]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - drivers/gpu/drm/i915/display/intel_psr.c
Merge branch 'fixes-omap3' into fixes
[mirror_ubuntu-hirsute-kernel.git] / drivers / gpu / drm / i915 / display / intel_psr.c
1 /*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 #include <drm/drm_atomic_helper.h>
25
26 #include "display/intel_dp.h"
27
28 #include "i915_drv.h"
29 #include "intel_atomic.h"
30 #include "intel_display_types.h"
31 #include "intel_psr.h"
32 #include "intel_sprite.h"
33 #include "intel_hdmi.h"
34
35 /**
36 * DOC: Panel Self Refresh (PSR/SRD)
37 *
38 * Since Haswell Display controller supports Panel Self-Refresh on display
39 * panels witch have a remote frame buffer (RFB) implemented according to PSR
40 * spec in eDP1.3. PSR feature allows the display to go to lower standby states
41 * when system is idle but display is on as it eliminates display refresh
42 * request to DDR memory completely as long as the frame buffer for that
43 * display is unchanged.
44 *
45 * Panel Self Refresh must be supported by both Hardware (source) and
46 * Panel (sink).
47 *
48 * PSR saves power by caching the framebuffer in the panel RFB, which allows us
49 * to power down the link and memory controller. For DSI panels the same idea
50 * is called "manual mode".
51 *
52 * The implementation uses the hardware-based PSR support which automatically
53 * enters/exits self-refresh mode. The hardware takes care of sending the
54 * required DP aux message and could even retrain the link (that part isn't
55 * enabled yet though). The hardware also keeps track of any frontbuffer
56 * changes to know when to exit self-refresh mode again. Unfortunately that
57 * part doesn't work too well, hence why the i915 PSR support uses the
58 * software frontbuffer tracking to make sure it doesn't miss a screen
59 * update. For this integration intel_psr_invalidate() and intel_psr_flush()
60 * get called by the frontbuffer tracking code. Note that because of locking
61 * issues the self-refresh re-enable code is done from a work queue, which
62 * must be correctly synchronized/cancelled when shutting down the pipe."
63 *
64 * DC3CO (DC3 clock off)
65 *
66 * On top of PSR2, GEN12 adds a intermediate power savings state that turns
67 * clock off automatically during PSR2 idle state.
68 * The smaller overhead of DC3co entry/exit vs. the overhead of PSR2 deep sleep
69 * entry/exit allows the HW to enter a low-power state even when page flipping
70 * periodically (for instance a 30fps video playback scenario).
71 *
72 * Every time a flips occurs PSR2 will get out of deep sleep state(if it was),
73 * so DC3CO is enabled and tgl_dc3co_disable_work is schedule to run after 6
74 * frames, if no other flip occurs and the function above is executed, DC3CO is
75 * disabled and PSR2 is configured to enter deep sleep, resetting again in case
76 * of another flip.
77 * Front buffer modifications do not trigger DC3CO activation on purpose as it
78 * would bring a lot of complexity and most of the moderns systems will only
79 * use page flips.
80 */
81
82 static bool psr_global_enabled(struct drm_i915_private *i915)
83 {
84 switch (i915->psr.debug & I915_PSR_DEBUG_MODE_MASK) {
85 case I915_PSR_DEBUG_DEFAULT:
86 return i915->params.enable_psr;
87 case I915_PSR_DEBUG_DISABLE:
88 return false;
89 default:
90 return true;
91 }
92 }
93
94 static bool intel_psr2_enabled(struct drm_i915_private *dev_priv,
95 const struct intel_crtc_state *crtc_state)
96 {
97 /* Cannot enable DSC and PSR2 simultaneously */
98 drm_WARN_ON(&dev_priv->drm, crtc_state->dsc.compression_enable &&
99 crtc_state->has_psr2);
100
101 switch (dev_priv->psr.debug & I915_PSR_DEBUG_MODE_MASK) {
102 case I915_PSR_DEBUG_DISABLE:
103 case I915_PSR_DEBUG_FORCE_PSR1:
104 return false;
105 default:
106 return crtc_state->has_psr2;
107 }
108 }
109
110 static void psr_irq_control(struct drm_i915_private *dev_priv)
111 {
112 enum transcoder trans_shift;
113 u32 mask, val;
114 i915_reg_t imr_reg;
115
116 /*
117 * gen12+ has registers relative to transcoder and one per transcoder
118 * using the same bit definition: handle it as TRANSCODER_EDP to force
119 * 0 shift in bit definition
120 */
121 if (INTEL_GEN(dev_priv) >= 12) {
122 trans_shift = 0;
123 imr_reg = TRANS_PSR_IMR(dev_priv->psr.transcoder);
124 } else {
125 trans_shift = dev_priv->psr.transcoder;
126 imr_reg = EDP_PSR_IMR;
127 }
128
129 mask = EDP_PSR_ERROR(trans_shift);
130 if (dev_priv->psr.debug & I915_PSR_DEBUG_IRQ)
131 mask |= EDP_PSR_POST_EXIT(trans_shift) |
132 EDP_PSR_PRE_ENTRY(trans_shift);
133
134 /* Warning: it is masking/setting reserved bits too */
135 val = intel_de_read(dev_priv, imr_reg);
136 val &= ~EDP_PSR_TRANS_MASK(trans_shift);
137 val |= ~mask;
138 intel_de_write(dev_priv, imr_reg, val);
139 }
140
141 static void psr_event_print(struct drm_i915_private *i915,
142 u32 val, bool psr2_enabled)
143 {
144 drm_dbg_kms(&i915->drm, "PSR exit events: 0x%x\n", val);
145 if (val & PSR_EVENT_PSR2_WD_TIMER_EXPIRE)
146 drm_dbg_kms(&i915->drm, "\tPSR2 watchdog timer expired\n");
147 if ((val & PSR_EVENT_PSR2_DISABLED) && psr2_enabled)
148 drm_dbg_kms(&i915->drm, "\tPSR2 disabled\n");
149 if (val & PSR_EVENT_SU_DIRTY_FIFO_UNDERRUN)
150 drm_dbg_kms(&i915->drm, "\tSU dirty FIFO underrun\n");
151 if (val & PSR_EVENT_SU_CRC_FIFO_UNDERRUN)
152 drm_dbg_kms(&i915->drm, "\tSU CRC FIFO underrun\n");
153 if (val & PSR_EVENT_GRAPHICS_RESET)
154 drm_dbg_kms(&i915->drm, "\tGraphics reset\n");
155 if (val & PSR_EVENT_PCH_INTERRUPT)
156 drm_dbg_kms(&i915->drm, "\tPCH interrupt\n");
157 if (val & PSR_EVENT_MEMORY_UP)
158 drm_dbg_kms(&i915->drm, "\tMemory up\n");
159 if (val & PSR_EVENT_FRONT_BUFFER_MODIFY)
160 drm_dbg_kms(&i915->drm, "\tFront buffer modification\n");
161 if (val & PSR_EVENT_WD_TIMER_EXPIRE)
162 drm_dbg_kms(&i915->drm, "\tPSR watchdog timer expired\n");
163 if (val & PSR_EVENT_PIPE_REGISTERS_UPDATE)
164 drm_dbg_kms(&i915->drm, "\tPIPE registers updated\n");
165 if (val & PSR_EVENT_REGISTER_UPDATE)
166 drm_dbg_kms(&i915->drm, "\tRegister updated\n");
167 if (val & PSR_EVENT_HDCP_ENABLE)
168 drm_dbg_kms(&i915->drm, "\tHDCP enabled\n");
169 if (val & PSR_EVENT_KVMR_SESSION_ENABLE)
170 drm_dbg_kms(&i915->drm, "\tKVMR session enabled\n");
171 if (val & PSR_EVENT_VBI_ENABLE)
172 drm_dbg_kms(&i915->drm, "\tVBI enabled\n");
173 if (val & PSR_EVENT_LPSP_MODE_EXIT)
174 drm_dbg_kms(&i915->drm, "\tLPSP mode exited\n");
175 if ((val & PSR_EVENT_PSR_DISABLE) && !psr2_enabled)
176 drm_dbg_kms(&i915->drm, "\tPSR disabled\n");
177 }
178
179 void intel_psr_irq_handler(struct drm_i915_private *dev_priv, u32 psr_iir)
180 {
181 enum transcoder cpu_transcoder = dev_priv->psr.transcoder;
182 enum transcoder trans_shift;
183 i915_reg_t imr_reg;
184 ktime_t time_ns = ktime_get();
185
186 if (INTEL_GEN(dev_priv) >= 12) {
187 trans_shift = 0;
188 imr_reg = TRANS_PSR_IMR(dev_priv->psr.transcoder);
189 } else {
190 trans_shift = dev_priv->psr.transcoder;
191 imr_reg = EDP_PSR_IMR;
192 }
193
194 if (psr_iir & EDP_PSR_PRE_ENTRY(trans_shift)) {
195 dev_priv->psr.last_entry_attempt = time_ns;
196 drm_dbg_kms(&dev_priv->drm,
197 "[transcoder %s] PSR entry attempt in 2 vblanks\n",
198 transcoder_name(cpu_transcoder));
199 }
200
201 if (psr_iir & EDP_PSR_POST_EXIT(trans_shift)) {
202 dev_priv->psr.last_exit = time_ns;
203 drm_dbg_kms(&dev_priv->drm,
204 "[transcoder %s] PSR exit completed\n",
205 transcoder_name(cpu_transcoder));
206
207 if (INTEL_GEN(dev_priv) >= 9) {
208 u32 val = intel_de_read(dev_priv,
209 PSR_EVENT(cpu_transcoder));
210 bool psr2_enabled = dev_priv->psr.psr2_enabled;
211
212 intel_de_write(dev_priv, PSR_EVENT(cpu_transcoder),
213 val);
214 psr_event_print(dev_priv, val, psr2_enabled);
215 }
216 }
217
218 if (psr_iir & EDP_PSR_ERROR(trans_shift)) {
219 u32 val;
220
221 drm_warn(&dev_priv->drm, "[transcoder %s] PSR aux error\n",
222 transcoder_name(cpu_transcoder));
223
224 dev_priv->psr.irq_aux_error = true;
225
226 /*
227 * If this interruption is not masked it will keep
228 * interrupting so fast that it prevents the scheduled
229 * work to run.
