hdmi_port(dev_priv, PORT_D, PCH_HDMID);
18737 }
18738
18739 /* Scan out the current hw modeset state,
18740 * and sanitizes it to the current state
18741 */
18742 static void
18743 intel_modeset_setup_hw_state(struct drm_device *dev,
18744 struct drm_modeset_acquire_ctx *ctx)
18745 {
18746 struct drm_i915_private *dev_priv = to_i915(dev);
18747 struct intel_encoder *encoder;
18748 struct intel_crtc *crtc;
18749 intel_wakeref_t wakeref;
18750
18751 wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
18752
18753 intel_early_display_was(dev_priv);
18754 intel_modeset_readout_hw_state(dev);
18755
18756 /* HW state is read out, now we need to sanitize this mess. */
18757
18758 /* Sanitize the TypeC port mode upfront, encoders depend on this */
18759 for_each_intel_encoder(dev, encoder) {
18760 enum phy phy = intel_port_to_phy(dev_priv, encoder->port);
18761
18762 /* We need to sanitize only the MST primary port. */
18763 if (encoder->type != INTEL_OUTPUT_DP_MST &&
18764 intel_phy_is_tc(dev_priv, phy))
18765 intel_tc_port_sanitize(enc_to_dig_port(encoder));
18766 }
18767
18768 get_encoder_power_domains(dev_priv);
18769
18770 if (HAS_PCH_IBX(dev_priv))
18771 ibx_sanitize_pch_ports(dev_priv);
18772
18773 /*
18774 * intel_sanitize_plane_mapping() may need to do vblank
18775 * waits, so we need vblank interrupts restored beforehand.
18776 */
18777 for_each_intel_crtc(&dev_priv->drm, crtc) {
18778 struct intel_crtc_state *crtc_state =
18779 to_intel_crtc_state(crtc->base.state);
18780
18781 drm_crtc_vblank_reset(&crtc->base);
18782
18783 if (crtc_state->hw.active)
18784 intel_crtc_vblank_on(crtc_state);
18785 }
18786
18787 intel_sanitize_plane_mapping(dev_priv);
18788
18789 for_each_intel_encoder(dev, encoder)
18790 intel_sanitize_encoder(encoder);
18791
18792 for_each_intel_crtc(&dev_priv->drm, crtc) {
18793 struct intel_crtc_state *crtc_state =
18794 to_intel_crtc_state(crtc->base.state);
18795
18796 intel_sanitize_crtc(crtc, ctx);
18797 intel_dump_pipe_config(crtc_state, NULL, "[setup_hw_state]");
18798 }
18799
18800 intel_modeset_update_connector_atomic_state(dev);
18801
18802 intel_dpll_sanitize_state(dev_priv);
18803
18804 if (IS_G4X(dev_priv)) {
18805 g4x_wm_get_hw_state(dev_priv);
18806 g4x_wm_sanitize(dev_priv);
18807 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
18808 vlv_wm_get_hw_state(dev_priv);
18809 vlv_wm_sanitize(dev_priv);
18810 } else if (INTEL_GEN(dev_priv) >= 9) {
18811 skl_wm_get_hw_state(dev_priv);
18812 } else if (HAS_PCH_SPLIT(dev_priv)) {
18813 ilk_wm_get_hw_state(dev_priv);
18814 }
18815
18816 for_each_intel_crtc(dev, crtc) {
18817 struct intel_crtc_state *crtc_state =
18818 to_intel_crtc_state(crtc->base.state);
18819 u64 put_domains;
18820
18821 put_domains = modeset_get_crtc_power_domains(crtc_state);
18822 if (drm_WARN_ON(dev, put_domains))
18823 modeset_put_power_domains(dev_priv, put_domains);
18824 }
18825
18826 intel_display_power_put(dev_priv, POWER_DOMAIN_INIT, wakeref);
18827 }
18828
18829 void intel_display_resume(struct drm_device *dev)
18830 {
18831 struct drm_i915_private *dev_priv = to_i915(dev);
18832 struct drm_atomic_state *state = dev_priv->modeset_restore_state;
18833 struct drm_modeset_acquire_ctx ctx;
18834 int ret;
18835
18836 dev_priv->modeset_restore_state = NULL;