230 * Also after a PSR error, we don't want to arm PSR
231 * again so we don't care about unmask the interruption
232 * or unset irq_aux_error.
233 */
234 val = intel_de_read(dev_priv, imr_reg);
235 val |= EDP_PSR_ERROR(trans_shift);
236 intel_de_write(dev_priv, imr_reg, val);
237
238 schedule_work(&dev_priv->psr.work);
239 }
240 }
241
242 static bool intel_dp_get_alpm_status(struct intel_dp *intel_dp)
243 {
244 u8 alpm_caps = 0;
245
246 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_RECEIVER_ALPM_CAP,
247 &alpm_caps) != 1)
248 return false;
249 return alpm_caps & DP_ALPM_CAP;
250 }
251
252 static u8 intel_dp_get_sink_sync_latency(struct intel_dp *intel_dp)
253 {
254 struct drm_i915_private *i915 = dp_to_i915(intel_dp);
255 u8 val = 8; /* assume the worst if we can't read the value */
256
257 if (drm_dp_dpcd_readb(&intel_dp->aux,
258 DP_SYNCHRONIZATION_LATENCY_IN_SINK, &val) == 1)
259 val &= DP_MAX_RESYNC_FRAME_COUNT_MASK;
260 else
261 drm_dbg_kms(&i915->drm,
262 "Unable to get sink synchronization latency, assuming 8 frames\n");
263 return val;
264 }
265
266 static u16 intel_dp_get_su_x_granulartiy(struct intel_dp *intel_dp)
267 {
268 struct drm_i915_private *i915 = dp_to_i915(intel_dp);
269 u16 val;
270 ssize_t r;
271
272 /*
273 * Returning the default X granularity if granularity not required or
274 * if DPCD read fails
275 */
276 if (!(intel_dp->psr_dpcd[1] & DP_PSR2_SU_GRANULARITY_REQUIRED))
277 return 4;
278
279 r = drm_dp_dpcd_read(&intel_dp->aux, DP_PSR2_SU_X_GRANULARITY, &val, 2);
280 if (r != 2)
281 drm_dbg_kms(&i915->drm,
282 "Unable to read DP_PSR2_SU_X_GRANULARITY\n");
283
284 /*
285 * Spec says that if the value read is 0 the default granularity should
286 * be used instead.
287 */
288 if (r != 2 || val == 0)
289 val = 4;
290
291 return val;
292 }
293
294 void intel_psr_init_dpcd(struct intel_dp *intel_dp)
295 {
296 struct drm_i915_private *dev_priv =
297 to_i915(dp_to_dig_port(intel_dp)->base.base.dev);
298
299 if (dev_priv->psr.dp) {
300 drm_warn(&dev_priv->drm,
301 "More than one eDP panel found, PSR support should be extended\n");
302 return;
303 }
304
305 drm_dp_dpcd_read(&intel_dp->aux, DP_PSR_SUPPORT, intel_dp->psr_dpcd,
306 sizeof(intel_dp->psr_dpcd));
307
308 if (!intel_dp->psr_dpcd[0])
309 return;
310 drm_dbg_kms(&dev_priv->drm, "eDP panel supports PSR version %x\n",
311 intel_dp->psr_dpcd[0]);
312
313 if (drm_dp_has_quirk(&intel_dp->desc, 0, DP_DPCD_QUIRK_NO_PSR)) {
314 drm_dbg_kms(&dev_priv->drm,
315 "PSR support not currently available for this panel\n");
316 return;
317 }
318
319 if (!(intel_dp->edp_dpcd[1] & DP_EDP_SET_POWER_CAP)) {
320 drm_dbg_kms(&dev_priv->drm,
321 "Panel lacks power state control, PSR cannot be enabled\n");
322 return;
323 }
324
325 dev_priv->psr.sink_support = true;
326 dev_priv->psr.sink_sync_latency =
327 intel_dp_get_sink_sync_latency(intel_dp);
328
329 dev_priv->psr.dp = intel_dp;
330
331 if (INTEL_GEN(dev_priv) >= 9 &&
332 (intel_dp->psr_dpcd[0] == DP_PSR2_WITH_Y_COORD_IS_SUPPORTED)) {
333 bool y_req = intel_dp->psr_dpcd[1] &
334 DP_PSR2_SU_Y_COORDINATE_REQUIRED;
335 bool alpm = intel_dp_get_alpm_status(intel_dp);
336
337 /*
338 * All panels that supports PSR version 03h (PSR2 +
339 * Y-coordinate) can handle Y-coordinates in VSC but we are
340 * only sure that it is going to be used when required by the
341 * panel. This way panel is capable to do selective update
342 * without a aux frame sync.
343 *
344 * To support PSR version 02h and PSR version 03h without
345 * Y-coordinate requirement panels we would need to enable
346 * GTC first.
347 */
348 dev_priv->psr.sink_psr2_support = y_req && alpm;
349 drm_dbg_kms(&dev_priv->drm, "PSR2 %ssupported\n",
350 dev_priv->psr.sink_psr2_support ? "" : "not ");
351
352 if (dev_priv->psr.sink_psr2_support) {
353 dev_priv->psr.colorimetry_support =
354 intel_dp_get_colorimetry_status(intel_dp);
355 dev_priv->psr.su_x_granularity =
356 intel_dp_get_su_x_granulartiy(intel_dp);
357 }
358 }
359 }
360
361 static void hsw_psr_setup_aux(struct intel_dp *intel_dp)
362 {
363 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
364 u32 aux_clock_divider, aux_ctl;
365 int i;
366 static const u8 aux_msg[] = {
367 [0] = DP_AUX_NATIVE_WRITE << 4,
368 [1] = DP_SET_POWER >> 8,
369 [2] = DP_SET_POWER & 0xff,
370 [3] = 1 - 1,
371 [4] = DP_SET_POWER_D0,
372 };
373 u32 psr_aux_mask = EDP_PSR_AUX_CTL_TIME_OUT_MASK |
374 EDP_PSR_AUX_CTL_MESSAGE_SIZE_MASK |
375 EDP_PSR_AUX_CTL_PRECHARGE_2US_MASK |
376 EDP_PSR_AUX_CTL_BIT_CLOCK_2X_MASK;
377
378 BUILD_BUG_ON(sizeof(aux_msg) > 20);
379 for (i = 0; i < sizeof(aux_msg); i += 4)
380 intel_de_write(dev_priv,
381 EDP_PSR_AUX_DATA(dev_priv->psr.transcoder, i >> 2),
382 intel_dp_pack_aux(&aux_msg[i], sizeof(aux_msg) - i));
383
384 aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, 0);
385
386 /* Start with bits set for DDI_AUX_CTL register */
387 aux_ctl = intel_dp->get_aux_send_ctl(intel_dp, sizeof(aux_msg),
388 aux_clock_divider);
389
390 /* Select only valid bits for SRD_AUX_CTL */
391 aux_ctl &= psr_aux_mask;
392 intel_de_write(dev_priv, EDP_PSR_AUX_CTL(dev_priv->psr.transcoder),
393 aux_ctl);
394 }
395
396 static void intel_psr_enable_sink(struct intel_dp *intel_dp)
397 {
398 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
399 u8 dpcd_val = DP_PSR_ENABLE;
400
401 /* Enable ALPM at sink for psr2 */
402 if (dev_priv->psr.psr2_enabled) {
403 drm_dp_dpcd_writeb(&intel_dp->aux, DP_RECEIVER_ALPM_CONFIG,
404 DP_ALPM_ENABLE |
405 DP_ALPM_LOCK_ERROR_IRQ_HPD_ENABLE);
406
407 dpcd_val |= DP_PSR_ENABLE_PSR2 | DP_PSR_IRQ_HPD_WITH_CRC_ERRORS;
408 } else {
409 if (dev_priv->psr.link_standby)
410 dpcd_val |= DP_PSR_MAIN_LINK_ACTIVE;
411
412 if (INTEL_GEN(dev_priv) >= 8)
413 dpcd_val |= DP_PSR_CRC_VERIFICATION;
414 }
415
416 drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG, dpcd_val);
417
418 drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER, DP_SET_POWER_D0);
419 }
420
421 static u32 intel_psr1_get_tp_time(struct intel_dp *intel_dp)
422 {
423 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
424 u32 val = 0;
425
426 if (INTEL_GEN(dev_priv) >= 11)
427 val |= EDP_PSR_TP4_TIME_0US;
428
429 if (dev_priv->params.psr_safest_params) {
430 val |= EDP_PSR_TP1_TIME_2500us;
431 val |= EDP_PSR_TP2_TP3_TIME_2500us;
432 goto check_tp3_sel;
433 }
434
435 if (dev_priv->vbt.psr.tp1_wakeup_time_us == 0)
436 val |= EDP_PSR_TP1_TIME_0us;
437 else if (dev_priv->vbt.psr.tp1_wakeup_time_us <= 100)
438 val |= EDP_PSR_TP1_TIME_100us;
439 else if (dev_priv->vbt.psr.tp1_wakeup_time_us <= 500)
440 val |= EDP_PSR_TP1_TIME_500us;
441 else
442 val |= EDP_PSR_TP1_TIME_2500us;
443
444 if (dev_priv->vbt.psr.tp2_tp3_wakeup_time_us == 0)
445 val |= EDP_PSR_TP2_TP3_TIME_0us;
446 else if (dev_priv->vbt.psr.tp2_tp3_wakeup_time_us <= 100)
447 val |= EDP_PSR_TP2_TP3_TIME_100us;
448 else if (dev_priv->vbt.psr.tp2_tp3_wakeup_time_us <= 500)
449 val |= EDP_PSR_TP2_TP3_TIME_500us;
450 else
451 val |= EDP_PSR_TP2_TP3_TIME_2500us;
452
453 check_tp3_sel:
454 if (intel_dp_source_supports_hbr2(intel_dp) &&
455 drm_dp_tps3_supported(intel_dp->dpcd))
456 val |= EDP_PSR_TP1_TP3_SEL;
457 else
458 val |= EDP_PSR_TP1_TP2_SEL;
459
460 return val;
461 }
462
463 static u8 psr_compute_idle_frames(struct intel_dp *intel_dp)
464 {
465 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
466 int idle_frames;
467
468 /* Let's use 6 as the minimum to cover all known cases including the
469 * off-by-one issue that HW has in some cases.
470 */
471 idle_frames = max(6, dev_priv->vbt.psr.idle_frames);
472 idle_frames = max(idle_frames, dev_priv->psr.sink_sync_latency + 1);
473
474 if (drm_WARN_ON(&dev_priv->drm, idle_frames > 0xf))
475 idle_frames = 0xf;
476
477 return idle_frames;
478 }
479
480 static void hsw_activate_psr1(struct intel_dp *intel_dp)
481 {
482 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
483 u32 max_sleep_time = 0x1f;
484 u32 val = EDP_PSR_ENABLE;
485
486 val |= psr_compute_idle_frames(intel_dp) << EDP_PSR_IDLE_FRAME_SHIFT;
487
488 val |= max_sleep_time << EDP_PSR_MAX_SLEEP_TIME_SHIFT;
489 if (IS_HASWELL(dev_priv))
490 val |= EDP_PSR_MIN_LINK_ENTRY_TIME_8_LINES;
491
492 if (dev_priv->psr.link_standby)
493 val |= EDP_PSR_LINK_STANDBY;
494
495 val |= intel_psr1_get_tp_time(intel_dp);
496
497 if (INTEL_GEN(dev_priv) >= 8)
498 val |= EDP_PSR_CRC_ENABLE;
499
500 val |= (intel_de_read(dev_priv, EDP_PSR_CTL(dev_priv->psr.transcoder)) &
501 EDP_PSR_RESTORE_PSR_ACTIVE_CTX_MASK);
502 intel_de_write(dev_priv, EDP_PSR_CTL(dev_priv->psr.transcoder), val);
503 }
504
505 static u32 intel_psr2_get_tp_time(struct intel_dp *intel_dp)
506 {
507 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
508 u32 val = 0;
509
510 if (dev_priv->params.psr_safest_params)
511 return EDP_PSR2_TP2_TIME_2500us;
512
513 if (dev_priv->vbt.psr.psr2_tp2_tp3_wakeup_time_us >= 0 &&
514 dev_priv->vbt.psr.psr2_tp2_tp3_wakeup_time_us <= 50)
515 val |= EDP_PSR2_TP2_TIME_50us;
516 else if (dev_priv->vbt.psr.psr2_tp2_tp3_wakeup_time_us <= 100)
517 val |= EDP_PSR2_TP2_TIME_100us;
518 else if (dev_priv->vbt.psr.psr2_tp2_tp3_wakeup_time_us <= 500)
519 val |= EDP_PSR2_TP2_TIME_500us;
520 else
521 val |= EDP_PSR2_TP2_TIME_2500us;
522
523 return val;
524 }
525
526 static void hsw_activate_psr2(struct intel_dp *intel_dp)
527 {
528 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
529 u32 val;
530
531 val = psr_compute_idle_frames(intel_dp) << EDP_PSR2_IDLE_FRAME_SHIFT;
532
533 val |= EDP_PSR2_ENABLE | EDP_SU_TRACK_ENABLE;
534 if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
535 val |= EDP_Y_COORDINATE_ENABLE;
536
537 val |= EDP_PSR2_FRAME_BEFORE_SU(dev_priv->psr.sink_sync_latency + 1);
538 val |= intel_psr2_get_tp_time(intel_dp);
539
540 if (INTEL_GEN(dev_priv) >= 12) {
541 /*
542 * TODO: 7 lines of IO_BUFFER_WAKE and FAST_WAKE are default
543 * values from BSpec. In order to setting an optimal power
544 * consumption, lower than 4k resoluition mode needs to decrese
545 * IO_BUFFER_WAKE and FAST_WAKE. And higher than 4K resolution
546 * mode needs to increase IO_BUFFER_WAKE and FAST_WAKE.
547 */
548 val |= TGL_EDP_PSR2_BLOCK_COUNT_NUM_2;
549 val |= TGL_EDP_PSR2_IO_BUFFER_WAKE(7);
550 val |= TGL_EDP_PSR2_FAST_WAKE(7);
551 } else if (INTEL_GEN(dev_priv) >= 9) {
552 val |= EDP_PSR2_IO_BUFFER_WAKE(7);
553 val |= EDP_PSR2_FAST_WAKE(7);
554 }
555
556 if (dev_priv->psr.psr2_sel_fetch_enabled) {
557 /* WA 1408330847 */
558 if (IS_TGL_DISP_REVID(dev_priv, TGL_REVID_A0, TGL_REVID_A0) ||
559 IS_RKL_REVID(dev_priv, RKL_REVID_A0, RKL_REVID_A0))
560 intel_de_rmw(dev_priv, CHICKEN_PAR1_1,
561 DIS_RAM_BYPASS_PSR2_MAN_TRACK,
562 DIS_RAM_BYPASS_PSR2_MAN_TRACK);
563
564 intel_de_write(dev_priv,
565 PSR2_MAN_TRK_CTL(dev_priv->psr.transcoder),
566 PSR2_MAN_TRK_CTL_ENABLE);
567 } else if (HAS_PSR2_SEL_FETCH(dev_priv)) {
568 intel_de_write(dev_priv,
569 PSR2_MAN_TRK_CTL(dev_priv->psr.transcoder), 0);
570 }
571
572 /*
573 * PSR2 HW is incorrectly using EDP_PSR_TP1_TP3_SEL and BSpec is
574 * recommending keep this bit unset while PSR2 is enabled.