18837 if (state)
18838 state->acquire_ctx = &ctx;
18839
18840 drm_modeset_acquire_init(&ctx, 0);
18841
18842 while (1) {
18843 ret = drm_modeset_lock_all_ctx(dev, &ctx);
18844 if (ret != -EDEADLK)
18845 break;
18846
18847 drm_modeset_backoff(&ctx);
18848 }
18849
18850 if (!ret)
18851 ret = __intel_display_resume(dev, state, &ctx);
18852
18853 intel_enable_ipc(dev_priv);
18854 drm_modeset_drop_locks(&ctx);
18855 drm_modeset_acquire_fini(&ctx);
18856
18857 if (ret)
18858 drm_err(&dev_priv->drm,
18859 "Restoring old state failed with %i\n", ret);
18860 if (state)
18861 drm_atomic_state_put(state);
18862 }
18863
18864 static void intel_hpd_poll_fini(struct drm_i915_private *i915)
18865 {
18866 struct intel_connector *connector;
18867 struct drm_connector_list_iter conn_iter;
18868
18869 /* Kill all the work that may have been queued by hpd. */
18870 drm_connector_list_iter_begin(&i915->drm, &conn_iter);
18871 for_each_intel_connector_iter(connector, &conn_iter) {
18872 if (connector->modeset_retry_work.func)
18873 cancel_work_sync(&connector->modeset_retry_work);
18874 if (connector->hdcp.shim) {
18875 cancel_delayed_work_sync(&connector->hdcp.check_work);
18876 cancel_work_sync(&connector->hdcp.prop_work);
18877 }
18878 }
18879 drm_connector_list_iter_end(&conn_iter);
18880 }
18881
18882 /* part #1: call before irq uninstall */
18883 void intel_modeset_driver_remove(struct drm_i915_private *i915)
18884 {
18885 flush_workqueue(i915->flip_wq);
18886 flush_workqueue(i915->modeset_wq);
18887
18888 flush_work(&i915->atomic_helper.free_work);
18889 drm_WARN_ON(&i915->drm, !llist_empty(&i915->atomic_helper.free_list));
18890 }
18891
18892 /* part #2: call after irq uninstall */
18893 void intel_modeset_driver_remove_noirq(struct drm_i915_private *i915)
18894 {
18895 /*
18896 * Due to the hpd irq storm handling the hotplug work can re-arm the
18897 * poll handlers. Hence disable polling after hpd handling is shut down.
18898 */
18899 intel_hpd_poll_fini(i915);
18900
18901 /*
18902 * MST topology needs to be suspended so we don't have any calls to
18903 * fbdev after it's finalized. MST will be destroyed later as part of
18904 * drm_mode_config_cleanup()
18905 */
18906 intel_dp_mst_suspend(i915);
18907
18908 /* poll work can call into fbdev, hence clean that up afterwards */
18909 intel_fbdev_fini(i915);
18910
18911 intel_unregister_dsm_handler();
18912
18913 intel_fbc_global_disable(i915);
18914
18915 /* flush any delayed tasks or pending work */
18916 flush_scheduled_work();
18917
18918 intel_hdcp_component_fini(i915);
18919
18920 intel_mode_config_cleanup(i915);
18921
18922 intel_overlay_cleanup(i915);
18923
18924 intel_gmbus_teardown(i915);
18925
18926 destroy_workqueue(i915->flip_wq);
18927 destroy_workqueue(i915->modeset_wq);
18928
18929 intel_fbc_cleanup_cfb(i915);
18930 }
18931
18932 /* part #3: call after gem init */
18933 void intel_modeset_driver_remove_nogem(struct drm_i915_private *i915)
18934 {
18935 intel_csr_ucode_fini(i915);
18936
18937 intel_power_domains_driver_remove(i915);
18938
18939 intel_vga_unregister(i915);
18940
18941 intel_bios_driver_remove(i915);
18942 }
18943
18944 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
18945
18946 struct intel_display_error_state {
18947
18948 u32 power_well_driver;
18949
18950 struct intel_cursor_error_state {
18951 u32 control;
18952 u32 position;
18953 u32 base;
18954 u32 size;
18955 } cursor[I915_MAX_PIPES];
18956
18957 struct intel_pipe_error_state {
18958 bool power_domain_on;
18959 u32 source;
18960 u32 stat;
18961 } pipe[I915_MAX_PIPES];
18962
18963 struct intel_plane_error_state {
18964 u32 control;
18965 u32 stride;
18966 u32 size;
18967 u32 pos;
18968 u32 addr;
18969 u32 surface;
18970 u32 tile_offset;
18971 } plane[I915_MAX_PIPES];
18972
18973 struct intel_transcoder_error_state {
18974 bool available;
18975 bool power_domain_on;
18976 enum transcoder cpu_transcoder;
18977
18978 u32 conf;
18979
18980 u32 htotal;
18981 u32 hblank;
18982 u32 hsync;
18983 u32 vtotal;
18984 u32 vblank;
18985 u32 vsync;
18986 } transcoder[5];
18987 };
18988
18989 struct intel_display_error_state *
18990 intel_display_capture_error_state(struct drm_i915_private *dev_priv)
18991 {
18992 struct intel_display_error_state *error;
18993 int transcoders[] = {
18994 TRANSCODER_A,
18995 TRANSCODER_B,
18996 TRANSCODER_C,
18997 TRANSCODER_D,
18998 TRANSCODER_EDP,
18999 };
19000 int i;
19001
19002 BUILD_BUG_ON(ARRAY_SIZE(transcoders) != ARRAY_SIZE(error->transcoder));
19003
19004 if (!HAS_DISPLAY(dev_priv))
19005 return NULL;
19006
19007 error = kzalloc(sizeof(*error), GFP_ATOMIC);
19008 if (error == NULL)
19009 return NULL;
19010
19011 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
19012 error->power_well_driver = intel_de_read(dev_priv,
19013 HSW_PWR_WELL_CTL2);
19014
19015 for_each_pipe(dev_priv, i) {
19016 error->pipe[i].power_domain_on =
19017 __intel_display_power_is_enabled(dev_priv,
19018 POWER_DOMAIN_PIPE(i));
19019 if (!error->pipe[i].power_domain_on)
19020 continue;
19021
19022 error->cursor[i].control = intel_de_read(dev_priv, CURCNTR(i));
19023 error->cursor[i].position = intel_de_read(dev_priv, CURPOS(i));
19024 error->cursor[i].base = intel_de_read(dev_priv, CURBASE(i));
19025
19026 error->plane[i].control = intel_de_read(dev_priv, DSPCNTR(i));
19027 error->plane[i].stride = intel_de_read(dev_priv, DSPSTRIDE(i));
19028 if (INTEL_GEN(dev_priv) <= 3) {
19029 error->plane[i].size = intel_de_read(dev_priv,
19030 DSPSIZE(i));
19031 error->plane[i].pos = intel_de_read(dev_priv,
19032 DSPPOS(i));
19033 }
19034 if (INTEL_GEN(dev_priv) <= 7 && !IS_HASWELL(dev_priv))
19035 error->plane[i].addr = intel_de_read(dev_priv,
19036 DSPADDR(i));
19037 if (INTEL_GEN(dev_priv) >= 4) {
19038 error->plane[i].surface = intel_de_read(dev_priv,
19039 DSPSURF(i));
19040 error->plane[i].tile_offset = intel_de_read(dev_priv,
19041 DSPTILEOFF(i));
19042 }
19043
19044 error->pipe[i].source = intel_de_read(dev_priv, PIPESRC(i));
19045
19046 if (HAS_GMCH(dev_priv))
19047 error->pipe[i].stat = intel_de_read(dev_priv,
19048 PIPESTAT(i));
19049 }
19050
19051 for (i = 0; i < ARRAY_SIZE(error->transcoder); i++) {
19052 enum transcoder cpu_transcoder = transcoders[i];
19053
19054 if (!HAS_TRANSCODER(dev_priv, cpu_transcoder))
19055 continue;
19056
19057 error->transcoder[i].available = true;
19058 error->transcoder[i].power_domain_on =
19059 __intel_display_power_is_enabled(dev_priv,
19060 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
19061 if (!error->transcoder[i].power_domain_on)