575 */
576 intel_de_write(dev_priv, EDP_PSR_CTL(dev_priv->psr.transcoder), 0);
577
578 intel_de_write(dev_priv, EDP_PSR2_CTL(dev_priv->psr.transcoder), val);
579 }
580
581 static bool
582 transcoder_has_psr2(struct drm_i915_private *dev_priv, enum transcoder trans)
583 {
584 if (INTEL_GEN(dev_priv) < 9)
585 return false;
586 else if (INTEL_GEN(dev_priv) >= 12)
587 return trans == TRANSCODER_A;
588 else
589 return trans == TRANSCODER_EDP;
590 }
591
592 static u32 intel_get_frame_time_us(const struct intel_crtc_state *cstate)
593 {
594 if (!cstate || !cstate->hw.active)
595 return 0;
596
597 return DIV_ROUND_UP(1000 * 1000,
598 drm_mode_vrefresh(&cstate->hw.adjusted_mode));
599 }
600
601 static void psr2_program_idle_frames(struct drm_i915_private *dev_priv,
602 u32 idle_frames)
603 {
604 u32 val;
605
606 idle_frames <<= EDP_PSR2_IDLE_FRAME_SHIFT;
607 val = intel_de_read(dev_priv, EDP_PSR2_CTL(dev_priv->psr.transcoder));
608 val &= ~EDP_PSR2_IDLE_FRAME_MASK;
609 val |= idle_frames;
610 intel_de_write(dev_priv, EDP_PSR2_CTL(dev_priv->psr.transcoder), val);
611 }
612
613 static void tgl_psr2_enable_dc3co(struct drm_i915_private *dev_priv)
614 {
615 psr2_program_idle_frames(dev_priv, 0);
616 intel_display_power_set_target_dc_state(dev_priv, DC_STATE_EN_DC3CO);
617 }
618
619 static void tgl_psr2_disable_dc3co(struct drm_i915_private *dev_priv)
620 {
621 struct intel_dp *intel_dp = dev_priv->psr.dp;
622
623 intel_display_power_set_target_dc_state(dev_priv, DC_STATE_EN_UPTO_DC6);
624 psr2_program_idle_frames(dev_priv, psr_compute_idle_frames(intel_dp));
625 }
626
627 static void tgl_dc3co_disable_work(struct work_struct *work)
628 {
629 struct drm_i915_private *dev_priv =
630 container_of(work, typeof(*dev_priv), psr.dc3co_work.work);
631
632 mutex_lock(&dev_priv->psr.lock);
633 /* If delayed work is pending, it is not idle */
634 if (delayed_work_pending(&dev_priv->psr.dc3co_work))
635 goto unlock;
636
637 tgl_psr2_disable_dc3co(dev_priv);
638 unlock:
639 mutex_unlock(&dev_priv->psr.lock);
640 }
641
642 static void tgl_disallow_dc3co_on_psr2_exit(struct drm_i915_private *dev_priv)
643 {
644 if (!dev_priv->psr.dc3co_enabled)
645 return;
646
647 cancel_delayed_work(&dev_priv->psr.dc3co_work);
648 /* Before PSR2 exit disallow dc3co*/
649 tgl_psr2_disable_dc3co(dev_priv);
650 }
651
652 static void
653 tgl_dc3co_exitline_compute_config(struct intel_dp *intel_dp,
654 struct intel_crtc_state *crtc_state)
655 {
656 const u32 crtc_vdisplay = crtc_state->uapi.adjusted_mode.crtc_vdisplay;
657 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
658 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
659 u32 exit_scanlines;
660
661 if (!(dev_priv->csr.allowed_dc_mask & DC_STATE_EN_DC3CO))
662 return;
663
664 /* B.Specs:49196 DC3CO only works with pipeA and DDIA.*/
665 if (to_intel_crtc(crtc_state->uapi.crtc)->pipe != PIPE_A ||
666 dig_port->base.port != PORT_A)
667 return;
668
669 /*
670 * DC3CO Exit time 200us B.Spec 49196
671 * PSR2 transcoder Early Exit scanlines = ROUNDUP(200 / line time) + 1
672 */
673 exit_scanlines =
674 intel_usecs_to_scanlines(&crtc_state->uapi.adjusted_mode, 200) + 1;
675
676 if (drm_WARN_ON(&dev_priv->drm, exit_scanlines > crtc_vdisplay))
677 return;
678
679 crtc_state->dc3co_exitline = crtc_vdisplay - exit_scanlines;
680 }
681
682 static bool intel_psr2_sel_fetch_config_valid(struct intel_dp *intel_dp,
683 struct intel_crtc_state *crtc_state)
684 {
685 struct intel_atomic_state *state = to_intel_atomic_state(crtc_state->uapi.state);
686 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
687 struct intel_plane_state *plane_state;
688 struct intel_plane *plane;
689 int i;
690
691 if (!dev_priv->params.enable_psr2_sel_fetch) {
692 drm_dbg_kms(&dev_priv->drm,
693 "PSR2 sel fetch not enabled, disabled by parameter\n");
694 return false;
695 }
696
697 if (crtc_state->uapi.async_flip) {
698 drm_dbg_kms(&dev_priv->drm,
699 "PSR2 sel fetch not enabled, async flip enabled\n");
700 return false;
701 }
702
703 for_each_new_intel_plane_in_state(state, plane, plane_state, i) {
704 if (plane_state->uapi.rotation != DRM_MODE_ROTATE_0) {
705 drm_dbg_kms(&dev_priv->drm,
706 "PSR2 sel fetch not enabled, plane rotated\n");
707 return false;
708 }
709 }
710
711 return crtc_state->enable_psr2_sel_fetch = true;
712 }
713
714 static bool intel_psr2_config_valid(struct intel_dp *intel_dp,
715 struct intel_crtc_state *crtc_state)
716 {
717 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
718 int crtc_hdisplay = crtc_state->hw.adjusted_mode.crtc_hdisplay;
719 int crtc_vdisplay = crtc_state->hw.adjusted_mode.crtc_vdisplay;
720 int psr_max_h = 0, psr_max_v = 0, max_bpp = 0;
721
722 if (!dev_priv->psr.sink_psr2_support)
723 return false;
724
725 if (!transcoder_has_psr2(dev_priv, crtc_state->cpu_transcoder)) {
726 drm_dbg_kms(&dev_priv->drm,
727 "PSR2 not supported in transcoder %s\n",
728 transcoder_name(crtc_state->cpu_transcoder));
729 return false;
730 }
731
732 /*
733 * DSC and PSR2 cannot be enabled simultaneously. If a requested
734 * resolution requires DSC to be enabled, priority is given to DSC
735 * over PSR2.
736 */
737 if (crtc_state->dsc.compression_enable) {
738 drm_dbg_kms(&dev_priv->drm,
739 "PSR2 cannot be enabled since DSC is enabled\n");
740 return false;
741 }
742
743 if (crtc_state->crc_enabled) {
744 drm_dbg_kms(&dev_priv->drm,
745 "PSR2 not enabled because it would inhibit pipe CRC calculation\n");
746 return false;
747 }
748
749 if (INTEL_GEN(dev_priv) >= 12) {
750 psr_max_h = 5120;
751 psr_max_v = 3200;
752 max_bpp = 30;
753 } else if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) {
754 psr_max_h = 4096;
755 psr_max_v = 2304;
756 max_bpp = 24;
757 } else if (IS_GEN(dev_priv, 9)) {
758 psr_max_h = 3640;
759 psr_max_v = 2304;
760 max_bpp = 24;
761 }
762
763 if (crtc_state->pipe_bpp > max_bpp) {
764 drm_dbg_kms(&dev_priv->drm,
765 "PSR2 not enabled, pipe bpp %d > max supported %d\n",
766 crtc_state->pipe_bpp, max_bpp);
767 return false;
768 }
769
770 /*
771 * HW sends SU blocks of size four scan lines, which means the starting
772 * X coordinate and Y granularity requirements will always be met. We
773 * only need to validate the SU block width is a multiple of
774 * x granularity.
775 */
776 if (crtc_hdisplay % dev_priv->psr.su_x_granularity) {
777 drm_dbg_kms(&dev_priv->drm,
778 "PSR2 not enabled, hdisplay(%d) not multiple of %d\n",
779 crtc_hdisplay, dev_priv->psr.su_x_granularity);
780 return false;
781 }
782
783 if (HAS_PSR2_SEL_FETCH(dev_priv)) {
784 if (!intel_psr2_sel_fetch_config_valid(intel_dp, crtc_state) &&
785 !HAS_PSR_HW_TRACKING(dev_priv)) {
786 drm_dbg_kms(&dev_priv->drm,
787 "PSR2 not enabled, selective fetch not valid and no HW tracking available\n");
788 return false;
789 }
790 }
791
792 if (!crtc_state->enable_psr2_sel_fetch &&
793 (crtc_hdisplay > psr_max_h || crtc_vdisplay > psr_max_v)) {
794 drm_dbg_kms(&dev_priv->drm,
795 "PSR2 not enabled, resolution %dx%d > max supported %dx%d\n",
796 crtc_hdisplay, crtc_vdisplay,
797 psr_max_h, psr_max_v);
798 return false;
799 }
800
801 tgl_dc3co_exitline_compute_config(intel_dp, crtc_state);
802 return true;
803 }
804
805 void intel_psr_compute_config(struct intel_dp *intel_dp,
806 struct intel_crtc_state *crtc_state)
807 {
808 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
809 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
810 const struct drm_display_mode *adjusted_mode =
811 &crtc_state->hw.adjusted_mode;
812 int psr_setup_time;
813
814 if (!CAN_PSR(dev_priv))
815 return;
816
817 if (intel_dp != dev_priv->psr.dp)
818 return;
819
820 if (!psr_global_enabled(dev_priv))
821 return;
822 /*
823 * HSW spec explicitly says PSR is tied to port A.