19062 continue;
19063
19064 error->transcoder[i].cpu_transcoder = cpu_transcoder;
19065
19066 error->transcoder[i].conf = intel_de_read(dev_priv,
19067 PIPECONF(cpu_transcoder));
19068 error->transcoder[i].htotal = intel_de_read(dev_priv,
19069 HTOTAL(cpu_transcoder));
19070 error->transcoder[i].hblank = intel_de_read(dev_priv,
19071 HBLANK(cpu_transcoder));
19072 error->transcoder[i].hsync = intel_de_read(dev_priv,
19073 HSYNC(cpu_transcoder));
19074 error->transcoder[i].vtotal = intel_de_read(dev_priv,
19075 VTOTAL(cpu_transcoder));
19076 error->transcoder[i].vblank = intel_de_read(dev_priv,
19077 VBLANK(cpu_transcoder));
19078 error->transcoder[i].vsync = intel_de_read(dev_priv,
19079 VSYNC(cpu_transcoder));
19080 }
19081
19082 return error;
19083 }
19084
19085 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
19086
19087 void
19088 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
19089 struct intel_display_error_state *error)
19090 {
19091 struct drm_i915_private *dev_priv = m->i915;
19092 int i;
19093
19094 if (!error)
19095 return;
19096
19097 err_printf(m, "Num Pipes: %d\n", INTEL_NUM_PIPES(dev_priv));
19098 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
19099 err_printf(m, "PWR_WELL_CTL2: %08x\n",
19100 error->power_well_driver);
19101 for_each_pipe(dev_priv, i) {
19102 err_printf(m, "Pipe [%d]:\n", i);
19103 err_printf(m, " Power: %s\n",
19104 onoff(error->pipe[i].power_domain_on));
19105 err_printf(m, " SRC: %08x\n", error->pipe[i].source);
19106 err_printf(m, " STAT: %08x\n", error->pipe[i].stat);
19107
19108 err_printf(m, "Plane [%d]:\n", i);
19109 err_printf(m, " CNTR: %08x\n", error->plane[i].control);
19110 err_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
19111 if (INTEL_GEN(dev_priv) <= 3) {
19112 err_printf(m, " SIZE: %08x\n", error->plane[i].size);
19113 err_printf(m, " POS: %08x\n", error->plane[i].pos);
19114 }
19115 if (INTEL_GEN(dev_priv) <= 7 && !IS_HASWELL(dev_priv))
19116 err_printf(m, " ADDR: %08x\n", error->plane[i].addr);
19117 if (INTEL_GEN(dev_priv) >= 4) {
19118 err_printf(m, " SURF: %08x\n", error->plane[i].surface);
19119 err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
19120 }
19121
19122 err_printf(m, "Cursor [%d]:\n", i);
19123 err_printf(m, " CNTR: %08x\n", error->cursor[i].control);
19124 err_printf(m, " POS: %08x\n", error->cursor[i].position);
19125 err_printf(m, " BASE: %08x\n", error->cursor[i].base);
19126 }
19127
19128 for (i = 0; i < ARRAY_SIZE(error->transcoder); i++) {
19129 if (!error->transcoder[i].available)
19130 continue;
19131
19132 err_printf(m, "CPU transcoder: %s\n",
19133 transcoder_name(error->transcoder[i].cpu_transcoder));
19134 err_printf(m, " Power: %s\n",
19135 onoff(error->transcoder[i].power_domain_on));
19136 err_printf(m, " CONF: %08x\n", error->transcoder[i].conf);
19137 err_printf(m, " HTOTAL: %08x\n", error->transcoder[i].htotal);
19138 err_printf(m, " HBLANK: %08x\n", error->transcoder[i].hblank);
19139 err_printf(m, " HSYNC: %08x\n", error->transcoder[i].hsync);
19140 err_printf(m, " VTOTAL: %08x\n", error->transcoder[i].vtotal);
19141 err_printf(m, " VBLANK: %08x\n", error->transcoder[i].vblank);
19142 err_printf(m, " VSYNC: %08x\n", error->transcoder[i].vsync);
19143 }
19144 }
19145
19146 #endif