824 * BDW+ platforms have a instance of PSR registers per transcoder but
825 * for now it only supports one instance of PSR, so lets keep it
826 * hardcoded to PORT_A
827 */
828 if (dig_port->base.port != PORT_A) {
829 drm_dbg_kms(&dev_priv->drm,
830 "PSR condition failed: Port not supported\n");
831 return;
832 }
833
834 if (dev_priv->psr.sink_not_reliable) {
835 drm_dbg_kms(&dev_priv->drm,
836 "PSR sink implementation is not reliable\n");
837 return;
838 }
839
840 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
841 drm_dbg_kms(&dev_priv->drm,
842 "PSR condition failed: Interlaced mode enabled\n");
843 return;
844 }
845
846 psr_setup_time = drm_dp_psr_setup_time(intel_dp->psr_dpcd);
847 if (psr_setup_time < 0) {
848 drm_dbg_kms(&dev_priv->drm,
849 "PSR condition failed: Invalid PSR setup time (0x%02x)\n",
850 intel_dp->psr_dpcd[1]);
851 return;
852 }
853
854 if (intel_usecs_to_scanlines(adjusted_mode, psr_setup_time) >
855 adjusted_mode->crtc_vtotal - adjusted_mode->crtc_vdisplay - 1) {
856 drm_dbg_kms(&dev_priv->drm,
857 "PSR condition failed: PSR setup time (%d us) too long\n",
858 psr_setup_time);
859 return;
860 }
861
862 crtc_state->has_psr = true;
863 crtc_state->has_psr2 = intel_psr2_config_valid(intel_dp, crtc_state);
864 crtc_state->infoframes.enable |= intel_hdmi_infoframe_enable(DP_SDP_VSC);
865 }
866
867 static void intel_psr_activate(struct intel_dp *intel_dp)
868 {
869 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
870
871 if (transcoder_has_psr2(dev_priv, dev_priv->psr.transcoder))
872 drm_WARN_ON(&dev_priv->drm,
873 intel_de_read(dev_priv, EDP_PSR2_CTL(dev_priv->psr.transcoder)) & EDP_PSR2_ENABLE);
874
875 drm_WARN_ON(&dev_priv->drm,
876 intel_de_read(dev_priv, EDP_PSR_CTL(dev_priv->psr.transcoder)) & EDP_PSR_ENABLE);
877 drm_WARN_ON(&dev_priv->drm, dev_priv->psr.active);
878 lockdep_assert_held(&dev_priv->psr.lock);
879
880 /* psr1 and psr2 are mutually exclusive.*/
881 if (dev_priv->psr.psr2_enabled)
882 hsw_activate_psr2(intel_dp);
883 else
884 hsw_activate_psr1(intel_dp);
885
886 dev_priv->psr.active = true;
887 }
888
889 static void intel_psr_enable_source(struct intel_dp *intel_dp,
890 const struct intel_crtc_state *crtc_state)
891 {
892 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
893 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
894 u32 mask;
895
896 /* Only HSW and BDW have PSR AUX registers that need to be setup. SKL+
897 * use hardcoded values PSR AUX transactions
898 */
899 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
900 hsw_psr_setup_aux(intel_dp);
901
902 if (dev_priv->psr.psr2_enabled && (IS_GEN(dev_priv, 9) &&
903 !IS_GEMINILAKE(dev_priv))) {
904 i915_reg_t reg = CHICKEN_TRANS(cpu_transcoder);
905 u32 chicken = intel_de_read(dev_priv, reg);
906
907 chicken |= PSR2_VSC_ENABLE_PROG_HEADER |
908 PSR2_ADD_VERTICAL_LINE_COUNT;
909 intel_de_write(dev_priv, reg, chicken);
910 }
911
912 /*
913 * Per Spec: Avoid continuous PSR exit by masking MEMUP and HPD also
914 * mask LPSP to avoid dependency on other drivers that might block
915 * runtime_pm besides preventing other hw tracking issues now we
916 * can rely on frontbuffer tracking.
917 */
918 mask = EDP_PSR_DEBUG_MASK_MEMUP |
919 EDP_PSR_DEBUG_MASK_HPD |
920 EDP_PSR_DEBUG_MASK_LPSP |
921 EDP_PSR_DEBUG_MASK_MAX_SLEEP;
922
923 if (INTEL_GEN(dev_priv) < 11)
924 mask |= EDP_PSR_DEBUG_MASK_DISP_REG_WRITE;
925
926 intel_de_write(dev_priv, EDP_PSR_DEBUG(dev_priv->psr.transcoder),
927 mask);
928
929 psr_irq_control(dev_priv);
930
931 if (crtc_state->dc3co_exitline) {
932 u32 val;
933
934 /*
935 * TODO: if future platforms supports DC3CO in more than one
936 * transcoder, EXITLINE will need to be unset when disabling PSR
937 */
938 val = intel_de_read(dev_priv, EXITLINE(cpu_transcoder));
939 val &= ~EXITLINE_MASK;
940 val |= crtc_state->dc3co_exitline << EXITLINE_SHIFT;
941 val |= EXITLINE_ENABLE;
942 intel_de_write(dev_priv, EXITLINE(cpu_transcoder), val);
943 }
944
945 if (HAS_PSR_HW_TRACKING(dev_priv))
946 intel_de_rmw(dev_priv, CHICKEN_PAR1_1, IGNORE_PSR2_HW_TRACKING,
947 dev_priv->psr.psr2_sel_fetch_enabled ?
948 IGNORE_PSR2_HW_TRACKING : 0);
949 }
950
951 static void intel_psr_enable_locked(struct drm_i915_private *dev_priv,
952 const struct intel_crtc_state *crtc_state,
953 const struct drm_connector_state *conn_state)
954 {
955 struct intel_dp *intel_dp = dev_priv->psr.dp;
956 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
957 struct intel_encoder *encoder = &dig_port->base;
958 u32 val;
959
960 drm_WARN_ON(&dev_priv->drm, dev_priv->psr.enabled);
961
962 dev_priv->psr.psr2_enabled = intel_psr2_enabled(dev_priv, crtc_state);
963 dev_priv->psr.busy_frontbuffer_bits = 0;
964 dev_priv->psr.pipe = to_intel_crtc(crtc_state->uapi.crtc)->pipe;
965 dev_priv->psr.dc3co_enabled = !!crtc_state->dc3co_exitline;
966 dev_priv->psr.transcoder = crtc_state->cpu_transcoder;
967 /* DC5/DC6 requires at least 6 idle frames */
968 val = usecs_to_jiffies(intel_get_frame_time_us(crtc_state) * 6);
969 dev_priv->psr.dc3co_exit_delay = val;
970 dev_priv->psr.psr2_sel_fetch_enabled = crtc_state->enable_psr2_sel_fetch;
971
972 /*
973 * If a PSR error happened and the driver is reloaded, the EDP_PSR_IIR
974 * will still keep the error set even after the reset done in the
975 * irq_preinstall and irq_uninstall hooks.
976 * And enabling in this situation cause the screen to freeze in the
977 * first time that PSR HW tries to activate so lets keep PSR disabled
978 * to avoid any rendering problems.
979 */
980 if (INTEL_GEN(dev_priv) >= 12) {
981 val = intel_de_read(dev_priv,
982 TRANS_PSR_IIR(dev_priv->psr.transcoder));
983 val &= EDP_PSR_ERROR(0);
984 } else {
985 val = intel_de_read(dev_priv, EDP_PSR_IIR);
986 val &= EDP_PSR_ERROR(dev_priv->psr.transcoder);
987 }
988 if (val) {
989 dev_priv->psr.sink_not_reliable = true;
990 drm_dbg_kms(&dev_priv->drm,
991 "PSR interruption error set, not enabling PSR\n");
992 return;
993 }
994
995 drm_dbg_kms(&dev_priv->drm, "Enabling PSR%s\n",
996 dev_priv->psr.psr2_enabled ? "2" : "1");
997 intel_dp_compute_psr_vsc_sdp(intel_dp, crtc_state, conn_state,
998 &dev_priv->psr.vsc);
999 intel_write_dp_vsc_sdp(encoder, crtc_state, &dev_priv->psr.vsc);
1000 intel_psr_enable_sink(intel_dp);
1001 intel_psr_enable_source(intel_dp, crtc_state);
1002 dev_priv->psr.enabled = true;
1003
1004 intel_psr_activate(intel_dp);
1005 }
1006
1007 /**
1008 * intel_psr_enable - Enable PSR
1009 * @intel_dp: Intel DP
1010 * @crtc_state: new CRTC state
1011 * @conn_state: new CONNECTOR state
1012 *
1013 * This function can only be called after the pipe is fully trained and enabled.
1014 */
1015 void intel_psr_enable(struct intel_dp *intel_dp,
1016 const struct intel_crtc_state *crtc_state,
1017 const struct drm_connector_state *conn_state)
1018 {
1019 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1020
1021 if (!CAN_PSR(dev_priv) || dev_priv->psr.dp != intel_dp)
1022 return;
1023
1024 dev_priv->psr.force_mode_changed = false;
1025
1026 if (!crtc_state->has_psr)
1027 return;
1028
1029 drm_WARN_ON(&dev_priv->drm, dev_priv->drrs.dp);
1030
1031 mutex_lock(&dev_priv->psr.lock);
1032
1033 if (!psr_global_enabled(dev_priv)) {
1034 drm_dbg_kms(&dev_priv->drm, "PSR disabled by flag\n");
1035 goto unlock;
1036 }
1037
1038 intel_psr_enable_locked(dev_priv, crtc_state, conn_state);
1039
1040 unlock:
1041 mutex_unlock(&dev_priv->psr.lock);
1042 }
1043
1044 static void intel_psr_exit(struct drm_i915_private *dev_priv)
1045 {
1046 u32 val;
1047
1048 if (!dev_priv->psr.active) {
1049 if (transcoder_has_psr2(dev_priv, dev_priv->psr.transcoder)) {
1050 val = intel_de_read(dev_priv,
1051 EDP_PSR2_CTL(dev_priv->psr.transcoder));
1052 drm_WARN_ON(&dev_priv->drm, val & EDP_PSR2_ENABLE);
1053 }
1054
1055 val = intel_de_read(dev_priv,
1056 EDP_PSR_CTL(dev_priv->psr.transcoder));
1057 drm_WARN_ON(&dev_priv->drm, val & EDP_PSR_ENABLE);
1058
1059 return;
1060 }
1061
1062 if (dev_priv->psr.psr2_enabled) {
1063 tgl_disallow_dc3co_on_psr2_exit(dev_priv);
1064 val = intel_de_read(dev_priv,
1065 EDP_PSR2_CTL(dev_priv->psr.transcoder));
1066 drm_WARN_ON(&dev_priv->drm, !(val & EDP_PSR2_ENABLE));
1067 val &= ~EDP_PSR2_ENABLE;
1068 intel_de_write(dev_priv,
1069 EDP_PSR2_CTL(dev_priv->psr.transcoder), val);
1070 } else {
1071 val = intel_de_read(dev_priv,
1072 EDP_PSR_CTL(dev_priv->psr.transcoder));
1073 drm_WARN_ON(&dev_priv->drm, !(val & EDP_PSR_ENABLE));
1074 val &= ~EDP_PSR_ENABLE;
1075 intel_de_write(dev_priv,
1076 EDP_PSR_CTL(dev_priv->psr.transcoder), val);
1077 }
1078 dev_priv->psr.active = false;
1079 }
1080
1081 static void intel_psr_disable_locked(struct intel_dp *intel_dp)
1082 {
1083 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1084 i915_reg_t psr_status;
1085 u32 psr_status_mask;
1086
1087 lockdep_assert_held(&dev_priv->psr.lock);
1088
1089 if (!dev_priv->psr.enabled)
1090 return;
1091
1092 drm_dbg_kms(&dev_priv->drm, "Disabling PSR%s\n",
1093 dev_priv->psr.psr2_enabled ? "2" : "1");
1094
1095 intel_psr_exit(dev_priv);
1096
1097 if (dev_priv->psr.psr2_enabled) {
1098 psr_status = EDP_PSR2_STATUS(dev_priv->psr.transcoder);
1099 psr_status_mask = EDP_PSR2_STATUS_STATE_MASK;
1100 } else {
1101 psr_status = EDP_PSR_STATUS(dev_priv->psr.transcoder);
1102 psr_status_mask = EDP_PSR_STATUS_STATE_MASK;
1103 }
1104
1105 /* Wait till PSR is idle */
1106 if (intel_de_wait_for_clear(dev_priv, psr_status,
1107 psr_status_mask, 2000))
1108 drm_err(&dev_priv->drm, "Timed out waiting PSR idle state\n");
1109
1110 /* WA 1408330847 */
1111 if (dev_priv->psr.psr2_sel_fetch_enabled &&
1112 (IS_TGL_DISP_REVID(dev_priv, TGL_REVID_A0, TGL_REVID_A0) ||
1113 IS_RKL_REVID(dev_priv, RKL_REVID_A0, RKL_REVID_A0)))
1114 intel_de_rmw(dev_priv, CHICKEN_PAR1_1,
1115 DIS_RAM_BYPASS_PSR2_MAN_TRACK, 0);
1116
1117 /* Disable PSR on Sink */
1118 drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG, 0);
1119
1120 if (dev_priv->psr.psr2_enabled)
1121 drm_dp_dpcd_writeb(&intel_dp->aux, DP_RECEIVER_ALPM_CONFIG, 0);
1122
1123 dev_priv->psr.enabled = false;
1124 }
1125
1126 /**
1127 * intel_psr_disable - Disable PSR
1128 * @intel_dp: Intel DP
1129 * @old_crtc_state: old CRTC state
1130 *
1131 * This function needs to be called before disabling pipe.
1132 */
1133 void intel_psr_disable(struct intel_dp *intel_dp,
1134 const struct intel_crtc_state *old_crtc_state)
1135 {
1136 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1137
1138 if (!old_crtc_state->has_psr)
1139 return;
1140
1141 if (drm_WARN_ON(&dev_priv->drm, !CAN_PSR(dev_priv)))
1142 return;
1143
1144 mutex_lock(&dev_priv->psr.lock);
1145
1146 intel_psr_disable_locked(intel_dp);
1147
1148 mutex_unlock(&dev_priv->psr.lock);
1149 cancel_work_sync(&dev_priv->psr.work);
1150 cancel_delayed_work_sync(&dev_priv->psr.dc3co_work);
1151 }
1152
1153 static void psr_force_hw_tracking_exit(struct drm_i915_private *dev_priv)
1154 {
1155 if (INTEL_GEN(dev_priv) >= 9)
1156 /*
1157 * Display WA #0884: skl+
1158 * This documented WA for bxt can be safely applied
1159 * broadly so we can force HW tracking to exit PSR
1160 * instead of disabling and re-enabling.
1161 * Workaround tells us to write 0 to CUR_SURFLIVE_A,
1162 * but it makes more sense write to the current active
1163 * pipe.
1164 */
1165 intel_de_write(dev_priv, CURSURFLIVE(dev_priv->psr.pipe), 0);
1166 else
1167 /*
1168 * A write to CURSURFLIVE do not cause HW tracking to exit PSR
1169 * on older gens so doing the manual exit instead.
1170 */
1171 intel_psr_exit(dev_priv);
1172 }
1173
1174 void intel_psr2_program_trans_man_trk_ctl(const struct intel_crtc_state *crtc_state)
1175 {
1176 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1177 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1178 struct i915_psr *psr = &dev_priv->psr;
1179
1180 if (!HAS_PSR2_SEL_FETCH(dev_priv) ||
1181 !crtc_state->enable_psr2_sel_fetch)
1182 return;
1183
1184 intel_de_write(dev_priv, PSR2_MAN_TRK_CTL(psr->transcoder),
1185 crtc_state->psr2_man_track_ctl);
1186 }
1187
1188 void intel_psr2_sel_fetch_update(struct intel_atomic_state *state,
1189 struct intel_crtc *crtc)
1190 {
1191 struct intel_crtc_state *crtc_state = intel_atomic_get_new_crtc_state(state, crtc);
1192
1193 if (!crtc_state->enable_psr2_sel_fetch)
1194 return;
1195
1196 crtc_state->psr2_man_track_ctl = PSR2_MAN_TRK_CTL_ENABLE |
1197 PSR2_MAN_TRK_CTL_SF_SINGLE_FULL_FRAME;
1198 }
1199
1200 /**
1201 * intel_psr_update - Update PSR state
1202 * @intel_dp: Intel DP
1203 * @crtc_state: new CRTC state
1204 * @conn_state: new CONNECTOR state
1205 *
1206 * This functions will update PSR states, disabling, enabling or switching PSR
1207 * version when executing fastsets. For full modeset, intel_psr_disable() and
1208 * intel_psr_enable() should be called instead.
1209 */
1210 void intel_psr_update(struct intel_dp *intel_dp,
1211 const struct intel_crtc_state *crtc_state,
1212 const struct drm_connector_state *conn_state)
1213 {
1214 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1215 struct i915_psr *psr = &dev_priv->psr;
1216 bool enable, psr2_enable;
1217
1218 if (!CAN_PSR(dev_priv) || READ_ONCE(psr->dp) != intel_dp)
1219 return;
1220
1221 dev_priv->psr.force_mode_changed = false;
1222
1223 mutex_lock(&dev_priv->psr.lock);
1224
1225 enable = crtc_state->has_psr && psr_global_enabled(dev_priv);
1226 psr2_enable = intel_psr2_enabled(dev_priv, crtc_state);
1227
1228 if (enable == psr->enabled && psr2_enable == psr->psr2_enabled) {
1229 /* Force a PSR exit when enabling CRC to avoid CRC timeouts */
1230 if (crtc_state->crc_enabled && psr->enabled)
1231 psr_force_hw_tracking_exit(dev_priv);
1232 else if (INTEL_GEN(dev_priv) < 9 && psr->enabled) {
1233 /*
1234 * Activate PSR again after a force exit when enabling
1235 * CRC in older gens
1236 */
1237 if (!dev_priv->psr.active &&
1238 !dev_priv->psr.busy_frontbuffer_bits)
1239 schedule_work(&dev_priv->psr.work);
1240 }
1241
1242 goto unlock;
1243 }
1244
1245 if (psr->enabled)
1246 intel_psr_disable_locked(intel_dp);
1247
1248 if (enable)
1249 intel_psr_enable_locked(dev_priv, crtc_state, conn_state);
1250
1251 unlock:
1252 mutex_unlock(&dev_priv->psr.lock);
1253 }
1254
1255 /**
1256 * intel_psr_wait_for_idle - wait for PSR1 to idle
1257 * @new_crtc_state: new CRTC state
1258 * @out_value: PSR status in case of failure
1259 *
1260 * This function is expected to be called from pipe_update_start() where it is
1261 * not expected to race with PSR enable or disable.
1262 *
1263 * Returns: 0 on success or -ETIMEOUT if PSR status does not idle.
1264 */
1265 int intel_psr_wait_for_idle(const struct intel_crtc_state *new_crtc_state,
1266 u32 *out_value)
1267 {
1268 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
1269 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1270
1271 if (!dev_priv->psr.enabled || !new_crtc_state->has_psr)
1272 return 0;
1273
1274 /* FIXME: Update this for PSR2 if we need to wait for idle */
1275 if (READ_ONCE(dev_priv->psr.psr2_enabled))
1276 return 0;
1277
1278 /*
1279 * From bspec: Panel Self Refresh (BDW+)
1280 * Max. time for PSR to idle = Inverse of the refresh rate + 6 ms of
1281 * exit training time + 1.5 ms of aux channel handshake. 50 ms is
1282 * defensive enough to cover everything.
1283 */
1284
1285 return __intel_wait_for_register(&dev_priv->uncore,
1286 EDP_PSR_STATUS(dev_priv->psr.transcoder),
1287 EDP_PSR_STATUS_STATE_MASK,
1288 EDP_PSR_STATUS_STATE_IDLE, 2, 50,
1289 out_value);
1290 }
1291
1292 static bool __psr_wait_for_idle_locked(struct drm_i915_private *dev_priv)
1293 {
1294 i915_reg_t reg;
1295 u32 mask;
1296 int err;
1297
1298 if (!dev_priv->psr.enabled)
1299 return false;
1300
1301 if (dev_priv->psr.psr2_enabled) {
1302 reg = EDP_PSR2_STATUS(dev_priv->psr.transcoder);
1303 mask = EDP_PSR2_STATUS_STATE_MASK;
1304 } else {
1305 reg = EDP_PSR_STATUS(dev_priv->psr.transcoder);
1306 mask = EDP_PSR_STATUS_STATE_MASK;
1307 }
1308
1309 mutex_unlock(&dev_priv->psr.lock);
1310
1311 err = intel_de_wait_for_clear(dev_priv, reg, mask, 50);
1312 if (err)
1313 drm_err(&dev_priv->drm,
1314 "Timed out waiting for PSR Idle for re-enable\n");
1315
1316 /* After the unlocked wait, verify that PSR is still wanted! */
1317 mutex_lock(&dev_priv->psr.lock);
1318 return err == 0 && dev_priv->psr.enabled;
1319 }
1320
1321 static int intel_psr_fastset_force(struct drm_i915_private *dev_priv)
1322 {
1323 struct drm_device *dev = &dev_priv->drm;
1324 struct drm_modeset_acquire_ctx ctx;
1325 struct drm_atomic_state *state;
1326 struct intel_crtc *crtc;
1327 int err;
1328
1329 state = drm_atomic_state_alloc(dev);
1330 if (!state)
1331 return -ENOMEM;
1332
1333 drm_modeset_acquire_init(&ctx, DRM_MODESET_ACQUIRE_INTERRUPTIBLE);
1334 state->acquire_ctx = &ctx;
1335
1336 retry:
1337 for_each_intel_crtc(dev, crtc) {
1338 struct intel_crtc_state *crtc_state =
1339 intel_atomic_get_crtc_state(state, crtc);
1340
1341 if (IS_ERR(crtc_state)) {
1342 err = PTR_ERR(crtc_state);
1343 goto error;
1344 }
1345
1346 if (crtc_state->hw.active && crtc_state->has_psr) {
1347 /* Mark mode as changed to trigger a pipe->update() */
1348 crtc_state->uapi.mode_changed = true;
1349 break;
1350 }
1351 }
1352
1353 err = drm_atomic_commit(state);
1354
1355 error:
1356 if (err == -EDEADLK) {
1357 drm_atomic_state_clear(state);
1358 err = drm_modeset_backoff(&ctx);
1359 if (!err)
1360 goto retry;
1361 }
1362
1363 drm_modeset_drop_locks(&ctx);
1364 drm_modeset_acquire_fini(&ctx);
1365 drm_atomic_state_put(state);
1366
1367 return err;
1368 }
1369
1370 int intel_psr_debug_set(struct drm_i915_private *dev_priv, u64 val)
1371 {
1372 const u32 mode = val & I915_PSR_DEBUG_MODE_MASK;
1373 u32 old_mode;
1374 int ret;
1375
1376 if (val & ~(I915_PSR_DEBUG_IRQ | I915_PSR_DEBUG_MODE_MASK) ||
1377 mode > I915_PSR_DEBUG_FORCE_PSR1) {
1378 drm_dbg_kms(&dev_priv->drm, "Invalid debug mask %llx\n", val);
1379 return -EINVAL;
1380 }
1381
1382 ret = mutex_lock_interruptible(&dev_priv->psr.lock);
1383 if (ret)
1384 return ret;
1385
1386 old_mode = dev_priv->psr.debug & I915_PSR_DEBUG_MODE_MASK;
1387 dev_priv->psr.debug = val;
1388
1389 /*
1390 * Do it right away if it's already enabled, otherwise it will be done
1391 * when enabling the source.
1392 */
1393 if (dev_priv->psr.enabled)
1394 psr_irq_control(dev_priv);
1395
1396 mutex_unlock(&dev_priv->psr.lock);
1397
1398 if (old_mode != mode)
1399 ret = intel_psr_fastset_force(dev_priv);
1400
1401 return ret;
1402 }
1403
1404 static void intel_psr_handle_irq(struct drm_i915_private *dev_priv)
1405 {
1406 struct i915_psr *psr = &dev_priv->psr;
1407
1408 intel_psr_disable_locked(psr->dp);
1409 psr->sink_not_reliable = true;
1410 /* let's make sure that sink is awaken */
1411 drm_dp_dpcd_writeb(&psr->dp->aux, DP_SET_POWER, DP_SET_POWER_D0);
1412 }
1413
1414 static void intel_psr_work(struct work_struct *work)
1415 {
1416 struct drm_i915_private *dev_priv =
1417 container_of(work, typeof(*dev_priv), psr.work);
1418
1419 mutex_lock(&dev_priv->psr.lock);
1420
1421 if (!dev_priv->psr.enabled)
1422 goto unlock;
1423
1424 if (READ_ONCE(dev_priv->psr.irq_aux_error))
1425 intel_psr_handle_irq(dev_priv);
1426
1427 /*
1428 * We have to make sure PSR is ready for re-enable
1429 * otherwise it keeps disabled until next full enable/disable cycle.
1430 * PSR might take some time to get fully disabled
1431 * and be ready for re-enable.
1432 */
1433 if (!__psr_wait_for_idle_locked(dev_priv))
1434 goto unlock;
1435
1436 /*
1437 * The delayed work can race with an invalidate hence we need to
1438 * recheck. Since psr_flush first clears this and then reschedules we
1439 * won't ever miss a flush when bailing out here.
1440 */
1441 if (dev_priv->psr.busy_frontbuffer_bits || dev_priv->psr.active)
1442 goto unlock;
1443
1444 intel_psr_activate(dev_priv->psr.dp);
1445 unlock:
1446 mutex_unlock(&dev_priv->psr.lock);
1447 }
1448
1449 /**
1450 * intel_psr_invalidate - Invalidade PSR
1451 * @dev_priv: i915 device
1452 * @frontbuffer_bits: frontbuffer plane tracking bits
1453 * @origin: which operation caused the invalidate
1454 *
1455 * Since the hardware frontbuffer tracking has gaps we need to integrate
1456 * with the software frontbuffer tracking. This function gets called every
1457 * time frontbuffer rendering starts and a buffer gets dirtied. PSR must be
1458 * disabled if the frontbuffer mask contains a buffer relevant to PSR.
1459 *
1460 * Dirty frontbuffers relevant to PSR are tracked in busy_frontbuffer_bits."
1461 */
1462 void intel_psr_invalidate(struct drm_i915_private *dev_priv,
1463 unsigned frontbuffer_bits, enum fb_op_origin origin)
1464 {
1465 if (!CAN_PSR(dev_priv))
1466 return;
1467
1468 if (origin == ORIGIN_FLIP)
1469 return;
1470
1471 mutex_lock(&dev_priv->psr.lock);
1472 if (!dev_priv->psr.enabled) {
1473 mutex_unlock(&dev_priv->psr.lock);
1474 return;
1475 }
1476
1477 frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(dev_priv->psr.pipe);
1478 dev_priv->psr.busy_frontbuffer_bits |= frontbuffer_bits;
1479
1480 if (frontbuffer_bits)
1481 intel_psr_exit(dev_priv);
1482
1483 mutex_unlock(&dev_priv->psr.lock);
1484 }
1485
1486 /*
1487 * When we will be completely rely on PSR2 S/W tracking in future,
1488 * intel_psr_flush() will invalidate and flush the PSR for ORIGIN_FLIP
1489 * event also therefore tgl_dc3co_flush() require to be changed
1490 * accordingly in future.
1491 */
1492 static void
1493 tgl_dc3co_flush(struct drm_i915_private *dev_priv,
1494 unsigned int frontbuffer_bits, enum fb_op_origin origin)
1495 {
1496 mutex_lock(&dev_priv->psr.lock);
1497
1498 if (!dev_priv->psr.dc3co_enabled)
1499 goto unlock;
1500
1501 if (!dev_priv->psr.psr2_enabled || !dev_priv->psr.active)
1502 goto unlock;
1503
1504 /*
1505 * At every frontbuffer flush flip event modified delay of delayed work,
1506 * when delayed work schedules that means display has been idle.
1507 */
1508 if (!(frontbuffer_bits &
1509 INTEL_FRONTBUFFER_ALL_MASK(dev_priv->psr.pipe)))
1510 goto unlock;
1511
1512 tgl_psr2_enable_dc3co(dev_priv);
1513 mod_delayed_work(system_wq, &dev_priv->psr.dc3co_work,
1514 dev_priv->psr.dc3co_exit_delay);
1515
1516 unlock:
1517 mutex_unlock(&dev_priv->psr.lock);
1518 }
1519
1520 /**
1521 * intel_psr_flush - Flush PSR
1522 * @dev_priv: i915 device
1523 * @frontbuffer_bits: frontbuffer plane tracking bits
1524 * @origin: which operation caused the flush
1525 *
1526 * Since the hardware frontbuffer tracking has gaps we need to integrate
1527 * with the software frontbuffer tracking. This function gets called every
1528 * time frontbuffer rendering has completed and flushed out to memory. PSR
1529 * can be enabled again if no other frontbuffer relevant to PSR is dirty.
1530 *
1531 * Dirty frontbuffers relevant to PSR are tracked in busy_frontbuffer_bits.
1532 */
1533 void intel_psr_flush(struct drm_i915_private *dev_priv,
1534 unsigned frontbuffer_bits, enum fb_op_origin origin)
1535 {
1536 if (!CAN_PSR(dev_priv))
1537 return;
1538
1539 if (origin == ORIGIN_FLIP) {
1540 tgl_dc3co_flush(dev_priv, frontbuffer_bits, origin);
1541 return;
1542 }
1543
1544 mutex_lock(&dev_priv->psr.lock);
1545 if (!dev_priv->psr.enabled) {
1546 mutex_unlock(&dev_priv->psr.lock);
1547 return;
1548 }
1549
1550 frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(dev_priv->psr.pipe);
1551 dev_priv->psr.busy_frontbuffer_bits &= ~frontbuffer_bits;
1552
1553 /* By definition flush = invalidate + flush */
1554 if (frontbuffer_bits)
1555 psr_force_hw_tracking_exit(dev_priv);
1556
1557 if (!dev_priv->psr.active && !dev_priv->psr.busy_frontbuffer_bits)
1558 schedule_work(&dev_priv->psr.work);
1559 mutex_unlock(&dev_priv->psr.lock);
1560 }
1561
1562 /**
1563 * intel_psr_init - Init basic PSR work and mutex.
1564 * @dev_priv: i915 device private
1565 *
1566 * This function is called only once at driver load to initialize basic
1567 * PSR stuff.
1568 */
1569 void intel_psr_init(struct drm_i915_private *dev_priv)
1570 {
1571 if (!HAS_PSR(dev_priv))
1572 return;
1573
1574 if (!dev_priv->psr.sink_support)
1575 return;
1576
1577 if (IS_HASWELL(dev_priv))
1578 /*
1579 * HSW don't have PSR registers on the same space as transcoder
1580 * so set this to a value that when subtract to the register
1581 * in transcoder space results in the right offset for HSW
1582 */
1583 dev_priv->hsw_psr_mmio_adjust = _SRD_CTL_EDP - _HSW_EDP_PSR_BASE;
1584
1585 if (dev_priv->params.enable_psr == -1)
1586 if (INTEL_GEN(dev_priv) < 9 || !dev_priv->vbt.psr.enable)
1587 dev_priv->params.enable_psr = 0;
1588
1589 /* Set link_standby x link_off defaults */
1590 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
1591 /* HSW and BDW require workarounds that we don't implement. */
1592 dev_priv->psr.link_standby = false;
1593 else if (INTEL_GEN(dev_priv) < 12)
1594 /* For new platforms up to TGL let's respect VBT back again */
1595 dev_priv->psr.link_standby = dev_priv->vbt.psr.full_link;
1596
1597 INIT_WORK(&dev_priv->psr.work, intel_psr_work);
1598 INIT_DELAYED_WORK(&dev_priv->psr.dc3co_work, tgl_dc3co_disable_work);
1599 mutex_init(&dev_priv->psr.lock);
1600 }
1601
1602 static int psr_get_status_and_error_status(struct intel_dp *intel_dp,
1603 u8 *status, u8 *error_status)
1604 {
1605 struct drm_dp_aux *aux = &intel_dp->aux;
1606 int ret;
1607
1608 ret = drm_dp_dpcd_readb(aux, DP_PSR_STATUS, status);
1609 if (ret != 1)
1610 return ret;
1611
1612 ret = drm_dp_dpcd_readb(aux, DP_PSR_ERROR_STATUS, error_status);
1613 if (ret != 1)
1614 return ret;
1615
1616 *status = *status & DP_PSR_SINK_STATE_MASK;
1617
1618 return 0;
1619 }
1620
1621 static void psr_alpm_check(struct intel_dp *intel_dp)
1622 {
1623 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1624 struct drm_dp_aux *aux = &intel_dp->aux;
1625 struct i915_psr *psr = &dev_priv->psr;
1626 u8 val;
1627 int r;
1628
1629 if (!psr->psr2_enabled)
1630 return;
1631
1632 r = drm_dp_dpcd_readb(aux, DP_RECEIVER_ALPM_STATUS, &val);
1633 if (r != 1) {
1634 drm_err(&dev_priv->drm, "Error reading ALPM status\n");
1635 return;
1636 }
1637
1638 if (val & DP_ALPM_LOCK_TIMEOUT_ERROR) {
1639 intel_psr_disable_locked(intel_dp);
1640 psr->sink_not_reliable = true;
1641 drm_dbg_kms(&dev_priv->drm,
1642 "ALPM lock timeout error, disabling PSR\n");
1643
1644 /* Clearing error */
1645 drm_dp_dpcd_writeb(aux, DP_RECEIVER_ALPM_STATUS, val);
1646 }
1647 }
1648
1649 static void psr_capability_changed_check(struct intel_dp *intel_dp)
1650 {
1651 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1652 struct i915_psr *psr = &dev_priv->psr;
1653 u8 val;
1654 int r;
1655
1656 r = drm_dp_dpcd_readb(&intel_dp->aux, DP_PSR_ESI, &val);
1657 if (r != 1) {
1658 drm_err(&dev_priv->drm, "Error reading DP_PSR_ESI\n");
1659 return;
1660 }
1661
1662 if (val & DP_PSR_CAPS_CHANGE) {
1663 intel_psr_disable_locked(intel_dp);
1664 psr->sink_not_reliable = true;
1665 drm_dbg_kms(&dev_priv->drm,
1666 "Sink PSR capability changed, disabling PSR\n");
1667
1668 /* Clearing it */
1669 drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_ESI, val);
1670 }
1671 }
1672
1673 void intel_psr_short_pulse(struct intel_dp *intel_dp)
1674 {
1675 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1676 struct i915_psr *psr = &dev_priv->psr;
1677 u8 status, error_status;
1678 const u8 errors = DP_PSR_RFB_STORAGE_ERROR |
1679 DP_PSR_VSC_SDP_UNCORRECTABLE_ERROR |
1680 DP_PSR_LINK_CRC_ERROR;
1681
1682 if (!CAN_PSR(dev_priv) || !intel_dp_is_edp(intel_dp))
1683 return;
1684
1685 mutex_lock(&psr->lock);
1686
1687 if (!psr->enabled || psr->dp != intel_dp)
1688 goto exit;
1689
1690 if (psr_get_status_and_error_status(intel_dp, &status, &error_status)) {
1691 drm_err(&dev_priv->drm,
1692 "Error reading PSR status or error status\n");
1693 goto exit;
1694 }
1695
1696 if (status == DP_PSR_SINK_INTERNAL_ERROR || (error_status & errors)) {
1697 intel_psr_disable_locked(intel_dp);
1698 psr->sink_not_reliable = true;
1699 }
1700
1701 if (status == DP_PSR_SINK_INTERNAL_ERROR && !error_status)
1702 drm_dbg_kms(&dev_priv->drm,
1703 "PSR sink internal error, disabling PSR\n");
1704 if (error_status & DP_PSR_RFB_STORAGE_ERROR)
1705 drm_dbg_kms(&dev_priv->drm,
1706 "PSR RFB storage error, disabling PSR\n");
1707 if (error_status & DP_PSR_VSC_SDP_UNCORRECTABLE_ERROR)
1708 drm_dbg_kms(&dev_priv->drm,
1709 "PSR VSC SDP uncorrectable error, disabling PSR\n");
1710 if (error_status & DP_PSR_LINK_CRC_ERROR)
1711 drm_dbg_kms(&dev_priv->drm,
1712 "PSR Link CRC error, disabling PSR\n");
1713
1714 if (error_status & ~errors)
1715 drm_err(&dev_priv->drm,
1716 "PSR_ERROR_STATUS unhandled errors %x\n",
1717 error_status & ~errors);
1718 /* clear status register */
1719 drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_ERROR_STATUS, error_status);
1720
1721 psr_alpm_check(intel_dp);
1722 psr_capability_changed_check(intel_dp);
1723
1724 exit:
1725 mutex_unlock(&psr->lock);
1726 }
1727
1728 bool intel_psr_enabled(struct intel_dp *intel_dp)
1729 {
1730 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1731 bool ret;
1732
1733 if (!CAN_PSR(dev_priv) || !intel_dp_is_edp(intel_dp))
1734 return false;
1735
1736 mutex_lock(&dev_priv->psr.lock);
1737 ret = (dev_priv->psr.dp == intel_dp && dev_priv->psr.enabled);
1738 mutex_unlock(&dev_priv->psr.lock);
1739
1740 return ret;
1741 }
1742
1743 void intel_psr_atomic_check(struct drm_connector *connector,
1744 struct drm_connector_state *old_state,
1745 struct drm_connector_state *new_state)
1746 {
1747 struct drm_i915_private *dev_priv = to_i915(connector->dev);
1748 struct intel_connector *intel_connector;
1749 struct intel_digital_port *dig_port;
1750 struct drm_crtc_state *crtc_state;
1751
1752 if (!CAN_PSR(dev_priv) || !new_state->crtc ||
1753 !dev_priv->psr.force_mode_changed)
1754 return;
1755
1756 intel_connector = to_intel_connector(connector);
1757 dig_port = enc_to_dig_port(to_intel_encoder(new_state->best_encoder));
1758 if (dev_priv->psr.dp != &dig_port->dp)
1759 return;
1760
1761 crtc_state = drm_atomic_get_new_crtc_state(new_state->state,
1762 new_state->crtc);
1763 crtc_state->mode_changed = true;
1764 }
1765
1766 void intel_psr_set_force_mode_changed(struct intel_dp *intel_dp)
1767 {
1768 struct drm_i915_private *dev_priv;
1769
1770 if (!intel_dp)
1771 return;
1772
1773 dev_priv = dp_to_i915(intel_dp);
1774 if (!CAN_PSR(dev_priv) || intel_dp != dev_priv->psr.dp)
1775 return;
1776
1777 dev_priv->psr.force_mode_changed = true;
1778 }